WO2024077925A1 - 一种折弯异型超薄均热板及其制造工艺和应用 - Google Patents
一种折弯异型超薄均热板及其制造工艺和应用 Download PDFInfo
- Publication number
- WO2024077925A1 WO2024077925A1 PCT/CN2023/090429 CN2023090429W WO2024077925A1 WO 2024077925 A1 WO2024077925 A1 WO 2024077925A1 CN 2023090429 W CN2023090429 W CN 2023090429W WO 2024077925 A1 WO2024077925 A1 WO 2024077925A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ultra
- thin
- vapor chamber
- heat spreader
- manufacturing process
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 27
- 238000005452 bending Methods 0.000 claims abstract description 31
- 239000007788 liquid Substances 0.000 claims abstract description 23
- 238000011049 filling Methods 0.000 claims abstract description 13
- 238000012360 testing method Methods 0.000 claims abstract description 12
- 238000004804 winding Methods 0.000 claims abstract description 11
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims abstract description 10
- 238000005245 sintering Methods 0.000 claims abstract description 8
- 238000000034 method Methods 0.000 claims abstract description 6
- 238000002347 injection Methods 0.000 claims abstract description 5
- 239000007924 injection Substances 0.000 claims abstract description 5
- 229910000679 solder Inorganic materials 0.000 claims abstract description 4
- 238000007789 sealing Methods 0.000 claims abstract 2
- 239000002184 metal Substances 0.000 claims description 52
- 229910052751 metal Inorganic materials 0.000 claims description 52
- 239000007789 gas Substances 0.000 claims description 14
- 239000000463 material Substances 0.000 claims description 10
- 238000003466 welding Methods 0.000 claims description 10
- 238000001816 cooling Methods 0.000 claims description 7
- 239000012530 fluid Substances 0.000 claims description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 6
- 238000010330 laser marking Methods 0.000 claims description 6
- 238000011056 performance test Methods 0.000 claims description 6
- 238000002360 preparation method Methods 0.000 claims description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 5
- 229910002804 graphite Inorganic materials 0.000 claims description 5
- 239000010439 graphite Substances 0.000 claims description 5
- 239000001257 hydrogen Substances 0.000 claims description 5
- 229910052739 hydrogen Inorganic materials 0.000 claims description 5
- 230000008859 change Effects 0.000 claims description 4
- 230000008569 process Effects 0.000 claims description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 claims description 3
- 230000007935 neutral effect Effects 0.000 claims description 3
- 229910052757 nitrogen Inorganic materials 0.000 claims description 3
- 238000002791 soaking Methods 0.000 claims description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 3
- 230000002745 absorbent Effects 0.000 claims 1
- 239000002250 absorbent Substances 0.000 claims 1
- 230000017525 heat dissipation Effects 0.000 abstract description 4
- 238000007710 freezing Methods 0.000 abstract description 3
- 230000008014 freezing Effects 0.000 abstract description 3
- 238000010521 absorption reaction Methods 0.000 abstract 3
- 239000011162 core material Substances 0.000 abstract 3
- 238000005476 soldering Methods 0.000 abstract 2
- 238000004140 cleaning Methods 0.000 abstract 1
- 239000011248 coating agent Substances 0.000 abstract 1
- 238000000576 coating method Methods 0.000 abstract 1
- 238000001035 drying Methods 0.000 abstract 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 239000003292 glue Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000004080 punching Methods 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 2
- 238000007605 air drying Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000008676 import Effects 0.000 description 1
- 239000010985 leather Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23P—METAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
- B23P15/00—Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K15/00—Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P40/00—Technologies relating to the processing of minerals
- Y02P40/50—Glass production, e.g. reusing waste heat during processing or shaping
- Y02P40/57—Improving the yield, e-g- reduction of reject rates
Definitions
- the invention relates to the technical field of vapor chamber manufacturing, and in particular to a manufacturing process of a bent special-shaped ultra-thin vapor chamber and the manufactured vapor chamber.
- Phase change thermal control technology is increasingly used in all walks of life, providing a stable thermal environment for all kinds of electronic equipment.
- ultra-thin heat spreaders play an important role in constructing an additional heat channel between the motor stator winding and the cooling case. Due to the large distance between the stator winding of the drive motor and the cooling case, the thickness of the existing phase change thermal control device still does not meet the requirement of completely filling the gap. Therefore, it is reasonable and feasible to construct an additional heat channel between the stator winding and the cooling case by bending. The bending structure is an important factor affecting the heat transfer performance of the ultra-thin heat spreader. Whether the problem of failure of the ultra-thin heat spreader after bending can be effectively solved becomes the key to whether the motor can increase the maximum power and achieve lightweight.
- the existing manufacturing process can only achieve the non-failure of cylindrical heat pipes after bending.
- the manufacturing process of bending special-shaped ultra-thin heat spreaders is not yet mature, and the ultra-thin heat spreaders are prone to failure after bending.
- the failure is mainly caused by the cracking of the shell surface during the bending process and the collapse and blockage of the airway.
- the present invention proposes a manufacturing process of a bent special-shaped ultra-thin vapor chamber and the manufactured vapor chamber, wherein the manufacturing process significantly reduces the failure rate of the bent special-shaped ultra-thin vapor chamber.
- the present invention adopts the following technical solutions to achieve the above problems:
- a manufacturing process of a bent special-shaped ultra-thin vapor chamber comprises the following steps:
- wick material Use a laser marking machine to shape the sintered metal mesh and use The cutting machine cuts the metal braids of the corresponding quantity and size as the shell plate; of course, if the production cost needs to be reduced based on cost considerations, the ultra-thin heat spreader can only have a metal mesh or only a metal braid.
- the laser generator of the laser marking machine generates a high-energy continuous laser beam.
- the focused laser acts on the substrate, causing the surface material to melt instantly or even vaporize.
- the required graphic mark is formed.
- the laser marking machine is characterized by non-contact processing. It can mark on any special-shaped surface. The workpiece will not deform or generate internal stress. It is suitable for marking materials such as metal, plastic, glass, ceramic, wood, leather, etc. Therefore, we first draw the shape of the metal mesh on CAD, and then import it into the program of the laser marking machine to finalize the metal mesh.
- Preparation of liquid wick chemically corrode the prepared metal mesh and metal braid.
- the treated metal mesh and metal braid will have good capillary properties.
- the materials of the metal mesh and metal braid are the common materials of ultra-thin heat spreaders on the market; the chemical corrosion liquid is the corrosive liquid used on the market, which can form a microstructure with capillary properties on the metal mesh and metal braid.
- Commonly used metal mesh and metal braid are mainly copper metal.
- the treated metal wire mesh and metal braided belt on the shell plate of the soaking plate, and sinter them with 650°C reducing gas.
- the sintered metal wire mesh and metal braided belt should be welded to the shell plate as a whole.
- the reducing gas is nitrogen-hydrogen mixed gas, 95% nitrogen + 5% hydrogen.
- the bending radius of the neutral layer is R10, and the bending angle is 140.99°;
- the present invention can significantly improve the heat dissipation of the winding at the overhang, reduce the temperature of the motor winding, increase the rated power of the motor, and achieve lightweight and miniaturization of the motor.
- the present invention uses industrialized production and has low cost.
- the preparation process of the present invention is simple to operate, convenient and practical.
- the present invention has a simple structure and has low assembly requirements.
- the present invention does not require high precision for the devices and parts involved in production and is easy to process.
- FIG1 is a schematic diagram of the bending of an ultra-thin vapor chamber
- FIG2 is a diagram showing the ultra-thin heat spreader after bending
- FIG. 3 is a schematic diagram of the installation of the ultra-thin heat spreader in the motor.
- a manufacturing process of a bent special-shaped ultra-thin vapor chamber comprises the following steps:
- Preparation of liquid wick chemically corrode the prepared metal mesh and metal braid.
- the treated metal mesh and metal braid will have good capillary properties.
- the materials of the metal mesh and metal braid are the common materials of ultra-thin heat spreaders on the market; the chemical corrosion liquid is the corrosive liquid used on the market, which can form a microstructure with capillary properties on the metal mesh and metal braid.
- Commonly used metal mesh and metal braid are mainly copper metal.
- the treated metal wire mesh and metal braided belt on the shell plate of the soaking plate, and sinter them with 650°C reducing gas.
- the sintered metal wire mesh and metal braided belt should be welded to the shell plate as a whole.
- the reducing gas is nitrogen-hydrogen mixed gas, 95% nitrogen + 5% hydrogen.
- the bending radius of the neutral layer of the ultra-thin heat sink bending section is R10, and the bending angle is 140.99°;
- the center distance between two adjacent support pillars is 250%-400% of the support pillar radius.
- the support pillar radius is 0.5 mm, and the center distance is set at 2 mm.
- the shell thickness in this embodiment is preferably 0.2-2 mm.
- the efficiency of the ultra-thin heat spreader prepared by the above manufacturing process can reach more than 90% after bending, which greatly saves costs. At the same time, it can greatly improve the heat dissipation efficiency of the motor winding when used in the motor.
- the ultra-thin heat spreader manufactured by the manufacturing process of Example 1 is shown in FIG2 and is used in liquid-cooled or air-cooled motors as a phase change thermal control device between the motor stator winding and the cooling housing, as shown in FIG3.
- the ultra-thin heat spreader is folded into a wave shape, with the upper wave top close to the cooling housing and the lower wave bottom in contact with the overhanging winding of the motor stator, thereby providing an additional heat dissipation path for the motor winding. This is the installation position of the ultra-thin heat spreader in the motor, so the motor cooling casing is not drawn.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Power Engineering (AREA)
- Manufacture Of Motors, Generators (AREA)
- Molds, Cores, And Manufacturing Methods Thereof (AREA)
Abstract
一种折弯异型超薄均热板及其制造工艺和应用,该制造工艺包括清洗上、下壳板并干燥;准备吸液芯材料并制作吸液芯;将吸液芯与壳板进行烧结处理;对壳板自动涂上高温焊膏;将上壳板与下壳板组装合并后进行高温烧结,并将灌液管插入注液口中焊接,焊接完成后对超薄均热板进行灌液处理,灌液完成后将其放置于低于-8℃的乙醇中进行工质冻结;继续进行抽真空处理和进行不凝性气体去除处理,接着进行封口处理;采用折弯用凹凸模具或弯管机对测试通过的超薄均热板进行折弯处理。该方法操作简单,制备得到的超薄均热板能显著改善悬伸处绕组的散热情况,提升电机额定使用功率,实现电机轻量化和微型化。
Description
本发明涉及均热板制造技术领域,具体涉及一种折弯异型超薄均热板的制造工艺及制得的均热板。
相变热控技术越来越多地应用在各行各业,为各类电子设备提供稳定的热环境。目前,超薄均热板在构建电机定子绕组-冷却机壳额外热通道的散热方式上扮演着重要角色。由于驱动电机定子绕组与冷却机壳间的距离较大,现有的相变热控器件厚度仍达不到完全填充间隙的要求,因此,通过折弯的方式来构建定子绕组与冷却机壳间的额外热通道是合理且可行的。折弯结构是影响超薄均热板传热性能的重要因素,能否有效解决超薄均热板折弯后失效的问题成为电机能否提升极限功率,实现轻量化的关键。
然而,现有的制造工艺仅能实现圆柱形热管折弯后不失效,对折弯异型超薄均热板的制造工艺尚未成熟,极易出现折弯后的超薄均热板失效问题。通过对超薄均热板折弯失效原因的分析,主要是折弯过程中壳板表面破裂,以及气道塌陷堵塞导致的失效。
发明内容
有鉴于此,本发明提出了一种折弯异型超薄均热板的制造工艺及制得的均热板,该工艺显著降低折弯异型超薄均热板的失效率。
为解决上述技术问题,本发明采用以下技术方案予以实现:
一种折弯异型超薄均热板的制造工艺,包括如下步骤:
1、采用超声波清洗机将生产均热板的上、下壳板浸没在无水乙醇中清洗1-5min,再使用吹风机/烤箱/自然风干等方式对其进行干燥处理。
2、制备吸液芯材料:采用激光打标机对烧结好的金属丝网定型,并使用
裁切机裁剪与壳板对应数量及尺寸的金属编织带;当然,如果基于成本考虑需要降低生产成本,超薄均热板中可以只有金属丝网或者只有金属编织带。
激光打标机的激光发生器生成高能量的连续激光光束,聚焦后的激光作用于承印材料,使表面材料瞬间熔融,甚至气化,通过控制激光在材料表面的路径,从而形成需要的图文标记。激光打标机的特点是非接触加工,可在任何异型表面标刻,工件不会变形和产生内应力,适于金属、塑料、玻璃、陶瓷、木材、皮革等材料的标记。因此我们首先在CAD上进行金属丝网形状的绘制,再导入到激光打标机的程序里进行金属丝网的定型。
3、吸液芯制备:对准备好的金属丝网与金属编织带进行化学腐蚀处理,处理过后的金属丝网与金属编织带将具有良好的毛细性能。金属丝网与金属编织带的材料选用市场上超薄均热板的常用材料;化学腐蚀用到的药液为市面上用到的腐蚀药液,其以能在金属丝网与金属编织带上形成具有毛细性能的微结构。常用的金属丝网和金属编织带主要为铜金属。
4、将处理好的金属丝网和金属编织带铺放于均热板的壳板上,使用650℃的还原气体对其进行烧结处理,烧结过后的金属丝网与金属编织带应与壳板焊接为一体。还原气体具体是氮氢混合气,95%氮气+5%氢气。
5、采用冲压机对烧结好金属丝网及编织带的壳板冲注液口,接着采用点胶机对壳板自动涂上熔点630℃的高温焊膏。
6、将上壳板与下壳板组装合并后放置于清洁干净的石墨模具中固定,为了保证焊接的成功率,需要在石墨模具的顶部加1-20kg不等的配重(一般为铁块),配重由壳板厚度、点胶量等因素决定。
7、再次使用650℃的还原气体对组装好的均热板进行高温烧结,烧结完成后将灌液管插入步骤5中冲压形成的注液口中,并采用高频感应焊机进行焊接。
8、焊接完成后,采用真空抽注泵对超薄均热板进行验漏,若压力低于1Pa则视为验漏通过。
9、采用注射器对验漏通过后的超薄均热板进行灌液处理,灌液完成后将
其放置于低于-8℃的乙醇中进行工质冻结,冻结时间大于5mi n。
10、再次采用真空抽注泵对内部工质冻结完成的超薄均热板进行抽真空处理,直至小于3Pa。
11、采用加热平台对抽真空后的超薄均热板除掉不凝性气体,接着采用液压钳对其进行封口处理,并使用工业胶对其进行二次封口。
12、采用电阻焊机将封口后的超薄均热板的注液管作去尾处理,并置于60℃水浴进行启动性能测试。
13、采用折弯用凹凸模具或弯管机对测试通过的超薄均热板进行折弯处理,并对折弯后的超薄均热板进行二次启动性能测试,以检验其折弯后是否失效。
本发明中,为了使折弯后的超薄均热板仍然有效,可从以下关键点着手:
(1)增大折弯半径和折弯角度,中性层折弯半径为R10,折弯角度为140.99°;
(2)减小折弯处支撑柱之间的中心距,同时增加折弯处支撑柱的数量,比如折弯段支撑柱之间的中心距是非折弯段的50-60%;
(3)增加均热板壳板厚度,比如壳板的厚度增加10%-50%,保证壳板折弯过程中保持不破裂。
本发明的有益效果为:
1、本发明能够显著改善悬伸处绕组的散热情况,降低电机绕组温度,提升电机额定使用功率,实现电机轻量化和微型化。
1、本发明使用已产业化生产,成本低廉。
3、本发明的制备过程操作简便,方便实用。
4、本发明结构简单,对装配要求不高。
5、本发明生产中对所涉及的装置和零件对精度要求不高,易于加工。
图1为超薄均热板的折弯示意图;
图2为折弯后超薄均热板的展示图;
图3为超薄均热板在电机中的安装示意图。
为让本领域的技术人员更加清晰直观的了解本发明,下面将结合附图,对本发明作进一步的说明。
实施例1
一种折弯异型超薄均热板的制造工艺,包括如下步骤:
1、采用超声波清洗机将生产均热板的上、下壳板浸没在无水乙醇中清洗1-5min,再使用吹风机/烤箱/自然风干等方式对其进行干燥处理。
2、制备吸液芯材料:采用激光打标机对烧结好的金属丝网定型,并使用裁切机裁剪与壳板对应数量及尺寸的金属编织带;
3、吸液芯制备:对准备好的金属丝网与金属编织带进行化学腐蚀处理,处理过后的金属丝网与金属编织带将具有良好的毛细性能。金属丝网与金属编织带的材料选用市场上超薄均热板的常用材料;化学腐蚀用到的药液为市面上用到的腐蚀药液,其以能在金属丝网与金属编织带上形成具有毛细性能的微结构。常用的金属丝网和金属编织带主要为铜金属。
4、将处理好的金属丝网和金属编织带铺放于均热板的壳板上,使用650℃的还原气体对其进行烧结处理,烧结过后的金属丝网与金属编织带应与壳板焊接为一体。还原气体具体是氮氢混合气,95%氮气+5%氢气。
5、采用冲压机对烧结好金属丝网及编织带的壳板冲注液口,接着采用点胶机对壳板自动涂上熔点630℃的高温焊膏。
6、将上壳板与下壳板组装合并后放置于清洁干净的石墨模具中固定,为了保证焊接的成功率,需要在石墨模具的顶部加1-20kg不等的配重(一般为铁块),配重由壳板厚度、点胶量等因素决定。
7、再次使用650℃的还原气体对组装好的均热板进行高温烧结,烧结完成后将灌液管插入步骤5中冲压形成的注液口中,并采用高频感应焊机进行
焊接。
8、焊接完成后,采用真空抽注泵对超薄均热板进行验漏,若压力低于1Pa则视为验漏通过。
9、采用注射器对验漏通过后的超薄均热板进行灌液处理,灌液完成后将其放置于低于-8℃的乙醇中进行工质冻结,冻结时间大于5min。
10、再次采用真空抽注泵对内部工质冻结完成的超薄均热板进行抽真空处理,直至小于3Pa。
11、采用加热平台对抽真空后的超薄均热板除掉不凝性气体,接着采用液压钳对其进行封口处理,并使用工业胶对其进行二次封口。
12、采用电阻焊机将封口后的超薄均热板的注液管作去尾处理,并置于60℃水浴进行启动性能测试。
13、采用折弯用凹凸模具或弯管机对测试通过的超薄均热板进行折弯处理,并对折弯后的超薄均热板进行二次启动性能测试,以检验其折弯后是否失效。
如图1所示,超薄均热板折弯段中性层折弯半径为R10,折弯角度为140.99°;
本实施例中,两相邻的支撑柱的中心距为支撑柱半径的250%-400%。作为优选的实施例,支撑柱半径为0.5毫米,中心距设置在2毫米。
本实施例中的壳体厚度优选为0.2-2mm。
通过生产统计,采用上述制造工艺制备得到的超薄均热板在折弯后有效率可以达到90%以上,极大的节省了成本,同时应用于电机中可以极大的提高电机绕组的散热效率。
实施例2
通过实施例1的制造工艺制得的超薄均热板如图2所示,应用在液冷或风冷电机中作为电机定子绕组与冷却机壳之间的相变热控器件,如图3所示。应用中,超薄均热板折弯后呈波浪状,上波顶贴紧冷却机壳,下波底与电机定子的悬伸处绕组接触,从而为电机绕组提供额外的散热途径。图3展示的
是超薄均热板在电机中的安装位置,因此电机冷却机壳未画出。
以上仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
Claims (10)
- 一种折弯异型超薄均热板的制造工艺,其特征在于,包括如下步骤:清洗生产均热板的上、下壳板,然后干燥;准备吸液芯材料:采用激光打标机对烧结好的金属丝网定型,和/或裁剪与壳板对应数量及尺寸的金属编织带;吸液芯制备:对金属丝网、金属编织带进行化学腐蚀处理,处理过后的金属丝网与金属编织带将具有良好的毛细性能;将处理好的金属丝网、金属编织带铺放于均热板的壳板上进行烧结处理,烧结过后的金属丝网、金属编织带应与壳板连接为一体;对烧结好金属丝网、编织带的壳板冲注液口,接着对壳板自动涂上高温焊膏;将上壳板与下壳板组装合并后放置于清洁干净的石墨模具中固定;对组装好的均热板进行高温烧结,烧结完成后将灌液管插入注液口中并进行焊接;焊接完成后对超薄均热板进行灌液处理,灌液完成后将其放置于低于-8℃的乙醇中进行工质冻结;内部工质冻结完成的超薄均热板进行抽真空处理;通过加热平台对抽真空后的超薄均热板进行不凝性气体去除处理,接着进行封口处理;将封口后的超薄均热板的注液管作去尾处理;采用折弯用凹凸模具或弯管机对测试通过的超薄均热板进行折弯处理。
- 如权利要求1所述的一种折弯异型超薄均热板的制造工艺,其特征在于,超薄均热板的折弯段中性层折弯半径为R10,折弯角度为140.99°。
- 如权利要求1所述的一种折弯异型超薄均热板的制造工艺,其特征在于,超薄均热板的折弯段支撑柱之间的中心距是非折弯段的50-60%。
- 如权利要求1所述的一种折弯异型超薄均热板的制造工艺,其特征在于,壳板的厚度增加10%-50%。
- 如权利要求1所述的一种折弯异型超薄均热板的制造工艺,其特征在于,烧结处理是采用650℃的还原气体进行烧结,还原气体是95%氮气+5%氢气的混合气体。
- 如权利要求1所述的一种折弯异型超薄均热板的制造工艺,其特征在于,对焊接完成的超薄均热板采用真空抽注泵对超薄均热板进行验漏,若压力低于1Pa则视为验漏通过。
- 如权利要求1所述的一种折弯异型超薄均热板的制造工艺,其特征在于,注液管尾处理后,超薄均热板置于60℃水浴进行启动性能测试。
- 如权利要求7所述的一种折弯异型超薄均热板的制造工艺,其特征在于,对折弯后的超薄均热板进行二次启动性能测试,以检验其折弯后是否失效。
- 如权利要求1-8任一项所述的一种折弯异型超薄均热板的制造工艺制备得到的超薄均热板。
- 如权利要求1-8任一项所述的一种折弯异型超薄均热板的制造工艺制备得到的超薄均热板在液冷或风冷电机中作为电机定子绕组与冷却机壳之间的相变热控器件的应用。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211260870.3A CN115625484B (zh) | 2022-10-14 | 2022-10-14 | 一种折弯异型超薄均热板及其制造工艺和应用 |
CN202211260870.3 | 2022-10-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024077925A1 true WO2024077925A1 (zh) | 2024-04-18 |
Family
ID=84905225
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/090429 WO2024077925A1 (zh) | 2022-10-14 | 2023-04-24 | 一种折弯异型超薄均热板及其制造工艺和应用 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN115625484B (zh) |
WO (1) | WO2024077925A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118507924A (zh) * | 2024-07-18 | 2024-08-16 | 深圳大学 | 一种可用于动力电池加热的均热板及其制备方法 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115625484B (zh) * | 2022-10-14 | 2023-09-01 | 广东畅能达科技发展有限公司 | 一种折弯异型超薄均热板及其制造工艺和应用 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20150114709A (ko) * | 2014-04-02 | 2015-10-13 | 함의신 | 베이퍼 챔버모듈 |
CN113922568A (zh) * | 2021-08-27 | 2022-01-11 | 东南大学盐城新能源汽车研究院 | 一种高功率密度电机定子冷却结构 |
CN215725362U (zh) * | 2021-07-13 | 2022-02-01 | 常州恒创热管理有限公司 | 一种均温板及散热装置 |
CN114071942A (zh) * | 2020-07-31 | 2022-02-18 | 华南理工大学 | 一种具有气液共面特征的超薄相变传热器件及其制备方法 |
CN115625484A (zh) * | 2022-10-14 | 2023-01-20 | 广东畅能达科技发展有限公司 | 一种折弯异型超薄均热板及其制造工艺和应用 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106017176B (zh) * | 2016-07-18 | 2018-11-02 | 华南理工大学 | 一种手机散热用超薄热管及其制造方法 |
CN107764116A (zh) * | 2017-10-16 | 2018-03-06 | 华南理工大学 | 超薄柔性均热板及其制造方法 |
CN110267493B (zh) * | 2019-06-12 | 2023-12-01 | 华南理工大学 | 一种具有分级多孔结构的柔性超薄吸液芯及其制造方法 |
TWI819157B (zh) * | 2019-11-29 | 2023-10-21 | 秦文隆 | 超薄型均溫板及其製造方法 |
CN112888267B (zh) * | 2021-02-05 | 2022-09-20 | 华南理工大学 | 一种超薄柔性均热板及制造方法 |
CN215832540U (zh) * | 2021-06-07 | 2022-02-15 | 华南理工大学 | 一种超轻高性能铜铝复合均热板 |
CN113340138A (zh) * | 2021-07-02 | 2021-09-03 | 珠海德标光电科技有限公司 | 一种基于蒸发-沸腾转变的均热板及制备方法 |
CN113758325B (zh) * | 2021-08-13 | 2023-06-30 | 中南大学 | 一种内置铜/金刚石烧结吸液芯的vc散热器及其制备方法 |
CN114485237A (zh) * | 2022-01-11 | 2022-05-13 | 华南理工大学 | 一种超薄柔性均热板及其制备方法 |
-
2022
- 2022-10-14 CN CN202211260870.3A patent/CN115625484B/zh active Active
-
2023
- 2023-04-24 WO PCT/CN2023/090429 patent/WO2024077925A1/zh unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20150114709A (ko) * | 2014-04-02 | 2015-10-13 | 함의신 | 베이퍼 챔버모듈 |
CN114071942A (zh) * | 2020-07-31 | 2022-02-18 | 华南理工大学 | 一种具有气液共面特征的超薄相变传热器件及其制备方法 |
CN215725362U (zh) * | 2021-07-13 | 2022-02-01 | 常州恒创热管理有限公司 | 一种均温板及散热装置 |
CN113922568A (zh) * | 2021-08-27 | 2022-01-11 | 东南大学盐城新能源汽车研究院 | 一种高功率密度电机定子冷却结构 |
CN115625484A (zh) * | 2022-10-14 | 2023-01-20 | 广东畅能达科技发展有限公司 | 一种折弯异型超薄均热板及其制造工艺和应用 |
Non-Patent Citations (1)
Title |
---|
LI, ZIXI: "Manufacturing Process and Thermal Performance Analysis of Ultra-thin Vapor Chamber", MASTER'S THESES, SOUTH CHINA UNIVERSITY OF TECHNOLOGY, CHINA, no. 02, 21 April 2016 (2016-04-21), China, pages 1 - 113, XP009553899 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118507924A (zh) * | 2024-07-18 | 2024-08-16 | 深圳大学 | 一种可用于动力电池加热的均热板及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN115625484A (zh) | 2023-01-20 |
CN115625484B (zh) | 2023-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2024077925A1 (zh) | 一种折弯异型超薄均热板及其制造工艺和应用 | |
US20100108297A1 (en) | Heat Pipe and Making Method Thereof | |
CN110763059B (zh) | 一种超薄均温板及其制造方法 | |
CN111174617A (zh) | 一种高效能均温板及其制造工艺 | |
US20170314873A1 (en) | Heat conduction module structure and method of manufacturing the same | |
CN112719821B (zh) | 一种超薄真空腔均热板复合材料及其密封成型方法 | |
CN111174616A (zh) | 一种超薄均温板结构及其制造工艺 | |
JP2007064523A (ja) | 圧接式平面型ヒートパイプ、製造装置およびその製造方法 | |
CN112179190A (zh) | 一种耦合引射器的超薄平板式环路热管 | |
WO2024113670A1 (zh) | 防鼓包均热板及其制备方法和应用 | |
CN212300052U (zh) | 一种均热板 | |
CN116723679A (zh) | 陶瓷基均热板及其制备方法和应用 | |
CN218333774U (zh) | 一种双dbc板制备的绝缘衬底结构 | |
CN116817648A (zh) | 陶瓷均温板及其制作方法 | |
CN102581586B (zh) | 制作散热柱方法及其制品 | |
CN212006864U (zh) | 一种高效能均温板 | |
JP2000111281A (ja) | 平面状ヒートパイプ及びその製造方法 | |
CN101886889A (zh) | 具有高散热效能的散热结构及其制作方法 | |
TWI293041B (zh) | ||
CN107068846A (zh) | 一种led相变散热基板及其制备方法 | |
CN114061346A (zh) | 一种均热板 | |
CN117663865A (zh) | 一种抗膨胀超薄均热板及其制造方法 | |
CN110944493A (zh) | 一种基于气液相变的金属基复合材料器件及其制备方法 | |
CN112129150B (zh) | 一种铝合金热管散热手机背壳及其制造方法 | |
CN212962966U (zh) | 一种制造真空腔均热板的封装装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23876137 Country of ref document: EP Kind code of ref document: A1 |