WO2024077824A1 - 轨道车辆及其采暖控制系统、方法 - Google Patents

轨道车辆及其采暖控制系统、方法 Download PDF

Info

Publication number
WO2024077824A1
WO2024077824A1 PCT/CN2023/075852 CN2023075852W WO2024077824A1 WO 2024077824 A1 WO2024077824 A1 WO 2024077824A1 CN 2023075852 W CN2023075852 W CN 2023075852W WO 2024077824 A1 WO2024077824 A1 WO 2024077824A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
frequency power
variable frequency
supply module
set threshold
Prior art date
Application number
PCT/CN2023/075852
Other languages
English (en)
French (fr)
Inventor
王正
杨天智
肖峰敏
丁前庄
李跃中
Original Assignee
中车株洲电力机车有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中车株洲电力机车有限公司 filed Critical 中车株洲电力机车有限公司
Publication of WO2024077824A1 publication Critical patent/WO2024077824A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61DBODY DETAILS OR KINDS OF RAILWAY VEHICLES
    • B61D27/00Heating, cooling, ventilating, or air-conditioning
    • B61D27/0036Means for heating only
    • B61D27/0045Electric heating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T30/00Transportation of goods or passengers via railways, e.g. energy recovery or reducing air resistance

Definitions

  • the present invention belongs to the technical field of vehicle HVAC design, and in particular relates to a rail vehicle and a heating control system and method thereof.
  • the electric heating devices for rail vehicles at home and abroad are generally equipped with two gears (using two sets of electric heating tubes or other heating elements).
  • the heating elements are turned on and off by closing or opening the contactor of the air conditioning control system, thereby changing the heating power and realizing half-heating and full-heating control.
  • This control method has the following shortcomings:
  • the heating output of the heating device does not match the heating load, resulting in poor comfort.
  • the heating output is less than the heating load, the temperature inside the car is low; when the heating output is greater than the heating load, the temperature inside the car is high, the heating device starts and stops frequently, and the temperature inside the car fluctuates greatly, resulting in poor comfort inside the car.
  • the heating output of the heating device cannot be linearly adjusted, the device starts and stops frequently, the switching loss is large, and it is not energy-saving.
  • the object of the present invention is to provide a rail vehicle and a heating control system and method thereof, so as to solve the problem that the existing heating control method adopts semi-warming and full-warming control, cannot achieve linear adjustment of heating amount, leads to poor comfort, frequent starting and stopping, large switching loss and no energy saving.
  • a rail vehicle heating control system comprising:
  • At least one temperature sensor which is disposed in the vehicle compartment and is used to collect the actual temperature in the vehicle compartment;
  • a control module used for outputting different control instructions according to the difference between the set temperature and the actual temperature
  • variable frequency power supply module whose output end is electrically connected to the heating device, and the variable frequency power supply module is used to output different driving voltages to the heating device under the control of different control instructions;
  • variable frequency power supply module The relationship between the difference and the driving voltage output by the variable frequency power supply module is as follows:
  • the driving voltage is equal to the rated voltage of the variable frequency power supply module
  • the driving voltage is zero.
  • the present invention controls the driving voltage of the variable frequency power supply module and the heating amount of the heating device according to the difference between the set temperature and the actual temperature in the vehicle compartment and the numerical range to which the difference belongs, thereby realizing accurate linear regulation of the heating amount of the heating device, maintaining the temperature in the vehicle compartment within a relatively constant range, preventing large fluctuations in the temperature in the vehicle compartment, improving riding comfort, and solving the problems in the prior art of frequently starting and stopping the heating device to adjust the heating amount and low heating amount regulation accuracy, thereby greatly reducing switching losses and achieving energy conservation and environmental protection.
  • the multiple temperature sensors are evenly arranged on the top wall of the vehicle compartment and/or under the seats.
  • the actual temperature in the vehicle compartment is the average value of the temperatures collected by multiple temperature sensors.
  • control module is a microcontroller, or the control module is an air-conditioning controller.
  • control module Furthermore, the power supply end of the control module is electrically connected to an external power supply through a first terminal block.
  • the heating device includes an outer cover plate, an electric heating element arranged in the outer cover plate, and a mounting bracket for mounting the electric heating element.
  • variable frequency power supply module is electrically connected to a plurality of heating devices through a second terminal block.
  • the difference in proportionality coefficients between two adjacent sub-intervals may be set to 0.1.
  • the corresponding threshold values and the number of sub-intervals can be set according to actual use needs.
  • the first threshold value is 4°C
  • the second threshold value is -0.5°C
  • the driving voltage corresponding to each sub-interval is:
  • variable frequency power supply module When 2°C ⁇ Tic-Tim ⁇ 4°C, the drive voltage output by the variable frequency power supply module is 0.9*rated voltage;
  • variable frequency power supply module When 1.5°C ⁇ Tic-Tim ⁇ 2°C, the drive voltage output by the variable frequency power supply module is 0.8*rated voltage;
  • variable frequency power supply module When 1°C ⁇ Tic-Tim ⁇ 1.5°C, the drive voltage output by the variable frequency power supply module is 0.7*rated voltage;
  • variable frequency power supply module When 0.5°C ⁇ Tic-Tim ⁇ 1°C, the drive voltage output by the variable frequency power supply module is 0.6*rated voltage;
  • variable frequency power supply module When 0°C ⁇ Tic-Tim ⁇ 0.5°C, the drive voltage output by the variable frequency power supply module is 0.5*rated voltage;
  • variable frequency power supply module When -0.5°C ⁇ Tic-Tim ⁇ 0°C, the driving voltage output by the variable frequency power supply module is 0.4*rated voltage.
  • the drive voltage output by the variable frequency power supply module is 0.
  • the heating device is turned off.
  • the present invention sets a third set threshold. If the set temperature is much lower than the actual temperature in the vehicle compartment, it means that the heating device may have just started and there is no need to adjust the heating amount of the heating device temporarily. Therefore, the actual temperature in the vehicle compartment rises to a certain level before starting to adjust.
  • 4°C and 2°C are the assessment index values of the relevant standards of the rail transit HVAC industry, which describe the difference between the actual temperature (Tim) and (Tic) in the car.
  • the smaller the difference the stronger the temperature control ability of the air-conditioning system, the better the temperature uniformity, and the higher the comfort.
  • the present invention sets the span of some sub-intervals to 0.5°C.
  • the proportional coefficients are set to 0.9, 0.8, 0.7, 0.6, 0.5, and 0.4, respectively, and the difference in proportional coefficients between adjacent sub-intervals is 0.1.
  • the third set threshold value may be set to -1°C.
  • the present invention also provides a rail vehicle heating control method, comprising the following steps:
  • the magnitude of the driving voltage output by the variable frequency power supply module connected to the heating device in the vehicle compartment is controlled
  • the heating device is controlled to output a corresponding heating amount
  • variable frequency power supply module The relationship between the difference and the driving voltage output by the variable frequency power supply module is as follows:
  • the driving voltage is equal to the rated voltage of the variable frequency power supply module
  • the driving voltage is zero.
  • the present invention also provides a rail vehicle, comprising the rail vehicle heating control system as described above.
  • a rail vehicle and a heating control system and method thereof provided by the present invention accurately control the magnitude of a driving voltage output by a variable frequency power supply module according to the difference between a set temperature and an actual temperature in a car compartment; a heating device outputs a heating amount in proportion to the driving voltage according to the magnitude of the driving voltage, thereby achieving a matching of the heating amount output by the heating device with the heating load, improving riding comfort, eliminating the need for frequent start and stop of the heating device, greatly reducing switching losses, and saving energy; a variable frequency power supply module is used as the driving power supply of the heating device, and variable frequency control is used to achieve soft starting of the heating device, further reducing switching losses and avoiding impacts on the vehicle's auxiliary power supply or power grid.
  • the present invention can steplessly adjust the driving voltage and frequency output by the variable frequency power supply module, thereby realizing stepless adjustment of the heating amount output by the heating device.
  • its heating amount can be steplessly adjusted within the range of 40% to 100% of its nominal heating amount.
  • the heating amount adjustment range of a single vehicle is wider (adjustable within the range of 4% to 100%), which greatly improves the accuracy of matching the heating amount output by the vehicle heating device with the vehicle heating load and improves riding comfort.
  • FIG1 is a structural block diagram of a rail vehicle heating control system according to an embodiment of the present invention.
  • FIG. 2 is a layout diagram of a heating device, a temperature sensor and a control module in an embodiment of the present invention
  • Fig. 3 is a cross-sectional view taken along line A-A of Fig. 2 according to an embodiment of the present invention
  • Fig. 4 is a B-B cross-sectional view of Fig. 2 in an embodiment of the present invention.
  • Fig. 5 is a C-C cross-sectional view of Fig. 2 in an embodiment of the present invention.
  • FIG. 6 is a layout diagram of a rail vehicle heating control system according to an embodiment of the present invention.
  • FIG. 7 is a diagram showing the composition of a heating device according to an embodiment of the present invention.
  • FIG8 is a flow chart of a rail vehicle heating control method according to an embodiment of the present invention.
  • the terms “first”, “second” and other similar words are not intended to imply any order, quantity and importance, but are only used to distinguish different elements.
  • the terms “one”, “an” and other similar words are not intended to indicate that there is only one of the things described, but rather indicate that the relevant description is only for one of the things described, and the things described may have one or more.
  • the terms “comprise”, “include” and other similar words are intended to indicate logical mutual relationships, and cannot be regarded as indicating spatial structural relationships. For example, "A includes B” is intended to indicate that B belongs to A logically, but does not indicate that B is located inside A spatially.
  • this embodiment provides a rail vehicle heating control system, including a temperature sensor, a control module and a variable frequency power supply module.
  • the temperature sensor is electrically connected to the input end of the control module, and the input end of the control module is also communicatively connected to the air-conditioning controller or the vehicle control unit.
  • the output end of the control module is electrically connected to the input end of the variable frequency power supply module.
  • the temperature sensor is arranged in the carriage to collect the actual temperature in the carriage.
  • the temperature sensor is an NTC type temperature sensor.
  • the temperature sensor includes multiple temperature sensors, and the multiple temperature sensors are evenly arranged on the top wall of the carriage and/or the seat arrangement area. Exemplarily, as shown in Figures 2 to 5, each car is arranged with a total of 7 temperature sensors 8, which are evenly arranged in the length direction, width direction and height direction of the vehicle in the seat arrangement area.
  • the temperature sampling points are representative and redundant. When the temperature sensor corresponding to a certain temperature sampling point fails, the control module takes the temperature value of its similar measuring point. If the temperature sensor is not faulty, the average value of multiple temperature measuring points is taken. When there are multiple temperature sensors 8, the actual temperature in a single carriage is equal to the average value of the temperatures collected by multiple temperature sensors 8 in the carriage.
  • the control module receives the actual temperature in the cabin collected by the temperature sensor according to the sampling period, and receives the set temperature sent by the air conditioning controller or the vehicle control unit, and calculates the difference between the set temperature and the actual temperature in the cabin, and outputs different control instructions according to the difference and different set thresholds.
  • the control module can be a separate microcontroller, or it can be integrated with other controllers or share other controllers (such as air conditioning controllers).
  • variable frequency power supply module outputs different driving voltages to the heating device in the corresponding compartment.
  • the heating device outputs a heating amount proportional to the driving voltage according to different driving voltages, thereby achieving matching control of the heating amount output by the heating device and the heating load.
  • the variable frequency power supply module can adopt a variety of power input standards, such as AC380V, DC1500V or DC750V or other power supply standards.
  • the driving voltage range of the variable frequency power supply module is AC152V ⁇ AC380V, and the corresponding frequency range is 20 Hz ⁇ 50Hz.
  • the variable frequency power supply module includes a high-precision single-chip microcomputer and a variable frequency IPM module to realize DC-AC variable frequency output control.
  • the variable frequency power supply module controls the output of the variable frequency IPM module according to the heating demand, thereby realizing variable frequency output control.
  • the variable frequency IPM module has output phase loss, power supply voltage too high, too low protection, and IPM overcurrent and overheating protection.
  • the heating control system also includes a first terminal block 1 and a second terminal block 4.
  • the power supply end of the control module 2 is electrically connected to the external power supply through the first terminal block 1, and the output end of the variable frequency power supply module 3 is electrically connected to the heating device 6 through the second terminal block 4.
  • the heating control system can be arranged in the vehicle panel cabinet, or in the roof equipment box (such as air conditioning). As shown in FIG6, the arrangement diagram of the components of the heating control system, the control module 2 and the variable frequency power supply module 3 are arranged on the metal frame 5, the first terminal block 1 is provided on one side of the control module 2, and the second terminal block 4 is provided on one side of the variable frequency power supply module 3, so as to facilitate the connection of the control system with the external power supply and the heating device.
  • the heating device comprises an outer cover plate 61, an electric heating element 62 disposed in the outer cover plate 61, and a mounting bracket 63 for mounting the electric heating element 62.
  • the rated input voltage (or power supply voltage) of a single heating device is three-phase AC380V, and its input voltage adaptability range is wide, and the input voltage can work normally within the range of AC152V to AC380V.
  • the heating device 6 is arranged below the side wall of the rail vehicle.
  • the heating device 6 can be flexibly arranged according to the arrangement of seats and equipment inside the vehicle. It can be arranged intermittently (i.e., there are gaps between adjacent heating devices) or continuously (i.e., one heating device is arranged in the entire carriage, and the heating element of the heating device extends along the length of the vehicle). It can be applicable to a variety of vehicle models.
  • each carriage has multiple heating devices 6, and the multiple heating devices 6 are electrically connected to the output end of the variable frequency power supply module, respectively.
  • 7 heating devices 6 are arranged in each carriage, and the 7 heating devices 6 are all arranged in the seat area, which is consistent with the vehicle seat structure, ensuring high heating efficiency during winter heating and improving riding comfort.
  • the temperature sensor is used to monitor the temperature in the car.
  • the control module adjusts the heating amount output by the heating device according to the temperature in the car, thereby achieving temperature control.
  • the heating control system of the present invention takes the control module as the core, and cooperates with components such as circuit breakers, contactors, and temperature sensors. Both the circuit breaker and the contactor have feedback contacts, which can complete the functions of temperature control, fault diagnosis and protection of the heating device.
  • the circuit breaker is used to achieve short-circuit protection.
  • the heating control system performs a self-test every time it is turned on, and feeds back the self-test results to the control module.
  • An MVB network card or Ethernet card is installed in the control system for communication between the control module and the vehicle TCMS system.
  • this embodiment provides a rail vehicle heating control method, which is implemented by a control module, the input end of the control module is electrically connected to a temperature sensor provided in the vehicle compartment, the output end of the control module is electrically connected to the input end of a variable frequency power supply module, and the output end of the variable frequency power supply module is electrically connected to the input end of a heating device.
  • the method of this embodiment includes the following steps:
  • Step 1 The control module obtains the actual temperature in the vehicle cabin collected by the temperature sensor and the set temperature sent by the vehicle control unit or the air conditioning controller.
  • the temperature sensor is arranged in the carriage and is used to collect the actual temperature in the carriage.
  • the temperature sensor is an NTC type temperature sensor, and the temperature sensor includes multiple temperature sensors, which are evenly arranged above the carriage ceiling and/or under the seats. When there are multiple temperature sensors, the actual temperature in a single carriage is equal to the average value of the temperatures collected by the multiple temperature sensors in the carriage.
  • the set temperature is the target heating temperature.
  • Step 2 The control module calculates the difference between the set temperature and the actual temperature in the vehicle cabin.
  • Step 3 The control module controls the driving voltage output by the variable frequency power supply module according to the difference and different set thresholds.
  • Step 4 According to the driving voltage, the heating device is controlled to output a heating amount that is proportional to the driving voltage.
  • the drive voltage output by the variable frequency power supply module is 380V
  • the heating capacity output by the heating device is the nominal heating capacity, that is, full heating operation
  • the drive voltage output by the variable frequency power supply module is 0.9*380V, and the heating capacity output by the heating device is 0.9*nominal heating capacity;
  • the drive voltage output by the variable frequency power supply module is 0.8*380V, and the heating capacity output by the heating device is 0.8*nominal heating capacity;
  • the drive voltage output by the variable frequency power supply module is 0.7*380V, and the heating capacity output by the heating device is 0.7*nominal heating capacity;
  • the drive voltage output by the variable frequency power supply module is 0.6*380V
  • the heating capacity output by the heating device is 0.6*nominal heating capacity
  • the drive voltage output by the variable frequency power supply module is 0.5*380V
  • the heating capacity output by the heating device is 0.5*nominal heating capacity, that is, semi-warm operation
  • the drive voltage output by the variable frequency power supply module is 0.4*380V, and the heating capacity output by the heating device is 0.4*nominal heating capacity;
  • the drive voltage output by the variable frequency power supply module is 0 and the heating device is turned off.
  • the heating capacity of a single heating device can be adjusted steplessly within the range of 40% to 100% of its nominal heating capacity.
  • the coefficients 0.9, 0.8, 0.7, 0.6, 0.5, 0.4 and the set thresholds 4°C, 2°C, 1.5°C, 1°C, 0.5°C, 0°C, -0.5°C, -1°C can be adjusted according to actual conditions. The finer the setting of the coefficients and the set thresholds, the more accurate the control of the drive voltage and the output heating capacity, and the linear adjustment of the heating capacity can be achieved.
  • the nominal heating capacity is the heating capacity marked on the product nameplate, which is measured under a fixed working condition.
  • This embodiment provides a rail vehicle, which adopts the rail vehicle heating control system of the above-mentioned embodiment 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

一种轨道车辆及其采暖控制系统、方法,采暖控制系统包括温度传感器(8)、控制模块(2)以及变频电源模块(3),温度传感器(8)与控制模块(2)的输入端电性连接,控制模块(2)的输入端还与空调控制器或车辆控制单元通讯连接,控制模块(2)的输出端与变频电源模块(3)的输入端电性连接;根据设定温度与车厢内的实际温度之间的差值来精确控制变频电源模块(3)输出的驱动电压大小,采暖装置(6)根据驱动电压大小输出与驱动电压等比例的制热量,实现了采暖装置输出的制热量与制热负荷匹配,提高了舒适性,节省了能源;采暖装置的驱动电源采用变频电源模块,采用变频控制实现了采暖装置的软启动,避免了对车辆辅助电源或电网造成的冲击。

Description

轨道车辆及其采暖控制系统、方法 技术领域
本发明属于车辆暖通设计技术领域,尤其涉及一种轨道车辆及其采暖控制系统、方法。
背景技术
目前,国内外轨道车辆电热采暖装置一般设有两档(采用两组电热管或其它发热元件),通过空调控制系统的接触器吸合或断开来控制发热元件的开启和关闭,从而改变采暖功率,实现半暖和全暖控制,此种控制方式存在如下不足:
1、采暖装置输出的制热量与制热负荷不匹配,舒适性差。当输出制热量小于制热负荷时,车厢内温度较低;当输出制热量大于制热负荷时,车厢内温度较高,采暖装置频繁启停,车厢内温度波动较大,导致车厢内舒适性差。
2、采暖装置输出的制热量无法实现线性调节,装置频繁启停,开关损耗大,不节能。
技术问题
为了解决轨道交通车辆现有电热采暖控制方式存在的以上问题,并且实现节能,亟需研发一种采暖控制系统,在提高车辆采暖舒适度的同时实现节能。
技术解决方案
本发明的目的在于提供一种轨道车辆及其采暖控制系统、方法,以解决现有采暖控制方式采用半暖和全暖控制,无法实现制热量线性调节,导致舒适性差,启停频繁,开关损耗大,不节能的问题。
本发明是通过如下的技术方案来解决上述技术问题的:一种轨道车辆采暖控制系统,包括:
至少一个温度传感器,所述温度传感器设于车厢内且用于采集车厢内的实际温度;
控制模块,用于根据设定温度与所述实际温度的差值大小输出不同的控制指令;
变频电源模块,其输出端与采暖装置电性连接,且所述变频电源模块用于在不同控制指令的控制下向所述采暖装置输出不同的驱动电压;
其中,所述差值与变频电源模块输出的驱动电压的关系如下:
若所述差值大于或等于第一设定阈值,则驱动电压与变频电源模块的额定电压相等;
若所述差值大于或等于第二设定阈值,小于所述第一设定阈值,则将第二设定阈值至第一设定阈值的数值区间划分为多个子区间,第i个子区间对应的驱动电压为K i*额定电压,K i为第i个子区间对应的比例系数;根据所述差值所处的子区间确定对应的驱动电压;i=1,2,……,N;N为子区间数量;0<K 1<K 2<……<K N<1;第1子区间,第2子区间,……,第N子区间为多个子区间按照上限值从小到大的顺序依次编号得到;所述第二设定阈值小于第一设定阈值;
若所述差值小于所述第二设定阈值,则驱动电压为零。
本发明根据设定温度和车厢内实际温度的差值以及差值所属的数值区间,控制变频电源模块的驱动电压和采暖装置的制热量,实现了采暖装置制热量的精确线性调节,使车厢内温度维持在相对恒定的范围内,防止车厢内温度出现较大波动,提高了乘坐舒适性,解决了现有技术需频繁启停采暖装置才能调节制热量,且制热量调节精度低的问题,极大地降低了开关损耗,节能环保。
进一步地,为了提高车厢内实际温度采集的可靠性,所述温度传感器有多个,多个所述温度传感器均匀布置于车厢顶壁和/或座椅下方。
进一步地,为了准确计算车厢内实际温度,所述车厢内的实际温度为多个温度传感器采集的温度的平均值。
进一步地,所述控制模块为微控制器,或者所述控制模块为空调控制器。
进一步地,所述控制模块的电源端通过第一接线端子排与外部电源电性连接。
进一步地,为便于采暖装置的安装,保护采暖装置的核心部件,所述采暖装置包括外罩板、设于所述外罩板内的电加热元件以及用于安装所述电加热元件的安装支架。
进一步地,所述变频电源模块的输出端通过第二接线端子排与多个采暖装置电性连接。
进一步地,为了进一步防止车厢内温度出现较大波动,相邻两个子区间的比例系数之差可以设置为0.1。
进一步地,可以根据实际使用需要设置相应的设定阈值和子区间个数。本发明中,所述第一设定阈值为4℃,第二设定阈值为-0.5℃,各子区间对应的驱动电压为:
当2℃≤Tic-Tim<4℃时,所述变频电源模块输出的驱动电压为0.9*额定电压;
当1.5℃≤Tic-Tim<2℃时,所述变频电源模块输出的驱动电压为0.8*额定电压;
当1℃≤Tic-Tim<1.5℃时,所述变频电源模块输出的驱动电压为0.7*额定电压;
当0.5℃≤Tic-Tim<1℃时,所述变频电源模块输出的驱动电压为0.6*额定电压;
当0℃≤Tic-Tim<0.5℃时,所述变频电源模块输出的驱动电压为0.5*额定电压;
当-0.5℃≤Tic-Tim<0℃时,所述变频电源模块输出的驱动电压为0.4*额定电压。
进一步地,若所述差值大于或等于第三设定阈值,且小于第二设定阈值,则所述变频电源模块输出的驱动电压为0。此时,采暖装置关闭。本发明设置第三设定阈值,若设定温度小于车厢内的实际温度过多,说明采暖装置可能刚启动,暂时无需调节采暖装置制热量,因此待车厢内实际温度上升到一定程度再开始调整。
4℃、2℃是轨道交通暖通行业相关标准的考核指标值,描述的是车厢内的实际温度(Tim)与(Tic)之间的差值,差值越小,说明空调系统的温度控制能力越强,温度均匀性越好,舒适性也越高。为了进一步提高温度调节精度,同时将计算量控制在可接受范围内,本发明将某些子区间的跨度设置为0.5℃。
车厢内的温差越大,说明车厢内采暖需求越大,因此需要设定较高的驱动电压比例,从而保证采暖装置输出较大功率的制热量。
考虑到目前轨道交通车辆(地铁、轻轨)的大运量、快上快下及频繁开关门的特点,兼顾轨道交通车辆(市郊城际车辆)站间距较远的特点,结合温度差值之间关系,温差较大时需要较大的制热量(即需要较大的电压比例),温差较小时需要较小的制热量(即需要较小的电压比例),因此将比例系数分别设定为0.9、0.8、0.7、0.6、0.5、0.4,相邻子区间之间的比例系数之差为0.1。
进一步地,所述第三设定阈值可以设定为-1℃。
本发明还提供了一种轨道车辆采暖控制方法,包括以下步骤:
获取车厢内的实际温度以及设定温度;
计算设定温度与车厢内实际温度的差值;
根据所述差值控制与车厢内采暖装置连接的变频电源模块输出的驱动电压大小;
根据驱动电压,控制所述采暖装置输出对应的制热量;
其中,所述差值与变频电源模块输出的驱动电压的关系如下:
若所述差值大于或等于第一设定阈值,则驱动电压与变频电源模块的额定电压相等;
若所述差值大于或等于第二设定阈值,小于所述第一设定阈值,则将第二设定阈值至第一设定阈值的数值区间划分为多个子区间,第i个子区间对应的驱动电压为K i*额定电压,K i为第i个子区间对应的比例系数;根据所述差值所处的子区间确定对应的驱动电压;i=1,2,……,N;N为子区间数量;0<K 1<K 2<……<K N<1;第1子区间,第2子区间,……,第N子区间为多个子区间按照上限值从小到大的顺序依次编号得到;所述第二设定阈值小于第一设定阈值;
若所述差值小于所述第二设定阈值,则驱动电压为零。
基于同一发明构思,本发明还提供一种轨道车辆,包括如上所述的轨道车辆采暖控制系统。
有益效果
与现有技术相比,本发明的优点在于:
本发明所提供的一种轨道车辆及其采暖控制系统、方法,根据设定温度与车厢内的实际温度之间的差值来精确控制变频电源模块输出的驱动电压大小,采暖装置根据驱动电压大小输出与驱动电压等比例的制热量,实现了采暖装置输出的制热量与制热负荷匹配,提高了乘坐舒适性,无需采暖装置频繁启停,极大地降低了开关损耗,节省了能源;采暖装置的驱动电源采用变频电源模块,采用变频控制实现了采暖装置的软启动,进一步降低了开关损耗,避免了对车辆辅助电源或电网造成的冲击。
本发明可以无级调节变频电源模块输出的驱动电压及频率,从而可以实现采暖装置输出的制热量的无级调节,单台采暖装置工作时,其制热量可在其名义制热量的40%~100%范围内无级调节,多台采暖装置配合工作时,单节车的制热量调节范围更加宽泛(4%~100%范围内可调),极大地提升了车辆采暖装置输出的制热量与车辆采暖负荷匹配的准确性,提高了乘坐舒适性。
附图说明
为了更清楚地说明本发明的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一个实施例,对于本领域普通技术人员来说,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例中轨道车辆采暖控制系统结构框图;
图2是本发明实施例中采暖装置、温度传感器及控制模块布置图;
图3是本发明实施例中图2的A-A断面图;
图4是本发明实施例中图2的B-B断面图;
图5是本发明实施例中图2的C-C断面图;
图6是本发明实施例中轨道车辆采暖控制系统布置图;
图7是本发明实施例中采暖装置组成图;
图8是本发明实施例中轨道车辆采暖控制方法流程图。
其中,1-第一接线端子排,2-控制模块,3-变频电源模块,4-第二接线端子排,5-金属骨架,6-采暖装置,61-外罩板,62-电加热元件,63-安装支架,7-采暖控制系统(指图1虚线框内的各模块),8-温度传感器。
本发明的实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地说明,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本文中,术语“第一”、“第二”和其它类似词语并不意在暗示任何顺序、数量和重要性,而是仅仅用于对不同的元件进行区分。在本文中,术语“一”、“一个”和其它类似词语并不意在表示只存在一个所述事物,而是表示有关描述仅仅针对所述事物中的一个,所述事物可能具有一个或多个。在本文中,术语“包含”、“包括”和其它类似词语意在表示逻辑上的相互关系,而不能视作表示空间结构上的关系。例如,“A包括B”意在表示在逻辑上B属于A,而不表示在空间上B位于A的内部。另外,术语“包含”、“包括”和其它类似词语的含义应视为开放性的,而非封闭性的。例如,“A包括B”意在表示B属于A,但是B不一定构成A的全部,A还可能包括C、D、E等其它元素。
实施例
如图1所示,本实施例提供了一种轨道车辆采暖控制系统,包括温度传感器、控制模块以及变频电源模块,温度传感器与控制模块的输入端电性连接,控制模块的输入端还与空调控制器或车辆控制单元通信连接,控制模块的输出端与变频电源模块的输入端电性连接。
温度传感器设于车厢内,用于采集车厢内的实际温度。本实施例中,温度传感器选用NTC型温度传感器。温度传感器包括多个,多个温度传感器均匀布置于车厢顶壁和/或座椅布置区域。示例性的,如图2~5所示,每节车共布置7个温度传感器8,均匀地布置在座椅布置区域的车辆长度方向、宽度方向及高度方向,温度采样点具有代表性且有冗余性,当某个温度采样点对应的温度传感器故障时,则控制模块取其类似测点的温度值,如温度传感器无故障,则取多个温度测点的平均值。当温度传感器8有多个时,单节车厢内的实际温度等于该车厢内多个温度传感器8采集的温度的平均值。
控制模块根据采样周期接收温度传感器采集的车厢内的实际温度,以及接收空调控制器或车辆控制单元发送的设定温度,并计算设定温度与车厢内的实际温度之间的差值,根据差值和不同的设定阈值输出不同的控制指令。控制模块可以是单独的微控制器,也可以与其他控制器集成或共用其他控制器(例如空调控制器)。
在控制模块不同的控制指令作用下,变频电源模块输出不同的驱动电压给对应车厢内的采暖装置,采暖装置根据不同的驱动电压输出与驱动电压等比例的制热量,实现了采暖装置输出的制热量与制热负荷的匹配控制。
变频电源模块可以采用多种电源输入制式,例如AC380V,DC1500V或DC750V或其它电源制式,变频电源模块输出的驱动电压范围为AC152V~AC380V,对应的频率范围为20 Hz~50Hz。本实施例中,变频电源模块包括高精度单片机和变频IPM模块,实现直流-交流的变频输出控制,变频电源模块根据制热量需求对变频IPM模块进行输出控制,实现了变频输出控制。变频IPM模块具有输出缺相、电源电压过高、过低保护,以及IPM过流、过热保护。
采暖控制系统还包括第一接线端子排1和第二接线端子排4,控制模块2的电源端通过第一接线端子排1与外部电源电性连接,变频电源模块3的输出端通过第二接线端子排4与采暖装置6电性连接。采暖控制系统可以设于车辆屏柜内,也可以布置于车顶设备箱内(例如空调),如图6所示的采暖控制系统各元件布置图,在金属骨架5上布置有控制模块2和变频电源模块3,在控制模块2一侧设有第一接线端子排1,在变频电源模块3的一侧设有第二接线端子排4,便于控制系统与外部电源、采暖装置接线。
如图7所示,采暖装置包括外罩板61、设于外罩板61内的电加热元件62以及用于安装电加热元件62的安装支架63。单个采暖装置的额定输入电压(或供电电压)为三相AC380V,其输入电压适应范围广,输入电压在AC152V~AC380V范围内均可正常工作。
如图2所示,采暖装置6布置于轨道车辆侧墙下方,采暖装置6可以根据车辆内部座椅及设备布置情况灵活布置,可以断续布置(即相邻的采暖装置之间有空隙),也可连续布置(即整节车厢布置一个采暖装置,该采暖装置的加热元件沿车辆长度方向延伸),可适用于多种车型。当采暖装置6采用断续布置时,每节车厢有多个采暖装置6,多个采暖装置6分别与变频电源模块的输出端电性连接。示例性的,如图2~图5所示,每节车厢布置7个采暖装置6,7个采暖装置6均布置在座椅区域,与车辆座椅结构相契合,确保冬季采暖时采暖效率高,提高乘坐舒适性。
温度传感器用于监测车厢内的温度。控制模块根据车厢内的温度调整取暖装置输出的制热量,从而实现温度控制。本发明采暖控制系统以控制模块为核心,配合使用断路器、接触器、温度传感器等元件,断路器和接触器均带反馈触点,可完成采暖装置的温度控制、故障诊断及保护等功能。断路器用于实现短路保护。采暖控制系统每次开机进行自检,并将自检结果反馈给控制模块。控制系统内安装有MVB网卡或以太网卡,用于控制模块与车辆TCMS系统的通讯。
实施例
如图8所示,本实施例提供一种轨道车辆采暖控制方法,该控制方法由控制模块实现,控制模块的输入端与设于车厢内的温度传感器电性连接,控制模块的输出端与变频电源模块的输入端电性连接,变频电源模块的输出端与采暖装置的输入端电性连接。本实施例的方法包括以下步骤:
步骤1:控制模块获取温度传感器采集的车厢内的实际温度以及车辆控制单元或空调控制器发送的设定温度。
温度传感器设于车厢内且用于采集车厢内的实际温度。本实施例中,温度传感器选用NTC型温度传感器,且温度传感器包括多个,多个温度传感器均匀布置于车厢天花板上方和/或座椅下方。当温度传感器有多个时,单节车厢内的实际温度等于该车厢内多个温度传感器采集的温度的平均值。
设定温度即目标采暖温度。
步骤2:控制模块计算设定温度与车厢内的实际温度的差值。
步骤3:控制模块根据差值以及不同的设定阈值控制变频电源模块输出的驱动电压大小。
步骤4:根据驱动电压,控制采暖装置输出与驱动电压等比例的制热量。
本实施例中,设Tic为设定温度,Tim为车厢内的实际温度,变频电源模块的额定电压为380V,具体控制策略为:
当Tic-Tim≥4℃时,变频电源模块输出的驱动电压为380V,采暖装置输出的制热量为名义制热量,即全暖运行;
当2℃≤Tic-Tim<4℃时,变频电源模块输出的驱动电压为0.9*380V,采暖装置输出的制热量为0.9*名义制热量;
当1.5℃≤Tic-Tim<2℃时,变频电源模块输出的驱动电压为0.8*380V,采暖装置输出的制热量为0.8*名义制热量;
当1℃≤Tic-Tim<1.5℃时,变频电源模块输出的驱动电压为0.7*380V,采暖装置输出的制热量为0.7*名义制热量;
当0.5℃≤Tic-Tim<1℃时,变频电源模块输出的驱动电压为0.6*380V,采暖装置输出的制热量为0.6*名义制热量;
当0℃≤Tic-Tim<0.5℃时,变频电源模块输出的驱动电压为0.5*380V,采暖装置输出的制热量为0.5*名义制热量,即半暖运行;
当-0.5℃≤Tic-Tim<0℃时,变频电源模块输出的驱动电压为0.4*380V,采暖装置输出的制热量为0.4*名义制热量;
当-1℃≤Tic-Tim<-0.5℃时,变频电源模块输出的驱动电压为0,采暖装置关闭。
按照如上控制策略,单台采暖装置的制热量可在其名义制热量的40%~100%范围内无级调节。系数0.9、0.8、0.7、0.6、0.5、0.4以及设定阈值4℃、2℃、1.5℃、1℃、0.5℃、0℃、-0.5℃、-1℃可以根据实际情况进行调整,系数和设定阈值设置越精细,驱动电压和输出的制热量控制越精确,可以实现制热量的线性调节。名义制热量是产品铭牌上标识的制热量,是在某个固定的工况下测得的。
实施例
本实施例提供了一种轨道车辆,该轨道车辆采用上述实施例1的轨道车辆采暖控制系统。
尽管已描述了本申请的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请范围的所有变更和修改。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (17)

  1.  一种轨道车辆采暖控制系统,其特征在于,包括:
    至少一个温度传感器,所述温度传感器设于车厢内且用于采集车厢内的实际温度;
    控制模块,用于根据设定温度与所述实际温度的差值大小输出不同的控制指令;
    变频电源模块,其输出端与采暖装置电性连接,且所述变频电源模块用于在不同控制指令的控制下向所述采暖装置输出不同的驱动电压;
    其中,所述差值与变频电源模块输出的驱动电压的关系如下:
    若所述差值大于或等于第一设定阈值,则驱动电压与变频电源模块的额定电压相等;
    若所述差值大于或等于第二设定阈值,小于所述第一设定阈值,则将第二设定阈值至第一设定阈值的数值区间划分为多个子区间,第i个子区间对应的驱动电压为K i*额定电压,K i为第i个子区间对应的比例系数;根据所述差值所处的子区间确定对应的驱动电压;i=1,2,……,N;N为子区间数量;0<K 1<K 2<……<K N<1;第1子区间,第2子区间,……,第N子区间为多个子区间按照上限值从小到大的顺序依次编号得到;所述第二设定阈值小于第一设定阈值;
    若所述差值小于所述第二设定阈值,则驱动电压为零。
  2.  根据权利要求1所述的轨道车辆采暖控制系统,其特征在于,所述温度传感器有多个,多个所述温度传感器均匀布置于车厢顶壁和/或座椅下方。
  3.  根据权利要求1或2所述的轨道车辆采暖控制系统,其特征在于,所述车厢内的实际温度为多个温度传感器采集的温度的平均值。
  4.  根据权利要求1所述的轨道车辆采暖控制系统,其特征在于,所述控制模块为微控制器,或者所述控制模块为空调控制器。
  5.  根据权利要求1所述的轨道车辆采暖控制系统,其特征在于,所述控制模块的电源端通过第一接线端子排与外部电源电性连接。
  6.  根据权利要求1所述的轨道车辆采暖控制系统,其特征在于,所述采暖装置包括外罩板、设于所述外罩板内的电加热元件以及用于安装所述电加热元件的安装支架。
  7.  根据权利要求1所述的轨道车辆采暖控制系统,其特征在于,所述变频电源模块的输出端通过第二接线端子排与多个采暖装置电性连接。
  8.  根据权利要求1~7之一所述的轨道车辆采暖控制系统,其特征在于,相邻两个子区间的比例系数之差为0.1。
  9.  根据权利要求1~8之一所述的轨道车辆采暖控制系统,其特征在于,所述第一设定阈值为4℃,第二设定阈值为-0.5℃,各子区间对应的驱动电压为:
    当2℃≤Tic-Tim<4℃时,所述变频电源模块输出的驱动电压为0.9*额定电压;
    当1.5℃≤Tic-Tim<2℃时,所述变频电源模块输出的驱动电压为0.8*额定电压;
    当1℃≤Tic-Tim<1.5℃时,所述变频电源模块输出的驱动电压为0.7*额定电压;
    当0.5℃≤Tic-Tim<1℃时,所述变频电源模块输出的驱动电压为0.6*额定电压;
    当0℃≤Tic-Tim<0.5℃时,所述变频电源模块输出的驱动电压为0.5*额定电压;
    当-0.5℃≤Tic-Tim<0℃时,所述变频电源模块输出的驱动电压为0.4*额定电压。
  10.  根据权利要求1~8之一所述的轨道车辆采暖控制系统,其特征在于,若所述差值大于或等于第三设定阈值,且小于第二设定阈值,则所述变频电源模块输出的驱动电压为零。
  11.  根据权利要求10所述的轨道车辆采暖控制系统,其特征在于,所述第三设定阈值设定为-1℃。
  12.  一种轨道车辆采暖控制方法,其特征在于,包括以下步骤:
    获取车厢内的实际温度;
    计算设定温度与车厢内实际温度的差值;
    根据所述差值控制与车厢内采暖装置连接的变频电源模块输出的驱动电压大小;
    根据驱动电压,控制所述采暖装置输出对应的制热量;
    其中,所述差值与变频电源模块输出的驱动电压的关系如下:
    若所述差值大于或等于第一设定阈值,则采暖装置输出的驱动电压与变频电源模块的额定电压相等;
    若所述差值大于或等于第二设定阈值,小于所述第一设定阈值,则将第二设定阈值至第一设定阈值的数值区间划分为多个子区间,第i个子区间对应的驱动电压为K i*额定电压,K i为第i个子区间对应的比例系数;根据所述差值所处的子区间确定对应的驱动电压;i=1,2,……,N;N为子区间数量;0<K 1<K 2<……<K N<1;第1子区间,第2子区间,……,第N子区间为多个子区间按照上限值从小到大的顺序依次编号得到;所述第二设定阈值小于第一设定阈值;
    若所述差值小于所述第二设定阈值,则驱动电压为零。
  13.  根据权利要求12所述的轨道车辆采暖控制方法,其特征在于,相邻两个子区间的比例系数之差为0.1。
  14.  根据权利要求12或13所述的轨道车辆采暖控制方法,其特征在于,所述第一设定阈值为4℃,第二设定阈值为-0.5℃,各子区间对应的驱动电压为:
    当2℃≤Tic-Tim<4℃时,所述变频电源模块输出的驱动电压为0.9*额定电压;
    当1.5℃≤Tic-Tim<2℃时,所述变频电源模块输出的驱动电压为0.8*额定电压;
    当1℃≤Tic-Tim<1.5℃时,所述变频电源模块输出的驱动电压为0.7*额定电压;
    当0.5℃≤Tic-Tim<1℃时,所述变频电源模块输出的驱动电压为0.6*额定电压;
    当0℃≤Tic-Tim<0.5℃时,所述变频电源模块输出的驱动电压为0.5*额定电压;
    当-0.5℃≤Tic-Tim<0℃时,所述变频电源模块输出的驱动电压为0.4*额定电压。
  15.  根据权利要求12~14之一所述的轨道车辆采暖控制方法,其特征在于,若所述差值大于或等于第三设定阈值,且小于第二设定阈值,则所述变频电源模块输出的驱动电压为0。
  16.  根据权利要求15所述的轨道车辆采暖控制方法,其特征在于,所述第三设定阈值设定为-1℃。
  17.  一种轨道车辆,其特征在于:包括权利要求1~11中任一项所述的轨道车辆采暖控制系统。
PCT/CN2023/075852 2022-10-12 2023-02-14 轨道车辆及其采暖控制系统、方法 WO2024077824A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211245134.0A CN115520234A (zh) 2022-10-12 2022-10-12 轨道车辆及其采暖控制系统、方法
CN202211245134.0 2022-10-12

Publications (1)

Publication Number Publication Date
WO2024077824A1 true WO2024077824A1 (zh) 2024-04-18

Family

ID=84701010

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/075852 WO2024077824A1 (zh) 2022-10-12 2023-02-14 轨道车辆及其采暖控制系统、方法

Country Status (2)

Country Link
CN (1) CN115520234A (zh)
WO (1) WO2024077824A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115520234A (zh) * 2022-10-12 2022-12-27 中车株洲电力机车有限公司 轨道车辆及其采暖控制系统、方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4143706A (en) * 1976-07-29 1979-03-13 Robert Bosch Gmbh Climate control for a motor vehicle compartment
US20160338165A1 (en) * 2015-05-13 2016-11-17 On-Bright Electronics (Shanghai) Co., Ltd. Systems and Methods for Temperature Control in Light-Emitting-Diode Lighting Systems
CN106740936A (zh) * 2017-01-04 2017-05-31 中车青岛四方机车车辆股份有限公司 基于轨道车辆的空调控制方法和装置
CN109334693A (zh) * 2018-10-26 2019-02-15 中车南京浦镇车辆有限公司 一种轨道车辆空调风量控制方法
CN209674251U (zh) * 2018-12-14 2019-11-22 北京海林节能科技股份有限公司 一种温度控制系统
CN114368402A (zh) * 2021-12-31 2022-04-19 上海科泰运输制冷设备有限公司 一种温度控制方法、系统以及空调
CN115520234A (zh) * 2022-10-12 2022-12-27 中车株洲电力机车有限公司 轨道车辆及其采暖控制系统、方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4143706A (en) * 1976-07-29 1979-03-13 Robert Bosch Gmbh Climate control for a motor vehicle compartment
US20160338165A1 (en) * 2015-05-13 2016-11-17 On-Bright Electronics (Shanghai) Co., Ltd. Systems and Methods for Temperature Control in Light-Emitting-Diode Lighting Systems
CN106740936A (zh) * 2017-01-04 2017-05-31 中车青岛四方机车车辆股份有限公司 基于轨道车辆的空调控制方法和装置
CN109334693A (zh) * 2018-10-26 2019-02-15 中车南京浦镇车辆有限公司 一种轨道车辆空调风量控制方法
CN209674251U (zh) * 2018-12-14 2019-11-22 北京海林节能科技股份有限公司 一种温度控制系统
CN114368402A (zh) * 2021-12-31 2022-04-19 上海科泰运输制冷设备有限公司 一种温度控制方法、系统以及空调
CN115520234A (zh) * 2022-10-12 2022-12-27 中车株洲电力机车有限公司 轨道车辆及其采暖控制系统、方法

Also Published As

Publication number Publication date
CN115520234A (zh) 2022-12-27

Similar Documents

Publication Publication Date Title
CN105235536B (zh) 一种动车组牵引系统及能量控制方法
WO2024077824A1 (zh) 轨道车辆及其采暖控制系统、方法
CN107070364B (zh) 空调器、电机驱动器及其的防过热控制方法和装置
CN106184252A (zh) 基于乘客称重系统的列车空调负荷控制方法和确认方法
JP2007336798A (ja) 鉄道列車電力供給用のシステム及び手順と、そのシステム用のコンバータ、局部制御ユニット、及び空調ユニット
CN103560541B (zh) 一种交直流混合微网故障穿越控制装置及方法
CN109334693B (zh) 一种轨道车辆空调风量控制方法
CN109347182B (zh) 充电桩控制单元
CN104796031A (zh) 用于轨道交通辅助逆变器的一种新型控制系统及方法
CN105946513A (zh) 用于新能源电动客车全交流空调系统的变频节能电控总成
CN109334692A (zh) 一种轨道交通车辆客室通风智能控制系统及方法
CN106143051A (zh) 用于新能源电动客车交直流空调系统的变频节能电控总成
CN201941777U (zh) 一种用于交流传动电力机车的列车供电柜
CN209552957U (zh) 一种轨道交通车辆室内送风系统
CN103326363A (zh) 具有多目标负荷控制的变流装置
CN107046376B (zh) 一种动车组地面电源
CN109263671B (zh) 一种车辆变频空调的除湿控制方法
CN209448291U (zh) 可带电切换的净化电网节能装置
CN109327064B (zh) 充电桩群电流分配系统
CN219790154U (zh) 一种轨道车辆直流供电变频空调控制系统和变频空调
CN203406660U (zh) 轨道车辆充电机系统及轨道车辆
CN205736783U (zh) 用于新能源电动客车全交流空调系统的变频节能电控总成
CN204978662U (zh) 列车供电系统及使用该系统的列车空调系统
CN205985856U (zh) 一种新型的恒温开关柜
CN105711422B (zh) 一种城轨车辆辅助供电方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23876039

Country of ref document: EP

Kind code of ref document: A1