WO2024075890A1 - Functional catalytic reactor and fuel gas reforming device - Google Patents

Functional catalytic reactor and fuel gas reforming device Download PDF

Info

Publication number
WO2024075890A1
WO2024075890A1 PCT/KR2022/016942 KR2022016942W WO2024075890A1 WO 2024075890 A1 WO2024075890 A1 WO 2024075890A1 KR 2022016942 W KR2022016942 W KR 2022016942W WO 2024075890 A1 WO2024075890 A1 WO 2024075890A1
Authority
WO
WIPO (PCT)
Prior art keywords
reactor
reformed
ventilation
reformed gas
ventilation portion
Prior art date
Application number
PCT/KR2022/016942
Other languages
French (fr)
Korean (ko)
Inventor
김환
송형운
엄성현
황상연
이동규
Original Assignee
고등기술연구원연구조합
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고등기술연구원연구조합 filed Critical 고등기술연구원연구조합
Publication of WO2024075890A1 publication Critical patent/WO2024075890A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/22Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds
    • C01B3/24Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons
    • C01B3/26Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons using catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/40Carbon monoxide

Definitions

  • the present invention relates to a functional catalytic reactor and fuel gas reforming device.
  • Hydrogen is generally produced by reforming hydrogen-containing fuels such as alcohol-based fuels (methanol, ethanol, etc.), hydrocarbon-based fuels (methane, butane, propane, etc.), natural gas-based fuels (liquefied natural gas, etc.), and biogas by a fuel reformer. obtained.
  • fuel reformers mainly use the steam reforming method.
  • hydrogen-containing fuel is supplied into the reformer along with water, and reacts with a catalyst within the reformer to produce hydrogen through a hydrogen production reaction. At this time, heat suitable for the reaction can be supplied by the burner.
  • this steam reforming method involves a strong endothermic reaction, requires a high heat source, and has problems with slow start-up characteristics.
  • there are various technical limitations such as catalyst poisoning from trace amounts of sulfur compounds, and as the size of the reformer increases, there is a problem of increased operation and maintenance costs.
  • a fuel reformer that uses plasma to reform hydrogen-containing fuel is in progress.
  • plasma-inducing gas is discharged by direct current power converted from alternating current power to generate high-temperature plasma, and the fuel is reformed using the generated high-temperature plasma.
  • the conventional plasma reforming type fuel reformer has the problem of incurring additional costs because alternating current power must be converted back to direct current power.
  • the present applicant has proposed a composite fuel reforming system that combines two reforming methods.
  • the composite fuel reforming system produces reformed gas by first reforming fuel through a first reforming reaction unit using plasma, and produces hydrogen by reforming the primary reformed gas again through a second reforming reaction unit using a catalyst.
  • the plasma reforming reactor which is the first reforming reaction unit of the composite fuel reforming system
  • the plasma reforming reactor has a problem in that the reforming efficiency of the catalytic reforming reactor, which is the second reforming reaction unit, is reduced due to low methane (CH 4 ) conversion rate and high carbon dioxide (CO 2 ) production. .
  • Patent Document 1 Korean Patent Publication No. 2390611
  • Embodiments of the present invention were invented in the above background, and are a functional catalyst reactor capable of improving the production performance of hydrogen and carbon monoxide by reducing carbon dioxide by reacting unreacted gas generated in the first reactor with a functional catalyst. We would like to provide.
  • the functional catalytic reactor includes an electrode, a first reactor for reforming fuel to generate reformed gas, and a second reactor for reforming the reformed gas again by the first reactor.
  • a functional catalytic reactor installed in a fuel gas reforming device, comprising: a ventilation portion through which the reformed gas reformed by the first reactor passes and a receiving space is formed therein; and a functional catalyst accommodated in the accommodation space of the ventilation unit and reacting with the reformed gas passing through the ventilation unit. It guides the reformed gas reformed by the first reactor to the second reactor and includes a hollow vent supporter supporting the vent so that the vertical position of the vent can be adjusted.
  • the ventilation portion support is formed to surround the electrode, and the electrode may communicate with the outside through the ventilation portion.
  • the ventilation unit may include: a first ventilation unit installed at an end of the ventilation unit support at the second reactor side and having a plurality of ventilation holes for the reformed gas reformed by the first reactor to pass through; and is installed on the inside of the ventilation portion support so as to be spaced apart from the first ventilation portion to create the receiving space between the first ventilation portion and the reformed gas reformed by the electrode of the first reactor passes through. It may include; a second ventilation portion in which a plurality of ventilation holes are formed to
  • the first reactor is configured to generate plasma for use as a reforming means, and the ventilation portion passes through the reformed gas reformed by the first reactor at a temperature of 600°C to 900°C. It can be installed at any point.
  • the functional catalyst is Ni/BaZrO 3 having a perovskite structure. It can be.
  • a fuel gas reforming device includes a first reactor including an electrode and reforming fuel to generate reformed gas; a second reactor that re-reforms the reformed gas reformed by the first reactor; and a functional catalytic reactor that reacts the unreacted gas generated in the first reactor, wherein the functional catalytic reactor passes the reformed gas reformed by the first reactor, and a ventilation portion in which a receiving space is formed. ; and a functional catalyst accommodated in the accommodation space of the ventilation unit and reacting with the reformed gas passing through the ventilation unit. It guides the reformed gas reformed by the first reactor to the second reactor and includes a hollow vent supporter supporting the vent so that the vertical position of the vent can be adjusted.
  • Figure 1 is a schematic diagram showing a fuel gas reforming device in which a functional catalytic reactor is installed according to an embodiment of the present invention.
  • Figure 2 is a cross-sectional view showing a fuel gas reforming device in which a functional catalytic reactor is installed according to an embodiment of the present invention.
  • Figure 3 is a diagram showing a functional catalytic reactor according to an embodiment of the present invention.
  • a component when a component is mentioned as being 'connected', 'supported', 'connected', 'supplied', 'delivered', or 'contacted' with another component, it is directly connected, supported, connected, or connected to that other component. It may be supplied, delivered, or contacted, but it should be understood that other components may exist in the middle.
  • the fuel gas reforming device 1 may include a reactor 10, a burner unit 20, a first reactor 30, a heat exchange unit 40, and a second reactor 50.
  • the reactor 10 may provide an internal space in which the burner unit 20, the first reactor 30, the heat exchange unit 40, and the second reactor 50 can be placed.
  • the reactor 10 includes a first reaction body 11 and a first reactor 11 in which at least one of the burner unit 20, the first reactor 30, the heat exchange unit 40, and the second reactor 50 is disposed. It is coupled to the reaction body 11 and may include a second reaction body 12 in which the remainder of the burner unit 20, the first reactor 30, the heat exchange unit 40, and the second reactor 50 are disposed. there is.
  • the first reactor 30 is disposed in the first reaction body 11, and the burner unit 20, the heat exchanger 40, and the second reactor ( 50) is placed as an example.
  • the first reaction body 11 has a first reactor 30 disposed therein, a first reaction body side accommodating portion 111 having an open top, and an opening of the first reaction body side accommodating portion 111. It may include a first reaction body-side coupling portion 112 connected to the upper part of the body, and a guide member 113 connected to the inner surface of the first reaction body-side coupling portion 112. At this time, the first reaction body-side accommodating portion 111, the first reaction body-side coupling portion 112, and the guide member 113 may be formed integrally, and the first reaction body-side accommodating portion 111 and the first reaction body-side accommodating portion 111 1 The reaction body side coupling portion 112 and the guide member 113 may be manufactured separately and then coupled to each other.
  • an inlet 1111 may be connected to the bottom of the first reaction body side receiving portion 111. Fluids to be reformed, such as fuel or plasma-inducing gas, may flow through this inlet 1111, and the introduced fluids may be supplied between electrodes 31 of the first reactor 30, which will be described later.
  • the guide member 113 may guide the reformed gas flowing out of the first reactor 30 to the second reactor 50.
  • the guide member 113 extends from the lower surface of the first reaction body side coupling portion 112 toward the bottom surface of the first reaction body side receiving portion 111, thereby forming a predetermined space therein. At least a portion of the first reactor 30 may be placed in the inner space of the guide member 113 formed in this way and covered by the guide member 113.
  • the second reaction body 12 has a burner unit 20, a heat exchanger 40, and a second reactor 50 disposed therein, and includes a second reaction body side receiving portion 121 having an open bottom shape, and It may include a second reaction body side coupling portion 122 connected to the open lower portion of the second reaction body side receiving portion 121.
  • the second reaction main body side accommodating part 121 and the second reaction main body side coupling part 122 may be formed integrally, and the second reaction main body side accommodating part 121 and the second reaction main body side coupling part ( 122) may be manufactured separately and then combined together.
  • a connection member 1211 may be provided on the inner surface of the second reaction body side receiving portion 121. At least one of the heat exchanger 41, the burner unit 20, and the second reactor 50 may be connected to this connection member 1211.
  • first reaction body side coupling portion 112 of the first reaction body 11 and the second reaction main body side coupling portion 122 of the second reaction body 12 are connected by separate fastening means (not shown). can be mutually concluded.
  • first through hole 1121 formed in the first reaction body side coupling portion 112 of the first reaction body 11 and the second reaction body side coupling portion 122 of the second reaction body 12 The second through-holes 1221 previously formed may be in communication with each other.
  • the first through-holes 1121 and the second through-holes 1221 communicated with each other in this way are used to supply the first reformed gas generated in the first reactor 30 to the heat exchanger 41 of the heat exchanger 40. It can be used as a passage.
  • the end of the heat exchanger 41 of the heat exchanger 40 may be connected to a position corresponding to the first through hole 1121 and the second through hole 1221.
  • the burner unit 20 transfers heat to the heat exchange unit 40 to preheat the first reformed gas to a first temperature, and transfers heat to the second reactor 50 to preheat the first reformed gas to the first temperature.
  • the gas may be heated to a second temperature that is higher than the first temperature.
  • the first reformed gas supplied to the heat exchange unit 40 is preheated to the first temperature by the heat of the burner unit 20, and the burner unit 20
  • the preheated first reformed gas supplied to the second reactor 50 may be heated to the second temperature.
  • the first reformed gas refers to a gas produced by reforming fuel by the first reactor 30.
  • the first reformed gas heated to the second temperature may be reformed by the second reactor 50, which will be described later, and converted into the second reformed gas.
  • the first temperature may be about 650°C to about 700°C
  • the second temperature may be about 800°C to about 850°C.
  • the burner unit 20 may be provided inside the reactor 10, for example, inside the second reaction body 12. This burner unit 20 may be inserted into a hole previously formed in the second reaction body 12 and may be supported by a connection member 1211 coupled to the inner surface of the second reaction body 12. For this purpose, support pieces 21 may be formed to protrude along the circumference of the burner unit 20, and these support pieces 21 may be in surface contact with the connection member 1211.
  • the burner unit 20 may, for example, be provided as a cylindrical structure with a predetermined space formed therein to correspond to the shape of the inner peripheral surface of the second reaction body 12.
  • the burner unit 20 in order to uniformly supply the heat of the burner unit 20 to the heat exchange unit 40 and the second reactor 50, the burner unit 20 has an internal cylindrical off gas to which metal fiber is applied, for example. It may be provided with a burner. Accordingly, the amount of heat required to preheat the first reformed gas in the heat exchanger 40 through the burner unit 20 and the amount of heat required to reform the first reformed gas preheated in the second reactor 50 will be supplied uniformly at the same time. You can.
  • the first reactor 30 may convert fuel into a first reformed gas.
  • the first reactor 30 may be provided inside the reactor 10, for example, inside the first reaction body 11, and may include a first reforming means capable of reforming fuel supplied from the outside. Can be created optionally.
  • the fuel may be a hydrogen-containing fuel such as alcohol-based fuel, hydrocarbon-based fuel, natural gas-based fuel, or biogas, and the first reforming means may be gliding arc plasma.
  • This first reactor 30 may include an electrode 31, an electrode support 32, and a power supply (not shown).
  • the electrode support 32 extends upward from the bottom of the first reaction body side accommodating portion 111, and the electrode 31 may be coupled to and supported at the top.
  • the electrode 31 may be supported by being coupled to an electrode support 32 that is coupled to the first reaction body side receiving portion 111.
  • the electrode 31 may be provided in a fan-shaped shape including a curved line.
  • a plurality of electrodes 31 can be provided to increase the plasma discharge area.
  • the plurality of electrodes 31 may be arranged to be spaced apart at a predetermined interval so that the gap between the electrodes 31 widens toward the top.
  • the electrode 31 is electrically connected to the power supply device and can receive alternating current power from the power supply device.
  • the heat exchange unit 40 may receive the first reformed gas from the first reactor 30, and transfer heat from the burner unit 20 to the first reformed gas supplied from the first reactor 30 to perform the first reformed gas.
  • the gas may be preheated to a first temperature.
  • the heat exchange unit 40 may be disposed inside the reactor 10, for example, inside the second reaction body 12.
  • at least some of the plurality of heat exchangers 41 are arranged to be offset from at least some of the plurality of second reforming reactors 51 of the second reforming reaction unit 50, which will be described later, so that the radiant heat of the burner unit 20 It can be easily transferred to a plurality of heat exchangers 41.
  • This heat exchange unit 40 may include a plurality of heat exchangers 41.
  • the plurality of heat exchangers 41 may be arranged to be spaced apart along an imaginary circle with a certain radius based on the center of the burner unit 20.
  • the heat exchanger 41 may have a passage inside through which the first reformed gas can flow.
  • one end of the heat exchanger 41 may be coupled to the inner surface of the second reaction body side coupling portion 122 of the second reaction body 12.
  • one end of the heat exchanger 41 has a first through hole 1121 formed in the first reaction body side coupling portion 112 of the first reaction body 11 and a second through hole 1121 of the second reaction body 12. It may be in communication with the second through hole 1221 already formed in the reaction body side coupling portion 122.
  • the passage provided inside the heat exchanger 41 communicates with the internal space of the first reaction body 11, so that the first reformed gas of the first reaction body 11 is supplied to the heat exchanger 41.
  • the other end of the heat exchanger 41 may be coupled through a hole already formed in the connection member 1211 coupled to the inner surface of the second reaction body side receiving portion 121.
  • an extension piece may be formed extending from one surface of the connecting member 1211 corresponding to the outer circumference of the hole. This extension piece can cover a hole already formed in the connecting member 1211.
  • the first reformed gas discharged through the other end of the heat exchanger 41 can be supplied to the second reactor 50 through the connection pipe.
  • the second reactor 50 may convert the first reformed gas that has passed through the heat exchanger 40 into a second reformed gas.
  • the second reactor 50 may be equipped with a second reforming means that is different from the first reforming means.
  • the second reactor 50 may be disposed inside the reactor 10, for example, inside the second reaction body 12.
  • at least a portion of the plurality of second reaction units 51 is arranged to be offset from at least a portion of the plurality of heat exchangers 41, so that the radiant heat of the burner unit 20 is easily transferred to the plurality of second reaction units 51. can be conveyed.
  • This second reactor 50 may include a plurality of second reaction units 51.
  • the plurality of second reaction units 51 may be spaced apart from each other along an imaginary circle with a certain radius based on the center of the burner unit 20.
  • the second reactor 50 is disposed closer to the burner unit 20 than the heat exchange unit 40, so that the plurality of second reaction units 51 form a circle based on the center of the burner unit 20.
  • the size may be smaller than the size of the circle formed by the plurality of heat exchangers 41 based on the center of the burner unit 20.
  • the second reactor 50 may include an exterior 511 and an inner tube 512 disposed inside the exterior 511. At this time, the lower end of the outer tube 511 may be closed, and the lower end of the inner tube 512 may be provided in an open structure.
  • a second reforming means for example, a reforming catalyst, may be provided between the outer tube 511 and the inner tube 512.
  • the second reactor 50 is provided in the form of a double tube including an outer tube 511 and an inner tube 512, the residence time of the first reformed gas can be increased.
  • the outer pipe 511 is provided with a first passage 5112 through which the first reformed gas flows, and the inner pipe 512 is in communication with the first passage 5112, and at least one of the first reformed gas and the second reformed gas is provided.
  • a flowing second passage 5122 may be provided.
  • a reforming reaction proceeds as the first reforming gas passes through a second reforming means, for example, a reforming catalyst, provided between the outer tube 511 and the inner tube 512.
  • the temperature of the first reformed gas moved to the bottom of the outer tube 511 is higher than the temperature of the first reformed gas supplied to the top of the outer tube 511, and the raised first reformed gas rises through the inner tube 512, which is a riser tube. After being converted to the second reformed gas, it is discharged through the outlet 5121 connected to the top of the inner tube 512.
  • fuel is first reformed in the first reactor 30, preheated to a temperature at which a reforming reaction can occur through the heat exchanger 40, and then secondarily reformed in the second reactor 50. Reforming improves reforming efficiency.
  • the primary reformed gas primary reformed by the first reactor 30 has a low conversion rate of methane (CH 4 ) and a high amount of carbon dioxide (CO 2 ) generated in the second reactor 50. ) There is a problem that the reforming efficiency of is reduced.
  • a functional catalytic reactor 60 is formed between the first reactor 30 and the second reactor 50, and unreacted methane and carbon dioxide of the primary reformed gas reformed by the first reactor 30 are formed.
  • the reforming efficiency of the second reactor 50 can be increased by producing more hydrogen by performing a methane reforming reaction (DRM, Dry Reforming of Methane) using the functional catalytic reactor 60.
  • the functional catalytic reactor 60 according to an embodiment of the present invention extends from the bottom of the first reaction body side receiving portion 111 to the upper side, that is, toward the second reactor 50, and is used by the first reactor 30.
  • It is installed at the end of the second reactor 50 side of the ventilation portion support 61 that guides the reformed reformed gas toward the second reactor 50, and allows the reformed gas reformed by the first reactor 30 to pass through and is accommodated therein. It includes a ventilation portion 62 in which a space is formed and a functional catalyst 63 that is accommodated in the internal accommodation space of the ventilation portion 62 and reacts with the reformed gas passing through the ventilation portion 62.
  • the ventilation portion support 61 has a hollow cylindrical shape, and a space is formed therein, so that the first reactor 30 can be placed in this inner space.
  • the ventilation portion support 61 may extend upward from the bottom of the first reaction body side receiving portion 111 to provide a space in which the fuel to be reformed and the plasma inducing gas for inducing the gliding arc plasma flow.
  • a plasma reforming reaction may be performed in the internal space formed in the ventilation portion support 61.
  • the ventilation portion support 61 may be made of a material that can be electrically insulated from the electrode 31.
  • the lower part of the ventilation portion support 61 extends upward from the bottom of the first reaction body side receiving portion 111, and the upper part of the ventilation portion support 61 (upper part in FIG. 2) is open.
  • a ventilation portion 62 may be installed on one open side. That is, the ventilation portion support 61 surrounds the first reactor 30 so that the portion excluding the upper open side of the ventilation portion support 61 where the ventilation portion 62 is formed blocks the first reactor 30 from the outside. It can be formed as follows. Because of this, all of the reformed gas reformed through the first reactor 30 passes through the ventilation portion 62.
  • the ventilation portion support 61 may be disposed radially inside the guide member 113.
  • the horizontal separation distance between the ventilation unit support 61 and the guide member 113 may be smaller than the horizontal separation distance between the ventilation unit support 61 and the side wall of the first reaction body side receiving portion 111. You can.
  • the separation distance between the upper end of the electrode 31 and the upper end of the ventilation support 61 can be formed to be larger than the separation distance between the lower end of the electrode 31 and the bottom of the first reaction body side accommodating portion 111. there is.
  • the ventilation unit 62 may be installed on the upper part of the ventilation unit support 61 and may be formed of a mesh member having a plurality of ventilation holes for the reformed gas reformed by the first reactor 30 to pass through, and the ventilation unit ( It may include a first ventilation portion 621 and a second ventilation portion 622 spaced apart at a predetermined interval along the thickness direction of 62).
  • the first vent 621 and the second vent 622 may be installed inside the vent support 61.
  • the first ventilation portion 621 and the second ventilation portion 622 are formed to have an area corresponding to the cross-sectional area of the internal space formed by the ventilation portion support 61 to close one open side of the ventilation portion support 61. Can be installed.
  • first ventilation part 621 and the second ventilation part 622 may be spaced apart at a certain interval to create an accommodation space therebetween.
  • One open side of the vent supporter 61 is closed by the first vent 621 and the second vent 622, but the first vent 621 and the second vent 622 have a plurality of vents. Pores are formed so that the reformed gas guided through the ventilation portion supporter 61 passes through the first ventilation portion 621 and the second ventilation portion 622.
  • the reformed gas generated from the first reactor 30 passes through the ventilation portion 62 and then flows downward along the space formed between the guide member 113 and the ventilation portion support 61, and flows downward toward the first reaction body. After rising through the space formed between the side wall of the receiving part 111 and the guide member 113, it may flow into the heat exchange part 40. According to this flow path, the reformed gas generated in the first reactor 30 may flow into the heat exchange unit 40 without remaining inside the first reaction body 11.
  • the functional catalyst 63 is accommodated in the receiving space formed between the first ventilation portion 621 and the second ventilation portion 622 and reacts with the reformed gas passing through the ventilation portion 62.
  • the reforming gas and the functional catalyst 63 undergo methane reforming reaction (DRM), and reaction heat of 600°C to 900°C is required for the metal reforming reaction to occur.
  • DRM methane reforming reaction
  • the first reactor 30 reforms fuel by plasma, the reformed gas reformed by the first reactor 30 is maintained at a high temperature.
  • the ventilation portion 62 must be installed at a location where the reformed gas maintains a high temperature, that is, a point through which the reformed gas can pass while its temperature is between 600°C and 900°C. Since the ventilation portion 62 is installed at one open end of the ventilation portion support 61, the length of the ventilation portion support 61 is adjusted to adjust the ventilation portion 62 so that the temperature of the reformed gas is 600°C to 900°C. It can be installed at a point where it passes through at °C.
  • the length of the ventilation portion support 61 is formed to be long, and predetermined fastening means, such as a rack and pinion gear, are provided on the inner surface of the ventilation portion support 61 and the outer surface of the ventilating portion, respectively, to secure the ventilation portion.
  • (62) can be installed inside the ventilation portion support 61 so that the ventilation portion 62 is installed at a point where the reformed gas passes through at a temperature of 600°C to 900°C. In this case, the ventilation portion 62 can be installed at the corresponding location regardless of the total length of the ventilation portion support 61.
  • the ventilation portion support 61 adjusts its overall length or adjusts the vertical position of the ventilation portion 62 disposed inside the ventilation portion 62 so that the temperature of the reformed gas is maintained at 600°C to 900°C. It can be installed at a point where it passes through at °C.
  • the vertical separation distance between the ventilation portion 62 and the first reaction body side coupling portion 112 is greater than the separation distance between the lower end of the guide member 113 and the bottom of the first reaction body side receiving portion 111. You can.
  • the functional catalyst 63 may be Ni/BaZrO 3 having a perovskite structure.
  • the functional catalyst 63 uses BaZrO 3 as a support, and is a catalyst coated with nickel on BaZrO 3 powder prepared by a solid-phase method and a pellet-shaped BaZrO 3 structure manufactured by extrusion molding. Looking at the method of manufacturing the functional catalyst 63, first, the precursors are barium carbonate (BaCO 3 , 99.9%), zirconium oxide (ZrO 2 , 99.9%), yttrium oxide (Y 2 O 3 , 99.9%), and acetone. Mix and homogenize.
  • the mixed materials as described above are dried and ground at 110°C, then heat-treated in air at 1200°C for 5 hours, and the heat-treated material is ground into uniform powder using an attrition milling.
  • the BaZrO 3 powder prepared in this way may be a structure having a specific surface area of 10 m 2 /g to 20 m 2 /g.
  • the metal precursor is coated on BaZrO 3 powder through temperature-controlled chemical vapor deposition.
  • Ni(Cp) 2 may be used as the metal precursor, and the metal precursor is injected at 1 wt% to 30 wt% based on the weight of the BaZrO 3 carrier (BaZrO 3 powder or BaZrO 3 gear-type pellets) to form a surface of the BaZrO 3 carrier.
  • the content of nickel (Ni) coated on can be controlled.
  • nickel vapor in the form of an organic metal compound sublimated at a temperature of 250 °C reacts with oxygen in the air on the surface of the BaZrO 3 carrier to coat it in the form of NiO, and is coated in the form of NiO at 800 °C (reducing atmosphere) for 2 to 4 hours.
  • a functional catalyst (63) made of Ni/BaZrO 3 is prepared by heat treatment.
  • the functional catalyst (63), Ni/BaZrO 3 has high performance in methane reforming reaction (DRM) and a structurally stabilized perovskite structure, enabling steam It has high stability in (steam) atmosphere. Accordingly, the unreacted methane (CH 4 ), carbon dioxide (CO 2 ), and CxHx series gases generated in the first reactor 30 are supplied to the functional catalytic reactor 60 and are combined with the plasma heat source of the first reactor 30.
  • the reforming efficiency of fuel can be increased by increasing the production of hydrogen (H 2 ) and carbon monoxide (CO) through methane reforming reaction (DRM).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Toxicology (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)

Abstract

This functional catalytic reactor is installed in a fuel gas reforming device comprising: a first reactor that includes an electrode and reforms fuel to generate reformed gas; and a second reactor that re-reforms the reformed gas reformed by the first reactor. The functional catalytic reactor includes: a ventilation unit which has an accommodation space formed therein and through which the reformed gas reformed by the first reactor passes; a functional catalyst which is accommodated in the accommodation space of the ventilation unit and reacts with the reformed gas passing through the ventilation unit; and a hollow ventilation support which guides the reformed gas reformed by the first reactor toward the second reactor and supports the ventilation unit so that the vertical position of the ventilation unit can be adjusted.

Description

기능성 촉매 반응기 및 연료가스 개질 장치Functional catalytic reactor and fuel gas reforming device
본 발명은 기능성 촉매 반응기 및 연료가스 개질 장치에 대한 것이다.The present invention relates to a functional catalytic reactor and fuel gas reforming device.
급격한 산업화의 영향으로 석유 및 석탄 등과 같은 화석연료의 사용량이 급격히 증가하고 있다. 이에 따라, 환경오염, 에너지 자원 고갈과 같은 문제가 대두되면서 신재생에너지에 대한 연구의 필요성이 부각되고 있다. 특히, 신재생에너지 중 하나인 수소에너지는 에너지 밀도가 높고 환경오염이 거의 없어 미래의 핵심 에너지원으로 평가된다.Due to the influence of rapid industrialization, the use of fossil fuels such as oil and coal is rapidly increasing. Accordingly, as problems such as environmental pollution and depletion of energy resources emerge, the need for research on new and renewable energy is emerging. In particular, hydrogen energy, one of the new renewable energies, is evaluated as a key energy source of the future due to its high energy density and almost no environmental pollution.
수소는 대체로 알코올계 연료(메탄올, 에탄올 등), 탄화수소계 연료(메탄, 부탄, 프로판 등), 천연가스계 연료(액화천연가스 등) 및 바이오 가스와 같은 수소 함유 연료가 연료 개질기에 의해 개질됨으로써 수득된다. 이러한 연료 개질기는 주로 수증기 개질 방식을 이용하고 있다. 수증기 개질 방식의 연료 개질기는 수소 함유 연료가 물과 함께 개질기 내로 공급되고, 개질기 내에서 촉매와 반응하여 수소 생성 반응을 통해 수소를 생산한다. 이때, 버너에 의해 반응에 적합한 열이 공급될 수 있다. 하지만, 이러한 수증기 개질 방식은 강한 흡열 반응이 수반되므로, 높은 열원이 요구되고, 시동 특성이 느리다는 문제가 있다. 또한, 미량의 황 화합물에 촉매 피독 등과 같은 기술적인 여러가지 제약이 있고, 개질기가 차지하는 규모가 커지므로, 운전 및 유지 비용이 증가하는 문제점이 있다.Hydrogen is generally produced by reforming hydrogen-containing fuels such as alcohol-based fuels (methanol, ethanol, etc.), hydrocarbon-based fuels (methane, butane, propane, etc.), natural gas-based fuels (liquefied natural gas, etc.), and biogas by a fuel reformer. obtained. These fuel reformers mainly use the steam reforming method. In a steam reforming type fuel reformer, hydrogen-containing fuel is supplied into the reformer along with water, and reacts with a catalyst within the reformer to produce hydrogen through a hydrogen production reaction. At this time, heat suitable for the reaction can be supplied by the burner. However, this steam reforming method involves a strong endothermic reaction, requires a high heat source, and has problems with slow start-up characteristics. In addition, there are various technical limitations such as catalyst poisoning from trace amounts of sulfur compounds, and as the size of the reformer increases, there is a problem of increased operation and maintenance costs.
한편, 이러한 문제를 보완하기 위해, 플라즈마를 이용하여 수소 함유 연료를 개질하는 방식의 연료 개질기에 대한 개발이 진행되고 있다. 플라즈마 개질 방식의 연료 개질기는 교류 전원으로부터 변환된 직류 전원에 의해 플라즈마 유도 가스가 방전되어 고온의 플라즈마가 생성되고, 생성된 고온의 플라즈마를 이용하여 연료를 개질한다. 종래의 플라즈마 개질 방식의 연료 개질기는 교류 전원을 다시 직류 전원으로 전환하여야 하므로, 비용이 추가적으로 발생하는 문제점이 있다.Meanwhile, in order to compensate for this problem, the development of a fuel reformer that uses plasma to reform hydrogen-containing fuel is in progress. In a plasma reforming type fuel reformer, plasma-inducing gas is discharged by direct current power converted from alternating current power to generate high-temperature plasma, and the fuel is reformed using the generated high-temperature plasma. The conventional plasma reforming type fuel reformer has the problem of incurring additional costs because alternating current power must be converted back to direct current power.
상기한 문제점을 해결하기 위해 본 출원인은 2가지 개질 방식이 혼합된 복합 연료 개질 시스템을 제안한 바 있다. 복합 연료 개질 시스템은 플라즈마를 이용한 제1 개질 반응부를 통해 연료를 1차 개질하여 개질 가스를 생성하고, 1차 개질된 개질 가스를 촉매를 이용한 제2 개질 반응부를 통해 다시 한번 개질하여 수소를 생산하게 된다. 그러나 상기 복합 연료 개질 시스템의 제1 개질 반응부인 플라즈마 개질 반응기는 낮은 메탄(CH4) 전환율과 높은 이산화탄소(CO2) 생성량으로 인해 제2 개질 반응부인 촉매 개질 반응기의 개질 효율이 저하되는 문제점이 있다.To solve the above problems, the present applicant has proposed a composite fuel reforming system that combines two reforming methods. The composite fuel reforming system produces reformed gas by first reforming fuel through a first reforming reaction unit using plasma, and produces hydrogen by reforming the primary reformed gas again through a second reforming reaction unit using a catalyst. do. However, the plasma reforming reactor, which is the first reforming reaction unit of the composite fuel reforming system, has a problem in that the reforming efficiency of the catalytic reforming reactor, which is the second reforming reaction unit, is reduced due to low methane (CH 4 ) conversion rate and high carbon dioxide (CO 2 ) production. .
(선행기술문헌)(Prior art literature)
(특허문헌 1) 한국 등록특허공보 제2390611호(Patent Document 1) Korean Patent Publication No. 2390611
본 발명의 실시예들은 상기와 같은 배경에서 발명된 것으로서, 제1 반응기에서 생성된 미반응 가스를 기능성 촉매에 의해 반응시켜 이산화탄소를 저감함으로써, 수소 및 일산화탄소의 생산 성능을 향상시킬 수 있는 기능성 촉매 반응기를 제공하고자 한다.Embodiments of the present invention were invented in the above background, and are a functional catalyst reactor capable of improving the production performance of hydrogen and carbon monoxide by reducing carbon dioxide by reacting unreacted gas generated in the first reactor with a functional catalyst. We would like to provide.
본 발명의 일 측면에 따른 기능성 촉매 반응기는, 전극을 포함하고, 연료를 개질하여 개질가스를 생성하는 제1 반응기 및 상기 제1 반응기에 의해 개질된 상기 개질 가스를 재차 개질하는 제2 반응기를 포함하는 연료 가스 개질 장치에 설치되는 기능성 촉매 반응기로서, 상기 제1 반응기에 의해 개질된 상기 개질 가스를 통과시키고, 내부에 수용공간이 형성되는 통기부; 및 상기 통기부의 상기 수용공간에 수용되어 상기 통기부를 통과하는 상기 개질 가스와 반응하는 기능성 촉매; 상기 제1 반응기에 의해 개질된 상기 개질 가스를 상기 제2 반응기 측으로 안내하고, 상기 통기부의 상하 방향 위치가 조절가능하도록 상기 통기부를 지지하는 중공의 통기부 지지체를 포함한다.The functional catalytic reactor according to one aspect of the present invention includes an electrode, a first reactor for reforming fuel to generate reformed gas, and a second reactor for reforming the reformed gas again by the first reactor. A functional catalytic reactor installed in a fuel gas reforming device, comprising: a ventilation portion through which the reformed gas reformed by the first reactor passes and a receiving space is formed therein; and a functional catalyst accommodated in the accommodation space of the ventilation unit and reacting with the reformed gas passing through the ventilation unit. It guides the reformed gas reformed by the first reactor to the second reactor and includes a hollow vent supporter supporting the vent so that the vertical position of the vent can be adjusted.
또한, 상기 통기부 지지체는 상기 전극을 감싸도록 형성되고, 상기 전극은 상기 통기부를 통해 외부와 연통할 수 있다.Additionally, the ventilation portion support is formed to surround the electrode, and the electrode may communicate with the outside through the ventilation portion.
또한, 상기 통기부는, 상기 통기부 지지체의 상기 제2 반응기측 단부에 설치되며, 상기 제1 반응기에 의해 개질된 상기 개질 가스가 통과하기 위한 복수 개의 통기공이 형성되는 제1 통기부; 및 상기 제1 통기부와 이격되도록 상기 통기부 지지체의 내측에 설치되어 상기 제1 통기부와의 사이에 상기 수용공간을 생성하고, 상기 제1 반응기의 상기 전극에 의해 개질된 상기 개질 가스가 통과하기 위한 복수 개의 통기공이 형성되는 제2 통기부;를 포함할 수 있다.In addition, the ventilation unit may include: a first ventilation unit installed at an end of the ventilation unit support at the second reactor side and having a plurality of ventilation holes for the reformed gas reformed by the first reactor to pass through; and is installed on the inside of the ventilation portion support so as to be spaced apart from the first ventilation portion to create the receiving space between the first ventilation portion and the reformed gas reformed by the electrode of the first reactor passes through. It may include; a second ventilation portion in which a plurality of ventilation holes are formed to
또한, 상기 제1 반응기는 개질 수단으로 사용하기 위해 플라즈마를 발생시킬 수 있도록 구성되고, 상기 통기부는 상기 제1 반응기에 의해 개질된 상기 개질 가스의 온도가 600°C 내지 900°C인 상태로 통과하는 지점에 설치될 수 있다.In addition, the first reactor is configured to generate plasma for use as a reforming means, and the ventilation portion passes through the reformed gas reformed by the first reactor at a temperature of 600°C to 900°C. It can be installed at any point.
또한, 상기 기능성 촉매는 페로브스카이트 구조를 갖는 Ni/BaZrO3 일 수 있다.In addition, the functional catalyst is Ni/BaZrO 3 having a perovskite structure. It can be.
본 발명의 다른 측면에 따른 연료가스 개질장치는 전극을 포함하고, 연료를 개질하여 개질가스를 생성하는 제1 반응기; 상기 제1 반응기에 의해 개질된 상기 개질 가스를 재차 개질하는 제2 반응기; 및 상기 제1 반응기에서 생성된 미반응 가스를 반응시키는 기능성 촉매 반응기를 포함하고, 상기 기능성 촉매 반응기는 상기 제1 반응기에 의해 개질된 상기 개질 가스를 통과시키고, 내부에 수용공간이 형성되는 통기부; 및 상기 통기부의 상기 수용공간에 수용되어 상기 통기부를 통과하는 상기 개질 가스와 반응하는 기능성 촉매; 상기 제1 반응기에 의해 개질된 상기 개질 가스를 상기 제2 반응기 측으로 안내하고, 상기 통기부의 상하 방향 위치가 조절가능하도록 상기 통기부를 지지하는 중공의 통기부 지지체를 포함한다.A fuel gas reforming device according to another aspect of the present invention includes a first reactor including an electrode and reforming fuel to generate reformed gas; a second reactor that re-reforms the reformed gas reformed by the first reactor; and a functional catalytic reactor that reacts the unreacted gas generated in the first reactor, wherein the functional catalytic reactor passes the reformed gas reformed by the first reactor, and a ventilation portion in which a receiving space is formed. ; and a functional catalyst accommodated in the accommodation space of the ventilation unit and reacting with the reformed gas passing through the ventilation unit. It guides the reformed gas reformed by the first reactor to the second reactor and includes a hollow vent supporter supporting the vent so that the vertical position of the vent can be adjusted.
본 발명의 실시예들에 따르면, 제1 반응기에서 생성된 미반응 가스를 기능성 촉매에 의해 반응시켜 이산화탄소를 저감함으로써, 수소 및 일산화탄소의 생산 성능을 향상시킬 수 있는 효과가 있다.According to embodiments of the present invention, there is an effect of improving the production performance of hydrogen and carbon monoxide by reducing carbon dioxide by reacting unreacted gas generated in the first reactor with a functional catalyst.
도 1은 본 발명의 일 실시예에 따른 기능성 촉매 반응기가 설치되는 연료 가스 개질 장치를 도시한 개략도이다.Figure 1 is a schematic diagram showing a fuel gas reforming device in which a functional catalytic reactor is installed according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 기능성 촉매 반응기가 설치되는 연료 가스 개질 장치를 도시한 단면도이다.Figure 2 is a cross-sectional view showing a fuel gas reforming device in which a functional catalytic reactor is installed according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따른 기능성 촉매 반응기를 도시한 도면이다.Figure 3 is a diagram showing a functional catalytic reactor according to an embodiment of the present invention.
이하에서는 본 발명의 기술적 사상을 구현하기 위한 구체적인 실시예에 대하여 도면을 참조하여 상세히 설명하도록 한다.Hereinafter, specific embodiments for implementing the technical idea of the present invention will be described in detail with reference to the drawings.
아울러 본 발명을 설명함에 있어서 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략한다.In addition, when describing the present invention, if it is determined that a detailed description of a related known configuration or function may obscure the gist of the present invention, the detailed description will be omitted.
또한, 어떤 구성요소가 다른 구성요소에 '연결', '지지', '접속', '공급', '전달', '접촉'된다고 언급된 때에는 그 다른 구성요소에 직접적으로 연결, 지지, 접속, 공급, 전달, 접촉될 수도 있지만 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다.In addition, when a component is mentioned as being 'connected', 'supported', 'connected', 'supplied', 'delivered', or 'contacted' with another component, it is directly connected, supported, connected, or connected to that other component. It may be supplied, delivered, or contacted, but it should be understood that other components may exist in the middle.
본 명세서에서 사용된 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로 본 발명을 한정하려는 의도로 사용된 것은 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한 복수의 표현을 포함한다.The terms used in this specification are merely used to describe specific embodiments and are not intended to limit the invention. Singular expressions include plural expressions unless the context clearly dictates otherwise.
또한, 본 명세서에서 상측, 하측, 측면 등의 표현은 도면에 도시를 기준으로 설명한 것이며 해당 대상의 방향이 변경되면 다르게 표현될 수 있음을 미리 밝혀둔다. 마찬가지의 이유로 첨부 도면에 있어서 일부 구성요소는 과장되거나 생략되거나 또는 개략적으로 도시되었으며, 각 구성요소의 크기는 실제 크기를 전적으로 반영하는 것이 아니다.In addition, it should be noted in advance that expressions such as upper, lower, and side in this specification are explained based on the drawings, and may be expressed differently if the direction of the object in question changes. For the same reason, in the accompanying drawings, some components are exaggerated, omitted, or schematically shown, and the size of each component does not entirely reflect the actual size.
또한, 제1, 제2 등과 같이 서수를 포함하는 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 해당 구성요소들은 이와 같은 용어들에 의해 한정되지는 않는다. 이 용어들은 하나의 구성요소들을 다른 구성요소로부터 구별하는 목적으로만 사용된다.Additionally, terms including ordinal numbers, such as first, second, etc., may be used to describe various components, but the components are not limited by these terms. These terms are used only to distinguish one component from another.
명세서에서 사용되는 "포함하는"의 의미는 특정 특성, 영역, 정수, 단계, 동작, 요소 및/또는 성분을 구체화하며, 다른 특정 특성, 영역, 정수, 단계, 동작, 요소, 성분 및/또는 군의 존재나 부가를 제외시키는 것은 아니다.As used in the specification, the meaning of "comprising" is to specify a specific characteristic, area, integer, step, operation, element and/or component, and to specify another specific property, area, integer, step, operation, element, component and/or group. It does not exclude the existence or addition of .
이하, 도 1 내지 도 3을 참조하여 본 발명의 일 실시예에 따른 기능성 촉매 반응기의 구체적인 구성에 대하여 설명한다. Hereinafter, the specific configuration of a functional catalytic reactor according to an embodiment of the present invention will be described with reference to FIGS. 1 to 3.
본 발명의 일 실시예에 따른 기능성 촉매 반응기를 설명하기에 앞서 기능성 촉매 반응기가 설치되는 연료 가스 개질 장치에 대해 설명한다.Before explaining the functional catalytic reactor according to an embodiment of the present invention, a fuel gas reforming device in which the functional catalytic reactor is installed will be described.
연료 가스 개질 장치(1)는 반응로(10), 버너부(20), 제1 반응기(30), 열교환부(40) 및 제2 반응기(50)를 포함할 수 있다.The fuel gas reforming device 1 may include a reactor 10, a burner unit 20, a first reactor 30, a heat exchange unit 40, and a second reactor 50.
반응로(10)는 버너부(20), 제1 반응기(30), 열교환부(40) 및 제2 반응기(50)가 배치될 수 있는 내부 공간을 제공할 수 있다. 이를 위해, 반응로(10)는 버너부(20), 제1 반응기(30), 열교환부(40) 및 제2 반응기(50) 중 적어도 하나가 배치되는 제1 반응 본체(11) 및 제1 반응 본체(11)와 결합되고, 버너부(20), 제1 반응기(30), 열교환부(40) 및 제2 반응기(50) 중 나머지가 배치되는 제2 반응 본체(12)를 포함할 수 있다. 이하에서는, 설명의 편의를 위해 제1 반응 본체(11)에 제1 반응기(30)가 배치되고, 제2 반응 본체(12)에 버너부(20), 열교환부(40) 및 제2 반응기(50)가 배치되는 경우를 일 예로 들어 설명한다.The reactor 10 may provide an internal space in which the burner unit 20, the first reactor 30, the heat exchange unit 40, and the second reactor 50 can be placed. For this purpose, the reactor 10 includes a first reaction body 11 and a first reactor 11 in which at least one of the burner unit 20, the first reactor 30, the heat exchange unit 40, and the second reactor 50 is disposed. It is coupled to the reaction body 11 and may include a second reaction body 12 in which the remainder of the burner unit 20, the first reactor 30, the heat exchange unit 40, and the second reactor 50 are disposed. there is. Hereinafter, for convenience of explanation, the first reactor 30 is disposed in the first reaction body 11, and the burner unit 20, the heat exchanger 40, and the second reactor ( 50) is placed as an example.
제1 반응 본체(11)는 내부에 제1 반응기(30)가 배치되고, 상부가 개방된 형상을 갖는 제1 반응 본체측 수용부(111), 제1 반응 본체측 수용부(111)의 개방된 상부에 연결되는 제1 반응 본체측 결합부(112), 및 제1 반응 본체측 결합부(112)의 내측면에는 연결되는 가이드 부재(113)를 포함할 수 있다. 이때, 제1 반응 본체측 수용부(111), 제1 반응 본체측 결합부(112), 및 가이드 부재(113)는 일체로 형성될 수도 있고, 제1 반응 본체측 수용부(111), 제1 반응 본체측 결합부(112), 및 가이드 부재(113)는 각각 별도로 제작된 다음 상호 결합될 수도 있다. 이때, 제1 반응 본체측 수용부(111)의 바닥면에는 유입구(1111)가 연결될 수 있다. 이러한 유입구(1111)를 통해 개질 대상이 되는 연료, 플라즈마 유도 가스 등과 같은 유체가 유입될 수 있으며, 유입된 유체는 후술할 제1 반응기(30)의 전극(31) 사이로 공급될 수 있다. 가이드 부재(113)는 제1 반응기(30)에서 유출되는 개질가스를 제2 반응기(50)로 안내할 수 있다. 가이드 부재(113)는 1 반응 본체측 결합부(112)의 하면에서 제1 반응 본체측 수용부(111)의 저면을 향하여 연장 형성됨으로써, 내부에 소정의 공간을 형성할 수 있다. 이렇게 형성된 가이드 부재(113)의 내부 공간에는 제1 반응기(30)의 적어도 일부가 배치되어 가이드 부재(113)에 의해 커버될 수 있다.The first reaction body 11 has a first reactor 30 disposed therein, a first reaction body side accommodating portion 111 having an open top, and an opening of the first reaction body side accommodating portion 111. It may include a first reaction body-side coupling portion 112 connected to the upper part of the body, and a guide member 113 connected to the inner surface of the first reaction body-side coupling portion 112. At this time, the first reaction body-side accommodating portion 111, the first reaction body-side coupling portion 112, and the guide member 113 may be formed integrally, and the first reaction body-side accommodating portion 111 and the first reaction body-side accommodating portion 111 1 The reaction body side coupling portion 112 and the guide member 113 may be manufactured separately and then coupled to each other. At this time, an inlet 1111 may be connected to the bottom of the first reaction body side receiving portion 111. Fluids to be reformed, such as fuel or plasma-inducing gas, may flow through this inlet 1111, and the introduced fluids may be supplied between electrodes 31 of the first reactor 30, which will be described later. The guide member 113 may guide the reformed gas flowing out of the first reactor 30 to the second reactor 50. The guide member 113 extends from the lower surface of the first reaction body side coupling portion 112 toward the bottom surface of the first reaction body side receiving portion 111, thereby forming a predetermined space therein. At least a portion of the first reactor 30 may be placed in the inner space of the guide member 113 formed in this way and covered by the guide member 113.
제2 반응 본체(12)는 내부에 버너부(20), 열교환부(40) 및 제2 반응기(50)가 배치되고, 하부가 개방된 형상을 갖는 제2 반응 본체측 수용부(121) 및 제2 반응 본체측 수용부(121)의 개방된 하부에 연결되는 제2 반응 본체측 결합부(122)를 포함할 수 있다. 이때, 제2 반응 본체측 수용부(121) 및 제2 반응 본체측 결합부(122)는 일체로 형성될 수도 있고, 제2 반응 본체측 수용부(121) 및 제2 반응 본체측 결합부(122)는 각각 별도로 제작된 다음 상호 결합될 수도 있다. 이때, 제2 반응 본체측 수용부(121)의 내측면에는 연결 부재(1211)가 구비될 수 있다. 이러한 연결 부재(1211)에는 열교환기(41), 버너부(20) 및 제2 반응기(50) 중 적어도 하나가 연결될 수 있다.The second reaction body 12 has a burner unit 20, a heat exchanger 40, and a second reactor 50 disposed therein, and includes a second reaction body side receiving portion 121 having an open bottom shape, and It may include a second reaction body side coupling portion 122 connected to the open lower portion of the second reaction body side receiving portion 121. At this time, the second reaction main body side accommodating part 121 and the second reaction main body side coupling part 122 may be formed integrally, and the second reaction main body side accommodating part 121 and the second reaction main body side coupling part ( 122) may be manufactured separately and then combined together. At this time, a connection member 1211 may be provided on the inner surface of the second reaction body side receiving portion 121. At least one of the heat exchanger 41, the burner unit 20, and the second reactor 50 may be connected to this connection member 1211.
한편, 제1 반응 본체(11)의 제1 반응 본체측 결합부(112)와 제2 반응 본체(12)의 제2 반응 본체측 결합부(122)는 별도의 체결 수단(미도시)에 의해 상호 체결될 수 있다. 이 경우, 제1 반응 본체(11)의 제1 반응 본체측 결합부(112)에 기 형성된 제1 관통홀(1121)과 제2 반응 본체(12)의 제2 반응 본체측 결합부(122)에 기 형성된 제2 관통홀(1221)이 상호 연통될 수 있다. 이와 같이 상호 연통된 제1 관통홀(1121)과 제2 관통홀(1221)은 제1 반응기(30)에서 생성된 제1 개질 가스가 열교환부(40)의 열교환기(41)로 공급되기 위한 통로로 이용될 수 있다. 이를 위해, 제1 관통홀(1121) 및 제2 관통홀(1221)에 대응하는 위치에 열교환부(40)의 열교환기(41)의 단부가 연결될 수 있다.Meanwhile, the first reaction body side coupling portion 112 of the first reaction body 11 and the second reaction main body side coupling portion 122 of the second reaction body 12 are connected by separate fastening means (not shown). can be mutually concluded. In this case, the first through hole 1121 formed in the first reaction body side coupling portion 112 of the first reaction body 11 and the second reaction body side coupling portion 122 of the second reaction body 12 The second through-holes 1221 previously formed may be in communication with each other. The first through-holes 1121 and the second through-holes 1221 communicated with each other in this way are used to supply the first reformed gas generated in the first reactor 30 to the heat exchanger 41 of the heat exchanger 40. It can be used as a passage. To this end, the end of the heat exchanger 41 of the heat exchanger 40 may be connected to a position corresponding to the first through hole 1121 and the second through hole 1221.
버너부(20)는 열교환부(40)로 열을 전달하여 제1 개질 가스를 제1 온도로 예열할 수 있고, 제2 반응기(50)로 열을 전달하여 제1 온도로 예열된 제1 개질 가스를 제1 온도보다 높은 제2 온도로 가열할 수 있다. 달리 말하면, 버너부(20)의 열이 열교환부(40)로 전달되면, 열교환부(40)에 공급되는 제1 개질 가스가 버너부(20)의 열에 의해 제1 온도로 예열되고, 버너부(20)의 열이 제2 반응기(50)로 전달되면, 제2 반응기(50)로 공급되는 예열된 제1 개질 가스가 제2 온도로 가열될 수 있다. 여기서, 제1 개질 가스는 제1 반응기(30)에 의해 연료가 개질됨으로써 생성되는 가스를 의미한다. 나아가, 가스가 제2 온도로 가열된 제1 개질 가스는 후술할 제2 반응기(50)에 의해 개질되어 제2 개질 가스로 전환될 수 있다. 여기서, 제1 온도는 약 650°C내지 약 700°C일 수 있고, 제2 온도는 약 800°C내지 약 850°C일 수 있다.The burner unit 20 transfers heat to the heat exchange unit 40 to preheat the first reformed gas to a first temperature, and transfers heat to the second reactor 50 to preheat the first reformed gas to the first temperature. The gas may be heated to a second temperature that is higher than the first temperature. In other words, when the heat of the burner unit 20 is transferred to the heat exchange unit 40, the first reformed gas supplied to the heat exchange unit 40 is preheated to the first temperature by the heat of the burner unit 20, and the burner unit 20 When the heat from 20 is transferred to the second reactor 50, the preheated first reformed gas supplied to the second reactor 50 may be heated to the second temperature. Here, the first reformed gas refers to a gas produced by reforming fuel by the first reactor 30. Furthermore, the first reformed gas heated to the second temperature may be reformed by the second reactor 50, which will be described later, and converted into the second reformed gas. Here, the first temperature may be about 650°C to about 700°C, and the second temperature may be about 800°C to about 850°C.
버너부(20)는 반응로(10)의 내부, 예컨대, 제2 반응 본체(12)의 내부에 구비될 수 있다. 이러한 버너부(20)는 제2 반응 본체(12)에 기 형성된 홀에 삽입될 수 있으며, 제2 반응 본체(12)의 내측면에 결합된 연결 부재(1211)에 의해 지지될 수 있다. 이를 위해, 버너부(20)의 둘레를 따라 지지편(21)이 돌출 형성될 수 있으며, 이러한 지지편(21)은 연결 부재(1211)와 면접촉될 수 있다.The burner unit 20 may be provided inside the reactor 10, for example, inside the second reaction body 12. This burner unit 20 may be inserted into a hole previously formed in the second reaction body 12 and may be supported by a connection member 1211 coupled to the inner surface of the second reaction body 12. For this purpose, support pieces 21 may be formed to protrude along the circumference of the burner unit 20, and these support pieces 21 may be in surface contact with the connection member 1211.
이때, 버너부(20)는 일 예로 제2 반응 본체(12)의 내주면이 갖는 형상에 대응되도록 내부에 소정의 공간이 형성된 원통 구조로 구비될 수 있다. 이때, 버너부(20)의 열을 열교환부(40) 및 제2 반응기(50)에 각각 균일하게 공급하기 위해, 버너부(20)는 일 예로 메탈 화이버(metal fiber)가 적용된 내부 원통형 오프가스 버너로 구비될 수 있다. 이에 따라, 버너부(20)를 통해 열교환부(40)에서 제1 개질 가스를 예열하는데 필요한 열량과 제2 반응기(50)에서 예열된 제1 개질 가스를 개질하는데 필요한 열량이 동시에 균일하게 공급될 수 있다.At this time, the burner unit 20 may, for example, be provided as a cylindrical structure with a predetermined space formed therein to correspond to the shape of the inner peripheral surface of the second reaction body 12. At this time, in order to uniformly supply the heat of the burner unit 20 to the heat exchange unit 40 and the second reactor 50, the burner unit 20 has an internal cylindrical off gas to which metal fiber is applied, for example. It may be provided with a burner. Accordingly, the amount of heat required to preheat the first reformed gas in the heat exchanger 40 through the burner unit 20 and the amount of heat required to reform the first reformed gas preheated in the second reactor 50 will be supplied uniformly at the same time. You can.
제1 반응기(30)는 연료를 제1 개질 가스로 전환할 수 있다. 이를 위해, 제1 반응기(30)는 반응로(10)의 내부, 예컨대, 제1 반응 본체(11)의 내부에 구비될 수 있으며, 외부로부터 공급되는 연료를 개질할 수 있는 제1 개질 수단을 선택적으로 생성할 수 있다. 여기서, 연료는 알코올계 연료, 탄화수소계 연료, 천연가스계 연료, 바이오 가스와 같은 수소 함유 연료일 수 있고, 제1 개질 수단은 글라이딩 아크 플라즈마일 수 있다. 이러한 제1 반응기(30)는 전극(31), 전극지지체(32) 및 전원공급장치(미도시) 등을 포함할 수 있다.The first reactor 30 may convert fuel into a first reformed gas. For this purpose, the first reactor 30 may be provided inside the reactor 10, for example, inside the first reaction body 11, and may include a first reforming means capable of reforming fuel supplied from the outside. Can be created optionally. Here, the fuel may be a hydrogen-containing fuel such as alcohol-based fuel, hydrocarbon-based fuel, natural gas-based fuel, or biogas, and the first reforming means may be gliding arc plasma. This first reactor 30 may include an electrode 31, an electrode support 32, and a power supply (not shown).
전극지지체(32)는 제1 반응 본체측 수용부(111)의 저면에서 상측으로 연장되고, 상부에 전극(31)이 결합되어 지지될 수 있다.The electrode support 32 extends upward from the bottom of the first reaction body side accommodating portion 111, and the electrode 31 may be coupled to and supported at the top.
전극(31)은 제1 반응 본체측 수용부(111)에 결합되는 전극 지지체(32)에 결합되어 지지될 수 있다. 예를 들어, 전극(31)은 곡선을 포함하는 부채꼴 형상으로 구비될 수 있다. 이때, 전극(31)은 복수로 구비되어 플라즈마 방전 영역을 증대시킬 수 있다. 예를 들어, 복수의 전극(31)은 전극(31) 간 간격이 상부로 갈수록 넓어지도록 소정 간격으로 이격되게 배치될 수 있다. 전극(31)은 전원 공급 장치와 전기적으로 연결되어 전원 공급 장치로부터 교류 전원을 인가받을 수 있다. 제1 반응 본체측 수용부(111)에 구비된 유입구(1111)를 통해 연료 및 글라이딩 아크 플라즈마를 유도하기 위한 플라즈마 유도 가스가 전극(31) 사이로 유입된 후, 전극(31)에 교류 전원을 인가하면, 전극(31) 간 거리가 가장 짧은 하부에서 방전이 시작된다. 이렇게 발생된 아크는 하부에서 공급된 플라즈마 유도 가스의 유동 및 고온 아크의 부력에 의해 상부로 미끄러지면서 이동한다. 플라즈마가 전극(31)의 꼭대기에 도달했을 때 상부로 이동한 플라즈마는 전극(31)의 마지막 부분에서 소화된다. 아크가 사라지면 동시에 전극(31) 사이의 간극이 가장 가까운 부분에서 재점화되고 이 현상이 반복적으로 유지된다. 이렇게 발생한 플라즈마는 연료를 개질하는 개질 수단으로 이용될 수 있다.The electrode 31 may be supported by being coupled to an electrode support 32 that is coupled to the first reaction body side receiving portion 111. For example, the electrode 31 may be provided in a fan-shaped shape including a curved line. At this time, a plurality of electrodes 31 can be provided to increase the plasma discharge area. For example, the plurality of electrodes 31 may be arranged to be spaced apart at a predetermined interval so that the gap between the electrodes 31 widens toward the top. The electrode 31 is electrically connected to the power supply device and can receive alternating current power from the power supply device. After fuel and plasma inducing gas for inducing gliding arc plasma are introduced between the electrodes 31 through the inlet 1111 provided in the first reaction body side receiving portion 111, AC power is applied to the electrodes 31. Then, discharge starts at the bottom where the distance between the electrodes 31 is shortest. The arc generated in this way slides and moves upward due to the flow of plasma inducing gas supplied from the bottom and the buoyancy of the high-temperature arc. When the plasma reaches the top of the electrode 31, the plasma that moves upward is extinguished at the last part of the electrode 31. When the arc disappears, at the same time the gap between the electrodes 31 is re-ignited at the closest part, and this phenomenon is maintained repeatedly. The plasma generated in this way can be used as a reforming means to reform fuel.
열교환부(40)는 제1 반응기(30)로부터 제1 개질 가스를 공급받을 수 있으며, 제1 반응기(30)로부터 공급된 제1 개질 가스에 버너부(20)의 열을 전달하여 제1 개질 가스를 제1 온도로 예열시킬 수 있다. 이를 위해, 열교환부(40)는 반응로(10)의 내부, 예컨대, 제2 반응 본체(12)의 내부에 배치될 수 있다. 이때, 복수의 열교환기(41) 중 적어도 일부는 후술할 제2 개질 반응부(50)의 복수의 제2 개질 반응기(51) 중 적어도 일부와 어긋나게 배치됨에 따라, 버너부(20)의 복사열이 복수의 열교환기(41)로 용이하게 전달될 수 있다. 이러한 열교환부(40)는 복수의 열교환기(41)를 포함할 수 있다. 복수의 열교환기(41)는 버너부(20)의 중심을 기준으로 일정 반경을 갖는 가상의 원을 따라 이격되어 배치될 수 있다. 열교환기(41)는 제1 개질 가스가 유동할 수 있는 통로를 내부에 구비할 수 있다. 이때, 열교환기(41)의 일단부는 제2 반응 본체(12)의 제2 반응 본체측 결합부(122)의 내측면에 결합될 수 있다. 이 경우, 열교환기(41)의 일단부가 제1 반응 본체(11)의 제1 반응 본체측 결합부(112)에 기 형성된 제1 관통홀(1121) 및 제2 반응 본체(12)의 제2 반응 본체측 결합부(122)에 기 형성된 제2 관통홀(1221)과 연통될 수 있다. 이로써, 열교환기(41)의 내부에 마련되는 통로가 제1 반응 본체(11)의 내부 공간과 연통됨에 따라, 제1 반응 본체(11)의 제1 개질 가스가 열교환기(41)로 공급될 수 있다. 열교환기(41)의 타단부는 제2 반응 본체측 수용부(121)의 내측면에 결합된 연결 부재(1211)에 기 형성된 홀에 관통 결합될 수 있다. 이때, 홀의 외측 둘레에 해당하는 연결 부재(1211)의 일면으로부터 연장편이 연장 형성될 수 있다. 이러한 연장편은 연결 부재(1211)에 기 형성된 홀을 커버할 수 있다. 연장편에는 연결관이 연결됨에 따라, 열교환기(41)의 타단부를 통해 배출되는 제1 개질 가스는 연결관을 통해 제2 반응기(50)로 공급될 수 있다.The heat exchange unit 40 may receive the first reformed gas from the first reactor 30, and transfer heat from the burner unit 20 to the first reformed gas supplied from the first reactor 30 to perform the first reformed gas. The gas may be preheated to a first temperature. To this end, the heat exchange unit 40 may be disposed inside the reactor 10, for example, inside the second reaction body 12. At this time, at least some of the plurality of heat exchangers 41 are arranged to be offset from at least some of the plurality of second reforming reactors 51 of the second reforming reaction unit 50, which will be described later, so that the radiant heat of the burner unit 20 It can be easily transferred to a plurality of heat exchangers 41. This heat exchange unit 40 may include a plurality of heat exchangers 41. The plurality of heat exchangers 41 may be arranged to be spaced apart along an imaginary circle with a certain radius based on the center of the burner unit 20. The heat exchanger 41 may have a passage inside through which the first reformed gas can flow. At this time, one end of the heat exchanger 41 may be coupled to the inner surface of the second reaction body side coupling portion 122 of the second reaction body 12. In this case, one end of the heat exchanger 41 has a first through hole 1121 formed in the first reaction body side coupling portion 112 of the first reaction body 11 and a second through hole 1121 of the second reaction body 12. It may be in communication with the second through hole 1221 already formed in the reaction body side coupling portion 122. As a result, the passage provided inside the heat exchanger 41 communicates with the internal space of the first reaction body 11, so that the first reformed gas of the first reaction body 11 is supplied to the heat exchanger 41. You can. The other end of the heat exchanger 41 may be coupled through a hole already formed in the connection member 1211 coupled to the inner surface of the second reaction body side receiving portion 121. At this time, an extension piece may be formed extending from one surface of the connecting member 1211 corresponding to the outer circumference of the hole. This extension piece can cover a hole already formed in the connecting member 1211. As a connection pipe is connected to the extension piece, the first reformed gas discharged through the other end of the heat exchanger 41 can be supplied to the second reactor 50 through the connection pipe.
제2 반응기(50)는 열교환부(40)를 통과한 제1 개질 가스를 제2 개질 가스로 전환할 수 있다. 이를 위해, 제2 반응기(50)는 제1 개질 수단과 상이한 제2 개질 수단을 구비할 수 있다. 이를 위해, 제2 반응기(50)는 반응로(10)의 내부, 예컨대, 제2 반응 본체(12)의 내부에 배치될 수 있다. 이때, 복수의 제2 반응부(51) 중 적어도 일부는 복수의 열교환기(41) 중 적어도 일부와 어긋나게 배치됨에 따라, 버너부(20)의 복사열이 복수의 제2 반응부(51)로 용이하게 전달될 수 있다. 이러한 제2 반응기(50)는 복수의 제2 반응부(51)를 포함할 수 있다. 이러한 복수의 제2 반응부(51)는 버너부(20)의 중심을 기준으로 일정 반경을 갖는 가상의 원을 따라 이격 배치될 수 있다. 여기서, 제2 반응기(50)는 열교환부(40)보다 버너부(20)에 인접하게 배치되므로, 복수의 제2 반응부(51)가 버너부(20)의 중심을 기준으로 형성하는 원의 크기는 복수의 열교환기(41)가 버너부(20)의 중심을 기준으로 형성하는 원의 크기보다 작을 수 있다. 제2 반응기(50)는 외관(511) 및 외관(511)의 내측에 배치되는 내관(512)을 포함할 수 있다. 이때, 외관(511)의 하단부는 막혀 있고, 내관(512)의 하단부는 개방된 구조로 구비될 수 있다. 따라서, 외관(511)과 내관(512) 사이의 제2 개질 수단, 예컨대, 개질 촉매가 구비될 수 있다. 이와 같이, 제2 반응기(50)가 외관(511) 및 내관(512)을 포함하는 이중관 형태로 구비됨에 따라, 제1 개질 가스의 체류 시간이 증대될 수 있다. 외관(511)에는 제1 개질 가스가 유동하는 제1 통로(5112)가 구비되고, 내관(512)에는 제1 통로(5112)와 연통되고, 제1 개질 가스 및 제2 개질 가스 중 적어도 하나가 유동하는 제2 통로(5122)가 구비될 수 있다. 버너부(20)의 복사열이 외관(511)에 전달되면, 버너부(20)의 복사열과 제1 개질 가스의 열교환이 진행되며, 외관(511)의 상단에 연결된 유입구(5111)를 통해 공급된 제1 개질 가스가 외관(511)과 내관(512) 사이에 구비된 제2 개질 수단, 예컨대, 개질 촉매를 통과하면서 개질 반응이 진행된다. 외관(511)의 하단으로 이동된 제1 개질 가스의 온도는 외관(511)의 상단으로 공급된 제1 개질 가스의 온도보다 높아지고, 승온된 제1 개질 가스는 상승관인 내관(512)을 통해 상승하면서 제2 개질 가스로 전환된 후, 내관(512)의 상단에 연결된 배출구(5121)로 배출된다.The second reactor 50 may convert the first reformed gas that has passed through the heat exchanger 40 into a second reformed gas. To this end, the second reactor 50 may be equipped with a second reforming means that is different from the first reforming means. To this end, the second reactor 50 may be disposed inside the reactor 10, for example, inside the second reaction body 12. At this time, at least a portion of the plurality of second reaction units 51 is arranged to be offset from at least a portion of the plurality of heat exchangers 41, so that the radiant heat of the burner unit 20 is easily transferred to the plurality of second reaction units 51. can be conveyed. This second reactor 50 may include a plurality of second reaction units 51. The plurality of second reaction units 51 may be spaced apart from each other along an imaginary circle with a certain radius based on the center of the burner unit 20. Here, the second reactor 50 is disposed closer to the burner unit 20 than the heat exchange unit 40, so that the plurality of second reaction units 51 form a circle based on the center of the burner unit 20. The size may be smaller than the size of the circle formed by the plurality of heat exchangers 41 based on the center of the burner unit 20. The second reactor 50 may include an exterior 511 and an inner tube 512 disposed inside the exterior 511. At this time, the lower end of the outer tube 511 may be closed, and the lower end of the inner tube 512 may be provided in an open structure. Accordingly, a second reforming means, for example, a reforming catalyst, may be provided between the outer tube 511 and the inner tube 512. In this way, as the second reactor 50 is provided in the form of a double tube including an outer tube 511 and an inner tube 512, the residence time of the first reformed gas can be increased. The outer pipe 511 is provided with a first passage 5112 through which the first reformed gas flows, and the inner pipe 512 is in communication with the first passage 5112, and at least one of the first reformed gas and the second reformed gas is provided. A flowing second passage 5122 may be provided. When the radiant heat of the burner unit 20 is transferred to the exterior 511, heat exchange between the radiant heat of the burner unit 20 and the first reformed gas proceeds, and the radiant heat supplied through the inlet 5111 connected to the top of the exterior 511 is A reforming reaction proceeds as the first reforming gas passes through a second reforming means, for example, a reforming catalyst, provided between the outer tube 511 and the inner tube 512. The temperature of the first reformed gas moved to the bottom of the outer tube 511 is higher than the temperature of the first reformed gas supplied to the top of the outer tube 511, and the raised first reformed gas rises through the inner tube 512, which is a riser tube. After being converted to the second reformed gas, it is discharged through the outlet 5121 connected to the top of the inner tube 512.
상술한 연료 가스 개질 장치는 연료가 제1 반응기(30)에 의해 1차 개질되고, 열교환부(40)를 통해 개질 반응이 일어날 수 있는 온도로 예열된 다음, 제2 반응기(50)에서 2차 개질되어 개질 효율이 향상된다.In the above-described fuel gas reforming device, fuel is first reformed in the first reactor 30, preheated to a temperature at which a reforming reaction can occur through the heat exchanger 40, and then secondarily reformed in the second reactor 50. Reforming improves reforming efficiency.
그러나, 제1 반응기(30)에 의해 1차 개질된 1차 개질 가스는, 표 1과 같이, 메탄(CH4)의 전환율이 낮으며, 이산화탄소(CO2)의 생성량이 높아 제2 반응기(50)의 개질 효율이 저하되는 문제가 있다.However, as shown in Table 1, the primary reformed gas primary reformed by the first reactor 30 has a low conversion rate of methane (CH 4 ) and a high amount of carbon dioxide (CO 2 ) generated in the second reactor 50. ) There is a problem that the reforming efficiency of is reduced.
성분ingredient H2 H 2 CH4 CH 4 COC.O. CO2 CO2 C2H4 C 2 H 4 C2H6 C 2 H 6 C2H2 C 2 H 2 C3H8 C 3 H 8
함유량
(%)
content
(%)
23.7523.75 33.4533.45 14.114.1 28.0228.02 0.110.11 0.050.05 0.520.52 0.0010.001
이를 해결하고자, 제1 반응기(30)와 제2 반응기(50)의 사이에 기능성 촉매 반응기(60)를 형성하고, 제1 반응기(30)에 의해 개질된 1차 개질 가스의 미반응 메탄과 이산화탄소를 기능성 촉매 반응기(60)에 의해 메탄개질반응(DRM, Dry Reforming of Methane)시켜 수소를 더욱 많이 생산하여 제2 반응기(50)의 개질 효율을 증가시킬 수 있다. 본 발명의 일 실시예에 따른 기능성 촉매 반응기(60)는 제1 반응 본체측 수용부(111)의 저면에서 상측, 즉, 제2 반응기(50) 측으로 연장되어, 제1 반응기(30)에 의해 개질된 개질 가스를 제2 반응기(50) 측으로 안내하는 통기부 지지체(61)의 제2 반응기(50) 측 단부에 설치되어 제1 반응기(30)에 의해 개질된 개질 가스를 통과시키고 내부에 수용공간이 형성되는 통기부(62) 및 통기부(62)의 내부 수용공간에 수용되어 통기부(62)를 통과하는 개질 가스와 반응하는 기능성 촉매(63)를 포함한다.To solve this problem, a functional catalytic reactor 60 is formed between the first reactor 30 and the second reactor 50, and unreacted methane and carbon dioxide of the primary reformed gas reformed by the first reactor 30 are formed. The reforming efficiency of the second reactor 50 can be increased by producing more hydrogen by performing a methane reforming reaction (DRM, Dry Reforming of Methane) using the functional catalytic reactor 60. The functional catalytic reactor 60 according to an embodiment of the present invention extends from the bottom of the first reaction body side receiving portion 111 to the upper side, that is, toward the second reactor 50, and is used by the first reactor 30. It is installed at the end of the second reactor 50 side of the ventilation portion support 61 that guides the reformed reformed gas toward the second reactor 50, and allows the reformed gas reformed by the first reactor 30 to pass through and is accommodated therein. It includes a ventilation portion 62 in which a space is formed and a functional catalyst 63 that is accommodated in the internal accommodation space of the ventilation portion 62 and reacts with the reformed gas passing through the ventilation portion 62.
통기부 지지체(61)는 중공의 원통형상으로, 내부에 공간이 형성되어 이 내부 공간에 제1 반응기(30)가 배치될 수 있다. 통기부 지지체(61)는 제1 반응 본체측 수용부(111)의 저면에서 상측으로 연장되어 개질 대상인 연료 및 글라이딩 아크 플라즈마를 유도하기 위한 플라즈마 유도 가스가 유동하는 공간을 제공할 수 있다. 통기부 지지체(61)에 형성된 내부 공간에서 플라즈마 개질 반응이 실행될 수 있다. 통기부 지지체(61)는 전극(31)과 전기적으로 절연될 수 있는 재질로 구비될 수 있다.The ventilation portion support 61 has a hollow cylindrical shape, and a space is formed therein, so that the first reactor 30 can be placed in this inner space. The ventilation portion support 61 may extend upward from the bottom of the first reaction body side receiving portion 111 to provide a space in which the fuel to be reformed and the plasma inducing gas for inducing the gliding arc plasma flow. A plasma reforming reaction may be performed in the internal space formed in the ventilation portion support 61. The ventilation portion support 61 may be made of a material that can be electrically insulated from the electrode 31.
통기부 지지체(61)의 하부(도 2의 하부)는 제1 반응 본체측 수용부(111)의 저면으로부터 상방으로 연장되고, 통기부 지지체(61)의 상부(도 2의 상부)는 개방되어 개방된 일측에 통기부(62)가 설치될 수 있다. 즉, 통기부 지지체(61)는 통기부(62)가 형성된 통기부 지지체(61)의 상부 개방된 일측을 제외한 부분이 제1 반응기(30)를 외부로부터 차단하도록 제1 반응기(30)를 감싸도록 형성될 수 있다. 이로 인해, 제1 반응기(30)를 통해 개질된 개질 가스의 전부가 통기부(62)를 통과하게 된다. The lower part of the ventilation portion support 61 (lower part in FIG. 2) extends upward from the bottom of the first reaction body side receiving portion 111, and the upper part of the ventilation portion support 61 (upper part in FIG. 2) is open. A ventilation portion 62 may be installed on one open side. That is, the ventilation portion support 61 surrounds the first reactor 30 so that the portion excluding the upper open side of the ventilation portion support 61 where the ventilation portion 62 is formed blocks the first reactor 30 from the outside. It can be formed as follows. Because of this, all of the reformed gas reformed through the first reactor 30 passes through the ventilation portion 62.
통기부 지지체(61)는 가이드부재(113)보다 반경방향 내측에 배치될 수 있다. 통기부 지지체(61)와 가이드부재(113) 사이의 수평방향으로의 이격거리는, 통기부 지지체(61)와 제1 반응 본체측 수용부(111)의 측벽 간의 수평방향으로의 이격거리보다 더 작을 수 있다. 또한, 전극(31)의 상단과 통기부지지체(61)의 상단 간의 이격거리는, 전극(31)의 하단과 제1 반응 본체측 수용부(111)의 저면과의 이격거리보다 더 크게 형성될 수 있다. The ventilation portion support 61 may be disposed radially inside the guide member 113. The horizontal separation distance between the ventilation unit support 61 and the guide member 113 may be smaller than the horizontal separation distance between the ventilation unit support 61 and the side wall of the first reaction body side receiving portion 111. You can. In addition, the separation distance between the upper end of the electrode 31 and the upper end of the ventilation support 61 can be formed to be larger than the separation distance between the lower end of the electrode 31 and the bottom of the first reaction body side accommodating portion 111. there is.
통기부(62)는 통기부 지지체(61)의 상부에 설치되어 제1 반응기(30)에 의해 개질된 개질 가스가 통과하기 위한 복수 개의 통기공이 형성된 메쉬부재로 형성될 수 있고, 통기부(62)의 두께 방향을 따라 소정의 간격으로 이격된 제1 통기부(621) 및 제2 통기부(622)를 포함할 수 있다. 제1 통기부(621) 및 제2 통기부(622)는 통기부 지지체(61)의 내측에 설치될 수 있다. 제1 통기부(621) 및 제2 통기부(622)는 통기부 지지체(61)에 의해 형성된 내부공간의 단면적에 대응되는 면적을 갖도록 형성되어 통기부 지지체(61)의 개방된 일측을 폐쇄하도록 설치될 수 있다. 이때, 제1 통기부(621)와 제2 통기부(622)는 일정 간격으로 이격되어 그 사이에 수용공간을 생성할 수 있다. 제1 통기부(621) 및 제2 통기부(622)에 의해 통기부 지지체(61)의 개방된 일측이 폐쇄되지만, 제1 통기부(621) 및 제2 통기부(622)에는 복수 개의 통기공이 형성되어 있어 통기부 지지체(61)를 통해 안내되는 개질 가스가 제1 통기부(621) 및 제2 통기부(622)를 통과하게 된다. The ventilation unit 62 may be installed on the upper part of the ventilation unit support 61 and may be formed of a mesh member having a plurality of ventilation holes for the reformed gas reformed by the first reactor 30 to pass through, and the ventilation unit ( It may include a first ventilation portion 621 and a second ventilation portion 622 spaced apart at a predetermined interval along the thickness direction of 62). The first vent 621 and the second vent 622 may be installed inside the vent support 61. The first ventilation portion 621 and the second ventilation portion 622 are formed to have an area corresponding to the cross-sectional area of the internal space formed by the ventilation portion support 61 to close one open side of the ventilation portion support 61. Can be installed. At this time, the first ventilation part 621 and the second ventilation part 622 may be spaced apart at a certain interval to create an accommodation space therebetween. One open side of the vent supporter 61 is closed by the first vent 621 and the second vent 622, but the first vent 621 and the second vent 622 have a plurality of vents. Pores are formed so that the reformed gas guided through the ventilation portion supporter 61 passes through the first ventilation portion 621 and the second ventilation portion 622.
제1 반응기(30)로부터 생성된 개질가스는 통기부(62)를 통과한 후, 가이드부재(113)와 통기부지지체(61) 사이에 형성된 공간을 따라 하측으로 유동하고, 제1 반응 본체측 수용부(111)의 측벽과 가이드부재(113) 사이에 형성된 공간을 통해 상승한 후, 열교환부(40)로 유입될 수 있다. 이와 같은 유동경로에 따라, 제1 반응기(30)에서 생성된 개질가스가 제1 반응본체(11)의 내부에 잔류하지 않고 열교환부(40)로 유입될 수 있다.The reformed gas generated from the first reactor 30 passes through the ventilation portion 62 and then flows downward along the space formed between the guide member 113 and the ventilation portion support 61, and flows downward toward the first reaction body. After rising through the space formed between the side wall of the receiving part 111 and the guide member 113, it may flow into the heat exchange part 40. According to this flow path, the reformed gas generated in the first reactor 30 may flow into the heat exchange unit 40 without remaining inside the first reaction body 11.
한편, 제1 통기부(621) 및 제2 통기부(622)의 사이에 형성되는 수용공간에 기능성 촉매(63)가 수용되어 통기부(62)를 통과하는 개질 가스와 반응하게 된다. 이때, 개질 가스와 기능성 촉매(63)는 메탄개질반응(DRM)이 이루어지는데 메탈개질반응이 이루어지려면 600°C 내지 900°C의 반응열이 필요하다. 제1 반응기(30)는 플라즈마에 의해 연료를 개질하기 때문에, 제1 반응기(30)에 의해 개질된 개질 가스는 고온을 유지하고 있다. Meanwhile, the functional catalyst 63 is accommodated in the receiving space formed between the first ventilation portion 621 and the second ventilation portion 622 and reacts with the reformed gas passing through the ventilation portion 62. At this time, the reforming gas and the functional catalyst 63 undergo methane reforming reaction (DRM), and reaction heat of 600°C to 900°C is required for the metal reforming reaction to occur. Since the first reactor 30 reforms fuel by plasma, the reformed gas reformed by the first reactor 30 is maintained at a high temperature.
따라서, 통기부(62)는 개질 가스가 고온을 유지하고 있는 위치, 즉, 상기 개질 가스의 온도가 600°C 내지 900°C인 상태로 통과할 수 있는 지점에 설치되어야 한다. 통기부(62)가 통기부 지지체(61)의 개방된 일측의 단부에 설치되어 있으므로, 통기부 지지체(61)의 길이를 조절하여 통기부(62)를 개질 가스의 온도가 600°C 내지 900°C인 상태로 통과하는 지점에 설치할 수 있다. 또한, 통기부 지지체(61)의 길이를 길게 형성하고, 통기부 지지체(61)의 내면 및 통기부의 외면에 소정의 체결 수단, 예를 들어, 랙 앤 피니언 기어 등을 각각 마련하여, 통기부(62)를 통기부 지지체(61)의 내측에 설치하여 통기부(62)가 개질 가스의 온도가 600°C 내지 900°C인 상태로 통과하는 지점에 설치되도록 할 수 있다. 이 경우에는 통기부 지지체(61)의 전체 길이와 상관없이 통기부(62)를 해당 위치에 설치할 수 있다. 즉, 통기부 지지체(61)는 그 전체 길이를 조절하거나, 그 내측에 배치되는 통기부(62)의 상하 방향 위치를 조절하여, 통기부(62)를 개질 가스의 온도가 600°C 내지 900°C인 상태로 통과하는 지점에 설치할 수 있다.Therefore, the ventilation portion 62 must be installed at a location where the reformed gas maintains a high temperature, that is, a point through which the reformed gas can pass while its temperature is between 600°C and 900°C. Since the ventilation portion 62 is installed at one open end of the ventilation portion support 61, the length of the ventilation portion support 61 is adjusted to adjust the ventilation portion 62 so that the temperature of the reformed gas is 600°C to 900°C. It can be installed at a point where it passes through at °C. In addition, the length of the ventilation portion support 61 is formed to be long, and predetermined fastening means, such as a rack and pinion gear, are provided on the inner surface of the ventilation portion support 61 and the outer surface of the ventilating portion, respectively, to secure the ventilation portion. (62) can be installed inside the ventilation portion support 61 so that the ventilation portion 62 is installed at a point where the reformed gas passes through at a temperature of 600°C to 900°C. In this case, the ventilation portion 62 can be installed at the corresponding location regardless of the total length of the ventilation portion support 61. That is, the ventilation portion support 61 adjusts its overall length or adjusts the vertical position of the ventilation portion 62 disposed inside the ventilation portion 62 so that the temperature of the reformed gas is maintained at 600°C to 900°C. It can be installed at a point where it passes through at °C.
통기부(62)와 제1 반응 본체측 결합부(112) 간의 상하방향으로의 이격거리는, 가이드 부재(113)의 하단과 제1 반응 본체측 수용부(111)의 저면 간의 이격거리보다 더 클 수 있다. The vertical separation distance between the ventilation portion 62 and the first reaction body side coupling portion 112 is greater than the separation distance between the lower end of the guide member 113 and the bottom of the first reaction body side receiving portion 111. You can.
한편, 기능성 촉매(63)는 페로브스카이트 구조를 갖는 Ni/BaZrO3일 수 있다. 기능성 촉매(63)는 BaZrO3를 지지체로 하며, 고상법으로 제조한 BaZrO3 분말과 압출 성형하여 제조한 펠렛 형태의 BaZrO3 구조체에 니켈을 코팅한 촉매이다. 기능성 촉매(63)를 제조하는 방법을 살펴보면, 먼저, 전구물질은 탄산바륨(BaCO3 , 99.9%), 산화지르코늄(ZrO2, 99.9%), 산화이트륨(Y2O3, 99.9%) 및 아세톤을 혼합하여 균질화한다. 상기와 같이 혼합된 재료를 110°C에서 건조시켜 분쇄한 다음 공기 중에서 1200°C에서 5시간 동안 열처리하고, 열처리된 물질을 초미분쇄기(attrition milling)를 사용하여 균일한 분말로 분쇄한다. 이렇게 제조된 BaZrO3 분말은 비표면적이 10m2/g 내지 20 m2/g인 구조체일 수 있다. 다음으로, BaZrO3 분말에 온도 조절 화학 기상 증착법을 통해 금속 전구체를 코팅한다. 여기서, 금속 전구체는 Ni(Cp)2가 사용될 수 있으며, BaZrO3 담체(BaZrO3 분말 또는 BaZrO3 기어형 펠렛)의 중량 대비 1 wt% 내지 30 wt%로 금속 전구체를 주입하여 BaZrO3담체의 표면에 코팅되는 니켈(Ni)의 함량을 제어할 수 있다. 니켈의 증착을 위해 250 ℃의 온도에서 승화된 유기금속화합물 형태의 니켈 증기가 BaZrO3 담체 표면에서 공기 중에 있는 산소와 반응하여 NiO 형태로 코팅되며, 800 ℃(환원 분위기)에서 2~4시간동안 열처리하여 Ni/BaZrO3로 이루어진 기능성 촉매(63)를 제조한다, 기능성 촉매(63)인 Ni/BaZrO3는 메탄개질반응(DRM)의 높은 성능과 구조적으로 안정화된 페로브스카이트 구조를 가져 증기(steam) 분위기에서 높은 안정성을 갖는다. 따라서, 제1 반응기(30)에서 생성된 미반응 메탄(CH4), 이산화탄소(CO2), CxHx 계열의 가스가 기능성 촉매 반응기(60)로 공급되어 제1 반응기(30)의 플라즈마 열원과의 메탄개질반응(DRM)을 통해 수소(H2) 및 일산화탄소(CO)의 생산량을 증가시켜 연료의 개질 효율을 증가시킬 수 있게 된다.Meanwhile, the functional catalyst 63 may be Ni/BaZrO 3 having a perovskite structure. The functional catalyst 63 uses BaZrO 3 as a support, and is a catalyst coated with nickel on BaZrO 3 powder prepared by a solid-phase method and a pellet-shaped BaZrO 3 structure manufactured by extrusion molding. Looking at the method of manufacturing the functional catalyst 63, first, the precursors are barium carbonate (BaCO 3 , 99.9%), zirconium oxide (ZrO 2 , 99.9%), yttrium oxide (Y 2 O 3 , 99.9%), and acetone. Mix and homogenize. The mixed materials as described above are dried and ground at 110°C, then heat-treated in air at 1200°C for 5 hours, and the heat-treated material is ground into uniform powder using an attrition milling. The BaZrO 3 powder prepared in this way may be a structure having a specific surface area of 10 m 2 /g to 20 m 2 /g. Next, the metal precursor is coated on BaZrO 3 powder through temperature-controlled chemical vapor deposition. Here, Ni(Cp) 2 may be used as the metal precursor, and the metal precursor is injected at 1 wt% to 30 wt% based on the weight of the BaZrO 3 carrier (BaZrO 3 powder or BaZrO 3 gear-type pellets) to form a surface of the BaZrO 3 carrier. The content of nickel (Ni) coated on can be controlled. For the deposition of nickel, nickel vapor in the form of an organic metal compound sublimated at a temperature of 250 ℃ reacts with oxygen in the air on the surface of the BaZrO 3 carrier to coat it in the form of NiO, and is coated in the form of NiO at 800 ℃ (reducing atmosphere) for 2 to 4 hours. A functional catalyst (63) made of Ni/BaZrO 3 is prepared by heat treatment. The functional catalyst (63), Ni/BaZrO 3 , has high performance in methane reforming reaction (DRM) and a structurally stabilized perovskite structure, enabling steam It has high stability in (steam) atmosphere. Accordingly, the unreacted methane (CH 4 ), carbon dioxide (CO 2 ), and CxHx series gases generated in the first reactor 30 are supplied to the functional catalytic reactor 60 and are combined with the plasma heat source of the first reactor 30. The reforming efficiency of fuel can be increased by increasing the production of hydrogen (H 2 ) and carbon monoxide (CO) through methane reforming reaction (DRM).
이상 본 발명의 실시예들을 구체적인 실시 형태로서 설명하였으나, 이는 예시에 불과한 것으로서, 본 발명은 이에 한정되지 않는 것이며, 본 명세서에 개시된 기술적 사상에 따르는 최광의 범위를 갖는 것으로 해석되어야 한다. 당업자는 개시된 실시형태들을 조합/치환하여 적시되지 않은 형상의 패턴을 실시할 수 있으나, 이 역시 본 발명의 범위를 벗어나지 않는 것이다. 이외에도 당업자는 본 명세서에 기초하여 개시된 실시형태를 용이하게 변경 또는 변형할 수 있으며, 이러한 변경 또는 변형도 본 발명의 권리범위에 속함은 명백하다.Although embodiments of the present invention have been described above as specific embodiments, this is merely an example, and the present invention is not limited thereto, and should be construed as having the widest scope following the technical idea disclosed in this specification. A person skilled in the art may implement a pattern of a shape not specified by combining/substituting the disclosed embodiments, but this also does not depart from the scope of the present invention. In addition, a person skilled in the art can easily change or modify the embodiments disclosed based on the present specification, and it is clear that such changes or modifications also fall within the scope of the present invention.
(이 발명을 지원한 국가연구개발사업)(National research and development project that supported this invention)
(과제고유번호) 1545025291 (Unique assignment number) 1545025291
(과제번호) 421045032SB010 (Assignment number) 421045032SB010
(부처명) 농림축산식품부 (Ministry Name) Ministry of Agriculture, Food and Rural Affairs
(과제관리(전문)기관명) 농림식품기술기획평가원 (Project management (professional) organization name) Agriculture, Food and Rural Technology Planning and Evaluation Institute
(연구사업명) 스마트팜다부처패키지혁신기술개발사업 (Research Project Name) Smart Farm Multi-Ministry Package Innovation Technology Development Project
(연구과제명) 바이오가스 이용 전처리 및 수소전환기술 개발 (Research project title) Development of biogas pretreatment and hydrogen conversion technology
(기여율) 1/1 (Contribution rate) 1/1
(과제수행기관명) 고등기술연구원연구조합 (Name of project carrying out organization) Advanced Technology Research Institute Research Association
(연구기간) 2022.01.01 ~ 2022.12.31 (Research period) 2022.01.01 ~ 2022.12.31

Claims (6)

  1. 전극을 포함하고, 연료를 개질하여 개질가스를 생성하는 제1 반응기 및 상기 제1 반응기에 의해 개질된 상기 개질 가스를 재차 개질하는 제2 반응기를 포함하는 연료 가스 개질 장치에 설치되는 기능성 촉매 반응기로서,A functional catalytic reactor installed in a fuel gas reforming device including an electrode, a first reactor for reforming fuel to produce reformed gas, and a second reactor for reforming the reformed gas again by the first reactor. ,
    상기 제1 반응기에 의해 개질된 상기 개질 가스를 통과시키고, 내부에 수용공간이 형성되는 통기부; a ventilation portion that passes the reformed gas reformed by the first reactor and has a receiving space therein;
    상기 통기부의 상기 수용공간에 수용되어 상기 통기부를 통과하는 상기 개질 가스와 반응하는 기능성 촉매; 및a functional catalyst accommodated in the accommodation space of the ventilation unit and reacting with the reformed gas passing through the ventilation unit; and
    상기 제1 반응기에 의해 개질된 상기 개질 가스를 상기 제2 반응기 측으로 안내하고, 상기 통기부의 상하 방향 위치가 조절가능하도록 상기 통기부를 지지하는 중공의 통기부 지지체를 포함하는,Guiding the reformed gas reformed by the first reactor to the second reactor and comprising a hollow ventilation portion supporter supporting the ventilation portion so that the vertical position of the ventilation portion can be adjusted,
    기능성 촉매 반응기.Functional catalytic reactor.
  2. 제 1 항에 있어서,According to claim 1,
    상기 통기부 지지체는 상기 전극을 감싸도록 형성되고, 상기 전극은 상기 통기부를 통해 외부와 연통하는,The ventilation portion support is formed to surround the electrode, and the electrode communicates with the outside through the ventilation portion,
    기능성 촉매 반응기.Functional catalytic reactor.
  3. 제 1 항에 있어서,According to claim 1,
    상기 통기부는,The ventilation part,
    상기 통기부 지지체의 상기 제2 반응기 측 단부에 설치되며, 상기 제1 반응기에 의해 개질된 상기 개질 가스가 통과하기 위한 복수 개의 통기공이 형성되는 제1 통기부; 및a first ventilation portion installed at an end of the ventilation portion support toward the second reactor and having a plurality of ventilation holes through which the reformed gas reformed by the first reactor passes; and
    상기 제1 통기부와 이격되도록 상기 통기부 지지체의 내측에 설치되어 상기 제1 통기부와의 사이에 상기 수용공간을 생성하고, 상기 제1 반응기의 상기 전극에 의해 개질된 상기 개질 가스가 통과하기 위한 복수 개의 통기공이 형성되는 제2 통기부;를 포함하는,It is installed inside the ventilation portion support so as to be spaced apart from the first ventilation portion to create the receiving space between the first ventilation portion and allow the reformed gas reformed by the electrode of the first reactor to pass through. Includes a second ventilation portion in which a plurality of ventilation holes are formed for
    기능성 촉매 반응기.Functional catalytic reactor.
  4. 제 1 항에 있어서,According to claim 1,
    상기 제1 반응기는 개질 수단으로 사용하기 위해 플라즈마를 발생시킬 수 있도록 구성되고,The first reactor is configured to generate plasma for use as a reforming means,
    상기 통기부는 상기 제1 반응기에 의해 개질된 상기 개질 가스의 온도가 600°C 내지 900°C인 상태로 통과하는 지점에 설치되는,The ventilation unit is installed at a point where the reformed gas reformed by the first reactor passes through at a temperature of 600°C to 900°C.
    기능성 촉매 반응기.Functional catalytic reactor.
  5. 제 1 항에 있어서,According to claim 1,
    상기 기능성 촉매는 페로브스카이트 구조를 갖는 Ni/BaZrO3인,The functional catalyst is Ni/BaZrO 3 having a perovskite structure,
    기능성 촉매 반응기.Functional catalytic reactor.
  6. 전극을 포함하고, 연료를 개질하여 개질가스를 생성하는 제1 반응기;A first reactor including an electrode and reforming fuel to generate reformed gas;
    상기 제1 반응기에 의해 개질된 상기 개질 가스를 재차 개질하는 제2 반응기; 및 a second reactor that re-reforms the reformed gas reformed by the first reactor; and
    상기 제1 반응기에서 생성된 미반응 가스를 반응시키는 기능성 촉매 반응기를 포함하고, It includes a functional catalytic reactor that reacts the unreacted gas generated in the first reactor,
    상기 기능성 촉매 반응기는 상기 제1 반응기에 의해 개질된 상기 개질 가스를 통과시키고, 내부에 수용공간이 형성되는 통기부; 및The functional catalytic reactor includes a ventilation portion through which the reformed gas reformed by the first reactor passes and a receiving space is formed therein; and
    상기 통기부의 상기 수용공간에 수용되어 상기 통기부를 통과하는 상기 개질 가스와 반응하는 기능성 촉매; a functional catalyst accommodated in the accommodation space of the ventilation unit and reacting with the reformed gas passing through the ventilation unit;
    상기 제1 반응기에 의해 개질된 상기 개질 가스를 상기 제2 반응기 측으로 안내하고, 상기 통기부의 상하 방향 위치가 조절가능하도록 상기 통기부를 지지하는 중공의 통기부 지지체를 포함하는,Guiding the reformed gas reformed by the first reactor to the second reactor and comprising a hollow ventilation portion supporter supporting the ventilation portion so that the vertical position of the ventilation portion can be adjusted,
    연료가스 개질장치.Fuel gas reforming device.
PCT/KR2022/016942 2022-10-06 2022-11-01 Functional catalytic reactor and fuel gas reforming device WO2024075890A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0127789 2022-10-06
KR1020220127789A KR102525702B1 (en) 2022-10-06 2022-10-06 Functional catalytic reactor

Publications (1)

Publication Number Publication Date
WO2024075890A1 true WO2024075890A1 (en) 2024-04-11

Family

ID=86101957

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/016942 WO2024075890A1 (en) 2022-10-06 2022-11-01 Functional catalytic reactor and fuel gas reforming device

Country Status (2)

Country Link
KR (1) KR102525702B1 (en)
WO (1) WO2024075890A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011076850A (en) * 2009-09-30 2011-04-14 Jx Nippon Oil & Energy Corp Fuel processing device for fuel cell
KR20190076367A (en) * 2017-12-22 2019-07-02 고등기술연구원연구조합 Catalyst for dry reforming and method for manufacturing the same
WO2020012687A1 (en) * 2018-07-09 2020-01-16 株式会社村田製作所 Hydrocarbon reforming catalyst and hydrocarbon reforming apparatus
CN112723308A (en) * 2021-01-18 2021-04-30 浙江华电器材检测研究所有限公司 Method for preparing hydrogen by catalyzing chain with carbon hydrocarbon fuel plasma
KR102390611B1 (en) * 2021-10-21 2022-04-25 고등기술연구원연구조합 Hybrid system for reforming fuel and method for reforming fuel using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011076850A (en) * 2009-09-30 2011-04-14 Jx Nippon Oil & Energy Corp Fuel processing device for fuel cell
KR20190076367A (en) * 2017-12-22 2019-07-02 고등기술연구원연구조합 Catalyst for dry reforming and method for manufacturing the same
WO2020012687A1 (en) * 2018-07-09 2020-01-16 株式会社村田製作所 Hydrocarbon reforming catalyst and hydrocarbon reforming apparatus
CN112723308A (en) * 2021-01-18 2021-04-30 浙江华电器材检测研究所有限公司 Method for preparing hydrogen by catalyzing chain with carbon hydrocarbon fuel plasma
KR102390611B1 (en) * 2021-10-21 2022-04-25 고등기술연구원연구조합 Hybrid system for reforming fuel and method for reforming fuel using the same

Also Published As

Publication number Publication date
KR102525702B1 (en) 2023-04-25

Similar Documents

Publication Publication Date Title
US4374184A (en) Fuel cell generator and method of operating same
US6485852B1 (en) Integrated fuel reformation and thermal management system for solid oxide fuel cell systems
US6932958B2 (en) Simplified three-stage fuel processor
CA2051525C (en) Internal natural gas reformer-dividers for a solid oxide fuel cell generator configuration
MX2008011770A (en) Internal combustion exchanger reactor for endothermic reaction in fixed bed.
US6793698B1 (en) Fuel processor reactor with integrated pre-reforming zone
US6436354B1 (en) Apparatus for generation of pure hydrogen for use with fuel cells
WO2024063347A1 (en) Air and fuel supply module, and fuel cell system comprising same
CA2323660A1 (en) Apparatus for generation of pure hydrogen for use with fuel cells
WO2021075802A1 (en) Highly efficient steam-reforming hydrogen production apparatus with hydrodesulfurization
CA2045872A1 (en) Electrochemical cell apparatus having combusted exhaust gas heat exchange and valving to control the reformable feed fuel composition
JP2002510272A (en) Method and apparatus for autothermal reforming of hydrocarbons
US7803202B2 (en) Reformer unit for generating hydrogen from a starting material comprising a hydrocarbon-water mixture
CA2109655A1 (en) Combined reformer and shift reactor
US20110146154A1 (en) Gas generator and processes for the conversion of a fuel into an oxygen-depleted gas and/or hydrogen-enriched gas
WO2019209045A1 (en) Fuel cell system
WO2022145618A1 (en) Fuel reforming system and fuel reforming method
WO2024075890A1 (en) Functional catalytic reactor and fuel gas reforming device
WO2024025289A1 (en) Steam generating device, and fuel cell system including same
KR102315289B1 (en) Steam Reformer with Multi Reforming Reactor
EP2038953B1 (en) Preheating arrangement in a fuel cell apparatus
KR20120115880A (en) Hydrogen production system for pemfc
JP5150068B2 (en) Reformer and indirect internal reforming type solid oxide fuel cell
CN109818008B (en) Modular device for fuel cell system
KR102390611B1 (en) Hybrid system for reforming fuel and method for reforming fuel using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22961534

Country of ref document: EP

Kind code of ref document: A1