WO2024075771A1 - Solid-state battery, and solid-state battery manufacturing method - Google Patents

Solid-state battery, and solid-state battery manufacturing method Download PDF

Info

Publication number
WO2024075771A1
WO2024075771A1 PCT/JP2023/036201 JP2023036201W WO2024075771A1 WO 2024075771 A1 WO2024075771 A1 WO 2024075771A1 JP 2023036201 W JP2023036201 W JP 2023036201W WO 2024075771 A1 WO2024075771 A1 WO 2024075771A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid
electrode layer
state battery
positive electrode
impedance
Prior art date
Application number
PCT/JP2023/036201
Other languages
French (fr)
Japanese (ja)
Inventor
友弘 藤沢
正典 中西
正一 小林
充次 加藤
Original Assignee
Fdk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fdk株式会社 filed Critical Fdk株式会社
Publication of WO2024075771A1 publication Critical patent/WO2024075771A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a solid-state battery and a method for manufacturing a solid-state battery.
  • a solid-state battery includes a positive electrode layer that contains a solid electrolyte and a positive electrode active material, a negative electrode layer that faces the positive electrode layer and contains a solid electrolyte and a negative electrode active material, and an electrolyte layer that contains a solid electrolyte and is provided between them.
  • a technology in which a laminate of a positive electrode, a negative electrode, and an electrolyte layer, in which a phosphate compound is contained in either the positive electrode active material, the negative electrode active material, or the solid electrolyte, is energized (charged) in the presence of an appropriate amount of moisture to reduce the interface impedance and improve the charge/discharge characteristics (Patent Document 2).
  • a known inspection technique is to apply an AC signal between the electrodes of a secondary battery before the first charge to measure the impedance, and determine whether or not there is a short circuit between the electrodes based on the difference between the impedance measurement results of a normal battery and a short-circuited battery displayed on a complex plane (Patent Document 3).
  • the characteristics may vary among multiple individual batteries due to the configuration and manufacturing process. For example, there may be variations in cycle characteristics, which are an indicator of whether a certain level of performance can be obtained with repeated charging and discharging. In this case, it is possible that some solid-state batteries do not exhibit good cycle characteristics.
  • the present invention aims to stably obtain a solid-state battery with excellent cycle characteristics.
  • a solid-state battery in one embodiment, includes a positive electrode layer, a negative electrode layer facing the positive electrode layer, and an electrolyte layer provided between the positive electrode layer and the negative electrode layer, and has an impedance of 100,000 ⁇ or more as measured by an AC impedance method before charging and discharging and estimated from an arc approximated in the frequency range of 0.3 Hz to 0.1 Hz on a complex plane.
  • a solid-state battery in one embodiment, includes a positive electrode layer, a negative electrode layer facing the positive electrode layer, and an electrolyte layer provided between the positive electrode layer and the negative electrode layer, and that has an impedance on a complex plane that is measured by an AC impedance method before charging and discharging, with a real part of 140 ⁇ or less and an imaginary part of -400 ⁇ or less at 1 Hz.
  • a solid-state battery in one embodiment, includes a positive electrode layer, a negative electrode layer facing the positive electrode layer, and an electrolyte layer provided between the positive electrode layer and the negative electrode layer, and that has an impedance on a complex plane that is measured by an AC impedance method before charging and discharging, with a real part of 68 ⁇ or less and an imaginary part of -56 ⁇ or less at 10 Hz.
  • FIG. 1A to 1C are diagrams illustrating an example of a method for manufacturing a solid-state battery.
  • FIG. 1 is a diagram showing an example of a Cole-Cole plot obtained by impedance measurement.
  • FIG. 13 is a diagram showing an example of measurement results of charge/discharge characteristics.
  • FIG. 13 is a diagram showing an example of the relationship between the capacity maintenance rate and the moisture content and impedance.
  • FIG. 1 is a plot of the real part Z′ and the imaginary part Z′′ of impedance at 1 Hz.
  • FIG. 1 is a plot of the real part Z′ and the imaginary part Z′′ of impedance at 10 Hz.
  • Solid-state battery that includes a battery element that includes a positive electrode layer that includes a positive electrode active material and a solid electrolyte, etc., a negative electrode layer that faces the positive electrode layer and includes a negative electrode active material and a solid electrolyte, etc., and a layer of solid electrolyte provided between the positive electrode layer and the negative electrode layer.
  • solid-state batteries do not use flammable organic electrolytes like lithium-ion secondary batteries, they have the advantages of being safer by reducing the risks of leakage, combustion, explosion, and generation of toxic gases, being easy to handle in the atmosphere, and being able to maintain performance even under low and high temperature conditions.
  • Li 2 CoP 2 O 7 is used as the positive electrode active material of the solid-state battery.
  • Li 1+x Al x Ge 2-x (PO 4 ) 3 (0 ⁇ x ⁇ 1) which is a type of NASICON (Na Super Ionic Conductor) type oxide solid electrolyte, can be used as the solid electrolyte of the solid-state battery.
  • Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 can be used as the solid electrolyte of the solid-state battery.
  • Li 2 CoP 2 O 7 is referred to as "LCPO” and Li 1+x Al x Ge 2-x (PO 4 ) 3 (0 ⁇ x ⁇ 1) is referred to as "LAGP”.
  • sintering is carried out to sinter the internal materials such as LAGP, but in the case of a battery element including a positive electrode layer using LCPO, the sintering temperature is limited to a relatively low temperature range, for example 600°C to 650°C, in order to bring it into a good crystalline state.
  • voids and cracks may occur inside the battery element.
  • One method for evaluating the battery characteristics of solid-state batteries is to use the AC impedance method to measure the impedance at a specified frequency for solid-state batteries before they are charged/discharged or shipped. Based on the measured value, the presence or absence of short circuits in solid-state batteries before they are charged/discharged or shipped can be determined, i.e., good and bad solid-state batteries can be distinguished or pre-shipment inspections can be performed.
  • solid-state batteries that are deemed good by this method may tend to experience deterioration in characteristics as the number of repeated charge/discharge cycles increases.
  • solid-state batteries that are deemed good in terms of initial characteristics may include some that are deemed defective in terms of long-term cycle characteristics. It is desirable to be able to stably obtain solid-state batteries that have excellent long-term cycle characteristics in addition to initial characteristics such as the presence or absence of short circuits before charging/discharging or before shipping.
  • Solid-state battery First, examples of materials used to form the positive electrode layer and the negative electrode layer of the solid-state battery, as well as the electrolyte layer provided therebetween, will be described.
  • LCPO powder powders of Li raw material, Co raw material, and P raw material are prepared in amounts based on the composition of LCPO.
  • Li2NO3 is used as the Li raw material powder.
  • Co( NO3 ) 2 or Co( NO3 ) 2.6H2O is used as the Co raw material powder.
  • NH4H2PO4 is used as the P raw material powder.
  • the prepared Li, Co and P raw materials are mixed with citric acid and pure water in a container such as a beaker, and the container is heated using a hot plate or the like to evaporate the water.
  • the mixture obtained by evaporation of the water is crushed using an agate mortar or the like, and the crushed mixture is fired at a temperature of 600°C to 700°C for 2 to 6 hours.
  • the fired body obtained by firing is crushed using an agate mortar or the like to obtain a powder with a specified average particle size (e.g., 7 ⁇ m), and the crushed product is further crushed using a ball mill or the like. This results in LCPO powder adjusted to a specified average particle size (e.g., 1 ⁇ m).
  • LCPO powder is prepared for use as a positive electrode active material in a positive electrode layer of a solid-state battery.
  • the Li raw material of LCPO may be another Li compound such as Li 2 CO 3
  • the Co raw material may be another Co compound such as CoCO 3.
  • other methods may be used to form LCPO, such as a wet process in which the Li raw material, the Co raw material, and the P raw material are mixed while adding pure water to them without using citric acid, or a dry process in which citric acid and pure water are not used.
  • LAGP powder LAGP can be formed using a solid-phase method. First, powders of Li 2 CO 3 , Al 2 O 3 , GeO 2 and NH 4 H 2 PO 4 , which are raw materials for LAGP, are weighed and prepared so as to have a predetermined composition ratio. These raw material powders are mixed using a magnetic mortar, a ball mill, etc., and the mixture obtained by mixing is pre-fired at a temperature of 300° C. to 400° C. for 3 to 5 hours. The powder obtained by pre-fire is melted by heat treatment at a temperature of 1200° C. to 1400° C. for 1 to 2 hours. The material obtained by melting is quenched and vitrified. As a result, amorphous LAGP powder is obtained. The amorphous LAGP powder thus obtained may also be fired under conditions of, for example, 600° C. to 900° C. As a result, crystalline LAGP powder is obtained. The obtained LAGP powder is pulverized and adjusted to a desired particle size.
  • this method prepares LAGP powder for use in the electrolyte layer, positive electrode layer, and negative electrode layer of a solid-state battery.
  • Either amorphous LAGP powder or crystalline LAGP powder may be used for the electrolyte layer, positive electrode layer, and negative electrode layer of a solid-state battery.
  • Both amorphous LAGP powder and crystalline LAGP powder may be used for the electrolyte layer, positive electrode layer, and negative electrode layer of a solid-state battery.
  • the LAGP powder obtained by the above method is mixed with a binder, a solvent, etc., and coated on a carrier such as a polyethylene terephthalate (PET) film by a doctor blade method, etc., to form a green sheet for an electrolyte layer.
  • a carrier such as a polyethylene terephthalate (PET) film by a doctor blade method, etc.
  • PET film the polyethylene terephthalate film
  • LAGP powder is used as a ceramic powder, and a certain amount of binder is added to the ceramic powder, and a certain amount of anhydrous alcohol is added as a solvent to obtain a mixture, which is then mixed in a ball mill or the like to form a paste-like electrolyte layer material.
  • the paste-like electrolyte layer material thus formed is degassed in a vacuum, and then coated once or multiple times on a PET film by a doctor blade method to form a sheet-like electrolyte layer material corresponding to the electrolyte layer.
  • one sheet-like electrolyte layer material thus formed can be used as an electrolyte layer green sheet.
  • multiple sheets of the electrolyte layer material thus formed can be stacked and pressed together to form an electrolyte layer green sheet.
  • the electrolyte layer green sheet containing one or multiple stacked sheet-like electrolyte layer materials may be cut to a predetermined planar size.
  • the electrolyte layer green sheet thus formed is used to form the electrolyte layer of a solid-state battery.
  • the LAGP powder obtained by the above method, a binder, a solvent, etc. are mixed to form an electrolyte layer paste, which is a paste-like electrolyte layer material.
  • the electrolyte layer paste formed in this way is used to form the electrolyte layer of a solid-state battery by screen printing.
  • the LAGP powder (either or both of amorphous and crystalline LAGP powder) obtained by the above method, a conductive assistant, a positive electrode active material, a binder, a solvent, a plasticizer, etc. are mixed and coated on a carrier such as a PET film by a doctor blade method to form a green sheet for a positive electrode layer.
  • LCPO is used as the positive electrode active material.
  • a carbon material such as carbon nanofiber, carbon black, graphite, graphene, or carbon nanotube, or a conductive material such as iron silicide is used as the conductive assistant.
  • a mixture of LAGP powder and a positive electrode active material in a mass ratio of 50:50 is used as a ceramic powder, and a certain amount of binder and anhydrous alcohol as a solvent are added to the ceramic powder to obtain a mixture, which is then mixed in a ball mill or the like to form a paste-like positive electrode layer material.
  • the formed paste-like positive electrode layer material is degassed in a vacuum, and then coated once on a PET film by a doctor blade method, or multiple times to adjust to the desired thickness and amount of positive electrode active material, to form a sheet-like positive electrode layer material corresponding to the positive electrode layer.
  • one sheet-like positive electrode layer material thus formed can be used as a positive electrode layer green sheet.
  • multiple sheets of the formed sheet-like positive electrode layer material can be stacked and pressed to form a positive electrode layer green sheet.
  • the positive electrode layer green sheet containing one or multiple stacked sheet-like positive electrode layer materials may be cut to a predetermined planar size.
  • the positive electrode layer green sheet formed in this manner is used to form the positive electrode layer of a solid-state battery.
  • the LAGP powder obtained by the above method a conductive additive, a positive electrode active material, a binder, a dispersant, a plasticizer, a non-aqueous solvent, etc. are mixed together to form a positive electrode layer paste, which is a paste-like positive electrode layer material.
  • the positive electrode layer paste formed in this manner is used to form the positive electrode layer of a solid-state battery by screen printing.
  • the LAGP powder (either or both of amorphous and crystalline LAGP powder) obtained by the above method, a conductive assistant, a negative electrode active material, a binder, a solvent, a plasticizer, etc. are mixed and coated on a carrier such as a PET film by a doctor blade method to form a green sheet for a negative electrode layer.
  • TiO 2 , Nb 2 O 5 , Li 3 V 2 (PO 4 ) 3 , Li 4 Ti 5 O 12 , etc. are used as the negative electrode active material.
  • carbon materials such as carbon nanofibers, carbon black, graphite, graphene, or carbon nanotubes, and conductive materials such as iron silicide are used as the conductive assistant.
  • a mixture of LAGP powder and anode active material in a mass ratio of 50:50 is used as a ceramic powder, and a certain amount of binder and anhydrous alcohol as a solvent are added to the ceramic powder to obtain a mixture, which is then mixed in a ball mill or the like to form a paste-like anode layer material.
  • the paste-like anode layer material thus formed is degassed in a vacuum, and then coated once on a PET film by a doctor blade method, or multiple times to adjust to the desired thickness and amount of anode active material, to form a sheet-like anode layer material corresponding to the anode layer.
  • one sheet-like anode layer material thus formed can be used as a green sheet for the anode layer.
  • multiple sheets of the sheet-like anode layer material thus formed can be stacked and pressed together to form a green sheet for the anode layer.
  • the green sheet for the anode layer containing one or multiple stacked sheets of anode layer material may be cut to a predetermined planar size.
  • the negative electrode layer green sheet formed in this manner is used to form the negative electrode layer of a solid-state battery.
  • the LAGP powder obtained by the above method a conductive assistant, an anode active material, a binder, a dispersant, a plasticizer, a non-aqueous solvent, etc. are mixed together to form a paste for the anode layer, which is a paste-like anode layer material.
  • the paste for the anode layer formed in this way is used to form the anode layer of a solid-state battery by screen printing.
  • FIGS. 1A and 1B are diagrams for explaining an example of a method for manufacturing a solid-state battery.
  • Fig. 1A is a schematic cross-sectional view of a main part of an example of a laminate formation step.
  • Fig. 1B is a schematic cross-sectional view of a main part of an example of a terminal formation step.
  • a laminate 1a as shown in FIG. 1(A) is formed.
  • the laminate 1a is an example of a battery element of a solid-state battery.
  • the laminate 1a shown in FIG. 1(A) includes a positive electrode layer 10, an opposing negative electrode layer 20, and an electrolyte layer 30 provided therebetween.
  • the positive electrode layer 10 and the negative electrode layer 20 are covered by an electrolyte layer 30 made of the same or different electrolyte material as the electrolyte layer 30 provided between the positive electrode layer 10 and the negative electrode layer 20, for example, so that a portion of each of them is exposed at both ends of the laminate 1a, as shown in FIG. 1(A).
  • the positive electrode layer 10 of the laminate 1a is formed using a positive electrode layer green sheet or a positive electrode layer paste prepared using the above method.
  • the negative electrode layer 20 of the laminate 1a is formed using a negative electrode layer green sheet or a negative electrode layer paste prepared using the above method.
  • the electrolyte layer 30 of the laminate 1a is formed using an electrolyte layer green sheet or an electrolyte layer paste prepared using the above method.
  • the obtained laminate 1a is degreased. For example, it is heated in an air atmosphere at a temperature of about 300°C to 600°C to remove the binder remaining in the laminate 1a by thermal decomposition, i.e., degreasing is performed.
  • the heating temperature in the degreasing process can be set based on the thermal decomposition temperature of the binder contained in the positive electrode layer green sheet or positive electrode layer paste, the electrolyte layer green sheet or electrolyte layer paste, and the negative electrode layer green sheet or negative electrode layer paste used to form the laminate 1a.
  • the degreased laminate 1a is sintered in a non-oxidizing atmosphere such as nitrogen, for example, at a temperature higher than that for degreasing. This sintering sinters the LAGP and other substances contained in the degreased laminate 1a.
  • the sintering temperature for the laminate 1a is set to a predetermined temperature range, for example, 600°C to 650°C, in order to ensure that the positive electrode layer 10 obtained by sintering is in a good crystalline state.
  • terminals having a laminated structure of an electrode 60, a Ni layer 70, and a Sn layer 80 are formed on both ends of the laminate 1a.
  • a conductive paste containing glass frit is applied to both ends of the laminate 1a, and baked by heating to form the electrodes 60.
  • the electrodes 60 are formed so as to be connected to the positive electrode layer 10 exposed on one end side of the laminate 1a and the negative electrode layer 20 exposed on the other end side.
  • a Ni layer 70 is formed by plating, and further, a Sn layer 80 is formed on the surface of the Ni layer by plating.
  • a solid-state battery 1 as shown in FIG. 1B is obtained, which is provided with terminals for mounting on other components such as a circuit board.
  • the configuration of the solid-state battery is not limited to that of the solid-state battery 1 described above.
  • a configuration may be adopted in which a current collector is provided on each of the surfaces of the positive electrode layer 10 and the negative electrode layer 20 (the upper surface of the positive electrode layer 10 and the lower surface of the negative electrode layer 20 in FIG. 1(B)) that are disposed with the electrolyte layer 30 interposed therebetween, and the current collectors are exposed at both ends of the laminate (battery element) and connected to the electrodes 60 or the like.
  • FIG. 1(B) above illustrates a solid-state battery 1 having one positive electrode layer 10 and one negative electrode layer 20 with an electrolyte layer 30 between them
  • a stacked solid-state battery can also be obtained by stacking multiple positive electrode layers 10 and multiple negative electrode layers 20 alternately with an electrolyte layer 30 between them.
  • a coating layer using a material such as glass or ceramics that is harder than the electrolyte layer 30 may be formed.
  • a paste is prepared by mixing a material such as glass with a binder, etc., and a laminated structure is formed so that the portion that will become the outer surface of the laminate is made of this paste, and the structure is degreased and fired (cut before that if necessary).
  • the moisture content was measured by the Karl Fischer method.
  • a coulometric titration moisture measuring device was used for the moisture content measurement by the Karl Fischer method.
  • the measurement conditions were as follows: the sample was heated at 120° C., and the amount of moisture released [%] was measured using nitrogen as a carrier gas. The measurement time was 5 minutes.
  • the impedance measurement was performed by an AC impedance method.
  • a frequency response analyzer and a potentiostat were used for the impedance measurement by the AC impedance method.
  • the measurement conditions were a temperature of 25°C, an AC voltage of 5 mV, and a frequency range of 1 MHz to 0.1 Hz (also referred to as "1 MHz-0.1 Hz").
  • the frequency was set to 1 kHz and the impedance [ ⁇ ] was measured as a normal initial evaluation.
  • the frequency was set to a frequency range of 1 MHz to 0.1 Hz and the impedance [ ⁇ ] was estimated from an arc approximated in the frequency range of 0.3 Hz to 0.1 Hz (also referred to as "0.3 Hz-0.1 Hz") on the complex plane in the Cole-Cole plot (also referred to as "Nyquist plot”) obtained by the measurement.
  • the Cole-Cole plot of the solid-state battery 1 obtained by measurement using the AC impedance method can be approximated by a semicircle or an arc.
  • the diameter of the semicircle or arc varies depending on the impedance of the solid-state battery 1 and the presence or absence of a short circuit. For example, a solid-state battery 1 with low impedance or a short-circuited solid-state battery 1 will have a small diameter semicircle or arc.
  • the diameter of the semicircle or arc is a value that reflects the internal components and impedance of the solid-state battery 1.
  • 0.3 Hz is set to a frequency that is 0.3 Hz when rounded off to the first decimal place, i.e., any frequency in the range of 0.25 Hz to 0.34 Hz.
  • 0.1 Hz is set to a frequency that is 0.1 Hz when rounded off to the first decimal place, i.e., any frequency in the range of 0.05 Hz to 0.14 Hz.
  • the frequency that is 0.3 Hz when rounded off to the first decimal place is also referred to as "0.3 Hz”
  • the frequency that is 0.1 Hz when rounded off to the first decimal place is also referred to as "0.1 Hz”.
  • the solid-state battery 1 was repeatedly charged and discharged for multiple cycles.
  • the solid-state battery 1 was charged and discharged at a constant current with a current value of 25 ⁇ A/cm 2 , a charging upper limit voltage of 3.6 V, and a discharging lower limit voltage of 0 V, and was charged and discharged for 40 cycles at 20° C. From the results of the multiple repeated charge and discharge cycles, the ratio of the discharge capacity [ ⁇ Ah] after charging in the 40th cycle to the discharge capacity [ ⁇ Ah] after charging in the 1st cycle was calculated as the capacity retention rate [%].
  • FIG. 2 shows an example of a Cole-Cole plot obtained by impedance measurement.
  • the horizontal axis represents the real part Z' [ ⁇ cm 2 ] of the complex impedance
  • the vertical axis represents the imaginary part Z" [ ⁇ cm 2 ] of the complex impedance.
  • FIG. 2 shows an example of a Cole-Cole plot obtained by measurement in the frequency range from 1 MHz to 0.1 Hz.
  • FIG. 2 shows an example of a Cole-Cole plot of a sample of solid-state battery 1 (sample No. 1-8) and a sample of a short-circuit battery.
  • the solid-state battery 1 samples No. 1-8 are samples of solid-state battery 1 that are not short-circuited at least before charging/discharging or before shipping.
  • FIG. 2 when the Cole-Cole plot obtained by measurement is approximated by an arc, the Cole-Cole plot of the solid-state battery 1 samples No. 1-8 that are not short-circuited is approximated by an arc with a larger diameter than the Cole-Cole plot of the short-circuit battery sample No. 9.
  • the impedance estimated from the approximated arc is larger for the solid-state battery 1 samples that are not short-circuited (larger arc diameter) than for the short-circuit battery sample (smaller arc diameter).
  • the impedance [ ⁇ ] estimated from the arc approximated in the frequency range of 0.31 Hz to 0.12 Hz on the complex plane in the Cole-Cole plot obtained for solid-state battery 1 (sample No. 1-8) and short-circuit battery (sample No. 9) (approximate frequency range 0.31 Hz-0.12 Hz (frequency range specified)) and the impedance [ ⁇ ] estimated from the arc approximated in the frequency range of 1 MHz to 0.1 Hz on the complex plane (approximate frequency range 1 MHz-0.1 Hz (frequency range not specified)) are shown in Table 2.
  • Figure 3 (A) shows the measurement results of the charge and discharge characteristics of the solid battery 1 of sample No. 1 (water content 0.0000%, capacity retention rate 92.4%) as an example.
  • Figure 3 (B) shows the measurement results of the charge and discharge characteristics of the solid battery 1 of sample No. 2 (water content 0.0160%, capacity retention rate 86.9%) as an example.
  • the discharge capacity tends to decrease with an increase in the number of repeated charge and discharge cycles.
  • an example of the relationship between the capacity retention rate and the water content and impedance is shown in Figure 4.
  • the horizontal axis represents the capacity retention rate [%] of the discharge capacity at a cell voltage of 1V
  • the vertical axis represents the water content [%] (left) and impedance [ ⁇ ] (right).
  • some of the solid-state batteries 1 of Sample No. 1-8 have cycle characteristics that are not necessarily sufficient, such as a capacity retention ratio of the discharge capacity at the 40th cycle to the discharge capacity at the 1st cycle being less than 90%. Therefore, while it is possible to distinguish products with good initial characteristics using only the impedance estimated from an arc approximated in the frequency range from 1 MHz to 0.1 Hz without specifying the frequency range using a Cole-Cole plot, it may not be possible to accurately distinguish products with good initial characteristics as well as good cycle characteristics, which are long-term characteristics.
  • the impedance of the solid-state battery 1 of sample No. 1-8 before charging/discharging or before shipping which is estimated from an arc approximated by a frequency range of 0.31 Hz to 0.12 Hz using a Cole-Cole plot obtained by measurement in the frequency range of 1 MHz to 0.1 Hz as shown in Figure 2, with the frequency range specified, shows values as shown in Table 1 ("0.31 Hz-0.12 Hz impedance") and Table 2 ("approximate frequency range 0.31 Hz-0.12 Hz (frequency range specified)").
  • Table 1 0.31 Hz-0.12 Hz impedance
  • Table 2 approximately speaking, there is a tendency that the capacity retention rate of the discharge capacity at the 40th cycle relative to the discharge capacity at the 1st cycle increases with an increase in impedance.
  • the impedance of sample No. 1-8 which is estimated by specifying the approximate frequency range to be 0.31 Hz to 0.12 Hz, is less than 100,000 ⁇ (100 k ⁇ ).
  • the impedance of sample No. 1-8 which is estimated by specifying the approximate frequency range to be 0.31 Hz to 0.12 Hz, is less than 100,000 ⁇ (100 k ⁇ ).
  • solid-state batteries 1, 2-6 and 8 it is difficult to say that there is a clear correlation between the impedance and the capacity retention rate.
  • the moisture content of the solid-state battery 1 As shown in FIG. 4, it is difficult to say that there is a clear correlation between the moisture content of the solid-state battery 1 and the capacity retention rate, but since the moisture content of the solid-state battery 1 may affect the initial characteristics and long-term characteristics, it is preferable that the moisture content is low.
  • the moisture content of the solid-state battery 1 is preferably less than 0.0100%, and more preferably less than 0.0010%. Furthermore, in order to achieve cycle characteristics, which are excellent long-term characteristics, it is desirable that the moisture content of the solid-state battery 1 is less than 0.0000%, as in the solid-state batteries 1 of Samples No. 1 and 7 above.
  • samples No. 2 and 8 which have a moisture content of more than 0.0100%, may not be able to achieve a high capacity retention rate of 90% or more.
  • Samples No. 3-6 which have a moisture content of 0.0100% or less but have an impedance estimated by specifying the approximate frequency range to be between 0.31 Hz and 0.12 Hz and giving an estimated impedance of less than 100,000 ⁇ , may also not be able to achieve a high capacity retention rate of 90% or more.
  • Samples No. 1 and 7 (moisture content 0.0000%), which have a moisture content of less than 0.0100% and have an estimated impedance of 100,000 ⁇ or more when the approximate frequency range is specified to be between 0.31 Hz and 0.12 Hz, can stably achieve a high capacity retention rate of 90% or more.
  • Samples No. 2 and 3 which have a moisture content of 0.0100% and have an estimated impedance of less than 100,000 ⁇ when the approximate frequency range is specified to be between 0.31 Hz and 0.12 Hz, can stably achieve a high capacity retention rate of 90% or more. It is believed that samples such as No. 6 are at or near the border with samples such as No. 1 and No. 7, which stably provide a high capacity retention rate of 90% or more.
  • the solid-state battery 1 before charging/discharging or before shipping is measured in the frequency range of 1 MHz to 0.1 Hz by the AC impedance method, and the impedance is estimated from an arc approximated in the frequency range of 0.3 Hz to 0.1 Hz on the complex plane of the Cole-Cole plot obtained by the measurement. Then, a solid-state battery 1 with an estimated impedance of 100,000 ⁇ (100 k ⁇ ) or more is discriminated as a good product.
  • a solid-state battery 1 with an impedance of 100,000 ⁇ or more has good initial characteristics without short circuits, and the capacity retention rate of the discharge capacity after charging at the 40th cycle relative to the discharge capacity after charging at the 1st cycle in repeated charging/discharging is stably high at 90% or more, and can be said to be a solid-state battery 1 with excellent cycle characteristics, which are long-term characteristics.
  • Such a solid-state battery 1 is discriminated as a good product. According to the above method, it is possible to accurately and stably discriminate a good solid-state battery 1 that has excellent cycle characteristics, which are long-term characteristics, in addition to the initial characteristics, before charging/discharging or before shipping.
  • the moisture content of the solid-state battery 1 before charging/discharging or before shipping less than 0.0100%, preferably less than 0.0010%, and more preferably less than 0.0000%, it becomes possible to more accurately and stably distinguish good solid-state batteries 1 that have excellent initial characteristics as well as cycle characteristics, which are long-term characteristics.
  • the above explanation shows an example (referred to as the first embodiment) in which a solid-state battery 1 before charging/discharging or before shipping is measured in the frequency range of 1 MHz to 0.1 Hz by the AC impedance method, the impedance is estimated from an approximated arc in the frequency range of 0.3 Hz to 0.1 Hz on the complex plane of the Cole-Cole plot obtained by the measurement, and a good product is discriminated based on the estimated impedance.
  • the impedance estimated from an approximated arc in the frequency range of 0.3 Hz to 0.1 Hz on the complex plane of the Cole-Cole plot is 100,000 ⁇ or more, among the above-mentioned samples No. 1-9, solid-state batteries 1 such as samples No. 1 and 7 are discriminated as good products.
  • the impedance at a specific frequency may be extracted from the Cole-Cole plot as shown in FIG. 2, and a good solid-state battery 1 may be discriminated based on the extracted impedance.
  • a solid-state battery 1 having a moisture content of less than 0.0100% and a capacity retention ratio of the discharge capacity after charging at the 40th cycle to the discharge capacity after charging at the 1st cycle in repeated charging and discharging is 90% or more is discriminated as a good-quality battery. That is, among the above samples No. 1-9, solid-state batteries 1 such as samples No. 1 and 5-7 are discriminated as good-quality batteries.
  • An example (referred to as a second embodiment) of discriminating solid-state batteries 1 such as samples No. 1 and 5-7 as good-quality batteries based on the impedance at a specific frequency extracted from the Cole-Cole plot is described below.
  • Table 3 shows the results of extracting impedance at frequencies of 1 Hz and 10 Hz from the Cole-Cole plot in Figure 2 above.
  • Table 3 shows the real part Z' and imaginary part Z" of the impedance at 1 Hz, and the real part Z' and imaginary part Z" of the impedance at 10 Hz.
  • samples 1-9 samples 1 and 5-7 that have a moisture content of less than 0.0100% and have a capacity retention ratio of the discharge capacity after the 40th charge cycle to the discharge capacity after the 1st charge cycle in repeated charge and discharge are deemed to be good products, while the other samples 2-4, 8, and 9 are deemed to be defective products.
  • samples 5 and 6 are also deemed to be good products.
  • Figure 5 is a plot of the relationship between the real part Z' and the imaginary part Z" of the impedance at 1 Hz.
  • Figure 6 is a plot of the relationship between the real part Z' and the imaginary part Z" of the impedance at 10 Hz.
  • the horizontal axis represents the real part Z' [ ⁇ ] of the impedance
  • the vertical axis represents the imaginary part Z" [ ⁇ ] of the impedance.
  • the real part Z' and imaginary part Z" of the impedance at 1 Hz for sample No. 1-9 as shown in Table 3 have a relationship as shown in the plot in Figure 5.
  • the real part Z' and imaginary part Z" of the impedance at 10 Hz for sample No. 1-9 as shown in Table 3 have a relationship as shown in the plot in Figure 6.
  • sample No. 1 and 5-7 that are considered to be good products in this second embodiment have a real part Z' of the impedance at 1 Hz of 140 ⁇ or less and an imaginary part Z" of -400 ⁇ or less.
  • sample No. 1 and 5-7 that are considered to be good products in this second embodiment have a real part Z' of the impedance at 10 Hz of 68 ⁇ or less and an imaginary part Z" of -56 ⁇ or less.
  • a solid-state battery 1 before charging/discharging or before shipping is measured in the frequency range of 1 MHz to 0.1 Hz by the AC impedance method, and the solid-state battery 1 with the real part Z' at 1 Hz being 140 ⁇ or less and the imaginary part Z" being -400 ⁇ or less in the impedance on the complex plane of the Cole-Cole plot obtained by the measurement can be discriminated as a good product.
  • a solid-state battery 1 before charging/discharging or before shipping is measured in the frequency range of 1 MHz to 0.1 Hz by the AC impedance method, and the solid-state battery 1 with the real part Z' at 10 Hz being 68 ⁇ or less and the imaginary part Z" being -56 ⁇ or less in the impedance on the complex plane of the Cole-Cole plot obtained by the measurement can be discriminated as a good product.
  • such ranges of the real part Z' and imaginary part Z" of the impedance at 1 Hz and the real part Z' and imaginary part Z" of the impedance at 10 Hz can be set as discrimination criteria for discriminating between good solid-state batteries 1.
  • a solid-state battery 1 having a specified characteristic for example a solid-state battery 1 having a low water content and a high capacity retention rate such as samples No. 1 and 5-7, can be discriminated as a good product based on the range of the real part Z' and imaginary part Z" of the impedance at a specified frequency. Even with the discrimination criteria as in this second embodiment, it is possible to accurately and stably discriminate a good solid-state battery 1 having excellent cycle characteristics, which are long-term characteristics, in addition to the initial characteristics, before charging/discharging or before shipping.
  • Solid-state battery 1a Solid-state battery 1a Laminate 10 Positive electrode layer 20 Negative electrode layer 30 Electrolyte layer 60 Electrode 70 Ni layer 80 Sn layer

Abstract

The present invention makes it possible to stably obtain a solid-state battery having excellent cycle characteristics. A solid-state battery (1) includes: a positive electrode layer (10); a negative electrode layer (20) opposite to the positive electrode layer; and an electrolytic layer (30) provided therebetween. For example, the solid-state battery (1) has an impedance of 100000 Ω or more, which is measured by an AC impedance method before performing charging/discharging and which is estimated from a circular arc approximated in a frequency range from 0.3 Hz to 0.1 Hz on a complex number plane. The solid-state battery (1) exhibiting said impedance has excellent long-term cycle characteristics while having favorable initial characteristics without occurrence of short-circuiting. The solid-state battery (1) which has a good quality and has, in addition to initial characteristics, excellent cycle characteristics can be stably obtained before performing charging/discharging or before shipment.

Description

固体電池及び固体電池の製造方法Solid-state battery and method for manufacturing the same
 本発明は、固体電池及び固体電池の製造方法に関する。 The present invention relates to a solid-state battery and a method for manufacturing a solid-state battery.
 固体電解質及び正極活物質を含有する正極層と、正極層と対向し固体電解質及び負極活物質を含有する負極層と、それらの間に設けられ固体電解質を含有する電解質層とを含む固体電池が知られている。 A solid-state battery is known that includes a positive electrode layer that contains a solid electrolyte and a positive electrode active material, a negative electrode layer that faces the positive electrode layer and contains a solid electrolyte and a negative electrode active material, and an electrolyte layer that contains a solid electrolyte and is provided between them.
 このような固体電池に関し、例えば、イオン移動に伴う抵抗率と電子移動に伴う抵抗率との差を0kΩ・cm以上100kΩ・cm以下とし、電極層内における局所反応を抑えて充放電効率を高める技術が知られている(特許文献1)。 With regard to such solid-state batteries, for example, a technology is known that sets the difference between the resistivity associated with ion movement and the resistivity associated with electron movement to 0 kΩ·cm or more and 100 kΩ·cm or less, suppressing local reactions within the electrode layer and improving charge/discharge efficiency (Patent Document 1).
 また、正極活物質、負極活物質及び固体電解質のいずれかにリン酸化合物を含有した、正極、負極、電解質層の積層体を、適度な水分の存在下で通電(充電)してその界面インピーダンスを低減し、充放電特性を高める技術が知られている(特許文献2)。 Also, a technology is known in which a laminate of a positive electrode, a negative electrode, and an electrolyte layer, in which a phosphate compound is contained in either the positive electrode active material, the negative electrode active material, or the solid electrolyte, is energized (charged) in the presence of an appropriate amount of moisture to reduce the interface impedance and improve the charge/discharge characteristics (Patent Document 2).
 また、検査技術として、初回充電前の二次電池の電極間に交流信号を印加してインピーダンスを測定し、複素数平面に表した正常電池及び短絡電池のインピーダンス測定結果の相違に基づき電極間での短絡の有無を判定する技術が知られている(特許文献3)。 Also, a known inspection technique is to apply an AC signal between the electrodes of a secondary battery before the first charge to measure the impedance, and determine whether or not there is a short circuit between the electrodes based on the difference between the impedance measurement results of a normal battery and a short-circuited battery displayed on a complex plane (Patent Document 3).
国際公開第2014/002858号パンフレットInternational Publication No. 2014/002858 特開2008-243560号公報JP 2008-243560 A 特開2009-289757号公報JP 2009-289757 A
 ところで、固体電解質及び正極活物質を含有する正極層と、正極層と対向し固体電解質及び負極活物質を含有する負極層と、それらの間に設けられ固体電解質を含有する電解質層とを含む固体電池では、その構成上及び製造プロセス上、複数の個体間で特性にばらつきが生じ得る。例えば、繰り返しの充放電に対して一定の性能が得られるか否かを示す指標となるサイクル特性にばらつきが生じる場合がある。この場合、複数の固体電池の中に良好なサイクル特性を示さないものが含まれてくることが起こり得る。これまでの技術では、例えば、充放電前或いは出荷前に予め、初期特性について良品と不良品の弁別はできても、長期特性であるサイクル特性について良品と不良品を十分に弁別することが難しく、サイクル特性に優れた固体電池を安定的に得ることができない場合があった。 In a solid-state battery including a positive electrode layer containing a solid electrolyte and a positive electrode active material, a negative electrode layer facing the positive electrode layer containing a solid electrolyte and a negative electrode active material, and an electrolyte layer containing a solid electrolyte provided between them, the characteristics may vary among multiple individual batteries due to the configuration and manufacturing process. For example, there may be variations in cycle characteristics, which are an indicator of whether a certain level of performance can be obtained with repeated charging and discharging. In this case, it is possible that some solid-state batteries do not exhibit good cycle characteristics. With conventional technology, for example, while it is possible to distinguish between good and bad products in terms of initial characteristics before charging and discharging or before shipping, it is difficult to sufficiently distinguish between good and bad products in terms of cycle characteristics, which are long-term characteristics, and there are cases where solid-state batteries with excellent cycle characteristics cannot be obtained stably.
 1つの側面では、本発明は、サイクル特性に優れた固体電池を安定的に得ることを目的とする。 In one aspect, the present invention aims to stably obtain a solid-state battery with excellent cycle characteristics.
 1つの態様では、正極層と、前記正極層と対向する負極層と、前記正極層と前記負極層との間に設けられた電解質層と、を含み、充放電前に交流インピーダンス法により測定され、複素数平面上における0.3Hzから0.1Hzの周波数範囲で近似された円弧から見積もられるインピーダンスが、100000Ω以上である、固体電池が提供される。 In one embodiment, a solid-state battery is provided that includes a positive electrode layer, a negative electrode layer facing the positive electrode layer, and an electrolyte layer provided between the positive electrode layer and the negative electrode layer, and has an impedance of 100,000 Ω or more as measured by an AC impedance method before charging and discharging and estimated from an arc approximated in the frequency range of 0.3 Hz to 0.1 Hz on a complex plane.
 1つの態様では、正極層と、前記正極層と対向する負極層と、前記正極層と前記負極層との間に設けられた電解質層と、を含み、充放電前に交流インピーダンス法により測定される、複素数平面上におけるインピーダンスにおいて、1Hzの実部が140Ω以下、虚部が-400Ω以下である、固体電池が提供される。 In one embodiment, a solid-state battery is provided that includes a positive electrode layer, a negative electrode layer facing the positive electrode layer, and an electrolyte layer provided between the positive electrode layer and the negative electrode layer, and that has an impedance on a complex plane that is measured by an AC impedance method before charging and discharging, with a real part of 140 Ω or less and an imaginary part of -400 Ω or less at 1 Hz.
 1つの態様では、正極層と、前記正極層と対向する負極層と、前記正極層と前記負極層との間に設けられた電解質層と、を含み、充放電前に交流インピーダンス法により測定される、複素数平面上におけるインピーダンスにおいて、10Hzの実部が68Ω以下、虚部が-56Ω以下である、固体電池が提供される。 In one embodiment, a solid-state battery is provided that includes a positive electrode layer, a negative electrode layer facing the positive electrode layer, and an electrolyte layer provided between the positive electrode layer and the negative electrode layer, and that has an impedance on a complex plane that is measured by an AC impedance method before charging and discharging, with a real part of 68 Ω or less and an imaginary part of -56 Ω or less at 10 Hz.
 また、別の態様では、上記のような各固体電池の製造方法が提供される。 In another aspect, a method for manufacturing each of the above solid-state batteries is provided.
 1つの側面では、サイクル特性に優れた固体電池を安定的に得ることが可能になる。
 本発明の目的、特徴及び利点は、本発明の例として好ましい実施の形態を表す添付の図面と関連した以下の説明により明らかになるであろう。
In one aspect, it becomes possible to stably obtain a solid-state battery having excellent cycle characteristics.
The objects, features and advantages of the present invention will become apparent from the following description taken in conjunction with the accompanying drawings which illustrate preferred embodiments of the present invention by way of example.
固体電池の製造方法の例について説明する図である。1A to 1C are diagrams illustrating an example of a method for manufacturing a solid-state battery. インピーダンス測定により得られたcole-coleプロットの例を示す図である。FIG. 1 is a diagram showing an example of a Cole-Cole plot obtained by impedance measurement. 充放電特性の測定結果の例を示す図である。FIG. 13 is a diagram showing an example of measurement results of charge/discharge characteristics. 容量維持率と水分量及びインピーダンスとの関係の例を示す図である。FIG. 13 is a diagram showing an example of the relationship between the capacity maintenance rate and the moisture content and impedance. 1Hzにおけるインピーダンスの実部Z’と虚部Z”との関係をプロットした図である。FIG. 1 is a plot of the real part Z′ and the imaginary part Z″ of impedance at 1 Hz. 10Hzにおけるインピーダンスの実部Z’と虚部Z”との関係をプロットした図である。FIG. 1 is a plot of the real part Z′ and the imaginary part Z″ of impedance at 10 Hz.
 電池の1つとして、正極活物質及び固体電解質等を含む正極層と、正極層と対向し負極活物質及び固体電解質等を含む負極層と、それら正極層と負極層との間に設けられる固体電解質の層とを備える電池要素を含む固体電池が知られている。固体電池は、リチウムイオン二次電池のような可燃性の有機電解液を用いないため、漏液、燃焼、爆発、有毒ガスの発生といった危険性を低減して安全性を高めることができ、大気中での取り扱いが容易であり、また、低温及び高温の条件でも性能を維持することができる等の利点がある。 One type of battery known is a solid-state battery that includes a battery element that includes a positive electrode layer that includes a positive electrode active material and a solid electrolyte, etc., a negative electrode layer that faces the positive electrode layer and includes a negative electrode active material and a solid electrolyte, etc., and a layer of solid electrolyte provided between the positive electrode layer and the negative electrode layer. Because solid-state batteries do not use flammable organic electrolytes like lithium-ion secondary batteries, they have the advantages of being safer by reducing the risks of leakage, combustion, explosion, and generation of toxic gases, being easy to handle in the atmosphere, and being able to maintain performance even under low and high temperature conditions.
 固体電池の正極活物質には、例えば、LiCoPが用いられる。また、固体電池の固体電解質には、例えば、NASICON(Na Super Ionic Conductor)型の酸化物固体電解質の1種であるLi1+xAlGe2-x(PO(0<x<1)を用いることができる。例えば、固体電池の固体電解質として、Li1.5Al0.5Ge1.5(POを用いることができる。尚、以下ではLiCoPを「LCPO」と言い、Li1+xAlGe2-x(PO(0<x<1)を「LAGP」と言う。 For example, Li 2 CoP 2 O 7 is used as the positive electrode active material of the solid-state battery. For example, Li 1+x Al x Ge 2-x (PO 4 ) 3 (0<x<1), which is a type of NASICON (Na Super Ionic Conductor) type oxide solid electrolyte, can be used as the solid electrolyte of the solid-state battery. For example, Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 can be used as the solid electrolyte of the solid-state battery. In the following, Li 2 CoP 2 O 7 is referred to as "LCPO" and Li 1+x Al x Ge 2-x (PO 4 ) 3 (0<x<1) is referred to as "LAGP".
 ここで、固体電池は、その電池要素の製造において、内部のLAGP等の材料を焼結させるための焼成が実施されるが、LCPOを用いた正極層を含む電池要素では、それを良好な結晶状態とするため、焼成温度が例えば600℃から650℃といった比較的低い温度範囲に制限される。このように比較的低い温度で焼成が行われることに起因して、電池要素の内部には、空孔や亀裂等が生じる場合がある。空孔や亀裂等は、電池要素を備える固体電池の電池特性に影響するが、外観検査では確認が難しく、外観検査によって一定の電池特性を示す良品の固体電池を弁別することが難しい。 Here, in the manufacture of the battery elements of a solid-state battery, sintering is carried out to sinter the internal materials such as LAGP, but in the case of a battery element including a positive electrode layer using LCPO, the sintering temperature is limited to a relatively low temperature range, for example 600°C to 650°C, in order to bring it into a good crystalline state. As a result of sintering at such a relatively low temperature, voids and cracks may occur inside the battery element. Although voids and cracks affect the battery characteristics of a solid-state battery including a battery element, they are difficult to confirm by visual inspection, and it is difficult to distinguish good solid-state batteries that exhibit certain battery characteristics by visual inspection.
 固体電池の電池特性を評価する手法の1つとして、交流インピーダンス法を用い、充放電前或いは出荷前の固体電池について、所定の周波数でのインピーダンスを測定する手法が知られている。その測定値に基づき、充放電前或いは出荷前の固体電池についての短絡の有無等、即ち、良品と不良品の固体電池の弁別或いは出荷前検査が行われる。 One method for evaluating the battery characteristics of solid-state batteries is to use the AC impedance method to measure the impedance at a specified frequency for solid-state batteries before they are charged/discharged or shipped. Based on the measured value, the presence or absence of short circuits in solid-state batteries before they are charged/discharged or shipped can be determined, i.e., good and bad solid-state batteries can be distinguished or pre-shipment inspections can be performed.
 しかし、このような手法で良品とされる固体電池であっても、繰り返しの充放電のサイクルの増加に伴う特性劣化が進み易いものがある。即ち、初期特性では良品とされる固体電池の中に、長期特性であるサイクル特性で不良品となってしまうものが含まれる場合がある。固体電池について、その充放電前或いは出荷前に予め、短絡の有無のような初期特性に加え、長期特性であるサイクル特性にも優れた固体電池が安定的に得られるようにすることが望まれる。 However, even solid-state batteries that are deemed good by this method may tend to experience deterioration in characteristics as the number of repeated charge/discharge cycles increases. In other words, solid-state batteries that are deemed good in terms of initial characteristics may include some that are deemed defective in terms of long-term cycle characteristics. It is desirable to be able to stably obtain solid-state batteries that have excellent long-term cycle characteristics in addition to initial characteristics such as the presence or absence of short circuits before charging/discharging or before shipping.
 以上のような点に鑑み、以下、サイクル特性に優れた固体電池を安定的に得ることを可能にする手法について説明する。
 [固体電池]
 はじめに、固体電池の正極層及び負極層、並びにそれらの間に設けられる電解質層の形成に用いられる材料の例について説明する。
In view of the above, a method for stably obtaining a solid-state battery having excellent cycle characteristics will be described below.
[Solid-state battery]
First, examples of materials used to form the positive electrode layer and the negative electrode layer of the solid-state battery, as well as the electrolyte layer provided therebetween, will be described.
 (LCPO粉体)
 まず、LCPOの組成に基づく量のLi原料、Co原料及びP原料の粉体が準備される。Li原料の粉体には、例えば、LiNOが用いられる。Co原料の粉体には、例えば、Co(NO又はCo(NO・6HOが用いられる。P原料の粉体には、例えば、NHPOが用いられる。これらの原料粉体が、後述する焼成により得られるLCPOの組成となるように秤量され、準備される。
(LCPO powder)
First, powders of Li raw material, Co raw material, and P raw material are prepared in amounts based on the composition of LCPO. For example, Li2NO3 is used as the Li raw material powder. For example, Co( NO3 ) 2 or Co( NO3 ) 2.6H2O is used as the Co raw material powder. For example, NH4H2PO4 is used as the P raw material powder. These raw material powders are weighed and prepared so as to have the composition of LCPO obtained by firing described later.
 準備されたLi原料、Co原料及びP原料と、更にクエン酸及び純水とが、ビーカー等の容器内で混合され、その容器がホットプレート等を用いて加熱され、水分が蒸発される。水分の蒸発によって得られた混合物は、メノウ乳鉢等を用いて粉砕され、粉砕後の混合物は、600℃から700℃の温度で2時間から6時間、焼成される。焼成によって得られた焼成体は、所定の平均粒径(例えば7μm)の粉体となるようにメノウ乳鉢等を用いて粉砕され、粉砕されたものがボールミル等を用いて更に粉砕される。これにより、所定の平均粒径(例えば1μm)に調整されたLCPO粉体が得られる。 The prepared Li, Co and P raw materials are mixed with citric acid and pure water in a container such as a beaker, and the container is heated using a hot plate or the like to evaporate the water. The mixture obtained by evaporation of the water is crushed using an agate mortar or the like, and the crushed mixture is fired at a temperature of 600°C to 700°C for 2 to 6 hours. The fired body obtained by firing is crushed using an agate mortar or the like to obtain a powder with a specified average particle size (e.g., 7 μm), and the crushed product is further crushed using a ball mill or the like. This results in LCPO powder adjusted to a specified average particle size (e.g., 1 μm).
 例えばこのような方法により、固体電池の正極層の正極活物質として用いられるLCPO粉体が準備される。
 尚、LCPOのLi原料には、LiCO等の他のLi化合物が用いられてもよく、Co原料には、CoCO等の他のCo化合物を用いることもできる。また、LCPOの形成には、上記のようなLi原料、Co原料及びP原料をクエン酸と共に液中で混合する湿式プロセスのほか、クエン酸を用いずにLi原料、Co原料及びP原料をそれらに純水を添加しながら混合する湿式プロセス、或いはクエン酸及び純水を使用しない乾式プロセス等、他の方法が採用されてもよい。
For example, by such a method, LCPO powder is prepared for use as a positive electrode active material in a positive electrode layer of a solid-state battery.
The Li raw material of LCPO may be another Li compound such as Li 2 CO 3 , and the Co raw material may be another Co compound such as CoCO 3. In addition, in addition to the above-mentioned wet process in which the Li raw material, the Co raw material, and the P raw material are mixed in liquid together with citric acid, other methods may be used to form LCPO, such as a wet process in which the Li raw material, the Co raw material, and the P raw material are mixed while adding pure water to them without using citric acid, or a dry process in which citric acid and pure water are not used.
 (LAGP粉体)
 LAGPは、固相法を用いて形成することができる。まず、LAGPの原料となるLiCO、Al、GeO及びNHPOの粉末が所定の組成比となるように秤量され、準備される。これらの原料粉体が、磁性乳鉢やボールミル等を用いて混合され、混合によって得られた混合物は、温度300℃から400℃で3時間から5時間、仮焼成される。仮焼成によって得られた粉体は、温度1200℃から1400℃で1時間から2時間の熱処理によって溶解される。溶解によって得られた材料は、急冷され、ガラス化される。これにより、非晶質のLAGP粉体が得られる。また、このようにして得られた非晶質のLAGP粉体は、例えば、600℃から900℃の条件で焼成されてもよい。これにより、結晶質のLAGP粉体が得られる。得られたLAGP粉体は、粉砕されて目的の粒径に調整される。
(LAGP powder)
LAGP can be formed using a solid-phase method. First, powders of Li 2 CO 3 , Al 2 O 3 , GeO 2 and NH 4 H 2 PO 4 , which are raw materials for LAGP, are weighed and prepared so as to have a predetermined composition ratio. These raw material powders are mixed using a magnetic mortar, a ball mill, etc., and the mixture obtained by mixing is pre-fired at a temperature of 300° C. to 400° C. for 3 to 5 hours. The powder obtained by pre-fire is melted by heat treatment at a temperature of 1200° C. to 1400° C. for 1 to 2 hours. The material obtained by melting is quenched and vitrified. As a result, amorphous LAGP powder is obtained. The amorphous LAGP powder thus obtained may also be fired under conditions of, for example, 600° C. to 900° C. As a result, crystalline LAGP powder is obtained. The obtained LAGP powder is pulverized and adjusted to a desired particle size.
 例えば、このような方法により、固体電池の電解質層、並びに正極層及び負極層に用いられるLAGP粉体が準備される。固体電池の電解質層、正極層及び負極層には、非晶質のLAGP粉体が用いられてもよいし、結晶質のLAGP粉体が用いられてもよい。固体電池の電解質層、正極層及び負極層には、非晶質のLAGP粉体と結晶質のLAGP粉体の両方が用いられてもよい。 For example, this method prepares LAGP powder for use in the electrolyte layer, positive electrode layer, and negative electrode layer of a solid-state battery. Either amorphous LAGP powder or crystalline LAGP powder may be used for the electrolyte layer, positive electrode layer, and negative electrode layer of a solid-state battery. Both amorphous LAGP powder and crystalline LAGP powder may be used for the electrolyte layer, positive electrode layer, and negative electrode layer of a solid-state battery.
 (電解質層材料)
 一例として、上記方法によって得られたLAGP粉体(非晶質及び結晶質のLAGP粉体の一方又は両方)が、バインダー、溶剤等と混合され、ドクターブレード法等によってポリエチレンテレフタレート(polyethylene terephthalate;PET)フィルム等のキャリアに塗工され、電解質層用グリーンシートが形成される。尚、以下ではポリエチレンテレフタレートフィルムを「PETフィルム」と言う。
(Electrolyte Layer Material)
As an example, the LAGP powder obtained by the above method (either or both of amorphous and crystalline LAGP powder) is mixed with a binder, a solvent, etc., and coated on a carrier such as a polyethylene terephthalate (PET) film by a doctor blade method, etc., to form a green sheet for an electrolyte layer. In the following, the polyethylene terephthalate film is referred to as a "PET film."
 例えば、LAGP粉体をセラミック粉体とし、そのセラミック粉体に対し、バインダーを一定量添加すると共に、溶剤として無水アルコールを一定量添加することで得た混合物を、ボールミル等で混合し、ペースト状の電解質層材料を形成する。形成されたペースト状の電解質層材料を、真空中で脱泡した後、ドクターブレード法にてPETフィルム上に1回、又は、目的の厚さに調整するために複数回塗工し、電解質層に対応するシート状の電解質層材料を形成する。例えば、このようにして形成された1枚のシート状の電解質層材料を、電解質層用グリーンシートとすることができる。更に、目的の厚さに調整するため、形成された1枚のシート状の電解質層材料を複数枚積層して圧着し、電解質層用グリーンシートとすることもできる。1枚の又は複数枚積層されたシート状の電解質層材料を含む電解質層用グリーンシートは、所定の平面サイズとなるように裁断されてもよい。例えば、このようにして形成される電解質層用グリーンシートが、固体電池の電解質層の形成に用いられる。 For example, LAGP powder is used as a ceramic powder, and a certain amount of binder is added to the ceramic powder, and a certain amount of anhydrous alcohol is added as a solvent to obtain a mixture, which is then mixed in a ball mill or the like to form a paste-like electrolyte layer material. The paste-like electrolyte layer material thus formed is degassed in a vacuum, and then coated once or multiple times on a PET film by a doctor blade method to form a sheet-like electrolyte layer material corresponding to the electrolyte layer. For example, one sheet-like electrolyte layer material thus formed can be used as an electrolyte layer green sheet. Furthermore, in order to adjust to the desired thickness, multiple sheets of the electrolyte layer material thus formed can be stacked and pressed together to form an electrolyte layer green sheet. The electrolyte layer green sheet containing one or multiple stacked sheet-like electrolyte layer materials may be cut to a predetermined planar size. For example, the electrolyte layer green sheet thus formed is used to form the electrolyte layer of a solid-state battery.
 また、別の例として、上記方法によって得られたLAGP粉体、バインダー、溶剤等が混合され、ペースト状の電解質層材料である電解質層用ペーストが形成される。例えば、このようにして形成される電解質層用ペーストが、固体電池の電解質層の、スクリーン印刷による形成に用いられる。 In another example, the LAGP powder obtained by the above method, a binder, a solvent, etc. are mixed to form an electrolyte layer paste, which is a paste-like electrolyte layer material. For example, the electrolyte layer paste formed in this way is used to form the electrolyte layer of a solid-state battery by screen printing.
 (正極層材料)
 一例として、上記方法によって得られたLAGP粉体(非晶質及び結晶質のLAGP粉体の一方又は両方)、導電助剤、正極活物質、バインダー、溶剤、可塑剤等が混合され、ドクターブレード法にてPETフィルム等のキャリアに塗工され、正極層用グリーンシートが形成される。正極活物質には、LCPOが用いられる。導電助剤には、例えば、カーボンナノファイバー、カーボンブラック、グラファイト、グラフェン又はカーボンナノチューブ等のカーボン材料、鉄シリサイド等の導電性材料が用いられる。
(Positive electrode layer material)
As an example, the LAGP powder (either or both of amorphous and crystalline LAGP powder) obtained by the above method, a conductive assistant, a positive electrode active material, a binder, a solvent, a plasticizer, etc. are mixed and coated on a carrier such as a PET film by a doctor blade method to form a green sheet for a positive electrode layer. LCPO is used as the positive electrode active material. For example, a carbon material such as carbon nanofiber, carbon black, graphite, graphene, or carbon nanotube, or a conductive material such as iron silicide is used as the conductive assistant.
 例えば、LAGP粉体と正極活物質とを、質量比で50:50となるように混合したものをセラミック粉体とし、そのセラミック粉体に対し、バインダーを一定量添加すると共に、溶媒として無水アルコールを一定量添加することで得た混合物を、ボールミル等で混合し、ペースト状の正極層材料を形成する。形成されたペースト状の正極層材料を、真空中で脱泡した後、ドクターブレード法にてPETフィルム上に1回、又は、目的の厚さ及び正極活物質量に調整するために複数回塗工し、正極層に対応するシート状の正極層材料を形成する。例えば、このようにして形成された1枚のシート状の正極層材料を、正極層用グリーンシートとすることができる。更に、目的の厚さ及び正極活物質量に調整するため、形成された1枚のシート状の正極層材料を複数枚積層して圧着し、正極層用グリーンシートとすることもできる。1枚の又は複数枚積層されたシート状の正極層材料を含む正極層用グリーンシートは、所定の平面サイズとなるように裁断されてもよい。例えば、このようにして形成される正極層用グリーンシートが、固体電池の正極層の形成に用いられる。 For example, a mixture of LAGP powder and a positive electrode active material in a mass ratio of 50:50 is used as a ceramic powder, and a certain amount of binder and anhydrous alcohol as a solvent are added to the ceramic powder to obtain a mixture, which is then mixed in a ball mill or the like to form a paste-like positive electrode layer material. The formed paste-like positive electrode layer material is degassed in a vacuum, and then coated once on a PET film by a doctor blade method, or multiple times to adjust to the desired thickness and amount of positive electrode active material, to form a sheet-like positive electrode layer material corresponding to the positive electrode layer. For example, one sheet-like positive electrode layer material thus formed can be used as a positive electrode layer green sheet. Furthermore, in order to adjust to the desired thickness and amount of positive electrode active material, multiple sheets of the formed sheet-like positive electrode layer material can be stacked and pressed to form a positive electrode layer green sheet. The positive electrode layer green sheet containing one or multiple stacked sheet-like positive electrode layer materials may be cut to a predetermined planar size. For example, the positive electrode layer green sheet formed in this manner is used to form the positive electrode layer of a solid-state battery.
 また、別の例として、上記方法によって得られたLAGP粉体、導電助剤、正極活物質、バインダー、分散剤、可塑剤、非水系溶剤等が混合され、ペースト状の正極層材料である正極層用ペーストが形成される。例えば、このようにして形成される正極層用ペーストが、固体電池の正極層の、スクリーン印刷による形成に用いられる。 In another example, the LAGP powder obtained by the above method, a conductive additive, a positive electrode active material, a binder, a dispersant, a plasticizer, a non-aqueous solvent, etc. are mixed together to form a positive electrode layer paste, which is a paste-like positive electrode layer material. For example, the positive electrode layer paste formed in this manner is used to form the positive electrode layer of a solid-state battery by screen printing.
 (負極層材料)
 一例として、上記方法によって得られたLAGP粉体(非晶質及び結晶質のLAGP粉体の一方又は両方)、導電助剤、負極活物質、バインダー、溶剤、可塑剤等が混合され、ドクターブレード法にてPETフィルム等のキャリアに塗工され、負極層用グリーンシートが形成される。負極活物質には、TiO、Nb、Li(PO又はLiTi12等が用いられる。導電助剤には、例えば、カーボンナノファイバー、カーボンブラック、グラファイト、グラフェン又はカーボンナノチューブ等のカーボン材料、鉄シリサイド等の導電性材料が用いられる。
(Negative electrode layer material)
As an example, the LAGP powder (either or both of amorphous and crystalline LAGP powder) obtained by the above method, a conductive assistant, a negative electrode active material, a binder, a solvent, a plasticizer, etc. are mixed and coated on a carrier such as a PET film by a doctor blade method to form a green sheet for a negative electrode layer. TiO 2 , Nb 2 O 5 , Li 3 V 2 (PO 4 ) 3 , Li 4 Ti 5 O 12 , etc. are used as the negative electrode active material. For example, carbon materials such as carbon nanofibers, carbon black, graphite, graphene, or carbon nanotubes, and conductive materials such as iron silicide are used as the conductive assistant.
 例えば、LAGP粉体と負極活物質とを、質量比で50:50となるように混合したものをセラミック粉体とし、そのセラミック粉体に対し、バインダーを一定量添加すると共に、溶媒として無水アルコールを一定量添加することで得た混合物を、ボールミル等で混合し、ペースト状の負極層材料を形成する。形成されたペースト状の負極層材料を、真空中で脱泡した後、ドクターブレード法にてPETフィルム上に1回、又は、目的の厚さ及び負極活物質量に調整するために複数回塗工し、負極層に対応するシート状の負極層材料を形成する。例えば、このようにして形成された1枚のシート状の負極層材料を、負極層用グリーンシートとすることができる。更に、目的の厚さ及び負極活物質量に調整するため、形成された1枚のシート状の負極層材料を複数枚積層して圧着し、負極層用グリーンシートとすることもできる。1枚の又は複数枚積層されたシート状の負極層材料を含む負極層用グリーンシートは、所定の平面サイズとなるように裁断されてもよい。例えば、このようにして形成される負極層用グリーンシートが、固体電池の負極層の形成に用いられる。 For example, a mixture of LAGP powder and anode active material in a mass ratio of 50:50 is used as a ceramic powder, and a certain amount of binder and anhydrous alcohol as a solvent are added to the ceramic powder to obtain a mixture, which is then mixed in a ball mill or the like to form a paste-like anode layer material. The paste-like anode layer material thus formed is degassed in a vacuum, and then coated once on a PET film by a doctor blade method, or multiple times to adjust to the desired thickness and amount of anode active material, to form a sheet-like anode layer material corresponding to the anode layer. For example, one sheet-like anode layer material thus formed can be used as a green sheet for the anode layer. Furthermore, in order to adjust to the desired thickness and amount of anode active material, multiple sheets of the sheet-like anode layer material thus formed can be stacked and pressed together to form a green sheet for the anode layer. The green sheet for the anode layer containing one or multiple stacked sheets of anode layer material may be cut to a predetermined planar size. For example, the negative electrode layer green sheet formed in this manner is used to form the negative electrode layer of a solid-state battery.
 また、別の例として、上記方法によって得られたLAGP粉体、導電助剤、負極活物質、バインダー、分散剤、可塑剤、非水系溶剤等が混合され、ペースト状の負極層材料である負極層用ペーストが形成される。例えば、このようにして形成される負極層用ペーストが、固体電池の負極層の、スクリーン印刷による形成に用いられる。 In another example, the LAGP powder obtained by the above method, a conductive assistant, an anode active material, a binder, a dispersant, a plasticizer, a non-aqueous solvent, etc. are mixed together to form a paste for the anode layer, which is a paste-like anode layer material. For example, the paste for the anode layer formed in this way is used to form the anode layer of a solid-state battery by screen printing.
 続いて、上記のような材料を用いた固体電池の製造方法について説明する。
 図1は固体電池の製造方法の例について説明する図である。図1(A)には、積層体形成工程の一例の要部断面図を模式的に示している。図1(B)には、端子形成工程の一例の要部断面図を模式的に示している。
Next, a method for manufacturing a solid-state battery using the above-mentioned materials will be described.
1A and 1B are diagrams for explaining an example of a method for manufacturing a solid-state battery. Fig. 1A is a schematic cross-sectional view of a main part of an example of a laminate formation step. Fig. 1B is a schematic cross-sectional view of a main part of an example of a terminal formation step.
 例えば、図1(A)に示すような積層体1aが形成される。積層体1aは、固体電池の電池要素の一例である。図1(A)に示す積層体1aは、正極層10と、それと対向する負極層20と、それらの間に設けられる電解質層30とを含む。正極層10及び負極層20は、図1(A)に示すように、それらの各々の一部が積層体1aの両端部に露出する形態となるように、例えば正極層10と負極層20との間に設けられる電解質層30と同種又は異種の電解質材料が用いられた電解質層30によって覆われる。 For example, a laminate 1a as shown in FIG. 1(A) is formed. The laminate 1a is an example of a battery element of a solid-state battery. The laminate 1a shown in FIG. 1(A) includes a positive electrode layer 10, an opposing negative electrode layer 20, and an electrolyte layer 30 provided therebetween. The positive electrode layer 10 and the negative electrode layer 20 are covered by an electrolyte layer 30 made of the same or different electrolyte material as the electrolyte layer 30 provided between the positive electrode layer 10 and the negative electrode layer 20, for example, so that a portion of each of them is exposed at both ends of the laminate 1a, as shown in FIG. 1(A).
 積層体1aの正極層10の形成には、上記方法を用いて準備された正極層用グリーンシート又は正極層用ペーストが用いられる。積層体1aの負極層20の形成には、上記方法を用いて準備された負極層用グリーンシート又は負極層用ペーストが用いられる。積層体1aの電解質層30には、上記方法を用いて準備された電解質層用グリーンシート又は電解質層用ペーストが用いられる。このような材料が所定の順序及び配置となるように積層又はスクリーン印刷され、圧着されて、更に必要に応じて個々の積層体1a(電池要素)に分割するための裁断が行われて、図1(A)に示すような積層体1aが形成される。 The positive electrode layer 10 of the laminate 1a is formed using a positive electrode layer green sheet or a positive electrode layer paste prepared using the above method. The negative electrode layer 20 of the laminate 1a is formed using a negative electrode layer green sheet or a negative electrode layer paste prepared using the above method. The electrolyte layer 30 of the laminate 1a is formed using an electrolyte layer green sheet or an electrolyte layer paste prepared using the above method. These materials are laminated or screen printed in a predetermined order and arrangement, and pressed together, and further cut to separate into individual laminates 1a (battery elements) as necessary, to form the laminate 1a as shown in FIG. 1(A).
 得られた積層体1aは、脱脂が行われる。例えば、大気雰囲気中、300℃から600℃程度の温度で加熱され、積層体1a中に残存するバインダー等の熱分解による除去、即ち、脱脂が行われる。脱脂工程における加熱温度は、積層体1aの形成に用いられた正極層用グリーンシート又は正極層用ペースト、電解質層用グリーンシート又は電解質層用ペースト、負極層用グリーンシート又は負極層用ペーストに含有されるバインダーの熱分解温度に基づいて設定することができる。 The obtained laminate 1a is degreased. For example, it is heated in an air atmosphere at a temperature of about 300°C to 600°C to remove the binder remaining in the laminate 1a by thermal decomposition, i.e., degreasing is performed. The heating temperature in the degreasing process can be set based on the thermal decomposition temperature of the binder contained in the positive electrode layer green sheet or positive electrode layer paste, the electrolyte layer green sheet or electrolyte layer paste, and the negative electrode layer green sheet or negative electrode layer paste used to form the laminate 1a.
 脱脂後の積層体1aは、窒素等の非酸化性雰囲気中、例えば、脱脂よりも高い温度で、焼成が行われる。このような焼成により、脱脂後の積層体1aに含有されるLAGP等の焼結が行われる。積層体1aの焼成温度は、焼成によって得られる正極層10を良好な結晶状態とするために、例えば600℃から650℃といった所定の温度範囲に設定される。 The degreased laminate 1a is sintered in a non-oxidizing atmosphere such as nitrogen, for example, at a temperature higher than that for degreasing. This sintering sinters the LAGP and other substances contained in the degreased laminate 1a. The sintering temperature for the laminate 1a is set to a predetermined temperature range, for example, 600°C to 650°C, in order to ensure that the positive electrode layer 10 obtained by sintering is in a good crystalline state.
 積層体1aの焼成後、図1(B)に示すように、その積層体1aの両端部にそれぞれ、電極60、Ni層70及びSn層80の積層構造を有する端子が形成される。例えば、積層体1aの両端部に、ガラスフリットを含有した導電ペーストが塗布され、加熱による焼き付けが行われ、電極60が形成される。電極60は、積層体1aの一端部側に露出する正極層10及び他端部側に露出する負極層20とそれぞれ接続されるように形成される。形成された電極60の表面に、例えば、めっき法を用いてNi層70が形成され、更に、そのNi層の表面に、めっき法を用いてSn層80が形成される。これにより、回路基板等の他部品に実装するための端子を備えた、図1(B)に示すような固体電池1が得られる。 After the laminate 1a is fired, as shown in FIG. 1B, terminals having a laminated structure of an electrode 60, a Ni layer 70, and a Sn layer 80 are formed on both ends of the laminate 1a. For example, a conductive paste containing glass frit is applied to both ends of the laminate 1a, and baked by heating to form the electrodes 60. The electrodes 60 are formed so as to be connected to the positive electrode layer 10 exposed on one end side of the laminate 1a and the negative electrode layer 20 exposed on the other end side. On the surface of the formed electrode 60, for example, a Ni layer 70 is formed by plating, and further, a Sn layer 80 is formed on the surface of the Ni layer by plating. As a result, a solid-state battery 1 as shown in FIG. 1B is obtained, which is provided with terminals for mounting on other components such as a circuit board.
 固体電池1の充電時には、正極層10から電解質層30を介して負極層20にリチウムイオンが伝導して取り込まれ、放電時には、負極層20から電解質層30を介して正極層10にリチウムイオンが伝導して取り込まれる。固体電池1では、このようなリチウムイオン伝導によって充放電動作が実現される。 When the solid-state battery 1 is charged, lithium ions are conducted from the positive electrode layer 10 through the electrolyte layer 30 to the negative electrode layer 20 and are absorbed, and when the solid-state battery 1 is discharged, lithium ions are conducted from the negative electrode layer 20 through the electrolyte layer 30 to the positive electrode layer 10 and are absorbed. In the solid-state battery 1, charging and discharging operations are realized by this type of lithium ion conduction.
 尚、固体電池の構成は、上記固体電池1のようなものに限定されない。
 例えば、電解質層30を介して配置される正極層10及び負極層20の表面(図1(B)の正極層10の上面及び負極層20の下面)に、それぞれ集電体を設け、それら集電体を積層体(電池要素)の両端部に露出させ、電極60等と接続させるような構成とすることもできる。
The configuration of the solid-state battery is not limited to that of the solid-state battery 1 described above.
For example, a configuration may be adopted in which a current collector is provided on each of the surfaces of the positive electrode layer 10 and the negative electrode layer 20 (the upper surface of the positive electrode layer 10 and the lower surface of the negative electrode layer 20 in FIG. 1(B)) that are disposed with the electrolyte layer 30 interposed therebetween, and the current collectors are exposed at both ends of the laminate (battery element) and connected to the electrodes 60 or the like.
 また、上記図1(B)には、電解質層30を介して正極層10及び負極層20を各1層備えた固体電池1を例示したが、複数の正極層10及び複数の負極層20を、間に電解質層30を介して交互に積層し、積層型の固体電池を得ることもできる。 In addition, while FIG. 1(B) above illustrates a solid-state battery 1 having one positive electrode layer 10 and one negative electrode layer 20 with an electrolyte layer 30 between them, a stacked solid-state battery can also be obtained by stacking multiple positive electrode layers 10 and multiple negative electrode layers 20 alternately with an electrolyte layer 30 between them.
 また、正極層10及び負極層20とそれらの間の電解質層30とを少なくとも1層ずつ含む積層体(電池要素)の外表面となる部分には、電解質層30に代えて、或いは電解質層30の外側に更に、電解質層30よりも硬質の、ガラスやセラミックス等の材料を用いたコーティング層が形成されてもよい。この場合は、ガラス等の材料をバインダー等と混合したペーストが準備され、積層体の外表面となる部分が当該ペーストとなるように積層された構造体が形成され、当該構造体の脱脂及び焼成(必要に応じてそれらの前に裁断)が行われる。 Also, in the portion that will become the outer surface of the laminate (battery element) that includes at least one each of the positive electrode layer 10 and the negative electrode layer 20 and the electrolyte layer 30 between them, instead of the electrolyte layer 30, or in addition to the outside of the electrolyte layer 30, a coating layer using a material such as glass or ceramics that is harder than the electrolyte layer 30 may be formed. In this case, a paste is prepared by mixing a material such as glass with a binder, etc., and a laminated structure is formed so that the portion that will become the outer surface of the laminate is made of this paste, and the structure is degreased and fired (cut before that if necessary).
 [固体電池の特性評価]
 次に、一例として、上記のような固体電池1の特性評価について説明する。ここでは、固体電池1の特性評価として、水分量測定、インピーダンス測定、及び放電容量のサイクル測定を実施した。
[Characteristic evaluation of solid-state batteries]
Next, as an example, a description will be given of the evaluation of the characteristics of the above-described solid-state battery 1. Here, as the evaluation of the characteristics of the solid-state battery 1, a moisture amount measurement, an impedance measurement, and a cycle measurement of the discharge capacity were carried out.
 (水分量測定)
 水分量測定は、カールフィッシャー法により行った。カールフィッシャー法による水分量測定には、電量滴定方式の水分量測定装置を用いた。測定条件は、温度120℃にて試料を加熱し、窒素をキャリアガスとして放出された水分量[%]を測定した。測定時間は5分間とした。
(Moisture content measurement)
The moisture content was measured by the Karl Fischer method. A coulometric titration moisture measuring device was used for the moisture content measurement by the Karl Fischer method. The measurement conditions were as follows: the sample was heated at 120° C., and the amount of moisture released [%] was measured using nitrogen as a carrier gas. The measurement time was 5 minutes.
 (インピーダンス測定)
 インピーダンス測定は、交流インピーダンス法により行った。交流インピーダンス法によるインピーダンス測定には、周波数応答アナライザー及びポテンショスタットを用いた。測定条件は、温度を25℃、交流電圧を5mV、周波数を1MHzから0.1Hz(「1MHz-0.1Hz」とも記す)の周波数範囲とした。充放電前或いは出荷前の固体電池1の試料について、通常の初期評価として、周波数を1kHzに設定し、インピーダンス[Ω]を測定した。更に、充放電前或いは出荷前の固体電池1の試料について、周波数を1MHzから0.1Hzの周波数範囲に設定して測定を行い、測定により得られたcole-coleプロット(「ナイキストプロット」とも言う)における複素数平面上の0.3Hzから0.1Hz(「0.3Hz-0.1Hz」とも記す)の周波数範囲で近似された円弧から、インピーダンス[Ω]を見積もった。
(Impedance measurement)
The impedance measurement was performed by an AC impedance method. A frequency response analyzer and a potentiostat were used for the impedance measurement by the AC impedance method. The measurement conditions were a temperature of 25°C, an AC voltage of 5 mV, and a frequency range of 1 MHz to 0.1 Hz (also referred to as "1 MHz-0.1 Hz"). For a sample of the solid-state battery 1 before charging/discharging or before shipping, the frequency was set to 1 kHz and the impedance [Ω] was measured as a normal initial evaluation. Furthermore, for a sample of the solid-state battery 1 before charging/discharging or before shipping, the frequency was set to a frequency range of 1 MHz to 0.1 Hz and the impedance [Ω] was estimated from an arc approximated in the frequency range of 0.3 Hz to 0.1 Hz (also referred to as "0.3 Hz-0.1 Hz") on the complex plane in the Cole-Cole plot (also referred to as "Nyquist plot") obtained by the measurement.
 交流インピーダンス法による測定によって得られる固体電池1のcole-coleプロットは、半円又は円弧で近似できる。半円又は円弧の直径の大きさは、固体電池1のインピーダンスの大きさや短絡の有無で変化し、例えば、インピーダンスの小さい固体電池1や短絡した固体電池1では、直径の小さな半円又は円弧となる。半円又は円弧の直径は、固体電池1の内部構成要素及びインピーダンスを反映した値となる。固体電池1について、その内部構成要素に相当する、或いは内部構成要素の機能を表現する、抵抗RやコンデンサC等を含む等価回路を設定し、測定により得られたcole-coleプロットにおける複素数平面上の0.3Hzから0.1Hzの周波数範囲で近似された円弧に対して等価回路フィッティングを行うことで、固体電池1の内部構成要素に相当する等価回路の、或いは内部構成要素の機能を表現する等価回路の、抵抗RやコンデンサCの値、及び固体電池1のインピーダンスの値を求めることができる。 The Cole-Cole plot of the solid-state battery 1 obtained by measurement using the AC impedance method can be approximated by a semicircle or an arc. The diameter of the semicircle or arc varies depending on the impedance of the solid-state battery 1 and the presence or absence of a short circuit. For example, a solid-state battery 1 with low impedance or a short-circuited solid-state battery 1 will have a small diameter semicircle or arc. The diameter of the semicircle or arc is a value that reflects the internal components and impedance of the solid-state battery 1. By setting an equivalent circuit including a resistor R, a capacitor C, etc. that corresponds to the internal components of the solid-state battery 1 or that expresses the functions of the internal components, and performing equivalent circuit fitting on the arc that is approximated in the frequency range of 0.3 Hz to 0.1 Hz on the complex plane in the Cole-Cole plot obtained by measurement, the values of the resistor R and capacitor C of the equivalent circuit that corresponds to the internal components of the solid-state battery 1 or that expresses the functions of the internal components, and the impedance value of the solid-state battery 1 can be obtained.
 尚、「0.3Hzから0.1Hzの周波数範囲」に関し、「0.3Hz」及び「0.1Hz」は、それぞれ次のように設定される。「0.3Hz」は、小数第2位を四捨五入して0.3Hzとなる周波数、即ち、0.25Hzから0.34Hzまでの範囲におけるいずれかの周波数に設定される。「0.1Hz」は、小数第2位を四捨五入して0.1Hzとなる周波数、即ち、0.05Hzから0.14Hzまでの範囲におけるいずれかの周波数に設定される。「1MHzから0.1Hzの周波数範囲」における「0.1Hz」についても同様である。ここでは、小数第2位を四捨五入して0.3Hzとなる周波数を「0.3Hz」とも言い、小数第2位を四捨五入して0.1Hzとなる周波数を「0.1Hz」とも言う。 Note that, in the "frequency range of 0.3 Hz to 0.1 Hz", "0.3 Hz" and "0.1 Hz" are set as follows. "0.3 Hz" is set to a frequency that is 0.3 Hz when rounded off to the first decimal place, i.e., any frequency in the range of 0.25 Hz to 0.34 Hz. "0.1 Hz" is set to a frequency that is 0.1 Hz when rounded off to the first decimal place, i.e., any frequency in the range of 0.05 Hz to 0.14 Hz. The same applies to "0.1 Hz" in the "frequency range of 1 MHz to 0.1 Hz". Here, the frequency that is 0.3 Hz when rounded off to the first decimal place is also referred to as "0.3 Hz", and the frequency that is 0.1 Hz when rounded off to the first decimal place is also referred to as "0.1 Hz".
 (放電容量)
 固体電池1について、複数サイクルの繰り返しの充放電を行った。固体電池1の充放電は、定電流充電及び定電流放電とし、電流値を25μA/cm、充電上限電圧を3.6V、放電下限電圧を0Vとし、20℃の環境下で40サイクル行った。複数サイクルの繰り返しの充放電の結果から、1サイクル目の充電後の放電容量[μAh]に対する、40サイクル目の充電後の放電容量[μAh]の割合を、容量維持率[%]として求めた。
(Discharge capacity)
The solid-state battery 1 was repeatedly charged and discharged for multiple cycles. The solid-state battery 1 was charged and discharged at a constant current with a current value of 25 μA/cm 2 , a charging upper limit voltage of 3.6 V, and a discharging lower limit voltage of 0 V, and was charged and discharged for 40 cycles at 20° C. From the results of the multiple repeated charge and discharge cycles, the ratio of the discharge capacity [μAh] after charging in the 40th cycle to the discharge capacity [μAh] after charging in the 1st cycle was calculated as the capacity retention rate [%].
 (考察)
 8個の固体電池1の試料(試料No.1-8)について得られた水分量[%]、通常の初期評価の値である1kHzの周波数条件でのインピーダンス(「1kHzインピーダンス」)[Ω]、複素数平面上における0.31Hzから0.12Hz(「0.31Hz-0.12Hz」とも記す)の周波数範囲で近似された円弧から見積もられたインピーダンス(「0.31Hz-0.12Hzインピーダンス」)[Ω]、並びに、繰り返しの充放電における1サイクル目と40サイクル目の各充電後の放電容量[μAh]及び容量維持率[%]を、表1に示す。尚、0.31Hzから0.12Hzの周波数範囲は、上記「0.3Hzから0.1Hzの周波数範囲」の一例である。
(Discussion)
The moisture content [%] obtained for eight solid-state battery 1 samples (samples No. 1-8), the impedance ("1 kHz impedance") [Ω] under a frequency condition of 1 kHz, which is a value for a normal initial evaluation, the impedance ("0.31 Hz-0.12 Hz impedance") [Ω] estimated from an arc approximated in the frequency range of 0.31 Hz to 0.12 Hz (also referred to as "0.31 Hz-0.12 Hz") on a complex plane, and the discharge capacity [μAh] and capacity retention rate [%] after each charge in the 1st and 40th cycles in repeated charge and discharge are shown in Table 1. The frequency range of 0.31 Hz to 0.12 Hz is an example of the above-mentioned "frequency range of 0.3 Hz to 0.1 Hz".
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 また、インピーダンス測定により得られたcole-coleプロットの例を図2に示す。図2において、横軸は複素インピーダンスの実部Z’[Ωcm]を表し、縦軸は複素インピーダンスの虚部Z”[Ωcm]を表している。図2には、1MHzから0.1Hzの周波数範囲での測定により得られたcole-coleプロットの例を示している。図2には、固体電池1の試料(試料No.1-8)及び短絡電池の試料のcole-coleプロットの例を示している。 FIG. 2 shows an example of a Cole-Cole plot obtained by impedance measurement. In FIG. 2, the horizontal axis represents the real part Z' [Ωcm 2 ] of the complex impedance, and the vertical axis represents the imaginary part Z" [Ωcm 2 ] of the complex impedance. FIG. 2 shows an example of a Cole-Cole plot obtained by measurement in the frequency range from 1 MHz to 0.1 Hz. FIG. 2 shows an example of a Cole-Cole plot of a sample of solid-state battery 1 (sample No. 1-8) and a sample of a short-circuit battery.
 尚、試料No.1-8の固体電池1は、少なくとも充放電前或いは出荷前において、短絡のない固体電池1の試料である。図2において、測定により得られたcole-coleプロットが円弧で近似される場合、短絡のない試料No.1-8の固体電池1のcole-coleプロットは、試料No.9の短絡電池のcole-coleプロットに比べて、大きな直径の円弧で近似されるようになる。近似される円弧から見積もられるインピーダンスは、短絡のない固体電池1(円弧の直径が大きい)の試料の方が、短絡電池(円弧の直径が小さい)の試料よりも大きくなる。 Note that the solid-state battery 1 samples No. 1-8 are samples of solid-state battery 1 that are not short-circuited at least before charging/discharging or before shipping. In FIG. 2, when the Cole-Cole plot obtained by measurement is approximated by an arc, the Cole-Cole plot of the solid-state battery 1 samples No. 1-8 that are not short-circuited is approximated by an arc with a larger diameter than the Cole-Cole plot of the short-circuit battery sample No. 9. The impedance estimated from the approximated arc is larger for the solid-state battery 1 samples that are not short-circuited (larger arc diameter) than for the short-circuit battery sample (smaller arc diameter).
 固体電池1(試料No.1-8)及び短絡電池(試料No.9)について得られたcole-coleプロットにおける複素数平面上の0.31Hzから0.12Hzの周波数範囲(「近似周波数範囲0.31Hz-0.12Hz(周波数範囲指定あり)」)で近似された円弧から見積もられたインピーダンス[Ω]、及び複素数平面上の1MHzから0.1Hzの周波数範囲(「近似周波数範囲1MHz-0.1Hz(周波数範囲指定なし)」)で近似された円弧から見積もられたインピーダンス[Ω]を、表2に示す。 The impedance [Ω] estimated from the arc approximated in the frequency range of 0.31 Hz to 0.12 Hz on the complex plane in the Cole-Cole plot obtained for solid-state battery 1 (sample No. 1-8) and short-circuit battery (sample No. 9) (approximate frequency range 0.31 Hz-0.12 Hz (frequency range specified)) and the impedance [Ω] estimated from the arc approximated in the frequency range of 1 MHz to 0.1 Hz on the complex plane (approximate frequency range 1 MHz-0.1 Hz (frequency range not specified)) are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 また、充放電特性の測定結果の例を図3に示す。図3(A)には一例として、試料No.1(水分量0.0000%、容量維持率92.4%)の固体電池1の充放電特性の測定結果を示している。図3(B)には一例として、試料No.2(水分量0.0160%、容量維持率86.9%)の固体電池1の充放電特性の測定結果を示している。図3(A)及び図3(B)に示すように、固体電池1では、繰り返しの充放電のサイクル数の増加に伴い、放電容量が低下する傾向が認められる。また、容量維持率と水分量及びインピーダンスとの関係の例を図4に示す。図4において、横軸はセル電圧1Vにおける放電容量の容量維持率[%]を表し、縦軸は水分量[%](左)及びインピーダンス[Ω](右)を表している。 In addition, an example of the measurement results of the charge and discharge characteristics is shown in Figure 3. Figure 3 (A) shows the measurement results of the charge and discharge characteristics of the solid battery 1 of sample No. 1 (water content 0.0000%, capacity retention rate 92.4%) as an example. Figure 3 (B) shows the measurement results of the charge and discharge characteristics of the solid battery 1 of sample No. 2 (water content 0.0160%, capacity retention rate 86.9%) as an example. As shown in Figures 3 (A) and 3 (B), in the solid battery 1, the discharge capacity tends to decrease with an increase in the number of repeated charge and discharge cycles. In addition, an example of the relationship between the capacity retention rate and the water content and impedance is shown in Figure 4. In Figure 4, the horizontal axis represents the capacity retention rate [%] of the discharge capacity at a cell voltage of 1V, and the vertical axis represents the water content [%] (left) and impedance [Ω] (right).
 まず、表1より、試料No.1-8の固体電池1について、1サイクル目の放電容量、40サイクル目の放電容量、及び1サイクル目の放電容量に対する40サイクル目の放電容量の容量維持率との間には、相関関係は認められなかった。更に、表1より、固体電池1の通常の初期評価である周波数1kHzでのインピーダンス測定の結果と、1サイクル目の放電容量に対する40サイクル目の放電容量の容量維持率の結果との間には、相関関係は認められなかった。 First, from Table 1, for solid-state battery 1 sample No. 1-8, no correlation was found between the discharge capacity at the 1st cycle, the discharge capacity at the 40th cycle, and the capacity retention rate of the discharge capacity at the 40th cycle relative to the discharge capacity at the 1st cycle. Furthermore, from Table 1, no correlation was found between the results of impedance measurement at a frequency of 1 kHz, which is the usual initial evaluation of solid-state battery 1, and the results of the capacity retention rate of the discharge capacity at the 40th cycle relative to the discharge capacity at the 1st cycle.
 そこで、図2に示すようなcole-coleプロットから見積もられたインピーダンスと容量維持率との関係について検討した。
 充放電前或いは出荷前の試料No.1-8の固体電池1について、1MHzから0.1Hzの周波数範囲での測定により、図2に示すようなcole-coleプロットが得られる。このようなcole-coleプロットを用い、周波数範囲を指定せず、1MHzから0.1Hzの周波数範囲で近似された円弧から見積もられる充放電前或いは出荷前の試料No.1-8の固体電池1のインピーダンスは、表2(「近似周波数範囲1MHz-0.1Hz(周波数範囲指定なし)」)のような値を示し、いずれも短絡電池のインピーダンスよりも高い値を示す。この結果のみを用いると、充放電前或いは出荷前の試料No.1-8の固体電池1は、いずれも初期の短絡のない良品に弁別されることになる。
Therefore, the relationship between the impedance estimated from the Cole-Cole plot as shown in FIG. 2 and the capacity retention rate was examined.
For the solid-state battery 1 of sample No. 1-8 before charging/discharging or before shipment, a Cole-Cole plot as shown in FIG. 2 is obtained by measuring in the frequency range from 1 MHz to 0.1 Hz. Using such a Cole-Cole plot, the impedance of the solid-state battery 1 of sample No. 1-8 before charging/discharging or before shipment, which is estimated from an arc approximated in the frequency range from 1 MHz to 0.1 Hz without specifying the frequency range, shows a value as shown in Table 2 ("Approximate frequency range 1 MHz-0.1 Hz (no frequency range specified)"), and all of the values are higher than the impedance of a short-circuited battery. Using only this result, the solid-state battery 1 of sample No. 1-8 before charging/discharging or before shipment is classified as a non-defective product without an initial short circuit.
 しかし、試料No.1-8の固体電池1の中には、表1に示すように、1サイクル目の放電容量に対する40サイクル目の放電容量の容量維持率が90%を下回るような、長期特性であるサイクル特性が必ずしも十分とは言えないようなものも含まれる。従って、cole-coleプロットを用い、周波数範囲を指定せず、1MHzから0.1Hzの周波数範囲で近似された円弧から見積もられるインピーダンスのみでは、初期特性が良品のものを弁別することはできても、初期特性に加え、長期特性であるサイクル特性も良品であるものを精度良く弁別することができないことが起こり得る。 However, as shown in Table 1, some of the solid-state batteries 1 of Sample No. 1-8 have cycle characteristics that are not necessarily sufficient, such as a capacity retention ratio of the discharge capacity at the 40th cycle to the discharge capacity at the 1st cycle being less than 90%. Therefore, while it is possible to distinguish products with good initial characteristics using only the impedance estimated from an arc approximated in the frequency range from 1 MHz to 0.1 Hz without specifying the frequency range using a Cole-Cole plot, it may not be possible to accurately distinguish products with good initial characteristics as well as good cycle characteristics, which are long-term characteristics.
 一方、図2に示すような、1MHzから0.1Hzの周波数範囲での測定により得られるcole-coleプロットを用い、周波数範囲を指定し、0.31Hzから0.12Hzの周波数範囲で近似された円弧から見積もられる充放電前或いは出荷前の試料No.1-8の固体電池1のインピーダンスは、表1(「0.31Hz-0.12Hzインピーダンス」)及び表2(「近似周波数範囲0.31Hz-0.12Hz(周波数範囲指定あり)」)のような値を示す。図4に示すように、大まかには、インピーダンスの増加に伴い、1サイクル目の放電容量に対する40サイクル目の放電容量の容量維持率が増加する傾向が認められる。しかし、より厳密には、表1及び2に示すように、近似周波数範囲を0.31Hzから0.12Hzの周波数範囲に指定して見積もられるインピーダンスが100000Ω(100kΩ)未満となる試料No.2-6及び8の固体電池1では、そのインピーダンスと容量維持率との間に、明確な相関関係があるとは言い難い。 On the other hand, the impedance of the solid-state battery 1 of sample No. 1-8 before charging/discharging or before shipping, which is estimated from an arc approximated by a frequency range of 0.31 Hz to 0.12 Hz using a Cole-Cole plot obtained by measurement in the frequency range of 1 MHz to 0.1 Hz as shown in Figure 2, with the frequency range specified, shows values as shown in Table 1 ("0.31 Hz-0.12 Hz impedance") and Table 2 ("approximate frequency range 0.31 Hz-0.12 Hz (frequency range specified)"). As shown in Figure 4, roughly speaking, there is a tendency that the capacity retention rate of the discharge capacity at the 40th cycle relative to the discharge capacity at the 1st cycle increases with an increase in impedance. However, more strictly, as shown in Tables 1 and 2, the impedance of sample No. 1-8, which is estimated by specifying the approximate frequency range to be 0.31 Hz to 0.12 Hz, is less than 100,000 Ω (100 kΩ). In solid-state batteries 1, 2-6 and 8, it is difficult to say that there is a clear correlation between the impedance and the capacity retention rate.
 例えば、近似周波数範囲を0.31Hzから0.12Hzの周波数範囲に指定して見積もられるインピーダンスが100000Ω未満であって、容量維持率が90%を下回るような試料No.2-4では、そのインピーダンスと容量維持率との間に、明らかに相関関係が認められない。近似周波数範囲を0.31Hzから0.12Hzの周波数範囲に指定して見積もられるインピーダンスが100000Ω未満であって、容量維持率が90%を上回るような試料No.5、6及び8でも、明確な相関関係は認められない。例えば、試料No.5及び6のように、容量維持率が同程度であっても、インピーダンスが比較的大きく異なるような場合がある。このほか、試料No.5及び8のように、容量維持率の大小関係とインピーダンスの大小関係が逆になるような場合もある。このように、近似周波数範囲を0.31Hzから0.12Hzの周波数範囲に指定して見積もられるインピーダンスが100000Ω未満となる固体電池1では、そのインピーダンスと容量維持率との間に、明確な相関関係が安定的に得られるとは言い難く、そのインピーダンスに基づいて、高い容量維持率が得られる固体電池1を、高い精度で安定的に弁別することができない可能性がある。 For example, in sample No. 2-4, where the impedance estimated by specifying the approximate frequency range from 0.31 Hz to 0.12 Hz is less than 100,000 Ω and the capacity retention rate is below 90%, there is no clear correlation between the impedance and the capacity retention rate. In samples No. 5, 6, and 8, where the impedance estimated by specifying the approximate frequency range from 0.31 Hz to 0.12 Hz is less than 100,000 Ω and the capacity retention rate is above 90%, there is no clear correlation. For example, as in samples No. 5 and 6, there are cases where the impedance is relatively significantly different even if the capacity retention rate is about the same. In addition, as in samples No. 5 and 8, there are cases where the relationship between the magnitude of the capacity retention rate and the magnitude of the impedance is reversed. Thus, for a solid-state battery 1 in which the impedance estimated by specifying the approximate frequency range as a frequency range from 0.31 Hz to 0.12 Hz is less than 100,000 Ω, it is difficult to say that a clear correlation can be stably obtained between the impedance and the capacity retention rate, and it may not be possible to stably distinguish solid-state batteries 1 that can achieve a high capacity retention rate based on the impedance with high accuracy.
 これに対し、近似周波数範囲を0.31Hzから0.12Hzの周波数範囲に指定して見積もられるインピーダンスが100000Ω(100kΩ)以上となる試料No.1及び7の固体電池1では、表1及び2に示すように、安定的に90%以上の高い容量維持率が得られる。従って、充放電前或いは出荷前の固体電池1について、近似周波数範囲を0.31Hzから0.12Hzの周波数範囲に指定して見積もられるインピーダンスが100000Ω以上となるものを弁別すれば、初期特性に加え、長期特性であるサイクル特性も良品である固体電池1を安定的に弁別することが可能になると言うことができる。近似周波数範囲を0.31Hzから0.12Hzの周波数範囲に指定して見積もられるインピーダンスが100000Ω未満であって当該100000Ωに近いインピーダンスを示す試料No.6のようなものが、安定的に90%以上の高い容量維持率が得られる試料No.1及び7のようなものとの境界又は境界付近になると考えられる。このことから、近似周波数範囲を0.31Hzから0.12Hzの周波数範囲に指定して見積もられるインピーダンスが100000Ω以上となる固体電池1を弁別することで、初期特性に加え、長期特性であるサイクル特性も良品である固体電池1を安定的に弁別することが可能になると考えることができる。 In contrast, in the solid-state batteries 1 of samples 1 and 7, in which the impedance estimated by specifying the approximate frequency range to be 0.31 Hz to 0.12 Hz is 100,000 Ω (100 kΩ) or more, a high capacity retention rate of 90% or more can be stably obtained as shown in Tables 1 and 2. Therefore, if the solid-state batteries 1 before charging/discharging or before shipping are discriminated from those having an impedance estimated to be 100,000 Ω or more by specifying the approximate frequency range to be 0.31 Hz to 0.12 Hz, it can be said that it is possible to stably discriminate solid-state batteries 1 having good initial characteristics as well as good cycle characteristics, which are long-term characteristics. It is considered that samples such as sample No. 6, which have an impedance estimated to be less than 100,000 Ω and close to 100,000 Ω by specifying the approximate frequency range to be 0.31 Hz to 0.12 Hz, are on the border or near the border with samples such as sample No. 1 and 7, which have a high capacity retention rate of 90% or more stably obtained. From this, it can be considered that by specifying the approximate frequency range to be between 0.31 Hz and 0.12 Hz and discriminating solid-state batteries 1 with an estimated impedance of 100,000 Ω or more, it is possible to stably discriminate solid-state batteries 1 that are good not only in terms of initial characteristics but also in terms of cycle characteristics, which are long-term characteristics.
 また、固体電池1の水分量に関し、図4に示すように、固体電池1の水分量と容量維持率との間には、明確な相関関係があるとは言い難いが、固体電池1の水分量は、初期特性及び長期特性に影響する可能性があるため、低い方が好ましい。固体電池1の水分量は、0.0100%未満であることが好ましく、0.0010%未満であることがより好ましい。更に、優れた長期特性であるサイクル特性を実現するためには、固体電池1の水分量は、上記試料No.1及び7の固体電池1のように、0.0000%未満であることが望ましい。 Furthermore, as for the moisture content of the solid-state battery 1, as shown in FIG. 4, it is difficult to say that there is a clear correlation between the moisture content of the solid-state battery 1 and the capacity retention rate, but since the moisture content of the solid-state battery 1 may affect the initial characteristics and long-term characteristics, it is preferable that the moisture content is low. The moisture content of the solid-state battery 1 is preferably less than 0.0100%, and more preferably less than 0.0010%. Furthermore, in order to achieve cycle characteristics, which are excellent long-term characteristics, it is desirable that the moisture content of the solid-state battery 1 is less than 0.0000%, as in the solid-state batteries 1 of Samples No. 1 and 7 above.
 表1より、水分量が0.0100%超となる試料No.2及び8では、90%以上の高い容量維持率が得られない場合がある。水分量が0.0100%以下であっても、近似周波数範囲を0.31Hzから0.12Hzの周波数範囲に指定して見積もられるインピーダンスが100000Ω未満となる試料No.3-6では、やはり90%以上の高い容量維持率が得られない場合がある。水分量が0.0100%未満であって、近似周波数範囲を0.31Hzから0.12Hzの周波数範囲に指定して見積もられるインピーダンスが100000Ω以上となる試料No.1及び7(水分量0.0000%)であれば、安定して90%以上の高い容量維持率が得られる。水分量が0.0100%であって、近似周波数範囲を0.31Hzから0.12Hzの周波数範囲に指定して見積もられるインピーダンスが100000Ω未満となる試料No.6のようなものが、安定的に90%以上の高い容量維持率が得られる試料No.1及び7のようなものとの境界又は境界付近になると考えられる。このことから、水分量が0.0100%未満であって、近似周波数範囲を0.31Hzから0.12Hzの周波数範囲に指定して見積もられるインピーダンスが100000Ω以上となる固体電池1を弁別することで、初期特性に加え、長期特性であるサイクル特性も良品である固体電池1を安定的に弁別することが可能になると考えることができる。 From Table 1, samples No. 2 and 8, which have a moisture content of more than 0.0100%, may not be able to achieve a high capacity retention rate of 90% or more. Samples No. 3-6, which have a moisture content of 0.0100% or less but have an impedance estimated by specifying the approximate frequency range to be between 0.31 Hz and 0.12 Hz and giving an estimated impedance of less than 100,000 Ω, may also not be able to achieve a high capacity retention rate of 90% or more. Samples No. 1 and 7 (moisture content 0.0000%), which have a moisture content of less than 0.0100% and have an estimated impedance of 100,000 Ω or more when the approximate frequency range is specified to be between 0.31 Hz and 0.12 Hz, can stably achieve a high capacity retention rate of 90% or more. Samples No. 2 and 3, which have a moisture content of 0.0100% and have an estimated impedance of less than 100,000 Ω when the approximate frequency range is specified to be between 0.31 Hz and 0.12 Hz, can stably achieve a high capacity retention rate of 90% or more. It is believed that samples such as No. 6 are at or near the border with samples such as No. 1 and No. 7, which stably provide a high capacity retention rate of 90% or more. From this, it can be believed that by discriminating solid-state batteries 1 with a moisture content of less than 0.0100% and an impedance of 100,000Ω or more estimated by specifying the approximate frequency range from 0.31 Hz to 0.12 Hz, it is possible to stably discriminate solid-state batteries 1 that are good not only in terms of initial characteristics but also in terms of cycle characteristics, which are long-term characteristics.
 以上説明したように、充放電前或いは出荷前の固体電池1について、交流インピーダンス法による1MHzから0.1Hzの周波数範囲での測定を行い、その測定により得られたcole-coleプロットの複素数平面上における0.3Hzから0.1Hzの周波数範囲で近似された円弧からインピーダンスを見積もる。そして、その見積もられたインピーダンスが100000Ω(100kΩ)以上となる固体電池1を良品と弁別する。当該インピーダンスが100000Ω以上となる固体電池1は、短絡のない良好な初期特性を有すると共に、繰り返しの充放電における1サイクル目の充電後の放電容量に対する40サイクル目の充電後の放電容量の容量維持率が安定的に90%以上と高い値を示すようになり、長期特性であるサイクル特性に優れた固体電池1であると言える。このような固体電池1が良品と弁別される。上記手法によれば、充放電前或いは出荷前に、初期特性に加え、長期特性であるサイクル特性にも優れた良品の固体電池1を、精度良く安定的に弁別することが可能になる。 As described above, the solid-state battery 1 before charging/discharging or before shipping is measured in the frequency range of 1 MHz to 0.1 Hz by the AC impedance method, and the impedance is estimated from an arc approximated in the frequency range of 0.3 Hz to 0.1 Hz on the complex plane of the Cole-Cole plot obtained by the measurement. Then, a solid-state battery 1 with an estimated impedance of 100,000 Ω (100 kΩ) or more is discriminated as a good product. A solid-state battery 1 with an impedance of 100,000 Ω or more has good initial characteristics without short circuits, and the capacity retention rate of the discharge capacity after charging at the 40th cycle relative to the discharge capacity after charging at the 1st cycle in repeated charging/discharging is stably high at 90% or more, and can be said to be a solid-state battery 1 with excellent cycle characteristics, which are long-term characteristics. Such a solid-state battery 1 is discriminated as a good product. According to the above method, it is possible to accurately and stably discriminate a good solid-state battery 1 that has excellent cycle characteristics, which are long-term characteristics, in addition to the initial characteristics, before charging/discharging or before shipping.
 また、充放電前或いは出荷前の固体電池1について、その水分量を0.0100%未満、好ましくは0.0010%未満、より好ましくは0.0000%未満とすることで、初期特性に加え、長期特性であるサイクル特性にも優れた良品の固体電池1を、より一層精度良く安定的に弁別することが可能になる。 Furthermore, by making the moisture content of the solid-state battery 1 before charging/discharging or before shipping less than 0.0100%, preferably less than 0.0010%, and more preferably less than 0.0000%, it becomes possible to more accurately and stably distinguish good solid-state batteries 1 that have excellent initial characteristics as well as cycle characteristics, which are long-term characteristics.
 以上の説明では、充放電前或いは出荷前の固体電池1について、交流インピーダンス法による1MHzから0.1Hzの周波数範囲での測定を行い、その測定により得られたcole-coleプロットの複素数平面上における0.3Hzから0.1Hzの周波数範囲で近似された円弧からインピーダンスを見積もり、その見積もられたインピーダンスに基づいて良品を弁別する例(第1実施例とする)を示した。尚、当該第1実施例で述べた弁別基準、即ち、cole-coleプロットの複素数平面上における0.3Hzから0.1Hzの周波数範囲で近似された円弧から見積もられるインピーダンスが100000Ω以上という弁別基準では、上記試料No.1-9のうち、試料No.1及び7のような固体電池1が良品として弁別される。 The above explanation shows an example (referred to as the first embodiment) in which a solid-state battery 1 before charging/discharging or before shipping is measured in the frequency range of 1 MHz to 0.1 Hz by the AC impedance method, the impedance is estimated from an approximated arc in the frequency range of 0.3 Hz to 0.1 Hz on the complex plane of the Cole-Cole plot obtained by the measurement, and a good product is discriminated based on the estimated impedance. Note that, according to the discrimination criterion described in the first embodiment, that is, the impedance estimated from an approximated arc in the frequency range of 0.3 Hz to 0.1 Hz on the complex plane of the Cole-Cole plot is 100,000 Ω or more, among the above-mentioned samples No. 1-9, solid-state batteries 1 such as samples No. 1 and 7 are discriminated as good products.
 このほか、上記図2に示したようなcole-coleプロットより、特定の周波数におけるインピーダンスを抽出し、抽出されたインピーダンスに基づき、良品の固体電池1を弁別するようにしてもよい。例えば、水分量が0.0100%未満で、且つ、繰り返しの充放電における1サイクル目の充電後の放電容量に対する40サイクル目の充電後の放電容量の容量維持率が90%以上となるような固体電池1を、良品として弁別する。即ち、上記試料No.1-9のうち、試料No.1、5-7のような固体電池1を良品として弁別する。cole-coleプロットより抽出される、特定の周波数におけるインピーダンスに基づき、試料No.1、5-7のような固体電池1を良品として弁別しようとする場合の例(第2実施例とする)について、以下に説明する。 In addition, the impedance at a specific frequency may be extracted from the Cole-Cole plot as shown in FIG. 2, and a good solid-state battery 1 may be discriminated based on the extracted impedance. For example, a solid-state battery 1 having a moisture content of less than 0.0100% and a capacity retention ratio of the discharge capacity after charging at the 40th cycle to the discharge capacity after charging at the 1st cycle in repeated charging and discharging is 90% or more is discriminated as a good-quality battery. That is, among the above samples No. 1-9, solid-state batteries 1 such as samples No. 1 and 5-7 are discriminated as good-quality batteries. An example (referred to as a second embodiment) of discriminating solid-state batteries 1 such as samples No. 1 and 5-7 as good-quality batteries based on the impedance at a specific frequency extracted from the Cole-Cole plot is described below.
 表3に、上記図2のcole-coleプロットより、1Hz及び10Hzの周波数におけるインピーダンスを抽出した結果を示す。 Table 3 shows the results of extracting impedance at frequencies of 1 Hz and 10 Hz from the Cole-Cole plot in Figure 2 above.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3には、1Hzにおけるインピーダンスの実部Z’及び虚部Z”の値、並びに、10Hzにおけるインピーダンスの実部Z’及び虚部Z”の値を示している。表3では、上記試料No.1-9のうち、水分量が0.0100%未満で、且つ、繰り返しの充放電における1サイクル目の充電後の放電容量に対する40サイクル目の充電後の放電容量の容量維持率が90%以上となるような特性を有する試料No.1、5-7を良品とし、その他の試料No.2-4、8、9を不良品としている。この第2実施例では、試料No.1及び7のほか、試料No.5及び6も、良品とする。 Table 3 shows the real part Z' and imaginary part Z" of the impedance at 1 Hz, and the real part Z' and imaginary part Z" of the impedance at 10 Hz. In Table 3, among the above samples 1-9, samples 1 and 5-7 that have a moisture content of less than 0.0100% and have a capacity retention ratio of the discharge capacity after the 40th charge cycle to the discharge capacity after the 1st charge cycle in repeated charge and discharge are deemed to be good products, while the other samples 2-4, 8, and 9 are deemed to be defective products. In this second example, in addition to samples 1 and 7, samples 5 and 6 are also deemed to be good products.
 図5は1Hzにおけるインピーダンスの実部Z’と虚部Z”との関係をプロットした図である。図6は10Hzにおけるインピーダンスの実部Z’と虚部Z”との関係をプロットした図である。図5及び図6において、横軸はインピーダンスの実部Z’[Ω]を表し、縦軸はインピーダンスの虚部Z”[Ω]を表している。 Figure 5 is a plot of the relationship between the real part Z' and the imaginary part Z" of the impedance at 1 Hz. Figure 6 is a plot of the relationship between the real part Z' and the imaginary part Z" of the impedance at 10 Hz. In Figures 5 and 6, the horizontal axis represents the real part Z' [Ω] of the impedance, and the vertical axis represents the imaginary part Z" [Ω] of the impedance.
 試料No.1-9の、表3に示すような1Hzにおけるインピーダンスの実部Z’と虚部Z”とは、図5に示すプロットのような関係となる。試料No.1-9の、表3に示すような10Hzにおけるインピーダンスの実部Z’と虚部Z”とは、図6に示すプロットのような関係となる。ここで、表3及び図5より、この第2実施例で良品とする試料No.1、5-7は、1Hzにおけるインピーダンスの実部Z’が140Ω以下となり、虚部Z”が-400Ω以下となる。また、表3及び図6より、この第2実施例で良品とする試料No.1、5-7は、10Hzにおけるインピーダンスの実部Z’が68Ω以下となり、虚部Z”が-56Ω以下となる。 The real part Z' and imaginary part Z" of the impedance at 1 Hz for sample No. 1-9 as shown in Table 3 have a relationship as shown in the plot in Figure 5. The real part Z' and imaginary part Z" of the impedance at 10 Hz for sample No. 1-9 as shown in Table 3 have a relationship as shown in the plot in Figure 6. Here, from Table 3 and Figure 5, sample No. 1 and 5-7 that are considered to be good products in this second embodiment have a real part Z' of the impedance at 1 Hz of 140 Ω or less and an imaginary part Z" of -400 Ω or less. Also, from Table 3 and Figure 6, sample No. 1 and 5-7 that are considered to be good products in this second embodiment have a real part Z' of the impedance at 10 Hz of 68 Ω or less and an imaginary part Z" of -56 Ω or less.
 このような知見から、充放電前或いは出荷前の固体電池1について、交流インピーダンス法による1MHzから0.1Hzの周波数範囲での測定を行い、その測定により得られたcole-coleプロットの複素数平面上におけるインピーダンスにおいて、1Hzの実部Z’が140Ω以下、虚部Z”が-400Ω以下となる固体電池1は、良品として弁別することができると言える。また、充放電前或いは出荷前の固体電池1について、交流インピーダンス法による1MHzから0.1Hzの周波数範囲での測定を行い、その測定により得られたcole-coleプロットの複素数平面上におけるインピーダンスにおいて、10Hzの実部Z’が68Ω以下、虚部Z”が-56Ω以下となる固体電池1は、良品として弁別することができると言える。即ち、このような1Hzにおけるインピーダンスの実部Z’及び虚部Z”の範囲、10Hzにおけるインピーダンスの実部Z’及び虚部Z”の範囲を、良品の固体電池1を弁別するための弁別基準として設定することができる。 From these findings, it can be said that a solid-state battery 1 before charging/discharging or before shipping is measured in the frequency range of 1 MHz to 0.1 Hz by the AC impedance method, and the solid-state battery 1 with the real part Z' at 1 Hz being 140 Ω or less and the imaginary part Z" being -400 Ω or less in the impedance on the complex plane of the Cole-Cole plot obtained by the measurement can be discriminated as a good product. Also, it can be said that a solid-state battery 1 before charging/discharging or before shipping is measured in the frequency range of 1 MHz to 0.1 Hz by the AC impedance method, and the solid-state battery 1 with the real part Z' at 10 Hz being 68 Ω or less and the imaginary part Z" being -56 Ω or less in the impedance on the complex plane of the Cole-Cole plot obtained by the measurement can be discriminated as a good product. In other words, such ranges of the real part Z' and imaginary part Z" of the impedance at 1 Hz and the real part Z' and imaginary part Z" of the impedance at 10 Hz can be set as discrimination criteria for discriminating between good solid-state batteries 1.
 この第2実施例のように、所定の周波数におけるインピーダンスの実部Z’及び虚部Z”の範囲に基づき、所定の特性を有する固体電池1、例えば、試料No.1、5-7のような低水分量で且つ高容量維持率の固体電池1を、良品として弁別することもできる。この第2実施例のような弁別基準によっても、充放電前或いは出荷前に、初期特性に加え、長期特性であるサイクル特性にも優れた良品の固体電池1を、精度良く安定的に弁別することができる。 As in this second embodiment, a solid-state battery 1 having a specified characteristic, for example a solid-state battery 1 having a low water content and a high capacity retention rate such as samples No. 1 and 5-7, can be discriminated as a good product based on the range of the real part Z' and imaginary part Z" of the impedance at a specified frequency. Even with the discrimination criteria as in this second embodiment, it is possible to accurately and stably discriminate a good solid-state battery 1 having excellent cycle characteristics, which are long-term characteristics, in addition to the initial characteristics, before charging/discharging or before shipping.
 上記については単に例を示すものである。更に、多数の変形、変更が当業者にとって可能であり、本発明は上記に示し、説明した正確な構成及び応用例に限定されるものではなく、対応する全ての変形例及び均等物は、添付の請求項及びその均等物による本発明の範囲とみなされる。 The above is merely illustrative. Moreover, numerous variations and modifications are possible for those skilled in the art, and the present invention is not limited to the exact configurations and applications shown and described above, and all corresponding modifications and equivalents are deemed to be within the scope of the present invention as defined by the appended claims and their equivalents.
 1 固体電池
 1a 積層体
 10 正極層
 20 負極層
 30 電解質層
 60 電極
 70 Ni層
 80 Sn層
 
REFERENCE SIGNS LIST 1 Solid-state battery 1a Laminate 10 Positive electrode layer 20 Negative electrode layer 30 Electrolyte layer 60 Electrode 70 Ni layer 80 Sn layer

Claims (15)

  1.  正極層と、
     前記正極層と対向する負極層と、
     前記正極層と前記負極層との間に設けられた電解質層と、
     を含み、
     充放電前に交流インピーダンス法により測定され、複素数平面上における0.3Hzから0.1Hzの周波数範囲で近似された円弧から見積もられるインピーダンスが、100000Ω以上である、固体電池。
    A positive electrode layer;
    a negative electrode layer facing the positive electrode layer;
    an electrolyte layer provided between the positive electrode layer and the negative electrode layer;
    Including,
    A solid-state battery having an impedance of 100,000 Ω or more as measured by an AC impedance method before charging and discharging and estimated from an approximated arc in a frequency range from 0.3 Hz to 0.1 Hz on a complex plane.
  2.  水分量が0.0100%未満である、請求項1に記載の固体電池。 The solid-state battery according to claim 1, wherein the moisture content is less than 0.0100%.
  3.  前記正極層は、
     Li1+xAlGe2-x(PO(0<x<1)と、
     LiCoPと、
     を含む、請求項1に記載の固体電池。
    The positive electrode layer is
    Li1 + xAlxGe2 -x ( PO4 ) 3 (0<x<1),
    Li2CoP2O7 ,
    The solid-state battery of claim 1 , comprising:
  4.  繰り返しの充放電における、1サイクル目の充電後の放電容量に対する、40サイクル目の充電後の放電容量の容量維持率が、90%以上である、請求項1に記載の固体電池。 The solid-state battery according to claim 1, in which the capacity retention rate of the discharge capacity after the 40th charge cycle relative to the discharge capacity after the 1st charge cycle during repeated charge and discharge is 90% or more.
  5.  正極層と、
     前記正極層と対向する負極層と、
     前記正極層と前記負極層との間に設けられた電解質層と、
     を含み、
     充放電前に交流インピーダンス法により測定される、複素数平面上におけるインピーダンスにおいて、1Hzの実部が140Ω以下、虚部が-400Ω以下である、固体電池。
    A positive electrode layer;
    a negative electrode layer facing the positive electrode layer;
    an electrolyte layer provided between the positive electrode layer and the negative electrode layer;
    Including,
    A solid-state battery having an impedance on a complex plane measured by an AC impedance method before charging and discharging, in which the real part at 1 Hz is 140Ω or less and the imaginary part is −400Ω or less.
  6.  水分量が0.0100%未満である、請求項5に記載の固体電池。 The solid-state battery according to claim 5, wherein the moisture content is less than 0.0100%.
  7.  前記正極層は、
     Li1+xAlGe2-x(PO(0<x<1)と、
     LiCoPと、
     を含む、請求項5に記載の固体電池。
    The positive electrode layer is
    Li1 + xAlxGe2 -x ( PO4 ) 3 (0<x<1),
    Li2CoP2O7 ,
    The solid-state battery of claim 5 .
  8.  繰り返しの充放電における、1サイクル目の充電後の放電容量に対する、40サイクル目の充電後の放電容量の容量維持率が、90%以上である、請求項5に記載の固体電池。 The solid-state battery according to claim 5, in which the capacity retention rate of the discharge capacity after the 40th charge cycle relative to the discharge capacity after the 1st charge cycle during repeated charge and discharge is 90% or more.
  9.  正極層と、
     前記正極層と対向する負極層と、
     前記正極層と前記負極層との間に設けられた電解質層と、
     を含み、
     充放電前に交流インピーダンス法により測定される、複素数平面上におけるインピーダンスにおいて、10Hzの実部が68Ω以下、虚部が-56Ω以下である、固体電池。
    A positive electrode layer;
    a negative electrode layer facing the positive electrode layer;
    an electrolyte layer provided between the positive electrode layer and the negative electrode layer;
    Including,
    A solid-state battery having an impedance on a complex plane measured by an AC impedance method before charging and discharging, in which the real part at 10 Hz is 68 Ω or less and the imaginary part is −56 Ω or less.
  10.  水分量が0.0100%未満である、請求項9に記載の固体電池。 The solid-state battery according to claim 9, wherein the moisture content is less than 0.0100%.
  11.  前記正極層は、
     Li1+xAlGe2-x(PO(0<x<1)と、
     LiCoPと、
     を含む、請求項9に記載の固体電池。
    The positive electrode layer is
    Li1 + xAlxGe2 -x ( PO4 ) 3 (0<x<1),
    Li2CoP2O7 ,
    The solid-state battery of claim 9 , comprising:
  12.  繰り返しの充放電における、1サイクル目の充電後の放電容量に対する、40サイクル目の充電後の放電容量の容量維持率が、90%以上である、請求項9に記載の固体電池。 The solid-state battery according to claim 9, in which the capacity retention rate of the discharge capacity after the 40th charge cycle relative to the discharge capacity after the 1st charge cycle during repeated charge and discharge is 90% or more.
  13.  正極層と、前記正極層と対向する負極層と、前記正極層と前記負極層との間に設けられた電解質層と、を含む固体電池を準備する工程と、
     準備された前記固体電池のうち、充放電前に交流インピーダンス法により測定され、複素数平面上における0.3Hzから0.1Hzの周波数範囲で近似された円弧から見積もられるインピーダンスが、100000Ω以上である前記固体電池を弁別する工程と、
     を含む、固体電池の製造方法。
    preparing a solid-state battery including a positive electrode layer, a negative electrode layer facing the positive electrode layer, and an electrolyte layer provided between the positive electrode layer and the negative electrode layer;
    discriminating, from among the prepared solid-state batteries, those having an impedance of 100,000Ω or more, which is measured by an AC impedance method before charging and discharging and is estimated from an arc approximated in a frequency range of 0.3 Hz to 0.1 Hz on a complex plane;
    A method for manufacturing a solid-state battery, comprising:
  14.  正極層と、前記正極層と対向する負極層と、前記正極層と前記負極層との間に設けられた電解質層と、を含む固体電池を準備する工程と、
     準備された前記固体電池のうち、充放電前に交流インピーダンス法により測定される、複素数平面上におけるインピーダンスにおいて、1Hzの実部が140Ω以下、虚部が-400Ω以下である前記固体電池を弁別する工程と、
     を含む、固体電池の製造方法。
    preparing a solid-state battery including a positive electrode layer, a negative electrode layer facing the positive electrode layer, and an electrolyte layer provided between the positive electrode layer and the negative electrode layer;
    discriminating the solid-state batteries from among the prepared solid-state batteries, the solid-state batteries having impedances on a complex plane measured by an AC impedance method before charging and discharging, the real part at 1 Hz being 140Ω or less and the imaginary part being −400Ω or less;
    A method for manufacturing a solid-state battery, comprising:
  15.  正極層と、前記正極層と対向する負極層と、前記正極層と前記負極層との間に設けられた電解質層と、を含む固体電池を準備する工程と、
     準備された前記固体電池のうち、充放電前に交流インピーダンス法により測定される、複素数平面上におけるインピーダンスにおいて、10Hzの実部が68Ω以下、虚部が-56Ω以下である前記固体電池を弁別する工程と、
     を含む、固体電池の製造方法。
    preparing a solid-state battery including a positive electrode layer, a negative electrode layer facing the positive electrode layer, and an electrolyte layer provided between the positive electrode layer and the negative electrode layer;
    discriminating the solid-state batteries from among the prepared solid-state batteries, the solid-state batteries having impedances on a complex plane measured by an AC impedance method before charging and discharging, the real part at 10 Hz being 68 Ω or less and the imaginary part being −56 Ω or less;
    A method for manufacturing a solid-state battery, comprising:
PCT/JP2023/036201 2022-10-07 2023-10-04 Solid-state battery, and solid-state battery manufacturing method WO2024075771A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022162514 2022-10-07
JP2022-162514 2022-10-07

Publications (1)

Publication Number Publication Date
WO2024075771A1 true WO2024075771A1 (en) 2024-04-11

Family

ID=90608058

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/036201 WO2024075771A1 (en) 2022-10-07 2023-10-04 Solid-state battery, and solid-state battery manufacturing method

Country Status (1)

Country Link
WO (1) WO2024075771A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020194706A (en) * 2019-05-28 2020-12-03 トヨタ自動車株式会社 All-solid battery and manufacturing method thereof
WO2021040044A1 (en) * 2019-08-29 2021-03-04 マクセルホールディングス株式会社 All-solid-state battery
JP2021051825A (en) * 2019-09-20 2021-04-01 Fdk株式会社 All-solid battery, positive electrode and production method of all-solid battery
JP2021077640A (en) * 2019-11-08 2021-05-20 三星エスディアイ株式会社Samsung SDI Co., Ltd. Negative electrode layer for all-solid secondary battery, all-solid secondary battery including the same, and manufacturing method for the same
WO2022071392A1 (en) * 2020-09-30 2022-04-07 富士フイルム株式会社 Inorganic solid electrolyte–containing composition, sheet for all-solid secondary battery, and all-solid secondary battery, and methods for manufacturing sheet for all-solid secondary battery and all-solid secondary battery
WO2022085458A1 (en) * 2020-10-23 2022-04-28 日本ゼオン株式会社 Binder composition for all-solid-state secondary batteries, slurry composition for all-solid-state secondary batteries, solid electrolyte-containing layer, and all-solid-state secondary battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020194706A (en) * 2019-05-28 2020-12-03 トヨタ自動車株式会社 All-solid battery and manufacturing method thereof
WO2021040044A1 (en) * 2019-08-29 2021-03-04 マクセルホールディングス株式会社 All-solid-state battery
JP2021051825A (en) * 2019-09-20 2021-04-01 Fdk株式会社 All-solid battery, positive electrode and production method of all-solid battery
JP2021077640A (en) * 2019-11-08 2021-05-20 三星エスディアイ株式会社Samsung SDI Co., Ltd. Negative electrode layer for all-solid secondary battery, all-solid secondary battery including the same, and manufacturing method for the same
WO2022071392A1 (en) * 2020-09-30 2022-04-07 富士フイルム株式会社 Inorganic solid electrolyte–containing composition, sheet for all-solid secondary battery, and all-solid secondary battery, and methods for manufacturing sheet for all-solid secondary battery and all-solid secondary battery
WO2022085458A1 (en) * 2020-10-23 2022-04-28 日本ゼオン株式会社 Binder composition for all-solid-state secondary batteries, slurry composition for all-solid-state secondary batteries, solid electrolyte-containing layer, and all-solid-state secondary battery

Similar Documents

Publication Publication Date Title
US11387485B2 (en) All-solid-state lithium ion secondary battery
EP3442059A1 (en) All solid state battery and anode
US9903918B2 (en) Apparatus and method for inspecting all-solid battery
JP2015076324A (en) Solid electrolytic material and all-solid battery arranged by use thereof
CN108808097B (en) Laminated battery
CN108808112B (en) Laminated battery
CN111384390A (en) Acidification reaction modification method for solid electrolyte surface
CN110943206A (en) Positive active material, method for preparing same, and battery comprising same
US20240014367A1 (en) Powder For Electrode For Manufacturing Dry Electrode For Secondary Battery, Method For Preparing The Same, Method For Manufacturing Dry Electrode Using The Same, Dry Electrode, Secondary Battery Including The Same, Energy Storage Apparatus
WO2021090774A1 (en) All-solid-state battery
US20230402646A1 (en) All-Solid-State Battery
WO2024075771A1 (en) Solid-state battery, and solid-state battery manufacturing method
JP2011222129A (en) Separation membrane for battery, and battery
WO2023119876A1 (en) All-solid-state battery
JP2020087597A (en) electrode
CN112751076B (en) All-solid battery
CN114447285A (en) Method for producing negative electrode plate for nonaqueous electrolyte secondary battery
JP2018190537A (en) Laminate battery and method for manufacturing the same
JP2021044106A (en) All-solid battery
JP7372183B2 (en) Solid-state battery and solid-state battery manufacturing method
US20230163301A1 (en) All-solid-state battery
US20220294010A1 (en) Solid electrolyte layer, all-solid-state secondary battery, and manufacturing method of same
Mori Lithium Ion Secondary Cell Prepared by a Printing Procedure, and Its Application to All-Solid-State Inorganic Lithium Ion Cells
US20240136528A1 (en) Electrode sheet and electrochemical device
US20210020982A1 (en) Lithium-ion secondary battery and manufacturing method thereof