WO2024075738A1 - Long laminate, photovoltaic device, and method for producing photovoltaic device - Google Patents

Long laminate, photovoltaic device, and method for producing photovoltaic device Download PDF

Info

Publication number
WO2024075738A1
WO2024075738A1 PCT/JP2023/036087 JP2023036087W WO2024075738A1 WO 2024075738 A1 WO2024075738 A1 WO 2024075738A1 JP 2023036087 W JP2023036087 W JP 2023036087W WO 2024075738 A1 WO2024075738 A1 WO 2024075738A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
layer
region
laminate
photovoltaic
Prior art date
Application number
PCT/JP2023/036087
Other languages
French (fr)
Japanese (ja)
Inventor
祐司 ▲高▼橋
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Publication of WO2024075738A1 publication Critical patent/WO2024075738A1/en

Links

Images

Definitions

  • the present invention relates to a long laminate, a photovoltaic device, and a method for manufacturing a photovoltaic device.
  • a laminate including a lower electrode, a power generation layer, and an upper electrode is used as the power generation section, and an insulating section is provided at the boundary between the multiple power generation sections.
  • the lower electrode, power generation layer, and upper electrode are laminated in this order on the substrate, and the lower electrode, power generation layer, and upper electrode are patterned to form a predetermined uneven shape.
  • Patent Document 2 describes a solar cell module in which the solar cell comprises a lower electrode, a photoelectric conversion layer, and an upper electrode, and a current collector is provided on the upper electrode. Patent Document 2 also teaches that this solar cell module is manufactured by the roll-to-roll method.
  • the ratio of the insulating portion at the boundary of the power generating portion is 25% or more. Under this condition, the ratio of the insulating portion becomes large and the power generating area becomes small, so that the power generating area cannot be maximized with respect to the total area of the laminate having a power generating function provided in the device, and the power generating efficiency is insufficient.
  • the solar cell (hereinafter referred to as a laminate having a power generating function) is manufactured using an apparatus that performs processes such as liquid preparation, coating, and film formation, and the solar cell has a fixed shape and size, and the voltage and current of the solar cell are also determined according to the size of the device, so that the solar cell cannot be adjusted to the shape and size of the device after it is manufactured.
  • the wiring resistance is reduced to a certain extent by connecting the solar cell in series, but it is also desired to further reduce the wiring resistance.
  • one possible way to solve the above problems is to fabricate a solar cell using multiple laminates including electrodes, power generation layers, etc.
  • multiple laminates e.g., a first laminate and a second laminate
  • the present invention aims to provide a long laminate that can be used to manufacture a high-quality photovoltaic device, a high-quality photovoltaic device, and a method for manufacturing a photovoltaic device using the long laminate.
  • the present invention may include the following inventions.
  • a base layer having a width direction and a length direction; a laminate including a first electrode formed on the base layer, a photovoltaic layer at least partially formed on the first electrode, and a second electrode at least partially formed on the photovoltaic layer;
  • a long laminate comprising: the second electrode has a 2-1 region facing the first electrode and a 2-2 region not facing the first electrode, the 2-2 region being present on one width direction side of the base material layer and not present on the other width direction side of the base material layer;
  • the long laminate is wound in a reel shape.
  • a base material layer a laminate including a first electrode on the base layer, a second electrode above the first electrode, and a photovoltaic layer between the first electrode and the second electrode;
  • the first electrode has a portion that does not face the second electrode, and has a portion where no other layer is provided between the first electrode and a height at which the second electrode is provided on the photovoltaic layer;
  • a long laminate The second electrode has a portion extending on the base material layer via a side surface of the photovoltaic layer, and no other layer is provided between the portion and a height at which the second electrode is provided on the photovoltaic layer, or the photovoltaic layer has a portion provided below the second electrode, and no electrode is present below the portion. Long laminate.
  • a device substrate, a first laminate, and a second laminate Each of the first stack and the second stack includes a first electrode at least partially formed on the device substrate, a photovoltaic layer at least partially formed on the first electrode, and a second electrode at least partially formed on the photovoltaic layer, the first stack and the second stack being formed side by side on the device substrate,
  • the second electrode In each of the first stacked body and the second stacked body, the second electrode has a 2-1 region facing the first electrode and a 2-2 region not facing the first electrode, In each of the first stacked body and the second stacked body, the first electrode has a 1-1 region facing the second electrode and a 1-2 region not facing the second electrode.
  • a photovoltaic device comprising: The first-2 region of the first electrode of the first stack is overlapped on and electrically connected to the second-2 region of the second electrode of the second stack, or the photovoltaic layer of the first stack has a portion that is provided below the 2-2 region of the second electrode of the first stack, and that is overlapped and electrically connected to the 1-2 region of the first electrode of the second stack, and the 1-2 region of the first electrode of the second stack has a portion between the portion where the photovoltaic layer is overlapped and the 1-1 region of the first electrode of the second stack, above the first electrode and where no other layer is provided up to a height where a second electrode is provided on the photovoltaic layer of the second stack; Photovoltaic devices.
  • a photovoltaic device characterized in that the long laminate according to any one of [1] to [7] is transferred onto a device substrate and electrically connected thereto.
  • the present invention makes it possible to provide a long laminate that can be used to manufacture a high-quality photovoltaic device, a high-quality photovoltaic device, and a method for manufacturing a photovoltaic device using the long laminate.
  • FIG. 1 is a perspective view of a long laminate according to an embodiment of the present invention.
  • FIG. 2 shows a cross-sectional view of a long laminate according to one embodiment (first aspect) of the present invention in a direction perpendicular to the longitudinal direction.
  • FIG. 3 shows a cross-sectional view of a long laminate according to another embodiment (second aspect) of the present invention, taken along a direction perpendicular to the longitudinal direction.
  • FIG. 4 is a diagram showing a method for producing a photovoltaic device by sequentially attaching a plurality of power generating laminates provided in a long laminate according to an embodiment of the present invention to a device substrate.
  • FIG. 1 is a perspective view of a long laminate according to an embodiment of the present invention.
  • FIG. 2 shows a cross-sectional view of a long laminate according to one embodiment (first aspect) of the present invention in a direction perpendicular to the longitudinal direction.
  • FIG. 3 shows a cross-sectional view of a long laminate according to
  • FIG. 5 shows a plan view of a photovoltaic device of the present invention, which is obtained by sequentially attaching a plurality of power generating laminates provided in a long laminate according to an embodiment of the present invention to a device substrate.
  • FIG. 6 shows an example of a cross-sectional view of a photovoltaic device according to one embodiment (first aspect) of the present invention.
  • FIG. 7 shows another example of a cross-sectional view of a photovoltaic device according to one embodiment (first aspect) of the present invention.
  • FIG. 8 shows yet another example of a cross-sectional view of a photovoltaic device according to one embodiment (first aspect) of the present invention.
  • FIG. 9 shows an example of a cross-sectional view of a photovoltaic device according to another embodiment (second aspect) of the present invention.
  • the present invention includes a long laminate, a photovoltaic device, and a method for manufacturing a photovoltaic device of a first embodiment, and a long laminate, a photovoltaic device, and a method for manufacturing a photovoltaic device of a second embodiment.
  • a long laminate, a photovoltaic device, and a method for manufacturing a photovoltaic device of a second embodiment are mentioned.
  • the reference numerals in the drawings relating to the first embodiment are expressed as a combination of I and a number (e.g., I-1)
  • the reference numerals in the drawings relating to the second embodiment are expressed as a combination of II and a number (e.g., II-1)
  • the reference numerals in the drawings relating to both the first and second embodiments may be expressed only in Arabic numerals, omitting the Roman numerals.
  • Figure 1 shows a perspective view of a long laminate according to an embodiment of the present invention
  • Figure 2 shows a cross-sectional view of a long laminate according to one embodiment of the present invention (first aspect) in a direction perpendicular to the longitudinal direction
  • Figure 3 shows a cross-sectional view of a long laminate according to another embodiment of the present invention (second aspect) in a direction perpendicular to the longitudinal direction.
  • the long laminate 1 (I-1, II-1) includes a base layer 2 (I-2, II-2) having a width direction and a length direction, and a laminate 6 (I-6, II-6) formed on the base layer (I-2, II-2).
  • the laminate 6 (I-6, II-6) includes a first electrode 3 (I-3, II-3) formed on the base layer 2 (I-2, II-2), a photovoltaic layer 4 (I-4, II-4) at least partially formed on the first electrode 3 (I-3, II-3), and a second electrode 5 (I-5, II-5) at least partially formed on the photovoltaic layer 4 (I-4, II-4), and has a power generation function.
  • the second electrode 5 (I-5, II-5) has a 2-1 region 10 (I-10, II-10) facing the first electrode 3 (I-3, II-3) and a 2-2 region 11 not facing the first electrode 3 (I-3, II-3), and the 2-2 region 11 is present on one widthwise side of the base layer 2 (I-2, II-2) but not on the other widthwise side of the base layer 2 (I-2, II-2).
  • the long laminate 1 (I-1, II-1) is wound, for example, in a reel shape. Furthermore, the long laminate 1 (I-1, II-1) may have a protective layer 7 (I-7, II-7) on the second electrode 5 (I-5, II-5).
  • the width direction of the configuration is described as being substantially parallel to the width direction of the base layer
  • the length direction of the configuration is described as being substantially parallel to the length direction of the base layer.
  • this description is merely for convenience, and the length of a certain configuration in these two directions can be changed as appropriate within a range that does not impair the effect, and there may be cases where the direction described as the length direction is the short direction.
  • the second electrode I-5 is formed on the photovoltaic layer I-4, and is preferably also formed on the side surface of the photovoltaic layer I-4 and on the base layer I-2.
  • the second electrode II-5 is preferably formed only on the photovoltaic layer II-4, and one widthwise side of the photovoltaic layer II-4 is preferably formed on the first electrode II-3, and the other widthwise side of the photovoltaic layer II-4 is preferably not formed on the first electrode II-3.
  • the long laminate 1 has a predetermined size in the thickness direction, width direction, and length (longitudinal) direction.
  • the longitudinal size of the long laminate 1 may be longer than the transverse size, and is preferably 6 cm to 100 m, more preferably 10 cm to 80 m, and even more preferably 15 cm to 50 m.
  • the size in the width direction of the long laminate 1 is preferably 1 cm or more and 100 cm or less, more preferably 2 cm or more and 80 cm or less, even more preferably 5 cm or more and 60 cm or less, and even more preferably 10 cm or more and 40 cm or less.
  • the size in the thickness direction of the long laminate 1 is preferably 1 ⁇ m or more and 10,000 ⁇ m or less, more preferably 2 ⁇ m or more and 8,000 ⁇ m or less, even more preferably 5 ⁇ m or more and 6,000 ⁇ m or less, and even more preferably 10 ⁇ m or more and 4,000 ⁇ m or less.
  • the substrate layer 2 is not particularly limited as long as it has flexibility, heat resistance, and the like so that the first electrode 3, the photovoltaic layer 4, the second electrode 5, and the like can be formed thereon.
  • Examples of materials constituting the substrate layer 2 include organic materials, metal materials, fabric materials, and paper materials.
  • organic materials include olefin resins such as polyester resin, methacrylic resin, methacrylic-maleic acid copolymer resin, polystyrene resin, fluororesin, polyimide resin, fluorinated polyimide resin, polyamide resin, polyamideimide resin, polyetherimide resin, cellulose resin, polyurethane resin, polyether ether ketone resin, polycarbonate resin, alicyclic polyolefin resin, polyarylate resin, polyethersulfone resin, polysulfone resin, cycloolefin resin, polyethylene terephthalate resin, polyethylene naphthalate resin, polyethylene resin, and polypropylene resin; and vinyl resins such as polyvinyl chloride resin and polyvinyl alcohol resin.
  • the metal material include aluminum and copper that have been given insulating properties.
  • the fabric material include nonwoven fabric and net.
  • the paper material may be paper or synthetic paper.
  • the substrate layer 2 may be any of the above materials, or a combination of the above materials.
  • One or more of the organic materials, metal materials, fabric materials, and paper materials may be used.
  • the plastic film has a low water vapor transmission rate.
  • the organic material may have a predetermined glass transition temperature as an index of a predetermined strength, and the glass transition temperature of the organic material is preferably 50°C or higher, more preferably 60°C or higher, and preferably 300°C or lower, more preferably 280°C or lower.
  • the glass transition temperature can be calculated based on, for example, JIS K 7121.
  • the shape of the base layer 2 may be any of a plate, a film, and a sheet.
  • a curved structure may be formed in a part or all of the base material layer 2.
  • the size in the thickness direction of the base layer 2 is, for example, 0.5 ⁇ m or more and 50 ⁇ m or less, preferably 1 ⁇ m or more and 20 ⁇ m or less, more preferably 2 ⁇ m or more and 10 ⁇ m or less, and further preferably 3 ⁇ m or more and 8 ⁇ m or less.
  • the size of the base material layer 2 in the width direction and the length direction may be the same as the size of the long laminate 1 in the width direction and the length direction.
  • the substrate layer 2 is preferably wound in a reel shape. As described above, when a plurality of laminates 6 are present along the longitudinal direction of the substrate layer 2, the substrate layer 2 is preferably wound in a reel shape along the longitudinal direction.
  • the substrate layer 2 (I-2, II-2), the laminate 6 (I-6, II-6) (including the first electrode 3 (I-3, II-3), the photovoltaic layer 4 (I-4, II-4), and the second electrode 5 (I-5, II-5)) on the substrate layer 2 (I-2, II-2), and the protective layer 7 (I-7, II-7) may also be wound in a reel shape if provided.
  • the long laminate 1 (I-1, II-1) wound in a reel shape in this manner is preferably formed into a film roll.
  • a film roll for example, when the long laminate 1 includes a plurality of laminates 6, the long laminate 1 may be easily handled.
  • the long laminate 1 (I-1, II-1) when it is described that the long laminate 1 (I-1, II-1) is wound in a reel shape, it is intended to include the case where the entire long laminate 1 (I-1, II-1) is wound in a reel shape, and the case where the long laminate 1 (I-1, II-1) is partially wound in a reel shape.
  • the base material layer 2 is preferably in contact with the first electrode 3 via an adhesive layer,
  • the base layer 2 is preferably peelable so that the laminate 6 including the first electrode 3, the photovoltaic layer 4, and the second electrode 5 can be attached to a desired object.
  • peeling off the base layer 2 leaves the adhesive layer on the first electrode 3 side, for example, and the first electrode 3 etc. can be attached to a desired target by the adhesive force of the adhesive layer.
  • the adhesive layer is partially provided or not provided on the portion of the first electrode 3 etc. that is used for electrical connection as described later. The same applies to the other adhesive layers described later.
  • the adhesive layer itself may be a peelable layer, but a release layer may be provided separately from the adhesive layer.
  • a release layer and an adhesive layer are provided in this order between the base layer 2 and the first electrode 3, when the base layer 2 is peeled off, for example, the adhesive layer remains on the first electrode 3 side, and the first electrode 3 etc. can be attached to a desired target by the adhesive force of the adhesive layer.
  • Materials for the release layer include silicone-based materials and non-silicone-based materials (eg, acrylic-based materials, urethane-based materials).
  • the stack 6 (I-6, II-6) includes a first electrode 3 (I-3, II-3), a photovoltaic layer 4 (I-4, II-4), and a second electrode 5 (I-5, II-5).
  • a part of the photovoltaic layer 4 (I-4, II-4) is formed on the first electrode 3 (I-3, II-3)
  • at least a part of the second electrode 5 (I-5, II-5) is formed on the photovoltaic layer 4 (I-4, II-4).
  • the first electrode 3 (I-3, II-3), the photovoltaic layer 4 (I-4, II-4), and the second electrode 5 (I-5, II-5) may be laminated in this order, or other layers may be formed between the first electrode 3 (I-3, II-3) and the photovoltaic layer 4 (I-4, II-4) and between the photovoltaic layer 4 (I-4, II-4) and the second electrode 5 (I-5, II-5).
  • the other layers are preferably a hole extraction layer, an electron extraction layer, an adhesive layer made of a conductive paste, or the like, as described below.
  • the laminate 6 (I-6, II-6) including the first electrode 3 (I-3, II-3), the photovoltaic layer 4 (I-4, II-4), and the second electrode 5 (I-5, II-5) may be present in one layer along the longitudinal direction of the base layer 2 (I-2, II-2), or a plurality of layers may be present along the longitudinal direction of the base layer 2 (I-2, II-2). However, it is preferable that a plurality of layers are present along the longitudinal direction of the base layer 2 (I-2, II-2). When there are a plurality of laminates 6, it is preferable that there is an area where no laminate is formed between one laminate 6 and another laminate 6. Each laminate constitutes a cell unit due to the area. It is preferable that the plurality of laminates 6 have the same structure.
  • the number of laminates 6 is preferably 2 to 1,000, more preferably 3 to 700, even more preferably 5 to 400, and even more preferably 10 to 100.
  • the laminate 6 including the first electrode 3, the photovoltaic layer 4, and the second electrode 5 may exist in one piece in the width direction of the base layer 2, or may exist in multiple pieces in the width direction of the base layer 2.
  • the width of the laminate 6 is, for example, 1 cm or more and 100 cm or less, preferably 2 cm or more and 80 cm or less, more preferably 5 cm or more and 60 cm or less, and further preferably 10 cm or more and 40 cm or less.
  • the longitudinal size of the laminate 6 is, for example, 5 cm or more and 200 cm or less, preferably 10 cm or more and 150 cm or less, more preferably 15 cm or more and 100 cm or less, and even more preferably 20 cm or more and 80 cm or less.
  • the size in the thickness direction of the laminate 6 is, for example, 30 nm or more and 3000 nm or less, preferably 60 nm or more and 2400 nm or less, more preferably 90 nm or more and 1800 nm or less, and further preferably 150 nm or more and 1200 nm or less.
  • the first electrode 3 (I-3, II-3) formed on the base layer 2 preferably has a 1-1 region 8 (I-8, II-8) facing the second electrode 5 (I-5, II-5) and a 1-2 region 9 (I-9, II-9) not facing the second electrode 5 (I-5, II-5).
  • the first electrode and the second electrode can be connected in a planar manner, and therefore the wiring resistance can be reduced.
  • the 1-2 region 9 (I-9, II-9) of the first electrode may be a region in which the second electrode 5 (I-5, II-5) is not formed, or may be a region in which neither the photovoltaic layer 4 (I-4, II-4) nor the second electrode 5 (I-5, II-5) is formed.
  • the 1-2 region 9 (I-9, II-9) of the first electrode is present on the other widthwise side of the base layer 2 (I-2, II-2) and not present on one widthwise side of the base layer 2 (I-2, II-2). That is, the 1-2 region 9 (I-9, II-9) of the first electrode does not exist on both sides of the 1-1 region 8 (I-8, II-8) (2-1 region 10 (I-10, II-10)) where the first electrode 3 (I-3, II-3) and the second electrode 5 (I-5, II-5) face each other, but preferably exists on one side of the 1-1 region 8 (I-8, II-8) (2-1 region 10 (I-10, II-10)).
  • the first electrode 3 (I-3, II-3), more specifically, the 1-2 region 9 (I-9, II-9) of the first electrode 3 (I-3, II-3) has a portion where no other layers are provided between the first electrode 3 (I-3, II-3) (which can be read as the 1-2 region 9 (I-9, II-9)) and the height at which the second electrode 5 (I-5, II-5) is provided on the photovoltaic layer 4 (I-4, II-4). In the example of Figures 2 and 3, this portion is provided at the end of the first electrode 3 (I-3, II-3).
  • the 1-1 region 8 is preferably larger than the 1-2 region 9 . That is, when the total length (based on the width direction length) of the 1-1 region 8 and the 1-2 region 9 of the first electrode 3 is taken as 100%, the length ratio of the 1-1 region 8 is preferably more than 50% and not more than 90%, more preferably 60% or more and not more than 85%, and further preferably 65% or more and not more than 80%. With such a length ratio, the inflow and outflow of electrons can be performed successfully in the electrode.
  • the length ratio of the 1-2 region 9 is preferably 10% or more and less than 50%, more preferably 15% or more and 40% or less, and even more preferably 20% or more and 35% or less.
  • the 1-2 region 9 of the first electrode 3 satisfies the length ratio in the above range, by bonding it to another laminate as described below, a part (overlapping part) electrically connected with the second electrode or photovoltaic layer of the other laminate is formed, so that a plurality of laminates can be connected in series.
  • the laminate having a power generating function can be adapted to the shape and size of the device, and it is possible to maximize the power generating area relative to the total area of the laminate having a power generating function provided in the device.
  • the wiring resistance can be reduced.
  • the second electrode 5 (I-5, II-5) is at least partially formed on the photovoltaic layer 4 (I-4, II-4).
  • the second electrode I-5 is preferably formed not only on the photovoltaic layer I-4 but also on the side surface of the photovoltaic layer I-4 and the base layer I-2.
  • the second electrode I-5 has a portion (a 2-2z region I-11z described later) that extends on the base layer I-2 via the side surface of the photovoltaic layer I-4.
  • the second electrode II-5 is preferably formed only on the photovoltaic layer II-4.
  • the 2-1 region 10 and the 2-2 region 11 of the second electrode 5 will be described below. Similar to the 1-1 region 8 of the first electrode 3, the 2-1 region 10 of the second electrode 5 corresponds to the region where the first electrode 3 and the second electrode 5 face each other.
  • the second-2 region 11 (I-11, II-11) of the second electrode 5 (I-5, II-5) is not opposed to the first electrode 3 (I-3, II-3), is present on one widthwise side of the base layer 2 (I-2, II-2), and is not present on the other widthwise side of the base layer 2 (I-2, II-2). It is preferable that the second-2 region 11 (I-11, II-11) is a region that is formed only on one widthwise side of the base layer 2 (I-2, II-2).
  • the 2-2 region I-11 may include a 2-2x region I-11x (the region surrounded by I-11xl and I-11xh in FIG. 2) provided on the photovoltaic layer I-4, a 2-2y region I-11y (the region surrounded by I-11yl and I-11yh in FIG. 2) provided on the side surface of the photovoltaic layer I-4, and a 2-2z region I-11z (the region surrounded by I-11zl and I-11zh in FIG. 2) provided on the base layer I-2.
  • the 2-2y region I-11y is preferably in contact with the side surface of the photovoltaic layer I-4, and preferably connects the 2-2x region I-11x and the 2-2z region I-11z.
  • the 2-2z region I-11z of the second electrode 5 (I-5), more specifically the 2-2z region I-11z of the 2-2 region I-11 of the second electrode 5 (I-5), is the portion that extends on the base layer I-2 via the side of the photovoltaic layer I-4, and is a portion where no other layer is provided between the portion and the height at which the second electrode 5 (I-5) is provided on the photovoltaic layer I-4. In the example of FIG. 2, the portion is provided at the end of the second electrode 5 (I-5).
  • the side surface of the photovoltaic layer I-4 may have a slope (e.g., greater than 0 degrees and less than or equal to 90 degrees) with respect to the lower surface of the photovoltaic layer I-4, and when the slope is 90 degrees, the side surface may be perpendicular to the upper and lower surfaces of the photovoltaic layer I-4.
  • a slope e.g., greater than 0 degrees and less than or equal to 90 degrees
  • the second-2y region I-11y provided on the side surface of the photovoltaic layer I-4 may form a shape such as a rectangle or a parallelogram, and the upper and lower surfaces of the second electrode I-5 constituting the second-2y region I-11y may have a gradient start point and a gradient end point, or may form a gradient surface (the gradient is, for example, greater than 0 degrees and less than or equal to 90 degrees, based on the upper surface of the base material layer I-2).
  • the gradient start point may be a point closer to substrate layer I-2, and the gradient end point may be a point farther from substrate layer I-2.
  • I-11xl may be, for example, the length of a line segment connecting a junction between the lower surface of the second electrode I-5 and the upper surface of the photovoltaic layer I-4 and a junction between the upper surface of the photovoltaic layer I-4 and a side surface of the photovoltaic layer I-4, which corresponds to a junction between the 2-1 region I-10 and the 2-2 region I-11 of the second electrode I-5.
  • I-11yl may be, for example, the length of a line segment connecting a junction between the upper surface of the photovoltaic layer I-4 and a side surface of the photovoltaic layer I-4 and a junction between a plane parallel to the upper surface of the photovoltaic layer I-4 and a gradient surface derived from the upper surface of the second electrode I-5 (or a length corresponding to the size of the second electrode I-5 in the thickness direction).
  • I-11yl may be, for example, the length of a line segment connecting two points obtained by projecting the gradient start point and gradient end point of the upper surface of the second electrode I-5 onto the upper surface of the base material layer I-2.
  • I-11zl may be, for example, the length of a line segment connecting an end point of the upper surface of the second electrode I-5 corresponding to the end point of the 2-2 region I-11 and the gradient starting point of the upper surface of the second electrode I-5.
  • I-11xh may be, for example, a height corresponding to the size of the second electrode I-5 in the thickness direction.
  • I-11yh may be, for example, a height corresponding to the size in the thickness direction of a stack I-6 composed of a first electrode I-3, a photovoltaic layer I-4, and a second electrode I-5.
  • I-11zh may be, for example, a height corresponding to the size in the thickness direction of the first electrode I-3 and/or the second electrode I-5.
  • the lengths (based on the width direction length) of the 2-2x region I-11x, the 2-2y region I-11y, and the 2-2z region I-11z have the following relationship: length of the 2-2x region I-11x (I-11xl in FIG. 2) ⁇ length of the 2-2y region I-11y (I-11yl in FIG. 2) ⁇ length of the 2-2z region I-11z (I-11zl in FIG. 2).
  • the thicknesses of the second-1 region I-10 and the second-2 region I-11 preferably have the relationship: thickness of the second-1 region I-10 ⁇ thickness of the second-2 region I-11.
  • the thicknesses of the 2-2x region I-11x, the 2-2y region I-11y, and the 2-2z region I-11z satisfy the following relationship: thickness of the 2-2z region I-11z (I-11zh in FIG. 2) ⁇ thickness of the 2-2x region I-11x (I-11xh in FIG. 2) ⁇ thickness of the 2-2y region I-11y (I-11yh in FIG. 2).
  • the second-2 region 11 (I-11, II-11) of the second electrode 5 does not exist on both sides of the second-1 region 10 (I-10, II-10) (1-1 region 8 (I-8, II-8)) where the first electrode 3 (I-3, II-3) and the second electrode 5 (I-5, II-5) face each other, but preferably exists on one side of the second-1 region 10 (I-10, II-10) (1-1 region 8 (I-8, II-8)).
  • the laminate having a power generating function can be adapted to the shape and size of the device, and it is possible to maximize the power generating area relative to the total area of the laminate having a power generating function provided in the device.
  • the first electrode and the second electrode can be connected in a planar manner, so that the wiring resistance can be reduced.
  • the respective length ratios of the 2-1 region 10 and the 2-2 region 11 are as follows:
  • the 2-1 region I-10 of the second electrode I-5 preferably has a longer length than the 2-1 region I-10 or the 2-2 region I-11, from the viewpoint of flowing electrons in or out of the photovoltaic layer.
  • the length ratio of the 2-1 region I-10 of the second electrode I-5 is preferably 45% or more and 80% or less, more preferably 50% or more and 75% or less, and even more preferably 55% or more and 70% or less, when the total length (based on the width direction length) of the 2-1 region I-10 and the 2-2 region I-11 of the second electrode I-5 is 100%. If the length ratio is 45% or more, the flow of electrons into or out of the photovoltaic layer can be made successful, whereas if the length ratio is 80% or less, the length corresponding to the 2-2 region can be ensured.
  • the 2-2 region I-11 of the second electrode I-5 is formed in the width direction of the base material layer, and may have a length shorter than the length of the 2-1 region I-10 from the viewpoint of ensuring a bonding portion with another laminate.
  • the length ratio of the 2-2 region I-11 of the second electrode I-5 is preferably 20% or more and 55% or less, more preferably 25% or more and 50% or less, and even more preferably 30% or more and 45% or less, when the total length (based on the width direction length) of the 2-1 region I-10 and the 2-2 region I-11 of the second electrode I-5 is 100%. If the length ratio is 20% or more, it is easy to ensure a bonding portion with another laminate, while if the length ratio is 55% or less, the flow of electrons into or out of the photovoltaic layer can be successfully achieved.
  • the 2-2 region I-11 of the second electrode I-5 satisfies the length ratio in the above range, by bonding it with another laminate, a part (overlapping part) electrically connected with the first electrode or photovoltaic layer 4 of the other laminate is formed, so that a plurality of laminates having a power generation function can be connected in series.
  • the laminate having a power generation function is produced, it can be adapted to the shape and size of the device, and it is possible to maximize the power generation area relative to the total area of the laminate having a power generation function provided in the device.
  • the wiring resistance can be reduced.
  • the durability of the photovoltaic device can be increased by functioning stably for a long period of time even if it is deformed by the application of an external force.
  • the photovoltaic layer II-4 has a portion that is provided below the second electrode II-5, more specifically, the second-2 region II-11, and has a portion below which no electrode exists. In the example of FIG. 3, this portion is provided at the end of the photovoltaic layer II-4. This makes it possible to form multiple stacks connected in series by overlapping and contacting this portion with the electrode of another stack during the manufacture of the photovoltaic device described below.
  • the 2-2 region II-11 of the second electrode II-5 may have a length longer than the length of the 2-1 region II-10 from the viewpoint of ensuring a bonding portion with another laminate.
  • the length ratio of the 2-2 region II-11 of the second electrode II-5 is preferably 45% or more and 80% or less, more preferably 50% or more and 75% or less, and even more preferably 55% or more and 70% or less, when the total length (based on the width direction length) of the 2-1 region II-10 and the 2-2 region II-11 of the second electrode II-5 is 100%.
  • the length ratio of the 2-1 region II-10 of the second electrode II-5 is preferably 20% or more and 55% or less, more preferably 25% or more and 50% or less, and even more preferably 30% or more and 45% or less, when the total length (based on the width direction length) of the 2-1 region II-10 and the 2-2 region II-11 of the second electrode II-5 is 100%.
  • the length ratio is 20% or more, the strength of the laminate is easily ensured, whereas when the length ratio is 55% or less, the bonding portion with another laminate is easily ensured.
  • the 2-2 region 11 (I-11, II-11) of the second electrode 5 (I-5, II-5) and the 1-2 region 9 (I-9, II-9) of the first electrode 3 (I-3, II-3) are present on one side and the other side in the width direction of the base layer 2 (I-2, II-2), respectively.
  • the 2-2 region 11 of the second electrode 5 and the 1-2 region 9 of the first electrode 3 may have the same length or may have different lengths.
  • first electrode 3 and the second electrode 5 are a negative electrode (anode) and the other is a positive electrode (cathode). It is also preferable that at least the second electrode 5 has optical transparency, and it is more preferable that both the second electrode 5 and the first electrode 3 have optical transparency.
  • Each of the first electrode 3 and the second electrode 5 may be a single layer made of a conductive material, or may have a laminated structure of two or more layers.
  • the negative electrode is made of a conductive material with a high work function, and is an electrode through which electrons flow into an external circuit.
  • materials constituting the negative electrode include metal oxides such as nickel oxide, tin oxide, indium oxide, indium tin oxide (ITO), indium zirconium oxide (IZO), titanium oxide, indium oxide, and zinc oxide; metals such as gold, platinum, silver, chromium, and cobalt, and alloys thereof.
  • a conductive polymer material such as PEDOT:PSS in which a polythiophene derivative is doped with polystyrene sulfonic acid, or polypyrrole or polyaniline doped with iodine or the like may be used.
  • a transparent electrode it is preferable to use a light-transmitting metal oxide such as ITO, zinc oxide, or tin oxide, and it is more preferable to use ITO.
  • the size in the thickness direction of the first electrode or the second electrode that will be the negative electrode is, for example, 10 nm or more and 1000 nm or less, preferably 20 nm or more and 800 nm or less, more preferably 30 nm or more and 600 nm or less, and even more preferably 50 nm or more and 400 nm or less.
  • the size in the thickness direction of the negative electrode is within this range, light can be efficiently converted into electricity without reducing the light transmittance.
  • the width of the first or second electrode that is the negative electrode may be the same as or different from the width of the laminate 6.
  • the electrode that is the negative electrode, either the first electrode or the second electrode may have a predetermined sheet resistance, and the value of the sheet resistance is, for example, 1 ⁇ / ⁇ or more and 1000 ⁇ / ⁇ or less, preferably 2 ⁇ / ⁇ or more and 500 ⁇ / ⁇ or less, and more preferably 5 ⁇ / ⁇ or more and 100 ⁇ / ⁇ or less.
  • the negative electrode out of the first and second electrodes may be formed using a vacuum film-forming method such as vapor deposition or sputtering, or a wet coating method in which an ink containing nanoparticles or the like is applied to form a film, and may be etched or otherwise shaped as required.
  • a vacuum film-forming method such as vapor deposition or sputtering, or a wet coating method in which an ink containing nanoparticles or the like is applied to form a film, and may be etched or otherwise shaped as required.
  • the positive electrode is made of a conductive material having a low work function, and is an electrode into which electrons flow.
  • materials constituting the positive electrode include metals such as platinum, gold, silver, copper, iron, tin, zinc, aluminum, indium, chromium, lithium, sodium, potassium, cesium, calcium, and magnesium, and alloys thereof; inorganic salts such as lithium fluoride and cesium fluoride; and metal oxides such as nickel oxide, aluminum oxide, lithium oxide, and cesium oxide.
  • Preferred materials for forming the positive electrode are metals such as platinum, gold, silver, copper, iron, tin, aluminum, calcium, and indium, and alloys of such metals with indium tin oxide or the like.
  • the size in the thickness direction of the electrode that will be the positive electrode, of the first electrode or the second electrode is, for example, 10 nm or more and 1000 nm or less, preferably 20 nm or more and 800 nm or less, more preferably 30 nm or more and 600 nm or less, and even more preferably 50 nm or more and 400 nm or less.
  • the size in the thickness direction of the positive electrode is within this range, light can be efficiently converted into electricity without reducing the light transmittance.
  • the width of the first or second electrode that is the positive electrode may be the same as or different from the width of the laminate 6.
  • the electrode that is the positive electrode, either the first electrode or the second electrode may have a predetermined sheet resistance, and the value of the sheet resistance is, for example, 1 ⁇ / ⁇ or more and 1000 ⁇ / ⁇ or less, preferably 2 ⁇ / ⁇ or more and 500 ⁇ / ⁇ or less, and more preferably 5 ⁇ / ⁇ or more and 100 ⁇ / ⁇ or less.
  • the electrode that is the positive electrode, either the first or second electrode may be formed using a vacuum film-forming method such as vapor deposition or sputtering, or a wet coating method in which an ink containing nanoparticles or the like is applied to form a film, and may be etched or otherwise shaped into a desired shape as necessary.
  • a vacuum film-forming method such as vapor deposition or sputtering, or a wet coating method in which an ink containing nanoparticles or the like is applied to form a film, and may be etched or otherwise shaped into a desired shape as necessary.
  • the negative and positive electrodes may each use one or more materials in each layer, may have a laminated structure of two or more layers, and other layers may be formed in the negative and positive electrodes.
  • Materials used in the other layers may be poly(ethylenedioxythiophene):poly(styrenesulfonic acid) (PEDOT:PSS), molybdenum oxide, lithium fluoride, 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline, etc.
  • At least one electrode preferably has optical transparency from the viewpoint of absorbing solar light, and it is more preferable that the electrode has an optical transmittance of preferably 40% or more, more preferably 55% or more, even more preferably 85% or more, and even more preferably 90% or more in the wavelength range of 360 to 830 nm.
  • the electrode may be formed using any of the above metal oxides or alloys thereof.
  • Photovoltaic Layer At least a portion of the photovoltaic layer 4 (I-4, II-4) is formed on the first electrode 3 (I-3, II-3).
  • the photovoltaic layer I-4 may be formed not only on the first electrode I-3 but also on the base material layer I-2.
  • Materials constituting the photovoltaic layer 4 include organic compound materials (e.g., organic dye materials, organic semiconductor materials), etc.
  • the material constituting the photovoltaic layer 4 is preferably an organic semiconductor material from the viewpoints of light weight, flexibility, etc.
  • the photovoltaic layer 4 preferably includes an organic thin film.
  • organic dye material examples include dye-sensitizable coumarin derivatives, mercurochrome dyes, etc.
  • Organic semiconductor materials are broadly divided into p-type and n-type, but because the holes and electrons that contribute to electrical conduction change depending on the electronic state, doping state, and trap state of the material, it is sometimes not possible to clearly classify them as p-type or n-type, and the same material may exhibit both p-type and n-type properties.
  • the p-type semiconductor may be a polymer organic semiconductor compound, a low molecular weight organic semiconductor compound, or the like.
  • the polymer organic semiconductor compound include conjugated polymer semiconductor compounds such as polythiophene, polyfluorene, polyphenylene vinylene, polythienylene vinylene, polyacetylene, and polyaniline; polymer semiconductor compounds such as substituted oligothiophenes; and semiconductor compounds obtained by copolymerizing two or more types of monomers.
  • the polymeric organic semiconductor compound may be one type of compound or a mixture of multiple types of compounds.
  • low molecular weight organic semiconductor compounds include condensed aromatic hydrocarbons such as naphthacene, pentacene, and pyrene; oligothiophenes containing four or more thiophene rings; compounds containing one or more selected from thiophene rings, benzene rings, fluorene rings, naphthalene rings, anthracene rings, thiazole rings, thiadiazole rings, and benzothiazole rings, with a total of four or more rings linked together; phthalocyanine compounds, metal complexes thereof, porphyrin compounds such as tetrabenzoporphyrin, and macrocyclic compounds such as metal complexes thereof, and the like.
  • the molecular weight of the low molecular weight organic semiconductor compound is, for example, 100 or more and 5,000 or less, and preferably 200 or more and 2,000 or less.
  • the photovoltaic layer 4 is not limited thereto.
  • a material used in a silicon-based solar cell such as a crystalline silicon solar cell and an amorphous silicon solar cell
  • a compound-based solar cell such as a CIS solar cell, a CIGS solar cell, and a CdTe solar cell
  • an organic-inorganic hybrid solar cell which may also be referred to as a perovskite solar cell
  • a solar cell such as a dye-sensitized solar cell
  • the material constituting the photovoltaic layer 4 for example, a silicon material, an inorganic compound material other than a silicon material, a perovskite material, and a quantum dot material may be used.
  • the silicon material include single crystal silicon, polycrystalline silicon, microcrystalline silicon, and amorphous silicon.
  • the inorganic compound material include InGaAs, GaAs, CIS, CIGS, CZTS, CdTe/CdS, InP, SiGe, Ge, and ZnO/CuAlO 2 . When such a material can be used, it is possible to form a thin layer, which is advantageous in terms of ease of handling during winding into a reel and transfer, which will be described later.
  • n-type semiconductors include fullerene compounds, quinolinol derivative metal complexes such as 8-hydroxyquinoline aluminum, condensed ring tetracarboxylic acid diimides such as naphthalene tetracarboxylic acid diimide and perylene tetracarboxylic acid diimide, perylene diimide derivatives, terpyridine metal complexes, tropolone metal complexes, flavonol metal complexes, perinone derivatives, benzimidazole derivatives, benzoxazole derivatives, thiazole derivatives, benzthiazole derivatives, benzothiadiazole derivatives, oxadiazole derivatives, thiadiazole derivatives, triazole derivatives, pyrazine derivatives, phenanthroline derivatives, quinoxaline derivatives, benzoquinoline derivatives, borane derivatives, fluorides of condensed polycyclic aromatic hydrocarbons such as anthracene, pyrene
  • the photovoltaic layer 4 may include at least a p-type semiconductor and an n-type semiconductor.
  • the photovoltaic layer 4 may be a single layer, or may be configured as a laminated structure of two or more layers.
  • the photovoltaic layer 4 may contain, for example, an n-type semiconductor and a p-type semiconductor in separate layers, or may contain an n-type semiconductor and a p-type semiconductor in the same layer.
  • the n-type semiconductor and the p-type semiconductor used in the photovoltaic layer 4 may each be used alone or in combination of two or more kinds.
  • Examples of the configuration of the photovoltaic layer 4 include a bulk heterojunction type having a layer (i layer) in which a p-type semiconductor and an n-type semiconductor are separated within the layer, a stacked type (hetero pn junction type) in which a layer containing a p-type semiconductor (p layer) and a layer containing an n-type semiconductor (n layer) have an interface, a Schottky type, and combinations of these.
  • the size in the thickness direction of the photovoltaic layer 4 is, for example, 10 nm or more and 1000 nm or less, preferably 20 nm or more and 500 nm or less, and more preferably 50 nm or more and 300 nm or less.
  • the size of the photovoltaic layer 4 in the width direction is smaller than the size of the laminate 6 in the width direction, for example.
  • the photovoltaic layer 4 is preferably formed by a coating method, and more preferably by a wet coating method.
  • the coating method include spin coating, reverse roll coating, gravure coating, kiss coating, spray coating, air knife coating, impregnation coating, and curtain coating.
  • Electron Transport Layer An electron transport layer (electron transport layer II-12 in the example of FIG. 3) may be provided between the photovoltaic layer 4 and the electrode. The electron transport layer extracts electrons generated in the photovoltaic layer 4 and acts as an energy barrier to holes.
  • the material constituting the electron transport layer may be any material as long as it is a material through which electrons can easily move, and examples of such materials include organic materials such as cyano group-containing polyphenylene vinylene, oxadiazole compounds, benzimidazole compounds, naphthalene tetracarboxylic acid compounds, perylene derivatives, and fluoro group-containing phthalocyanines, and inorganic materials such as phosphine oxide compounds, phosphine sulfide compounds, titanium oxide, zinc oxide, indium oxide, tin oxide, gallium oxide, tin sulfide, indium sulfide, and zinc sulfide.
  • organic materials such as cyano group-containing polyphenylene vinylene, oxadiazole compounds, benzimidazole compounds, naphthalene tetracarboxylic acid compounds, perylene derivatives, and fluoro group-containing phthalocyanines
  • inorganic materials such as
  • the size of the electron transport layer in the thickness direction is, for example, 1 nm or more and 300 nm or less, preferably 2 nm or more and 200 nm or less, and more preferably 5 nm or more and 100 nm or less.
  • the long laminate II-1 of the second embodiment preferably has an electron transport layer II-12 between the first electrode II-3 and the photovoltaic layer II-4 and/or between the second electrode II-5 and the photovoltaic layer II-4.
  • the long laminate II-1 has an electron transport layer II-12 between the 1-1 region II-8 of the first electrode II-3 and the photovoltaic layer II-4, and has another electron transport layer II-12 between the 2-2 region II-11 of the second electrode II-5 and the photovoltaic layer II-4.
  • the long laminate II-1 may have an electron transport layer II-12 between the 2-1 region II-10 of the second electrode II-5 and the photovoltaic layer II-4, and another electron transport layer II-12 below the 2-2 region II-11 of the second electrode II-5 and in contact with the lower surface of the photovoltaic layer II-4.
  • the long laminate 1 (I-1, II-1) preferably further has a protective layer 7 (I-7, II-7) on the second electrode 5 (I-5, II-5).
  • the protective layer 7 is preferably a layer that prevents deterioration of the laminate 6 from corrosion due to temperature, humidity, natural light, wind and rain, etc.
  • Materials for the protective layer 7 include polyethylene resin, polypropylene resin, cyclic olefin resin, acrylonitrile-styrene resin, acrylonitrile-butadiene-styrene resin, polyvinyl chloride resin, fluororesin, polyester resins such as polyethylene terephthalate resin and polyethylene naphthalate resin, phenol resin, polyacrylic resin, polyamide resin, polyimide resin, polyurethane resin, silicone resin, etc.
  • the protective layer 7 is weather resistant, it is preferable that the protective layer 7 is a fluororesin.
  • fluororesins include polytetrafluoroethylene, 4-fluoroethylene-perchloroalkoxy copolymer, 4-fluoroethylene-6-fluoropropylene copolymer, 2-ethylene-4-fluoroethylene copolymer, polyvinylidene fluoride, polyvinyl fluoride, etc.
  • the protective layer 7 may be made of one type of material, or may be made of two or more types of materials.
  • the protective layer 7 may be one layer or two or more layers.
  • the size in the thickness direction of the protective layer 7 is, for example, 0.5 ⁇ m to 100 ⁇ m, preferably 1 ⁇ m to 50 ⁇ m, and more preferably 2 ⁇ m to 30 ⁇ m. As the size in the thickness direction of the protective layer is reduced, the flexibility is increased.
  • the size of the protective layer 7 in the width direction and the length direction may be the same as the size of the long laminate 1 in the width direction and the length direction.
  • the protective layer 7 is preferably transparent to visible light.
  • the light transmittance of the protective layer 7 in the visible light range of wavelengths from 360 to 830 nm is preferably 80% or more, more preferably 90% or more, and even more preferably 95% or more.
  • the protective layer 7 may be formed on the second electrode 5 via an adhesive layer, similar to the base layer 2.
  • the protective layer 7 may be peelable, similar to the base layer 2.
  • a desired target such as a barrier layer
  • the protective layer 7 may be provided for each laminate, or one protective layer 7 may be provided above the plurality of laminates.
  • the adhesive layer provided on the protective layer 7 may be a peelable layer, or a peeling layer may be provided separately from the adhesive layer.
  • a peeling layer and an adhesive layer are provided in this order between the protective layer 7 and the second electrode 5, when the protective layer 7 is peeled off, for example, the adhesive layer remains on the second electrode 5 side, and a desired object (such as a barrier layer) can be attached to the second electrode 5 or the like due to the adhesive force of the adhesive layer.
  • a desired object such as a barrier layer
  • peeling off of the protective layer 7 can be facilitated.
  • the peeling force when peeling the base layer 2 from the first electrode 3 and the peeling force when peeling the protective layer 7 from the second electrode 5 are preferably different from each other. Such peeling force is derived from the adhesive layer and/or peeling layer described above.
  • the peeling force when peeling the protective layer 7 from the second electrode 5 is preferably greater than the peeling force when peeling the base layer 2 from the first electrode 3. This makes it easier for the base layer 2 to be peeled off before the protective layer 7, and the first electrode 3 and the like can be attached to the target in a state in which the protective layer 7 is not peeled off.
  • the case in which the base layer 2 is peeled off when attaching to the attachment target will mainly be described, but the protective layer 7 may be peeled off instead of the base layer 2 when attaching to the attachment target.
  • the peeling force when peeling the base layer 2 from the first electrode 3 is preferably greater than the peeling force when peeling the protective layer 7 from the second electrode 5. This makes it easier for the protective layer 7 to be peeled off before the base layer 2.
  • the electrode that is present on the outside after attachment to an object is preferably a transparent electrode.
  • the protective layer 7 and the base layer 2 may have a predetermined rigidity (e.g., bending rigidity), and it is preferable that the protective layer 7 and the base layer 2 have different rigidities, and it is more preferable that the rigidity of the protective layer 7 is greater than the rigidity of the base layer 2. This makes it easier to wind the long laminate 1 into a reel.
  • a predetermined rigidity e.g., bending rigidity
  • the long laminate 1 preferably includes a laminate 6 including a first electrode 3, a photovoltaic layer 4, and a second electrode 5, and further includes an area where the laminate 6 is not formed.
  • the area where the laminate 6 is not formed includes an area where the first electrode 3, the photovoltaic layer 4, and the second electrode 5 are not formed on the base layer 2, an area where the photovoltaic layer 4 and the second electrode 5 are not formed on the first electrode 3, an area where the second electrode 5 is not formed on the photovoltaic layer 4, and an air gap area formed between the second electrode 5 and the protective layer 7.
  • Such an area can be used when the multiple laminates provided in the long laminate 1 are attached to the device base material with some overlapping each other to form a photovoltaic device described later.
  • the proportion of this region is 60% or more, the strength of the photovoltaic device itself can be easily ensured, and when the proportion of this region is 95% or less, a region for arranging the laminates in series can be easily ensured.
  • the insulating layer In order to increase the power generation area relative to the total area of the power generating laminate provided in the device, it is desirable to reduce the area of the insulating layer that is irradiated with light relative to the light receiving surface of the device.
  • the area of the insulating layer is preferably 10% or less, more preferably 5% or less, even more preferably 1% or less, and even more preferably 0% relative to 100% of the area of the long laminate.
  • the long laminate does not include an insulating layer.
  • the insulating layer does not have to be provided between each of the laminates arranged in series, but can be provided at any location as long as it ensures insulation between the first electrodes and second electrodes of each laminate.
  • FIG. 4 is a diagram showing a method for producing a photovoltaic device by sequentially attaching a plurality of laminates 6 provided in a long laminate 1 according to an embodiment of the present invention to a device substrate
  • Fig. 5 is a plan view of a photovoltaic device obtained by sequentially attaching a plurality of laminates 6 (preferably laminates 6 from which the substrate layer 2 has been peeled off) provided in a long laminate 1 to a device substrate.
  • Fig. 6 shows an example of a cross-sectional view of a photovoltaic device according to one embodiment of the present invention (first aspect), and Figs.
  • FIG. 7 and 8 show other examples of cross-sectional views of a photovoltaic device according to one embodiment of the present invention (first aspect).
  • Fig. 9 shows an example of a cross-sectional view of a photovoltaic device according to another embodiment of the present invention (second aspect).
  • the long laminate 1 is formed by arranging a plurality of laminates 6 (including a first electrode 3, a photovoltaic layer 4, and a second electrode 5 in this order) having the same structure along the longitudinal direction.
  • the base layer 2 is peeled off from the long laminate 1 so as to expose at least the first electrode 3 of the first laminate of the plurality of laminates 6, and the exposed first electrode 3 surface is attached to the device substrate 2a to form the first laminate on the device substrate 2a.
  • the base layer 2 is peeled off from the long laminate 1 so as to expose at least the first electrode 3 of the second laminate of the plurality of laminates 6, for example, the second laminate arranged next to the first laminate.
  • first electrodes 3 of the first and second laminates are exposed by peeling off the base layer 2 once, this second peeling is not essential.
  • the exposed first electrode 3 surface of the second laminate is attached to the device substrate 2a so as to be parallel to the long side of the first laminate and overlap the first laminate to form an overlapping portion 30.
  • This specification mainly describes an example in which the photovoltaic device 40 is produced as described above from multiple laminates 6 arranged on the same long laminate 1, but for example, a photovoltaic device 40 having a similar structure to that described above may be produced by attaching the laminates 6 arranged on different long laminates 1 to the same device substrate 2a.
  • the photovoltaic device 40 will be described with reference to Fig. 5.
  • the photovoltaic device 40 uses a plurality of laminates 6 (preferably laminates 6 from which the base layer 2 has been peeled off) provided on the long laminate 1, and is produced by bonding the first, second, third, and fourth laminates (in Fig. 5, the reference characters 1a, 1b, 1c, and 1d are given in order of appearance) of the plurality of laminates 6 to the device base material 2a so that adjacent laminates partially overlap each other.
  • the overlapping portion 30 between the laminates 1a, 1b, 1c, and 1d is a portion where the first electrode I-3 of a certain laminate overlaps with the second electrode 1-5 of another laminate to realize an electrical connection
  • the second embodiment it is a portion where the first electrode II-3 of a certain laminate overlaps with the photovoltaic layer II-4 of another laminate to realize an electrical connection. That is, in the photovoltaic device 40, the plurality of laminates 6 arranged on the long laminate 1 are transferred onto the device substrate 2a and electrically connected.
  • the photovoltaic device I-40 of the first embodiment will be described with reference to FIG. 6.
  • the photovoltaic device I-40 includes a device substrate I-2a, a first laminate I-6a, and a second laminate I-6b.
  • the first laminate I-6a includes a first electrode I-3a at least partially formed on the device substrate I-2a, a photovoltaic layer I-4a at least partially formed on the first electrode I-3a, and a second electrode I-5a at least partially formed on the photovoltaic layer I-4a.
  • the second laminate I-6b includes a first electrode I-3b at least partially formed on the device substrate I-2a, a photovoltaic layer I-4b at least partially formed on the first electrode I-3b, and a second electrode I-5b at least partially formed on the photovoltaic layer I-4b.
  • a first laminate I-6a and a second laminate I-6b are formed side by side on a device substrate I-2a.
  • the configuration of the photovoltaic device I-40 will be described in detail with reference to FIG.
  • the second electrode I-5a of the first laminate I-6a has a 2-1 region I-10a facing the first electrode I-3a of the first laminate I-6a and a 2-2 region I-11a not facing the first electrode I-3a of the first laminate I-6a.
  • the second electrode I-5b of the second laminate I-6b has a 2-1 region I-10b facing the first electrode I-3b of the second laminate I-6b and a 2-2 region I-11b not facing the first electrode I-3b of the second laminate I-6b.
  • the first electrode I-3a of the first laminate I-6a has a 1-1 region I-8a facing the second electrode I-5a of the first laminate I-6a and a 1-2 region I-9a not facing the second electrode I-5a.
  • the first electrode I-3b of the second laminate I-6b has a 1-1 region I-8b facing the second electrode I-5b of the first laminate I-6b and a 1-2 region I-9b not facing the second electrode I-5b.
  • the 1-2 region I-9a of the first electrode I-3a of the first laminate I-6a is stacked on and electrically connected to the 2-2 region I-11b of the second electrode I-5b of the second laminate I-6b (in FIG. 6, the first laminate I-6a corresponds to laminate A, and the second laminate I-6b corresponds to laminate B).
  • the laminate having a power generating function can be adapted to the shape and size of the device, and the power generating area relative to the total area of the laminate having a power generating function provided in the device can be maximized.
  • the first electrode and the second electrode can be connected in a planar manner, the wiring resistance can be reduced.
  • the overlapping portions of the 1-2 region I-9a of the first electrode I-3a of the first laminate I-6a and the 2-2 region I-11b of the second electrode I-5b of the second laminate I-6b have a portion where no other layer is provided between the overlapping portion and the height at which the second electrodes 1-5a and 1-5b are provided on the photovoltaic layers 1-4a and 1-4b. Furthermore, in the example of FIG. 7 and FIG.
  • the second electrode I-5a is a portion that extends on the base layer I-2a via the side surface of the photovoltaic layer I-4a, and has a portion where no other layer is provided between the overlapping portion and the height at which the second electrode I-5a is provided on the photovoltaic layer I-4a.
  • This portion corresponds to the above-mentioned 2-2z region I-11z of the 2-2 region I-11a of the second electrode I-5a.
  • the photovoltaic device II-40 includes a device substrate II-2a, a first laminate II-6a, and a second laminate II-6b.
  • the first laminate II-6a includes a first electrode II-3a at least partially formed on the device substrate II-2a, a photovoltaic layer II-4a at least partially formed on the first electrode II-3a, and a second electrode II-5a at least partially formed on the photovoltaic layer II-4a.
  • the second laminate II-6b includes a first electrode II-3b at least partially formed on the device substrate II-2a, a photovoltaic layer II-4b at least partially formed on the first electrode II-3b, and a second electrode II-5b at least partially formed on the photovoltaic layer II-4b.
  • the first laminate II-6a and the second laminate II-6b are formed side by side on the device substrate II-2a, and in a cross section in the direction in which the first laminate II-6a and the second laminate II-6b are arranged, the width direction sizes of the first laminate II-6a and the second laminate II-6b (the width direction sizes when the first electrode II-3a, the photovoltaic layer II-4a, and the second electrode II-5a are projected onto the device substrate II-2a, and the width direction sizes when the first electrode II-3b, the photovoltaic layer II-4b, and the second electrode II-5b are projected onto the device substrate II-2a) are
  • the ratio of the area occupied by the first electrode II-3a and the first electrode II-3b, the photovoltaic layer II-4a and the photovoltaic layer II-4b, and the second electrode II-5a and the second electrode II-5b to the area multiplied by the thickness direction size of the stacked body II-6a or the stacked body II-6b is, for example, 60% or
  • the second electrode II-5b of the second stacked body II-6b has a second-1 region II-10b facing the first electrode II-3b of the second stacked body II-6b and a second-2 region II-11b not facing the first electrode II-3b of the second stacked body II-6b.
  • the first electrode II-3a of the first stack II-6a has a 1-1 region II-8a facing the second electrode II-5a of the first stack II-6a and a 1-2 region II-9a not facing the second electrode I-5a.
  • the first electrode II-3b of the second stack II-6b has a 1-1 region II-8b facing the second electrode II-5b of the first stack II-6b and a 1-2 region II-9b not facing the second electrode II-5b.
  • the photovoltaic layer II-4a of the first stack II-6a is stacked on and electrically connected to the 1-2 region II-9b of the first electrode II-3b of the second stack II-6b (in FIG. 9, the first stack II-6a corresponds to stack A, and the second stack II-6b corresponds to stack B).
  • the photovoltaic layer II-4a of the first stack II-6a has a portion that is provided below the 2-2 region II-11a of the second electrode II-5a of the first stack II-6a and is overlapped on and electrically connected to the 1-2 region II-9b of the first electrode II-3b of the second stack II-6b, and the 1-2 region II-9b of the first electrode II-3b of the second stack II-6b has a portion between the portion where the photovoltaic layer II-4a is overlapped and the 1-1 region II-8b of the first electrode II-3b of the second stack II-6b, where no other layer is provided above the first electrode II-3b up to the height where the second electrode II-5b is provided on the photovoltaic layer II-4b of the second stack II-6b.
  • the first electrode II-3a more specifically, the 1-2 region II-9a of the first electrode II-3a has a portion where no other layer is provided between the first electrode II-3a (which can be read as the 1-2 region II-9a) and the height at which the second electrode II-5a is provided on the photovoltaic layer II-4a.
  • this configuration it is possible to form further series connections by overlapping and contacting the electrodes of other stacks with this portion.
  • the 1-1 region 8a, the 1-2 region 9a, the 2-1 region 10a, and the 2-2 region 11a are based on a relative relationship (opposing relationship) between the first electrode 3a and the second electrode 5a included in the first stacked body 6a
  • the 1-1 region 8b, the 1-2 region 9b, the 2-1 region 10b, and the 2-2 region 11b are based on the relative relationship (opposing relationship) between the first electrode 3b and the second electrode 5b included in the second laminate 6b, and these regions are named based on the relative relationship (opposing relationship) between the first electrode and the second electrode included in each laminate.
  • the electrically connected region preferably corresponds to the overlapping portion 30 shown in FIG. 5.
  • a plurality of laminates having a power generating function can be attached to a device substrate to connect the plurality of laminates in series.
  • the first electrode and the second electrode can be connected in a planar manner, thereby reducing the wiring resistance.
  • the overlapping portion has a certain area, it functions stably for a long period of time even if it is deformed by the application of an external force, thereby increasing the durability of the photovoltaic device.
  • the electrically connected region means that the first electrode I-3a of the first laminate I-6a and the second-2 region I-11b of the second electrode I-5b of the second laminate I-6b are electrically conductive regions.
  • the first electrode I-3a of the first laminate I-6a and the second electrode I-5b of the second laminate I-6b are preferably in contact with each other so as to be electrically conductive with each other, and more preferably are in contact due to tackiness (tack) of the surface of the first electrode I-3a of the first laminate I-6a and/or the surface of the second electrode I-5b of the second laminate I-6b, or the weight of the protective layer I-7, etc.
  • the first electrode I-3a of the first laminate I-6a and the second electrode I-5b of the second laminate I-6b are more preferably joined with an electrically conductive adhesive (e.g., conductive paste), and more preferably joined by providing an electrically conductive adhesive in the first-2 region I-9a of the first laminate I-6a or the second-2 region I-11b of the second laminate I-6b.
  • the electrically conductive adhesive may be applied using a dispenser.
  • the electrically connected region means that the photovoltaic layer II-4a of the first stack II-6a and the 1-2 region II-9b of the first electrode II-3b of the second stack II-6b are electrically conductive regions.
  • the photovoltaic layer II-4a of the first laminate II-6a and the 1-2 region II-9b of the first electrode II-3b of the second laminate II-6b are preferably in contact with each other so as to be electrically conductive with each other, and more preferably are in contact due to the stickiness (tack) of the surface of the photovoltaic layer II-4a of the first laminate II-6a and/or the surface of the 1-2 region II-9b of the first electrode II-3b of the second laminate II-6b, or the weight of the protective layer I-7, etc.
  • the photovoltaic layer II-4a of the first laminate II-6a and the 1-2 region II-9b of the first electrode II-3b of the second laminate II-6b are more preferably bonded with an electrically conductive adhesive (e.g., conductive paste), and more preferably, the photovoltaic layer II-4a of the first laminate II-6a or the 1-2 region II-9b of the first electrode II-3b of the second laminate II-6b are bonded by providing an electrically conductive adhesive.
  • the electrically conductive adhesive may be applied using a dispenser.
  • an adhesive that can pass electricity e.g., conductive paste
  • a mixture of a conductive filler and a resin that acts as an adhesive is used.
  • the conductive filler is, for example, copper particles, silver particles, gold particles, nickel particles, silver-coated copper particles, silver-coated copper alloy particles, silver-coated nickel particles, etc., having a specific particle size.
  • the resin that acts as an adhesive is, for example, an epoxy resin, a polyurethane resin, an acrylic resin, a phenolic resin, a polyimide resin, a fluororesin, etc.
  • the material of the device substrate 2a may be the same as the material of the above-mentioned substrate layer 2. It is preferable to use a material having rigidity for the device substrate 2a.
  • a first adhesive layer is preferably provided between the device substrate 2a and one or both of the first electrodes 3a and 3b of the first laminate 6a and the second laminate 6b. This adhesive layer may be derived from the long laminate 1 or may be provided on the device substrate 2a before the first laminate 6a and the second laminate 6b are attached, and is preferably derived from the long laminate 1.
  • the photovoltaic device I-40 includes a protective layer I-7a on the second electrodes I-5a, I-5b.
  • the photovoltaic device II-40 includes a protective layer II-7a on the second electrodes II-5a, II-5b.
  • a second adhesive layer is provided between the protective layer 7a and one or both of the second electrodes 5a and 5b.
  • a release layer may be provided separately from the second adhesive layer.
  • the material used for the second adhesive layer may be, for example, a conductive filler and an adhesive resin exemplified as the electrically conductive adhesive described above.
  • the peeling force when peeling off the device substrate 2a is preferably greater than the peeling force when peeling off the protective layer 7a.
  • a peeling force is derived from the adhesive layer and/or the release layer.
  • the peeling force when peeling off the device substrate 2a can be adjusted depending on whether or not the device substrate 2a is coated with silicon.
  • the photovoltaic device 40 has the protective layer 7a, this allows only the protective layer 7a to be peeled off from the photovoltaic device 40 without peeling off the first electrode 3 from the device substrate 2a. This is advantageous when the protective layer 7a originates from the protective layer 7 described in the long laminate 1 and it is desired to provide, for example, an alternative layer or film.
  • the photovoltaic device 40 includes at least a first laminate 6a (I-6a, II-6a) and a second laminate 6b (I-6b, II-6b), and these laminates 6a, 6b (I-6a, I-6b, II-6a, II-6b) include first electrodes 3a, 3b (I-3a, I-3b, II-3a, II-3b), photovoltaic layers 4a, 4b (I-4a, I-4b, II-4a, II-4b), and second electrodes 5a, 5b (I-5a, I-5b, II-5a, II-5b), respectively.
  • the first electrode of the first laminate and the first electrode of the second laminate may have the same configuration or different configurations, but preferably have the same configuration.
  • the second electrode of the first laminate and the second electrode of the second laminate may have the same configuration or different configurations, but preferably have the same configuration.
  • the number of laminates formed on the device substrate 2a in the photovoltaic device 40, including the first laminate 6a, the second laminate 6b, etc., is preferably 3 to 1000, more preferably 4 to 700, even more preferably 5 to 400, and even more preferably 10 to 100, from the viewpoint of increasing the size of the photovoltaic device.
  • the device substrate 2a, the first electrodes 3a, 3b (1-1 regions 8a, 8b, 1-2 regions 9a, 9b), and the second electrodes 5a, 5b (2-1 regions 10a, 10b, 2-2 regions 11a, 11b) may be the same as the substrate layer 2, the first electrode 3 (1-1 region 8, 1-2 region 9), and the second electrode 5 (2-1 region 10, 2-2 region 11) shown in the long laminate 1, respectively.
  • the substrate layer 2 of the long laminate 1 is preferably a peelable substrate layer, more preferably a peelable substrate layer formed from an organic material
  • the device substrate 2a of the photovoltaic device 40 is preferably a device substrate to be attached, more preferably a device substrate formed from an organic material, paper, metal, or glass.
  • the width of the overlapping portion 30 between the 1-2 region I-9a of the first electrode I-3a of the first laminate I-6a and the 2-2 region I-11b of the second electrode I-5b of the second laminate I-6b is preferably 0.1 mm or more and 5 mm or less, more preferably 0.2 mm or more and 3 mm or less, from the viewpoint of the balance between the area of the overlapping portion and the area of the power generation layer.
  • the laminate having a power generation function can be adapted to the shape and size of the device, and the power generation area relative to the total area of the laminate having a power generation function provided in the device can be maximized. Since the first electrode and the second electrode can be connected in a planar shape, the wiring resistance can be reduced. Since the overlapping portion has a certain area, it functions stably for a long period of time even if it is deformed by the application of an external force, and the durability of the photovoltaic device can be increased.
  • the widthwise length of the overlapping portion 30 between the photovoltaic layer II-4a of the first laminate II-6a and the 1-2 region II-9b of the first electrode II-3b of the second laminate II-6b is preferably 1 mm or more and 100 mm or less, more preferably 2 mm or more and 50 mm or less, from the viewpoint of the balance between the area of the overlapping portion and the area of the power generation layer.
  • the laminates having a power generation function can be adapted to the shape and size of the device, and the power generation area relative to the total area of the laminates having a power generation function provided in the device can be maximized. Since the overlapping portion has a certain area, it functions stably for a long period of time even if it is deformed by the application of an external force, thereby increasing the durability of the photovoltaic device.
  • the distance between adjacent first and second laminates 6a and 6b is preferably 0.01 mm or more and 4 mm or less, more preferably 0.02 mm or more and 3 mm or less, and even more preferably 0.05 mm or more and 2 mm or less, from the viewpoint of maximizing the power generation area relative to the total area of the laminate having the power generation function.
  • the photovoltaic layers 4a, 4b include an organic thin film.
  • the photovoltaic layers 4a and 4b may be the same as the photovoltaic layer 4 described in the long laminate 1, and the material for the organic thin film may be the same as that described in the long laminate.
  • the photovoltaic device 40 (I-40, II-40) preferably further includes a protective layer 7a (I-7a, II-7a) on the second electrodes 5a, 5b (I-5a, II-5b) of the first stack 6a (I-6a, II-6a) and the second stack 6b (I-6b, II-6b).
  • the protective layer 7a may be the same as the protective layer 7 described in the long laminate 1.
  • the protective layer 7a may be derived from the protective layer 7 described in the long laminate 1, or may be different from the protective layer 7.
  • the photovoltaic device 40 may have a barrier layer for preventing deterioration of the photovoltaic device (particularly the first electrode 3, the photovoltaic layer 4, and the second electrode 5) due to water, oxygen, and the like. More specifically, the photovoltaic device 40 may have a barrier layer provided above the first stack 6a and the second stack 6b so as to cover the first stack 6a and the second stack 6b. The photovoltaic device 40 may have a barrier layer on the device substrate 2a side over the region where the stacks having a power generation function, such as the first stack 6a and the second stack 6b, are provided.
  • the barrier layer is provided between the device substrate 2a and the stacks having a power generation function, such as the first stack 6a and the second stack 6b.
  • the barrier layer preferably has transparency, and the total light transmittance of the barrier layer is, for example, 80% or more, preferably 85% or more.
  • the barrier layer may be a barrier layer alone or a combination of a barrier layer and a resin layer.
  • Examples of materials constituting the barrier layer include metals and inorganic compounds other than metals.
  • Examples of the metal include aluminum, nickel, stainless steel, iron, copper, titanium, and alloys containing these metals.
  • Examples of inorganic compounds include oxides, oxynitrides, nitrides, oxycarbides, and oxycarbonitrides of metal elements or nonmetal elements such as silicon, magnesium, calcium, potassium, sodium, tin, boron, lead, yttrium, zirconium, cerium, and zinc.
  • silicon oxide aluminum oxide, titanium oxide, tin oxide, silicon-zinc alloy oxide, indium alloy oxide, silicon nitride, aluminum nitride, titanium nitride, silicon oxynitride, and zinc silicon oxide. These may be used alone or in combination of two or more.
  • the barrier layer may be a layer formed by a vapor deposition method or a coating method, and from the viewpoints of adhesion to the resin and high water vapor barrier properties, a layer formed by a vapor deposition method is preferable.
  • the barrier layer may be one layer or two or more layers.
  • the size in the thickness direction of the barrier layer is, for example, 1 nm or more and 400 nm or less, preferably 5 nm or more and 300 nm or less, and more preferably 10 nm or more and 200 nm or less.
  • the resin used in the barrier layer may be any of the resins described above.
  • the size in the thickness direction of the resin used in the barrier layer is, for example, 100 nm to 10 ⁇ m, preferably 200 nm to 5 ⁇ m, and more preferably 300 nm to 3 ⁇ m.
  • the barrier layer is preferably formed on at least the entire protective layer 7a, and more preferably on the entire protective layer 7a and the entire device substrate. If a barrier layer is provided, the protective layer 7a does not necessarily have to be provided.
  • the collector wire is preferably connected to the first electrode and the second electrode exposed at each end of the multiple laminates connected in series.
  • Example X of the photovoltaic device configuration Hereinafter, with reference to FIG. 7, a configuration example X of the first stack I-6a and the second stack I-6b in the photovoltaic device I-40 of the first embodiment will be described.
  • a first laminate I-6a corresponding to laminate A is shown on the left side
  • a second laminate I-6b corresponding to laminate B is shown on the right side.
  • the 2-2 region I-11b of the second electrode I-5b of the second laminate I-6b forms an overlapping portion 30 with the 1-2 region I-9a of the first electrode I-3a of the first laminate I-6a, and is electrically connected.
  • the 1-2 region I-9a of the first electrode I-3a of the first laminate I-6a is provided so as to overlap and contact the portion (corresponding to the above-mentioned 2-2z region I-11z) of the 2-2 region I-11b of the second electrode I-5b of the second laminate I-6b that extends on the device base material I-2a as described above.
  • the photovoltaic layer I-4b of the second stack I-6b is also formed on the side surface of the first electrode I-3b and on the device substrate I-2a.
  • the 2-2 region I-11b of the second electrode I-5b of the second laminate I-6b forms an overlapping portion 30 with the 1-2 region I-9a of the first electrode I-3a of the first laminate I-6a, and is electrically connected.
  • the 1-2 region I-9a of the first electrode I-3a of the first laminate I-6a is arranged so as to overlap and contact the portion of the 2-2 region I-11b of the second electrode I-5b of the second laminate I-6b that is provided on the side surface of the photovoltaic layer I-4b as described above and the portion that extends on the device substrate I-2a (corresponding to the 2-2y region I-11y and 2-2z region I-11z described above).
  • a photovoltaic device may be fabricated by arranging each laminate 6 using a combination of only the configuration example X, a combination of only the configuration example Y, or a combination of the configuration examples X and Y.
  • the laminates 6 having a power generating function can be connected in series, and even after the laminates having a power generating function are fabricated, they can be adapted to the shape and size of the device, and the power generating area can be maximized relative to the total area of the laminates having a power generating function provided in the device. Since the first electrode and the second electrode can be connected in a planar manner, the wiring resistance can be reduced. The electrically connected portions (overlapping portions) of the laminates can withstand deformation caused by external forces. When a photovoltaic device 40 is produced using a plurality of laminates 6, the combination is not limited to the above-mentioned configuration examples X and Y, and the overlapping portions 30 between the laminates 6 may have different structures.
  • the method for producing long stretch laminates may include the following steps.
  • This step is a step of forming a first electrode on a base layer having a width direction and a length direction.
  • the first electrode may be formed using a vacuum film formation method such as a vapor deposition method or a sputtering method, or a wet coating method in which an ink containing nanoparticles or the like is applied to form a film, and if necessary, the first electrode may be formed into a predetermined shape by etching or the like.
  • This step is a step of forming a photovoltaic layer on at least a part of the first electrode.
  • the photovoltaic layer is preferably formed by a coating method, and more preferably formed by a wet coating method.
  • the coating method include spin coating, reverse roll coating, gravure coating, kiss coating, spray coating, air knife coating, impregnation coating, and curtain coating.
  • This step is a step of forming a second electrode on at least a part of the photovoltaic layer, and is carried out, for example, by a method similar to that of the first electrode forming step.
  • This step is a step of winding a long laminate including the obtained laminate into a roll. This step is carried out, for example, by using a conventionally known film winding device.
  • the method for producing the long laminate may include an adhesive layer forming step, an electron transport layer forming step, a protective layer forming step, etc. According to such a production method, a long laminate including a plurality of photovoltaic cells can be produced at low cost without requiring large-scale production equipment.
  • the manufacturing method of the photovoltaic device may include a step of peeling off the base layer from the laminate of the long laminate described above, and a step of transferring the laminate of the long laminate onto the device substrate so that in the first embodiment, the 1-2 region of the first electrode or the 2-2 region of the second electrode of the laminate, or in the second embodiment, the portion of the photovoltaic layer provided below the 2-2 region, is superimposed on and contacts an electrode of another laminate provided on the device substrate.
  • This step is a step of peeling off the base layer from a certain laminate of the long laminate.
  • the substrate layer may be peeled off either manually or mechanically.
  • Laminate attachment process (1) This process is, for example, a process of attaching an exposed first electrode surface of a certain laminate (also referred to as the first laminate) among the long laminates to a device substrate, and forming the first laminate including a first electrode, a photovoltaic layer, and a second electrode on the device substrate. Through this process, a first laminate is formed on the device substrate.
  • a certain laminate also referred to as the first laminate
  • Laminate attachment process (2) This process is, for example, a process in which an exposed first electrode surface of another laminate (also referred to as a second laminate) of the long laminate is attached to a device substrate so as to be parallel to and partially overlap the long side of the first laminate, thereby forming a second laminate including a first electrode, a photovoltaic layer, and a second electrode on the device substrate.
  • a second laminate including a first electrode, a photovoltaic layer, and a second electrode on the device substrate.
  • the second embodiment it is preferable to attach a second laminate to the device substrate by overlapping a photovoltaic layer of a different laminate with the 1-2 region of the first electrode of the laminate attached to the device substrate.
  • the long laminate and photovoltaic device of the present invention can be suitably used in, for example, vehicles such as airplanes, four-wheeled vehicles (e.g., automobiles), and two-wheeled vehicles (e.g., motorcycles and bicycles); building-related items such as building exterior walls, pipes, roofing tiles, and windows; clothing such as clothes, bags, shoes, belts, and hats; various containers such as bottles and cups made of plastic, glass, or metal; and various electronic devices such as clocks, wristwatches, personal computers, mobile phones, and chargers.
  • vehicles such as airplanes, four-wheeled vehicles (e.g., automobiles), and two-wheeled vehicles (e.g., motorcycles and bicycles); building-related items such as building exterior walls, pipes, roofing tiles, and windows; clothing such as clothes, bags, shoes, belts, and hats; various containers such as bottles and cups made of plastic, glass, or metal; and various electronic devices such as clocks, wristwatches, personal computers, mobile phones, and chargers
  • I-1, II-1 Long laminate 1a, 1b, 1c, 1d: Long laminate 2
  • I-2, II-2 Base layer 2a, I-2a, II-2a: Device base material 3, I-3, II-3: First electrode 3a, I-3a, II-3a: First electrode 3b of first laminate, I-3b, II-3b: First electrode 4 of second laminate, I-4, II-4: Photovoltaic layer 4a, I-4a, II-4a : Photovoltaic layer 4b, I-4b, II-4b of the first laminate: Photovoltaic layer 5, I-5, II-5 of the second laminate: Second electrode 5a, I-5a, II-5a: Second electrode 5b, I-5b, II-5b of the first laminate: Second electrode 6, I-6, II-6 of the second laminate: Laminate 6a, I-6a, II-6a: First laminate 6b, I-6b, II-6b: Second laminate 7, I-7, II -7: protective layer 7a, I-7a, II-7a: protective layer 8, I-8, II-8: 1-1 region 8a,

Abstract

The present invention addresses the problem of providing: a long laminate which can be used in production of a high-quality photovoltaic device; a high-quality photovoltaic device; and a method for producing a photovoltaic device using said long laminate. The present invention pertains to a long laminate, and the like, the long laminate (1) including a base material layer (2) having a width direction and a longitudinal direction, and a laminate (6). The laminate (6) includes: a first electrode (3) formed on the base material layer (2); a photovoltaic layer (4) at least partially formed on the first electrode (3); and a second electrode (5) at least partially formed on the photovoltaic layer (4). The second electrode (5) has a region 2-1 which is opposite to the first electrode (3), and a region 2-2 which is not opposite to the first electrode (3). The region 2-2 is present on one side in the width direction of the base material layer (2) and is not present on the other side in the width direction of the base material layer (2). The long laminate (1) is wound in a reel-shape.

Description

長尺積層体、光起電力装置、及び光起電力装置の製造方法Long laminate, photovoltaic device, and method for manufacturing photovoltaic device
 本発明は、長尺積層体、光起電力装置、及び光起電力装置の製造方法に関する。 The present invention relates to a long laminate, a photovoltaic device, and a method for manufacturing a photovoltaic device.
 近年、化石燃料の利用により排出される二酸化炭素が地球温暖化の原因とされており、地球温暖化の抑制の観点から、クリーンエネルギーとして太陽光を利用した太陽電池の研究が盛んに行われている。太陽電池は、屋外のみならず屋内でも使用されており、小型IoTデバイスを用いた室内用太陽電池の研究も盛んに行われている。 In recent years, carbon dioxide emitted from the use of fossil fuels has been identified as a cause of global warming, and from the perspective of curbing global warming, active research has been conducted into solar cells that use sunlight as a form of clean energy. Solar cells are used both outdoors and indoors, and active research is also being conducted into indoor solar cells that use small IoT devices.
 例えば、屋外で使用される太陽電池について、特許文献1に開示される太陽電池では、下部電極、発電層、上部電極を備える積層体を発電部とし、複数の発電部間の境界において、絶縁部を存在させることが記載されている。当該太陽電池では、基板に対し、下部電極、発電層、上部電極を順に積層すると共に、これら下部電極、発電層、上部電極をパターニングして所定の凹凸形状を形成している。 For example, in the solar cell for outdoor use disclosed in Patent Document 1, a laminate including a lower electrode, a power generation layer, and an upper electrode is used as the power generation section, and an insulating section is provided at the boundary between the multiple power generation sections. In this solar cell, the lower electrode, power generation layer, and upper electrode are laminated in this order on the substrate, and the lower electrode, power generation layer, and upper electrode are patterned to form a predetermined uneven shape.
 他方、屋内で使用される太陽電池について、特許文献2は、太陽電池セルが、下部電極、光電変換層、及び上部電極を備えており、上部電極上に集電線が設けられている太陽電池モジュールを記載している。この太陽電池モジュールは、ロール・トゥ・ロール方式で製造されることも特許文献2に教示されている。 On the other hand, regarding solar cells used indoors, Patent Document 2 describes a solar cell module in which the solar cell comprises a lower electrode, a photoelectric conversion layer, and an upper electrode, and a current collector is provided on the upper electrode. Patent Document 2 also teaches that this solar cell module is manufactured by the roll-to-roll method.
特許第6677087号公報Patent No. 6677087 国際公開第2013/137274号パンフレットInternational Publication No. 2013/137274
 しかしながら、特許文献1では、発電部の境界において、絶縁部の存在比が25%以上であるとされている。当該条件では絶縁部の割合が大きくなって発電面積が小さくなるため、デバイスに設けられる発電機能を有する積層体の全面積に対して発電面積を最大化することができず、発電効率が十分ではない。
 また、特許文献1及び2のいずれも、調液、塗布、成膜等の工程を行う装置を用いて当該太陽電池(以下、発電機能を有する積層体という)を作製しており、太陽電池は一定の形状及びサイズとなり、太陽電池の電圧、電流もデバイスのサイズに応じて定まってしまうことから、太陽電池を作製した後でデバイスの形状及びサイズに合わせることができなかった。さらに、特許文献1及び2では、太陽電池セルを直列接続して配線抵抗をある程度小さくしていると考えられるが、配線抵抗をさらに低減させることも望まれる。
However, in Patent Document 1, it is stated that the ratio of the insulating portion at the boundary of the power generating portion is 25% or more. Under this condition, the ratio of the insulating portion becomes large and the power generating area becomes small, so that the power generating area cannot be maximized with respect to the total area of the laminate having a power generating function provided in the device, and the power generating efficiency is insufficient.
In addition, in both Patent Documents 1 and 2, the solar cell (hereinafter referred to as a laminate having a power generating function) is manufactured using an apparatus that performs processes such as liquid preparation, coating, and film formation, and the solar cell has a fixed shape and size, and the voltage and current of the solar cell are also determined according to the size of the device, so that the solar cell cannot be adjusted to the shape and size of the device after it is manufactured. Furthermore, in Patent Documents 1 and 2, it is considered that the wiring resistance is reduced to a certain extent by connecting the solar cell in series, but it is also desired to further reduce the wiring resistance.
 他方、上記問題を解決する一手段として、電極、発電層等を含む積層体を複数使用して太陽電池を作製することが考えられるが、例えば、複数の積層体(例えば第1積層体と第2積層体)をデバイス基材に貼り合わせる場合、貼り合わせた第1積層体と第2積層体に外部から力が掛かって変形しても光起電力装置として長期間安定して機能し、耐久性を有することも望まれる。 On the other hand, one possible way to solve the above problems is to fabricate a solar cell using multiple laminates including electrodes, power generation layers, etc. However, when multiple laminates (e.g., a first laminate and a second laminate) are bonded to a device substrate, it is desirable for the bonded first and second laminates to function stably for a long period of time as a photovoltaic device and to be durable even if they are deformed by the application of an external force.
 上記の点に鑑み、本発明は、高品質な光起電力装置の製造に用いられ得る長尺積層体、高品質な光起電力装置、及び上記長尺積層体を用いた光起電力装置の製造方法を提供することを課題とする。 In view of the above, the present invention aims to provide a long laminate that can be used to manufacture a high-quality photovoltaic device, a high-quality photovoltaic device, and a method for manufacturing a photovoltaic device using the long laminate.
 すなわち本発明は、以下の発明を含み得る。
[1] 幅方向及び長手方向を有する基材層と、
 前記基材層上に形成されている第1電極と、少なくとも一部が前記第1電極上に形成されている光起電力層と、少なくとも一部が前記光起電力層上に形成されている第2電極とを含む積層体と、
 を備える長尺積層体であって、
 前記第2電極が、前記第1電極に対向している第2-1領域と、前記第1電極には対向していない第2-2領域を有し、前記第2-2領域が、前記基材層の幅方向一方側上には存在し、前記基材層の幅方向他方側上には存在しておらず、
 前記長尺積層体がリール状に巻回されている、長尺積層体。
[2] 前記第1電極が、前記第2電極に対向している第1-1領域と、前記第2電極には対向していない第1-2領域を有し、前記第1-2領域が、前記幅方向の前記他方側上には存在し、前記幅方向の前記一方側上には存在していない、[1]に記載の長尺積層体。
[3] 前記第1-2領域が、前記第1-2領域と、前記光起電力層上に前記第2電極が設けられている高さと、の間に他の層が設けられていない部分を有する、[2]に記載の長尺積層体であって、
 前記第2-2領域が、前記光起電力層の側面を介して前記基材層上で伸びている部分であって、当該部分と、前記光起電力層上に前記第2電極が設けられている高さと、の間に他の層が設けられていない部分を有するか、或いは、前記光起電力層が、前記第2-2領域の下方に設けられている部分であって、下方に電極が存在していない部分を有する、
 長尺積層体。
[4] 基材層と、
 前記基材層上の第1電極、前記第1電極の上方の第2電極、並びに、前記第1電極及び前記第2電極の間の光起電力層、を含む積層体と
 を備え、
 前記第1電極は、前記第2電極に対向していない部分であって、前記第1電極と、前記光起電力層上に前記第2電極が設けられている高さと、の間に他の層が設けられていない部分を有する、
 長尺積層体であって、
 前記第2電極が、前記光起電力層の側面を介して前記基材層上で伸びている部分であって、当該部分と、前記光起電力層上に前記第2電極が設けられている高さと、の間に他の層が設けられていない部分を有するか、或いは、前記光起電力層が、前記第2電極の下方に設けられている部分であって、下方に電極が存在していない部分を有する、
 長尺積層体。
[5] 前記第1電極、前記光起電力層、及び前記第2電極を含む積層体が、前記基材層の長手方向に複数存在している、[1]から[4]のいずれかに記載の長尺積層体。
[6] 前記第2電極上に少なくとも接着層を介して保護層を更に有し、
 前記第1電極は、少なくとも接着層を介して前記基材層上に形成されており、
 前記第2電極から前記保護層を剥離する際の剥離力は、前記第1電極から前記基材層を剥離する際の剥離力より大きい、
 [1]から[5]のいずれかに記載の長尺積層体。
[7] 前記光起電力層が有機薄膜を含む、[1]から[6]のいずれかに記載の長尺積層体。
[8] デバイス基材と、第1積層体と、第2積層体とを備え、
 前記第1積層体と前記第2積層体の各々が、少なくとも一部が前記デバイス基材上に形成されている第1電極と、少なくとも一部が前記第1電極上に形成されている光起電力層と、少なくとも一部が前記光起電力層上に形成されている第2電極とを含み、 前記第1積層体と前記第2積層体が、前記デバイス基材上に並んで形成されており、
 前記第1積層体と前記第2積層体の各々において、前記第2電極が、前記第1電極に対向している第2-1領域と、前記第1電極には対向していない第2-2領域とを有し、
 前記第1積層体と前記第2積層体の各々において、前記第1電極が、前記第2電極に対向している第1-1領域と、前記第2電極には対向していない第1-2領域とを有する、
 光起電力装置であって、
 前記第1積層体の第1電極の前記第1-2領域が、前記第2積層体の第2電極の前記第2-2領域上に重ねられ電気的に接続されているか、或いは、
 前記第1積層体の光起電力層が、前記第1積層体の第2電極の前記第2-2領域の下方に設けられている部分であって、前記第2積層体の第1電極の前記第1-2領域上に重ねられ電気的に接続されている部分を有し、かつ、前記第2積層体の第1電極の前記第1-2領域は、当該光起電力層が重ねられている部分と、前記第2積層体の第1電極の前記第1-1領域との間に、当該第1電極の上方であって前記第2積層体の光起電力層上に第2電極が設けられている高さまで他の層が設けられていない部分を有する、
 光起電力装置。
[9] 前記デバイス基材と、前記第1積層体及び前記第2積層体の一方又は両方の前記第1電極との間に第1接着層が設けられている、[8]に記載の光起電力装置。
[10] 前記第1積層体及び前記第2積層体の一方又は両方の前記第2電極上に第2接着層を介して保護層を更に備え、前記光起電力装置において、前記デバイス基材を剥離する際の剥離力は、前記保護層を剥離する際の剥離力より大きい、[9]に記載の光起電力装置。
[11] 前記第1積層体及び前記第2積層体の上方で前記第1積層体及び前記第2積層体を覆うように設けられたバリア層を更に備える、[8]から[10]のいずれかに記載の光起電力装置。
[12] 前記光起電力層が有機薄膜を含む、[8]から[11]のいずれかに記載の光起電力装置。
[13] [1]から[7]のいずれかに記載の長尺積層体の前記積層体が、デバイス基材上に転写され、かつ電気的に接続されていることを特徴とする光起電力装置。
[14] [2]、[3]、及び[5]から[7]のいずれかに記載の長尺積層体を用いて光起電力装置を製造する方法であって、
 前記長尺積層体の前記積層体から前記基材層を剥離する工程と、
 前記長尺積層体の前記積層体のうち、前記第1電極の前記第1-2領域又は前記第2電極の前記第2-2領域を、或いは、前記光起電力層が前記第2-2領域の下方に設けられている部分を有する場合は当該部分を、別の積層体の、デバイス基材上に設けられている電極に重ねて接触させるように、前記長尺積層体の前記積層体を前記デバイス基材上に転写する工程と
 を含む、光起電力装置の製造方法。
That is, the present invention may include the following inventions.
[1] A base layer having a width direction and a length direction;
a laminate including a first electrode formed on the base layer, a photovoltaic layer at least partially formed on the first electrode, and a second electrode at least partially formed on the photovoltaic layer;
A long laminate comprising:
the second electrode has a 2-1 region facing the first electrode and a 2-2 region not facing the first electrode, the 2-2 region being present on one width direction side of the base material layer and not present on the other width direction side of the base material layer;
The long laminate is wound in a reel shape.
[2] The long laminate according to [1], wherein the first electrode has a 1-1 region facing the second electrode and a 1-2 region not facing the second electrode, and the 1-2 region is present on the other side in the width direction and not present on the one side in the width direction.
[3] The long laminate according to [2], wherein the 1-2 region has a portion where no other layer is provided between the 1-2 region and a height at which the second electrode is provided on the photovoltaic layer,
The 2-2 region has a portion extending on the base material layer via a side surface of the photovoltaic layer, and has a portion with no other layer provided between the portion and a height at which the second electrode is provided on the photovoltaic layer, or the photovoltaic layer has a portion provided below the 2-2 region, and has a portion with no electrode present below.
Long laminate.
[4] A base material layer,
a laminate including a first electrode on the base layer, a second electrode above the first electrode, and a photovoltaic layer between the first electrode and the second electrode;
the first electrode has a portion that does not face the second electrode, and has a portion where no other layer is provided between the first electrode and a height at which the second electrode is provided on the photovoltaic layer;
A long laminate,
The second electrode has a portion extending on the base material layer via a side surface of the photovoltaic layer, and no other layer is provided between the portion and a height at which the second electrode is provided on the photovoltaic layer, or the photovoltaic layer has a portion provided below the second electrode, and no electrode is present below the portion.
Long laminate.
[5] The long laminate according to any one of [1] to [4], wherein a plurality of laminates each including the first electrode, the photovoltaic layer, and the second electrode are present in the longitudinal direction of the base material layer.
[6] Further comprising a protective layer on the second electrode via at least an adhesive layer,
the first electrode is formed on the base layer via at least an adhesive layer;
a peeling force when peeling the protective layer from the second electrode is greater than a peeling force when peeling the base material layer from the first electrode;
The long laminate according to any one of [1] to [5].
[7] The long laminate according to any one of [1] to [6], wherein the photovoltaic layer includes an organic thin film.
[8] A device substrate, a first laminate, and a second laminate,
Each of the first stack and the second stack includes a first electrode at least partially formed on the device substrate, a photovoltaic layer at least partially formed on the first electrode, and a second electrode at least partially formed on the photovoltaic layer, the first stack and the second stack being formed side by side on the device substrate,
In each of the first stacked body and the second stacked body, the second electrode has a 2-1 region facing the first electrode and a 2-2 region not facing the first electrode,
In each of the first stacked body and the second stacked body, the first electrode has a 1-1 region facing the second electrode and a 1-2 region not facing the second electrode.
1. A photovoltaic device comprising:
The first-2 region of the first electrode of the first stack is overlapped on and electrically connected to the second-2 region of the second electrode of the second stack, or
the photovoltaic layer of the first stack has a portion that is provided below the 2-2 region of the second electrode of the first stack, and that is overlapped and electrically connected to the 1-2 region of the first electrode of the second stack, and the 1-2 region of the first electrode of the second stack has a portion between the portion where the photovoltaic layer is overlapped and the 1-1 region of the first electrode of the second stack, above the first electrode and where no other layer is provided up to a height where a second electrode is provided on the photovoltaic layer of the second stack;
Photovoltaic devices.
[9] The photovoltaic device according to [8], wherein a first adhesive layer is provided between the device substrate and one or both of the first electrodes of the first stack and the second stack.
[10] The photovoltaic device described in [9], further comprising a protective layer on one or both of the second electrodes of the first stack and the second stack via a second adhesive layer, wherein in the photovoltaic device, a peeling force when peeling off the device substrate is greater than a peeling force when peeling off the protective layer.
[11] The photovoltaic device according to any one of [8] to [10], further comprising a barrier layer provided above the first stack and the second stack so as to cover the first stack and the second stack.
[12] The photovoltaic device according to any one of [8] to [11], wherein the photovoltaic layer includes an organic thin film.
[13] A photovoltaic device, characterized in that the long laminate according to any one of [1] to [7] is transferred onto a device substrate and electrically connected thereto.
[14] A method for producing a photovoltaic device using the long laminate according to any one of [2], [3], and [5] to [7], comprising the steps of:
peeling the base layer from the long laminate;
and transferring the stack of the long stack onto a device substrate so that the 1-2 region of the first electrode or the 2-2 region of the second electrode, or, if the photovoltaic layer has a portion provided below the 2-2 region, the portion, of the stack of the long stack, is superimposed on and in contact with an electrode of another stack provided on a device substrate.
 本発明によれば、高品質な光起電力装置の製造に用いられ得る長尺積層体、高品質な光起電力装置、及び上記長尺積層体を用いた光起電力装置の製造方法を提供することが可能となる。 The present invention makes it possible to provide a long laminate that can be used to manufacture a high-quality photovoltaic device, a high-quality photovoltaic device, and a method for manufacturing a photovoltaic device using the long laminate.
図1は、本発明の実施形態に係る長尺積層体の斜視図を表す。FIG. 1 is a perspective view of a long laminate according to an embodiment of the present invention. 図2は、本発明の一実施形態(第1態様)に係る長尺積層体の長手方向に垂直な方向の断面図を表す。FIG. 2 shows a cross-sectional view of a long laminate according to one embodiment (first aspect) of the present invention in a direction perpendicular to the longitudinal direction. 図3は、本発明の別実施形態(第2態様)に係る長尺積層体の長手方向に垂直な方向の断面図を表す。FIG. 3 shows a cross-sectional view of a long laminate according to another embodiment (second aspect) of the present invention, taken along a direction perpendicular to the longitudinal direction. 図4は、本発明の実施形態に係る長尺積層体に設けられる発電機能を有する複数の積層体をデバイス基材に順次貼り付けて光起電力装置を作製する方法を示す図である。FIG. 4 is a diagram showing a method for producing a photovoltaic device by sequentially attaching a plurality of power generating laminates provided in a long laminate according to an embodiment of the present invention to a device substrate. 図5は、本発明の実施形態に係る長尺積層体に設けられる発電機能を有する複数の積層体をデバイス基材に順次貼り付けて得られる、本発明の光起電力装置の平面図を表す。FIG. 5 shows a plan view of a photovoltaic device of the present invention, which is obtained by sequentially attaching a plurality of power generating laminates provided in a long laminate according to an embodiment of the present invention to a device substrate. 図6は、本発明の一実施形態(第1態様)に係る光起電力装置の断面図の一例を表す。FIG. 6 shows an example of a cross-sectional view of a photovoltaic device according to one embodiment (first aspect) of the present invention. 図7は、本発明の一実施形態(第1態様)に係る光起電力装置の断面図の別の例を表す。FIG. 7 shows another example of a cross-sectional view of a photovoltaic device according to one embodiment (first aspect) of the present invention. 図8は、本発明の一実施形態(第1態様)に係る光起電力装置の断面図のさらに別の例を表す。FIG. 8 shows yet another example of a cross-sectional view of a photovoltaic device according to one embodiment (first aspect) of the present invention. 図9は、本発明の別実施形態(第2態様)に係る光起電力装置の断面図の一例を表す。FIG. 9 shows an example of a cross-sectional view of a photovoltaic device according to another embodiment (second aspect) of the present invention.
 以下、下記実施の形態に基づき本発明をより具体的に説明するが、本発明はもとより下記実施の形態によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。なお、各図面において、便宜上、ハッチングや部材符号等を省略する場合もあるが、かかる場合、明細書や他の図面を参照するものとする。また、図面における種々部材の寸法は、本発明の特徴の理解に資することを優先しているため、実際の寸法とは異なる場合がある。 The present invention will be described in more detail below based on the following embodiment, but the present invention is of course not limited to the following embodiment, and can of course be implemented with appropriate modifications within the scope of the intent described above and below, all of which are included in the technical scope of the present invention. In addition, hatching and component symbols may be omitted in each drawing for convenience, but in such cases, reference should be made to the specification or other drawings. Furthermore, the dimensions of various components in the drawings may differ from the actual dimensions, as priority is given to contributing to an understanding of the features of the present invention.
 参照を容易にするため、図面において一例を示し、本明細書において上および下の表記を用いて説明を行うことがあるが、本実施形態は必ずしもそれに限定されるわけではない。例えば、上下逆転する等向きを変えても本明細書に開示される思想により実現し得る物および方法は、本実施形態の開示の範囲とされる。本明細書において、2つの構成Aと構成Bとの関係について、構成A上に構成Bが設けられる、構成Aの上面上に構成Bが設けられる、といった記載を行うことがある。このような記載は、構成Aと構成Bとが直接接触している場合に加え、効果を阻害しない程度に他の構成が間に介在する場合も許容することを意図している。 For ease of reference, examples are shown in the drawings, and descriptions may be made using the notations up and down in this specification, but this embodiment is not necessarily limited to this. For example, objects and methods that can be realized according to the ideas disclosed in this specification even when the orientation is changed, such as upside down, are considered to be within the scope of the disclosure of this embodiment. In this specification, the relationship between two components A and B may be described as component B being provided on component A, or component B being provided on the upper surface of component A. Such descriptions are intended to allow not only cases where components A and B are in direct contact, but also cases where another component is interposed between them to the extent that the effect is not hindered.
 本発明は、第1態様の長尺積層体、光起電力装置、及び光起電力装置の製造方法、並びに、第2態様の長尺積層体、光起電力装置、及び光起電力装置の製造方法を含む。以下、特段、第1態様及び第2態様と言及しない限り、第1態様及び第2態様の両方について言及されていると見なされる。また、第1態様に係る図面の符号は、Iと数字の組み合わせ(I-1等)で表し、第2態様に係る図面の符号は、IIと数字の組み合わせ(II-1等)で表し、第1態様及び第2態様の両方に係る図面の符号は、ローマ数字を省略してアラビア数字のみで表すことがある。 The present invention includes a long laminate, a photovoltaic device, and a method for manufacturing a photovoltaic device of a first embodiment, and a long laminate, a photovoltaic device, and a method for manufacturing a photovoltaic device of a second embodiment. Hereinafter, unless specifically mentioned as the first embodiment and the second embodiment, it is assumed that both the first embodiment and the second embodiment are mentioned. Furthermore, the reference numerals in the drawings relating to the first embodiment are expressed as a combination of I and a number (e.g., I-1), the reference numerals in the drawings relating to the second embodiment are expressed as a combination of II and a number (e.g., II-1), and the reference numerals in the drawings relating to both the first and second embodiments may be expressed only in Arabic numerals, omitting the Roman numerals.
1.長尺積層体
 図1~3を参照して、長尺積層体の基本構成を説明する。図1は、本発明の実施形態に係る長尺積層体の斜視図を表し、図2は、本発明の一実施形態(第1態様)に係る長尺積層体の長手方向に垂直な方向の断面図を表し、図3は、本発明の別実施形態(第2態様)に係る長尺積層体の長手方向に垂直な方向の断面図を表す。
1. Long Laminate The basic structure of a long laminate will be described with reference to Figures 1 to 3. Figure 1 shows a perspective view of a long laminate according to an embodiment of the present invention, Figure 2 shows a cross-sectional view of a long laminate according to one embodiment of the present invention (first aspect) in a direction perpendicular to the longitudinal direction, and Figure 3 shows a cross-sectional view of a long laminate according to another embodiment of the present invention (second aspect) in a direction perpendicular to the longitudinal direction.
 第1態様及び第2態様において、長尺積層体1(I-1、II-1)は、幅方向及び長手方向を有する基材層2(I-2、II-2)と、基材層(I-2、II-2)上に形成されている積層体6(I-6、II-6)とを含む。積層体6(I-6、II-6)は、基材層2(I-2、II-2)上に形成されている第1電極3(I-3、II-3)と、少なくとも一部が第1電極3(I-3、II-3)上に形成されている光起電力層4(I-4、II-4)と、少なくとも一部が光起電力層4(I-4、II-4)上に形成されている第2電極5(I-5、II-5)とを含み、発電機能を有する。第2電極5(I-5、II-5)は、第1電極3(I-3、II-3)に対向している第2-1領域10(I-10、II-10)と、第1電極3(I-3、II-3)には対向していない第2-2領域11を有し、第2-2領域11は、基材層2(I-2、II-2)の幅方向一方側上には存在し、基材層2(I-2、II-2)の幅方向他方側上には存在していない。長尺積層体1(I-1、II-1)は例えばリール状に巻回されている。
 また、長尺積層体1(I-1、II-1)は、第2電極5(I-5、II-5)上に保護層7(I-7、II-7)を有していてもよい。
 以下、或る構成の幅方向及び長手方向に言及して説明を行うことがあるが、本明細書では、当該構成の幅方向は基材層の幅方向と実質的に平行であり、当該構成の長手方向は基材層の長手方向と実質的に平行であるとして説明を行っている。しかしながら、このような説明は便宜的なものに過ぎず、或る構成について、このような2方向での長さを、効果が阻害されない範囲で適宜変更可能であり、長手方向として説明した方向が短手方向となるような場合があってもよい。
In the first and second aspects, the long laminate 1 (I-1, II-1) includes a base layer 2 (I-2, II-2) having a width direction and a length direction, and a laminate 6 (I-6, II-6) formed on the base layer (I-2, II-2). The laminate 6 (I-6, II-6) includes a first electrode 3 (I-3, II-3) formed on the base layer 2 (I-2, II-2), a photovoltaic layer 4 (I-4, II-4) at least partially formed on the first electrode 3 (I-3, II-3), and a second electrode 5 (I-5, II-5) at least partially formed on the photovoltaic layer 4 (I-4, II-4), and has a power generation function. The second electrode 5 (I-5, II-5) has a 2-1 region 10 (I-10, II-10) facing the first electrode 3 (I-3, II-3) and a 2-2 region 11 not facing the first electrode 3 (I-3, II-3), and the 2-2 region 11 is present on one widthwise side of the base layer 2 (I-2, II-2) but not on the other widthwise side of the base layer 2 (I-2, II-2). The long laminate 1 (I-1, II-1) is wound, for example, in a reel shape.
Furthermore, the long laminate 1 (I-1, II-1) may have a protective layer 7 (I-7, II-7) on the second electrode 5 (I-5, II-5).
Hereinafter, a description will be given by referring to the width direction and the length direction of a certain configuration, but in this specification, the width direction of the configuration is described as being substantially parallel to the width direction of the base layer, and the length direction of the configuration is described as being substantially parallel to the length direction of the base layer. However, this description is merely for convenience, and the length of a certain configuration in these two directions can be changed as appropriate within a range that does not impair the effect, and there may be cases where the direction described as the length direction is the short direction.
 第1態様の長尺積層体I-1において、第2電極I-5は、光起電力層I-4上に形成され、かつ光起電力層I-4の側面及び基材層I-2上にも形成されていることが好ましい。 In the long laminate I-1 of the first embodiment, the second electrode I-5 is formed on the photovoltaic layer I-4, and is preferably also formed on the side surface of the photovoltaic layer I-4 and on the base layer I-2.
 第2態様の長尺積層体II-1において、第2電極II-5は、光起電力層II-4上のみに形成されていることが好ましく、光起電力層II-4の幅方向一方側が第1電極II-3上に形成されており、光起電力層II-4の幅方向他方側が第1電極II-3に形成されていないことが好ましい。 In the long laminate II-1 of the second embodiment, the second electrode II-5 is preferably formed only on the photovoltaic layer II-4, and one widthwise side of the photovoltaic layer II-4 is preferably formed on the first electrode II-3, and the other widthwise side of the photovoltaic layer II-4 is preferably not formed on the first electrode II-3.
 長尺積層体1は、所定の厚さ方向のサイズ、幅方向のサイズ及び長さ(長手)方向のサイズを有する。
 長尺積層体1の長手方向のサイズは、幅方向のサイズよりも長ければよく、好ましくは6cm以上、100m以下、より好ましくは10cm以上、80m以下、さらに好ましくは15cm以上、50m以下である。
 長尺積層体1の幅方向のサイズは、好ましくは1cm以上、100cm以下、より好ましくは2cm以上、80cm以下、さらに好ましくは5cm以上、60cm以下、さらにより好ましくは10cm以上、40cm以下である。
 長尺積層体1の厚さ方向のサイズは、好ましくは1μm以上、10000μm以下、より好ましくは2μm以上、8000μm以下、さらに好ましくは5μm以上、6000μm以下、さらにより好ましくは10μm以上、4000μm以下である。
The long laminate 1 has a predetermined size in the thickness direction, width direction, and length (longitudinal) direction.
The longitudinal size of the long laminate 1 may be longer than the transverse size, and is preferably 6 cm to 100 m, more preferably 10 cm to 80 m, and even more preferably 15 cm to 50 m.
The size in the width direction of the long laminate 1 is preferably 1 cm or more and 100 cm or less, more preferably 2 cm or more and 80 cm or less, even more preferably 5 cm or more and 60 cm or less, and even more preferably 10 cm or more and 40 cm or less.
The size in the thickness direction of the long laminate 1 is preferably 1 μm or more and 10,000 μm or less, more preferably 2 μm or more and 8,000 μm or less, even more preferably 5 μm or more and 6,000 μm or less, and even more preferably 10 μm or more and 4,000 μm or less.
1.(1)基材層
 基材層2は、第1電極3、光起電力層4、及び第2電極5等が形成できるように可とう性、耐熱性等を有するものであれば、特に限定されない。基材層2を構成する材料として、有機材料、金属材料、布帛材料、紙材料等が挙げられる。
1. (1) Substrate Layer The substrate layer 2 is not particularly limited as long as it has flexibility, heat resistance, and the like so that the first electrode 3, the photovoltaic layer 4, the second electrode 5, and the like can be formed thereon. Examples of materials constituting the substrate layer 2 include organic materials, metal materials, fabric materials, and paper materials.
 有機材料として、ポリエステル樹脂、メタクリル樹脂、メタクリル-マレイン酸共重合体樹脂、ポリスチレン樹脂、フッ素樹脂、ポリイミド樹脂、フッ素化ポリイミド樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、ポリエーテルイミド樹脂、セルロース樹脂、ポリウレタン樹脂、ポリエーテルエーテルケトン樹脂、ポリカーボネート樹脂、脂環式ポリオレフィン樹脂、ポリアリレート樹脂、ポリエーテルスルホン樹脂、ポリスルホン樹脂、シクロオレフィン樹脂、ポリエチレンテレフタレート樹脂、ポリエチレンナフタレート樹脂、ポリエチレン樹脂、ポリプロピレン樹脂等のオレフィン樹脂、ポリ塩化ビニル樹脂、ポリビニルアルコール樹脂等のビニル樹脂等が挙げられる。
 金属材料として、絶縁性を付与したアルミニウム、銅等が挙げられる。
 布帛材料として、不織布、ネット等が挙げられる。
 紙材料として、紙又は合成紙等が挙げられる。
Examples of organic materials include olefin resins such as polyester resin, methacrylic resin, methacrylic-maleic acid copolymer resin, polystyrene resin, fluororesin, polyimide resin, fluorinated polyimide resin, polyamide resin, polyamideimide resin, polyetherimide resin, cellulose resin, polyurethane resin, polyether ether ketone resin, polycarbonate resin, alicyclic polyolefin resin, polyarylate resin, polyethersulfone resin, polysulfone resin, cycloolefin resin, polyethylene terephthalate resin, polyethylene naphthalate resin, polyethylene resin, and polypropylene resin; and vinyl resins such as polyvinyl chloride resin and polyvinyl alcohol resin.
Examples of the metal material include aluminum and copper that have been given insulating properties.
Examples of the fabric material include nonwoven fabric and net.
The paper material may be paper or synthetic paper.
 基材層2は、上記材料のいずれであってもよく、上記材料を組み合わせてもよい。有機材料、金属材料、布帛材料、紙材料はそれぞれ、1種又は2種以上の材料を使用してもよい。 The substrate layer 2 may be any of the above materials, or a combination of the above materials. One or more of the organic materials, metal materials, fabric materials, and paper materials may be used.
 中でも、可とう性、耐熱性の観点から、有機材料が好ましく、有機材料から構成されるプラスチックフィルムがより好ましい。プラスチックフィルムは、耐久性の観点から、水蒸気透過率が低いことが好ましい。 Among these, from the viewpoints of flexibility and heat resistance, organic materials are preferred, and plastic films made of organic materials are more preferred. From the viewpoint of durability, it is preferable that the plastic film has a low water vapor transmission rate.
 基材層2として有機材料を使用する場合、有機材料は、所定強度の指標として所定のガラス転移温度を有してもよく、有機材料のガラス転移温度は、好ましくは50℃以上、より好ましくは60℃以上、また、好ましくは300℃以下、より好ましくは280℃以下である。ガラス転移温度は、例えばJIS K 7121に基づいて算出することができる。 When an organic material is used as the base layer 2, the organic material may have a predetermined glass transition temperature as an index of a predetermined strength, and the glass transition temperature of the organic material is preferably 50°C or higher, more preferably 60°C or higher, and preferably 300°C or lower, more preferably 280°C or lower. The glass transition temperature can be calculated based on, for example, JIS K 7121.
 基材層2の形状は、板状、フィルム状、シート状のいずれであってもよい。
 他方、基材層2の一部又は全てに、曲面構造が形成されていてもよい。曲面構造が形成されると、流線形を有する材料(例えば車、飛行機、屋根瓦、コップ、ボトル等)に適用することが可能となる。
The shape of the base layer 2 may be any of a plate, a film, and a sheet.
On the other hand, a curved structure may be formed in a part or all of the base material layer 2. When a curved structure is formed, it becomes possible to apply the material to materials having a streamlined shape (for example, cars, airplanes, roof tiles, cups, bottles, etc.).
 基材層2の厚さ方向のサイズは、例えば0.5μm以上、50μm以下、好ましくは1μm以上、20μm以下、より好ましくは2μm以上、10μm以下、さらに好ましくは3μm以上、8μm以下である。
 基材層2の幅方向及び長手方向のサイズは、長尺積層体1の幅方向及び長手方向のサイズと同様であってもよい。
The size in the thickness direction of the base layer 2 is, for example, 0.5 μm or more and 50 μm or less, preferably 1 μm or more and 20 μm or less, more preferably 2 μm or more and 10 μm or less, and further preferably 3 μm or more and 8 μm or less.
The size of the base material layer 2 in the width direction and the length direction may be the same as the size of the long laminate 1 in the width direction and the length direction.
 基材層2は、リール状に巻回されていることが好ましい。上述したように、積層体6が基材層2の長手方向に沿って複数存在している場合、基材層2は、長手方向に沿ってリール状に巻回されていることが好ましい。基材層2がリール状に巻回されることにより、基材層2(I-2、II-2)、基材層2(I-2、II-2)上の積層体6(I-6、II-6)(第1電極3(I-3、II-3)、光起電力層4(I-4、II-4)、第2電極5(I-5、II-5)を含む)、保護層7(I-7、II-7)が設けられている場合には保護層7(I-7、II-7)もリール状に巻回され得る。この様にリール状に巻回された長尺積層体1(I-1、II-1)は、フィルムロールを形成することが好ましい。フィルムロールが形成される場合、例えば、長尺積層体1が複数の積層体6を含む場合に、長尺積層体1のハンドリングが容易となり得る。本明細書において、長尺積層体1(I-1、II-1)がリール状に巻回されていると説明する場合、長尺積層体1(I-1、II-1)の全体がリール状に巻回されている場合と、長尺積層体1(I-1、II-1)が部分的にリール状に巻回されている場合とを含むことを意図している。 The substrate layer 2 is preferably wound in a reel shape. As described above, when a plurality of laminates 6 are present along the longitudinal direction of the substrate layer 2, the substrate layer 2 is preferably wound in a reel shape along the longitudinal direction. By winding the substrate layer 2 in a reel shape, the substrate layer 2 (I-2, II-2), the laminate 6 (I-6, II-6) (including the first electrode 3 (I-3, II-3), the photovoltaic layer 4 (I-4, II-4), and the second electrode 5 (I-5, II-5)) on the substrate layer 2 (I-2, II-2), and the protective layer 7 (I-7, II-7) may also be wound in a reel shape if provided. The long laminate 1 (I-1, II-1) wound in a reel shape in this manner is preferably formed into a film roll. When a film roll is formed, for example, when the long laminate 1 includes a plurality of laminates 6, the long laminate 1 may be easily handled. In this specification, when it is described that the long laminate 1 (I-1, II-1) is wound in a reel shape, it is intended to include the case where the entire long laminate 1 (I-1, II-1) is wound in a reel shape, and the case where the long laminate 1 (I-1, II-1) is partially wound in a reel shape.
 基材層2は、接着層を介して、第1電極3と接触していることが好ましく、
 基材層2は、第1電極3、光起電力層4、及び第2電極5を含む積層体6を所望の対象物に貼り付けることができるように、剥離可能であることが好ましい。
 基材層2が接着層を介して第1電極3と接触している場合に基材層2を剥離すると、例えば、第1電極3側に接着層が残り、当該接着層の接着力により、第1電極3等を所望の対象に貼り付けることが可能である。接着層は、例えば、第1電極3等のうちの、後述するような電気的な接続に用いられる部分には、部分的に設けられているか、設けられていないことが好ましい。後述する他の接着層についても同様である。
The base material layer 2 is preferably in contact with the first electrode 3 via an adhesive layer,
The base layer 2 is preferably peelable so that the laminate 6 including the first electrode 3, the photovoltaic layer 4, and the second electrode 5 can be attached to a desired object.
When the base layer 2 is in contact with the first electrode 3 via an adhesive layer, peeling off the base layer 2 leaves the adhesive layer on the first electrode 3 side, for example, and the first electrode 3 etc. can be attached to a desired target by the adhesive force of the adhesive layer. It is preferable that the adhesive layer is partially provided or not provided on the portion of the first electrode 3 etc. that is used for electrical connection as described later. The same applies to the other adhesive layers described later.
 上述したように接着層自体が剥離可能な層であってもよいが、接着層とは別に剥離層を設けてもよい。
 基材層2と第1電極3との間に、剥離層及び接着層がこの順に設けられている場合、基材層2を剥がすと、例えば、第1電極3側に接着層が残り、当該接着層の接着力により、第1電極3等を所望の対象に貼り付けることが可能となる。剥離層を設けることにより、基材層2の剥離が容易となり得る。
 剥離層の材料としては、シリコーン系材料、非シリコーン系材料(例えばアクリル系材料、ウレタン系材料)が挙げられる。
As described above, the adhesive layer itself may be a peelable layer, but a release layer may be provided separately from the adhesive layer.
In the case where a release layer and an adhesive layer are provided in this order between the base layer 2 and the first electrode 3, when the base layer 2 is peeled off, for example, the adhesive layer remains on the first electrode 3 side, and the first electrode 3 etc. can be attached to a desired target by the adhesive force of the adhesive layer. By providing the release layer, peeling off of the base layer 2 can be facilitated.
Materials for the release layer include silicone-based materials and non-silicone-based materials (eg, acrylic-based materials, urethane-based materials).
1.(2)積層体
 積層体6(I-6、II-6)は、第1電極3(I-3、II-3)、光起電力層4(I-4、II-4)、及び第2電極5(I-5、II-5)を含む。
 積層体6(I-6、II-6)において、光起電力層4(I-4、II-4)は、その少なくとも一部が第1電極3(I-3、II-3)上に形成されており、第2電極5(I-5、II-5)は、その少なくとも一部が光起電力層4(I-4、II-4)上に形成されている。
 第1電極3(I-3、II-3)、光起電力層4(I-4、II-4)、第2電極5(I-5、II-5)は、この順に積層されていてもよく、第1電極3(I-3、II-3)と光起電力層4(I-4、II-4)との間、光起電力層4(I-4、II-4)と第2電極5(I-5、II-5)との間に他の層が形成されていてもよい。他の層は、後述する様な、正孔取り出し層、電子取り出し層、導電性ペーストから構成される接着層等であることが好ましい。
1. (2) Stack The stack 6 (I-6, II-6) includes a first electrode 3 (I-3, II-3), a photovoltaic layer 4 (I-4, II-4), and a second electrode 5 (I-5, II-5).
In the laminate 6 (I-6, II-6), at least a part of the photovoltaic layer 4 (I-4, II-4) is formed on the first electrode 3 (I-3, II-3), and at least a part of the second electrode 5 (I-5, II-5) is formed on the photovoltaic layer 4 (I-4, II-4).
The first electrode 3 (I-3, II-3), the photovoltaic layer 4 (I-4, II-4), and the second electrode 5 (I-5, II-5) may be laminated in this order, or other layers may be formed between the first electrode 3 (I-3, II-3) and the photovoltaic layer 4 (I-4, II-4) and between the photovoltaic layer 4 (I-4, II-4) and the second electrode 5 (I-5, II-5). The other layers are preferably a hole extraction layer, an electron extraction layer, an adhesive layer made of a conductive paste, or the like, as described below.
 第1電極3(I-3、II-3)、光起電力層4(I-4、II-4)、及び第2電極5(I-5、II-5)を含む積層体6(I-6、II-6)が、基材層2(I-2、II-2)の長手方向に1つ存在していてもよく、基材層2(I-2、II-2)の長手方向に沿って複数存在していてもよいが、基材層2(I-2、II-2)の長手方向に沿って複数存在していることが好ましい。
 積層体6が複数存在する場合、1つの積層体6と他の積層体6との間に、積層体が形成されていない領域が存在していることが好ましい。当該領域により、各積層体は、各セルユニットを構成することになる。複数の積層体6は、同一の構造を有する積層体であることが好ましい。
The laminate 6 (I-6, II-6) including the first electrode 3 (I-3, II-3), the photovoltaic layer 4 (I-4, II-4), and the second electrode 5 (I-5, II-5) may be present in one layer along the longitudinal direction of the base layer 2 (I-2, II-2), or a plurality of layers may be present along the longitudinal direction of the base layer 2 (I-2, II-2). However, it is preferable that a plurality of layers are present along the longitudinal direction of the base layer 2 (I-2, II-2).
When there are a plurality of laminates 6, it is preferable that there is an area where no laminate is formed between one laminate 6 and another laminate 6. Each laminate constitutes a cell unit due to the area. It is preferable that the plurality of laminates 6 have the same structure.
 積層体6が基材層2の長手方向に複数存在する場合、積層体6の数は、好ましくは2~1000個、より好ましくは3~700個、さらに好ましくは5~400個、さらにより好ましくは10~100個である。 When multiple laminates 6 are present in the longitudinal direction of the base layer 2, the number of laminates 6 is preferably 2 to 1,000, more preferably 3 to 700, even more preferably 5 to 400, and even more preferably 10 to 100.
 第1電極3、光起電力層4、第2電極5を含む積層体6は、基材層2の幅方向に1つ存在していてもよく、基材層2の幅方向に複数存在していてもよい。 The laminate 6 including the first electrode 3, the photovoltaic layer 4, and the second electrode 5 may exist in one piece in the width direction of the base layer 2, or may exist in multiple pieces in the width direction of the base layer 2.
 積層体6の幅方向のサイズは、例えば1cm以上、100cm以下、好ましくは2cm以上、80cm以下、より好ましくは5cm以上、60cm以下、さらに好ましくは10cm以上、40cm以下である。
 積層体6の長手方向のサイズは、例えば5cm以上、200cm以下、好ましくは10cm以上、150cm以下、より好ましくは15cm以上、100cm以下、さらに好ましくは20cm以上、80cm以下である。
 積層体6の厚さ方向のサイズは、例えば30nm以上、3000nm以下、好ましくは60nm以上、2400nm以下、より好ましくは90nm以上、1800nm以下、さらに好ましくは150nm以上、1200nm以下である。
The width of the laminate 6 is, for example, 1 cm or more and 100 cm or less, preferably 2 cm or more and 80 cm or less, more preferably 5 cm or more and 60 cm or less, and further preferably 10 cm or more and 40 cm or less.
The longitudinal size of the laminate 6 is, for example, 5 cm or more and 200 cm or less, preferably 10 cm or more and 150 cm or less, more preferably 15 cm or more and 100 cm or less, and even more preferably 20 cm or more and 80 cm or less.
The size in the thickness direction of the laminate 6 is, for example, 30 nm or more and 3000 nm or less, preferably 60 nm or more and 2400 nm or less, more preferably 90 nm or more and 1800 nm or less, and further preferably 150 nm or more and 1200 nm or less.
1.(3)第1電極
 基材層2上に形成される第1電極3(I-3、II-3)は、第2電極5(I-5、II-5)に対向している第1-1領域8(I-8、II-8)と、第2電極5(I-5、II-5)には対向していない第1-2領域9(I-9、II-9)を有することが好ましい。第1電極3が当該構成を備えることで、第1態様において、他の積層体の第2電極I-5との重なり部分を設けて、複数の積層体を直列状にかつ電気的に接続でき、第2態様において、他の積層体の光起電力層II-4との重なり部分を設けて、複数の積層体を直列状にかつ電気的に接続できる。その結果、発電機能を有する積層体を作製した後でもデバイスの形状及びサイズに適合可能であり、デバイスに設けられる発電機能を有する積層体の全面積に対する発電面積の最大化が可能となる。また、第1態様において、第1電極と第2電極が面状で接続可能となることから、配線抵抗を低減させることができる。
 第1電極の第1-2領域9(I-9、II-9)は、第2電極5(I-5、II-5)が形成されていない領域であってもよく、光起電力層4(I-4、II-4)及び第2電極5(I-5、II-5)の両方が形成されていない領域であってもよい。
1. (3) First Electrode The first electrode 3 (I-3, II-3) formed on the base layer 2 preferably has a 1-1 region 8 (I-8, II-8) facing the second electrode 5 (I-5, II-5) and a 1-2 region 9 (I-9, II-9) not facing the second electrode 5 (I-5, II-5). By providing the first electrode 3 with this configuration, in the first embodiment, an overlapping portion with the second electrode I-5 of another laminate is provided, and a plurality of laminates can be electrically connected in series, and in the second embodiment, an overlapping portion with the photovoltaic layer II-4 of another laminate is provided, and a plurality of laminates can be electrically connected in series. As a result, even after the laminate having a power generation function is produced, it can be adapted to the shape and size of the device, and the power generation area relative to the total area of the laminate having a power generation function provided in the device can be maximized. In addition, in the first embodiment, the first electrode and the second electrode can be connected in a planar manner, and therefore the wiring resistance can be reduced.
The 1-2 region 9 (I-9, II-9) of the first electrode may be a region in which the second electrode 5 (I-5, II-5) is not formed, or may be a region in which neither the photovoltaic layer 4 (I-4, II-4) nor the second electrode 5 (I-5, II-5) is formed.
 第1電極の第1-2領域9(I-9、II-9)は、基材層2(I-2、II-2)の幅方向の他方側上に存在し、基材層2(I-2、II-2)の幅方向の一方側上には存在していないことが好ましい。
 すなわち、第1電極の第1-2領域9(I-9、II-9)は、第1電極3(I-3、II-3)と第2電極5(I-5、II-5)が対向している第1-1領域8(I-8、II-8)(第2-1領域10(I-10、II-10))の両側に存在することはなく、第1-1領域8(I-8、II-8)(第2-1領域10(I-10、II-10))の片側に存在することが好ましい。
It is preferable that the 1-2 region 9 (I-9, II-9) of the first electrode is present on the other widthwise side of the base layer 2 (I-2, II-2) and not present on one widthwise side of the base layer 2 (I-2, II-2).
That is, the 1-2 region 9 (I-9, II-9) of the first electrode does not exist on both sides of the 1-1 region 8 (I-8, II-8) (2-1 region 10 (I-10, II-10)) where the first electrode 3 (I-3, II-3) and the second electrode 5 (I-5, II-5) face each other, but preferably exists on one side of the 1-1 region 8 (I-8, II-8) (2-1 region 10 (I-10, II-10)).
 図2及び図3の例において、第1電極3(I-3、II-3)は、より具体的には、第1電極3(I-3、II-3)の第1-2領域9(I-9、II-9)は、第1電極3(I-3、II-3)(第1-2領域9(I-9、II-9)と読み替え可能)と、光起電力層4(I-4、II-4)上に第2電極5(I-5、II-5)が設けられている高さと、の間に他の層が設けられていない部分を有する。図2及び図3の例では、当該部分は第1電極3(I-3、II-3)の端部に設けられている。後述する光起電力装置の製造の際に、当該部分に他の積層体の電極を重ねて接触させることにより、直列接続された複数の積層体を形成することが可能となる。 In the example of Figures 2 and 3, the first electrode 3 (I-3, II-3), more specifically, the 1-2 region 9 (I-9, II-9) of the first electrode 3 (I-3, II-3) has a portion where no other layers are provided between the first electrode 3 (I-3, II-3) (which can be read as the 1-2 region 9 (I-9, II-9)) and the height at which the second electrode 5 (I-5, II-5) is provided on the photovoltaic layer 4 (I-4, II-4). In the example of Figures 2 and 3, this portion is provided at the end of the first electrode 3 (I-3, II-3). During the manufacture of the photovoltaic device described later, it is possible to form a plurality of stacks connected in series by overlapping and contacting the electrodes of other stacks on this portion.
 第1電極3が第1-1領域8と第1-2領域9を有する場合、第1-1領域8は、第1-2領域9よりも大きいことが好ましい。
 すなわち、第1電極3の第1-1領域8と第1-2領域9の合計長さ(幅方向の長さを基準とする)を100%とする場合、第1-1領域8の長さ割合は、好ましくは50%超90%以下、より好ましくは60%以上85%以下、さらに好ましくは65%以上80%以下である。かかる長さ割合であると、電極において電子の流入や送出を首尾良く行うことができる。
When the first electrode 3 has the 1-1 region 8 and the 1-2 region 9 , the 1-1 region 8 is preferably larger than the 1-2 region 9 .
That is, when the total length (based on the width direction length) of the 1-1 region 8 and the 1-2 region 9 of the first electrode 3 is taken as 100%, the length ratio of the 1-1 region 8 is preferably more than 50% and not more than 90%, more preferably 60% or more and not more than 85%, and further preferably 65% or more and not more than 80%. With such a length ratio, the inflow and outflow of electrons can be performed successfully in the electrode.
 他方、第1電極3の第1-1領域8と第1-2領域9の合計長さ(幅方向の長さを基準とする)を100%とする場合、第1-2領域9の長さ割合は、好ましくは10%以上50%未満、より好ましくは15%以上40%以下、さらに好ましくは20%以上35%以下である。
 第1電極3の第1-2領域9が上記範囲の長さ割合を満たす場合、後述するように他の積層体と貼り合わせると他の積層体の第2電極又は光起電力層との間で電気的に接続されている部分(重なり部分)が形成されることにより、複数の積層体を直列に接続することができる。その結果、発電機能を有する積層体を作製した後でもデバイスの形状及びサイズに適合可能であり、デバイスに設けられる発電機能を有する積層体の全面積に対する発電面積の最大化が可能となる。また、第1態様において、第1電極と第2電極が面状で接続可能となることから、配線抵抗を低減させることができる。また、外部から力が掛かって変形しても長期間安定して機能することにより、光起電力装置の耐久性を高めることが可能となる。
On the other hand, when the total length (based on the width direction length) of the 1-1 region 8 and the 1-2 region 9 of the first electrode 3 is taken as 100%, the length ratio of the 1-2 region 9 is preferably 10% or more and less than 50%, more preferably 15% or more and 40% or less, and even more preferably 20% or more and 35% or less.
When the 1-2 region 9 of the first electrode 3 satisfies the length ratio in the above range, by bonding it to another laminate as described below, a part (overlapping part) electrically connected with the second electrode or photovoltaic layer of the other laminate is formed, so that a plurality of laminates can be connected in series. As a result, even after the laminate having a power generating function is produced, it can be adapted to the shape and size of the device, and it is possible to maximize the power generating area relative to the total area of the laminate having a power generating function provided in the device. In addition, in the first embodiment, since the first electrode and the second electrode can be connected in a planar manner, the wiring resistance can be reduced. In addition, it is possible to increase the durability of the photovoltaic device by functioning stably for a long period of time even when deformed by the application of an external force.
1.(4)第2電極
 第2電極5(I-5、II-5)は、少なくとも一部が光起電力層4(I-4、II-4)上に形成されている。
 第1態様において、第2電極I-5は、光起電力層I-4上に形成されるだけではなく、光起電力層I-4の側面、基材層I-2上にも形成されることが好ましい。図2の例では、第2電極I-5は、光起電力層I-4の側面を介して基材層I-2上で伸びている部分(後述する第2-2z領域I-11z)を有する。
 第2態様において、第2電極II-5は、光起電力層II-4上のみに形成されることが好ましい。
1. (4) Second Electrode The second electrode 5 (I-5, II-5) is at least partially formed on the photovoltaic layer 4 (I-4, II-4).
In the first embodiment, the second electrode I-5 is preferably formed not only on the photovoltaic layer I-4 but also on the side surface of the photovoltaic layer I-4 and the base layer I-2. In the example of Fig. 2, the second electrode I-5 has a portion (a 2-2z region I-11z described later) that extends on the base layer I-2 via the side surface of the photovoltaic layer I-4.
In the second embodiment, the second electrode II-5 is preferably formed only on the photovoltaic layer II-4.
 以下、第2電極5の第2-1領域10及び第2-2領域11について説明する。
 第2電極5の第2-1領域10は、第1電極3の第1-1領域8と同様に、第1電極3と第2電極5が対向する領域に相当する。
The 2-1 region 10 and the 2-2 region 11 of the second electrode 5 will be described below.
Similar to the 1-1 region 8 of the first electrode 3, the 2-1 region 10 of the second electrode 5 corresponds to the region where the first electrode 3 and the second electrode 5 face each other.
 第2電極5(I-5、II-5)の第2-2領域11(I-11、II-11)は、第1電極3(I-3、II-3)に対向しておらず、基材層2(I-2、II-2)の幅方向一方側上には存在し、基材層2(I-2、II-2)の幅方向他方側上には存在していない領域であり、基材層2(I-2、II-2)の幅方向一方側上のみに形成される領域であることが好ましい。 The second-2 region 11 (I-11, II-11) of the second electrode 5 (I-5, II-5) is not opposed to the first electrode 3 (I-3, II-3), is present on one widthwise side of the base layer 2 (I-2, II-2), and is not present on the other widthwise side of the base layer 2 (I-2, II-2). It is preferable that the second-2 region 11 (I-11, II-11) is a region that is formed only on one widthwise side of the base layer 2 (I-2, II-2).
 第1態様において、第2-2領域I-11は、光起電力層I-4上に設けられる第2-2x領域I-11x(図2においてI-11xlとI-11xhで囲まれる領域)、光起電力層I-4側面に設けられる第2-2y領域I-11y(図2においてI-11ylとI-11yhで囲まれる領域)、基材層I-2上に設けられる第2-2z領域I-11z(図2においてI-11zlとI-11zhで囲まれる領域)を含んでいてもよい。
 第2-2y領域I-11yは、光起電力層I-4側面と接していることが好ましく、第2-2x領域I-11xと第2-2z領域I-11zを繋いでいることが好ましい。
In the first embodiment, the 2-2 region I-11 may include a 2-2x region I-11x (the region surrounded by I-11xl and I-11xh in FIG. 2) provided on the photovoltaic layer I-4, a 2-2y region I-11y (the region surrounded by I-11yl and I-11yh in FIG. 2) provided on the side surface of the photovoltaic layer I-4, and a 2-2z region I-11z (the region surrounded by I-11zl and I-11zh in FIG. 2) provided on the base layer I-2.
The 2-2y region I-11y is preferably in contact with the side surface of the photovoltaic layer I-4, and preferably connects the 2-2x region I-11x and the 2-2z region I-11z.
 第1態様の図2の例では、第2電極5(I-5)が有する第2-2z領域I-11zは、より具体的には第2電極5(I-5)の第2-2領域I-11が有する第2-2z領域I-11zは、上述した、光起電力層I-4の側面を介して基材層I-2上で伸びている部分であって、当該部分と、光起電力層I-4上に第2電極5(I-5)が設けられている高さと、の間に他の層が設けられていない部分である。図2の例では、当該部分は第2電極5(I-5)の端部に設けられている。第2-2z領域I-11zのこのような配置により、後述する光起電力装置の製造の際に、第2-2z領域I-11zを他の積層体の電極と重ね合わせて接触させることにより、直列接続された複数の積層体を形成することが可能となる。 In the example of FIG. 2 of the first embodiment, the 2-2z region I-11z of the second electrode 5 (I-5), more specifically the 2-2z region I-11z of the 2-2 region I-11 of the second electrode 5 (I-5), is the portion that extends on the base layer I-2 via the side of the photovoltaic layer I-4, and is a portion where no other layer is provided between the portion and the height at which the second electrode 5 (I-5) is provided on the photovoltaic layer I-4. In the example of FIG. 2, the portion is provided at the end of the second electrode 5 (I-5). With such an arrangement of the 2-2z region I-11z, it is possible to form a plurality of stacks connected in series by overlapping and contacting the 2-2z region I-11z with the electrodes of other stacks during the manufacture of the photovoltaic device described later.
 第1態様において、光起電力層I-4側面は、光起電力層I-4下面を基準として、勾配(例えば0度超90度以下)を有していてもよく、勾配が90度である場合、光起電力層I-4上面及び下面に対して垂直であってもよい。
 光起電力層I-4側面に設けられる第2-2y領域I-11yは、長方形、平行四辺形等の形状を形成してもよく、第2-2y領域I-11yを構成する第2電極I-5上面及び下面は、勾配開始点及び勾配終了点を有していてもよく、勾配面を形成してもよい(勾配は、基材層I-2の上面を基準として例えば0度超90度以下である)。
 勾配開始点は、基材層I-2に近い点であってもよく、勾配終了点は、基材層I-2から遠い点であってもよい。
In the first embodiment, the side surface of the photovoltaic layer I-4 may have a slope (e.g., greater than 0 degrees and less than or equal to 90 degrees) with respect to the lower surface of the photovoltaic layer I-4, and when the slope is 90 degrees, the side surface may be perpendicular to the upper and lower surfaces of the photovoltaic layer I-4.
The second-2y region I-11y provided on the side surface of the photovoltaic layer I-4 may form a shape such as a rectangle or a parallelogram, and the upper and lower surfaces of the second electrode I-5 constituting the second-2y region I-11y may have a gradient start point and a gradient end point, or may form a gradient surface (the gradient is, for example, greater than 0 degrees and less than or equal to 90 degrees, based on the upper surface of the base material layer I-2).
The gradient start point may be a point closer to substrate layer I-2, and the gradient end point may be a point farther from substrate layer I-2.
 第1態様において、I-11xlは、例えば、第2電極I-5の第2-1領域I-10と第2-2領域I-11との接点に対応する、第2電極I-5下面と光起電力層I-4上面との接点と、光起電力層I-4上面と光起電力層I-4側面との接点とを結ぶ線分の長さであってもよい。
 I-11ylは、例えば、光起電力層I-4上面と光起電力層I-4側面との接点と、光起電力層I-4上面に平行な面と第2電極I-5上面由来勾配面との接点とを結ぶ線分の長さ(又は第2電極I-5の厚さ方向のサイズに対応する長さ)であってもよい。
 また、I-11ylは、例えば、第2電極I-5上面の勾配開始点及び勾配終了点を基材層I-2上面に投影してなる2点を結ぶ線分の長さであってもよい。
 I-11zlは、例えば、第2-2領域I-11の端点に対応する第2電極I-5上面の端点と、第2電極I-5上面の勾配開始点とを結ぶ線分の長さであってもよい。
 I-11xhは、例えば、第2電極I-5の厚さ方向のサイズに対応する高さであってもよい。
 I-11yhは、例えば、第1電極I-3、光起電力層I-4、第2電極I-5から構成される積層体I-6の厚さ方向のサイズに対応する高さであってもよい。
 I-11zhは、例えば、第1電極I-3及び/又は第2電極I-5の厚さ方向のサイズに対応する高さであってもよい。
In the first aspect, I-11xl may be, for example, the length of a line segment connecting a junction between the lower surface of the second electrode I-5 and the upper surface of the photovoltaic layer I-4 and a junction between the upper surface of the photovoltaic layer I-4 and a side surface of the photovoltaic layer I-4, which corresponds to a junction between the 2-1 region I-10 and the 2-2 region I-11 of the second electrode I-5.
I-11yl may be, for example, the length of a line segment connecting a junction between the upper surface of the photovoltaic layer I-4 and a side surface of the photovoltaic layer I-4 and a junction between a plane parallel to the upper surface of the photovoltaic layer I-4 and a gradient surface derived from the upper surface of the second electrode I-5 (or a length corresponding to the size of the second electrode I-5 in the thickness direction).
Furthermore, I-11yl may be, for example, the length of a line segment connecting two points obtained by projecting the gradient start point and gradient end point of the upper surface of the second electrode I-5 onto the upper surface of the base material layer I-2.
I-11zl may be, for example, the length of a line segment connecting an end point of the upper surface of the second electrode I-5 corresponding to the end point of the 2-2 region I-11 and the gradient starting point of the upper surface of the second electrode I-5.
I-11xh may be, for example, a height corresponding to the size of the second electrode I-5 in the thickness direction.
I-11yh may be, for example, a height corresponding to the size in the thickness direction of a stack I-6 composed of a first electrode I-3, a photovoltaic layer I-4, and a second electrode I-5.
I-11zh may be, for example, a height corresponding to the size in the thickness direction of the first electrode I-3 and/or the second electrode I-5.
 第1態様において、第2-2x領域I-11x、第2-2y領域I-11y、第2-2z領域I-11zの長さ(幅方向の長さを基準とする)は、第2-2x領域I-11xの長さ(図2のI-11xl)<第2-2y領域I-11yの長さ(図2のI-11yl)<第2-2z領域I-11z(図2のI-11zl)の長さの関係を有することが好ましい。
 第2-1領域I-10と第2-2領域I-11の厚さは、第2-1領域I-10の厚さ<第2-2領域I-11の厚さの関係を有することが好ましい。
 第2-2x領域I-11x、第2-2y領域I-11y、第2-2z領域I-11zの厚さは、第2-2z領域I-11zの厚さ(図2のI-11zh)≦第2-2x領域I-11xの厚さ(図2のI-11xh)<第2-2y領域I-11yの厚さ(図2のI-11yh)の関係を有することが好ましい。
In the first aspect, it is preferable that the lengths (based on the width direction length) of the 2-2x region I-11x, the 2-2y region I-11y, and the 2-2z region I-11z have the following relationship: length of the 2-2x region I-11x (I-11xl in FIG. 2) < length of the 2-2y region I-11y (I-11yl in FIG. 2) < length of the 2-2z region I-11z (I-11zl in FIG. 2).
The thicknesses of the second-1 region I-10 and the second-2 region I-11 preferably have the relationship: thickness of the second-1 region I-10<thickness of the second-2 region I-11.
It is preferable that the thicknesses of the 2-2x region I-11x, the 2-2y region I-11y, and the 2-2z region I-11z satisfy the following relationship: thickness of the 2-2z region I-11z (I-11zh in FIG. 2)≦thickness of the 2-2x region I-11x (I-11xh in FIG. 2)<thickness of the 2-2y region I-11y (I-11yh in FIG. 2).
 第2電極5(I-5、II-5)の第2-2領域11(I-11、II-11)は、第1電極3(I-3、II-3)と第2電極5(I-5、II-5)が対向している第2-1領域10(I-10、II-10)(第1-1領域8(I-8、II-8))の両側に存在することはなく、第2-1領域10(I-10、II-10)(第1-1領域8(I-8、II-8))の片側に存在することが好ましい。第2電極5が当該構成を備えることで、他の積層体のとの重なり部分を設けて、複数の積層体を直列状にかつ電気的に接続できる。その結果、発電機能を有する積層体を作製した後でもデバイスの形状及びサイズに適合可能であり、デバイスに設けられる発電機能を有する積層体の全面積に対する発電面積の最大化が可能となる。また、第1態様において、第1電極と第2電極が面状で接続可能となることから、配線抵抗を低減させることができる。 The second-2 region 11 (I-11, II-11) of the second electrode 5 (I-5, II-5) does not exist on both sides of the second-1 region 10 (I-10, II-10) (1-1 region 8 (I-8, II-8)) where the first electrode 3 (I-3, II-3) and the second electrode 5 (I-5, II-5) face each other, but preferably exists on one side of the second-1 region 10 (I-10, II-10) (1-1 region 8 (I-8, II-8)). By providing the second electrode 5 with this configuration, it is possible to provide overlapping portions with other laminates and electrically connect multiple laminates in series. As a result, even after the laminate having a power generating function is produced, it can be adapted to the shape and size of the device, and it is possible to maximize the power generating area relative to the total area of the laminate having a power generating function provided in the device. In addition, in the first embodiment, the first electrode and the second electrode can be connected in a planar manner, so that the wiring resistance can be reduced.
 第2電極5の第2-1領域10、第2-2領域11の合計長さ(幅方向の長さを基準とする)を100%とする場合、第2-1領域10、第2-2領域11のそれぞれの長さ割合は、以下の通りである。 If the total length (based on the width direction length) of the 2-1 region 10 and the 2-2 region 11 of the second electrode 5 is 100%, the respective length ratios of the 2-1 region 10 and the 2-2 region 11 are as follows:
 第1態様において、第2電極I-5の第2-1領域I-10は、光起電力層との間で電子の流れ込み又は送り出しを行う観点から、第2-1領域I-10、第2-2領域I-11のうち、より長い長さを有することが好ましい。
 第2電極I-5の第2-1領域I-10の長さ割合は、第2電極I-5の第2-1領域I-10、第2-2領域I-11の合計長さ(幅方向の長さを基準とする)を100%とする場合、好ましくは45%以上80%以下、より好ましくは50%以上75%以下、さらに好ましくは55%以上70%以下である。
 当該長さ割合が45%以上であると、光起電力層との間で電子の流れ込み又は送り出しを首尾良くできる。他方、当該長さ割合が80%以下であると、第2-2領域に相当する長さを確保できる。
In the first embodiment, the 2-1 region I-10 of the second electrode I-5 preferably has a longer length than the 2-1 region I-10 or the 2-2 region I-11, from the viewpoint of flowing electrons in or out of the photovoltaic layer.
The length ratio of the 2-1 region I-10 of the second electrode I-5 is preferably 45% or more and 80% or less, more preferably 50% or more and 75% or less, and even more preferably 55% or more and 70% or less, when the total length (based on the width direction length) of the 2-1 region I-10 and the 2-2 region I-11 of the second electrode I-5 is 100%.
If the length ratio is 45% or more, the flow of electrons into or out of the photovoltaic layer can be made successful, whereas if the length ratio is 80% or less, the length corresponding to the 2-2 region can be ensured.
 第1態様において、第2電極I-5の第2-2領域I-11は、基材層の幅方向に形成され、他の積層体との貼り合わせ部を確保する観点から、第2-1領域I-10の長さより短い長さを有していてもよい。
 第2電極I-5の第2-2領域I-11の長さ割合は、第2電極I-5の第2-1領域I-10、第2-2領域I-11の合計長さ(幅方向の長さを基準とする)を100%とする場合、好ましくは20%以上55%以下、より好ましくは25%以上50%以下、さらに好ましくは30%以上45%以下である。
 当該長さ割合が20%以上であると、他の積層体との貼り合わせ部を確保しやすい。他方、当該長さ割合が55%以下であると、光起電力層との間で電子の流れ込み又は送り出しを首尾良くできる。
In the first embodiment, the 2-2 region I-11 of the second electrode I-5 is formed in the width direction of the base material layer, and may have a length shorter than the length of the 2-1 region I-10 from the viewpoint of ensuring a bonding portion with another laminate.
The length ratio of the 2-2 region I-11 of the second electrode I-5 is preferably 20% or more and 55% or less, more preferably 25% or more and 50% or less, and even more preferably 30% or more and 45% or less, when the total length (based on the width direction length) of the 2-1 region I-10 and the 2-2 region I-11 of the second electrode I-5 is 100%.
If the length ratio is 20% or more, it is easy to ensure a bonding portion with another laminate, while if the length ratio is 55% or less, the flow of electrons into or out of the photovoltaic layer can be successfully achieved.
 すなわち、第2電極I-5の第2-2領域I-11が上記範囲の長さ割合を満たす場合、他の積層体と貼り合わせると他の積層体の第1電極又は光起電力層4との電気的に接続されている部分(重なり部分)が形成されることにより、発電機能を有する複数の積層体を直列に接続することができる。その結果、発電機能を有する積層体を作製した後でもデバイスの形状及びサイズに適合可能であり、デバイスに設けられる発電機能を有する積層体の全面積に対する発電面積の最大化が可能となる。また、第1態様において、第1電極と第2電極が面状で接続可能となることから、配線抵抗を低減させることができる。
 さらに、外部から力が掛かって変形しても長期間安定して機能することにより、光起電力装置の耐久性を高めることが可能となる。
That is, when the 2-2 region I-11 of the second electrode I-5 satisfies the length ratio in the above range, by bonding it with another laminate, a part (overlapping part) electrically connected with the first electrode or photovoltaic layer 4 of the other laminate is formed, so that a plurality of laminates having a power generation function can be connected in series. As a result, even after the laminate having a power generation function is produced, it can be adapted to the shape and size of the device, and it is possible to maximize the power generation area relative to the total area of the laminate having a power generation function provided in the device. In addition, in the first embodiment, since the first electrode and the second electrode can be connected in a planar manner, the wiring resistance can be reduced.
Furthermore, the durability of the photovoltaic device can be increased by functioning stably for a long period of time even if it is deformed by the application of an external force.
 第2態様の図3の例では、光起電力層II-4が、第2電極II-5、より具体的には第2-2領域II-11、の下方に設けられている部分であって、下方に電極が存在していない部分を有する。図3の例では、当該部分は光起電力層II-4の端部に設けられている。これにより、後述する光起電力装置の製造の際に、当該部分を他の積層体の電極に重ね合わせて接触させることにより、直列接続された複数の積層体を形成することが可能となる。 In the example of the second embodiment shown in FIG. 3, the photovoltaic layer II-4 has a portion that is provided below the second electrode II-5, more specifically, the second-2 region II-11, and has a portion below which no electrode exists. In the example of FIG. 3, this portion is provided at the end of the photovoltaic layer II-4. This makes it possible to form multiple stacks connected in series by overlapping and contacting this portion with the electrode of another stack during the manufacture of the photovoltaic device described below.
 第2態様において、第2電極II-5の第2-2領域II-11は、他の積層体との貼り合わせ部を確保する観点から、第2-1領域II-10の長さより長い長さを有していてもよい。
 第2態様において、第2電極II-5の第2-2領域II-11の長さ割合は、第2電極II-5の第2-1領域II-10、第2-2領域II-11の合計長さ(幅方向の長さを基準とする)を100%とする場合、好ましくは45%以上80%以下、より好ましくは50%以上75%以下、さらに好ましくは55%以上70%以下である。
In the second embodiment, the 2-2 region II-11 of the second electrode II-5 may have a length longer than the length of the 2-1 region II-10 from the viewpoint of ensuring a bonding portion with another laminate.
In the second embodiment, the length ratio of the 2-2 region II-11 of the second electrode II-5 is preferably 45% or more and 80% or less, more preferably 50% or more and 75% or less, and even more preferably 55% or more and 70% or less, when the total length (based on the width direction length) of the 2-1 region II-10 and the 2-2 region II-11 of the second electrode II-5 is 100%.
 第2態様において、第2電極II-5の第2-1領域II-10の長さ割合は、第2電極II-5の第2-1領域II-10、第2-2領域II-11の合計長さ(幅方向の長さを基準とする)を100%とする場合、好ましくは20%以上55%以下、より好ましくは25%以上50%以下、さらに好ましくは30%以上45%以下である。
 当該長さ割合が20%以上であると、積層体の強度を確保しやすい。他方、当該長さ割合が55%以下であると、他の積層体との貼り合わせ部を確保しやすい。
In the second embodiment, the length ratio of the 2-1 region II-10 of the second electrode II-5 is preferably 20% or more and 55% or less, more preferably 25% or more and 50% or less, and even more preferably 30% or more and 45% or less, when the total length (based on the width direction length) of the 2-1 region II-10 and the 2-2 region II-11 of the second electrode II-5 is 100%.
When the length ratio is 20% or more, the strength of the laminate is easily ensured, whereas when the length ratio is 55% or less, the bonding portion with another laminate is easily ensured.
 第2電極5(I-5、II-5)の第2-2領域11(I-11、II-11)と第1電極3(I-3、II-3)の第1-2領域9(I-9、II-9)はそれぞれ、基材層2(I-2、II-2)の幅方向において一方側上、他方側上に存在していることが好ましい。
 第2電極5の第2-2領域11と第1電極3の第1-2領域9は、同一長さを有していてもよく、異なる長さを有していてもよい。
It is preferable that the 2-2 region 11 (I-11, II-11) of the second electrode 5 (I-5, II-5) and the 1-2 region 9 (I-9, II-9) of the first electrode 3 (I-3, II-3) are present on one side and the other side in the width direction of the base layer 2 (I-2, II-2), respectively.
The 2-2 region 11 of the second electrode 5 and the 1-2 region 9 of the first electrode 3 may have the same length or may have different lengths.
 第1電極3及び第2電極5は、一方が負極(アノード)、他方が正極(カソード)であることが好ましい。また、少なくとも第2電極5が光透過性を有することが好ましく、第2電極5と第1電極3の両方が光透過性を有することがより好ましい。
 第1電極3及び第2電極5は各々、導電性を有する材料を用いて単層であってもよいし、2層以上の積層構造であってもよい。
It is preferable that one of the first electrode 3 and the second electrode 5 is a negative electrode (anode) and the other is a positive electrode (cathode). It is also preferable that at least the second electrode 5 has optical transparency, and it is more preferable that both the second electrode 5 and the first electrode 3 have optical transparency.
Each of the first electrode 3 and the second electrode 5 may be a single layer made of a conductive material, or may have a laminated structure of two or more layers.
 負極は、仕事関数が高い導電性材料で構成され、電子が外部回路に流れ出る電極である。
 負極を構成する材料として、酸化ニッケル、酸化スズ、酸化インジウム、酸化インジウムスズ(ITO)、インジウム-ジルコニウム酸化物(IZO)、酸化チタン、酸化インジウム又は酸化亜鉛等の金属酸化物;金、白金、銀、クロム、コバルト等の金属、その合金等が挙げられる。
 また、負極を構成する材料として、ポリチオフェン誘導体にポリスチレンスルホン酸をドーピングしたPEDOT:PSS、ポリピロール又はポリアニリン等にヨウ素等をドーピングした導電性高分子材料を使用してもよい。
 負極が透明電極である場合、ITO、酸化亜鉛又は酸化スズ等の透光性がある金属酸化物を使用することが好ましく、ITOを使用することがより好ましい。
The negative electrode is made of a conductive material with a high work function, and is an electrode through which electrons flow into an external circuit.
Examples of materials constituting the negative electrode include metal oxides such as nickel oxide, tin oxide, indium oxide, indium tin oxide (ITO), indium zirconium oxide (IZO), titanium oxide, indium oxide, and zinc oxide; metals such as gold, platinum, silver, chromium, and cobalt, and alloys thereof.
As a material for forming the negative electrode, a conductive polymer material such as PEDOT:PSS in which a polythiophene derivative is doped with polystyrene sulfonic acid, or polypyrrole or polyaniline doped with iodine or the like may be used.
When the negative electrode is a transparent electrode, it is preferable to use a light-transmitting metal oxide such as ITO, zinc oxide, or tin oxide, and it is more preferable to use ITO.
 第1電極又は第2電極のうち負極となる電極の厚さ方向のサイズは、例えば10nm以上、1000nm以下、好ましくは20nm以上、800nm以下、より好ましくは30nm以上、600nm以下、さらに好ましくは50nm以上、400nm以下である。
 負極となる電極の厚さ方向のサイズがこのような範囲であると、光透過率を低減せずに光を電気に効率的に変換することができる。
The size in the thickness direction of the first electrode or the second electrode that will be the negative electrode is, for example, 10 nm or more and 1000 nm or less, preferably 20 nm or more and 800 nm or less, more preferably 30 nm or more and 600 nm or less, and even more preferably 50 nm or more and 400 nm or less.
When the size in the thickness direction of the negative electrode is within this range, light can be efficiently converted into electricity without reducing the light transmittance.
 第1電極又は第2電極のうち負極となる電極の幅方向のサイズは、積層体6の幅方向のサイズと同じでもよく異なっていてもよい。 The width of the first or second electrode that is the negative electrode may be the same as or different from the width of the laminate 6.
 第1電極又は第2電極のうち負極となる電極は、所定のシート抵抗を有していてもよく、シート抵抗の値は、例えば1Ω/□以上、1000Ω/□以下、好ましくは2Ω/□以上、500Ω/□以下、より好ましくは5Ω/□以上、100Ω/□以下である。 The electrode that is the negative electrode, either the first electrode or the second electrode, may have a predetermined sheet resistance, and the value of the sheet resistance is, for example, 1 Ω/□ or more and 1000 Ω/□ or less, preferably 2 Ω/□ or more and 500 Ω/□ or less, and more preferably 5 Ω/□ or more and 100 Ω/□ or less.
 第1電極又は第2電極のうち負極となる電極は、蒸着法、スパッタ法等の真空成膜法、ナノ粒子等を含有するインクを塗布して成膜する湿式塗布法等を使用して形成すればよく、必要に応じてエッチング等で所定の形状とすればよい。 The negative electrode out of the first and second electrodes may be formed using a vacuum film-forming method such as vapor deposition or sputtering, or a wet coating method in which an ink containing nanoparticles or the like is applied to form a film, and may be etched or otherwise shaped as required.
 正極は、仕事関数が低い導電性材料で構成され、電子が流入する電極である。
 正極を構成する材料として、白金、金、銀、銅、鉄、スズ、亜鉛、アルミニウム、インジウム、クロム、リチウム、ナトリウム、カリウム、セシウム、カルシウム、マグネシウム等の金属、その合金;フッ化リチウム、フッ化セシウム等の無機塩;酸化ニッケル、酸化アルミニウム、酸化リチウム、酸化セシウム等の金属酸化物等が挙げられる。
 正極を構成する好ましい材料は、白金、金、銀、銅、鉄、スズ、アルミニウム、カルシウム、インジウム等の金属、酸化インジウムスズ等と前記金属を用いた合金である。
The positive electrode is made of a conductive material having a low work function, and is an electrode into which electrons flow.
Examples of materials constituting the positive electrode include metals such as platinum, gold, silver, copper, iron, tin, zinc, aluminum, indium, chromium, lithium, sodium, potassium, cesium, calcium, and magnesium, and alloys thereof; inorganic salts such as lithium fluoride and cesium fluoride; and metal oxides such as nickel oxide, aluminum oxide, lithium oxide, and cesium oxide.
Preferred materials for forming the positive electrode are metals such as platinum, gold, silver, copper, iron, tin, aluminum, calcium, and indium, and alloys of such metals with indium tin oxide or the like.
 第1電極又は第2電極のうち正極となる電極の厚さ方向のサイズは、例えば10nm以上、1000nm以下、好ましくは20nm以上、800nm以下、より好ましくは30nm以上、600nm以下、さらに好ましくは50nm以上、400nm以下である。
 正極となる電極の厚さ方向のサイズがこのような範囲であると、光透過率を低減せずに光を電気に効率的に変換することができる。
The size in the thickness direction of the electrode that will be the positive electrode, of the first electrode or the second electrode, is, for example, 10 nm or more and 1000 nm or less, preferably 20 nm or more and 800 nm or less, more preferably 30 nm or more and 600 nm or less, and even more preferably 50 nm or more and 400 nm or less.
When the size in the thickness direction of the positive electrode is within this range, light can be efficiently converted into electricity without reducing the light transmittance.
 第1電極又は第2電極のうち正極となる電極の幅方向のサイズは、積層体6の幅方向のサイズと同じでもよく異なっていてもよい。 The width of the first or second electrode that is the positive electrode may be the same as or different from the width of the laminate 6.
 第1電極又は第2電極のうち正極となる電極は、所定のシート抵抗を有していてもよく、シート抵抗の値は、例えば1Ω/□以上、1000Ω/□以下、好ましくは2Ω/□以上、500Ω/□以下、より好ましくは5Ω/□以上、100Ω/□以下である。 The electrode that is the positive electrode, either the first electrode or the second electrode, may have a predetermined sheet resistance, and the value of the sheet resistance is, for example, 1 Ω/□ or more and 1000 Ω/□ or less, preferably 2 Ω/□ or more and 500 Ω/□ or less, and more preferably 5 Ω/□ or more and 100 Ω/□ or less.
 第1電極又は第2電極のうち正極となる電極は、蒸着法、スパッタ法等の真空成膜法、ナノ粒子等を含有するインクを塗布して成膜する湿式塗布法等を使用して形成すればよく、必要に応じてエッチング等で所定の形状とすればよい。 The electrode that is the positive electrode, either the first or second electrode, may be formed using a vacuum film-forming method such as vapor deposition or sputtering, or a wet coating method in which an ink containing nanoparticles or the like is applied to form a film, and may be etched or otherwise shaped into a desired shape as necessary.
 負極及び正極はそれぞれ、各層に1つ又は2つ以上の材料を使用してもよく、2層以上の積層構造を有していてもよく、負極及び正極には他の層を形成してもよい。他の層に使用される材料は、ポリ(エチレンジオキシチオフェン):ポリ(スチレンスルホン酸)(PEDOT:PSS)、酸化モリブデン、フッ化リチウム、2,9-ジメチル-4,7-ジフェニル-1,10-フェナントロリン等であってもよい。 The negative and positive electrodes may each use one or more materials in each layer, may have a laminated structure of two or more layers, and other layers may be formed in the negative and positive electrodes. Materials used in the other layers may be poly(ethylenedioxythiophene):poly(styrenesulfonic acid) (PEDOT:PSS), molybdenum oxide, lithium fluoride, 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline, etc.
 第1電極及び第2電極のうち、少なくとも1つの電極は、太陽光を吸収する観点から、光透過性を有することが好ましく、波長360~830nmの範囲で光透過率が好ましくは40%以上、より好ましくは55%以上、さらに好ましくは85%以上、さらにより好ましくは90%以上である電極とすることがより好ましい。
 透光性を有する電極とするには、上記の金属酸化物又はその合金を使用して電極を形成すればよい。
Of the first electrode and the second electrode, at least one electrode preferably has optical transparency from the viewpoint of absorbing solar light, and it is more preferable that the electrode has an optical transmittance of preferably 40% or more, more preferably 55% or more, even more preferably 85% or more, and even more preferably 90% or more in the wavelength range of 360 to 830 nm.
In order to obtain a light-transmitting electrode, the electrode may be formed using any of the above metal oxides or alloys thereof.
1.(5)光起電力層
 光起電力層4(I-4、II-4)は、少なくとも一部が、第1電極3(I-3、II-3)上に形成されている。
 第1態様において、光起電力層I-4は、第1電極I-3上に形成されるだけではなく、基材層I-2の上に形成されていてもよい。
1. (5) Photovoltaic Layer At least a portion of the photovoltaic layer 4 (I-4, II-4) is formed on the first electrode 3 (I-3, II-3).
In the first embodiment, the photovoltaic layer I-4 may be formed not only on the first electrode I-3 but also on the base material layer I-2.
 光起電力層4を構成する材料として、有機化合物材料(例えば有機色素材料、有機半導体材料)等が挙げられる。中でも、光起電力層4を構成する材料は、軽量、可とう性等の観点から、有機半導体材料であることが好ましく、光起電力層4は、有機薄膜を含むことが好ましい。光起電力層4を構成する材料として有機色素材料が用いられる場合、有機色素材料としては、色素増感可能なクマリン誘導体、マーキュロクロム色素等が挙げられる。 Materials constituting the photovoltaic layer 4 include organic compound materials (e.g., organic dye materials, organic semiconductor materials), etc. Among them, the material constituting the photovoltaic layer 4 is preferably an organic semiconductor material from the viewpoints of light weight, flexibility, etc., and the photovoltaic layer 4 preferably includes an organic thin film. When an organic dye material is used as the material constituting the photovoltaic layer 4, examples of the organic dye material include dye-sensitizable coumarin derivatives, mercurochrome dyes, etc.
 有機半導体材料は、p型、n型に大きく分けられるが、電気伝導に寄与する正孔、電子が、材料の電子状態、ドーピング状態、トラップ状態に依存して変化するため、p型、n型の明確に分類できない場合があり、同じ材料でもp型、n型の両方を示す場合がある。 Organic semiconductor materials are broadly divided into p-type and n-type, but because the holes and electrons that contribute to electrical conduction change depending on the electronic state, doping state, and trap state of the material, it is sometimes not possible to clearly classify them as p-type or n-type, and the same material may exhibit both p-type and n-type properties.
 p型半導体は、高分子有機半導体化合物、低分子有機半導体化合物等を使用するものであればよい。
 高分子有機半導体化合物として、ポリチオフェン、ポリフルオレン、ポリフェニレンビニレン、ポリチエニレンビニレン、ポリアセチレン、ポリアニリン等の共役ポリマー半導体化合物;置換されているオリゴチオフェン等のポリマー半導体化合物;二種以上のモノマーを共重合した半導体化合物等が挙げられる。
 高分子有機半導体化合物は、1種の化合物又は複数種の化合物の混合物であってもよい。
The p-type semiconductor may be a polymer organic semiconductor compound, a low molecular weight organic semiconductor compound, or the like.
Examples of the polymer organic semiconductor compound include conjugated polymer semiconductor compounds such as polythiophene, polyfluorene, polyphenylene vinylene, polythienylene vinylene, polyacetylene, and polyaniline; polymer semiconductor compounds such as substituted oligothiophenes; and semiconductor compounds obtained by copolymerizing two or more types of monomers.
The polymeric organic semiconductor compound may be one type of compound or a mixture of multiple types of compounds.
 低分子有機半導体化合物として、ナフタセン、ペンタセン、ピレン等の縮合芳香族炭化水素;チオフェン環を4個以上含むオリゴチオフェン類;チオフェン環、ベンゼン環、フルオレン環、ナフタレン環、アントラセン環、チアゾール環、チアジアゾール環、ベンゾチアゾール環から選ばれる1つ以上を含み、合計4つ以上が連結したもの;フタロシアニン化合物、その金属錯体、テトラベンゾポリフィリン等のポリフィリン化合物、その金属錯体等の大環状化合物等が挙げられる。
 低分子有機半導体化合物の分子量は、例えば100以上5000以下、好ましくは200以上2000以下である。
Examples of low molecular weight organic semiconductor compounds include condensed aromatic hydrocarbons such as naphthacene, pentacene, and pyrene; oligothiophenes containing four or more thiophene rings; compounds containing one or more selected from thiophene rings, benzene rings, fluorene rings, naphthalene rings, anthracene rings, thiazole rings, thiadiazole rings, and benzothiazole rings, with a total of four or more rings linked together; phthalocyanine compounds, metal complexes thereof, porphyrin compounds such as tetrabenzoporphyrin, and macrocyclic compounds such as metal complexes thereof, and the like.
The molecular weight of the low molecular weight organic semiconductor compound is, for example, 100 or more and 5,000 or less, and preferably 200 or more and 2,000 or less.
 上記では、光起電力層4を構成する材料として、主に、有機薄膜太陽電池に用いられる有機半導体材料が用いられる場合について説明した。しかしながら、本実施形態に係る光起電力層4はそれに限定されない。光起電力層4を構成する材料として、例えば、結晶シリコン太陽電池及びアモルファスシリコン太陽電池等のシリコン系太陽電池、CIS太陽電池、CIGS太陽電池、及びCdTe太陽電池等の化合物系太陽電池、有機無機ハイブリッド太陽電池(ペロブスカイト太陽電池とも称され得る)、並びに色素増感型太陽電池等の太陽電池に用いられる材料が用いられてもよい。より具体的には、光起電力層4を構成する材料として、例えば、シリコン材料、シリコン材料以外の無機化合物材料、ペロブスカイト材料、量子ドット材料が用いられてもよい。シリコン材料としては、単結晶シリコン、多結晶シリコン、微結晶シリコン、アモルファスシリコン等が挙げられる。無機化合物材料としては、InGaAs、GaAs、CIS、CIGS、CZTS、CdTe/CdS、InP,SiGe、Ge、ZnO/CuAlO2等が挙げられる。このような材料が用いられ得る場合、薄膜化された層形成が可能であり、リール状への巻回及び後述する転写の際のハンドリングの容易さの点で有利である。 In the above, the case where an organic semiconductor material used in an organic thin-film solar cell is mainly used as the material constituting the photovoltaic layer 4 has been described. However, the photovoltaic layer 4 according to the present embodiment is not limited thereto. As the material constituting the photovoltaic layer 4, for example, a material used in a silicon-based solar cell such as a crystalline silicon solar cell and an amorphous silicon solar cell, a compound-based solar cell such as a CIS solar cell, a CIGS solar cell, and a CdTe solar cell, an organic-inorganic hybrid solar cell (which may also be referred to as a perovskite solar cell), and a solar cell such as a dye-sensitized solar cell may be used. More specifically, as the material constituting the photovoltaic layer 4, for example, a silicon material, an inorganic compound material other than a silicon material, a perovskite material, and a quantum dot material may be used. Examples of the silicon material include single crystal silicon, polycrystalline silicon, microcrystalline silicon, and amorphous silicon. Examples of the inorganic compound material include InGaAs, GaAs, CIS, CIGS, CZTS, CdTe/CdS, InP, SiGe, Ge, and ZnO/CuAlO 2 . When such a material can be used, it is possible to form a thin layer, which is advantageous in terms of ease of handling during winding into a reel and transfer, which will be described later.
 n型半導体としては、例えば、フラーレン化合物、8-ヒドロキシキノリンアルミニウム等のキノリノール誘導体金属錯体;ナフタレンテトラカルボン酸ジイミド又はペリレンテトラカルボン酸ジイミド等の縮合環テトラカルボン酸ジイミド類;ペリレンジイミド誘導体;ターピリジン金属錯体、トロポロン金属錯体、フラボノール金属錯体、ペリノン誘導体、ベンズイミダゾール誘導体、ベンズオキサゾール誘導体、チアゾール誘導体、ベンズチアゾール誘導体、ベンゾチアジアゾール誘導体、オキサジアゾール誘導体、チアジアゾール誘導体、トリアゾール誘導体、ピラジン誘導体、フェナントロリン誘導体、キノキサリン誘導体、ベンゾキノリン誘導体、ボラン誘導体、アントラセン、ピレン、ナフタセン、ペンタセン等の縮合多環芳香族炭化水素等のフッ化物、単層カーボンナノチューブ等を使用する。 Examples of n-type semiconductors include fullerene compounds, quinolinol derivative metal complexes such as 8-hydroxyquinoline aluminum, condensed ring tetracarboxylic acid diimides such as naphthalene tetracarboxylic acid diimide and perylene tetracarboxylic acid diimide, perylene diimide derivatives, terpyridine metal complexes, tropolone metal complexes, flavonol metal complexes, perinone derivatives, benzimidazole derivatives, benzoxazole derivatives, thiazole derivatives, benzthiazole derivatives, benzothiadiazole derivatives, oxadiazole derivatives, thiadiazole derivatives, triazole derivatives, pyrazine derivatives, phenanthroline derivatives, quinoxaline derivatives, benzoquinoline derivatives, borane derivatives, fluorides of condensed polycyclic aromatic hydrocarbons such as anthracene, pyrene, naphthacene, and pentacene, and single-walled carbon nanotubes.
 光起電力層4は、少なくともp型の半導体及びn型の半導体を含んでいればよい。
 光起電力層4は、単層であってもよく、2層以上の積層構造で構成されていてもよい。
 光起電力層4は、例えばn型の半導体とp型の半導体を別々の層に含有させてもよく、n型の半導体とp型の半導体を同じ層に含有させてもよい。
 また、光起電力層4に使用されるn型の半導体及びp型の半導体は各々、1種又は2種以上で使用してもよい。
The photovoltaic layer 4 may include at least a p-type semiconductor and an n-type semiconductor.
The photovoltaic layer 4 may be a single layer, or may be configured as a laminated structure of two or more layers.
The photovoltaic layer 4 may contain, for example, an n-type semiconductor and a p-type semiconductor in separate layers, or may contain an n-type semiconductor and a p-type semiconductor in the same layer.
The n-type semiconductor and the p-type semiconductor used in the photovoltaic layer 4 may each be used alone or in combination of two or more kinds.
 光起電力層4の構成例として、p型半導体とn型半導体が層内で層分離した層(i層)を有するバルクヘテロ接合型、p型半導体を含む層(p層)とn型半導体を含む層(n層)が界面を有する積層型(ヘテロpn接合型)、ショットキー型、それらの組み合わせ等が挙げられる。 Examples of the configuration of the photovoltaic layer 4 include a bulk heterojunction type having a layer (i layer) in which a p-type semiconductor and an n-type semiconductor are separated within the layer, a stacked type (hetero pn junction type) in which a layer containing a p-type semiconductor (p layer) and a layer containing an n-type semiconductor (n layer) have an interface, a Schottky type, and combinations of these.
 光起電力層4の厚さ方向のサイズは、例えば10nm以上、1000nm以下、好ましくは20nm以上、500nm以下、より好ましくは50nm以上、300nm以下である。
 光起電力層4の幅方向のサイズは、例えば積層体6の幅方向のサイズより小さい。
The size in the thickness direction of the photovoltaic layer 4 is, for example, 10 nm or more and 1000 nm or less, preferably 20 nm or more and 500 nm or less, and more preferably 50 nm or more and 300 nm or less.
The size of the photovoltaic layer 4 in the width direction is smaller than the size of the laminate 6 in the width direction, for example.
 光起電力層4は、塗布法で形成することが好ましく、湿式塗布法で形成することがより好ましい。
 塗布法として、スピンコート法、リバースロールコート法、グラビアコート法、キスコート法、スプレーコート法、エアナイフコート法、含浸コート法、カーテンコート法等が挙げられる。
The photovoltaic layer 4 is preferably formed by a coating method, and more preferably by a wet coating method.
Examples of the coating method include spin coating, reverse roll coating, gravure coating, kiss coating, spray coating, air knife coating, impregnation coating, and curtain coating.
1.(6)電子輸送層
 光起電力層4と電極との間に電子輸送層(図3の例では電子輸送層II-12)が設けられていてもよい。
 電子輸送層は、光起電力層4で発生した電子を抽出し、正孔に対するエネルギー障壁として働く。
 電子輸送層を構成する材料は、電子が移動しやすい材料であればよく、シアノ基含有ポリフェニレンビニレン、オキサジアゾール化合物、ベンゾイミダゾール化合物、ナフタレンテトラカルボン酸化合物、ペリレン誘導体、フルオロ基含有フタロシアニン等の有機材料、ホスフィンオキサイド化合物、ホスフィンスルフィド化合物、酸化チタン、酸化亜鉛、酸化インジウム、酸化スズ、酸化ガリウム、硫化スズ、硫化インジウム、硫化亜鉛等の無機材料が挙げられる。
1. (6) Electron Transport Layer An electron transport layer (electron transport layer II-12 in the example of FIG. 3) may be provided between the photovoltaic layer 4 and the electrode.
The electron transport layer extracts electrons generated in the photovoltaic layer 4 and acts as an energy barrier to holes.
The material constituting the electron transport layer may be any material as long as it is a material through which electrons can easily move, and examples of such materials include organic materials such as cyano group-containing polyphenylene vinylene, oxadiazole compounds, benzimidazole compounds, naphthalene tetracarboxylic acid compounds, perylene derivatives, and fluoro group-containing phthalocyanines, and inorganic materials such as phosphine oxide compounds, phosphine sulfide compounds, titanium oxide, zinc oxide, indium oxide, tin oxide, gallium oxide, tin sulfide, indium sulfide, and zinc sulfide.
 電子輸送層の厚さ方向のサイズは、例えば1nm以上、300nm以下、好ましくは2nm以上、200nm以下、より好ましくは5nm以上、100nm以下である。 The size of the electron transport layer in the thickness direction is, for example, 1 nm or more and 300 nm or less, preferably 2 nm or more and 200 nm or less, and more preferably 5 nm or more and 100 nm or less.
 第2態様の長尺積層体II-1は、第1電極II-3と光起電力層II-4との間、及び/又は、第2電極II-5と光起電力層II-4との間に、電子輸送層II-12を有することが好ましい。図3の例では、長尺積層体II-1は、第1電極II-3の第1-1領域II-8と光起電力層II-4との間に電子輸送層II-12を有し、第2電極II-5の第2-2領域II-11と光起電力層II-4との間に別の電子輸送層II-12を有する。本実施形態はこれに限定されず、例えば、長尺積層体II-1は、第2電極II-5の第2-1領域II-10と光起電力層II-4との間に電子輸送層II-12を有し、第2電極II-5の第2-2領域II-11の下方かつ光起電力層II-4の下面に接する別の電子輸送層II-12を有していてもよい。 The long laminate II-1 of the second embodiment preferably has an electron transport layer II-12 between the first electrode II-3 and the photovoltaic layer II-4 and/or between the second electrode II-5 and the photovoltaic layer II-4. In the example of FIG. 3, the long laminate II-1 has an electron transport layer II-12 between the 1-1 region II-8 of the first electrode II-3 and the photovoltaic layer II-4, and has another electron transport layer II-12 between the 2-2 region II-11 of the second electrode II-5 and the photovoltaic layer II-4. This embodiment is not limited to this, and for example, the long laminate II-1 may have an electron transport layer II-12 between the 2-1 region II-10 of the second electrode II-5 and the photovoltaic layer II-4, and another electron transport layer II-12 below the 2-2 region II-11 of the second electrode II-5 and in contact with the lower surface of the photovoltaic layer II-4.
1.(7)保護層
 長尺積層体1(I-1、II-1)は、第2電極5(I-5、II-5)上に保護層7(I-7、II-7)を更に有することが好ましい。保護層7は、温度、湿度、自然光、風雨等による侵食から積層体6の劣化を防ぐ層であることが好ましい。
1. (7) Protective Layer The long laminate 1 (I-1, II-1) preferably further has a protective layer 7 (I-7, II-7) on the second electrode 5 (I-5, II-5). The protective layer 7 is preferably a layer that prevents deterioration of the laminate 6 from corrosion due to temperature, humidity, natural light, wind and rain, etc.
 保護層7の材料として、ポリエチレン樹脂、ポリプロピレン樹脂、環状オレフィン樹脂、アクリロニトリル-スチレン樹脂、アクリロニトリル-ブタジエン-スチレン樹脂、ポリ塩化ビニル樹脂、フッ素樹脂、ポリエチレンテレフタレート樹脂、ポリエチレンナフタレート樹脂等のポリエステル樹脂、フェオール樹脂、ポリアクリル樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリウレタン樹脂、シリコーン樹脂等が挙げられる。 Materials for the protective layer 7 include polyethylene resin, polypropylene resin, cyclic olefin resin, acrylonitrile-styrene resin, acrylonitrile-butadiene-styrene resin, polyvinyl chloride resin, fluororesin, polyester resins such as polyethylene terephthalate resin and polyethylene naphthalate resin, phenol resin, polyacrylic resin, polyamide resin, polyimide resin, polyurethane resin, silicone resin, etc.
 保護層7が耐候性を有する場合、保護層7は、フッ素樹脂であることが好ましい。フッ素樹脂としては、ポリテトラフルオロエチレン、4-フッ化エチレン-パークロロアルコキシ共重合体、4-フッ化エチレン-6-フッ化プロピレン共重合体、2-エチレン-4-フッ化エチレン共重合体、ポリフッ化ビニリデン、ポリフッ化ビニル等が挙げられる。 If the protective layer 7 is weather resistant, it is preferable that the protective layer 7 is a fluororesin. Examples of fluororesins include polytetrafluoroethylene, 4-fluoroethylene-perchloroalkoxy copolymer, 4-fluoroethylene-6-fluoropropylene copolymer, 2-ethylene-4-fluoroethylene copolymer, polyvinylidene fluoride, polyvinyl fluoride, etc.
 保護層7は、1種の材料で構成されていてもよく、2種以上の材料で形成されていてもよい。保護層7は、1層又は2層以上であってもよい。 The protective layer 7 may be made of one type of material, or may be made of two or more types of materials. The protective layer 7 may be one layer or two or more layers.
 保護層7の厚さ方向のサイズは、例えば0.5μm以上、100μm以下、好ましくは1μm以上、50μm以下、より好ましくは2μm以上、30μm以下である。保護層の厚さ方向のサイズが小さくなると、柔軟性が高まる。
 保護層7の幅方向、長手方向のサイズは、長尺積層体1の幅方向、長手方向のサイズと同様であってもよい。
The size in the thickness direction of the protective layer 7 is, for example, 0.5 μm to 100 μm, preferably 1 μm to 50 μm, and more preferably 2 μm to 30 μm. As the size in the thickness direction of the protective layer is reduced, the flexibility is increased.
The size of the protective layer 7 in the width direction and the length direction may be the same as the size of the long laminate 1 in the width direction and the length direction.
 保護層7は、可視光を透過するものであることが好ましい。保護層7における波長360~830nmの可視光範囲の光透過率は、好ましくは80%以上、より好ましくは90%以上、さらに好ましくは95%以上である。 The protective layer 7 is preferably transparent to visible light. The light transmittance of the protective layer 7 in the visible light range of wavelengths from 360 to 830 nm is preferably 80% or more, more preferably 90% or more, and even more preferably 95% or more.
 保護層7は、基材層2と同様に、接着層を介して、第2電極5上に形成されていてもよい。保護層7は、基材層2と同様に剥離可能であってもよい。保護層7が接着層を介して第2電極5上に形成されている場合、保護層7を剥離すると、例えば、第2電極5上に接着層が残り、当該接着層の接着力により、第2電極5上に所望の対象(バリア層等)を貼り付けることが可能である。保護層7は、基材層2上に積層体6と同様の構成の積層体が複数設けられている場合、積層体毎に設けられていてもよいし、複数の積層体の上方に1つの保護層7が設けられていてもよい。
 保護層7に設けられる接着層は剥離可能な層であってもよく、接着層とは別に剥離層を設けてもよい。すなわち、保護層7と第2電極5との間に、剥離層及び接着層がこの順に設けられている場合、保護層7を剥がすと、例えば、第2電極5側に接着層が残り、当該接着層の接着力により、第2電極5等に所望の対象(バリア層等)を貼り付けることが可能となる。剥離層を設けることにより、保護層7の剥離が容易となり得る。
 第1電極3から基材層2を剥離する際の剥離力と、第2電極5から保護層7を剥離する際の剥離力は、互いに異なることが好ましい。このような剥離力は、以上で説明した接着層及び/又は剥離層に由来するものである。貼り付け対象(好ましくはデバイス基材)への貼り付けを容易に行う観点から、第2電極5から保護層7を剥離する際の剥離力は、第1電極3から基材層2を剥離する際の剥離力より大きいことが好ましい。これにより、基材層2が、保護層7よりも先に剥離され易くなり、保護層7が剥離されていない状態で第1電極3等を対象に貼り付けることができる。本明細書では主に、貼り付け対象への貼り付けの際に基材層2を剥離する場合について説明するが、貼り付け対象への貼り付けの際に基材層2ではなく保護層7を剥離するようにしてもよい。このような場合には、第1電極3から基材層2を剥離する際の剥離力は、第2電極5から保護層7を剥離する際の剥離力より大きいことが好ましい。これにより、保護層7が、基材層2よりも先に剥離され易くなる。第1電極3と第2電極5とのうち、貼り付けた対象への貼り付けの後に外側に存在することになる電極は、透明電極であることが好ましい。
The protective layer 7 may be formed on the second electrode 5 via an adhesive layer, similar to the base layer 2. The protective layer 7 may be peelable, similar to the base layer 2. When the protective layer 7 is formed on the second electrode 5 via an adhesive layer, when the protective layer 7 is peeled off, for example, an adhesive layer remains on the second electrode 5, and a desired target (such as a barrier layer) can be attached to the second electrode 5 by the adhesive force of the adhesive layer. When a plurality of laminates having a configuration similar to the laminate 6 are provided on the base layer 2, the protective layer 7 may be provided for each laminate, or one protective layer 7 may be provided above the plurality of laminates.
The adhesive layer provided on the protective layer 7 may be a peelable layer, or a peeling layer may be provided separately from the adhesive layer. That is, when a peeling layer and an adhesive layer are provided in this order between the protective layer 7 and the second electrode 5, when the protective layer 7 is peeled off, for example, the adhesive layer remains on the second electrode 5 side, and a desired object (such as a barrier layer) can be attached to the second electrode 5 or the like due to the adhesive force of the adhesive layer. By providing a peeling layer, peeling off of the protective layer 7 can be facilitated.
The peeling force when peeling the base layer 2 from the first electrode 3 and the peeling force when peeling the protective layer 7 from the second electrode 5 are preferably different from each other. Such peeling force is derived from the adhesive layer and/or peeling layer described above. From the viewpoint of easily attaching to the attachment target (preferably a device substrate), the peeling force when peeling the protective layer 7 from the second electrode 5 is preferably greater than the peeling force when peeling the base layer 2 from the first electrode 3. This makes it easier for the base layer 2 to be peeled off before the protective layer 7, and the first electrode 3 and the like can be attached to the target in a state in which the protective layer 7 is not peeled off. In this specification, the case in which the base layer 2 is peeled off when attaching to the attachment target will mainly be described, but the protective layer 7 may be peeled off instead of the base layer 2 when attaching to the attachment target. In such a case, the peeling force when peeling the base layer 2 from the first electrode 3 is preferably greater than the peeling force when peeling the protective layer 7 from the second electrode 5. This makes it easier for the protective layer 7 to be peeled off before the base layer 2. Of the first electrode 3 and the second electrode 5, the electrode that is present on the outside after attachment to an object is preferably a transparent electrode.
 保護層7と基材層2は、所定の剛性(例えば曲げ剛性)を有していてもよく、保護層7と基材層2は、互いに異なる剛性を有することが好ましく、保護層7の剛性は、基材層2の剛性よりも大きいことがより好ましい。これにより、長尺積層体1をリール状に巻回し易くできる。 The protective layer 7 and the base layer 2 may have a predetermined rigidity (e.g., bending rigidity), and it is preferable that the protective layer 7 and the base layer 2 have different rigidities, and it is more preferable that the rigidity of the protective layer 7 is greater than the rigidity of the base layer 2. This makes it easier to wind the long laminate 1 into a reel.
 長尺積層体1は、第1電極3、光起電力層4、及び第2電極5を含む積層体6を含み、積層体6が形成されていない領域をさらに含んでいることが好ましい。積層体6が形成されていない領域には、基材層2上に第1電極3、光起電力層4、及び第2電極5が形成されていない領域、第1電極3上に光起電力層4及び第2電極5が形成されていない領域、光起電力層4上に第2電極5が形成されていない領域、第2電極5と保護層7との間に形成される空隙領域等が含まれる。かかる領域は、長尺積層体1に設けられる複数の積層体同士が一部重なってデバイス基材に貼り付けられ、後述する光起電力装置を形成する際に用いられ得る。 The long laminate 1 preferably includes a laminate 6 including a first electrode 3, a photovoltaic layer 4, and a second electrode 5, and further includes an area where the laminate 6 is not formed. The area where the laminate 6 is not formed includes an area where the first electrode 3, the photovoltaic layer 4, and the second electrode 5 are not formed on the base layer 2, an area where the photovoltaic layer 4 and the second electrode 5 are not formed on the first electrode 3, an area where the second electrode 5 is not formed on the photovoltaic layer 4, and an air gap area formed between the second electrode 5 and the protective layer 7. Such an area can be used when the multiple laminates provided in the long laminate 1 are attached to the device base material with some overlapping each other to form a photovoltaic device described later.
 言い換えれば、長尺積層体1(I-1、II-1)の長手方向に垂直な方向の断面において、積層体6(I-6、II-6)の幅方向サイズ(第1電極3(I-3、II-3)、光起電力層4(I-4、II-4)、及び第2電極5(I-5、II-5)を基材層2に投影した時の幅方向サイズ)と厚さ方向サイズを乗じた面積に対する、第1電極3(I-3、II-3)と、光起電力層4(I-4、II-4)と、第2電極5(I-5、II-5)とが占める面積の割合が、好ましくは60%以上95%以下、より好ましくは65%以上90%以下、さらに好ましくは70%以上85%以下である。
 当該領域の割合が60%以上であると、光起電力装置自体の強度を確保しやすく、当該領域の割合が95%以下であると、積層体同士を直列に並べるための領域を確保しやすい。
In other words, in a cross section perpendicular to the longitudinal direction of the long laminate 1 (I-1, II-1), the ratio of the area occupied by the first electrode 3 (I-3, II-3), the photovoltaic layer 4 (I-4, II-4), and the second electrode 5 (I-5, II-5) to the area obtained by multiplying the width direction size of the laminate 6 (I-6, II-6) (the width direction size when the first electrode 3 (I-3, II-3), the photovoltaic layer 4 (I-4, II-4), and the second electrode 5 (I-5, II-5) are projected onto the base layer 2) and the thickness direction size is preferably 60% or more and 95% or less, more preferably 65% or more and 90% or less, and even more preferably 70% or more and 85% or less.
When the proportion of this region is 60% or more, the strength of the photovoltaic device itself can be easily ensured, and when the proportion of this region is 95% or less, a region for arranging the laminates in series can be easily ensured.
 長尺積層体1は、デバイスに設けられる発電機能を有する積層体の全面積に対する発電面積を大きくする観点から、デバイスの受光面に対して、光が照射される絶縁層の面積を小さくすることが望ましい。
 絶縁層の面積は、長尺積層体の100面積%に対して、好ましくは10面積%以下、より好ましくは5面積%以下、さらに好ましくは1面積%以下、さらにより好ましくは0面積%である。すなわち、長尺積層体は、絶縁層を含まないものとすることが好ましい。
 なお、絶縁層を使用する場合、絶縁層は、直列に配置した各積層体間に設けられるものではなく、例えば各積層体の第1電極及び第2電極同士の絶縁性を担保するようなものであれば、任意の場所に設置可能である。
In order to increase the power generation area relative to the total area of the power generating laminate provided in the device, it is desirable to reduce the area of the insulating layer that is irradiated with light relative to the light receiving surface of the device.
The area of the insulating layer is preferably 10% or less, more preferably 5% or less, even more preferably 1% or less, and even more preferably 0% relative to 100% of the area of the long laminate. In other words, it is preferable that the long laminate does not include an insulating layer.
In addition, when an insulating layer is used, the insulating layer does not have to be provided between each of the laminates arranged in series, but can be provided at any location as long as it ensures insulation between the first electrodes and second electrodes of each laminate.
2.光起電力装置
 次に、図4~9を参照して、光起電力装置の基本構成を説明する。図4は、本発明の実施形態に係る長尺積層体1に設けられる複数の積層体6をデバイス基材に順次貼り付けて光起電力装置を作製する方法を示す図であり、図5は、長尺積層体1に設けられる複数の積層体6(好ましくは基材層2を剥離した積層体6)をデバイス基材に順次貼り付けて得られる光起電力装置の平面図を表す。図6は、本発明の一実施形態(第1態様)に係る光起電力装置の断面図の一例を表し、図7、8は、本発明の一実施形態(第1態様)に係る光起電力装置の断面図の別の例を表す。図9は、本発明の別実施形態(第2態様)に係る光起電力装置の断面図の一例を表す。
2. Photovoltaic Device Next, the basic configuration of a photovoltaic device will be described with reference to Figs. 4 to 9. Fig. 4 is a diagram showing a method for producing a photovoltaic device by sequentially attaching a plurality of laminates 6 provided in a long laminate 1 according to an embodiment of the present invention to a device substrate, and Fig. 5 is a plan view of a photovoltaic device obtained by sequentially attaching a plurality of laminates 6 (preferably laminates 6 from which the substrate layer 2 has been peeled off) provided in a long laminate 1 to a device substrate. Fig. 6 shows an example of a cross-sectional view of a photovoltaic device according to one embodiment of the present invention (first aspect), and Figs. 7 and 8 show other examples of cross-sectional views of a photovoltaic device according to one embodiment of the present invention (first aspect). Fig. 9 shows an example of a cross-sectional view of a photovoltaic device according to another embodiment of the present invention (second aspect).
 図4を参照して、光起電力装置を作製する方法を説明する。長尺積層体1は長手方向に沿って例えば同一の構造を有する複数の積層体6(第1電極3、光起電力層4、第2電極5をこの順で含む)を配置してなる。先ず、当該複数の積層体6のうちの1つ目の積層体の第1電極3を少なくとも露出させるように長尺積層体1から基材層2を剥離し、当該露出した第1電極3面をデバイス基材2aに貼り付けることにより、1つ目の積層体をデバイス基材2a上に形成する。次いで、上記複数の積層体6のうちの、例えば上記1つ目の積層体の隣に配置されていた2つ目の積層体の第1電極3を少なくとも露出させるように長尺積層体1から基材層2を剥離する。一度の基材層2の剥離で1つ目の積層体及び2つ目の積層体の第1電極3が露出されていた場合は、この2回目の剥離は必須では無い。露出した2つ目の積層体の第1電極3面を、例えば、上記1つ目の積層体の長辺に平行でありかつ第1積層体と一部重なって重なり部分30を形成するようにデバイス基材2aに貼り付ける。これにより、2つ目の積層体をデバイス基材2a上に形成する。例えば、この手順を繰り返すことで、所望の数の積層体6が直列接続された光起電力装置40が作製される。本明細書では主に、同一の長尺積層体1に配置されていた複数の積層体6から上述のように光起電力装置40が作製される場合の例を説明するが、例えば、異なる長尺積層体1にそれぞれ配置された積層体6が同一のデバイス基材2aに貼り付けられることにより上述したのと同様の構造の光起電力装置40が作製されてもよい。 With reference to FIG. 4, a method for producing a photovoltaic device will be described. The long laminate 1 is formed by arranging a plurality of laminates 6 (including a first electrode 3, a photovoltaic layer 4, and a second electrode 5 in this order) having the same structure along the longitudinal direction. First, the base layer 2 is peeled off from the long laminate 1 so as to expose at least the first electrode 3 of the first laminate of the plurality of laminates 6, and the exposed first electrode 3 surface is attached to the device substrate 2a to form the first laminate on the device substrate 2a. Next, the base layer 2 is peeled off from the long laminate 1 so as to expose at least the first electrode 3 of the second laminate of the plurality of laminates 6, for example, the second laminate arranged next to the first laminate. If the first electrodes 3 of the first and second laminates are exposed by peeling off the base layer 2 once, this second peeling is not essential. The exposed first electrode 3 surface of the second laminate is attached to the device substrate 2a so as to be parallel to the long side of the first laminate and overlap the first laminate to form an overlapping portion 30. This forms the second laminate on the device substrate 2a. For example, by repeating this procedure, a photovoltaic device 40 in which a desired number of laminates 6 are connected in series is produced. This specification mainly describes an example in which the photovoltaic device 40 is produced as described above from multiple laminates 6 arranged on the same long laminate 1, but for example, a photovoltaic device 40 having a similar structure to that described above may be produced by attaching the laminates 6 arranged on different long laminates 1 to the same device substrate 2a.
 図5を参照して、光起電力装置40を説明する。光起電力装置40は、上記で説明した様に、長尺積層体1に設けられる複数の積層体6(好ましくは基材層2を剥離した積層体6)を用い、当該複数の積層体6のうちの1つ目の積層体、2つ目の積層体、3つ目の積層体、4つ目の積層体(図5では、登場順に、符号1a、1b、1c、1dが付されている。)が、隣り合う積層体同士で一部重なるようにデバイス基材2aに貼り合わせて作製される。積層体1a、1b、1c、1d同士の重なり部分30は、第1態様では、ある積層体の第1電極I-3と他の積層体の第2電極1-5とが重なって電気的な接続を実現している箇所であり、第2態様では、ある積層体の第1電極II-3と他の積層体の光起電力層II-4とが重なって電気的な接続を実現している箇所である。
 すなわち、光起電力装置40では、長尺積層体1に配置されていた複数の積層体6が、デバイス基材2a上に転写され、かつ電気的に接続されている。
The photovoltaic device 40 will be described with reference to Fig. 5. As described above, the photovoltaic device 40 uses a plurality of laminates 6 (preferably laminates 6 from which the base layer 2 has been peeled off) provided on the long laminate 1, and is produced by bonding the first, second, third, and fourth laminates (in Fig. 5, the reference characters 1a, 1b, 1c, and 1d are given in order of appearance) of the plurality of laminates 6 to the device base material 2a so that adjacent laminates partially overlap each other. In the first embodiment, the overlapping portion 30 between the laminates 1a, 1b, 1c, and 1d is a portion where the first electrode I-3 of a certain laminate overlaps with the second electrode 1-5 of another laminate to realize an electrical connection, and in the second embodiment, it is a portion where the first electrode II-3 of a certain laminate overlaps with the photovoltaic layer II-4 of another laminate to realize an electrical connection.
That is, in the photovoltaic device 40, the plurality of laminates 6 arranged on the long laminate 1 are transferred onto the device substrate 2a and electrically connected.
 図6を参照して、第1態様の光起電力装置I-40を説明する。光起電力装置I-40は、デバイス基材I-2aと、第1積層体I-6aと、第2積層体I-6bとを含む。第1積層体I-6aは、少なくとも一部がデバイス基材I-2a上に形成されている第1電極I-3aと、少なくとも一部が第1電極I-3a上に形成されている光起電力層I-4aと、少なくとも一部が光起電力層I-4a上に形成されている第2電極I-5aとを含む。第2積層体I-6bは、少なくとも一部がデバイス基材I-2a上に形成されている第1電極I-3bと、少なくとも一部が第1電極I-3b上に形成されている光起電力層I-4bと、少なくとも一部が光起電力層I-4b上に形成されている第2電極I-5bとを含む。 The photovoltaic device I-40 of the first embodiment will be described with reference to FIG. 6. The photovoltaic device I-40 includes a device substrate I-2a, a first laminate I-6a, and a second laminate I-6b. The first laminate I-6a includes a first electrode I-3a at least partially formed on the device substrate I-2a, a photovoltaic layer I-4a at least partially formed on the first electrode I-3a, and a second electrode I-5a at least partially formed on the photovoltaic layer I-4a. The second laminate I-6b includes a first electrode I-3b at least partially formed on the device substrate I-2a, a photovoltaic layer I-4b at least partially formed on the first electrode I-3b, and a second electrode I-5b at least partially formed on the photovoltaic layer I-4b.
 更に、光起電力装置I-40において、第1積層体I-6aと第2積層体I-6bが、デバイス基材I-2a上に並んで形成されている。第1積層体I-6aと第2積層体I-6bが並んだ方向の断面において、第1積層体I-6a及び第2積層体I-6bの幅方向サイズ(第1電極I-3a、光起電力層I-4a、第2電極I-5aをデバイス基材I-2aに投影した時の幅方向サイズ、及び第1電極I-3b、光起電力層I-4b、第2電極I-5bをデバイス基材I-2aに投影した時の幅方向サイズ)と第1積層体I-6a又は第2積層体I-6bの厚さ方向サイズを乗じた領域に対する、第1電極I-3a及び第1電極I-3bと、光起電力層I-4a及び光起電力層I-4bと、第2電極I-5a及び第2電極I-5bとが占める領域の割合が、例えば60%以上95%以下である。 Furthermore, in the photovoltaic device I-40, a first laminate I-6a and a second laminate I-6b are formed side by side on a device substrate I-2a. In a cross section in the direction in which the first laminate I-6a and the second laminate I-6b are arranged, the ratio of the area occupied by the first electrode I-3a and the first electrode I-3b, the photovoltaic layer I-4a and the photovoltaic layer I-4b, and the second electrode I-5a and the second electrode I-5b to the area obtained by multiplying the width direction size of the first laminate I-6a and the second laminate I-6b (the width direction size when the first electrode I-3a, the photovoltaic layer I-4a, and the second electrode I-5b are projected onto the device substrate I-2a, and the width direction size when the first electrode I-3b, the photovoltaic layer I-4b, and the second electrode I-5b are projected onto the device substrate I-2a) by the thickness direction size of the first laminate I-6a or the second laminate I-6b is, for example, 60% or more and 95% or less.
 光起電力装置I-40の構成について、図7を参照しながら詳細に説明する。
 第1積層体I-6aの第2電極I-5aが、第1積層体I-6aの第1電極I-3aに対向している第2-1領域I-10aと、第1積層体I-6aの第1電極I-3aには対向していない第2-2領域I-11aとを有する。第2積層体I-6bの第2電極I-5bが、第2積層体I-6bの第1電極I-3bに対向している第2-1領域I-10bと、第2積層体I-6bの第1電極I-3bには対向していない第2-2領域I-11bとを有する。第1積層体I-6aの第1電極I-3aが、第1積層体I-6aの第2電極I-5aに対向している第1-1領域I-8aと、第2電極I-5aには対向していない第1-2領域I-9aとを有する。第2積層体I-6bの第1電極I-3bが、第1積層体I-6bの第2電極I-5bに対向している第1-1領域I-8bと、第2電極I-5bには対向していない第1-2領域I-9bとを有する。第1積層体I-6aの第1電極I-3aの第1-2領域I-9aが、第2積層体I-6bの第2電極I-5bの第2-2領域I-11b上に重ねられ電気的に接続されている(図6において第1積層体I-6aは、積層体Aに相当し、第2積層体I-6bは、積層体Bに相当する。)。
 これにより、発電機能を有する積層体を作製した後でもデバイスの形状及びサイズに適合可能であり、デバイスに設けられる発電機能を有する積層体の全面積に対する発電面積の最大化が可能となる。また、第1電極と第2電極が面状で接続可能となることから、配線抵抗を低減させることができる。図5から図7を参照しながら行った上記の説明は図8の例にも成り立ち、図8においては、図7と同様の符号が付されている。図7及び図8の例では、第1積層体I-6aの第1電極I-3aの第1-2領域I-9aが、第2積層体I-6bの第2電極I-5bの第2-2領域I-11b上に重ねられ電気的に接続されている場合の例を示したが、本実施形態はこれに限定されない。第2積層体I-6bの第2電極I-5bの第2-2領域I-11bが、第1積層体I-6aの第1電極I-3aの第1-2領域I-9a上に重ねられ電気的に接続されるようにしてもよい。
The configuration of the photovoltaic device I-40 will be described in detail with reference to FIG.
The second electrode I-5a of the first laminate I-6a has a 2-1 region I-10a facing the first electrode I-3a of the first laminate I-6a and a 2-2 region I-11a not facing the first electrode I-3a of the first laminate I-6a. The second electrode I-5b of the second laminate I-6b has a 2-1 region I-10b facing the first electrode I-3b of the second laminate I-6b and a 2-2 region I-11b not facing the first electrode I-3b of the second laminate I-6b. The first electrode I-3a of the first laminate I-6a has a 1-1 region I-8a facing the second electrode I-5a of the first laminate I-6a and a 1-2 region I-9a not facing the second electrode I-5a. The first electrode I-3b of the second laminate I-6b has a 1-1 region I-8b facing the second electrode I-5b of the first laminate I-6b and a 1-2 region I-9b not facing the second electrode I-5b. The 1-2 region I-9a of the first electrode I-3a of the first laminate I-6a is stacked on and electrically connected to the 2-2 region I-11b of the second electrode I-5b of the second laminate I-6b (in FIG. 6, the first laminate I-6a corresponds to laminate A, and the second laminate I-6b corresponds to laminate B).
As a result, even after the laminate having a power generating function is produced, it can be adapted to the shape and size of the device, and the power generating area relative to the total area of the laminate having a power generating function provided in the device can be maximized. In addition, since the first electrode and the second electrode can be connected in a planar manner, the wiring resistance can be reduced. The above description made with reference to FIGS. 5 to 7 also applies to the example of FIG. 8, and in FIG. 8, the same reference numerals as in FIG. 7 are used. In the examples of FIGS. 7 and 8, an example was shown in which the 1-2 region I-9a of the first electrode I-3a of the first laminate I-6a is overlapped and electrically connected on the 2-2 region I-11b of the second electrode I-5b of the second laminate I-6b, but this embodiment is not limited to this. The 2-2 region I-11b of the second electrode I-5b of the second laminate I-6b may be overlapped and electrically connected on the 1-2 region I-9a of the first electrode I-3a of the first laminate I-6a.
 第1態様の図7及び図8の例では、第1積層体I-6aの第1電極I-3aの第1-2領域I-9aと、第2積層体I-6bの第2電極I-5bの第2-2領域I-11bとのうちの、上記重ねられた部分は、当該部分と、光起電力層1-4a、1-4b上に第2電極1-5a、1-5bが設けられている高さと、の間に他の層が設けられていない部分を有する。さらに、図7及び図8の例では、第1積層体I-6aについて、第2電極I-5aは、光起電力層I-4aの側面を介して基材層I-2a上で伸びている部分であって、当該部分と、光起電力層I-4a上に第2電極I-5aが設けられている高さと、の間に他の層が設けられていない部分を有する。当該部分は、第2電極I-5aの第2-2領域I-11aが有する上述した第2-2z領域I-11zに相当する。このような構成により、当該部分に他の積層体の電極を重ねて接触させることにより、さらなる直列接続を形成可能である。 7 and 8 of the first embodiment, the overlapping portions of the 1-2 region I-9a of the first electrode I-3a of the first laminate I-6a and the 2-2 region I-11b of the second electrode I-5b of the second laminate I-6b have a portion where no other layer is provided between the overlapping portion and the height at which the second electrodes 1-5a and 1-5b are provided on the photovoltaic layers 1-4a and 1-4b. Furthermore, in the example of FIG. 7 and FIG. 8, for the first laminate I-6a, the second electrode I-5a is a portion that extends on the base layer I-2a via the side surface of the photovoltaic layer I-4a, and has a portion where no other layer is provided between the overlapping portion and the height at which the second electrode I-5a is provided on the photovoltaic layer I-4a. This portion corresponds to the above-mentioned 2-2z region I-11z of the 2-2 region I-11a of the second electrode I-5a. With this configuration, it is possible to form further series connections by overlapping and contacting the electrodes of other laminates with that part.
 次に、図9を参照して、第2態様の光起電力装置II-40を説明する。光起電力装置II-40は、デバイス基材II-2aと、第1積層体II-6aと、第2積層体II-6bとを含む。第1積層体II-6aは、少なくとも一部がデバイス基材II-2a上に形成されている第1電極II-3aと、少なくとも一部が第1電極II-3a上に形成されている光起電力層II-4aと、少なくとも一部が光起電力層II-4a上に形成されている第2電極II-5aを含む。第2積層体II-6bは、少なくとも一部がデバイス基材II-2a上に形成されている第1電極II-3bと、少なくとも一部が第1電極II-3b上に形成されている光起電力層II-4bと、少なくとも一部が光起電力層II-4b上に形成されている第2電極II-5bを含む。 Next, a second embodiment of the photovoltaic device II-40 will be described with reference to FIG. 9. The photovoltaic device II-40 includes a device substrate II-2a, a first laminate II-6a, and a second laminate II-6b. The first laminate II-6a includes a first electrode II-3a at least partially formed on the device substrate II-2a, a photovoltaic layer II-4a at least partially formed on the first electrode II-3a, and a second electrode II-5a at least partially formed on the photovoltaic layer II-4a. The second laminate II-6b includes a first electrode II-3b at least partially formed on the device substrate II-2a, a photovoltaic layer II-4b at least partially formed on the first electrode II-3b, and a second electrode II-5b at least partially formed on the photovoltaic layer II-4b.
 更に、光起電力装置II-40において、第1積層体II-6aと第2積層体II-6bが、デバイス基材II-2a上に並んで形成されており、第1積層体II-6aと第2積層体II-6bが並んだ方向の断面において、第1積層体II-6a及び第2積層体II-6bの幅方向サイズ(第1電極II-3a、光起電力層II-4a、第2電極II-5aをデバイス基材II-2aに投影した時の幅方向サイズ、及び第1電極II-3b、光起電力層II-4b、第2電極II-5bをデバイス基材II-2aに投影した時の幅方向サイズ)と積層体II-6a又は積層体II-6bの厚さ方向サイズを乗じた領域に対する、第1電極II-3a及び第1電極II-3bと、光起電力層II-4a及び光起電力層II-4bと、第2電極II-5a及び第2電極II-5bとが占める領域の割合が、例えば60%以上95%以下であり、第1積層体II-6aの第2電極II-5aは、第1積層体II-6aの第1電極II-3aに対向している第2-1領域II-10aと、第1積層体II-6aの第1電極II-3aには対向していない第2-2領域II-11aとを有する。第2積層体II-6bの第2電極II-5bは、第2積層体II-6bの第1電極II-3bに対向している第2-1領域II-10bと、第2積層体II-6bの第1電極II-3bには対向していない第2-2領域II-11bとを有する。第1積層体II-6aの第1電極II-3aは、第1積層体II-6aの第2電極II-5aに対向している第1-1領域II-8aと、第2電極I-5aには対向していない第1-2領域II-9aとを有する。第2積層体II-6bの第1電極II-3bは、第1積層体II-6bの第2電極II-5bに対向している第1-1領域II-8bと、第2電極II-5bには対向していない第1-2領域II-9bとを有する。第1積層体II-6aの光起電力層II-4aが、第2積層体II-6bの第1電極II-3bの第1-2領域II-9b上に重ねられ電気的に接続されている(図9において第1積層体II-6aは、積層体Aに相当し、第2積層体II-6bは、積層体Bに相当する。)。 Furthermore, in the photovoltaic device II-40, the first laminate II-6a and the second laminate II-6b are formed side by side on the device substrate II-2a, and in a cross section in the direction in which the first laminate II-6a and the second laminate II-6b are arranged, the width direction sizes of the first laminate II-6a and the second laminate II-6b (the width direction sizes when the first electrode II-3a, the photovoltaic layer II-4a, and the second electrode II-5a are projected onto the device substrate II-2a, and the width direction sizes when the first electrode II-3b, the photovoltaic layer II-4b, and the second electrode II-5b are projected onto the device substrate II-2a) are The ratio of the area occupied by the first electrode II-3a and the first electrode II-3b, the photovoltaic layer II-4a and the photovoltaic layer II-4b, and the second electrode II-5a and the second electrode II-5b to the area multiplied by the thickness direction size of the stacked body II-6a or the stacked body II-6b is, for example, 60% or more and 95% or less, and the second electrode II-5a of the first stacked body II-6a has a second-1 region II-10a facing the first electrode II-3a of the first stacked body II-6a and a second-2 region II-11a not facing the first electrode II-3a of the first stacked body II-6a. The second electrode II-5b of the second stacked body II-6b has a second-1 region II-10b facing the first electrode II-3b of the second stacked body II-6b and a second-2 region II-11b not facing the first electrode II-3b of the second stacked body II-6b. The first electrode II-3a of the first stack II-6a has a 1-1 region II-8a facing the second electrode II-5a of the first stack II-6a and a 1-2 region II-9a not facing the second electrode I-5a. The first electrode II-3b of the second stack II-6b has a 1-1 region II-8b facing the second electrode II-5b of the first stack II-6b and a 1-2 region II-9b not facing the second electrode II-5b. The photovoltaic layer II-4a of the first stack II-6a is stacked on and electrically connected to the 1-2 region II-9b of the first electrode II-3b of the second stack II-6b (in FIG. 9, the first stack II-6a corresponds to stack A, and the second stack II-6b corresponds to stack B).
 第2態様の図9の例では、第1積層体II-6aの光起電力層II-4aが、第1積層体II-6aの第2電極II-5aの第2-2領域II-11aの下方に設けられている部分であって、第2積層体II-6bの第1電極II-3bの第1-2領域II-9b上に重ねられ電気的に接続されている部分を有し、かつ、第2積層体II-6bの第1電極II-3bの第1-2領域II-9bは、当該光起電力層II-4aが重ねられている部分と、第2積層体II-6bの第1電極II-3bの第1-1領域II-8bとの間に、第1電極II-3bの上方であって第2積層体II-6bの光起電力層II-4b上に第2電極II-5bが設けられている高さまで他の層が設けられていない部分を有する。
 さらに、図9の例では、第1積層体II-6aについて、第1電極II-3aは、より具体的には、第1電極II-3aの第1-2領域II-9aは、第1電極II-3a(第1-2領域II-9aと読み替え可能)と、光起電力層II-4a上に第2電極II-5aが設けられている高さと、の間に他の層が設けられていない部分を有する。このような構成により、当該部分に他の積層体の電極を重ねて接触させることにより、さらなる直列接続を形成可能である。
In the example of the second embodiment shown in FIG. 9, the photovoltaic layer II-4a of the first stack II-6a has a portion that is provided below the 2-2 region II-11a of the second electrode II-5a of the first stack II-6a and is overlapped on and electrically connected to the 1-2 region II-9b of the first electrode II-3b of the second stack II-6b, and the 1-2 region II-9b of the first electrode II-3b of the second stack II-6b has a portion between the portion where the photovoltaic layer II-4a is overlapped and the 1-1 region II-8b of the first electrode II-3b of the second stack II-6b, where no other layer is provided above the first electrode II-3b up to the height where the second electrode II-5b is provided on the photovoltaic layer II-4b of the second stack II-6b.
9, for the first stack II-6a, the first electrode II-3a, more specifically, the 1-2 region II-9a of the first electrode II-3a has a portion where no other layer is provided between the first electrode II-3a (which can be read as the 1-2 region II-9a) and the height at which the second electrode II-5a is provided on the photovoltaic layer II-4a. With this configuration, it is possible to form further series connections by overlapping and contacting the electrodes of other stacks with this portion.
 光起電力装置40において、第1-1領域8a、第1-2領域9a、第2-1領域10a、第2-2領域11aは、第1積層体6aに含まれる第1電極3aと第2電極5aとの相対関係(対向関係)に基づくものであり、
 第1-1領域8b、第1-2領域9b、第2-1領域10b、第2-2領域11bは、第2積層体6bに含まれる第1電極3bと第2電極5bとの相対関係(対向関係)に基づくものであり、これらの領域は、各積層体に含まれる第1電極と第2電極の相対関係(対向関係)に基づいて称されることに他ならない。
In the photovoltaic device 40, the 1-1 region 8a, the 1-2 region 9a, the 2-1 region 10a, and the 2-2 region 11a are based on a relative relationship (opposing relationship) between the first electrode 3a and the second electrode 5a included in the first stacked body 6a,
The 1-1 region 8b, the 1-2 region 9b, the 2-1 region 10b, and the 2-2 region 11b are based on the relative relationship (opposing relationship) between the first electrode 3b and the second electrode 5b included in the second laminate 6b, and these regions are named based on the relative relationship (opposing relationship) between the first electrode and the second electrode included in each laminate.
 当該電気的に接続されている領域は、図5に示す重なり部分30に相当することが好ましい。当該領域を形成すると、発電機能を有する複数の積層体をデバイス基材に貼り合わせて、当該複数の積層体を直列に接続できる。その結果、発電機能を有する積層体を作製した後でもデバイスの形状及びサイズに適合可能であり、デバイスに設けられる発電機能を有する積層体の全面積に対する発電面積の最大化が可能となる。第一態様において、第1電極と第2電極が面状で接続可能となることから、配線抵抗を低減させることができる。重なり部分が一定の領域を有する為、外部から力が掛かって変形しても長期間安定して機能することにより、光起電力装置の耐久性を高めることができる。 The electrically connected region preferably corresponds to the overlapping portion 30 shown in FIG. 5. When this region is formed, a plurality of laminates having a power generating function can be attached to a device substrate to connect the plurality of laminates in series. As a result, even after the laminates having a power generating function are produced, they can be adapted to the shape and size of the device, and it is possible to maximize the power generating area relative to the total area of the laminates having a power generating function provided in the device. In the first embodiment, the first electrode and the second electrode can be connected in a planar manner, thereby reducing the wiring resistance. As the overlapping portion has a certain area, it functions stably for a long period of time even if it is deformed by the application of an external force, thereby increasing the durability of the photovoltaic device.
 第1態様において、電気的に接続されている領域は、第1積層体I-6aの第1電極I-3aと第2積層体I-6bの第2電極I-5bの第2-2領域I-11bが、電気的に通電可能な領域となっていることを意味する。
 第1積層体I-6aの第1電極I-3aと第2積層体I-6bの第2電極I-5bは、互いに通電可能なように接触していることが好ましく、第1積層体I-6aの第1電極I-3a表面及び/又は第2積層体I-6bの第2電極I-5b表面のベタツキ(タック)又は保護層I-7等の重さにより接触していることがより好ましい。
 第1積層体I-6aの第1電極I-3aと第2積層体I-6bの第2電極I-5bは、通電可能な接着剤(例えば導電性ペースト)で接合されていることがより好ましく、第1積層体I-6aの第1-2領域I-9a又は第2積層体I-6bの第2-2領域I-11bに通電可能な接着剤を設けて接合されていることがより好ましい。通電可能な接着剤はディスペンサーを用いて塗布してもよい。
In the first embodiment, the electrically connected region means that the first electrode I-3a of the first laminate I-6a and the second-2 region I-11b of the second electrode I-5b of the second laminate I-6b are electrically conductive regions.
The first electrode I-3a of the first laminate I-6a and the second electrode I-5b of the second laminate I-6b are preferably in contact with each other so as to be electrically conductive with each other, and more preferably are in contact due to tackiness (tack) of the surface of the first electrode I-3a of the first laminate I-6a and/or the surface of the second electrode I-5b of the second laminate I-6b, or the weight of the protective layer I-7, etc.
The first electrode I-3a of the first laminate I-6a and the second electrode I-5b of the second laminate I-6b are more preferably joined with an electrically conductive adhesive (e.g., conductive paste), and more preferably joined by providing an electrically conductive adhesive in the first-2 region I-9a of the first laminate I-6a or the second-2 region I-11b of the second laminate I-6b. The electrically conductive adhesive may be applied using a dispenser.
 第2態様において、電気的に接続されている領域は、第1積層体II-6aの光起電力層II-4aと第2積層体II-6bの第1電極II-3bの第1-2領域II-9bが、電気的に通電可能な領域となっていることを意味する。
 第1積層体II-6aの光起電力層II-4aと第2積層体II-6bの第1電極II-3bの第1-2領域II-9bは、互いに通電可能なように接触していることが好ましく、第1積層体II-6aの光起電力層II-4a表面及び/又は第2積層体II-6bの第1電極II-3bの第1-2領域II-9b表面のベタツキ(タック)又は保護層I-7等の重さにより接触していることがより好ましい。
 第1積層体II-6aの光起電力層II-4aと第2積層体II-6bの第1電極II-3bの第1-2領域II-9bは、通電可能な接着剤(例えば導電性ペースト)で接合されていることがより好ましく、第1積層体II-6aの光起電力層II-4a又は第2積層体II-6bの第1電極II-3bの第1-2領域II-9bに通電可能な接着剤を設けて接合されていることがより好ましい。通電可能な接着剤はディスペンサーを用いて塗布してもよい。
In the second embodiment, the electrically connected region means that the photovoltaic layer II-4a of the first stack II-6a and the 1-2 region II-9b of the first electrode II-3b of the second stack II-6b are electrically conductive regions.
The photovoltaic layer II-4a of the first laminate II-6a and the 1-2 region II-9b of the first electrode II-3b of the second laminate II-6b are preferably in contact with each other so as to be electrically conductive with each other, and more preferably are in contact due to the stickiness (tack) of the surface of the photovoltaic layer II-4a of the first laminate II-6a and/or the surface of the 1-2 region II-9b of the first electrode II-3b of the second laminate II-6b, or the weight of the protective layer I-7, etc.
The photovoltaic layer II-4a of the first laminate II-6a and the 1-2 region II-9b of the first electrode II-3b of the second laminate II-6b are more preferably bonded with an electrically conductive adhesive (e.g., conductive paste), and more preferably, the photovoltaic layer II-4a of the first laminate II-6a or the 1-2 region II-9b of the first electrode II-3b of the second laminate II-6b are bonded by providing an electrically conductive adhesive. The electrically conductive adhesive may be applied using a dispenser.
 通電可能な接着剤(例えば導電性ペースト)としては、例えば、導電性フィラー及び接着剤となる樹脂の混合物が使用される。導電性フィラーは、例えば、所定の粒径を有する、銅粒子、銀粒子、金粒子、ニッケル粒子、銀被覆銅粒子、銀被覆銅合金粒子、銀被覆ニッケル粒子等である。接着剤となる樹脂は、例えば、エポキシ樹脂、ポリウレタン樹脂、アクリル樹脂、フェノール樹脂、ポリイミド樹脂、フッ素樹脂等である。 As an adhesive that can pass electricity (e.g., conductive paste), for example, a mixture of a conductive filler and a resin that acts as an adhesive is used. The conductive filler is, for example, copper particles, silver particles, gold particles, nickel particles, silver-coated copper particles, silver-coated copper alloy particles, silver-coated nickel particles, etc., having a specific particle size. The resin that acts as an adhesive is, for example, an epoxy resin, a polyurethane resin, an acrylic resin, a phenolic resin, a polyimide resin, a fluororesin, etc.
 デバイス基材2aの材料は、上述した基材層2の材料と同様であってもよい。デバイス基材2aの材料は、剛性を有するものを使用することが好ましい。
 光起電力装置40において、デバイス基材2aと、第1積層体6a及び第2積層体6bの第1電極3a及び3bの一方又は両方との間に第1接着層が設けられていることが好ましい。この接着層は、長尺積層体1に由来するものであってもよく、第1積層体6a及び第2積層体6bの貼り付け前にデバイス基材2aに設けられているものであってもよく、好ましくは長尺積層体1に由来するものである。
The material of the device substrate 2a may be the same as the material of the above-mentioned substrate layer 2. It is preferable to use a material having rigidity for the device substrate 2a.
In the photovoltaic device 40, a first adhesive layer is preferably provided between the device substrate 2a and one or both of the first electrodes 3a and 3b of the first laminate 6a and the second laminate 6b. This adhesive layer may be derived from the long laminate 1 or may be provided on the device substrate 2a before the first laminate 6a and the second laminate 6b are attached, and is preferably derived from the long laminate 1.
 第1態様の図7及び図8の例では、光起電力装置I-40は、第2電極I-5a、I-5b上の保護層I-7aを含む。第2態様の図9の例では、光起電力装置II-40は、第2電極II-5a、II-5b上の保護層II-7aを含む。
 保護層7aと第2電極5a、5bの一方又は両方との間に第2接着層が設けられていることが好ましい。上述したように、第2接着層とは別に剥離層が設けられていてもよい。
 第2接着層に使用される材料としては、例えば、上記の通電可能な接着剤に挙げられる導電性フィラー及び接着剤となる樹脂が使用される。
In the example of Figures 7 and 8 of the first embodiment, the photovoltaic device I-40 includes a protective layer I-7a on the second electrodes I-5a, I-5b. In the example of Figure 9 of the second embodiment, the photovoltaic device II-40 includes a protective layer II-7a on the second electrodes II-5a, II-5b.
It is preferable that a second adhesive layer is provided between the protective layer 7a and one or both of the second electrodes 5a and 5b. As described above, a release layer may be provided separately from the second adhesive layer.
The material used for the second adhesive layer may be, for example, a conductive filler and an adhesive resin exemplified as the electrically conductive adhesive described above.
 光起電力装置40において、デバイス基材2aを剥離する際の剥離力は、保護層7aを剥離する際の剥離力より大きいことが好ましい。このような剥離力は、上述したのと同様に、接着層及び/又は剥離層に由来するものである。例えば、デバイス基材2aにおけるシリコンコーティングの有無によって、デバイス基材2aを剥離する際の剥離力は調整可能である。
 光起電力装置40が保護層7aを有する場合、これによって、第1電極3をデバイス基材2aから剥がすことなく保護層7aのみを光起電力装置40から剥離することができる。これは、保護層7aが、長尺積層体1で説明した保護層7に由来し、例えば、代わりの層又は膜等を設けたい場合に有利である。
In the photovoltaic device 40, the peeling force when peeling off the device substrate 2a is preferably greater than the peeling force when peeling off the protective layer 7a. As described above, such a peeling force is derived from the adhesive layer and/or the release layer. For example, the peeling force when peeling off the device substrate 2a can be adjusted depending on whether or not the device substrate 2a is coated with silicon.
When the photovoltaic device 40 has the protective layer 7a, this allows only the protective layer 7a to be peeled off from the photovoltaic device 40 without peeling off the first electrode 3 from the device substrate 2a. This is advantageous when the protective layer 7a originates from the protective layer 7 described in the long laminate 1 and it is desired to provide, for example, an alternative layer or film.
 光起電力装置40(I-40、II-40)は、第1積層体6a(I-6a、II-6a)、第2積層体6b(I-6b、II-6b)を少なくとも含み、これらの積層体6a、6b(I-6a、I-6b、II-6a、II-6b)はそれぞれ、第1電極3a、3b(I-3a、I-3b、II-3a、II-3b)、光起電力層4a、4b(I-4a、I-4b、II-4a、II-4b)、第2電極5a、5b(I-5a、I-5b、II-5a、II-5b)を含む。 The photovoltaic device 40 (I-40, II-40) includes at least a first laminate 6a (I-6a, II-6a) and a second laminate 6b (I-6b, II-6b), and these laminates 6a, 6b (I-6a, I-6b, II-6a, II-6b) include first electrodes 3a, 3b (I-3a, I-3b, II-3a, II-3b), photovoltaic layers 4a, 4b (I-4a, I-4b, II-4a, II-4b), and second electrodes 5a, 5b (I-5a, I-5b, II-5a, II-5b), respectively.
 第1積層体の第1電極と第2積層体の第1電極は、同じ構成を有していてもよく異なる構成を有していてもよいが、同じ構成を有していることが好ましい。
 第1積層体の第2電極と第2積層体の第2電極は、同じ構成を有していてもよく異なる構成を有していてもよいが、同じ構成を有していることが好ましい。
The first electrode of the first laminate and the first electrode of the second laminate may have the same configuration or different configurations, but preferably have the same configuration.
The second electrode of the first laminate and the second electrode of the second laminate may have the same configuration or different configurations, but preferably have the same configuration.
 光起電力装置40における、第1積層体6a、第2積層体6b等を含む、デバイス基材2a上に形成されている積層体の数は、光起電力装置のサイズを大きくする観点から、好ましくは3以上1000以下、より好ましくは4以上700以下、さらに好ましくは5以上400以下、さらにより好ましくは10以上100以下である。 The number of laminates formed on the device substrate 2a in the photovoltaic device 40, including the first laminate 6a, the second laminate 6b, etc., is preferably 3 to 1000, more preferably 4 to 700, even more preferably 5 to 400, and even more preferably 10 to 100, from the viewpoint of increasing the size of the photovoltaic device.
 光起電力装置40において、デバイス基材2a、第1電極3a、3b(第1-1領域8a、8b、第1-2領域9a、9b)、第2電極5a、5b(第2-1領域10a、10b、第2-2領域11a、11b)はそれぞれ、長尺積層体1で示した基材層2、第1電極3(第1-1領域8、第1-2領域9)、第2電極5(第2-1領域10、第2-2領域11)と同様であってもよい。長尺積層体1の基材層2は、好ましくは剥離可能な基材層、より好ましくは有機材料から形成される剥離可能な基材層であり、光起電力装置40のデバイス基材2aは、好ましくは貼り付け対象となるデバイス基材、より好ましくは有機材料、紙、金属又はガラスから形成されるデバイス基材である。 In the photovoltaic device 40, the device substrate 2a, the first electrodes 3a, 3b (1-1 regions 8a, 8b, 1-2 regions 9a, 9b), and the second electrodes 5a, 5b (2-1 regions 10a, 10b, 2-2 regions 11a, 11b) may be the same as the substrate layer 2, the first electrode 3 (1-1 region 8, 1-2 region 9), and the second electrode 5 (2-1 region 10, 2-2 region 11) shown in the long laminate 1, respectively. The substrate layer 2 of the long laminate 1 is preferably a peelable substrate layer, more preferably a peelable substrate layer formed from an organic material, and the device substrate 2a of the photovoltaic device 40 is preferably a device substrate to be attached, more preferably a device substrate formed from an organic material, paper, metal, or glass.
 第1態様の光起電力装置I-40において、第1積層体I-6aの第1電極I-3aの第1-2領域I-9aと第2積層体I-6bの第2電極I-5bの第2-2領域I-11bとの重なり部30の幅方向の長さは、重なり部の面積と発電層の面積のバランスの観点から、好ましくは0.1mm以上、5mm以下、より好ましくは0.2mm以上、3mm以下である。係る構成によれば、発電機能を有する複数の積層体を直列に接続できる。その結果、発電機能を有する積層体を作製した後でもデバイスの形状及びサイズに適合可能であり、デバイスに設けられる発電機能を有する積層体の全面積に対する発電面積の最大化が可能となる。第1電極と第2電極が面状で接続可能となることから、配線抵抗を低減させることができる。重なり部分が一定の領域を有する為、外部から力が掛かって変形しても長期間安定して機能することにより、光起電力装置の耐久性を高めることができる。 In the photovoltaic device I-40 of the first embodiment, the width of the overlapping portion 30 between the 1-2 region I-9a of the first electrode I-3a of the first laminate I-6a and the 2-2 region I-11b of the second electrode I-5b of the second laminate I-6b is preferably 0.1 mm or more and 5 mm or less, more preferably 0.2 mm or more and 3 mm or less, from the viewpoint of the balance between the area of the overlapping portion and the area of the power generation layer. With this configuration, multiple laminates having a power generation function can be connected in series. As a result, even after the laminate having a power generation function is produced, it can be adapted to the shape and size of the device, and the power generation area relative to the total area of the laminate having a power generation function provided in the device can be maximized. Since the first electrode and the second electrode can be connected in a planar shape, the wiring resistance can be reduced. Since the overlapping portion has a certain area, it functions stably for a long period of time even if it is deformed by the application of an external force, and the durability of the photovoltaic device can be increased.
 第2態様の光起電力装置II-40において、第1積層体II-6aの光起電力層II-4aと第2積層体II-6bの第1電極II-3bの第1-2領域II-9bとの重なり部30の幅方向の長さは、重なり部の面積と発電層の面積のバランスの観点から、好ましくは1mm以上、100mm以下、より好ましくは2mm以上、50mm以下である。係る構成によれば、発電機能を有する複数の積層体を直列に接続できる。その結果、発電機能を有する積層体を作製した後でもデバイスの形状及びサイズに適合可能であり、デバイスに設けられる発電機能を有する積層体の全面積に対する発電面積の最大化が可能となる。重なり部分が一定の領域を有する為、外部から力が掛かって変形しても長期間安定して機能することにより、光起電力装置の耐久性を高めることができる。 In the photovoltaic device II-40 of the second embodiment, the widthwise length of the overlapping portion 30 between the photovoltaic layer II-4a of the first laminate II-6a and the 1-2 region II-9b of the first electrode II-3b of the second laminate II-6b is preferably 1 mm or more and 100 mm or less, more preferably 2 mm or more and 50 mm or less, from the viewpoint of the balance between the area of the overlapping portion and the area of the power generation layer. With this configuration, multiple laminates having a power generation function can be connected in series. As a result, even after the laminates having a power generation function are produced, they can be adapted to the shape and size of the device, and the power generation area relative to the total area of the laminates having a power generation function provided in the device can be maximized. Since the overlapping portion has a certain area, it functions stably for a long period of time even if it is deformed by the application of an external force, thereby increasing the durability of the photovoltaic device.
 光起電力装置40において、隣り合う第1積層体6aと第2積層体6bの間隔(好ましくは第1積層体6aの光起電力層4aの側面と第2積層体6bの第2電極5bの側面との間隔)は、発電機能を有する積層体の全面積に対する発電面積を最大化にする観点から、好ましくは0.01mm以上、4mm以下、より好ましくは0.02mm以上、3mm以下、さらに好ましくは0.05mm以上、2mm以下である。 In the photovoltaic device 40, the distance between adjacent first and second laminates 6a and 6b (preferably the distance between the side of the photovoltaic layer 4a of the first laminate 6a and the side of the second electrode 5b of the second laminate 6b) is preferably 0.01 mm or more and 4 mm or less, more preferably 0.02 mm or more and 3 mm or less, and even more preferably 0.05 mm or more and 2 mm or less, from the viewpoint of maximizing the power generation area relative to the total area of the laminate having the power generation function.
 光起電力装置40(I-40、II-40)において、光起電力層4a、4b(I-4a、I-4b、II-4a、II-4b)が、有機薄膜を含むことも好ましい。
 光起電力層4a、4bは、長尺積層体1で説明した光起電力層4と同様であってもよく、有機薄膜となる材料も長尺積層体について説明したのと同様であってもよい。
In the photovoltaic device 40 (I-40, II-40), it is also preferable that the photovoltaic layers 4a, 4b (I-4a, I-4b, II-4a, II-4b) include an organic thin film.
The photovoltaic layers 4a and 4b may be the same as the photovoltaic layer 4 described in the long laminate 1, and the material for the organic thin film may be the same as that described in the long laminate.
 光起電力装置40(I-40、II-40)は、第1積層体6a(I-6a、II-6a)及び第2積層体6b(I-6b、II-6b)の第2電極5a、5b(I-5a、II-5b)上に保護層7a(I-7a、II-7a)を更に有することが好ましい。
 保護層7aは、長尺積層体1で説明した保護層7と同様であってもよい。保護層7aは、長尺積層体1で説明した保護層7に由来するものであってもよいし、保護層7とは別のものであってもよい。
The photovoltaic device 40 (I-40, II-40) preferably further includes a protective layer 7a (I-7a, II-7a) on the second electrodes 5a, 5b (I-5a, II-5b) of the first stack 6a (I-6a, II-6a) and the second stack 6b (I-6b, II-6b).
The protective layer 7a may be the same as the protective layer 7 described in the long laminate 1. The protective layer 7a may be derived from the protective layer 7 described in the long laminate 1, or may be different from the protective layer 7.
 第1態様及び第2態様のいずれにおいても、光起電力装置40は、水及び酸素等による光起電力装置(特に第1電極3、光起電力層4、第2電極5)の劣化を防止するための、バリア層を有していてもよい。より具体的には、光起電力装置40は、第1積層体6a及び第2積層体6bの上方で第1積層体6a及び第2積層体6bを覆うように設けられたバリア層を有していてもよい。光起電力装置40は、デバイス基材2a側に、第1積層体6a及び第2積層体6b等の発電機能を有する積層体が設けられている領域にわたってバリア層を有していてもよい。この場合、バリア層は、デバイス基材2aと、第1積層体6a及び第2積層体6b等の発電機能を有する積層体との間に設けられていることが好ましい。
 バリア層は、透明性を有することが好ましく、バリア層の全光線透過率は例えば80%以上、好ましくは85%以上である。
In both the first and second aspects, the photovoltaic device 40 may have a barrier layer for preventing deterioration of the photovoltaic device (particularly the first electrode 3, the photovoltaic layer 4, and the second electrode 5) due to water, oxygen, and the like. More specifically, the photovoltaic device 40 may have a barrier layer provided above the first stack 6a and the second stack 6b so as to cover the first stack 6a and the second stack 6b. The photovoltaic device 40 may have a barrier layer on the device substrate 2a side over the region where the stacks having a power generation function, such as the first stack 6a and the second stack 6b, are provided. In this case, it is preferable that the barrier layer is provided between the device substrate 2a and the stacks having a power generation function, such as the first stack 6a and the second stack 6b.
The barrier layer preferably has transparency, and the total light transmittance of the barrier layer is, for example, 80% or more, preferably 85% or more.
 バリア層は、バリア層単独又はバリア層と樹脂層の組み合わせであってもよい。 The barrier layer may be a barrier layer alone or a combination of a barrier layer and a resin layer.
 バリア層を構成する材料としては、金属、金属以外の無機化合物が挙げられる。
 金属としては、アルミニウム、ニッケル、ステンレス、鉄、銅、チタン等の金属、これらの金属を含む合金等が挙げられる。
 無機化合物としては、ケイ素、マグネシウム、カルシウム、カリウム、ナトリウム、錫、ホウ素、鉛、イットリウム、ジルコニウム、セリウム、亜鉛等の金属元素または非金属元素の酸化物、酸化窒化物、窒化物、酸化炭化物、酸化炭化窒化物等が挙げられる。
 これらの具体例としては、ケイ素酸化物、アルミニウム酸化物、チタン酸化物、錫酸化物、ケイ素亜鉛合金酸化物、インジウム合金酸化物、ケイ素窒化物、アルミニウム窒化物、チタン窒化物、酸化窒化ケイ素、酸化ケイ素亜鉛等が挙げられる。
 これらは、1種単独又は2種以上で使用してもよい。
Examples of materials constituting the barrier layer include metals and inorganic compounds other than metals.
Examples of the metal include aluminum, nickel, stainless steel, iron, copper, titanium, and alloys containing these metals.
Examples of inorganic compounds include oxides, oxynitrides, nitrides, oxycarbides, and oxycarbonitrides of metal elements or nonmetal elements such as silicon, magnesium, calcium, potassium, sodium, tin, boron, lead, yttrium, zirconium, cerium, and zinc.
Specific examples of these include silicon oxide, aluminum oxide, titanium oxide, tin oxide, silicon-zinc alloy oxide, indium alloy oxide, silicon nitride, aluminum nitride, titanium nitride, silicon oxynitride, and zinc silicon oxide.
These may be used alone or in combination of two or more.
 バリア層は、蒸着法または塗布法で形成される層であってもよく、樹脂との密着性及び高い水蒸気バリア性の観点から、蒸着法で形成される層であることが好ましい。
 バリア層は、1層又は2層以上であってもよい。
 バリア層の厚さ方向のサイズは、例えば1nm以上m400nm以下、好ましくは5nm以上300nm以下、より好ましくは10nm以上200nm以下である。
The barrier layer may be a layer formed by a vapor deposition method or a coating method, and from the viewpoints of adhesion to the resin and high water vapor barrier properties, a layer formed by a vapor deposition method is preferable.
The barrier layer may be one layer or two or more layers.
The size in the thickness direction of the barrier layer is, for example, 1 nm or more and 400 nm or less, preferably 5 nm or more and 300 nm or less, and more preferably 10 nm or more and 200 nm or less.
 バリア層に使用される樹脂としては、上述した樹脂を使用することができる。
 バリア層に使用される樹脂の厚さ方向のサイズは、例えば100nm以上10μm以下、好ましくは200nm以上5μm以下、より好ましくは300nm以上3μm以下である。
The resin used in the barrier layer may be any of the resins described above.
The size in the thickness direction of the resin used in the barrier layer is, for example, 100 nm to 10 μm, preferably 200 nm to 5 μm, and more preferably 300 nm to 3 μm.
 バリア層は、保護層7aの少なくとも全体に形成されていることが好ましく、保護層7a全体及びデバイス基材全体に対して形成されていることがより好ましい。バリア層が設けられる場合、保護層7aは必ずしも設けられていなくてもよい。 The barrier layer is preferably formed on at least the entire protective layer 7a, and more preferably on the entire protective layer 7a and the entire device substrate. If a barrier layer is provided, the protective layer 7a does not necessarily have to be provided.
 光起電力装置40において、集電線は、複数の積層体を直列に接続した末端のそれぞれに露出する第1電極及び第2電極に接続されることが好ましい。 In the photovoltaic device 40, the collector wire is preferably connected to the first electrode and the second electrode exposed at each end of the multiple laminates connected in series.
2.(1)光起電力装置の構成例X
 以下、図7を参照して、第1態様の光起電力装置I-40における第1積層体I-6aと第2積層体I-6bの構成例Xを説明する。
 図7では、左側に積層体Aに相当する第1積層体I-6a、右側に積層体Bに相当する第2積層体I-6bが図示されている。
2. (1) Example X of the photovoltaic device configuration
Hereinafter, with reference to FIG. 7, a configuration example X of the first stack I-6a and the second stack I-6b in the photovoltaic device I-40 of the first embodiment will be described.
In FIG. 7, a first laminate I-6a corresponding to laminate A is shown on the left side, and a second laminate I-6b corresponding to laminate B is shown on the right side.
 第2積層体I-6bの第2電極I-5bの第2-2領域I-11bは、第1積層体I-6aの第1電極I-3aの第1-2領域I-9aと重なり部分30を形成し、電気的に接続されている。図7の例では、当該重なり部分30において、第1積層体I-6aの第1電極I-3aの第1-2領域I-9aは、第2積層体I-6bの第2電極I-5bの第2-2領域I-11bのうち、上述したようなデバイス基材I-2a上で伸びている部分(上述した第2-2z領域I-11zに対応)に重なって接触するように設けられている。図7の例では、当該重なり部分と、光起電力層1-4a、1-4b上に第2電極1-5a、1-5bが設けられている高さと、の間には他の層が設けられていない。
 第2積層体I-6bの光起電力層I-4bは、第1電極I-3bの側面及びデバイス基材I-2aにも形成されている。
The 2-2 region I-11b of the second electrode I-5b of the second laminate I-6b forms an overlapping portion 30 with the 1-2 region I-9a of the first electrode I-3a of the first laminate I-6a, and is electrically connected. In the example of FIG. 7, in the overlapping portion 30, the 1-2 region I-9a of the first electrode I-3a of the first laminate I-6a is provided so as to overlap and contact the portion (corresponding to the above-mentioned 2-2z region I-11z) of the 2-2 region I-11b of the second electrode I-5b of the second laminate I-6b that extends on the device base material I-2a as described above. In the example of FIG. 7, no other layer is provided between the overlapping portion and the height at which the second electrodes 1-5a and 1-5b are provided on the photovoltaic layers 1-4a and 1-4b.
The photovoltaic layer I-4b of the second stack I-6b is also formed on the side surface of the first electrode I-3b and on the device substrate I-2a.
2.(2)光起電力装置の構成例Y
 次に、図8を参照して、光起電力装置I-40における第1積層体I-6aと第2積層体I-6bの構成例Yを説明する。
 図8では、図7と同様に、左側に積層体Aに相当する第1積層体I-6a、右側に積層体Bに相当する第2積層体I-6bが図示されている。
2. (2) Photovoltaic device configuration example Y
Next, a configuration example Y of the first stack I-6a and the second stack I-6b in the photovoltaic device I-40 will be described with reference to FIG.
In FIG. 8, similarly to FIG. 7, a first laminate I-6a corresponding to laminate A is shown on the left side, and a second laminate I-6b corresponding to laminate B is shown on the right side.
 第2積層体I-6bの第2電極I-5bの第2-2領域I-11bは、第1積層体I-6aの第1電極I-3aの第1-2領域I-9aと重なり部分30を形成し、電気的に接続されている。図8の例では、当該重なり部分30において、第1積層体I-6aの第1電極I-3aの第1-2領域I-9aは、第2積層体I-6bの第2電極I-5bの第2-2領域I-11bのうち、上述したような光起電力層I-4bの側面に設けられる部分とデバイス基材I-2a上で伸びている部分と(上述した第2-2y領域I-11y及び第2-2z領域I-11zに対応)に重なって接触するように設けられている。 The 2-2 region I-11b of the second electrode I-5b of the second laminate I-6b forms an overlapping portion 30 with the 1-2 region I-9a of the first electrode I-3a of the first laminate I-6a, and is electrically connected. In the example of FIG. 8, in the overlapping portion 30, the 1-2 region I-9a of the first electrode I-3a of the first laminate I-6a is arranged so as to overlap and contact the portion of the 2-2 region I-11b of the second electrode I-5b of the second laminate I-6b that is provided on the side surface of the photovoltaic layer I-4b as described above and the portion that extends on the device substrate I-2a (corresponding to the 2-2y region I-11y and 2-2z region I-11z described above).
 上記の通り、光起電力装置I-40における第1積層体I-6a及び第2積層体I-6bの構成例を挙げたが、光起電力装置I-40が3以上の積層体を含む場合は、上記構成例X及び上記構成例Yから選ばれる1以上の構成例を使用することが好ましい。
 具体的には、構成例Xのみの組み合わせ、構成例Yのみの組み合わせ、構成例Xと構成例Yの組み合わせを使用して、各積層体6を配置して光起電力装置を作製すればよい。かかる構成を採用すると、発電機能を有する積層体6を直列に接続でき、発電機能を有する積層体を作製した後でもデバイスの形状及びサイズに適合可能であり、デバイスに設けられる発電機能を有する積層体の全面積に対する発電面積の最大化が可能となる。第1電極と第2電極が面状で接続可能となることから、配線抵抗を低減させることができる。積層体同士の電気的に接続されている部分(重なり部分)により、外力による変形にも耐えることができる。
 複数の積層体6を用いて光起電力装置40を作製する場合、上記構成例X、Yの組み合わせに限定されることなく、積層体6間の重なり部分30には異なる構造を有するものが有ってもよい。
As described above, configuration examples of the first laminate I-6a and the second laminate I-6b in the photovoltaic device I-40 have been given. When the photovoltaic device I-40 includes three or more laminates, it is preferable to use one or more configuration examples selected from the above configuration example X and the above configuration example Y.
Specifically, a photovoltaic device may be fabricated by arranging each laminate 6 using a combination of only the configuration example X, a combination of only the configuration example Y, or a combination of the configuration examples X and Y. By adopting such a configuration, the laminates 6 having a power generating function can be connected in series, and even after the laminates having a power generating function are fabricated, they can be adapted to the shape and size of the device, and the power generating area can be maximized relative to the total area of the laminates having a power generating function provided in the device. Since the first electrode and the second electrode can be connected in a planar manner, the wiring resistance can be reduced. The electrically connected portions (overlapping portions) of the laminates can withstand deformation caused by external forces.
When a photovoltaic device 40 is produced using a plurality of laminates 6, the combination is not limited to the above-mentioned configuration examples X and Y, and the overlapping portions 30 between the laminates 6 may have different structures.
3.長尺積層体の製造方法
 長尺積層他の製造方法は次の工程を含み得る。
3. Method for Producing Long Stretch Laminates The method for producing long stretch laminates may include the following steps.
第1電極形成工程
 当該工程は、幅方向及び長手方向を有する基材層に第1電極を形成する工程である。
 当該工程は、蒸着法、スパッタ法等の真空成膜法、ナノ粒子等を含有するインクを塗布して成膜する湿式塗布法等を使用して第一電極を形成すればよく、必要に応じてエッチング等で所定の形状とすればよい。
First Electrode Forming Step This step is a step of forming a first electrode on a base layer having a width direction and a length direction.
In this process, the first electrode may be formed using a vacuum film formation method such as a vapor deposition method or a sputtering method, or a wet coating method in which an ink containing nanoparticles or the like is applied to form a film, and if necessary, the first electrode may be formed into a predetermined shape by etching or the like.
光起電力層形成工程
 当該工程は、少なくとも一部の第1電極に光起電力層を形成する工程である。
 当該工程は、塗布法で光起電力層を形成することが好ましく、湿式塗布法で光起電力層を形成することがより好ましい。
 塗布法として、スピンコート法、リバースロールコート法、グラビアコート法、キスコート法、スプレーコート法、エアナイフコート法、含浸コート法、カーテンコート法等が挙げられる。
Photovoltaic Layer Forming Step This step is a step of forming a photovoltaic layer on at least a part of the first electrode.
In this step, the photovoltaic layer is preferably formed by a coating method, and more preferably formed by a wet coating method.
Examples of the coating method include spin coating, reverse roll coating, gravure coating, kiss coating, spray coating, air knife coating, impregnation coating, and curtain coating.
第2電極形成工程
 当該工程は、少なくとも一部の光起電力層に第2電極を形成する工程であり、例えば第1電極形成工程と同様な方法で行う。
Second Electrode Forming Step This step is a step of forming a second electrode on at least a part of the photovoltaic layer, and is carried out, for example, by a method similar to that of the first electrode forming step.
積層体巻回工程
 当該工程は、得られた積層体を含む長尺積層体をロール状に巻回する工程である。
 当該工程は、例えば、従来公知のフィルムの巻き取り装置を用いて実施する。
 長尺積層体の製造方法は、上記工程以外に、接着層形成工程、電子輸送層形成工程、保護層形成工程等を含んでいてもよい。かかる製造方法によれば、大型の製造設備を要することなく、光起電力セルを複数含む長尺積層体を低コストで製造できる。
Laminate Winding Step This step is a step of winding a long laminate including the obtained laminate into a roll.
This step is carried out, for example, by using a conventionally known film winding device.
In addition to the above steps, the method for producing the long laminate may include an adhesive layer forming step, an electron transport layer forming step, a protective layer forming step, etc. According to such a production method, a long laminate including a plurality of photovoltaic cells can be produced at low cost without requiring large-scale production equipment.
4.光起電力装置の製造方法
 光起電力装置の製造方法は、上述した長尺積層体の積層体から基材層を剥離する工程と、第1態様においては、当該積層体のうち、第1電極の第1-2領域又は第2電極の第2-2領域を、第2態様においては、光起電力層のうちの第2-2領域の下方に設けられている部分を、別の積層体の、デバイス基材上に設けられている電極に重ねて接触させるように、前記長尺積層体の前記積層体を前記デバイス基材上に転写する工程とを含み得る。このような工程を任意の回数繰り返すことにより、デバイス基材上で、複数の積層体を所望の数だけ直列接続させた光起電力装置を製造することが可能である。
 光起電力装置の製造方法に含まれ得る各工程の詳細について、以下に説明する。
4. Manufacturing method of photovoltaic device The manufacturing method of the photovoltaic device may include a step of peeling off the base layer from the laminate of the long laminate described above, and a step of transferring the laminate of the long laminate onto the device substrate so that in the first embodiment, the 1-2 region of the first electrode or the 2-2 region of the second electrode of the laminate, or in the second embodiment, the portion of the photovoltaic layer provided below the 2-2 region, is superimposed on and contacts an electrode of another laminate provided on the device substrate. By repeating such steps any number of times, it is possible to manufacture a photovoltaic device in which a desired number of laminates are connected in series on the device substrate.
Details of each step that may be included in the method for manufacturing a photovoltaic device are described below.
基材層剥離工程
 当該工程は、長尺積層体の或る積層体から基材層を剥離する工程である。
 基材層の剥離は、手動又は機械のいずれで行ってもよい。
 第1態様では、基材層を剥離して第1電極及び第2電極の第2-2領域を露出することが好ましい。
 第2態様では、基材層を剥離して第1電極を露出することが好ましい。
Base Layer Peeling Step This step is a step of peeling off the base layer from a certain laminate of the long laminate.
The substrate layer may be peeled off either manually or mechanically.
In the first embodiment, it is preferable to peel off the base layer to expose the 2-2 regions of the first electrode and the second electrode.
In the second embodiment, it is preferable to peel off the base layer to expose the first electrode.
積層体貼り付け工程(1)
 当該工程は、例えば、長尺積層体のうちの或る積層体(1つ目の積層体とも称する。)の露出された第1電極面をデバイス基材に貼り付け、第1電極と光起電力層と第2電極を含む1つ目の積層体をデバイス基材に形成する工程である。
 当該工程により、1つ目の積層体をデバイス基材に形成する。
Laminate attachment process (1)
This process is, for example, a process of attaching an exposed first electrode surface of a certain laminate (also referred to as the first laminate) among the long laminates to a device substrate, and forming the first laminate including a first electrode, a photovoltaic layer, and a second electrode on the device substrate.
Through this process, a first laminate is formed on the device substrate.
積層体貼り付け工程(2)
 当該工程は、例えば、長尺積層体の別の積層体(2つ目の積層体とも称する。)の露出した第1電極面を、1つ目の積層体の長辺に平行でありかつ一部重なるようにデバイス基材に貼り付け、第1電極と光起電力層と第2電極を含む2つ目の積層体をデバイス基材に形成する工程である。
 第1態様及び第2態様のいずれにおいても、1つ目の積層体と2つ目の積層体の重なり部分を形成することが好ましい。
 第1態様では、デバイス基材に貼り付けた1つ目の積層体の第2電極の第2-2領域に対し、2つ目の積層体の第1電極の第1-2領域を重ねるように2つ目の積層体をデバイス基材に貼り付けることが好ましい。
 第2態様において、デバイス基材に貼り付けた積層体の第1電極の第1-2領域に対し、異なる積層体の光起電力層を重ねて2つ目の積層体をデバイス基材に貼り付けることが好ましい。
 以上、1つ目の積層体と2つ目の積層体とに着目して説明したが、上記で説明した各工程を適宜繰り返して、デバイス基材上で、複数の積層体を所望の数だけ直列接続させた光起電力装置を製造することが可能である。この際に、長尺積層体に含まれる積層体のうちの不良部を除いてデバイス基材への転写を行うことが可能なため、製造される光起電力装置の良品率を向上させることも可能となる。
Laminate attachment process (2)
This process is, for example, a process in which an exposed first electrode surface of another laminate (also referred to as a second laminate) of the long laminate is attached to a device substrate so as to be parallel to and partially overlap the long side of the first laminate, thereby forming a second laminate including a first electrode, a photovoltaic layer, and a second electrode on the device substrate.
In both the first and second embodiments, it is preferable to form an overlapping portion between the first laminate and the second laminate.
In the first aspect, it is preferable to attach the second laminate to the device substrate such that the 1-2 region of the first electrode of the second laminate overlaps the 2-2 region of the second electrode of the first laminate attached to the device substrate.
In the second embodiment, it is preferable to attach a second laminate to the device substrate by overlapping a photovoltaic layer of a different laminate with the 1-2 region of the first electrode of the laminate attached to the device substrate.
Although the above description focuses on the first and second laminates, it is possible to manufacture a photovoltaic device in which a desired number of laminates are connected in series on a device substrate by appropriately repeating each of the steps described above. In this case, it is possible to transfer the laminates included in the long laminate to the device substrate without removing any defective parts, which makes it possible to improve the yield rate of the manufactured photovoltaic devices.
 本発明の長尺積層体及び光起電力装置は、例えば、飛行機、四輪車(例えば自動車)、二輪車(例えばオートバイ、自転車)等の乗り物;建物の外壁、パイプ、瓦、窓等の建物関連物;衣服、鞄、靴、ベルト、帽子等の衣類;プラスチック、ガラス又は金属製のボトル、コップ等の各種容器;時計、腕時計、パーソナルコンピュータ、携帯電話、充電器等の各種電子機器等に好適に使用することができる。 The long laminate and photovoltaic device of the present invention can be suitably used in, for example, vehicles such as airplanes, four-wheeled vehicles (e.g., automobiles), and two-wheeled vehicles (e.g., motorcycles and bicycles); building-related items such as building exterior walls, pipes, roofing tiles, and windows; clothing such as clothes, bags, shoes, belts, and hats; various containers such as bottles and cups made of plastic, glass, or metal; and various electronic devices such as clocks, wristwatches, personal computers, mobile phones, and chargers.
 本願は、2022年10月3日に出願された日本国特許出願第2022-159812号に基づく優先権の利益を主張するものである。2022年10月3日に出願された日本国特許出願第2022-159812号の明細書の全内容が、本願に参考のため援用される。 This application claims the benefit of priority based on Japanese Patent Application No. 2022-159812, filed on October 3, 2022. The entire contents of the specification of Japanese Patent Application No. 2022-159812, filed on October 3, 2022, are incorporated by reference into this application.
1、I-1、II-1:長尺積層体
1a、1b、1c、1d:長尺積層体
2、I-2、II-2:基材層
2a、I-2a、II-2a:デバイス基材
3、I-3、II-3:第1電極
3a、I-3a、II-3a:第1積層体の第1電極
3b、I-3b、II-3b:第2積層体の第1電極
4、I-4、II-4:光起電力層
4a、I-4a、II-4a:第1積層体の光起電力層
4b、I-4b、II-4b:第2積層体の光起電力層
5、I-5、II-5:第2電極
5a、I-5a、II-5a:第1積層体の第2電極
5b、I-5b、II-5b:第2積層体の第2電極
6、I-6、II-6:積層体
6a、I-6a、II-6a:第1積層体
6b、I-6b、II-6b:第2積層体
7、I-7、II-7:保護層
7a、I-7a、II-7a:保護層
8、I-8、II-8:第1-1領域
8a、8b、I-8a、8b、II-8a、8b:第1-1領域
9、I-9、II-9:第1-2領域
9a、9b、I-9a、9b、II-9a、9b:第1-2領域
10、I-10、II-10:第2-1領域
10a、10b、I-10a、10b、II-10a、10b:第2-1領域
I-11、II-11、I-11a、11b、II-11a、11b:第2-2領域
I-11x、I-11y、I-11z:第2-2x領域、第2-2y領域、第2-2z領域
15:長尺積層体から基材層を剥離した積層体
30:長尺積層体同士の重なり部分
A:第1積層体
B:第2積層体
40、I-40、II-40:光起電力装置
1, I-1, II-1: Long laminate 1a, 1b, 1c, 1d: Long laminate 2, I-2, II-2: Base layer 2a, I-2a, II-2a: Device base material 3, I-3, II-3: First electrode 3a, I-3a, II-3a: First electrode 3b of first laminate, I-3b, II-3b: First electrode 4 of second laminate, I-4, II-4: Photovoltaic layer 4a, I-4a, II-4a : Photovoltaic layer 4b, I-4b, II-4b of the first laminate: Photovoltaic layer 5, I-5, II-5 of the second laminate: Second electrode 5a, I-5a, II-5a: Second electrode 5b, I-5b, II-5b of the first laminate: Second electrode 6, I-6, II-6 of the second laminate: Laminate 6a, I-6a, II-6a: First laminate 6b, I-6b, II-6b: Second laminate 7, I-7, II -7: protective layer 7a, I-7a, II-7a: protective layer 8, I-8, II-8: 1-1 region 8a, 8b, I-8a, 8b, II-8a, 8b: 1-1 region 9, I-9, II-9: 1-2 region 9a, 9b, I-9a, 9b, II-9a, 9b: 1-2 region 10, I-10, II-10: 2-1 region 10a, 10b, I-10a, 10b, II-10a, 10b: 2-1 region I-11, II-11, I-11a, 11b, II-11a, 11b: 2-2 region I-11x, I-11y, I-11z: 2-2x region, 2-2y region, 2-2z region 15: Laminate 30 obtained by peeling the base layer from the long laminate: Overlap portion between long laminates A: First laminate B: Second laminate 40, I-40, II-40: Photovoltaic device

Claims (14)

  1.  幅方向及び長手方向を有する基材層と、
     前記基材層上に形成されている第1電極と、少なくとも一部が前記第1電極上に形成されている光起電力層と、少なくとも一部が前記光起電力層上に形成されている第2電極とを含む積層体と、
     を備える長尺積層体であって、
     前記第2電極が、前記第1電極に対向している第2-1領域と、前記第1電極には対向していない第2-2領域を有し、前記第2-2領域が、前記基材層の幅方向一方側上には存在し、前記基材層の幅方向他方側上には存在しておらず、
     前記長尺積層体がリール状に巻回されている、長尺積層体。
    A base layer having a width direction and a length direction;
    a laminate including a first electrode formed on the base layer, a photovoltaic layer at least partially formed on the first electrode, and a second electrode at least partially formed on the photovoltaic layer;
    A long laminate comprising:
    the second electrode has a 2-1 region facing the first electrode and a 2-2 region not facing the first electrode, the 2-2 region being present on one width direction side of the base material layer and not present on the other width direction side of the base material layer;
    The long laminate is wound in a reel shape.
  2.  前記第1電極が、前記第2電極に対向している第1-1領域と、前記第2電極には対向していない第1-2領域を有し、前記第1-2領域が、前記幅方向の前記他方側上には存在し、前記幅方向の前記一方側上には存在していない、請求項1に記載の長尺積層体。 The long laminate according to claim 1, wherein the first electrode has a 1-1 region facing the second electrode and a 1-2 region not facing the second electrode, and the 1-2 region is present on the other side in the width direction and is not present on the one side in the width direction.
  3.  前記第1-2領域が、前記第1-2領域と、前記光起電力層上に前記第2電極が設けられている高さと、の間に他の層が設けられていない部分を有する、請求項2に記載の長尺積層体であって、
     前記第2-2領域が、前記光起電力層の側面を介して前記基材層上で伸びている部分であって、当該部分と、前記光起電力層上に前記第2電極が設けられている高さと、の間に他の層が設けられていない部分を有するか、或いは、前記光起電力層が、前記第2-2領域の下方に設けられている部分であって、下方に電極が存在していない部分を有する、
     長尺積層体。
    The long laminate according to claim 2, wherein the first-2 region has a portion where no other layer is provided between the first-2 region and a height at which the second electrode is provided on the photovoltaic layer,
    The 2-2 region has a portion extending on the base material layer via a side surface of the photovoltaic layer, and has a portion with no other layer provided between the portion and a height at which the second electrode is provided on the photovoltaic layer, or the photovoltaic layer has a portion provided below the 2-2 region, and has a portion with no electrode present below.
    Long laminate.
  4.  基材層と、
     前記基材層上の第1電極、前記第1電極の上方の第2電極、並びに、前記第1電極及び前記第2電極の間の光起電力層、を含む積層体と
     を備え、
     前記第1電極は、前記第2電極に対向していない部分であって、前記第1電極と、前記光起電力層上に前記第2電極が設けられている高さと、の間に他の層が設けられていない部分を有する、
     長尺積層体であって、
     前記第2電極が、前記光起電力層の側面を介して前記基材層上で伸びている部分であって、当該部分と、前記光起電力層上に前記第2電極が設けられている高さと、の間に他の層が設けられていない部分を有するか、或いは、前記光起電力層が、前記第2電極の下方に設けられている部分であって、下方に電極が存在していない部分を有する、
     長尺積層体。
    A base layer;
    a laminate including a first electrode on the base layer, a second electrode above the first electrode, and a photovoltaic layer between the first electrode and the second electrode;
    the first electrode has a portion that does not face the second electrode, and has a portion where no other layer is provided between the first electrode and a height at which the second electrode is provided on the photovoltaic layer;
    A long laminate,
    The second electrode has a portion extending on the base material layer via a side surface of the photovoltaic layer, and no other layer is provided between the portion and a height at which the second electrode is provided on the photovoltaic layer, or the photovoltaic layer has a portion provided below the second electrode, and no electrode is present below the portion.
    Long laminate.
  5.  前記第1電極、前記光起電力層、及び前記第2電極を含む積層体が、前記基材層の長手方向に複数存在している、請求項1から4のいずれかに記載の長尺積層体。 The long laminate according to any one of claims 1 to 4, in which a plurality of laminates each including the first electrode, the photovoltaic layer, and the second electrode are present in the longitudinal direction of the base layer.
  6.  前記第2電極上に少なくとも接着層を介して保護層を更に有し、
     前記第1電極は、少なくとも接着層を介して前記基材層上に形成されており、
     前記第2電極から前記保護層を剥離する際の剥離力は、前記第1電極から前記基材層を剥離する際の剥離力より大きい、
     請求項1から4のいずれかに記載の長尺積層体。
    A protective layer is further provided on the second electrode via at least an adhesive layer,
    the first electrode is formed on the base layer via at least an adhesive layer;
    a peeling force when peeling the protective layer from the second electrode is greater than a peeling force when peeling the base material layer from the first electrode;
    The long laminate according to any one of claims 1 to 4.
  7.  前記光起電力層が有機薄膜を含む、請求項1から4のいずれかに記載の長尺積層体。 The long laminate according to any one of claims 1 to 4, wherein the photovoltaic layer includes an organic thin film.
  8.  デバイス基材と、第1積層体と、第2積層体とを備え、
     前記第1積層体と前記第2積層体の各々が、少なくとも一部が前記デバイス基材上に形成されている第1電極と、少なくとも一部が前記第1電極上に形成されている光起電力層と、少なくとも一部が前記光起電力層上に形成されている第2電極とを含み、
     前記第1積層体と前記第2積層体が、前記デバイス基材上に並んで形成されており、
     前記第1積層体と前記第2積層体の各々において、前記第2電極が、前記第1電極に対向している第2-1領域と、前記第1電極には対向していない第2-2領域とを有し、
     前記第1積層体と前記第2積層体の各々において、前記第1電極が、前記第2電極に対向している第1-1領域と、前記第2電極には対向していない第1-2領域とを有する、
     光起電力装置であって、
     前記第1積層体の第1電極の前記第1-2領域が、前記第2積層体の第2電極の前記第2-2領域上に重ねられ電気的に接続されているか、或いは、
     前記第1積層体の光起電力層が、前記第1積層体の第2電極の前記第2-2領域の下方に設けられている部分であって、前記第2積層体の第1電極の前記第1-2領域上に重ねられ電気的に接続されている部分を有し、かつ、前記第2積層体の第1電極の前記第1-2領域は、当該光起電力層が重ねられている部分と、前記第2積層体の第1電極の前記第1-1領域との間に、当該第1電極の上方であって前記第2積層体の光起電力層上に第2電極が設けられている高さまで他の層が設けられていない部分を有する、
     光起電力装置。
    The device includes a device substrate, a first laminate, and a second laminate,
    each of the first stack and the second stack includes a first electrode at least partially formed on the device substrate, a photovoltaic layer at least partially formed on the first electrode, and a second electrode at least partially formed on the photovoltaic layer;
    the first stack and the second stack are formed side by side on the device substrate;
    In each of the first stacked body and the second stacked body, the second electrode has a 2-1 region facing the first electrode and a 2-2 region not facing the first electrode,
    In each of the first stacked body and the second stacked body, the first electrode has a 1-1 region facing the second electrode and a 1-2 region not facing the second electrode.
    1. A photovoltaic device comprising:
    The first-2 region of the first electrode of the first stack is overlapped on and electrically connected to the second-2 region of the second electrode of the second stack, or
    the photovoltaic layer of the first stack has a portion that is provided below the 2-2 region of the second electrode of the first stack, and that is overlapped and electrically connected to the 1-2 region of the first electrode of the second stack, and the 1-2 region of the first electrode of the second stack has a portion between the portion where the photovoltaic layer is overlapped and the 1-1 region of the first electrode of the second stack, above the first electrode and where no other layer is provided up to a height where a second electrode is provided on the photovoltaic layer of the second stack;
    Photovoltaic devices.
  9.  前記デバイス基材と、前記第1積層体及び前記第2積層体の一方又は両方の前記第1電極との間に第1接着層が設けられている、請求項8に記載の光起電力装置。 The photovoltaic device according to claim 8, wherein a first adhesive layer is provided between the device substrate and the first electrode of one or both of the first and second stacks.
  10.  前記第1積層体及び前記第2積層体の一方又は両方の前記第2電極上に第2接着層を介して保護層を更に備え、前記光起電力装置において、前記デバイス基材を剥離する際の剥離力は、前記保護層を剥離する際の剥離力より大きい、請求項9に記載の光起電力装置。 The photovoltaic device according to claim 9, further comprising a protective layer on the second electrode of one or both of the first laminate and the second laminate via a second adhesive layer, and the peeling force when peeling off the device substrate in the photovoltaic device is greater than the peeling force when peeling off the protective layer.
  11.  前記第1積層体及び前記第2積層体の上方で前記第1積層体及び前記第2積層体を覆うように設けられたバリア層を更に備える、請求項8から10のいずれかに記載の光起電力装置。 The photovoltaic device according to any one of claims 8 to 10, further comprising a barrier layer provided above the first stack and the second stack so as to cover the first stack and the second stack.
  12.  前記光起電力層が有機薄膜を含む、請求項8から10のいずれかに記載の光起電力装置。 The photovoltaic device according to any one of claims 8 to 10, wherein the photovoltaic layer includes an organic thin film.
  13.  請求項1から4のいずれかに記載の長尺積層体の前記積層体が、デバイス基材上に転写され、かつ電気的に接続されていることを特徴とする光起電力装置。 A photovoltaic device, characterized in that the long laminate described in any one of claims 1 to 4 is transferred onto a device substrate and electrically connected.
  14.  請求項2又は3に記載の長尺積層体を用いて光起電力装置を製造する方法であって、
     前記長尺積層体の前記積層体から前記基材層を剥離する工程と、
     前記長尺積層体の前記積層体のうち、前記第1電極の前記第1-2領域又は前記第2電極の前記第2-2領域を、或いは、前記光起電力層が前記第2-2領域の下方に設けられている部分を有する場合は当該部分を、別の積層体の、デバイス基材上に設けられている電極に重ねて接触させるように、前記長尺積層体の前記積層体を前記デバイス基材上に転写する工程と
     を含む、光起電力装置の製造方法。
     
    A method for producing a photovoltaic device using the long laminate according to claim 2 or 3, comprising the steps of:
    peeling the base layer from the laminate of the long laminate;
    and transferring the stack of the long stack onto a device substrate so that the 1-2 region of the first electrode or the 2-2 region of the second electrode, or, if the photovoltaic layer has a portion provided below the 2-2 region, the portion, of the stack of the long stack, is superimposed on and in contact with an electrode of another stack provided on a device substrate.
PCT/JP2023/036087 2022-10-03 2023-10-03 Long laminate, photovoltaic device, and method for producing photovoltaic device WO2024075738A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022159812 2022-10-03
JP2022-159812 2022-10-03

Publications (1)

Publication Number Publication Date
WO2024075738A1 true WO2024075738A1 (en) 2024-04-11

Family

ID=90608167

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/036087 WO2024075738A1 (en) 2022-10-03 2023-10-03 Long laminate, photovoltaic device, and method for producing photovoltaic device

Country Status (1)

Country Link
WO (1) WO2024075738A1 (en)

Similar Documents

Publication Publication Date Title
US8258396B2 (en) Micro/nanostructure PN junction diode array thin-film solar cell and method for fabricating the same
US20150228919A1 (en) Organic photovoltaic cell and method for manufacturing the same
JP5655568B2 (en) Organic photoelectric conversion element, solar cell, and optical sensor array
JP2008153632A (en) Photovoltaic cell
US20150228916A1 (en) Bottom-up ultra-thin functional optoelectronic films and devices
JP5862189B2 (en) Organic photoelectric conversion device and solar cell using the same
KR20230147195A (en) Perovskite-based multi-junction solar cells and methods for producing the same
JP6094572B2 (en) Method for manufacturing organic thin film solar cell module, and organic thin film solar cell module
JP2014207321A (en) Organic thin film solar cell element
WO2014003187A1 (en) Organic thin film solar cell module
WO2024075738A1 (en) Long laminate, photovoltaic device, and method for producing photovoltaic device
JP6107064B2 (en) Thin film solar cell module
JP5652314B2 (en) Organic photoelectric conversion element and manufacturing method thereof
JP2016058606A (en) Solar cell module
KR20190143744A (en) Multi-junction solar cell and method of manufacturing the same
JP2015154049A (en) Thin film solar cell module
WO2012029781A1 (en) Solar cell and solar cell module
JP2013089627A (en) Organic photoelectric conversion element and organic solar cell using the same
JP2012009518A (en) Organic solar cell module
JP2017069395A (en) Organic thin film solar cell module
JP6458591B2 (en) Solar cell device
JP2015154050A (en) Thin film solar cell module
JP2015090935A (en) Thin film solar cell module and thin film solar cell array
JP2014239087A (en) Installation method of organic thin-film solar cell
JP2013254949A (en) Method of manufacturing photoelectric conversion element, and solar battery and solar battery module