WO2014003187A1 - Organic thin film solar cell module - Google Patents

Organic thin film solar cell module Download PDF

Info

Publication number
WO2014003187A1
WO2014003187A1 PCT/JP2013/067943 JP2013067943W WO2014003187A1 WO 2014003187 A1 WO2014003187 A1 WO 2014003187A1 JP 2013067943 W JP2013067943 W JP 2013067943W WO 2014003187 A1 WO2014003187 A1 WO 2014003187A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
organic thin
film solar
thin film
cell module
Prior art date
Application number
PCT/JP2013/067943
Other languages
French (fr)
Japanese (ja)
Inventor
崇志 藤原
光敏 小川
Original Assignee
三菱化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱化学株式会社 filed Critical 三菱化学株式会社
Publication of WO2014003187A1 publication Critical patent/WO2014003187A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/88Passivation; Containers; Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K39/00Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00
    • H10K39/10Organic photovoltaic [PV] modules; Arrays of single organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to an organic thin film solar cell module.
  • an electrode for electric extraction is usually installed on the upper electrode or lower electrode of each solar cell forming the thin film solar cell element, and the electrode and the collector are connected to each other.
  • a connection method is known (see, for example, Patent Documents 1 and 2).
  • the present invention solves such problems, can easily install a current collector, good initial photoelectric conversion efficiency, less module deterioration even after long-term use, excellent in appearance, It is an object to provide an organic thin film solar cell module and a method for efficiently producing the solar cell module.
  • the present inventors have at least a photoelectric conversion layer, a substrate supporting the photoelectric conversion layer, and a light receiving surface side and a non-light receiving surface side of the photoelectric conversion layer.
  • an organic thin film solar cell module comprising an organic thin film solar cell having an organic thin film solar cell element in which at least a pair of electrodes connected to the photoelectric conversion layer is laminated, and at least a pair of collector wires connected to the electrodes.
  • the present invention has been completed by finding that the above problem can be solved by connecting the current collector to the electrode via a conductive thermosetting resin composition.
  • the outline of the present invention is as follows.
  • the present invention is an organic layer in which at least a photoelectric conversion layer, a substrate that supports the photoelectric conversion layer, and at least a pair of electrodes that are connected to the photoelectric conversion layer on a light receiving surface side and a non-light receiving surface side of the photoelectric conversion layer are stacked.
  • an organic thin film solar cell module comprising an organic thin film solar cell having a thin film solar cell element and at least a pair of current collectors connected to the electrodes, the current collector is interposed via a conductive thermosetting resin composition.
  • the organic thin film solar cell module is connected to the electrode. It is preferable that the thickness of the current collector is 200 ⁇ m or less.
  • the present invention also provides the following aspects.
  • An organic thin film solar cell module, wherein the current collector is connected to an organic thin film solar cell element via a conductive thermosetting resin composition.
  • Step 12 The organic thin film solar cell module according to any one of [1] to [11], wherein the upper electrode is a metal thin film.
  • a method for producing an organic thin film solar cell module comprising the following steps 1 to 3 in sequence.
  • Step 1 Step 2
  • Step 3 Step 3 of installing the sealing material on the surface of the obtained organic thin-film solar cell element on which the current collector is installed.
  • the laminate obtained in Step 2 is heated to cure the conductive thermosetting resin composition.
  • the process of simultaneously performing sealing with a sealing material [14] The method for producing an organic thin-film solar cell module according to [13], wherein the sealing material includes a thermosetting resin.
  • an organic thin-film solar cell module that can easily install a current collector, has good initial photoelectric conversion efficiency, has little deterioration even after long-term use, and has an excellent appearance, and a method for manufacturing the same Can be obtained.
  • the present invention includes at least a photoelectric conversion layer, a substrate supporting the photoelectric conversion layer, and at least a pair of electrodes (an upper electrode and a lower electrode) connected to the photoelectric conversion layer on a light receiving surface side and a non-light receiving surface side of the photoelectric conversion layer.
  • the current collector is electrically conductive.
  • the electrode is connected to the electrode through a curable resin composition.
  • another aspect of the present invention includes an organic thin film solar cell element in which a lower electrode, a photoelectric conversion layer, and an upper electrode are sequentially stacked on a substrate, and a current collector electrically connected to the organic thin film solar cell element
  • the organic thin film solar cell module is an organic thin film solar cell module characterized in that the collector wire is connected to an organic thin film solar cell element via a conductive thermosetting resin composition.
  • Organic thin-film solar cell element usually has a structure in which a lower electrode, a photoelectric conversion layer, and an upper electrode are sequentially laminated on a substrate.
  • any material may be used.
  • an organic thin film solar cell element using an organic semiconductor material will be described.
  • Photoelectric conversion layer The photoelectric conversion layer is formed of an organic semiconductor.
  • Organic semiconductors are classified into p-type and n-type depending on semiconductor characteristics.
  • the p-type and n-type indicate whether it is a hole or an electron that contributes to electrical conduction, and depends on the electronic state, doping state, and trap state of the material. Therefore, there are cases where p-type and n-type cannot always be clearly classified, and there are cases where the same substance exhibits both p-type and n-type characteristics.
  • Examples of p-type semiconductors include high molecular organic semiconductor compounds and low molecular organic semiconductor compounds.
  • the polymer organic semiconductor compound is not particularly limited, and is a conjugated polymer semiconductor such as polythiophene, polyfluorene, polyphenylene vinylene, polythienylene vinylene, polyacetylene or polyaniline; a polymer such as oligothiophene substituted with an alkyl group or other substituents Semiconductor; and the like.
  • the semiconductor polymer which copolymerized 2 or more types of monomer units is also mentioned.
  • Examples of the conjugated polymer include Handbook of Conducting Polymers, 3rd Ed. (2 volumes), 2007, Materials Science and Engineering, 2001, 32, 1-40, Pure Appl. Chem.
  • the polymer organic semiconductor compound used as the p-type semiconductor compound may be a single compound or a mixture of a plurality of compounds.
  • the low-molecular organic semiconductor compound is not particularly limited as long as it can function as a p-type semiconductor material. Specifically, it is a condensed aromatic hydrocarbon such as naphthacene, pentacene or pyrene; Oligothiophenes containing 4 or more thiophene rings; including at least one of thiophene ring, benzene ring, fluorene ring, naphthalene ring, anthracene ring, thiazole ring, thiadiazole ring and benzothiazole ring, and a total of 4 or more linked A phthalocyanine compound and a metal complex thereof, or a porphyrin compound such as tetrabenzoporphyrin and a macrocycle such as a metal complex thereof.
  • a condensed aromatic hydrocarbon such as naphthacene, pentacene or pyrene
  • Oligothiophenes containing 4 or more thiophene rings
  • the low-molecular organic semiconductor compound is not particularly limited both at the upper limit and the lower limit, but is usually 5000 or less, preferably 2000 or less, and is usually 100 or more, preferably 200 or more.
  • a low molecular organic-semiconductor compound precursor can be converted into a low-molecular-weight organic semiconductor compound after application
  • a method using a low molecular weight organic semiconductor compound precursor is more preferable in that coating film formation is easier.
  • a low molecular organic semiconductor compound precursor is a compound that changes its chemical structure and is converted into a low molecular organic semiconductor compound by applying an external stimulus such as heating or light irradiation.
  • a low molecular organic semiconductor compound precursor is preferable in that it has excellent film-forming properties.
  • Examples of p-type semiconductors include porphyrin compounds such as tetrabenzoporphyrin, tetrabenzocopper porphyrin, and tetrabenzozinc porphyrin; phthalocyanine compounds such as phthalocyanine, copper phthalocyanine, and zinc phthalocyanine; naphthalocyanine compounds; tetracene and pentacene polyacenes; And derivatives containing these compounds as a skeleton.
  • polymers such as polythiophene including poly (3-alkylthiophene) and the like, polyfluorene, polyphenylene vinylene, polytriallylamine, polyacetylene, polyaniline, polypyrrole, and the like are also included.
  • the n-type semiconductor is not particularly limited, but specifically, a fullerene compound, a quinolinol derivative metal complex represented by 8-hydroxyquinoline aluminum; naphthalene tetracarboxylic acid anhydride; naphthalene tetracarboxylic acid diimide or perylene tetracarboxylic acid Condensed ring tetracarboxylic acid diimides such as acid diimides; perylene diimide derivatives, terpyridine metal complexes, tropolone metal complexes, flavonol metal complexes, perinone derivatives, benzimidazole derivatives, benzoxazole derivatives, thiazole derivatives, benzthiazol derivatives, benzothiadiazole derivatives, Oxadiazole derivatives, thiadiazole derivatives, triazole derivatives, aldazine derivatives, bisstyryl derivatives, pyrazine derivatives, phenanthroline derivatives, quinoxari De
  • fullerene compounds are preferred, and fullerene compounds, N- Alkyl substituted perylene diimide derivatives and N-alkyl substituted naphthalene tetracarboxylic acid diimides are more preferred.
  • One of the above compounds may be used, or a mixture of a plurality of compounds may be used.
  • An n-type semiconductor is also included as an n-type semiconductor.
  • the photoelectric conversion layer may be constituted only by a single layer film or may be constituted by two or more laminated films.
  • an n-type semiconductor and a p-type semiconductor may be contained in separate films, or an n-type semiconductor and a p-type semiconductor may be contained in the same film.
  • each of the n-type semiconductor and the p-type semiconductor may be used alone or in combination of two or more in any combination and ratio.
  • a bulk heterojunction type having a layer (i layer) in which a p-type semiconductor and an n-type semiconductor are phase-separated in the layer, a layer containing a p-type semiconductor (p layer) and n, respectively.
  • Examples include a stacked type (hetero pn junction type) in which a layer containing a type semiconductor (n layer) has an interface, a Schottky type, and a combination thereof.
  • a bulk heterojunction type and a combination of a bulk heterojunction type and a stacked type (pin junction type) are preferable because they exhibit high performance.
  • the method for producing the photoelectric conversion layer is not particularly limited, but a coating method, particularly a wet coating method is preferable.
  • a coating method any method can be used, for example, spin coating method, reverse roll coating method, gravure coating method, kiss coating method, roll brush method, spray coating method, air knife coating method, wire barber coating method, Examples include the pipe doctor method, the impregnation / coating method, and the curtain coating method.
  • spin coating method any method can be used, for example, spin coating method, reverse roll coating method, gravure coating method, kiss coating method, roll brush method, spray coating method, air knife coating method, wire barber coating method, Examples include the pipe doctor method, the impregnation / coating method, and the curtain coating method.
  • it is preferable to apply a wet coating method because the apparatus is simple, the cost is low, and the photoelectric conversion layer can be formed quickly in large quantities.
  • each layer of the p-layer, i-layer and n-layer of the photoelectric conversion layer is usually 3 nm or more, preferably 10 nm or more, more preferably 20 nm or more, still more preferably 30 nm or more, particularly preferably 50 nm or more, and usually 1000 nm or less. Preferably it is 500 nm or less, More preferably, it is 300 nm or less. Increasing the thickness tends to increase the photocurrent, and decreasing the thickness tends to decrease the series resistance. Moreover, by setting it as the thickness more than the said lower limit, when installing a collector line on a cell especially, the short circuit of the cell by installation of a collector line can be prevented.
  • Electrode The organic thin film solar cell element has a lower electrode and an upper electrode. These electrodes have a function of collecting holes and electrons generated by light absorption. Therefore, as these electrodes, an electrode suitable for collecting holes (hereinafter also referred to as an anode) is used on one side, and an electrode suitable for collecting electrons (hereinafter also referred to as a cathode) on the other side. It is preferable to use
  • the lower electrode may be an anode
  • the upper electrode may be a cathode
  • the lower electrode may be a cathode
  • the upper electrode may be an anode. Any one of the lower electrode and the upper electrode may be translucent, and both may be translucent.
  • being translucent means that the transmittance of sunlight, that is, the proportion of sunlight that transmits light having a wavelength of 360 to 830 nm, is 40% or more.
  • the solar ray transmittance is preferably 50% or more, more preferably 60% or more, and still more preferably 70% or more.
  • the transparent electrode has a solar ray transmittance of usually 70% or more in order to allow light to reach the photoelectric conversion layer through the transparent electrode.
  • the lower electrode and the upper electrode can be formed of a conductive material, for example, a metal such as platinum, gold, silver, aluminum, chromium, nickel, copper, titanium, magnesium, calcium, barium, sodium, or the like Alloys thereof: metal oxides such as nickel oxide, indium oxide, tungsten oxide, tin oxide, zinc oxide, or indium-tin oxide (ITO), indium-zinc oxide (IZO), indium-tungsten oxide ( IWO) and the like; conductive polymers such as polyaniline, polypyrrole, polythiophene, and polyacetylene; acids such as hydrochloric acid, sulfuric acid, and sulfonic acid; Lewis acids such as FeCl 3 and halogens such as iodine Include dopants such as atoms, sodium, potassium and other metal atoms Examples thereof include conductive composite materials in which conductive particles such as metal particles, carbon black, fullerene, and carbon nanotubes are dispersed in a matrix such as a polymer
  • a material having a deep work function such as Au or ITO is preferable for the electrode for collecting holes.
  • a material having a shallow work function such as Al is preferable for the electrode for collecting electrons.
  • At least the electrode on the light-receiving surface side has optical transparency and is preferably transparent.
  • the electrode is not necessarily transparent if it does not significantly adversely affect the power generation performance. If the material of a transparent electrode is mentioned, said metal oxide, composite oxide, a metal thin film, etc. will be mentioned, A metal oxide and composite oxide are preferable.
  • the light transmittance of the upper electrode is preferably 80% or more, excluding loss due to partial reflection at the optical interface, considering the power generation efficiency of the organic thin film solar cell element.
  • the materials for the lower electrode and the upper electrode may be used alone or in combination of two or more in any combination and ratio.
  • a metal thin film made of metal or alloy can be preferably exemplified as the upper electrode. Since the metal thin film has high conductivity, it is preferable in that it requires less material than using other materials such as a conductive polymer. Moreover, film formation by vacuum film formation is possible, which is preferable in that damage to the organic thin film solar cell element can be suppressed as compared with a material that requires film formation by an application process.
  • the lower electrode formed on the substrate side has translucency.
  • this invention can be used conveniently when the electrode which installs a current collection line is formed including the metal or the alloy.
  • a current collector is installed via a metal paste on a metal or alloy, especially an electrode formed containing a metal, the metal forming the electrode reacts with the components contained in the metal paste to deform the electrode. And problems such as discoloration may occur. According to the present invention, such a problem can be solved and an organic thin-film solar cell excellent in appearance can be provided.
  • a lower electrode and an upper electrode there is no restriction
  • it can be formed by a dry process such as vacuum deposition or sputtering. It can also be formed by a wet process using conductive ink or the like.
  • conductive ink for example, a conductive polymer, a metal particle dispersion, or the like can be used.
  • two or more electrodes may be laminated, and characteristics (electric characteristics, wetting characteristics, etc.) due to surface treatment may be improved.
  • the thicknesses of the upper electrode and the lower electrode are not particularly limited, but are usually 5 nm or more, preferably 10 nm or more, more preferably 20 nm or more, and further preferably 50 nm or more.
  • the thickness of the electrode is usually 400 ⁇ m or less, preferably 10 ⁇ m or less, more preferably 1 ⁇ m or less, and further preferably 500 nm or less.
  • the thickness of the electrode is equal to or more than the lower limit, sheet resistance is suppressed and sufficient conduction is possible. On the other hand, by being below the above upper limit, flexibility can be maintained.
  • the electrode is a transparent electrode, it is necessary to select a film thickness that can achieve both light transmittance and sheet resistance.
  • the sheet resistance of the electrode is not particularly limited, but is usually 1 ⁇ / ⁇ or more, on the other hand, 1000 ⁇ / ⁇ or less, preferably 500 ⁇ / ⁇ or less, more preferably 100 ⁇ / ⁇ or less.
  • the organic thin film solar cell element according to the present invention may include a buffer layer between the lower electrode and / or the upper electrode and the photoelectric conversion layer.
  • the buffer layer refers to an electron extraction layer and / or a hole extraction layer.
  • the buffer layer is not essential in the organic thin film solar cell element according to the present invention, and may include only one of an electron extraction layer and a hole extraction layer.
  • the electron extraction layer is preferably present between the cathode and the photoelectric conversion layer, and the hole extraction layer is preferably present between the anode and the photoelectric conversion layer.
  • the electron extraction layer and the hole extraction layer are preferably arranged so that the photoelectric conversion layer is sandwiched between the pair of electrodes.
  • the stacking order of the electron extraction layer and the hole extraction layer may be appropriately selected as described above according to the functions of the upper electrode and the lower electrode, that is, each electrode is either an anode or a cathode.
  • the organic thin film solar cell element includes the lower electrode, the electron extraction layer, the photoelectric It is preferable to have a conversion layer, a hole extraction layer, and an upper electrode in this order.
  • the organic thin film solar cell element When the electron extraction layer is included and the hole extraction layer is not included, the organic thin film solar cell element preferably has a lower electrode, an electron extraction layer, a photoelectric conversion layer, and an upper electrode in this order. Similarly, when the hole extraction layer is included and the electron extraction layer is not included, the organic thin film solar cell element preferably has a lower electrode, a photoelectric conversion layer, a hole extraction layer, and an upper electrode in this order. Further, at least one of the electron extraction layer and the hole extraction layer may be composed of a plurality of different layers.
  • the material of the electron extraction layer is not particularly limited as long as it is a material that improves the efficiency of extracting electrons from the photoelectric conversion layer to the cathode, and examples thereof include inorganic compounds and organic compounds.
  • the material of the inorganic compound include salts of alkali metals such as Li, Na, K or Cs; n-type semiconductor oxides such as titanium oxide (TiOx) and zinc oxide (ZnO).
  • the alkali metal salt is preferably a fluoride salt such as LiF, NaF, KF or CsF
  • the n-type semiconductor oxide is preferably zinc oxide (ZnO).
  • organic compound materials include, for example, phosphine compounds having a double bond between a phosphorus atom and a group 16 element such as triarylphosphine oxide compounds; bathocuproin (BCP) or bathophenanthrene (Bphen), A phenanthrene compound which may have a substituent and may be substituted at the 1-position and the 10-position with a heteroatom; a boron compound such as triarylboron; such as (8-hydroxyquinolinato) aluminum (Alq3) Organometallic oxide; Compound having 1 or 2 ring structure which may have a substituent such as oxadiazole compound or benzimidazole compound; Naphthalenetetracarboxylic anhydride (NTCDA) or perylenetetracarboxylic acid Dicarboxylic anhydrides, such as anhydride (PTCDA) Aromatic compounds and the like having a condensed dicarboxylic acid structure, such as.
  • NTCDA Naphthalenetetracarboxylic
  • the thickness of the electron extraction layer is not particularly limited, but is usually 0.01 nm or more, preferably 0.1 nm or more, more preferably 0.5 nm or more. On the other hand, it is usually 400 nm or less, preferably 200 nm or less. When the thickness of the electron extraction layer is equal to or more than the above lower limit, the function as a buffer material is achieved. When the thickness of the electron extraction layer is not more than the above upper limit, electrons can be easily extracted and the photoelectric conversion efficiency can be improved.
  • the method of forming the electron extraction layer there is no limitation on the method of forming the electron extraction layer.
  • a material having sublimation property it can be formed by a vacuum deposition method or the like.
  • the electron extraction layer can be formed by using a vacuum film formation method such as vacuum deposition or sputtering.
  • a vacuum film formation method such as vacuum deposition or sputtering.
  • the spin coating method, reverse roll coating method, gravure coating method, kiss coating method, roll brush method, spray coating method are used in the same manner as the method for producing the photoelectric conversion layer described above. It can be formed by a wet coating method such as an air knife coating method, a wire barber coating method, a pipe doctor method, an impregnation / coating method, a curtain coating method, or the like.
  • n-type semiconductors for example, when zinc oxide ZnO is used as the material for the electron extraction layer, a vacuum film formation method such as sputtering can be used. It is desirable to form the extraction layer.
  • a vacuum film formation method such as sputtering can be used. It is desirable to form the extraction layer.
  • an electron extraction layer composed of zinc oxide can be formed.
  • the thickness is usually 0.1 nm or more, preferably 2 nm or more, more preferably 5 nm or more, and usually 1 ⁇ m or less, preferably 100 nm or less, more preferably 50 nm or less.
  • the electron extraction layer is too thin, the effect of improving the electron extraction efficiency is not sufficient, and if it is too thick, the electron extraction layer tends to deteriorate the characteristics of the device by acting as a series resistance component.
  • the electron extraction layer is formed by a roll-to-roll method, it is preferable to apply a wet coating method because the apparatus is simple, the cost is low, and the electron extraction layer can be formed quickly in large quantities.
  • the material for the hole extraction layer is not particularly limited as long as it is a material that can improve the efficiency of extracting holes from the photoelectric conversion layer to the anode.
  • a conductive polymer in which polythiophene, polypyrrole, polyacetylene, triphenylenediamine, polyaniline or the like is doped with sulfonic acid and / or iodine, etc .
  • a conductive organic material such as a polythiophene derivative having a sulfonyl group as a substituent, arylamine or the like
  • Metal oxide such as copper oxide, nickel oxide, manganese oxide, molybdenum oxide, vanadium oxide or tungsten oxide; Nafion, p-type semiconductor described later, and the like.
  • a conductive polymer doped with sulfonic acid is preferable, and (3,4-ethylenedioxythiophene) poly (styrenesulfonic acid) (PEDOT: PSS) in which a polythiophene derivative is doped with polystyrene sulfonic acid is more preferable. It is.
  • a thin film of metal such as gold, indium, silver or palladium can also be used.
  • a thin film of metal or the like may be formed alone or in combination with the above organic material.
  • the thickness of the hole extraction layer is not particularly limited, but is usually 0.2 nm or more. On the other hand, it is usually 400 nm or less, preferably 200 nm or less. When the thickness of the hole extraction layer is 0.2 nm or more, it functions as a buffer material. When the thickness of the hole extraction layer is 400 nm or less, holes can be easily extracted and the photoelectric conversion efficiency can be improved.
  • the method of forming the hole extraction layer there is no limitation on the method of forming the hole extraction layer.
  • a material having sublimation property when used, it can be formed by a vacuum deposition method or the like.
  • a spin coating method, a reverse roll coating method, a gravure coating method, a kiss coating method, a roll brush method, a spray coating method, an air knife coating method, a wire barber coating method, a pipe doctor It can be formed by a wet coating method such as a method, an impregnation / coating method, or a curtain coating method.
  • the hole extraction layer is preferably formed by coating.
  • the precursor may be converted into a semiconductor compound after the layer is formed using the precursor, similarly to the low-molecular organic semiconductor compound of the organic photoelectric conversion layer described later.
  • PEDOT: PSS As a material of a hole taking-out layer, it is preferable to form a hole taking-out layer by the method of apply
  • the dispersion of PEDOT: PSS include CLEVIOSTM series manufactured by Heraeus, ORGACONTM series manufactured by Agfa, and the like.
  • the hole extraction layer is formed by a roll-to-roll method, it is preferable to apply a wet coating method because the apparatus is simple, the cost is low, and the hole extraction layer can be formed quickly in large quantities.
  • performing the wet coating method it is preferable to select a solvent that does not dissolve the coating layer.
  • Substrate An organic thin film solar cell element is usually manufactured by forming a plurality of organic thin film solar cells on a substrate.
  • substrate is a member which supports an organic thin film photovoltaic cell.
  • the material of the substrate is not particularly limited as long as the present invention can be applied, and known materials such as inorganic materials, organic materials, paper materials, and composite materials can be used.
  • inorganic materials such as quartz, glass, sapphire or titania; polyethylene terephthalate, polyethylene naphthalate, polyethersulfone, polyimide, nylon, polystyrene, polyvinyl alcohol, ethylene vinyl alcohol copolymer, fluororesin film, vinyl chloride Or polyolefin such as polyethylene; organic materials such as cellulose, polyvinylidene chloride, aramid, polyphenylene sulfide, polyurethane, polycarbonate, polyarylate, polynorbornene or epoxy resin; paper materials such as paper or synthetic paper; stainless steel, titanium or aluminum Examples thereof include composite materials such as those obtained by coating or laminating the surface of a metal to impart insulating properties.
  • resin substrates using organic materials can provide transparency to the substrate, so both superstrate and substrate structures can be created, and translucent see-through solar cells can be created. This is preferable because it is possible.
  • the substrate is preferably a flexible (flexible) substrate.
  • the organic thin film solar cell can be manufactured by a roll-to-roll method, and the degree of freedom in installing the organic thin film solar cell is improved.
  • “Flexible” means, for example, that the material does not break (plastically deform) even when bent at a curvature radius of 170 mm.
  • organic materials, paper materials, and composite materials are preferable as the material for the flexible substrate, more preferably organic materials and composite materials, and organic materials are particularly preferable in that a transparent flexible substrate can be obtained.
  • the organic material usually has a Tg (glass transition temperature), but deterioration of the appearance due to deformation of the substrate can be suppressed by sealing the organic thin film solar cell at less than Tg.
  • the glass transition temperature (Tg) of the resin substrate is usually 30 ° C. or higher, preferably 50 ° C. or higher, usually 400 ° C. or lower, preferably 300 ° C. or lower, more preferably 200 ° C. or lower, More preferably, it is less than 160 degreeC.
  • the glass transition temperature (Tg) is in the above range, it is easy to perform molding when producing a resin substrate, and deformation is less likely to occur during the production of solar cells.
  • the glass transition temperature in the present specification is a value obtained by differential scanning calorimetry (DSC) defined in JIS K-7121 1987 “Method for measuring transition temperature of plastic”.
  • the thickness of the substrate is not limited, but is usually 5 ⁇ m or more, preferably 20 ⁇ m or more, and is usually 20 mm or less, preferably 10 mm or less. It is preferable that the thickness of the substrate is 5 ⁇ m or more because the possibility that the strength of the organic thin film solar cell element is insufficient is reduced. It is preferable that the thickness of the substrate is 20 mm or less because the cost is suppressed and the weight does not increase.
  • the thickness is usually 0.01 mm or more, preferably 0.1 mm or more, and is usually 1 cm or less, preferably 0.5 cm or less. It is preferable that the thickness of the substrate is 0.01 mm or more because mechanical strength is increased and cracking is difficult. Moreover, it is preferable that the thickness of the substrate is 0.5 cm or less because the weight does not increase.
  • 10 cm or more Preferably it is 1 m or more, More preferably, it is 10 m or more, More preferably, it is 50 m or more, Most preferably, it is 100 m or more.
  • the upper limit is usually 10 km or less, preferably 5 km or less, more preferably 1 km or less, still more preferably 500 m or less.
  • it is usually 10 m or more, preferably 20 m or more, more preferably 50 m or more, still more preferably 100 m or more, and particularly preferably 200 m or more.
  • an upper limit in particular is not restrict
  • limited Usually, it is 10 km or less, Preferably it is 5 km or less, More preferably, it is 1 km or less.
  • the length within this range, efficient production by a roll-to-roll system can be performed.
  • the substrate of one roll is as long as the manufacturing apparatus allows. On the other hand, it should be noted that handling becomes difficult when the roll becomes heavy.
  • the organic thin film solar cell element preferably has a monolithic structure.
  • the organic thin film solar cell module of the present invention includes an organic thin film solar cell element having a structure in which a plurality of organic thin film solar cells are connected in series on the same substrate (hereinafter also referred to as a monolithic structure).
  • the number and arrangement method of the organic thin film solar cells included in the organic thin film solar cell element can be determined by the potential and size required for the organic thin film solar cell module. That is, by having a monolithic structure, an organic thin film solar cell element having an arbitrary potential can be manufactured with high productivity.
  • the arrangement method and the number thereof are not particularly limited, but the number of organic thin-film solar cells connected in series is usually 3 or more, preferably 10 Above, more preferably 15 or more, still more preferably 30 or more, particularly preferably 100 or more.
  • the upper limit is not limited as long as the effect of the present invention can be obtained, and is usually 500,000 or less, preferably 100,000 or less, more preferably 10,000 or less, still more preferably 1000 or less, and particularly preferably 600 or less. .
  • the number of cells connected in series should be set to the length of the substrate and the length of one organic thin film solar cell in the series connection direction. Can be arbitrarily determined.
  • a solar cell element in which many organic thin film solar cells are directly connected may be formed on one substrate, or a plurality of solar cell elements in which a predetermined number of organic thin film solar cells are connected in series may be formed. It may be formed.
  • the organic thin film solar cells are connected in series in the width direction of the substrate, the organic thin film solar cells are connected in series in a line depending on the length in the width direction of the substrate and the length in the serial connection direction of one organic thin film solar cell.
  • the number that can be connected to is limited.
  • the number of organic solar cells connected in series in a row is usually 3 or more, preferably 5 or more, more preferably 10 or more, and even more preferably 15 or more, although the upper limit is not particularly limited. It is 600 or less, preferably 500 or less, more preferably 300 or less, and still more preferably 200 or less.
  • the number of organic solar cells connected in series can be arbitrarily set, in this case usually 6 or more, preferably 10 or more, More preferably, it is 20 or more, more preferably 30 or more, and the upper limit is not particularly limited, but is usually 500,000 or less, preferably 100,000 or less, more preferably 10,000 or less, still more preferably 1000 or less. Particularly preferably, the number is 600 or less.
  • the organic thin film solar cell includes at least a lower electrode, a photoelectric conversion layer, and an upper electrode.
  • the electrode laminated on the substrate of the organic thin-film solar battery cell is usually called a lower electrode, and the electrode laminated after the photoelectric conversion layer is laminated on the lower electrode is called an upper electrode.
  • the lower electrode may be directly laminated on the substrate or indirectly laminated.
  • An organic thin film solar cell element is usually manufactured by forming a plurality of organic thin film solar cells on a substrate.
  • the light receiving surface of the organic thin film solar cell module is on the substrate 1 side, it is preferable to use a transparent substrate.
  • the substrate 1 may be transparent or opaque.
  • a lower electrode 2 having an open groove 11 is formed on a substrate 1.
  • the electrode may be formed by either a dry method or a wet method. Examples of the dry method include known methods such as sputtering, vapor deposition, and CVD. Examples of the wet method include screen printing and die coating.
  • the width of the first groove 11 is preferably about 50 to 1000 ⁇ m, particularly about 100 to 500 ⁇ m.
  • a p layer 3 is formed on the lower electrode 2 as shown in FIG.
  • the first groove 11 is filled with the material of the p layer 3.
  • the first groove 11 may not be filled with the material of the p layer 3.
  • an i layer 4 and an n layer 5 are sequentially formed on the lower electrode 2 and the p layer 3.
  • the i layer 4 and the n layer 5 formed on the p layer 3 are separated by several tens to 100 ⁇ m in the vicinity so as not to overlap the first groove 11.
  • a second groove 12 reaching the electrode 2 is formed by laser scribing.
  • the width of the second groove is preferably about 50 to 1000 ⁇ m, particularly about 100 to 500 ⁇ m.
  • the wavelength of the laser for forming the second groove 12 is 200 to 1200 nm, preferably about 250 to 900 nm, particularly about 250 to 600 nm.
  • the upper electrode 6 is formed as shown in FIG.
  • the second open groove 12 is filled with the material of the upper electrode 6. Since the second groove 12 is for connecting the upper electrode of the unit cell to the lower electrode 2 on the light receiving surface of the adjacent unit cell, it must reach the lower electrode 2.
  • the upper electrode 6, the n layer 5, the i layer 4 and the p layer 3 are laser scribed to form the third groove 13 and divided into unit cells. Since the open groove 13 divides the upper electrode 6 of the adjacent unit cell, it may stop in the middle of the i layer 4 without penetrating the i layer 4, and further penetrate the p layer 3 from the i layer 4 to the lower part. It may enter the electrode 2.
  • the wavelength of the laser for forming the third groove 13 is 200 to 1200 nm, preferably about 250 to 900 nm, particularly about 250 to 600 nm. Since the upper electrode 6 of each unit cell is electrically connected to the lower electrode 2 of the adjacent unit cell by the material of the upper electrode 6 filling the inside of the open groove 12, the organic thin film solar cell element in which the unit cells are connected in series Is obtained.
  • the materials constituting the photoelectric conversion layer (in this embodiment, the p layer 3, the i layer 4, and the n layer 5) have good absorption of light having a wavelength of 200 to 1200 nm, particularly 250 to 900 nm, particularly 250 to 600 nm.
  • the conversion layer is efficiently cut (scribed).
  • the material constituting the upper electrode 6 may or may not absorb light having this wavelength. Even when the constituent material of the upper electrode 6 does not absorb light of this wavelength, when the underlying photoelectric conversion layer is removed by laser scribing, the upper electrode constituent material above the upper electrode 6 is removed together. 3 open grooves 13 are formed. Since the constituent material of the upper electrode 6 is not limited to the light absorbing material, options for the constituent material of the upper electrode are expanded.
  • Organic thin film solar cell module of the present invention has a structure in which a current collector is connected to an organic thin film solar cell element via a conductive thermosetting resin composition.
  • the organic thin film solar cell module of the present invention is preferably such that at least the organic thin film solar cell element and the current collector are sealed with a sealing material. By sealing an organic thin film solar cell element, an organic thin film solar cell element can be reinforced and impact resistance can be improved.
  • the electrode and the current collector are connected to extract current from the organic thin-film solar cell element.
  • the current collector is connected to the electrode via a conductive thermosetting resin composition.
  • the current collector and the electrode may be connected at a place where the electrode is not laminated with the photoelectric conversion layer, or may be connected at a place where the electrode is laminated with the photoelectric conversion layer.
  • the portion and the photoelectric conversion layer that are stacked with the photoelectric conversion layer 7 on the lower electrode 2 of the organic thin film solar cell. 7 is provided, and the upper electrode 6 is provided with a portion that is laminated with the photoelectric conversion layer 7 and a portion that is not laminated with the photoelectric conversion layer 7.
  • a collector wire is connected through the contact bonding layer 9, and two collector wires are made into an organic thin film solar cell. Install in the cell.
  • “Connecting” the current collector and the electrode means that at least the current collector and the electrode are electrically connected. Further, “installing” the current collector means that the electrode and the current collector are electrically connected. 2a, at both ends of the organic thin film solar cell, for example, by laminating a conductive material between the lower electrode and the current collector, or by laminating a material that does not affect current collection under the upper electrode, The installation work of the current collector may be facilitated by flattening the upper and lower surfaces of the organic thin film solar cells.
  • an organic thin film solar cell module electricity is taken out by connecting a current collector to the upper electrode and lower electrode of the organic thin film solar cell element, but this is the case when the current collector is connected to only a plurality of upper electrodes. Even electricity can be taken out. This is because electricity flows between the upper electrode and the lower electrode of the organic thin film solar battery cell forming the organic thin film solar battery element across the photoelectric conversion layer, and the cells are connected in series. This is because electricity can be taken out even from the upper electrodes.
  • the current collector 8 may be installed on the upper electrode 6 of the organic thin film solar cell via the adhesive layer 9. .
  • stacked with the photoelectric converting layer is installing in the range of 23 of the upper electrode 6 in FIG. 2c. According to this method, even after the production of the organic thin-film solar cell element, the collector wire can be installed at an arbitrary position, and the potential can be freely adjusted. Accordingly, since the same organic thin film solar cell element can meet various required potential requirements, an organic thin film solar cell module can be manufactured without lowering the production efficiency.
  • a long organic thin-film solar cell element is manufactured by a roll-to-roll method, and can be used while being cut into a size (module width, series number) corresponding to the potential according to the demand.
  • an organic thin-film solar cell module in which two collector wires are respectively installed on the upper electrode is manufactured.
  • FIG. 2c in an organic thin-film solar battery element in which organic thin-film solar battery cells are connected monolithically, it is necessary to take out electricity by installing a collector wire 8 on an arbitrary upper electrode 6 It becomes possible to take out the electric potential according to. It is not necessary that all the current collectors are provided on the upper electrode of the organic thin film solar cell, and a region (for example, the rightmost region 24 in FIG. 2a) of the upper electrode that is not stacked with the photoelectric conversion layer is provided. A part of the current collecting line may be installed.
  • the organic thin film solar cell element When the organic thin film solar cell element has a current collector connected to the lower electrode, electricity can be taken out by connecting the upper electrode 6 and the current collector 8 at one place. If connected at two locations, electricity can be taken out from the two current collectors connected to the upper electrode 6, or any of the current collector connected to the lower electrode and the two current collectors connected to the upper electrode 6 can be selected. It is also possible to take out electricity by selecting a current collector and selecting two potentials. Of course, it is also possible to connect the upper electrode and the current collector at three or more locations. For example, two types of potentials can be extracted from one organic thin film solar cell module when connected at three locations, and three types of potentials can be extracted from one organic thin film solar cell module when connected at four locations.
  • the current collector In addition to being able to take out, it is possible to take out two systems of the same potential or two systems of different potentials. In this way, by installing the current collector on the electrode laminated on the photoelectric conversion layer, the current collector can be installed at an arbitrary position, so the electric potential to be taken out from one organic thin film solar cell element can be freely set Can do.
  • the organic thin-film solar cell having the upper electrode on which the current collector is installed may be short-circuited or not short-circuited by the installation of the current-collector, but the organic thin-film solar cell element in which the current collector is installed It is preferable that all of the thin film solar cells are short-circuited or not all of them are short-circuited.
  • the solar battery cell is short-circuited, electricity can be reliably flowed, so that stable electricity can be taken out.
  • the organic thin film solar cell is not short-circuited, even an organic thin film solar cell having an upper electrode on which the current collector is installed can generate power, It is preferable in that the amount of power generation, that is, the power generation efficiency can be increased.
  • the layer structure of the organic thin-film solar cell is designed so that the upper electrode on which the current collector is installed becomes the non-light-receiving surface of the organic thin-film solar cell, more power is generated because the current collector does not block the light reaching the photoelectric conversion layer. Efficiency can be increased.
  • the present invention is characterized in that the current collector is connected to the organic thin-film solar cell element via the conductive thermosetting resin composition, and in particular, the current collector is connected to the electrode laminated with the photoelectric conversion layer.
  • the photoelectric conversion layer containing an organic component has a lower strength than the other layers. Therefore, in order to prevent a decrease in power generation efficiency, it is preferable that the region where the current collector is installed be as far as possible from the photoelectric conversion layer that is easily affected by external force. In that respect, it is better to connect the current collector and the electrode at a place where the photoelectric conversion layer is not laminated, but the potential cannot be changed after the organic thin film solar cell element is manufactured.
  • the linear expansion coefficient is low. Specifically, it is usually 100 ppm / ° C. or less, preferably 80 ppm / ° C. or less, more preferably 60 ppm / ° C. or less, usually 10 ppm / ° C. or more, preferably 20 ppm / ° C. or more, more preferably 30 ppm / ° C. or more. Therefore, there is little shrinkage
  • current collectors As materials for current collectors, metals, alloys and the like are often used, and among them, it is preferable to use copper, aluminum, silver, gold, nickel or the like having a low resistivity. Among these, copper and aluminum are particularly preferable because they are inexpensive. In order to prevent rust, the current collector may be plated with tin, silver or the like, the surface may be coated with resin, or a film may be laminated.
  • shape of the current collecting wire there are a rectangular wire, foil, flat plate, and wire shape, but for reasons such as securing a bonding area, it is preferable to use a flat wire, foil, or flat plate shape.
  • the “foil” refers to one having a thickness of less than 100 ⁇ m
  • the “plate” refers to one having a thickness of 100 ⁇ m or more.
  • the “flat wire” refers to a wire whose cross section is rolled to make the cross section into a quadrangle.
  • the current collector is not particularly limited as long as it has conductivity, but preferably has a lower resistance value than the upper electrode and lower electrode to be connected, and in particular, by increasing the thickness of the upper electrode and lower electrode, It is preferable to reduce the resistance value.
  • the thickness of the current collector is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more. Moreover, it is preferable that it is 2 mm or less, More preferably, it is 1 mm or less, More preferably, it is 300 micrometers or less, Most preferably, it is 200 micrometers or less. It is preferable for the thickness to be equal to or more than the above lower limit, since an increase in the resistance value of the current collecting line is suppressed and the generated power is easily taken out to the outside efficiently.
  • the increase in the weight of the organic thin film solar cell module can be suppressed and the flexibility can be maintained, and the occurrence of irregularities on the module surface can be suppressed, and the increase in production cost can be suppressed. Is preferable.
  • the width of the current collecting line is preferably 0.5 mm or more, more preferably 1 mm or more, and particularly preferably 2 mm or more.
  • variety of a current collection line is 50 mm or less, More preferably, it is 20 mm or less, Most preferably, it is 10 mm or less. If the width of the current collection line is narrower than the above range, the resistance value of the current collection line will increase, and the generated power may not be taken out efficiently. In addition, the mechanical strength of the current collector decreases, which may cause breakage and the like.
  • variety of a current collection line is wider than the said range, the aperture ratio in the whole module will reduce, and there exists a possibility of leading to the fall of the power generation amount of a module.
  • the shape of the current collector line can be embossed.
  • the embossed shape means a shape formed by embossing some uneven shape. By forming the current collector in an embossed shape, even if an adhesive layer is used, a portion of the embossed unevenness can be in direct contact with or very close to the electrode, so that conductivity is increased.
  • the emboss depth is usually 5 to 100 ⁇ m, and preferably 10 to 50 ⁇ m.
  • the emboss depth means the height of the convex portion formed by embossing, and is specifically a value obtained by subtracting the thickness of the current collector from the thickness including the convex portion. Such an embossing depth is preferable because the embossed convex portion can directly contact the electrode.
  • Adhesive layer The present invention is characterized in that the current collector is connected to the electrode via a conductive thermosetting resin composition (adhesive layer 9 in FIG. 2a).
  • a conductive thermosetting resin composition adhesive layer 9 in FIG. 2a.
  • thermoplastic adhesives containing conductive particles, solder, metal paste, and the like are known as adhesive components for installing a current collector on an electrode of a solar cell.
  • ADVANTAGE OF THE INVENTION According to this invention, the organic thin film solar cell module with high durability with respect to the case where a thermoplastic resin plastic material is used can be obtained. Since the thermoplastic resin composition generally has a high coefficient of linear expansion, the ratio of the coefficient of linear expansion with the material used for the base material or the current collector is large.
  • the curing temperature of the conductive thermosetting resin composition is not particularly limited, but is preferably less than the glass transition temperature (Tg) of the substrate. This is because the deformation of the substrate during curing can be prevented, and the appearance failure of the module and the decrease in output can be prevented. Specifically, the curing temperature of the conductive thermosetting composition is usually 20 ° C.
  • the pot life of an electroconductive curable composition can be made more than fixed, and it can suppress that a board
  • the sealing material used for the organic thin film solar cell module of the present invention contains a thermosetting resin
  • the curing temperature of the conductive thermosetting resin composition is such that the thermosetting resin contained in the sealing material is cured.
  • the temperature is lower than the maximum temperature.
  • the encapsulant is installed, and the heating process for bonding and curing the encapsulant is performed at a temperature near the limit at which module deformation and output reduction do not occur in order to reduce module manufacturing time. Often done. Therefore, if the conductive thermosetting resin composition can be simultaneously cured at this time, not only the step of curing with the conductive curable resin alone can be omitted, but also the module deformation and output decrease are caused when the sealing material is cured. Absent. Even when the sealing material is, for example, a thermoplastic resin and is sealed by thermal lamination, for the same reason, the curing temperature of the conductive thermosetting resin composition may be lower than the temperature at which thermal lamination is performed. preferable.
  • the curing temperature of the conductive thermosetting composition can be controlled, for example, by appropriately selecting the type of curing agent.
  • a curing agent such as an aromatic amine or a latent curing type curing agent such as dicyandiamide
  • a curing agent such as an aliphatic amine. be able to.
  • an acrylic resin or a urethane resin it can be increased by using a latent curing type curing agent such as block type isocyanate as the curing agent.
  • the curing temperature of the conductive thermosetting composition is a temperature at which the calorific value becomes a peak when heated at 2 ° C./min from 25 ° C. to 400 ° C. with a DSC manufactured by Seiko Instruments Inc. .
  • a conductive thermosetting composition hardens
  • Another layer may be laminated as long as the effect of the present invention is not impaired. Since the thermosetting resin composition applies heat when it is cured, the generation of gas after curing is less than that generated at room temperature.
  • the term “conductive” means that at least electrical connection is possible, but the volume resistivity at room temperature (25 ° C.) is 10 ⁇ cm or less and 10 ⁇ 6 ⁇ cm or more.
  • thermosetting resin composition used in the present invention, a conductive resin dispersed in a binder resin composition can be used.
  • the conductive thermosetting resin composition may be in the form of a sheet or paste, but is preferably in the form of a sheet.
  • Conductive particles include metal particles such as gold, nickel, copper, silver, platinum, solder, palladium, aluminum, or alloys thereof, carbon-based particles such as carbon black, carbon tube, and carbon fiber, and gold-plated nickel particles.
  • Composite metal particles such as gold- / nickel-plated resin particles, copper-plated resin particles, nickel-plated resin particles, and other metal-coated resin particles. From the viewpoint of conductivity, metal particles, composite metal particles, metal-coated resin Particles are preferred.
  • Such conductive particles are used in the above-mentioned resin, usually 0.01% by volume or more, preferably 0.1% by volume or more, and usually 50% by volume or less, preferably 20% by volume or less.
  • the content of the conductive particles is equal to or more than the above lower limit, the connection stability due to the conductive particles can be easily increased, and a decrease in conductivity can be suppressed. Moreover, the moldability of a resin layer can be maintained and the fall of adhesive strength can be suppressed because content of electroconductive particle is below the said upper limit.
  • the shape of the conductive particles is not particularly limited, and examples thereof include a spherical shape, a needle shape, a fiber shape, a flake shape, a spike shape, and a coil shape.
  • the size of the conductive particles is not particularly limited.
  • the particle size is 1 to 50 ⁇ m, preferably 2 to 20 ⁇ m.
  • the particle size is a value measured by the BET method.
  • the binder resin composition can be appropriately selected from thermosetting binder resin compositions used in conventional conductive adhesives.
  • thermosetting acrylic resin, thermosetting epoxy resin, thermosetting urea resin, thermosetting melamine resin, polyimide resin, unsaturated polyester resin, polyurethane resin, bismaleimide resin, triazine-bismaleimide resin, thermosetting type A phenol resin etc. can be mentioned.
  • the binder resin composition using a thermosetting epoxy resin can be used preferably.
  • the binder resin may contain a curing agent.
  • Curing agents include imidazole curing agents, hydrazide curing agents, amine curing agents, phenol curing agents, acid anhydride curing agents, boron trifluoride-amine complexes, sulfonium salts, iodonium salts, polyamine salts, Examples include amine imide and dicyandiamide.
  • thermosetting epoxy resin may be liquid or solid, and preferably has an epoxy equivalent of usually about 100 to 4000 and having two or more epoxy groups in the molecule.
  • a bisphenol A type epoxy compound, a phenol novolac type epoxy compound, a cresol novolac type epoxy compound, an ester type epoxy compound, an alicyclic epoxy compound, or the like can be preferably used. These compounds include monomers and oligomers.
  • ACF (Anisotropic Conductive Film, anisotropic conductive film) can also be used as the conductive thermosetting resin composition used in the present invention.
  • ACF is a material in which conductive particles having a diameter of, for example, about 1 ⁇ m to 10 ⁇ m are dispersed in a thermosetting resin film, and has conductivity in the film thickness direction and insulation in the film surface direction. is there.
  • the thermosetting resin composition used in the present invention may contain a filler such as silica and mica, a pigment, an antistatic agent, and the like as necessary. Coloring agents, preservatives, polyisocyanate crosslinking agents, silane coupling agents, and the like can also be blended.
  • thermosetting resin composition When the conductivity of the thermosetting resin composition is low, fix the electrode and a part of the current collector with the thermosetting resin composition, and place the electrode and the current collector in direct contact with the remaining part. You can also.
  • an organic thin film solar cell module is manufactured by connecting an organic thin film solar cell element and a collector wire, but it is preferable to seal at least the organic thin film solar cell element.
  • the organic thin-film solar cell element is sealed in order to reinforce the organic thin-film solar cell element and increase impact resistance.
  • the sealing material used for sealing preferably has high strength from the viewpoint of maintaining the strength of the organic thin-film solar cell module.
  • the specific strength is related to the strength of the layers other than the sealing material and is difficult to define in general, but the entire organic thin-film solar cell module has good bending workability and causes peeling of the bent portion. It is desirable to have such strength.
  • the sealing material when used on the light receiving surface side of the organic thin film solar battery cell, it is preferable to transmit visible light from the viewpoint of preventing light absorption.
  • the transmittance of visible light (wavelength 360 to 830 nm) is usually 75% or more, preferably 80% or more, more preferably 85% or more, further preferably 90% or more, and particularly preferably 95% or more. Particularly preferably, it is 97% or more. This is to convert more sunlight into electrical energy.
  • the sealing material when a sealing material is used on the side opposite to the light receiving surface of the organic thin film solar cell element, it is not always necessary to transmit visible light, and may be opaque. Furthermore, since the organic thin film solar cell module is often heated by receiving light, it is preferable that the sealing material also has heat resistance. From this viewpoint, the melting point of the constituent material of the sealing material is usually 100 ° C. or higher, preferably 120 ° C. or higher, more preferably 130 ° C. or higher, and usually 350 ° C. or lower, preferably 320 ° C. or lower, more preferably It is 300 degrees C or less. By increasing the melting point, it is possible to prevent the sealing material from melting and deteriorating when the organic thin film solar cell module is used.
  • the thickness of the sealing material is not particularly defined, but is usually 5 ⁇ m or more, preferably 10 ⁇ m or more, more preferably 30 ⁇ m or more, and usually 1000 ⁇ m or less, preferably 800 ⁇ m or less, more preferably 600 ⁇ m or less. Increasing the thickness tends to increase the strength of the entire organic thin-film solar cell module, and decreasing the thickness tends to increase flexibility and improve visible light transmittance. For this reason, it is desirable to set it as the said range as a range which has both advantages.
  • the material constituting the sealing material is not particularly limited, and is a thermosetting resin such as vinyl acetate ethylene copolymer containing a crosslinking agent, polyurethane or epoxy resin, a thermoplastic resin such as polyolefin, polyester or acrylic resin, or butyl rubber. Further, it may be an elastomeric resin such as silicone rubber, or the above composite.
  • the sealing material has a sealing temperature of usually 50 ° C. or higher, preferably 100 ° C. or higher, usually 250 ° C. or lower, preferably 200 ° C. or lower, more preferably 180 ° C. or lower, more preferably 160 ° C. or lower, particularly preferably. Is 140 ° C. or lower.
  • the sealing material contains the thermosetting resin, it is preferable in that the organic thin film solar cell module is not easily deformed even when exposed to high temperatures.
  • the sealing material is a thermosetting resin
  • the curing temperature of the sealing material is higher than the curing temperature of the conductive thermosetting resin composition, that is, the curing of the conductive thermosetting resin composition.
  • the temperature is equal to or lower than the temperature at which the thermosetting resin contained in the encapsulant can be cured, since the conductive thermosetting resin composition can be cured at the same time during the encapsulation.
  • the curing temperature of the thermosetting resin contained in the sealing material is usually 50 ° C. or higher, preferably 100 ° C. or higher, and usually 250 ° C. or lower, preferably Is 200 ° C. or lower, more preferably 180 ° C. or lower, still more preferably 160 ° C. or lower, and particularly preferably 140 ° C. or lower.
  • the EVA film is usually blended with a crosslinking agent to form a crosslinked structure.
  • a crosslinking agent an organic peroxide that generates radicals at 100 ° C. or higher is generally used.
  • organic peroxides include 2,5-dimethylhexane, 2,5-dihydroperoxide, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane, and 3- Di-t-butyl peroxide or the like can be used.
  • the compounding amount of these organic peroxides is usually 5 parts by weight or less, preferably 3 parts by weight or less, and usually 1 part by weight or more with respect to 100 parts by weight of EVA resin.
  • 1 type may be used for a crosslinking agent and it may use 2 or more types together by arbitrary combinations and a ratio.
  • This EVA resin composition may contain a silane coupling agent for the purpose of improving the adhesive strength.
  • silane coupling agents used for this purpose include ⁇ -chloropropyltrimethoxysilane, vinyltrichlorosilane, vinyltriethoxysilane, vinyl-tris- ( ⁇ -methoxyethoxy) silane, ⁇ -methacryloxypropyltri Mention may be made of methoxysilane or ⁇ - (3,4-ethoxycyclohexyl) ethyltrimethoxysilane.
  • the compounding amount of these silane coupling agents is usually 5 parts by weight or less, preferably 2 parts by weight or less, and usually 0.1 parts by weight or more with respect to 100 parts by weight of the EVA resin.
  • 1 type may be used for a silane coupling agent and it may use 2 or more types together by arbitrary combinations and a ratio.
  • a crosslinking aid may be included in the EVA resin composition.
  • the crosslinking aid provided for this purpose include monofunctional crosslinking aids such as trifunctional crosslinking aids such as triallyl isocyanurate or triallyl isocyanate.
  • the amount of these crosslinking aids is usually 10 parts by weight or less, preferably 5 parts by weight or less, and usually 1 part by weight or more with respect to 100 parts by weight of the EVA resin.
  • 1 type may be used for a crosslinking adjuvant, and 2 or more types may be used together by arbitrary combinations and a ratio.
  • the temperature at which the crosslinking aid crosslinks is usually 50 ° C.
  • sealing and hardening of a conductive thermosetting resin composition can be performed simultaneously.
  • the EVA resin composition may contain, for example, hydroquinone, hydroquinone monomethyl ether, p-benzoquinone, or methylhydroquinone. These compounding quantities are normally 5 weight part or less with respect to 100 weight part of EVA resin.
  • the EVA resin cross-linking process requires a relatively long time, it may cause a reduction in production speed and production efficiency of the organic thin-film solar cell module.
  • the decomposition gas (acetic acid gas) of the EVA resin composition or the vinyl acetate group of the EVA resin itself may adversely affect the organic thin film solar cell element and reduce the power generation efficiency. . Therefore, as the sealing material, in addition to the EVA film, a copolymer film made of a propylene / ethylene / ⁇ -olefin copolymer may be used.
  • the sealing material may be formed of one kind of material or may be formed of two or more kinds of materials. Moreover, although the sealing material may be formed with the single layer film, the laminated
  • the sealing material is usually provided so as to sandwich the organic thin film solar cell element.
  • the sealing material may be provided with functions such as ultraviolet blocking, heat blocking, conductivity, antireflection, antiglare, light diffusion, light scattering, wavelength conversion, and gas barrier properties.
  • an organic thin film solar cell it is weak against water and oxygen, and is exposed to strong ultraviolet rays from sunlight, and therefore preferably has a gas barrier property and an ultraviolet blocking function.
  • a layer having a function may be laminated on the sealing material by coating film formation or the like, or a material that exhibits the function is dissolved and dispersed in the sealing material. You may make it contain.
  • the gas barrier property examples include those satisfying the following water vapor permeability and oxygen permeability.
  • the water vapor transmission rate is typically 10 ⁇ 1 g / m 2 / day or less, preferably 10 ⁇ 2 g / m 2 / day, at 40 ° C. and 90% RH in a 100 ⁇ m-thick sealing material. Hereinafter, it is more preferably 10 ⁇ 3 g / m 2 / day or less, and further preferably 10 ⁇ 4 g / m 2 / day or less.
  • the water vapor transmission rate is measured in an environment of 40 ° C. and 90% RH by a measurement using an apparatus equipped with a humidity sensor, an infrared sensor, and a gas chromatograph according to JIS K7129, or by a cup method (JIS Z0208).
  • the oxygen permeability per day of a unit area (1 m 2 ) at a thickness of 100 ⁇ m in a 25 ° C. environment is usually 1 cc / m 2 / day / atm or less.
  • 1 is preferably ⁇ 10 -1 or less cc / m 2 / day / atm , more preferably not more than 1 ⁇ 10 -2 cc / m 2 / day / atm, 1 ⁇ 10 -3 cc / m 2 / day / atm or less is more preferable, and 1 ⁇ 10 ⁇ 4 cc / m 2 / day / atm or less is particularly preferable, and 1 ⁇ 10 ⁇ 5 cc / m 2 / day / atm or less. It is particularly preferred. There is an advantage that deterioration due to oxidation of the element can be suppressed as oxygen does not pass through.
  • the oxygen permeability can be measured with an apparatus based on a differential pressure method according to JIS K7126A, or an apparatus equipped with an infrared sensor and a gas chromatograph based on an isobaric method according to JIS K7126B.
  • the sealing step of sealing the organic thin film solar cell element with the sealing material may be performed after the step (step 1) of installing the collector wire on the organic thin film solar cell element, or may be performed before step 1. .
  • the whole organic thin film solar cell module including a current collection line is sealed, and after that among the sealing materials of an organic thin film solar cell module
  • the number of connection points of the collector line to the upper electrode is arbitrary as long as it is one or more, and the collector line may be connected to a position where a desired potential can be taken out.
  • a weatherproof protective sheet can be further provided on the outermost surface after sealing.
  • the weather-resistant protective sheet is a sheet and film that protects the organic thin-film solar cell module from a device installation environment such as temperature change, humidity change, light, and wind and rain.
  • the weather-resistant protective sheet Since the weather-resistant protective sheet is located on the outermost layer of the organic thin-film solar cell element, it is used as a surface covering material for organic thin-film solar cells such as weather resistance, heat resistance, transparency, water repellency, contamination resistance, and mechanical strength. It is preferable to have a suitable performance and to maintain it for a long period of time in outdoor exposure. Moreover, when a weather-resistant protective sheet is used for the light-receiving surface side of the organic thin-film solar battery cell, it is preferable to transmit visible light from the viewpoint of not preventing light absorption.
  • the transmittance of visible light (wavelength 360 to 830 nm) is usually 75% or more, preferably 80% or more, more preferably 85% or more, further preferably 90% or more, and particularly preferably 95% or more. Particularly preferably, it is 97% or more. This is to convert more sunlight into electrical energy.
  • the weather-resistant protective sheet when a weatherproof protective sheet is used on the side opposite to the light receiving surface of the organic thin film solar cell element, it is not always necessary to transmit visible light, and may be opaque. Furthermore, since the organic thin-film solar cell element is often heated by receiving light, it is preferable that the weather-resistant protective sheet also has heat resistance. From this viewpoint, the melting point of the constituent material of the weatherproof protective sheet is usually 100 ° C. or higher, preferably 120 ° C. or higher, more preferably 130 ° C. or higher, and usually 350 ° C. or lower, preferably 320 ° C. or lower, more preferably. Is 300 ° C. or lower. By increasing the melting point, it is possible to reduce the possibility that the weatherproof protective sheet will melt and deteriorate when the organic thin film solar cell element is used.
  • the material constituting the weatherproof protective sheet is arbitrary as long as it can protect the organic thin film solar cell module.
  • the material include polyethylene resin, polypropylene resin, cyclic polyolefin resin, AS (acrylonitrile-styrene) resin, ABS (acrylonitrile-butadiene-styrene) resin, polyvinyl chloride resin, fluorine resin, polyethylene terephthalate, polyethylene
  • polyester resins such as naphthalate, phenol resins, polyacrylic resins, polyamide resins such as various nylons, polyimide resins, polyamide-imide resins, polyurethane resins, cellulose resins, silicone resins, and polycarbonate resins.
  • fluorine resin is preferable, and specific examples thereof include polytetrafluoroethylene (PTFE), 4-fluoroethylene-perchloroalkoxy copolymer (PFA), 4-fluoroethylene-6-fluoride.
  • PTFE polytetrafluoroethylene
  • PFA 4-fluoroethylene-perchloroalkoxy copolymer
  • FEP Propylene copolymer
  • ETFE 2-ethylene-4-fluoroethylene copolymer
  • PCTFE poly-3-fluoroethylene chloride
  • PVDF polyvinylidene fluoride
  • PVF polyvinyl fluoride
  • the weather-resistant protective sheet may be formed of one type of material or may be formed of two or more types of materials.
  • the weather-resistant protective sheet may be formed of a single layer film, but may be a laminated film including two or more layers.
  • the thickness of the weatherproof protective sheet is not particularly defined, but is usually 10 ⁇ m or more, preferably 15 ⁇ m or more, more preferably 20 ⁇ m or more, and usually 200 ⁇ m or less, preferably 180 ⁇ m or less, more preferably 150 ⁇ m or less. Increasing the thickness tends to increase mechanical strength, and decreasing the thickness tends to increase flexibility. For this reason, it is desirable to set it as the said range as a range which has both advantages.
  • the weatherproof protective sheet is preferably provided on the outer side as much as possible in the organic thin film solar cell module. This is because more device components can be protected.
  • UV protection, heat ray blocking, antifouling properties, hydrophilicity, hydrophobicity, antifogging properties, abrasion resistance, conductivity, antireflection, antiglare properties, light diffusion, light scattering, wavelength conversion, Functions such as gas barrier properties may be imparted.
  • the organic thin film solar cell is preferably exposed to strong ultraviolet rays from sunlight, and therefore has an ultraviolet blocking function.
  • a layer having a function may be laminated on a weather-resistant protective sheet by coating film formation or the like, or a weather-resistant protection is achieved by dissolving or dispersing a material exhibiting the function. You may make it contain in a sheet
  • FIG. 3 is a cross-sectional view schematically showing the configuration of an organic thin film solar cell module as one embodiment of the present invention.
  • the organic thin-film solar cell module 44 of this embodiment includes a weather-resistant protective sheet 31, an ultraviolet cut film 32, a gas barrier film 33, a getter material film 34, a sealing material 35, and an organic material.
  • a thin film solar cell element 36, a sealing material 37, a getter material film 38, a gas barrier film 39, and a back sheet 40 are provided in this order. And light is irradiated from the side (downward in the figure) where the weatherproof protective sheet 31 is formed, and the organic thin film solar cell element 36 generates electric power.
  • the getter material film 38 and / or the gas barrier film 39 may not be used depending on the application. Good.
  • the weatherproof protective sheet is as described above.
  • the ultraviolet cut film 32 is a film that prevents the transmission of ultraviolet rays. Some components of the organic thin film solar cell module 44 are deteriorated by ultraviolet rays. Some of the gas barrier films 33 and 39 and the like are deteriorated by ultraviolet rays depending on the type. Accordingly, the ultraviolet cut film 32 is provided on the light receiving portion of the organic thin film solar cell module 44, and the light receiving surface of the organic thin film solar cell element 36 is covered with the ultraviolet cut film 32, thereby allowing the organic thin film solar cell element 36 and, if necessary, a gas barrier. The films 33, 39, etc. are protected from ultraviolet rays so that the power generation capacity can be kept high.
  • the degree of the ability to suppress the transmission of ultraviolet rays required for the ultraviolet cut film 32 is such that the transmittance of ultraviolet rays (for example, wavelength 300 nm) is preferably 50% or less, more preferably 30% or less, and particularly preferably. 10% or less.
  • the ultraviolet cut film 32 is preferably one that transmits visible light from the viewpoint of not preventing the organic thin film solar cell element 36 from absorbing light.
  • the transmittance of visible light (wavelength 360 to 830 nm) is preferably 80% or more, more preferably 90% or more, and particularly preferably 95% or more.
  • the ultraviolet cut film 32 preferably has resistance to heat.
  • the melting point of the constituent material of the ultraviolet cut film 32 is usually 100 ° C. or higher, preferably 120 ° C. or higher, more preferably 130 ° C. or higher. Moreover, it is 350 degrees C or less normally, Preferably it is 320 degrees C or less, More preferably, it is 300 degrees C or less. If the melting point is too low, the ultraviolet cut film 32 may melt when the organic thin film solar cell module 44 is used.
  • the ultraviolet cut film 32 has a high softness
  • the material constituting the ultraviolet cut film 32 is arbitrary as long as it can weaken the intensity of ultraviolet rays. Examples of the material include a film formed by blending an ultraviolet absorber with an epoxy, acrylic, urethane, or ester resin. Further, a film in which a layer of an ultraviolet absorbent dispersed or dissolved in a resin (hereinafter referred to as “ultraviolet absorbing layer” as appropriate) is formed on a base film may be used.
  • the ultraviolet absorber for example, salicylic acid-based, benzophenone-based, benzotriazole-based, and cyanoacrylate-based ones can be used. Of these, benzophenone and benzotriazole are preferable. Examples of this include various aromatic organic compounds such as benzophenone and benzotriazole. In addition, a ultraviolet absorber may use 1 type and may use 2 or more types together by arbitrary combinations and a ratio. Specific examples of the ultraviolet cut film 32 include cut ace (MKV Plastic Co., Ltd.) and the like.
  • the ultraviolet cut film 32 may be formed of one type of material or may be formed of two or more types of materials. Further, the ultraviolet cut film 32 may be formed of a single layer film, but may be a laminated film including two or more layers.
  • the thickness of the ultraviolet cut film 32 is not particularly limited, but is usually 5 ⁇ m or more, preferably 10 ⁇ m or more, more preferably 15 ⁇ m or more. Moreover, it is 200 micrometers or less normally, Preferably it is 180 micrometers or less, More preferably, it is 150 micrometers or less. Increasing the thickness tends to increase the absorption of ultraviolet rays, and decreasing the thickness tends to increase the transmittance of visible light.
  • the ultraviolet cut film 32 may be provided at a position covering at least a part of the light receiving surface of the organic thin film solar cell element 36.
  • the organic thin film solar cell element 36 is provided at a position covering the entire light receiving surface.
  • the ultraviolet cut film 32 may be provided at a position other than the position covering the light receiving surface of the organic thin film solar cell element 36.
  • the gas barrier film 33 is a film that prevents permeation of water and oxygen.
  • the organic thin film solar cell element 36 tends to be sensitive to moisture and oxygen.
  • transparent electrodes such as ZnO: Al, compound semiconductor solar cell elements, and organic thin film solar cell elements may be deteriorated by moisture and oxygen. Therefore, by covering the organic thin film solar cell element 36 with the gas barrier film 33, the solar cell element 36 can be protected from water and oxygen, and the power generation capacity can be maintained high.
  • the degree of moisture-proof capability required for the gas barrier film 33 is such that the water vapor permeability per unit area (1 m 2 ) per day is preferably 1 ⁇ 10 ⁇ 1 g / m 2 / day or less, and 1 ⁇ 10 It is more preferably ⁇ 2 g / m 2 / day or less, further preferably 1 ⁇ 10 ⁇ 3 g / m 2 / day or less, and 1 ⁇ 10 ⁇ 4 g / m 2 / day or less. Among them, it is particularly preferable, and it is particularly preferably 1 ⁇ 10 ⁇ 5 g / m 2 / day or less, and particularly preferably 1 ⁇ 10 ⁇ 6 g / m 2 / day or less.
  • the water vapor does not pass through, deterioration due to the reaction of the solar cell element 36 and the transparent electrode such as ZnO: Al of the element 36 with moisture is suppressed, so that the power generation efficiency is increased and the life is extended.
  • the degree of oxygen permeability required for the gas barrier film 33 is preferably such that the oxygen permeability per unit area (1 m 2 ) per day is 1 ⁇ 10 ⁇ 1 cc / m 2 / day / atm or less, It is more preferably 1 ⁇ 10 ⁇ 2 cc / m 2 / day / atm or less, further preferably 1 ⁇ 10 ⁇ 3 cc / m 2 / day / atm or less, and further preferably 1 ⁇ 10 ⁇ 4 cc / m.
  • the gas barrier film 33 is preferably one that transmits visible light from the viewpoint of not preventing the organic thin film solar cell element 36 from absorbing light.
  • the transmittance of visible light (wavelength 360 to 830 nm) is usually 60% or more, preferably 70% or more, more preferably 75% or more, still more preferably 80% or more, and particularly preferably 85% or more, especially Preferably it is 90% or more, Especially preferably, it is 95% or more, Especially preferably, it is 97% or more. This is to convert more sunlight into electrical energy.
  • the gas barrier film 33 preferably has resistance to heat.
  • the melting point of the constituent material of the gas barrier film 33 is usually 100 ° C. or higher, preferably 120 ° C. or higher, more preferably 130 ° C. or higher, and usually 350 ° C. or lower, preferably 320 ° C. or lower, more preferably. It is 300 degrees C or less.
  • the specific configuration of the gas barrier film 33 is arbitrary as long as the organic thin film solar cell element 36 can be protected from water. However, since the production cost increases as the amount of water vapor or oxygen that can permeate the gas barrier film 33 increases, it is preferable to use an appropriate film considering these points comprehensively.
  • Particularly suitable gas barrier film 33 includes, for example, a film obtained by vacuum-depositing SiOx on a base film such as polyethylene terephthalate (PET) or polyethylene naphthalate (PEN).
  • the gas barrier film 33 may be formed of one type of material or may be formed of two or more types of materials.
  • the gas barrier film 33 may be formed of a single layer film, but may be a laminated film including two or more layers.
  • the thickness of the gas barrier film 33 is not particularly defined, but is usually 5 ⁇ m or more, preferably 10 ⁇ m or more, more preferably 15 ⁇ m or more, and usually 200 ⁇ m or less, preferably 180 ⁇ m or less, more preferably 150 ⁇ m or less. Increasing the thickness tends to increase gas barrier properties, and decreasing the thickness tends to increase flexibility and improve visible light transmittance.
  • the formation position is not limited, but the front surface of the organic thin film solar cell element 36 (the surface on the light receiving surface side; the lower side in FIG. 3). And the back surface (surface opposite to the light receiving surface; upper surface in FIG. 3). This is because the front and back surfaces of the thin film solar cell module 44 are often formed in a larger area than the other surfaces.
  • the gas barrier film 33 covers the front surface of the organic thin film solar cell element 36, and a gas barrier film 39 described later covers the back surface of the organic thin film solar cell element 36.
  • the getter material film 38 and / or the gas barrier film 39 may not be used depending on the application. Good.
  • the getter material film 34 is a film that absorbs moisture and / or oxygen. Some of the components of the organic thin-film solar cell element 36 are deteriorated by moisture as described above, and some are deteriorated by oxygen. Therefore, by covering the organic thin film solar cell element 36 with the getter material film 34, the organic thin film solar cell element 36 and the like are protected from moisture and / or oxygen, and the power generation capacity is kept high.
  • the getter material film 34 does not prevent moisture permeation, but absorbs moisture.
  • the getter material film 34 captures moisture that slightly enters the space formed by the gas barrier films 33 and 9. Thus, the influence of moisture on the organic thin film solar cell element 36 can be eliminated.
  • the degree of water absorption capacity of the getter material film 34 is usually 0.1 mg / cm 2 or more, preferably 0.5 mg / cm 2 or more, more preferably 1 mg / cm 2 or more.
  • it is usually 10 mg / cm ⁇ 2 > or less.
  • the organic thin-film solar cell element 36 is covered with the gas barrier films 33 and 39 or the like due to the absorption of oxygen by the getter material film 34, oxygen that slightly enters the space formed by the gas barrier films 33 and 39 is absorbed.
  • the getter material film 34 can capture and eliminate the influence of oxygen on the organic thin film solar cell element 36.
  • the getter material film 34 is preferably one that transmits visible light from the viewpoint of not preventing the organic thin-film solar cell element 36 from absorbing light.
  • the transmittance of visible light (wavelength 360 to 830 nm) is usually 60% or more, preferably 70% or more, more preferably 75% or more, still more preferably 80% or more, and particularly preferably 85% or more, especially Preferably it is 90% or more, Especially preferably, it is 95% or more, Especially preferably, it is 97% or more. This is to convert more sunlight into electrical energy.
  • the getter material film 34 preferably has heat resistance.
  • the melting point of the constituent material of the getter material film 34 is usually 100 ° C. or higher, preferably 120 ° C. or higher, more preferably 130 ° C. or higher, and usually 350 ° C. or lower, preferably 320 ° C. or lower, more preferably. Is 300 ° C. or lower.
  • the material constituting the getter material film 34 is arbitrary as long as it can absorb moisture and / or oxygen.
  • the material include alkali metal, alkaline earth metal or alkaline earth metal oxides; alkali metal or alkaline earth metal hydroxides; silica gel, zeolitic compounds, magnesium sulfate. And sulfates such as sodium sulfate and nickel sulfate; and organometallic compounds such as aluminum metal complexes and aluminum oxide octylates.
  • examples of the alkaline earth metal include Ca, Sr, and Ba.
  • the alkaline earth metal oxide include CaO, SrO, and BaO.
  • Other examples include Zr—Al—BaO and aluminum metal complexes.
  • Specific product names include, for example, OleDry (Futaba Electronics).
  • the substance that absorbs oxygen examples include activated carbon, silica gel, activated alumina, molecular sieve, magnesium oxide, and iron oxide.
  • Fe, Mn, Zn, and inorganic salts such as sulfates, chlorides, and nitrates of these metals are also included.
  • the getter material film 34 may be formed of one type of material or may be formed of two or more types of materials.
  • the getter material film 34 may be formed of a single layer film, but may be a laminated film including two or more layers.
  • the thickness of the getter material film 34 is not particularly defined, but is usually 5 ⁇ m or more, preferably 10 ⁇ m or more, more preferably 15 ⁇ m or more, and usually 200 ⁇ m or less, preferably 180 ⁇ m or less, more preferably 150 ⁇ m or less. Increasing the thickness tends to increase mechanical strength, and decreasing the thickness tends to increase flexibility.
  • the getter material film 34 is not limited in its formation position as long as it is in the space formed by the gas barrier films 33 and 39, but the front surface (light receiving surface side surface of the organic thin film solar cell element 36. Surface) and back surface (surface opposite to the light receiving surface; upper surface in FIG. 3) is preferably covered.
  • the getter material film 34 is preferably provided between the gas barrier film 33 and the organic thin film solar cell element 36.
  • the getter material film 34 covers the front surface of the organic thin film solar cell element 36
  • the getter material film 38 described later covers the back surface of the organic thin film solar cell element 36
  • the getter material films 34 and 38 are respectively organic thin film solar cells. It is located between the element 36 and the gas barrier films 33 and 39.
  • the getter material film 38 and / or the gas barrier film 39 may not be used depending on the application. .
  • the getter material film 34 can be formed by any method depending on the type of the water-absorbing agent or desiccant. For example, a method of attaching a film in which the water-absorbing agent or desiccant is dispersed with an adhesive, water-absorbing agent or desiccant The method of apply
  • the film for the water-absorbing agent or drying agent examples include polyethylene resins, polypropylene resins, cyclic polyolefin resins, polystyrene resins, acrylonitrile-styrene copolymers (AS resins), and acrylonitrile-butadiene-styrene copolymers.
  • ABS resin polyvinyl chloride resin
  • fluorine resin poly (meth) acrylic resin
  • polycarbonate resin or the like
  • a film of polyethylene resin, fluorine resin, cyclic polyolefin resin or polycarbonate resin is preferable.
  • the said resin may use 1 type and may use 2 or more types together by arbitrary combinations and a ratio.
  • sealing material 35 The sealing material 35 is as described above. In this embodiment, the sealing material 35 and the sealing material 37 are provided on the front surface and the back surface of the organic thin film solar cell element 36, respectively.
  • Organic thin film solar cell element 36 The organic thin film solar cell element 36 is the same as the organic thin film solar cell element described above.
  • organic thin film solar cell element 36 may be provided per one organic thin film solar cell module 44 (for example, FIG. 3), normally, as shown in FIG. Two or more organic thin film solar cell elements 36 are provided.
  • the specific number of thick organic thin film positive battery elements 36 may be set arbitrarily. When a plurality of organic thin film solar cell elements 36 are provided, the organic thin film solar cell elements 36 are often arranged in an array.
  • the organic thin film solar cell elements 36 are the collectors of each organic thin film solar cell element.
  • the electric wires are electrically connected using other conductive members as necessary.
  • electricity generated from the group of connected organic thin film solar cell elements 36 is taken out from a terminal (not shown).
  • the organic thin film solar cell elements are usually connected in series in order to increase the voltage.
  • the distance between the organic thin film solar cell elements 36 is small.
  • the gap between the organic thin film solar cell element 36 and the organic thin film solar cell element 36 is narrow. This is because the light receiving area of the organic thin film solar cell element 36 is widened to increase the amount of received light, and the power generation amount of the organic thin film solar cell module 44 is increased.
  • the sealing material 37 is as described above.
  • the thing similar to the sealing material 35 can be used similarly except an arrangement position differing.
  • a member that does not transmit visible light can be used.
  • the getter material film 38 is the same film as the getter material film 34 described above, and the same getter material film 34 can be used as necessary except that the arrangement position is different. Moreover, since the constituent member on the back side of the organic thin film solar cell element 36 does not necessarily need to transmit visible light, a member that does not transmit visible light can be used. It is also possible to use a film containing more of the moisture or oxygen absorbent used than the getter material film 34. Examples of such absorbents include CaO, BaO, Zr—Al—BaO, and the like as moisture absorbents, and activated carbon, molecular sieves, and the like as oxygen absorbents.
  • the gas barrier film 39 is a film similar to the gas barrier film 33 described above, and the same material as the gas barrier film 39 can be used as necessary, except that the arrangement position is different. Moreover, since the constituent member on the back side of the organic thin film solar cell element 36 does not necessarily need to transmit visible light, a member that does not transmit visible light can be used.
  • the back sheet 40 is a film similar to the weather-resistant protective sheet 31 described above, and the same film as the weather-resistant protective sheet 31 can be used in the same manner except that the arrangement position is different. Further, if the back sheet 40 is difficult to permeate water and oxygen, the back sheet 40 can function as a gas barrier layer.
  • the constituent member on the back side of the organic thin film solar cell element 36 does not necessarily need to transmit visible light, a member that does not transmit visible light can be used. Therefore, it is particularly preferable to use the following (i) to (iv) as the backsheet 40.
  • the back sheet 40 various resin films or sheets excellent in strength and excellent in weather resistance, heat resistance, water resistance and / or light resistance can be used.
  • polyethylene resin polypropylene resin, cyclic polyolefin resin, polystyrene resin, acrylonitrile-styrene copolymer (AS resin), acrylonitrile-butadiene-styrene copolymer (ABS resin), polyvinyl chloride resin, fluorine Resin, poly (meth) acrylic resin, polycarbonate resin, polyester resin such as polyethylene terephthalate or polyethylene naphthalate, various polyamide resins such as nylon, polyimide resin, polyamideimide resin, polyaryl phthalate resin , Silicone resin, polysulfone resin, polyphenylene sulfide resin, polyethersulfone resin, polyurethane resin, acetal resin, cellulose resin or other resin It can be used.
  • AS resin acrylonitrile-styrene copolymer
  • ABS resin acrylonitrile-butadiene-styrene copolymer
  • polyvinyl chloride resin fluorine
  • these resin sheets it is preferable to use a fluorine resin, a cyclic polyolefin resin, a polycarbonate resin, a poly (meth) acrylic resin, a polyamide resin, or a polyester resin sheet.
  • these may use 1 type and may use 2 or more types together by arbitrary combinations and a ratio.
  • a metal thin film can also be used.
  • corrosion-resistant aluminum metal foil, stainless steel thin film, and the like can be mentioned.
  • the said metal may use 1 type and may use 2 or more types together by arbitrary combinations and a ratio.
  • the back sheet 40 for example, a highly waterproof sheet in which a fluorine resin film is bonded to both surfaces of an aluminum foil may be used.
  • the fluorine resin include ethylene monofluoride (trade name: Tedlar, manufactured by DuPont), polytetrafluoroethylene (PTFE), a copolymer of tetrafluoroethylene and ethylene or propylene (ETFE), and a vinylidene fluoride resin. (PVDF) or vinyl fluoride resin (PVF).
  • 1 type may be used for fluororesin and it may use 2 or more types together by arbitrary combinations and a ratio.
  • a vapor deposition film of an inorganic oxide is provided on one side or both sides of the base film, and further, heat resistance is provided on both sides of the base film provided with the vapor deposition film of the inorganic oxide.
  • stacked the property polypropylene-type resin film may be used.
  • the lamination is performed by laminating with a laminating adhesive.
  • the base film is excellent in close adhesion with inorganic oxide deposition film, etc., excellent in strength, weather resistance, heat resistance, water resistance, and light resistance.
  • Resin films can be used.
  • the resin described in (i) above can be used.
  • As thickness of a base film it is 12 micrometers or more normally, Preferably it is 20 micrometers or more, and is 300 micrometers or less normally, Preferably it is 200 micrometers or less.
  • a vapor deposition film of an inorganic oxide basically any thin film on which a metal oxide is deposited can be used.
  • a deposited film of an oxide of silicon (Si) or aluminum (Al) can be used.
  • the kind of metal and inorganic oxide to be used may be 1 type, and may use 2 or more types together by arbitrary combinations and ratios.
  • the thickness of the deposited inorganic oxide film is usually 50 mm or more, preferably 100 mm or more, and usually 4000 mm or less, preferably 1000 mm or less.
  • a chemical vapor deposition method (chemical vapor deposition method, CVD method) such as a plasma chemical vapor deposition method, a thermal chemical vapor deposition method, or a photochemical vapor deposition method can be used.
  • Polypropylene resin film As the polypropylene resin, for example, a homopolymer of propylene or a copolymer of propylene and another monomer (for example, ⁇ -olefin) can be used. Moreover, an isotactic polymer can also be used as a polypropylene resin.
  • Polypropylene resins are largely controlled by their crystallinity, but high isotactic polymers have excellent tensile strength and impact strength, good heat resistance and bending fatigue strength, and workability. Is very good.
  • Examples of the adhesive constituting the adhesive layer for laminating include, for example, a polyvinyl acetate adhesive, a polyacrylate adhesive, a cyanoacrylate adhesive, an ethylene copolymer adhesive, a cellulose adhesive, and a polyester adhesive.
  • Adhesives polyamide adhesives, polyimide adhesives, amino resin adhesives, phenol resin adhesives, epoxy adhesives, polyurethane adhesives, reactive (meth) acrylic adhesives, silicone adhesives, etc. Is mentioned.
  • 1 type may be used for an adhesive agent and it may use 2 or more types together by arbitrary combinations and a ratio.
  • the organic thin film solar cell module 44 of the present invention is usually a thin film member.
  • the organic thin film solar cell module 44 can be easily installed in a building material, an automobile, an interior, or the like.
  • the organic thin film solar cell module 44 is light and difficult to break, and thus a highly safe solar cell can be obtained and can be applied to a curved surface, so that it can be used for more applications. Since it is thin and light, it is preferable in terms of distribution such as transportation and storage. Furthermore, since it is in the form of a film, it can be manufactured in a roll-to-roll manner, and a significant cost cut can be achieved.
  • the thickness is 50 micrometers or more normally, Preferably it is 100 micrometers or more, More preferably, it is 150 micrometers or more, Usually, 3000 micrometers or less, Preferably it is 2000 micrometers or less, More preferably, it is 1500 micrometers or less.
  • the present invention uses a conductive thermosetting resin composition for installing a current collector, the conductive curable resin composition is heated by sealing the organic thin film solar cell module. Can be cured simultaneously. By reducing the number of times of heating, efficient production of the organic thin film solar cell module can be realized. Moreover, deterioration of the photoelectric conversion layer can be suppressed with a decrease in the thermal history of the photoelectric conversion layer. That is, according to the manufacturing method of the present invention, a highly efficient organic thin film solar cell module can be obtained efficiently. Specifically, it is preferable to sequentially include the following steps 1 to 3.
  • Step 1 A step of installing a current collector via a conductive thermosetting resin composition on an organic thin film solar cell element in which at least a lower electrode, a photoelectric conversion layer, and an upper electrode are sequentially laminated on a substrate.
  • a current collector is installed at an arbitrary position of the battery element via the conductive thermosetting resin composition.
  • the conductive thermosetting resin composition is previously installed on the current collector, and then the integrated current collector and the conductive thermosetting resin composition are used as the electrodes of the organic thin film solar cell element.
  • it is preferable to install by applying pressure from above using a urethane roller or the like.
  • the conductive thermosetting resin composition is not cured. Arbitrary devices can be used for the installation of the current collector.
  • Sealing material installation process Step 2 Step of installing a sealing material on the surface of the organic thin-film solar cell element in which the current collector obtained in Step 1 is installed, on the surface on which the current collector is installed In Step 2, the organic in which the current collector obtained in Step 1 is installed A sealing material is provided on the thin film solar cell element.
  • Arbitrary apparatuses can be used for installation of the sealing material.
  • the sealing material should just be installed in the surface which installed the electrical power collector of the organic thin film solar cell element at least, you may install it in both surfaces of an organic thin film solar cell element.
  • the sealing material is preferably installed so as to cover the entire surface of the organic thin film solar cell element.
  • the sealing material is preferably a sealing material containing a thermosetting resin.
  • Heating process A step of heating the laminate obtained in step 2 and simultaneously curing the conductive thermosetting resin composition and sealing with a sealing material.
  • the current collector obtained in steps 1 and 2 and The organic thin film solar cell provided with the sealing material is heated to cure the conductive thermosetting resin composition for adhering the current collector, and at the same time, sealing with the sealing material is performed.
  • the heating conditions are not particularly limited as long as the conductive thermosetting resin composition and the sealing material containing the thermosetting resin are sufficiently cured and the module is not deformed.
  • the heating temperature is usually 80 ° C. or higher, preferably 100 ° C. or higher, and is usually 180 ° C.
  • the heating time is usually 5 minutes or longer, preferably 10 minutes or longer, usually 180 minutes or shorter, preferably 120 minutes or shorter.
  • Other necessary layers may be laminated on the obtained organic thin film solar cell module by a laminating method as described below.
  • the organic thin film solar cell module of the present invention can also be produced by a known method. Specifically, it can be manufactured by laminating necessary layers and using a heat laminating method using a vacuum laminator or a roll laminator.
  • the degree of vacuum is usually 10 Pa or more, preferably 20 Pa or more, more preferably 30 Pa or more.
  • the upper limit is usually 150 Pa or less, preferably 120 Pa or less, more preferably 100 Pa or less.
  • the vacuum time is usually 1 minute or longer, preferably 2 minutes or longer, more preferably 3 minutes or longer.
  • the upper limit is usually 20 minutes or less, preferably 18 minutes or less, more preferably 15 minutes or less. It is preferable to set the vacuum time in the above range since the appearance of the organic thin-film solar cell module after heat lamination becomes good and generation of bubbles due to heat lamination conditions in each layer in the module can be suppressed.
  • the pressurizing condition of the thermal laminate is usually a pressure of 50 kPa or more, preferably 70 kPa or more, more preferably 90 kPa or more.
  • the upper limit value is preferably 101 kPa or less.
  • the holding time of the pressure is usually 1 minute or longer, preferably 3 minutes or longer, more preferably 5 minutes or longer.
  • the upper limit is usually 50 minutes or less, preferably 40 minutes or less, more preferably 30 minutes or less.
  • the temperature condition of the thermal laminate is usually 115 ° C. or higher, preferably 120 ° C. or higher, more preferably 125 ° C. or higher.
  • the upper limit is usually 180 ° C. or lower, preferably 165 ° C. or lower, more preferably 155 ° C. or lower. By setting the temperature range, sufficient adhesive strength can be obtained.
  • the temperature holding time is usually 1 minute or longer, preferably 3 minutes or longer, more preferably 5 minutes or longer.
  • the upper limit is 50 minutes or less, preferably 40 minutes or less, more preferably 30 minutes or less. By setting it as the said holding time, since crosslinking of a sealing material is performed moderately, durability performance improves and it can have moderate softness
  • an organic thin film solar cell panel 13 in which an organic thin film solar cell module 44 is provided on a certain base material 42 is prepared and used at a place of use.
  • an organic thin film solar cell module 44 is provided on the surface of the plate material to produce a solar cell panel as the solar cell panel 13. It can be used by installing it on the outer wall of the door.
  • the base material 42 is a support member that supports the organic thin film solar cell element 36.
  • Examples of the material for forming the base material 42 include inorganic materials such as glass, sapphire, and titania; polyethylene terephthalate, polyethylene naphthalate, polyethersulfone, polyimide, nylon, polystyrene, polyvinyl alcohol, ethylene vinyl alcohol copolymer, fluorine.
  • Organic materials such as resin film, vinyl chloride, polyethylene, cellulose, polyvinylidene chloride, aramid, polyphenylene sulfide, polyurethane, polycarbonate, polyarylate, polynorbornene; paper materials such as paper or synthetic paper; metals such as stainless steel, titanium or aluminum
  • a composite material such as a material whose surface is coated or laminated in order to impart insulating properties can be used.
  • 1 type may be used for the material of a base material, and 2 or more types may be used together by arbitrary combinations and a ratio.
  • carbon fiber may be included in these organic materials or paper materials to reinforce the mechanical strength.
  • Examples of fields to which the organic thin film solar cell module of the present invention is applied include building material solar cells, automotive solar cells, interior solar cells, railway solar cells, marine solar cells, airplane solar cells, and spacecraft. It is suitable for use in solar cells for home use, solar cells for home appliances, solar cells for mobile phones, solar cells for toys and the like.
  • evaluation of the organic thin film solar cell module was performed by the following method.
  • (1) Appearance The appearance of the organic thin film solar cell module was observed, and ⁇ , ⁇ , ⁇ , and ⁇ were determined according to the following criteria.
  • Appearance evaluation was performed according to the following criteria by observing whether the module was deformed and / or discolored.
  • the deformation of the module was evaluated by the maximum height of the deformed part from the surface of the table when the module was placed on a flat table.
  • A The maximum deformation height of the organic thin film solar cell module is 2 mm or less and no discoloration of the organic thin film solar cell element is observed.
  • The maximum deformation height of the organic thin film solar cell module is 2 mm or more. No discoloration is observed.
  • Evaluation method The photoelectric conversion efficiency after 200 hours with respect to the photoelectric conversion efficiency before the wet heat resistance test was determined.
  • Evaluation method The photoelectric conversion efficiency after 10 cycles with respect to the photoelectric conversion efficiency before the wet heat resistance test was determined.
  • the sampling period was set to 100 ⁇ sec
  • the waiting time from application of the set voltage to actual measurement was set to 50 ⁇ sec
  • measurement was performed in the direction from Isc to Voc.
  • Example 1 ⁇ Manufacture of organic thin film solar cell element> ITO40nm, Ag10nm, ITO40nm are sequentially laminated, thickness 50 [mu] m, a polyethylene naphthalate substrate (Tm260 °C, Tg155 °C) of 60mm square hand, subjected to laser patterning in a YVO 4 laser (wavelength 532 nm), to form a lower electrode .
  • a zinc oxide solution was prepared by diluting zinc oxide (BYK-3841 manufactured by Big Chemie Japan) seven times by weight with isopropanol.
  • a zinc oxide layer of 120 nm was formed on the lower electrode by applying the zinc oxide solution with a # 2 wire bar.
  • P3HT Rieke
  • C60 bisindene adduct 200 nm was laminated as an organic photoelectric conversion layer by applying the solution using a # 4 wire bar.
  • PEDOT: PSS was laminated
  • laser patterning was performed with a YVO 4 laser (wavelength 532 nm), and then 100 nm of Ag was laminated as an upper electrode by a sputtering method.
  • Laser patterning was performed on Ag with a YVO 4 laser (wavelength 355 nm), thereby manufacturing an organic thin film solar cell element having a monolithic structure in which four organic thin film solar cells were connected in series.
  • a collector wire with a conductive thermosetting resin composition (DT101C4 manufactured by Dexerals, Inc. (epoxy system containing nickel particles as conductive particles) Conductive curable resin, curing temperature 120 ° C.) 15 ⁇ m + copper foil 35 ⁇ m thickness, width 4 mm).
  • Example 2 the collected electric wire with the conductive thermosetting resin composition was made of conductive paste ECA100 (curing temperature 90 ° C., thickness 30 ⁇ m) manufactured by Nihon Solder Co., Ltd. and tin-plated copper wire A-TPS (SN) 0.18 ⁇ manufactured by Hitachi Cable, Ltd.
  • An organic thin film solar cell module was produced in the same manner except that the thickness was 5.0 (thickness 180 ⁇ m, width 5 mm). The photoelectric conversion efficiency of the organic thin film solar cell module thus obtained was 1.55%.
  • Example 1 the collected electric wire with the conductive thermosetting resin composition is Sumitomo 3M conductive tape # 4305 (thickness 50 ⁇ m, width 5 mm) and Hitachi Cable tin-plated copper wire A-TPS (SN) 0.18 ⁇ 5 An organic thin-film solar cell module was manufactured in the same manner except that it was changed to 0.0. The photoelectric conversion efficiency of the organic thin film solar cell module thus obtained was 1.22%.
  • Example 2 the collected electric wire with the conductive thermosetting resin composition is made of Sparkle Solder HA60A-1a2N-F2-1.2-B (thickness 30 ⁇ m) manufactured by Senju Metal Industry Co., Ltd.
  • Example 1 the collected electric wire with the conductive thermosetting resin composition was used as conductive paste LS-411AW (thickness 30 ⁇ m) manufactured by Asahi Chemical Research Laboratories and tin-plated copper wire A-TPS (SN) 0.18 ⁇ 5 manufactured by Hitachi Cable, Ltd.
  • An organic thin-film solar cell module was manufactured in the same manner except that it was set to 0.0.
  • the photoelectric conversion efficiency of the organic thin film solar cell module thus obtained was 1.04%.
  • An organic thin-film solar cell was produced in the same manner as in Example 1 except that the collected electric wire with the conductive thermosetting resin composition was tin-plated copper wire A-TPS (SN) 0.18 ⁇ 5.0 manufactured by Hitachi Cable, Ltd. A module was manufactured. The photoelectric conversion efficiency of the organic thin film solar cell module obtained in this way was 1.87%.
  • Table 1 shows the appearance and heat resistance test results of the organic thin-film solar cell modules obtained in Example 1 and Comparative Examples 1 to 3.
  • durability is the ratio of the photoelectric conversion efficiency after the high temperature and high humidity test to the initial efficiency.
  • Example 1 both durability and appearance were good. This is probably because the thermosetting resin composition has less residual solvent outgas and is less affected by the outgas in the organic thin film solar cell module.
  • Comparative Example 1 shows that the thermosetting conductive resin has higher durability than the conductive adhesive tape.
  • Comparative Example 1 has lower durability than Example 1 is that the conductive adhesive tape has a larger coefficient of linear expansion than that of the conductive thermosetting resin, so that the deformation during the durability test is large, and the organic thin film solar This is considered to be due to the film peeling of the photoelectric conversion layer of the battery element.
  • Comparative Example 2 it is shown that when solder is used to connect the electrode of the organic thin film solar cell element and the collector line, the output is reduced after the durability test. This is thought to be because conduction was unstable because the electrodes of the organic thin-film solar cell element were dissolved in the solder and deformed during solder connection. Moreover, since the high temperature (200 degreeC or more) was required in the case of a connection, the base material of the organic thin film solar cell element deform
  • Table 2 below shows the condensation freezing test and appearance evaluation results of the organic thin film solar cell modules of Examples 3 to 6. As the result of the condensation freezing test, the ratio of the photoelectric conversion efficiency after the condensation freezing test with respect to the initial efficiency was obtained, and when it was 1 or more, it was evaluated as ⁇ , and when it was 1 or less, it was evaluated as ⁇ .
  • Example 6 The results shown in Table 2 show that the organic thin-film solar cell module of the present invention is not easily deformed during the manufacturing process, does not cause discoloration, etc., and thus has an excellent appearance and high durability in the use environment.
  • the appearance of Example 6 is inferior to that of Examples 3 to 5, but the module was deformed because the heat treatment was performed at 160 ° C. or higher. This is probably because the solar cell module is processed at a temperature exceeding the Tg of the substrate during the manufacturing process. From the above, it has been shown that the solar cell module of the present invention is less likely to undergo module deformation during the manufacturing process, and further has high durability in the use environment.

Abstract

The purpose of the present invention is to provide an organic thin film solar cell module that experiences little degradation of the module, even with use for an extended period. This purpose is attained through an organic thin film solar cell module provided with: organic thin film solar cell elements in which are layered a photoelectric conversion layer (7), a substrate (1) for supporting the photoelectric conversion layer (7), and at least one pair of electrodes (2, 6) connecting to the photoelectric conversion layer (7) at the light-receiving surface side and at the non- light-receiving surface side of the photoelectric conversion layer (7); and at least one pair of current collection lines (8), wherein the current collection lines (8) are connected to the electrodes (2, 6) through an electrically conductive, thermosetting resin composition (9).

Description

有機薄膜太陽電池モジュールOrganic thin film solar cell module
 本発明は、有機薄膜太陽電池モジュールに関するものである。 The present invention relates to an organic thin film solar cell module.
 有機薄膜太陽電池素子から電気を取り出すためには、通常、薄膜系太陽電池素子を形成する各太陽電池セルの、上部電極または下部電極に電気取り出し用の電極を設置し、該電極と集電線を接続する方法が知られている(例えば特許文献1、2参照)。 In order to take out electricity from the organic thin film solar cell element, an electrode for electric extraction is usually installed on the upper electrode or lower electrode of each solar cell forming the thin film solar cell element, and the electrode and the collector are connected to each other. A connection method is known (see, for example, Patent Documents 1 and 2).
特開2011-124582号公報JP 2011-124582 A 特開2011-171707号公報JP 2011-171707 A
 上記の通り、電極と集電線を接続する方法が知られているものの、有機薄膜太陽電池モジュールの工業的製造においては、集電線の具体的な設置方法は知られていないのが現状である。そこで、本発明者らは、はんだ、銀ペースト、粘着剤、導電性樹脂等の様々な設置方法を試みた。しかし、設置方法によっては、工程の煩雑さ、初期の光電変換効率の低さ、耐久性の低さ、および外観の悪さ等、様々な問題が生じることを見出した。 As described above, although the method of connecting the electrode and the current collector is known, in the industrial production of the organic thin-film solar cell module, there is currently no specific method for installing the current collector. Therefore, the present inventors tried various installation methods such as solder, silver paste, pressure-sensitive adhesive, and conductive resin. However, it has been found that various problems occur depending on the installation method, such as complicated processes, low initial photoelectric conversion efficiency, low durability, and poor appearance.
 本発明は、このような課題を解決するものであり、集電線を容易に設置でき、初期の光電変換効率が良好で、長期間の使用によってもモジュールの劣化が少なく、外観にも優れた、有機薄膜太陽電池モジュール、及び該太陽電池モジュールを効率良く製造する方法を提供することを課題とする。 The present invention solves such problems, can easily install a current collector, good initial photoelectric conversion efficiency, less module deterioration even after long-term use, excellent in appearance, It is an object to provide an organic thin film solar cell module and a method for efficiently producing the solar cell module.
 本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、少なくとも光電変換層と、前記光電変換層を支持する基板と、前記光電変換層の受光面側及び非受光面側で前記光電変換層と接続する少なくとも一対の電極が積層された有機薄膜太陽電池素子と、前記電極に接続される少なくとも一対の集電線と、を有する有機薄膜太陽電池を備える有機薄膜太陽電池モジュールにおいて、前記集電線を、導電性の熱硬化性樹脂組成物を介して前記電極に接続させることで上記課題を解決できることを見出し、本発明を完成させた。本発明の概要は以下のとおりである。 As a result of intensive studies to solve the above problems, the present inventors have at least a photoelectric conversion layer, a substrate supporting the photoelectric conversion layer, and a light receiving surface side and a non-light receiving surface side of the photoelectric conversion layer. In an organic thin film solar cell module comprising an organic thin film solar cell having an organic thin film solar cell element in which at least a pair of electrodes connected to the photoelectric conversion layer is laminated, and at least a pair of collector wires connected to the electrodes, The present invention has been completed by finding that the above problem can be solved by connecting the current collector to the electrode via a conductive thermosetting resin composition. The outline of the present invention is as follows.
 本発明は、少なくとも光電変換層と、前記光電変換層を支持する基板と、前記光電変換層の受光面側及び非受光面側で前記光電変換層と接続する少なくとも一対の電極が積層された有機薄膜太陽電池素子と、前記電極に接続される少なくとも一対の集電線と、を有する有機薄膜太陽電池を備える有機薄膜太陽電池モジュールにおいて、前記集電線が、導電性の熱硬化性樹脂組成物を介して前記電極に接続されていることを特徴とする有機薄膜太陽電池モジュールである。
 前記集電線の厚さが200μm以下であるのが好ましい。
The present invention is an organic layer in which at least a photoelectric conversion layer, a substrate that supports the photoelectric conversion layer, and at least a pair of electrodes that are connected to the photoelectric conversion layer on a light receiving surface side and a non-light receiving surface side of the photoelectric conversion layer are stacked. In an organic thin film solar cell module comprising an organic thin film solar cell having a thin film solar cell element and at least a pair of current collectors connected to the electrodes, the current collector is interposed via a conductive thermosetting resin composition. The organic thin film solar cell module is connected to the electrode.
It is preferable that the thickness of the current collector is 200 μm or less.
 また、本発明は、以下の態様も提供する。
[1]基板上に下部電極、光電変換層および上部電極が順次積層された有機薄膜太陽電池素子、および有機薄膜太陽電池素子と電気的に接続された集電線を有する有機薄膜太陽電池モジュールにおいて、
前記集電線が、導電性熱硬化性樹脂組成物を介して有機薄膜太陽電池素子と接続されていることを特徴とする有機薄膜太陽電池モジュール。
[2] 前記基板が樹脂基板である、[1]に記載の有機薄膜太陽電池モジュール。
[3] 前記基板がフレキシブル基板である、[1]に記載の有機薄膜太陽電池モジュール。
[4] 前記樹脂基板のガラス転移温度(Tg)が400℃以下である、[2]又は[3]に記載の有機薄膜太陽電池モジュール。
[5] 導電性熱硬化性樹脂組成物の硬化温度が、基板のガラス転移温度(Tg)未満である[4]に記載の有機薄膜太陽電池モジュール。
[6] 導電性熱硬化性樹脂組成物の硬化温度が、160℃未満である[5]に記載の有機薄膜太陽電池モジュール。
[7] 前記有機薄膜太陽電池素子が、モノリシック構造を有する[1]~[6]のいずれかに記載の有機薄膜太陽電池モジュール。
[8] 二本の集電線がそれぞれ上部電極に設置されている、[1]~[7]のいずれかに記載の有機薄膜太陽電池モジュール。
[9] 上部電極がITOである、[1]~[8]のいずれかに記載の有機薄膜太陽電池モジュール。
[10] 前記有機薄膜太陽電池モジュールが、熱硬化性樹脂を含む封止材で封止されている、請求項[1]~[9]のいずれかに記載の有機薄膜太陽電池モジュール。
[11] 前記導電性熱硬化性樹脂組成物の硬化温度が、封止材に含まれる熱硬化組成物が硬化しうる温度以下である、[10]に記載の有機薄膜太陽電池モジュール。
[12] 前記上部電極が金属薄膜である、[1]~[11]のいずれかに記載の有機薄膜太陽電池モジュール。
[13] 以下の工程1~3を順次有する、有機薄膜太陽電池モジュールの製造方法。
工程1 基板上に、少なくとも下部電極、光電変換層および上部電極が順次積層された有機薄膜太陽電池素子に、導電性熱硬化性樹脂組成物を介して集電線を設置する工程
工程2 工程1で得られた有機薄膜太陽電池素子の集電線を設置した面に、封止材を設置する工程
工程3 工程2で得られた積層物を加熱し、前記導電性熱硬化性樹脂組成物の硬化と封止材による封止とを同時に行う工程
[14] 前記封止材が熱硬化性樹脂を含む、[13]に記載の有機薄膜太陽電池モジュールの製造方法。
The present invention also provides the following aspects.
[1] In an organic thin film solar cell element in which a lower electrode, a photoelectric conversion layer, and an upper electrode are sequentially laminated on a substrate, and an organic thin film solar cell module having a current collector electrically connected to the organic thin film solar cell element,
An organic thin film solar cell module, wherein the current collector is connected to an organic thin film solar cell element via a conductive thermosetting resin composition.
[2] The organic thin-film solar cell module according to [1], wherein the substrate is a resin substrate.
[3] The organic thin-film solar cell module according to [1], wherein the substrate is a flexible substrate.
[4] The organic thin film solar cell module according to [2] or [3], wherein the glass transition temperature (Tg) of the resin substrate is 400 ° C. or lower.
[5] The organic thin-film solar cell module according to [4], wherein the curing temperature of the conductive thermosetting resin composition is lower than the glass transition temperature (Tg) of the substrate.
[6] The organic thin-film solar cell module according to [5], wherein the curing temperature of the conductive thermosetting resin composition is less than 160 ° C.
[7] The organic thin film solar cell module according to any one of [1] to [6], wherein the organic thin film solar cell element has a monolithic structure.
[8] The organic thin-film solar cell module according to any one of [1] to [7], wherein two collector wires are respectively installed on the upper electrode.
[9] The organic thin film solar cell module according to any one of [1] to [8], wherein the upper electrode is ITO.
[10] The organic thin film solar cell module according to any one of [1] to [9], wherein the organic thin film solar cell module is sealed with a sealing material containing a thermosetting resin.
[11] The organic thin-film solar cell module according to [10], wherein the conductive thermosetting resin composition has a curing temperature equal to or lower than a temperature at which the thermosetting composition contained in the sealing material can be cured.
[12] The organic thin film solar cell module according to any one of [1] to [11], wherein the upper electrode is a metal thin film.
[13] A method for producing an organic thin film solar cell module, comprising the following steps 1 to 3 in sequence.
Step 1 Step 2 Step 1 of installing a current collector via a conductive thermosetting resin composition on an organic thin film solar cell element in which at least a lower electrode, a photoelectric conversion layer, and an upper electrode are sequentially laminated on a substrate Step 3 of installing the sealing material on the surface of the obtained organic thin-film solar cell element on which the current collector is installed. The laminate obtained in Step 2 is heated to cure the conductive thermosetting resin composition. The process of simultaneously performing sealing with a sealing material [14] The method for producing an organic thin-film solar cell module according to [13], wherein the sealing material includes a thermosetting resin.
 本発明によれば、集電線を容易に設置でき、初期の光電変換効率が良好で、長期間の使用によってもモジュールの劣化が少なく、外観にも優れた、有機薄膜太陽電池モジュール及びその製造方法を得ることができる。 According to the present invention, an organic thin-film solar cell module that can easily install a current collector, has good initial photoelectric conversion efficiency, has little deterioration even after long-term use, and has an excellent appearance, and a method for manufacturing the same Can be obtained.
有機薄膜太陽電池素子のモノリシック構造を説明するための図である。It is a figure for demonstrating the monolithic structure of an organic thin-film solar cell element. (a)~(c)本発明の有機薄膜太陽電池素子における集電線の設置態様について示した概念図である。(A)-(c) It is the conceptual diagram shown about the installation aspect of the collector wire in the organic thin-film solar cell element of this invention. 有機薄膜太陽電池モジュールの層構成を示す概念図である。It is a conceptual diagram which shows the layer structure of an organic thin film solar cell module. 有機薄膜太陽電池モジュールを用いた太陽電池パネルの層構成を表す模式図である。It is a schematic diagram showing the laminated constitution of the solar cell panel using an organic thin film solar cell module.
 本発明について、以下に具体的に説明する。
 本発明は、少なくとも光電変換層と、前記光電変換層を支持する基板と、前記光電変換層の受光面側及び非受光面側で前記光電変換層と接続する少なくとも一対の電極(上部電極および下部電極)が積層された有機薄膜太陽電池素子と、前記電極に接続される少なくとも一対の集電線と、を有する有機薄膜太陽電池を備える有機薄膜太陽電池モジュールにおいて、前記集電線を、導電性の熱硬化性樹脂組成物を介して前記電極に接続させることを特徴とする。
 また、本発明の別の態様は、基板上に下部電極、光電変換層および上部電極が順次積層された有機薄膜太陽電池素子、および有機薄膜太陽電池素子と電気的に接続された集電線を有する有機薄膜太陽電池モジュールにおいて、前記集電線が、導電性熱硬化性樹脂組成物を介して有機薄膜太陽電池素子と接続されていることを特徴とする有機薄膜太陽電池モジュールである。
The present invention will be specifically described below.
The present invention includes at least a photoelectric conversion layer, a substrate supporting the photoelectric conversion layer, and at least a pair of electrodes (an upper electrode and a lower electrode) connected to the photoelectric conversion layer on a light receiving surface side and a non-light receiving surface side of the photoelectric conversion layer. In an organic thin film solar cell module comprising an organic thin film solar cell having an organic thin film solar cell element on which an electrode) is laminated and at least a pair of current collectors connected to the electrode, the current collector is electrically conductive. The electrode is connected to the electrode through a curable resin composition.
Further, another aspect of the present invention includes an organic thin film solar cell element in which a lower electrode, a photoelectric conversion layer, and an upper electrode are sequentially stacked on a substrate, and a current collector electrically connected to the organic thin film solar cell element The organic thin film solar cell module is an organic thin film solar cell module characterized in that the collector wire is connected to an organic thin film solar cell element via a conductive thermosetting resin composition.
1.有機薄膜太陽電池素子
 本発明にかかる有機薄膜太陽電池素子は、通常基板上に下部電極、光電変換層および上部電極が順次積層された構造を有する。
 本発明の有機薄膜太陽電池モジュールに用いられる有機薄膜太陽電池素子の光電変換層の材料は、本発明の効果を損なわない限りどのようなものであっても用いてもよいが、有機色素材料、有機半導体材料等を用いることが好ましい。これらのうち、有機半導体材料を用いることが、生産性に特に優れ、本発明の効果を得やすいことから特に好ましい。以下、有機半導体材料を用いた有機薄膜太陽電池素子の例を説明する。
1. Organic thin-film solar cell element The organic thin-film solar cell element according to the present invention usually has a structure in which a lower electrode, a photoelectric conversion layer, and an upper electrode are sequentially laminated on a substrate.
As long as the material of the photoelectric conversion layer of the organic thin film solar cell element used in the organic thin film solar cell module of the present invention does not impair the effects of the present invention, any material may be used. It is preferable to use an organic semiconductor material or the like. Among these, it is particularly preferable to use an organic semiconductor material because it is particularly excellent in productivity and easily obtains the effects of the present invention. Hereinafter, an example of an organic thin film solar cell element using an organic semiconductor material will be described.
1-1.光電変換層
 光電変換層は、有機半導体により形成される。有機半導体は半導体特性により、p型、n型に分けられる。p型、n型は、電気伝導に寄与するのが、正孔、電子いずれであるかを示しており、材料の電子状態、ドーピング状態、トラップ状態に依存する。したがって、p型、n型は必ずしも明確に分類できない場合があり、同一物質でp型、n型両方の特性を示すものもある。
1-1. Photoelectric conversion layer The photoelectric conversion layer is formed of an organic semiconductor. Organic semiconductors are classified into p-type and n-type depending on semiconductor characteristics. The p-type and n-type indicate whether it is a hole or an electron that contributes to electrical conduction, and depends on the electronic state, doping state, and trap state of the material. Therefore, there are cases where p-type and n-type cannot always be clearly classified, and there are cases where the same substance exhibits both p-type and n-type characteristics.
 p型半導体の例として、高分子有機半導体化合物や低分子有機半導体化合物等が挙げられる。
 高分子有機半導体化合物として、特に限定はなく、ポリチオフェン、ポリフルオレン、ポリフェニレンビニレン、ポリチエニレンビニレン、ポリアセチレン又はポリアニリン等の共役ポリマー半導体;アルキル基やその他の置換基が置換されたオリゴチオフェン等のポリマー半導体;等が挙げられる。また、二種以上のモノマー単位を共重合させた半導体ポリマーも挙げられる。共役ポリマーとしては、例えば、Handbook of Conducting Polymers,3rd Ed.(全2巻),2007、Materials Science and Engineering,2001,32,1-40、Pure Appl.Chem.2002,74,2031-3044、Handbook of THIOPHENE-BASED MATERIALS(全2巻),2009等の公知文献に記載されたポリマーやその誘導体、及び記載されているモノマーの組み合わせによって合成し得るポリマーを用いることができる。p型半導体化合物として用いられる高分子有機半導体化合物は、一種の化合物でも複数種の化合物の混合物でもよい。
Examples of p-type semiconductors include high molecular organic semiconductor compounds and low molecular organic semiconductor compounds.
The polymer organic semiconductor compound is not particularly limited, and is a conjugated polymer semiconductor such as polythiophene, polyfluorene, polyphenylene vinylene, polythienylene vinylene, polyacetylene or polyaniline; a polymer such as oligothiophene substituted with an alkyl group or other substituents Semiconductor; and the like. Moreover, the semiconductor polymer which copolymerized 2 or more types of monomer units is also mentioned. Examples of the conjugated polymer include Handbook of Conducting Polymers, 3rd Ed. (2 volumes), 2007, Materials Science and Engineering, 2001, 32, 1-40, Pure Appl. Chem. Use polymers described in 2002, 74, 2031-3044, Handbook of THIOPHENE-BASED MATERIALS (2 volumes in total), 2009, and the like and their derivatives, and polymers that can be synthesized by combinations of the described monomers. Can do. The polymer organic semiconductor compound used as the p-type semiconductor compound may be a single compound or a mixture of a plurality of compounds.
 低分子有機半導体化合物としては、p型半導体材料として働きうるのであれば特段の制限はないが、具体的には、ナフタセン、ペンタセン又はピレン等の縮合芳香族炭化水素;α-セキシチオフェン等のチオフェン環を4個以上含むオリゴチオフェン類;チオフェン環、ベンゼン環、フルオレン環、ナフタレン環、アントラセン環、チアゾール環、チアジアゾール環及びベンゾチアゾール環のうち少なくとも一つ以上を含み、かつ合計4個以上連結したもの;フタロシアニン化合物及びその金属錯体、又はテトラベンゾポルフィリン等のポルフィリン化合物及びその金属錯体、等の大環状化合物等が挙げられる。好ましくは、フタロシアニン化合物及びその金属錯体又はポルフィリン化合物及びその金属錯体である。低分子有機半導体化合物の分子量は、上限、下限ともに特に制限されないが、通常5000以下、好ましくは2000以下であり、一方、通常100以上、好ましくは200以上である。なお、p型半導体層の形成を塗布により行う場合、低分子有機半導体化合物前駆体を塗布後に低分子有機半導体化合物に変換することができる。塗布成膜がより容易である点で、低分子有機半導体化合物前駆体を用いる方法がより好ましい。低分子有機半導体化合物前駆体とは、例えば加熱や光照射等の外的刺激を与えることにより、その化学構造が変化し、低分子有機半導体化合物に変換される化合物である。低分子有機半導体化合物前駆体は成膜性に優れる点で好ましい。
 また、p型半導体の例として、テトラベンゾポルフィリン、テトラベンゾ銅ポルフィリン、テトラベンゾ亜鉛ポルフィリン等のポルフィリン化合物;フタロシアニン、銅フタロシアニン、亜鉛フタロシアニン等のフタロシアニン化合物;ナフタロシアニン化合物;テトラセンやペンタセンのポリアセン;セキシチオフェン等のオリゴチオフェンおよびこれら化合物を骨格として含む誘導体も挙げられる。さらに、ポリ(3-アルキルチオフェン)などを含むポリチオフェン、ポリフルオレン、ポリフェニレンビニレン、ポリトリアリルアミン、ポリアセチレン、ポリアニリン、ポリピロール等の高分子等も挙げられる。
The low-molecular organic semiconductor compound is not particularly limited as long as it can function as a p-type semiconductor material. Specifically, it is a condensed aromatic hydrocarbon such as naphthacene, pentacene or pyrene; Oligothiophenes containing 4 or more thiophene rings; including at least one of thiophene ring, benzene ring, fluorene ring, naphthalene ring, anthracene ring, thiazole ring, thiadiazole ring and benzothiazole ring, and a total of 4 or more linked A phthalocyanine compound and a metal complex thereof, or a porphyrin compound such as tetrabenzoporphyrin and a macrocycle such as a metal complex thereof. Preferably, they are a phthalocyanine compound and its metal complex, or a porphyrin compound and its metal complex. The molecular weight of the low-molecular organic semiconductor compound is not particularly limited both at the upper limit and the lower limit, but is usually 5000 or less, preferably 2000 or less, and is usually 100 or more, preferably 200 or more. In addition, when forming a p-type semiconductor layer by application | coating, a low molecular organic-semiconductor compound precursor can be converted into a low-molecular-weight organic semiconductor compound after application | coating. A method using a low molecular weight organic semiconductor compound precursor is more preferable in that coating film formation is easier. A low molecular organic semiconductor compound precursor is a compound that changes its chemical structure and is converted into a low molecular organic semiconductor compound by applying an external stimulus such as heating or light irradiation. A low molecular organic semiconductor compound precursor is preferable in that it has excellent film-forming properties.
Examples of p-type semiconductors include porphyrin compounds such as tetrabenzoporphyrin, tetrabenzocopper porphyrin, and tetrabenzozinc porphyrin; phthalocyanine compounds such as phthalocyanine, copper phthalocyanine, and zinc phthalocyanine; naphthalocyanine compounds; tetracene and pentacene polyacenes; And derivatives containing these compounds as a skeleton. Furthermore, polymers such as polythiophene including poly (3-alkylthiophene) and the like, polyfluorene, polyphenylene vinylene, polytriallylamine, polyacetylene, polyaniline, polypyrrole, and the like are also included.
 n型半導体としては、特段の制限はないが、具体的にはフラーレン化合物、8-ヒドロキシキノリンアルミニウムに代表されるキノリノール誘導体金属錯体;ナフタレンテトラカルボン酸無水物;ナフタレンテトラカルボン酸ジイミド又はペリレンテトラカルボン酸ジイミド等の縮合環テトラカルボン酸ジイミド類;ペリレンジイミド誘導体、ターピリジン金属錯体、トロポロン金属錯体、フラボノール金属錯体、ペリノン誘導体、ベンズイミダゾール誘導体、ベンズオキサゾール誘導体、チアゾール誘導体、ベンズチアゾール誘導体、ベンゾチアジアゾール誘導体、オキサジアゾール誘導体、チアジアゾール誘導体、トリアゾール誘導体、アルダジン誘導体、ビススチリル誘導体、ピラジン誘導体、フェナントロリン誘導体、キノキサリン誘導体、ベンゾキノリン誘導体、ビピリジン誘導体、ボラン誘導体、アントラセン、ピレン、ナフタセン又はペンタセン等の縮合多環芳香族炭化水素の全フッ化物;単層カーボンナノチューブ等が挙げられる。 The n-type semiconductor is not particularly limited, but specifically, a fullerene compound, a quinolinol derivative metal complex represented by 8-hydroxyquinoline aluminum; naphthalene tetracarboxylic acid anhydride; naphthalene tetracarboxylic acid diimide or perylene tetracarboxylic acid Condensed ring tetracarboxylic acid diimides such as acid diimides; perylene diimide derivatives, terpyridine metal complexes, tropolone metal complexes, flavonol metal complexes, perinone derivatives, benzimidazole derivatives, benzoxazole derivatives, thiazole derivatives, benzthiazol derivatives, benzothiadiazole derivatives, Oxadiazole derivatives, thiadiazole derivatives, triazole derivatives, aldazine derivatives, bisstyryl derivatives, pyrazine derivatives, phenanthroline derivatives, quinoxari Derivatives, benzoquinoline derivatives, bipyridine derivatives, borane derivatives, anthracene, pyrene, total fluoride condensed polycyclic aromatic hydrocarbons such as naphthacene or pentacene; single-walled carbon nanotubes, and the like.
 そのなかでも、フラーレン化合物、ボラン誘導体、チアゾール誘導体、ベンゾチアゾール誘導体、ベンゾチアジアゾール誘導体、N-アルキル置換されたナフタレンテトラカルボン酸ジイミド及びN-アルキル置換されたペリレンジイミド誘導体が好ましく、フラーレン化合物、N-アルキル置換されたペリレンジイミド誘導体及びN-アルキル置換されたナフタレンテトラカルボン酸ジイミドがより好ましい。上記のうち一種の化合物を用いてもよいし、複数種の化合物の混合物を用いてもよい。また、n型半導体としては、n型高分子半導体も挙げられる。 Of these, fullerene compounds, borane derivatives, thiazole derivatives, benzothiazole derivatives, benzothiadiazole derivatives, N-alkyl-substituted naphthalenetetracarboxylic acid diimides and N-alkyl-substituted perylene diimide derivatives are preferred, and fullerene compounds, N- Alkyl substituted perylene diimide derivatives and N-alkyl substituted naphthalene tetracarboxylic acid diimides are more preferred. One of the above compounds may be used, or a mixture of a plurality of compounds may be used. An n-type semiconductor is also included as an n-type semiconductor.
 少なくともp型の半導体およびn型の半導体が含有されていれば、光電変換層の具体的な構成は任意である。光電変換層は単層の膜のみによって構成されていてもよく、2以上の積層膜によって構成されていてもよい。例えば、n型の半導体とp型の半導体とを別々の膜に含有させるようにしても良く、n型の半導体とp型の半導体とを同じ膜に含有させても良い。また、n型の半導体及びp型の半導体は、それぞれ、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。 As long as at least a p-type semiconductor and an n-type semiconductor are contained, the specific configuration of the photoelectric conversion layer is arbitrary. The photoelectric conversion layer may be constituted only by a single layer film or may be constituted by two or more laminated films. For example, an n-type semiconductor and a p-type semiconductor may be contained in separate films, or an n-type semiconductor and a p-type semiconductor may be contained in the same film. In addition, each of the n-type semiconductor and the p-type semiconductor may be used alone or in combination of two or more in any combination and ratio.
 光電変換層の具体的な構成例としては、p型半導体とn型半導体が層内で相分離した層(i層)を有するバルクヘテロ接合型、それぞれp型半導体を含む層(p層)とn型半導体を含む層(n層)が界面を有する積層型(ヘテロpn接合型)、ショットキー型およびそれらの組合せが挙げられる。これらの中でもバルクへテロ接合型およびバルクへテロ接合型と積層型を組み合わせた(p-i-n接合型)が高い性能を示すことから好ましい。 As a specific configuration example of the photoelectric conversion layer, a bulk heterojunction type having a layer (i layer) in which a p-type semiconductor and an n-type semiconductor are phase-separated in the layer, a layer containing a p-type semiconductor (p layer) and n, respectively. Examples include a stacked type (hetero pn junction type) in which a layer containing a type semiconductor (n layer) has an interface, a Schottky type, and a combination thereof. Among these, a bulk heterojunction type and a combination of a bulk heterojunction type and a stacked type (pin junction type) are preferable because they exhibit high performance.
 光電変換層の作成方法としては、特に制限はないが、塗布法、中でも湿式塗布法が好ましい。塗布法としては、任意の方法を用いることができるが、例えば、スピンコート法、リバースロールコート法、グラビアコート法、キスコート法、ロールブラッシュ法、スプレーコート法、エアナイフコート法、ワイヤーバーバーコート法、パイプドクター法、含浸・コート法、カーテンコート法等が挙げられる。光電変換層をロール・トゥ・ロール方式で形成する場合、装置が簡便であり、コストが低く、大量に速く形成できるため、湿式塗布法を適用するのが好ましい。湿式塗布法を行う際には、被塗装層を溶解しない溶媒を選定するのが好ましい。 The method for producing the photoelectric conversion layer is not particularly limited, but a coating method, particularly a wet coating method is preferable. As the coating method, any method can be used, for example, spin coating method, reverse roll coating method, gravure coating method, kiss coating method, roll brush method, spray coating method, air knife coating method, wire barber coating method, Examples include the pipe doctor method, the impregnation / coating method, and the curtain coating method. In the case where the photoelectric conversion layer is formed by a roll-to-roll method, it is preferable to apply a wet coating method because the apparatus is simple, the cost is low, and the photoelectric conversion layer can be formed quickly in large quantities. When performing the wet coating method, it is preferable to select a solvent that does not dissolve the coating layer.
 光電変換層のp層、i層、n層各層の厚さは、通常3nm以上、好ましく10nm以上、より好ましくは20nm以上、更に好ましくは30nm以上、特に好ましくは50nm以上であり、通常1000nm以下、好ましくは500nm以下、より好ましくは300nm以下である。層を厚くすることで光電流が増大する傾向にあり、薄くすることで直列抵抗が低下する傾向にある。また、上記下限以上の厚さとすることで、特にセル上に集電線を設置するときは、集電線の設置によるセルの短絡を防止することができる。 The thickness of each layer of the p-layer, i-layer and n-layer of the photoelectric conversion layer is usually 3 nm or more, preferably 10 nm or more, more preferably 20 nm or more, still more preferably 30 nm or more, particularly preferably 50 nm or more, and usually 1000 nm or less. Preferably it is 500 nm or less, More preferably, it is 300 nm or less. Increasing the thickness tends to increase the photocurrent, and decreasing the thickness tends to decrease the series resistance. Moreover, by setting it as the thickness more than the said lower limit, when installing a collector line on a cell especially, the short circuit of the cell by installation of a collector line can be prevented.
1-2.電極
 有機薄膜太陽電池素子は、下部電極および上部電極を有する。これらの電極は、光吸収により生じた正孔及び電子を捕集する機能を有する。したがって、これらの電極として、一方に正孔の捕集に適した電極(以下、アノードと記載する場合もある)を、他方に電子の捕集に適した電極(以下、カソードと記載する場合もある)を用いることが好ましい。下部電極がアノードであり、上部電極がカソードであってもよいし、下部電極がカソードであり、上部電極がアノードであってもよい。下部電極および上部電極は、いずれか一方が透光性であればよく、両方が透光性であっても構わない。
1-2. Electrode The organic thin film solar cell element has a lower electrode and an upper electrode. These electrodes have a function of collecting holes and electrons generated by light absorption. Therefore, as these electrodes, an electrode suitable for collecting holes (hereinafter also referred to as an anode) is used on one side, and an electrode suitable for collecting electrons (hereinafter also referred to as a cathode) on the other side. It is preferable to use The lower electrode may be an anode, the upper electrode may be a cathode, the lower electrode may be a cathode, and the upper electrode may be an anode. Any one of the lower electrode and the upper electrode may be translucent, and both may be translucent.
 本発明において透光性があるとは、太陽光線透過率、すなわち太陽光のうち波長360~830nmの波長の光が透過する割合が、40%以上であることを指す。該太陽光線透過率は好ましくは50%以上、より好ましくは60%以上、更に好ましくは70%以上である。
 また、透明電極の太陽光線透過率が通常70%以上であることが、透明電極を透過させて光電変換層に光を到達させるために好ましい。
 これらの光線透過率は、JIS7375:2008に準拠して測定した値である。
In the present invention, being translucent means that the transmittance of sunlight, that is, the proportion of sunlight that transmits light having a wavelength of 360 to 830 nm, is 40% or more. The solar ray transmittance is preferably 50% or more, more preferably 60% or more, and still more preferably 70% or more.
Moreover, it is preferable that the transparent electrode has a solar ray transmittance of usually 70% or more in order to allow light to reach the photoelectric conversion layer through the transparent electrode.
These light transmittances are values measured in accordance with JIS 7375: 2008.
 下部電極及び上部電極としては導電性を有する材料により形成することが可能であり、例えば、白金、金、銀、アルミニウム、クロム、ニッケル、銅、チタン、マグネシウム、カルシウム、バリウム、ナトリウム等の金属あるいはそれらの合金;酸化ニッケル、酸化インジウム、酸化タングステン、酸化錫、酸化亜鉛等の金属酸化物、あるいは、インジウム-スズ酸化物(ITO)、インジウム-亜鉛酸化物(IZO)、インジウム-タングステン酸化物(IWO)等の複合酸化物;ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン等の導電性高分子;前記導電性高分子に、塩酸、硫酸、スルホン酸等の酸、FeCl等のルイス酸、ヨウ素等のハロゲン原子、ナトリウム、カリウム等の金属原子などのドーパントを含有させたもの;金属粒子、カーボンブラック、フラーレン、カーボンナノチューブ等の導電性粒子をポリマーバインダー等のマトリクスに分散した導電性の複合材料などが挙げられる。
 なかでも、正孔を捕集する電極には、Au、ITO等の深い仕事関数を有する材料が好ましい。一方、電子を捕集する電極には、Alのような浅い仕事関数を有する材料が好ましい。仕事関数を最適化することにより、光吸収により生じた正孔及び電子を良好に捕集する利点がある。
The lower electrode and the upper electrode can be formed of a conductive material, for example, a metal such as platinum, gold, silver, aluminum, chromium, nickel, copper, titanium, magnesium, calcium, barium, sodium, or the like Alloys thereof: metal oxides such as nickel oxide, indium oxide, tungsten oxide, tin oxide, zinc oxide, or indium-tin oxide (ITO), indium-zinc oxide (IZO), indium-tungsten oxide ( IWO) and the like; conductive polymers such as polyaniline, polypyrrole, polythiophene, and polyacetylene; acids such as hydrochloric acid, sulfuric acid, and sulfonic acid; Lewis acids such as FeCl 3 and halogens such as iodine Include dopants such as atoms, sodium, potassium and other metal atoms Examples thereof include conductive composite materials in which conductive particles such as metal particles, carbon black, fullerene, and carbon nanotubes are dispersed in a matrix such as a polymer binder.
Among these, a material having a deep work function such as Au or ITO is preferable for the electrode for collecting holes. On the other hand, for the electrode for collecting electrons, a material having a shallow work function such as Al is preferable. By optimizing the work function, there is an advantage of favorably collecting holes and electrons generated by light absorption.
 少なくとも受光面側の電極は、光透過性を有しており、好ましくは透明である。但し、電極は、発電性能に著しく悪影響を与えない場合は必ずしも透明でなくてもよい。透明な電極の材料を挙げると、上記の金属酸化物、複合酸化物及び金属薄膜などが挙げられ、金属酸化物および複合酸化物が好ましい。また、上部電極の光の透過率は、有機薄膜太陽電池素子の発電効率を考慮すると、光学界面での部分反射によるロスを除き、80%以上が好ましい。 At least the electrode on the light-receiving surface side has optical transparency and is preferably transparent. However, the electrode is not necessarily transparent if it does not significantly adversely affect the power generation performance. If the material of a transparent electrode is mentioned, said metal oxide, composite oxide, a metal thin film, etc. will be mentioned, A metal oxide and composite oxide are preferable. Further, the light transmittance of the upper electrode is preferably 80% or more, excluding loss due to partial reflection at the optical interface, considering the power generation efficiency of the organic thin film solar cell element.
 下部電極及び上部電極の材料は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
 本発明においては、上部電極として金属あるいは合金からなる金属薄膜が好ましく例示できる。金属薄膜は導電率が高いため、導電性高分子等他の材料を用いるより必要となる材料の量が少ない点で好ましい。また、真空成膜による成膜が可能であり、塗布工程による成膜が必要な材料と比較して、有機薄膜太陽電池素子に与えるダメージを抑制することができる点でも好ましい。
 本発明において、上部電極及び下部電極のいずれか一方が透光性の場合には、基板側に形成される下部電極が透光性を有するのが好ましい。すなわち、上部電極として所定の厚さを有する金属または合金を使用することにより、上部電極に対する集電線の設置が容易になり、集電線と電極との間の抵抗を下げやすくなる。
 なお、本発明は、集電線を設置する電極が金属または合金を含んで形成されているときに好適に使用することができる。金属あるいは合金、特に金属を含んで形成された電極に対して、金属ペーストを介して集電線を設置すると、電極を形成する金属と、金属ペーストに含まれる成分とが反応して、電極の変形や変色などの問題が生じる場合がある。本発明によれば、このような問題を解決し、外観に優れた有機薄膜太陽電池を提供することができる。
The materials for the lower electrode and the upper electrode may be used alone or in combination of two or more in any combination and ratio.
In the present invention, a metal thin film made of metal or alloy can be preferably exemplified as the upper electrode. Since the metal thin film has high conductivity, it is preferable in that it requires less material than using other materials such as a conductive polymer. Moreover, film formation by vacuum film formation is possible, which is preferable in that damage to the organic thin film solar cell element can be suppressed as compared with a material that requires film formation by an application process.
In the present invention, when either one of the upper electrode and the lower electrode is translucent, it is preferable that the lower electrode formed on the substrate side has translucency. That is, by using a metal or alloy having a predetermined thickness as the upper electrode, it is easy to install the current collector with respect to the upper electrode, and the resistance between the current collector and the electrode can be easily lowered.
In addition, this invention can be used conveniently when the electrode which installs a current collection line is formed including the metal or the alloy. When a current collector is installed via a metal paste on a metal or alloy, especially an electrode formed containing a metal, the metal forming the electrode reacts with the components contained in the metal paste to deform the electrode. And problems such as discoloration may occur. According to the present invention, such a problem can be solved and an organic thin-film solar cell excellent in appearance can be provided.
 下部電極及び上部電極の形成方法に制限はない。例えば、真空蒸着、スパッタ等のドライプロセスにより形成することができる。また、導電性インク等を用いたウェットプロセスにより形成することもできる。この導電性インクとしては、例えば、導電性高分子、金属粒子分散液等を用いることができる。さらに、電極は2層以上積層してもよく、表面処理による特性(電気特性やぬれ特性等)を改良してもよい。
 上部電極及び下部電極の厚さは、特に制限は無いが、通常5nm以上、好ましくは10nm以上、より好ましくは20nm以上、さらに好ましくは、50nm以上である。一方、通常400μm以下、好ましくは10μm以下、より好ましくは1μm以下、さらに好ましくは500nm以下である。電極の厚さが上記下限以上であることにより、シート抵抗が抑えられ、また、十分な導通が可能となる。一方、上記上限以下であることにより、柔軟性を維持することができる。電極が透明電極である場合には、光透過率とシート抵抗とを両立できる膜厚を選ぶ必要がある。
 電極のシート抵抗は、特段の制限はないが、通常1Ω/□以上、一方、1000Ω/□以下、好ましくは500Ω/□以下、さらに好ましくは100Ω/□以下である。
There is no restriction | limiting in the formation method of a lower electrode and an upper electrode. For example, it can be formed by a dry process such as vacuum deposition or sputtering. It can also be formed by a wet process using conductive ink or the like. As this conductive ink, for example, a conductive polymer, a metal particle dispersion, or the like can be used. Furthermore, two or more electrodes may be laminated, and characteristics (electric characteristics, wetting characteristics, etc.) due to surface treatment may be improved.
The thicknesses of the upper electrode and the lower electrode are not particularly limited, but are usually 5 nm or more, preferably 10 nm or more, more preferably 20 nm or more, and further preferably 50 nm or more. On the other hand, it is usually 400 μm or less, preferably 10 μm or less, more preferably 1 μm or less, and further preferably 500 nm or less. When the thickness of the electrode is equal to or more than the lower limit, sheet resistance is suppressed and sufficient conduction is possible. On the other hand, by being below the above upper limit, flexibility can be maintained. When the electrode is a transparent electrode, it is necessary to select a film thickness that can achieve both light transmittance and sheet resistance.
The sheet resistance of the electrode is not particularly limited, but is usually 1Ω / □ or more, on the other hand, 1000Ω / □ or less, preferably 500Ω / □ or less, more preferably 100Ω / □ or less.
1-3.バッファ層(電子取り出し層、正孔取り出し層)
 本発明に係る有機薄膜太陽電池素子は、下部電極および/または上部電極と光電変換層との間にバッファ層を含んでいてもよい。バッファ層とは、電子取り出し層および/または正孔取り出し層を指す。バッファ層は、本発明に係る有機薄膜太陽電池素子において必須ではなく、電子取り出し層と正孔取り出し層のいずれか一方のみを含んでも良い。電子取り出し層はカソードと光電変換層との間に存在するのが好ましく、正孔取り出し層はアノードと光電変換層との間に存在するのが好ましい。
1-3. Buffer layer (electron extraction layer, hole extraction layer)
The organic thin film solar cell element according to the present invention may include a buffer layer between the lower electrode and / or the upper electrode and the photoelectric conversion layer. The buffer layer refers to an electron extraction layer and / or a hole extraction layer. The buffer layer is not essential in the organic thin film solar cell element according to the present invention, and may include only one of an electron extraction layer and a hole extraction layer. The electron extraction layer is preferably present between the cathode and the photoelectric conversion layer, and the hole extraction layer is preferably present between the anode and the photoelectric conversion layer.
 すなわち、電子取り出し層と正孔取り出し層とは、一対の電極間に、光電変換層を挟むように配置されることが好ましい。電子取り出し層および正孔取り出し層の積層順は、上部電極と下部電極の機能、すなわちそれぞれの電極がアノードとカソードのどちらかに応じて、前記説明の通り、適切に選択すればよい。
 具体的には、上部電極がアノード、下部電極がカソードであり、バッファ層として電子取り出し層と正孔取り出し層をいずれも含むときは、有機薄膜太陽電池素子は、下部電極、電子取り出し層、光電変換層、正孔取り出し層、及び上部電極をこの順に有するのが好ましい。電子取り出し層を含み、正孔取り出し層を含まない場合は、有機薄膜太陽電池素子が下部電極、電子取り出し層、光電変換層、上部電極をこの順に有するのが好ましい。同様に、正孔取り出し層を含み、電子取り出し層を含まない場合は、有機薄膜太陽電池素子が下部電極、光電変換層、正孔取り出し層、及び上部電極をこの順に有するのが好ましい。
 また電子取り出し層と正孔取り出し層の少なくとも一方が異なる複数の層により構成されていてもよい。
That is, the electron extraction layer and the hole extraction layer are preferably arranged so that the photoelectric conversion layer is sandwiched between the pair of electrodes. The stacking order of the electron extraction layer and the hole extraction layer may be appropriately selected as described above according to the functions of the upper electrode and the lower electrode, that is, each electrode is either an anode or a cathode.
Specifically, when the upper electrode is an anode and the lower electrode is a cathode and both the electron extraction layer and the hole extraction layer are included as buffer layers, the organic thin film solar cell element includes the lower electrode, the electron extraction layer, the photoelectric It is preferable to have a conversion layer, a hole extraction layer, and an upper electrode in this order. When the electron extraction layer is included and the hole extraction layer is not included, the organic thin film solar cell element preferably has a lower electrode, an electron extraction layer, a photoelectric conversion layer, and an upper electrode in this order. Similarly, when the hole extraction layer is included and the electron extraction layer is not included, the organic thin film solar cell element preferably has a lower electrode, a photoelectric conversion layer, a hole extraction layer, and an upper electrode in this order.
Further, at least one of the electron extraction layer and the hole extraction layer may be composed of a plurality of different layers.
 〔電子取り出し層〕
 電子取り出し層の材料は、光電変換層からカソードへ電子の取り出し効率を向上させる材料であれば特段の制限はないが、無機化合物又は有機化合物が挙げられる。
 無機化合物の材料の例としては、Li、Na、K又はCs等のアルカリ金属の塩;酸化チタン(TiOx)や酸化亜鉛(ZnO)のようなn型半導体酸化物等が挙げられる。なかでも、アルカリ金属の塩としては、LiF、NaF、KF又はCsFのようなフッ化物塩が好ましく、n型半導体酸化物としては、酸化亜鉛(ZnO)が好ましい。このような材料の動作機構は不明であるが、Al等で構成されるカソードと組み合わされた際にカソードの仕事関数を小さくし、有機薄膜太陽電池素子内部に印加される電圧を上げる事が考えられる。
[Electronic extraction layer]
The material of the electron extraction layer is not particularly limited as long as it is a material that improves the efficiency of extracting electrons from the photoelectric conversion layer to the cathode, and examples thereof include inorganic compounds and organic compounds.
Examples of the material of the inorganic compound include salts of alkali metals such as Li, Na, K or Cs; n-type semiconductor oxides such as titanium oxide (TiOx) and zinc oxide (ZnO). Among them, the alkali metal salt is preferably a fluoride salt such as LiF, NaF, KF or CsF, and the n-type semiconductor oxide is preferably zinc oxide (ZnO). Although the operation mechanism of such materials is unknown, it is possible to reduce the work function of the cathode when combined with a cathode made of Al or the like and increase the voltage applied to the inside of the organic thin film solar cell element. It is done.
 有機化合物の材料の例としては、例えば、トリアリールホスフィンオキシド化合物のようなリン原子と第16族元素との二重結合を有するホスフィン化合物;バソキュプロイン(BCP)又はバソフェナントレン(Bphen)のような、置換基を有してもよく、1位及び10位がヘテロ原子で置き換えられていてもよいフェナントレン化合物;トリアリールホウ素のようなホウ素化合物;(8-ヒドロキシキノリナト)アルミニウム(Alq3)のような有機金属酸化物;オキサジアゾール化合物又はベンゾイミダゾール化合物のような、置換基を有していてもよい1又は2の環構造を有する化合物;ナフタレンテトラカルボン酸無水物(NTCDA)又はペリレンテトラカルボン酸無水物(PTCDA)のような、ジカルボン酸無水物のような縮合ジカルボン酸構造を有する芳香族化合物等が挙げられる。 Examples of organic compound materials include, for example, phosphine compounds having a double bond between a phosphorus atom and a group 16 element such as triarylphosphine oxide compounds; bathocuproin (BCP) or bathophenanthrene (Bphen), A phenanthrene compound which may have a substituent and may be substituted at the 1-position and the 10-position with a heteroatom; a boron compound such as triarylboron; such as (8-hydroxyquinolinato) aluminum (Alq3) Organometallic oxide; Compound having 1 or 2 ring structure which may have a substituent such as oxadiazole compound or benzimidazole compound; Naphthalenetetracarboxylic anhydride (NTCDA) or perylenetetracarboxylic acid Dicarboxylic anhydrides, such as anhydride (PTCDA) Aromatic compounds and the like having a condensed dicarboxylic acid structure, such as.
 電子取り出し層の厚さは特に限定はないが、通常0.01nm以上、好ましくは0.1nm以上、より好ましくは0.5nm以上である。一方、通常400nm以下、好ましくは200nm以下である。電子取り出し層の厚さが上記下限以上であることで、バッファ材料としての機能を果たすことになる。電子取り出し層の厚さが上記上限以下であることで、電子が取り出しやすくなり、光電変換効率が向上しうる。 The thickness of the electron extraction layer is not particularly limited, but is usually 0.01 nm or more, preferably 0.1 nm or more, more preferably 0.5 nm or more. On the other hand, it is usually 400 nm or less, preferably 200 nm or less. When the thickness of the electron extraction layer is equal to or more than the above lower limit, the function as a buffer material is achieved. When the thickness of the electron extraction layer is not more than the above upper limit, electrons can be easily extracted and the photoelectric conversion efficiency can be improved.
 電子取り出し層の形成方法に制限はない。例えば、昇華性を有する材料を用いる場合は真空蒸着法等により形成することができる。具体的には、例えばアルカリ金属塩を電子取り出し層の材料として用いる場合、真空蒸着、スパッタ等の真空成膜方法を用いて電子取り出し層を成膜することが可能である。なかでも、抵抗加熱による真空蒸着によって、電子取り出し層を形成するのが望ましい。真空蒸着を用いることにより、光電変換層等の他の層へのダメージを小さくすることができる。 There is no limitation on the method of forming the electron extraction layer. For example, when a material having sublimation property is used, it can be formed by a vacuum deposition method or the like. Specifically, for example, when an alkali metal salt is used as a material for the electron extraction layer, the electron extraction layer can be formed by using a vacuum film formation method such as vacuum deposition or sputtering. Especially, it is desirable to form an electron taking-out layer by vacuum vapor deposition by resistance heating. By using vacuum deposition, damage to other layers such as a photoelectric conversion layer can be reduced.
 また、例えば、溶媒に可溶な材料を用いる場合は、前述の光電変換層の作成方法と同様に、スピンコート法、リバースロールコート法、グラビアコート法、キスコート法、ロールブラッシュ法、スプレーコート法、エアナイフコート法、ワイヤーバーバーコート法、パイプドクター法、含浸・コート法、カーテンコート法等の湿式塗布法等により形成することができる。 Further, for example, when using a material soluble in a solvent, the spin coating method, reverse roll coating method, gravure coating method, kiss coating method, roll brush method, spray coating method are used in the same manner as the method for producing the photoelectric conversion layer described above. It can be formed by a wet coating method such as an air knife coating method, a wire barber coating method, a pipe doctor method, an impregnation / coating method, a curtain coating method, or the like.
 一方、n型半導体の金属酸化物については、例えば、酸化亜鉛ZnOを電子取り出し層の材料として用いる場合には、スパッタ法等の真空成膜方法を用いることもできるが、塗布法を用いて電子取り出し層を成膜することが望ましい。例えば、Sol-Gel Science、C.J.Brinker,G.W.Scherer著、Academic Press(1990)に記載のゾルゲル法に従って、酸化亜鉛で構成される電子取り出し層を形成できる。この場合の厚さは、通常0.1nm以上、好ましくは2nm以上、より好ましくは5nm以上であり、通常1μm以下、好ましくは100nm以下、より好ましくは50nm以下である。電子取り出し層が薄すぎると、電子の取り出し効率を向上させる効果が十分でなくなり、厚すぎると、電子取り出し層が直列抵抗成分として作用することにより素子の特性を損なう傾向がある。
 電子取り出し層をロール・トゥ・ロール方式で形成する場合、装置が簡便であり、コストが低く、大量に速く形成できるため、湿式塗布法を適用するのが好ましい。湿式塗布法を行う際には、被塗装層を溶解しない溶媒を選定するのが好ましい。
On the other hand, for metal oxides of n-type semiconductors, for example, when zinc oxide ZnO is used as the material for the electron extraction layer, a vacuum film formation method such as sputtering can be used. It is desirable to form the extraction layer. For example, Sol-Gel Science, C.I. J. et al. Brinker, G.M. W. According to the sol-gel method described by Scherer, Academic Press (1990), an electron extraction layer composed of zinc oxide can be formed. In this case, the thickness is usually 0.1 nm or more, preferably 2 nm or more, more preferably 5 nm or more, and usually 1 μm or less, preferably 100 nm or less, more preferably 50 nm or less. If the electron extraction layer is too thin, the effect of improving the electron extraction efficiency is not sufficient, and if it is too thick, the electron extraction layer tends to deteriorate the characteristics of the device by acting as a series resistance component.
In the case where the electron extraction layer is formed by a roll-to-roll method, it is preferable to apply a wet coating method because the apparatus is simple, the cost is low, and the electron extraction layer can be formed quickly in large quantities. When performing the wet coating method, it is preferable to select a solvent that does not dissolve the coating layer.
〔正孔取り出し層〕
 正孔取り出し層の材料に特に限定は無く、光電変換層からアノードへの正孔の取り出し効率を向上させることが可能な材料であれば特に限定されない。具体的には、ポリチオフェン、ポリピロール、ポリアセチレン、トリフェニレンジアミン又はポリアニリン等に、スルホン酸及び/又はヨウ素等がドーピングされた導電性ポリマー;スルホニル基を置換基に有するポリチオフェン誘導体、アリールアミン等の導電性有機化合物;酸化銅、酸化ニッケル、酸化マンガン、酸化モリブデン、酸化バナジウム又は酸化タングステン等の金属酸化物;ナフィオン、後述のp型半導体等が挙げられる。その中でも好ましくは、スルホン酸をドーピングした導電性ポリマーであり、より好ましくは、ポリチオフェン誘導体にポリスチレンスルホン酸をドーピングした(3,4-エチレンジオキシチオフェン)ポリ(スチレンスルホン酸)(PEDOT:PSS)である。また、金、インジウム、銀又はパラジウム等の金属等の薄膜も使用することができる。金属等の薄膜は、単独で形成してもよいし、上記の有機材料と組み合わせて用いることもできる。
[Hole extraction layer]
The material for the hole extraction layer is not particularly limited as long as it is a material that can improve the efficiency of extracting holes from the photoelectric conversion layer to the anode. Specifically, a conductive polymer in which polythiophene, polypyrrole, polyacetylene, triphenylenediamine, polyaniline or the like is doped with sulfonic acid and / or iodine, etc .; a conductive organic material such as a polythiophene derivative having a sulfonyl group as a substituent, arylamine or the like Compound: Metal oxide such as copper oxide, nickel oxide, manganese oxide, molybdenum oxide, vanadium oxide or tungsten oxide; Nafion, p-type semiconductor described later, and the like. Among them, a conductive polymer doped with sulfonic acid is preferable, and (3,4-ethylenedioxythiophene) poly (styrenesulfonic acid) (PEDOT: PSS) in which a polythiophene derivative is doped with polystyrene sulfonic acid is more preferable. It is. A thin film of metal such as gold, indium, silver or palladium can also be used. A thin film of metal or the like may be formed alone or in combination with the above organic material.
 正孔取り出し層の厚さは特に限定はないが、通常0.2nm以上である。一方、通常400nm以下、好ましくは200nm以下である。正孔取り出し層の厚さが0.2nm以上であることで、バッファ材料としての機能を果たすことになる。正孔取り出し層の厚さが400nm以下であることで、正孔が取り出し易くなり、光電変換効率が向上しうる。 The thickness of the hole extraction layer is not particularly limited, but is usually 0.2 nm or more. On the other hand, it is usually 400 nm or less, preferably 200 nm or less. When the thickness of the hole extraction layer is 0.2 nm or more, it functions as a buffer material. When the thickness of the hole extraction layer is 400 nm or less, holes can be easily extracted and the photoelectric conversion efficiency can be improved.
 正孔取り出し層の形成方法に制限はない。例えば、昇華性を有する材料を用いる場合は真空蒸着法等により形成することができる。また、例えば、溶媒に可溶な材料を用いる場合は、スピンコート法、リバースロールコート法、グラビアコート法、キスコート法、ロールブラッシュ法、スプレーコート法、エアナイフコート法、ワイヤーバーバーコート法、パイプドクター法、含浸・コート法、カーテンコート法等の湿式塗布法等により形成することができる。正孔取り出し層は塗布により形成することが好ましい。正孔取り出し層に半導体材料を用いる場合は、後述の有機光電変換層の低分子有機半導体化合物と同様に、前駆体を用いて層を形成した後に前駆体を半導体化合物に変換してもよい。 There is no limitation on the method of forming the hole extraction layer. For example, when a material having sublimation property is used, it can be formed by a vacuum deposition method or the like. For example, when using a material soluble in a solvent, a spin coating method, a reverse roll coating method, a gravure coating method, a kiss coating method, a roll brush method, a spray coating method, an air knife coating method, a wire barber coating method, a pipe doctor It can be formed by a wet coating method such as a method, an impregnation / coating method, or a curtain coating method. The hole extraction layer is preferably formed by coating. When a semiconductor material is used for the hole extraction layer, the precursor may be converted into a semiconductor compound after the layer is formed using the precursor, similarly to the low-molecular organic semiconductor compound of the organic photoelectric conversion layer described later.
 なかでも、正孔取り出し層の材料としてPEDOT:PSSを用いる場合、分散液を塗布する方法によって正孔取り出し層を形成することが好ましい。PEDOT:PSSの分散液としては、ヘレウス社製のCLEVIOSTMシリーズや、アグファ社製のORGACONTMシリーズ等が挙げられる。
 正孔取り出し層をロール・トゥ・ロール方式で形成する場合、装置が簡便であり、コストが低く、大量に速く形成できるため、湿式塗布法を適用するのが好ましい。湿式塗布法を行う際には、被塗装層を溶解しない溶媒を選定するのが好ましい。
Especially, when using PEDOT: PSS as a material of a hole taking-out layer, it is preferable to form a hole taking-out layer by the method of apply | coating a dispersion liquid. Examples of the dispersion of PEDOT: PSS include CLEVIOSTM series manufactured by Heraeus, ORGACONTM series manufactured by Agfa, and the like.
When the hole extraction layer is formed by a roll-to-roll method, it is preferable to apply a wet coating method because the apparatus is simple, the cost is low, and the hole extraction layer can be formed quickly in large quantities. When performing the wet coating method, it is preferable to select a solvent that does not dissolve the coating layer.
1-4.基板
 有機薄膜太陽電池素子は、通常基板上に複数の有機薄膜太陽電池セルを形成させることで製造される。
 基板は有機薄膜太陽電池セルを支持する部材である。基板の材料としては、本発明を適用できる限り特に限定されず、無機材料、有機材料、紙材料および複合材料等の公知の材料が使用できる。具体的には、石英、ガラス、サファイア又はチタニア等の無機材料;ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリエーテルスルホン、ポリイミド、ナイロン、ポリスチレン、ポリビニルアルコール、エチレンビニルアルコール共重合体、フッ素樹脂フィルム、塩化ビニル又はポリエチレン等のポリオレフィン;セルロース、ポリ塩化ビニリデン、アラミド、ポリフェニレンスルフィド、ポリウレタン、ポリカーボネート、ポリアリレート、ポリノルボルネン又はエポキシ樹脂等の有機材料;紙又は合成紙等の紙材料;ステンレス、チタン又はアルミニウム等の金属に、絶縁性を付与するために表面をコート又はラミネートしたもの等の複合材料等が挙げられる。これらのうち有機材料を用いた樹脂基板は、基板に透明性を付与できるため、スーパーストレート構造、サブストレート構造どちらの構造も作成が可能である上、透光性を有するシースルー太陽電池の作成が可能である点で好ましい。
1-4. Substrate An organic thin film solar cell element is usually manufactured by forming a plurality of organic thin film solar cells on a substrate.
A board | substrate is a member which supports an organic thin film photovoltaic cell. The material of the substrate is not particularly limited as long as the present invention can be applied, and known materials such as inorganic materials, organic materials, paper materials, and composite materials can be used. Specifically, inorganic materials such as quartz, glass, sapphire or titania; polyethylene terephthalate, polyethylene naphthalate, polyethersulfone, polyimide, nylon, polystyrene, polyvinyl alcohol, ethylene vinyl alcohol copolymer, fluororesin film, vinyl chloride Or polyolefin such as polyethylene; organic materials such as cellulose, polyvinylidene chloride, aramid, polyphenylene sulfide, polyurethane, polycarbonate, polyarylate, polynorbornene or epoxy resin; paper materials such as paper or synthetic paper; stainless steel, titanium or aluminum Examples thereof include composite materials such as those obtained by coating or laminating the surface of a metal to impart insulating properties. Of these, resin substrates using organic materials can provide transparency to the substrate, so both superstrate and substrate structures can be created, and translucent see-through solar cells can be created. This is preferable because it is possible.
 中でも、基板が可とう性を有する(フレキシブル)基板であることが好ましい。基板がフレキシブルであることで、有機薄膜太陽電池をロール・トゥ・ロール方式により製造することが可能になり、また、有機薄膜太陽電池の設置の自由度が向上するためである。フレキシブルとは、例えば、曲率半径170mmで曲げても破壊(塑性変形)しないことをいう。
 フレキシブル基板の材料としては、上記材料の中でも、有機材料、紙材料、複合材料が好ましく、有機材料および複合材料がより好ましく、透明なフレキシブル基板にしうる点で有機材料が特に好ましい。
 有機材料は通常Tg(ガラス転移温度)を有するが、有機薄膜太陽電池の封止をTg未満で行うことにより基板の変形による外観の悪化を抑制することができる。
 基板が樹脂基板である場合、樹脂基板のガラス転移温度(Tg)は、通常30℃以上、好ましくは50℃以上であり、通常400℃以下、好ましくは300℃以下、より好ましくは200℃以下、更に好ましくは160℃未満である。ガラス転移温度(Tg)が上記範囲であることで樹脂基板を製造する際に成形加工しやすく、かつ太陽電池の製造する際の加工で変形が起きにくい。本明細書におけるガラス転移温度とは、JIS K-7121 1987「プラスチックの転移温度測定方法」に定義された示差走査熱量測定 (DSC)により求められる値である。
Among them, the substrate is preferably a flexible (flexible) substrate. This is because when the substrate is flexible, the organic thin film solar cell can be manufactured by a roll-to-roll method, and the degree of freedom in installing the organic thin film solar cell is improved. “Flexible” means, for example, that the material does not break (plastically deform) even when bent at a curvature radius of 170 mm.
Of the above materials, organic materials, paper materials, and composite materials are preferable as the material for the flexible substrate, more preferably organic materials and composite materials, and organic materials are particularly preferable in that a transparent flexible substrate can be obtained.
The organic material usually has a Tg (glass transition temperature), but deterioration of the appearance due to deformation of the substrate can be suppressed by sealing the organic thin film solar cell at less than Tg.
When the substrate is a resin substrate, the glass transition temperature (Tg) of the resin substrate is usually 30 ° C. or higher, preferably 50 ° C. or higher, usually 400 ° C. or lower, preferably 300 ° C. or lower, more preferably 200 ° C. or lower, More preferably, it is less than 160 degreeC. When the glass transition temperature (Tg) is in the above range, it is easy to perform molding when producing a resin substrate, and deformation is less likely to occur during the production of solar cells. The glass transition temperature in the present specification is a value obtained by differential scanning calorimetry (DSC) defined in JIS K-7121 1987 “Method for measuring transition temperature of plastic”.
 基板の厚さに制限はないが、通常5μm以上、好ましくは20μm以上であり、通常20mm以下、好ましくは10mm以下である。基板の厚さが5μm以上であることは、有機薄膜太陽電池素子の強度が不足する可能性が低くなるために好ましい。基板の厚さが20mm以下であることは、コストが抑えられ、かつ重量が重くならないために好ましい。基板の材料がガラスである場合の厚さは、通常0.01mm以上、好ましくは0.1mm以上であり、一方、通常1cm以下、好ましくは0.5cm以下である。基板の厚さが0.01mm以上であることは、機械的強度が増加し、割れにくくなるために、好ましい。また、基板の厚さが0.5cm以下であることは、重量が重くならないために好ましい。 The thickness of the substrate is not limited, but is usually 5 μm or more, preferably 20 μm or more, and is usually 20 mm or less, preferably 10 mm or less. It is preferable that the thickness of the substrate is 5 μm or more because the possibility that the strength of the organic thin film solar cell element is insufficient is reduced. It is preferable that the thickness of the substrate is 20 mm or less because the cost is suppressed and the weight does not increase. When the material of the substrate is glass, the thickness is usually 0.01 mm or more, preferably 0.1 mm or more, and is usually 1 cm or less, preferably 0.5 cm or less. It is preferable that the thickness of the substrate is 0.01 mm or more because mechanical strength is increased and cracking is difficult. Moreover, it is preferable that the thickness of the substrate is 0.5 cm or less because the weight does not increase.
 基板の長さに制限はないが、通常10cm以上、好ましくは1m以上、より好ましくは10m以上、更に好ましくは50m以上、特に好ましくは100m以上である。上限は、通常10km以下、好ましくは5km以下、より好ましくは1km以下、更に好ましくは500m以下である。
 ロール・トゥ・ロール方式により製造する場合は、通常10m以上、好ましくは20m以上、より好ましくは50m以上、更に好ましくは100m以上、特に好ましくは200m以上である。上限は特に制限されないが、通常10km以下、好ましくは5km以下、より好ましくは1km以下である。この範囲の長さにすることで、ロール・トゥ・ロール方式による効率的な生産を行うことができる。ロール・トゥ・ロール方式では、ロールの切り替えに時間がかかるため、ロールの切り替えによる時間のロスを少なくするためには、製造装置が許容する範囲で1つのロールの基板は長い方がよい。一方、ロールが重くなるとハンドリングしづらくなる点にも留意する必要がある。
Although there is no restriction | limiting in the length of a board | substrate, Usually, 10 cm or more, Preferably it is 1 m or more, More preferably, it is 10 m or more, More preferably, it is 50 m or more, Most preferably, it is 100 m or more. The upper limit is usually 10 km or less, preferably 5 km or less, more preferably 1 km or less, still more preferably 500 m or less.
When manufactured by a roll-to-roll method, it is usually 10 m or more, preferably 20 m or more, more preferably 50 m or more, still more preferably 100 m or more, and particularly preferably 200 m or more. Although an upper limit in particular is not restrict | limited, Usually, it is 10 km or less, Preferably it is 5 km or less, More preferably, it is 1 km or less. By setting the length within this range, efficient production by a roll-to-roll system can be performed. In the roll-to-roll method, since it takes time to switch the roll, in order to reduce the time loss due to the switching of the roll, it is preferable that the substrate of one roll is as long as the manufacturing apparatus allows. On the other hand, it should be noted that handling becomes difficult when the roll becomes heavy.
1-5.有機薄膜太陽電池素子の構造
 また、本発明においては、有機薄膜太陽電池素子がモノリシック構造を有することが好ましい。
 本発明の有機薄膜太陽電池モジュールは、同一の基板上に有機薄膜太陽電池セルが直列に複数個接続された構造(以下、モノリシック構造ともいう)を有する有機薄膜太陽電池素子を含む。有機薄膜太陽電池モジュールに要求される電位や大きさにより、有機薄膜太陽電池素子が含む有機薄膜太陽電池セルの数や配置方法を決めることができる。すなわち、モノリシック構造を有することで、任意の電位の有機薄膜太陽電池素子を生産性高く製造することができる。
1-5. Structure of Organic Thin Film Solar Cell Element In the present invention, the organic thin film solar cell element preferably has a monolithic structure.
The organic thin film solar cell module of the present invention includes an organic thin film solar cell element having a structure in which a plurality of organic thin film solar cells are connected in series on the same substrate (hereinafter also referred to as a monolithic structure). The number and arrangement method of the organic thin film solar cells included in the organic thin film solar cell element can be determined by the potential and size required for the organic thin film solar cell module. That is, by having a monolithic structure, an organic thin film solar cell element having an arbitrary potential can be manufactured with high productivity.
 複数の有機薄膜太陽電池セルが直列に接続されているかぎり、その配置方法、数は特段制限されないが、直列に接続された有機薄膜太陽電池セルの個数は、通常3個以上、好ましくは10個以上、より好ましくは15個以上、更に好ましくは30個以上、特に好ましくは100個以上である。上限は本発明の効果を得られれば限定されず、通常50万個以下、好ましくは10万個以下、より好ましくは1万個以下、更に好ましくは1000個以下、特に好ましくは600個以下である。
 有機薄膜太陽電池セルを基板の長手方向に直列に接続する場合には、直列に接続するセルの個数は、基板の長さと一つの有機薄膜太陽電池セルの直列接続方向の長さとを設定することにより任意に決めることができる。一つの基板に、多くの有機薄膜太陽電池セルが直接に接続された太陽電池素子を形成してもよいし、所定の個数の有機薄膜太陽電池セルが直列に接続された太陽電池素子を複数個形成してもよい。
As long as a plurality of organic thin-film solar cells are connected in series, the arrangement method and the number thereof are not particularly limited, but the number of organic thin-film solar cells connected in series is usually 3 or more, preferably 10 Above, more preferably 15 or more, still more preferably 30 or more, particularly preferably 100 or more. The upper limit is not limited as long as the effect of the present invention can be obtained, and is usually 500,000 or less, preferably 100,000 or less, more preferably 10,000 or less, still more preferably 1000 or less, and particularly preferably 600 or less. .
When organic thin film solar cells are connected in series in the longitudinal direction of the substrate, the number of cells connected in series should be set to the length of the substrate and the length of one organic thin film solar cell in the series connection direction. Can be arbitrarily determined. A solar cell element in which many organic thin film solar cells are directly connected may be formed on one substrate, or a plurality of solar cell elements in which a predetermined number of organic thin film solar cells are connected in series may be formed. It may be formed.
 一方、有機薄膜太陽電池セルを基板の幅手方向に直列に接続する場合には、基板の幅手方向の長さと1個の有機薄膜太陽電池セルの直列接続方向の長さにより、一列で直列に接続できる個数が限定される。一列に直列に接続される有機太陽電池セルの個数は、通常3個以上、好ましくは5個以上、より好ましくは10個以上、更に好ましくは15個以上であり、上限は特に限定されないが、通常600個以下、好ましくは500個以下、より好ましくは300個以下、更に好ましくは200個以下である。一方、隣接するセル列を上部電極または下部電極により直列に接続すれば、直列に接続される有機太陽電池セルの個数は任意に設定でき、この場合の通常6個以上、好ましくは10個以上、より好ましくは20個以上、更に好ましくは30個以上であり、上限は特に限定されないが、通常50万個以下、好ましくは10万個以下、より好ましくは1万個以下、更に好ましくは1000個以下、特に好ましくは600個以下である。
 これらの中でも、有機薄膜太陽電池セルを基板の長手方向に直列に接続すると、所望の電位のセル列を切り出しやすくなる点で好ましい。
On the other hand, when the organic thin film solar cells are connected in series in the width direction of the substrate, the organic thin film solar cells are connected in series in a line depending on the length in the width direction of the substrate and the length in the serial connection direction of one organic thin film solar cell. The number that can be connected to is limited. The number of organic solar cells connected in series in a row is usually 3 or more, preferably 5 or more, more preferably 10 or more, and even more preferably 15 or more, although the upper limit is not particularly limited. It is 600 or less, preferably 500 or less, more preferably 300 or less, and still more preferably 200 or less. On the other hand, if the adjacent cell rows are connected in series by the upper electrode or the lower electrode, the number of organic solar cells connected in series can be arbitrarily set, in this case usually 6 or more, preferably 10 or more, More preferably, it is 20 or more, more preferably 30 or more, and the upper limit is not particularly limited, but is usually 500,000 or less, preferably 100,000 or less, more preferably 10,000 or less, still more preferably 1000 or less. Particularly preferably, the number is 600 or less.
Among these, it is preferable to connect the organic thin-film solar cells in series in the longitudinal direction of the substrate in that a cell row having a desired potential can be easily cut out.
 また、有機薄膜太陽電池セルは、下部電極、光電変換層、および上部電極を少なくとも備える。なお、本発明において、通常有機薄膜太陽電池セルの基板に積層される電極を下部電極と称し、下部電極に光電変換層を積層した後に積層される電極を上部電極と称する。下部電極は基板に直接積層されても、間接的に積層されてもよい。 Further, the organic thin film solar cell includes at least a lower electrode, a photoelectric conversion layer, and an upper electrode. In the present invention, the electrode laminated on the substrate of the organic thin-film solar battery cell is usually called a lower electrode, and the electrode laminated after the photoelectric conversion layer is laminated on the lower electrode is called an upper electrode. The lower electrode may be directly laminated on the substrate or indirectly laminated.
1-6.有機薄膜太陽電池素子の製造方法
 以下、光電変換層、上部電極および下部電極を備えた有機薄膜太陽電池セル(以下、太陽電池セルともいう)が同一の基板上で直列に接続されたモノリシック構造を有する有機薄膜太陽電池素子(以下、太陽電池素子ともいう)の製造方法について図1を用いて説明する。図1により、光電変換層がp-i-n接合型である場合を例にして説明するが、バルクヘテロ接合型、ヘテロpn接合型、ショットキー型、等、公知の有機光電変換層も同様の方法で製造できる。
1-6. Manufacturing method of organic thin-film solar cell Hereinafter, a monolithic structure in which organic thin-film solar cells (hereinafter also referred to as solar cells) including a photoelectric conversion layer, an upper electrode, and a lower electrode are connected in series on the same substrate. A method for producing an organic thin film solar cell element (hereinafter, also referred to as a solar cell element) having the same will be described with reference to FIG. A case where the photoelectric conversion layer is a pin junction type will be described as an example with reference to FIG. It can be manufactured by the method.
 有機薄膜太陽電池素子は、通常基板上に複数の有機薄膜太陽電池セルを形成させることで製造される。有機薄膜太陽電池モジュールの受光面が基板1側の場合には、透明な基板を用いるのが好ましい。受光面が上部電極8側の場合には、基板1は透明でも不透明でも良い。(a)図の通り、基板1の上に開溝11を持つ下部電極2を形成する。電極の形成はドライ法、ウェット法のいずれでもよい。ドライ法としては例えばスパッタ、蒸着、CVD等公知の方法が挙げられる。ウェット法としては、スクリーン印刷やダイコート等が挙げられる。第1の開溝11の幅は50~1000μm特に100~500μm程度が好ましい。 An organic thin film solar cell element is usually manufactured by forming a plurality of organic thin film solar cells on a substrate. When the light receiving surface of the organic thin film solar cell module is on the substrate 1 side, it is preferable to use a transparent substrate. When the light receiving surface is on the upper electrode 8 side, the substrate 1 may be transparent or opaque. (A) As shown in the figure, a lower electrode 2 having an open groove 11 is formed on a substrate 1. The electrode may be formed by either a dry method or a wet method. Examples of the dry method include known methods such as sputtering, vapor deposition, and CVD. Examples of the wet method include screen printing and die coating. The width of the first groove 11 is preferably about 50 to 1000 μm, particularly about 100 to 500 μm.
 次に、(b)図の通り、下部電極2の上にp層3を形成する。p層3を下部電極2の全面に形成する場合には、第1の開溝11はp層3の材料で埋められる。また、p層3を下部電極2上にパターンを形成する場合には、第1の開溝11はp層3の材料によって埋められないこともある。 Next, a p layer 3 is formed on the lower electrode 2 as shown in FIG. When the p layer 3 is formed on the entire surface of the lower electrode 2, the first groove 11 is filled with the material of the p layer 3. When the p layer 3 is formed with a pattern on the lower electrode 2, the first groove 11 may not be filled with the material of the p layer 3.
 次に、(c)図の通り、下部電極2およびp層3の上にi層4およびn層5を順次成膜する。次いで、(d)図の通り、p層3の上に形成されたi層4、n層5に、第1の開溝11と重ならないように、その近傍に数10~100μm程度離れて下部電極2に達する第2の開溝12をレーザスクライブにより形成する。第2の開溝の幅は50~1000μm特に100~500μm程度が好ましい。この第2の開溝12を形成するレーザの波長は200~1200nmであり、中でも250~900nm特に250~600nm程度が好ましい。これによりp層3、i層4およびn層5は短冊状の形状に分離される。 Next, as shown in (c), an i layer 4 and an n layer 5 are sequentially formed on the lower electrode 2 and the p layer 3. Next, as shown in (d), the i layer 4 and the n layer 5 formed on the p layer 3 are separated by several tens to 100 μm in the vicinity so as not to overlap the first groove 11. A second groove 12 reaching the electrode 2 is formed by laser scribing. The width of the second groove is preferably about 50 to 1000 μm, particularly about 100 to 500 μm. The wavelength of the laser for forming the second groove 12 is 200 to 1200 nm, preferably about 250 to 900 nm, particularly about 250 to 600 nm. Thereby, the p layer 3, the i layer 4, and the n layer 5 are separated into strips.
 次に、(e)図の通り、上部電極6を形成する。第2の開溝12は上部電極6の材料で埋められる。第2の開溝12は、単位セルの上部電極を隣接する単位セルの受光面の下部電極2と接続するためのものであるから、下部電極2に達していなければならない。 Next, the upper electrode 6 is formed as shown in FIG. The second open groove 12 is filled with the material of the upper electrode 6. Since the second groove 12 is for connecting the upper electrode of the unit cell to the lower electrode 2 on the light receiving surface of the adjacent unit cell, it must reach the lower electrode 2.
 その後、(f)図の通り、上部電極6、n層5、i層4及びp層3をレーザスクライブして第3の開溝13を形成して、単位セルに分割する。開溝13は隣接する単位セルの上部電極6を分割するものであるから、i層4を突き抜けずにi層4の途中で止まってもよく、i層4からさらにp層3を突き抜けて下部電極2に入り込んでもよい。この第3の開溝13を形成するレーザの波長は200~1200nmであり、中でも250~900nm特に250~600nm程度が好ましい。各単位セルの上部電極6は、開溝12内を埋める上部電極6の材料によって隣接する単位セルの下部電極2と導通しているので、各単位セルが直列に接続された有機薄膜太陽電池素子が得られる。 Thereafter, as shown in FIG. 5 (f), the upper electrode 6, the n layer 5, the i layer 4 and the p layer 3 are laser scribed to form the third groove 13 and divided into unit cells. Since the open groove 13 divides the upper electrode 6 of the adjacent unit cell, it may stop in the middle of the i layer 4 without penetrating the i layer 4, and further penetrate the p layer 3 from the i layer 4 to the lower part. It may enter the electrode 2. The wavelength of the laser for forming the third groove 13 is 200 to 1200 nm, preferably about 250 to 900 nm, particularly about 250 to 600 nm. Since the upper electrode 6 of each unit cell is electrically connected to the lower electrode 2 of the adjacent unit cell by the material of the upper electrode 6 filling the inside of the open groove 12, the organic thin film solar cell element in which the unit cells are connected in series Is obtained.
 光電変換層(この実施の形態では、p層3、i層4及びn層5)を構成する材料は、200~1200nm特に250~900nmとりわけ250~600nmの波長の光の吸収性が良く、光電変換層は効率よく切断(スクライブ)される。上部電極6を構成する材料は、この波長の光を吸収するものであってもよく、吸収しなくてもよい。上部電極6の構成材料がこの波長の光を吸収しない場合であっても、その下の光電変換層がレーザスクライブにより除去されるときに、その上側の上部電極構成材料が併せて除去されて第3の開溝13が形成されるようになる。上部電極6の構成材料が光吸収材料に限定されないところから、上部電極の構成材料の選択肢が広がる。 The materials constituting the photoelectric conversion layer (in this embodiment, the p layer 3, the i layer 4, and the n layer 5) have good absorption of light having a wavelength of 200 to 1200 nm, particularly 250 to 900 nm, particularly 250 to 600 nm. The conversion layer is efficiently cut (scribed). The material constituting the upper electrode 6 may or may not absorb light having this wavelength. Even when the constituent material of the upper electrode 6 does not absorb light of this wavelength, when the underlying photoelectric conversion layer is removed by laser scribing, the upper electrode constituent material above the upper electrode 6 is removed together. 3 open grooves 13 are formed. Since the constituent material of the upper electrode 6 is not limited to the light absorbing material, options for the constituent material of the upper electrode are expanded.
2.有機薄膜太陽電池モジュール
 本発明の有機薄膜太陽電池モジュールは、集電線が、導電性熱硬化性樹脂組成物を介して有機薄膜太陽電池素子と接続された構造を有する。
 本発明の有機薄膜太陽電池モジュールは、少なくとも封止材により有機薄膜太陽電池素子および集電線が封止されたものが好ましい。有機薄膜太陽電池素子の封止を行うことで、有機薄膜太陽電池素子を補強し、耐衝撃性を向上することができる。
2. Organic thin film solar cell module The organic thin film solar cell module of the present invention has a structure in which a current collector is connected to an organic thin film solar cell element via a conductive thermosetting resin composition.
The organic thin film solar cell module of the present invention is preferably such that at least the organic thin film solar cell element and the current collector are sealed with a sealing material. By sealing an organic thin film solar cell element, an organic thin film solar cell element can be reinforced and impact resistance can be improved.
2-1.集電線の接続
 有機薄膜太陽電池素子から電流を取り出すために電極と集電線を接続するが、本発明では、集電線を、導電性の熱硬化性樹脂組成物を介して前記電極に接続させる。
 集電線と電極とは、電極が光電変換層と積層しない箇所で接続しても、電極を光電変換層と積層した箇所で接続してもよい。
2-1. Connecting the current collector The electrode and the current collector are connected to extract current from the organic thin-film solar cell element. In the present invention, the current collector is connected to the electrode via a conductive thermosetting resin composition.
The current collector and the electrode may be connected at a place where the electrode is not laminated with the photoelectric conversion layer, or may be connected at a place where the electrode is laminated with the photoelectric conversion layer.
 集電線と電極とを光電変換層と積層しない箇所で接続する場合には、例えば図2aに示すように、有機薄膜太陽電池セルの下部電極2に光電変換層7と積層する部分と光電変換層7と積層しない部分を設け、上部電極6にも光電変換層7と積層する部分と、光電変換層7と積層しない部分を設ける。そして、下部電極2および上部電極6それぞれの光電変換層と積層しない部分(図2aの両端)において、接着層9を介して集電線を接続することで、二本の集電線を有機薄膜太陽電池セルに設置する。集電線と電極を「接続する」とは、少なくとも集電線と電極とを電気的に接続することを意味する。また、集電線を「設置」するとは、電極と集電線とが電気的に接続されるように設けること意味する。
 なお、図2aにおいて有機薄膜太陽電池セルの両端において、例えば下部電極と集電線の間に導電性物質を積層したり、上部電極の下に集電に影響のない物質を積層するなどして、有機薄膜太陽電池セルの上下の面を平坦にすることで集電線の設置作業をしやすくしてもよい。
When connecting the current collector and the electrode at a place where the photoelectric conversion layer is not stacked, for example, as shown in FIG. 2 a, the portion and the photoelectric conversion layer that are stacked with the photoelectric conversion layer 7 on the lower electrode 2 of the organic thin film solar cell. 7 is provided, and the upper electrode 6 is provided with a portion that is laminated with the photoelectric conversion layer 7 and a portion that is not laminated with the photoelectric conversion layer 7. And in the part which is not laminated | stacked with the photoelectric converting layer of each of the lower electrode 2 and the upper electrode 6 (both ends of FIG. 2a), a collector wire is connected through the contact bonding layer 9, and two collector wires are made into an organic thin film solar cell. Install in the cell. “Connecting” the current collector and the electrode means that at least the current collector and the electrode are electrically connected. Further, “installing” the current collector means that the electrode and the current collector are electrically connected.
2a, at both ends of the organic thin film solar cell, for example, by laminating a conductive material between the lower electrode and the current collector, or by laminating a material that does not affect current collection under the upper electrode, The installation work of the current collector may be facilitated by flattening the upper and lower surfaces of the organic thin film solar cells.
 なお、一般的に有機薄膜太陽電池モジュールでは、集電線を有機薄膜太陽電池素子の上部電極および下部電極に接続することで電気を取り出すが、集電線を複数の上部電極のみに接続した場合であっても電気を取り出すことができる。これは、有機薄膜太陽電池素子を形成する有機薄膜太陽電池セルの上部電極と下部電極は光電変換層を挟んで電気が流れており、また、各セル間同士が直列接続されていることから、上部電極同士からであっても電気を取り出すことができるためである。上部電極同士から電気を取り出す場合、集電線を光電変換層と積層した上部電極に接続することが好ましい。
 集電線を光電変換層と積層した上部電極に接続する場合には、例えば図2bに示すように、有機薄膜太陽電池セルの上部電極6に接着層9を介して集電線8を設置すればよい。なお、集電線を光電変換層と積層した電極に接続するとは、図2cにおける上部電極6の23の範囲に設置することである。
 この方法によれば、有機薄膜太陽電池素子の製造後でも任意の位置に集電線を設置でき、電位を自由に調整することができる。従って、同一の有機薄膜太陽電池素子により多様な必要電位の要求に応えられるため、生産効率を下げることなく、有機薄膜太陽電池モジュールを製造することができる。具体的には、ロール・トゥ・ロール方式により、長尺の有機薄膜太陽電池素子を製造し、要求に応じた電位に対応する大きさ(モジュール幅、直列数)に切り出しながら使用することができる。この場合、二本の集電線がそれぞれ上部電極に設置された有機薄膜太陽電池モジュールが製造される。
 具体的には、図2cに示すように、有機薄膜太陽電池セルがモノリシックに接続された有機薄膜太陽電池素子において、任意の上部電極6に集電線8を設置して電気を取り出すことで、必要に応じた電位を取り出すことが可能となる。全ての集電線が有機薄膜太陽電池セルの上部電極上に設けられている必要はなく、上部電極のうち、光電変換層と積層しない領域(例えば図2aの右端の領域24)を設け、当該領域に一部の集電線を設置してもよい。
In general, in an organic thin film solar cell module, electricity is taken out by connecting a current collector to the upper electrode and lower electrode of the organic thin film solar cell element, but this is the case when the current collector is connected to only a plurality of upper electrodes. Even electricity can be taken out. This is because electricity flows between the upper electrode and the lower electrode of the organic thin film solar battery cell forming the organic thin film solar battery element across the photoelectric conversion layer, and the cells are connected in series. This is because electricity can be taken out even from the upper electrodes. When taking out electricity from upper electrodes, it is preferable to connect a current collection line to the upper electrode laminated | stacked with the photoelectric converting layer.
When the current collector is connected to the upper electrode laminated with the photoelectric conversion layer, for example, as shown in FIG. 2b, the current collector 8 may be installed on the upper electrode 6 of the organic thin film solar cell via the adhesive layer 9. . In addition, connecting a collector line with the electrode laminated | stacked with the photoelectric converting layer is installing in the range of 23 of the upper electrode 6 in FIG. 2c.
According to this method, even after the production of the organic thin-film solar cell element, the collector wire can be installed at an arbitrary position, and the potential can be freely adjusted. Accordingly, since the same organic thin film solar cell element can meet various required potential requirements, an organic thin film solar cell module can be manufactured without lowering the production efficiency. Specifically, a long organic thin-film solar cell element is manufactured by a roll-to-roll method, and can be used while being cut into a size (module width, series number) corresponding to the potential according to the demand. . In this case, an organic thin-film solar cell module in which two collector wires are respectively installed on the upper electrode is manufactured.
Specifically, as shown in FIG. 2c, in an organic thin-film solar battery element in which organic thin-film solar battery cells are connected monolithically, it is necessary to take out electricity by installing a collector wire 8 on an arbitrary upper electrode 6 It becomes possible to take out the electric potential according to. It is not necessary that all the current collectors are provided on the upper electrode of the organic thin film solar cell, and a region (for example, the rightmost region 24 in FIG. 2a) of the upper electrode that is not stacked with the photoelectric conversion layer is provided. A part of the current collecting line may be installed.
 有機薄膜太陽電池素子が、下部電極と接続した集電線を有する場合には、上部電極6と集電線8とを1か所接続すれば電気を取り出すことが可能である。2か所で接続すれば、上部電極6と接続した2本の集電線から電気を取り出すことも、下部電極と接続した集電線と、上部電極6と接続した2本の集電線のうち任意の集電線を選択して、2種類の電位を選択して電気をとりだすこともできる。もちろん、上部電極と集電線とを3か所以上で接続することも可能である。例えば3か所で接続した場合には1つの有機薄膜太陽電池モジュールから2種類の電位を取り出すことができ、4か所で接続した場合には1つの有機薄膜太陽電池モジュールから3種類の電位を取り出せるだけでなく、同一の電位を2系統取り出すことや、異なる電位を2系統取り出すこともできる。
 このように、光電変換層に積層した電極に集電線を設置することにより、集電線を任意の位置に設置できるため、一の有機薄膜太陽電池素子から、取り出す電気の電位を自在に設定することができる。
When the organic thin film solar cell element has a current collector connected to the lower electrode, electricity can be taken out by connecting the upper electrode 6 and the current collector 8 at one place. If connected at two locations, electricity can be taken out from the two current collectors connected to the upper electrode 6, or any of the current collector connected to the lower electrode and the two current collectors connected to the upper electrode 6 can be selected. It is also possible to take out electricity by selecting a current collector and selecting two potentials. Of course, it is also possible to connect the upper electrode and the current collector at three or more locations. For example, two types of potentials can be extracted from one organic thin film solar cell module when connected at three locations, and three types of potentials can be extracted from one organic thin film solar cell module when connected at four locations. In addition to being able to take out, it is possible to take out two systems of the same potential or two systems of different potentials.
In this way, by installing the current collector on the electrode laminated on the photoelectric conversion layer, the current collector can be installed at an arbitrary position, so the electric potential to be taken out from one organic thin film solar cell element can be freely set Can do.
 また、集電線を設置した上部電極を有する有機薄膜太陽電池セルは、集電線の設置により短絡していても、短絡していなくてもよいが、有機薄膜太陽電池素子において集電線を設置した有機薄膜太陽電池セルの全てが短絡しているか、全てが短絡していないのが好ましい。
 当該太陽電池セルが短絡している場合には、確実に電気を流すことができるため、安定した電気取り出しが可能となる。一方、当該有機薄膜太陽電池セルが短絡していない場合には、当該集電線を設置した上部電極を有する有機薄膜太陽電池セルであっても発電が可能であり、有機薄膜太陽電池モジュールの面積当たりの発電量、すなわち発電効率を上げることができる点で好ましい。中でも、集電線を設置する上部電極を有機薄膜太陽電池セルの非受光面になるように有機薄膜太陽電池セルの層構成を設計すると、集電線が光電変換層に届く光を遮らないためより発電効率を上げることができる。
In addition, the organic thin-film solar cell having the upper electrode on which the current collector is installed may be short-circuited or not short-circuited by the installation of the current-collector, but the organic thin-film solar cell element in which the current collector is installed It is preferable that all of the thin film solar cells are short-circuited or not all of them are short-circuited.
When the solar battery cell is short-circuited, electricity can be reliably flowed, so that stable electricity can be taken out. On the other hand, when the organic thin film solar cell is not short-circuited, even an organic thin film solar cell having an upper electrode on which the current collector is installed can generate power, It is preferable in that the amount of power generation, that is, the power generation efficiency can be increased. In particular, if the layer structure of the organic thin-film solar cell is designed so that the upper electrode on which the current collector is installed becomes the non-light-receiving surface of the organic thin-film solar cell, more power is generated because the current collector does not block the light reaching the photoelectric conversion layer. Efficiency can be increased.
 本発明は、集電線を導電性熱硬化性樹脂組成物を介して有機薄膜太陽電池素子と接続することを一つの特徴とするが、特に、集電線を光電変換層と積層した電極に接続する場合に、更に有利な効果を奏する。
 有機薄膜太陽電池素子において、有機成分を含む光電変換層は他の層に対して強度が低い。従って、発電効率の低下を防ぐためには、集電線を設置する領域は、外力からの影響を受けやすい光電変換層からなるべく離れている方が好ましい。その点では、集電線と電極とを光電変換層と積層しない箇所で接続する方が良いが、有機薄膜太陽電池素子を製造した後に電位を変更することができない。
 一方、導電性熱硬化性樹脂組成物は、硬化後に三次元架橋構造を有するため線膨張率が低い。具体的には、通常100ppm/℃以下、好ましくは80ppm/℃以下、より好ましくは60ppm/℃以下、通常10ppm/℃以上、好ましくは20ppm/℃以上、より好ましくは30ppm/℃以上である。従って、熱による収縮と膨張が少なく、光電変換層に与える影響を少なくすることができる。すなわち、集電線を導電性熱硬化性樹脂組成物を介して有機薄膜太陽電池素子と接続することにより、前述の、取り出し電位の自由度を確保し、生産効率を向上させることが可能になる。
The present invention is characterized in that the current collector is connected to the organic thin-film solar cell element via the conductive thermosetting resin composition, and in particular, the current collector is connected to the electrode laminated with the photoelectric conversion layer. In some cases, there are further advantageous effects.
In the organic thin film solar cell element, the photoelectric conversion layer containing an organic component has a lower strength than the other layers. Therefore, in order to prevent a decrease in power generation efficiency, it is preferable that the region where the current collector is installed be as far as possible from the photoelectric conversion layer that is easily affected by external force. In that respect, it is better to connect the current collector and the electrode at a place where the photoelectric conversion layer is not laminated, but the potential cannot be changed after the organic thin film solar cell element is manufactured.
On the other hand, since the conductive thermosetting resin composition has a three-dimensional crosslinked structure after curing, the linear expansion coefficient is low. Specifically, it is usually 100 ppm / ° C. or less, preferably 80 ppm / ° C. or less, more preferably 60 ppm / ° C. or less, usually 10 ppm / ° C. or more, preferably 20 ppm / ° C. or more, more preferably 30 ppm / ° C. or more. Therefore, there is little shrinkage | contraction and expansion | swelling by a heat | fever, and it can reduce the influence which acts on a photoelectric converting layer. That is, by connecting the current collector to the organic thin-film solar cell element via the conductive thermosetting resin composition, it is possible to secure the above-described degree of freedom of the extraction potential and improve the production efficiency.
2-2.集電線
 集電線の材料としては、金属や合金などがよく用いられ、その中でも抵抗率の低い銅やアルミ、銀、金、ニッケルなどを用いることが好ましい。その中でも銅やアルミが安価であることから、特に好ましい。また、錆防止のため、集電線の周囲をスズや銀などでメッキしたり、表面を樹脂などでコートしてあったり、フィルムをラミネートしてあってもよい。集電線の形状としては、平角線、箔、平板、ワイヤー状のものがあるが、接着面積の確保などの理由から、平角線や、箔、平板状のものを用いることが好ましい。
 なお、本発明でいう「箔」は厚さが100μm未満のものをいい、「板」は厚さが100μm以上のものをいう。また「平角線」とは、断面が円形のワイヤーを圧延して、断面の形状を四角形にしたものをいう。
2-2. Current collectors As materials for current collectors, metals, alloys and the like are often used, and among them, it is preferable to use copper, aluminum, silver, gold, nickel or the like having a low resistivity. Among these, copper and aluminum are particularly preferable because they are inexpensive. In order to prevent rust, the current collector may be plated with tin, silver or the like, the surface may be coated with resin, or a film may be laminated. As the shape of the current collecting wire, there are a rectangular wire, foil, flat plate, and wire shape, but for reasons such as securing a bonding area, it is preferable to use a flat wire, foil, or flat plate shape.
In the present invention, the “foil” refers to one having a thickness of less than 100 μm, and the “plate” refers to one having a thickness of 100 μm or more. Further, the “flat wire” refers to a wire whose cross section is rolled to make the cross section into a quadrangle.
 また集電線は、導電性を有する限り特段の限定はされないが、接続する上部電極や下部電極よりも抵抗値が低いものが好ましく、特に、上部電極や下部電極より厚さを厚くすることによって、抵抗値を低減させることが好ましい。集電線の厚さとしては、5μm以上であることが好ましく、より好ましくは10μm以上である。また、2mm以下であることが好ましく、より好ましくは1mm以下、さらに好ましくは300μm以下、特に好ましくは200μm以下である。厚さが上記下限以上であることで、集電線の抵抗値の上昇を抑制し、発電した電力を効率よく外部に取り出しやすいため好ましい。また、上記上限以下であることにより、有機薄膜太陽電池モジュールの重量の増加を抑制するとともに可撓性を維持でき、また、モジュール表面の凹凸の発生を抑制でき、生産コストが増加を抑制できる点で好ましい。 The current collector is not particularly limited as long as it has conductivity, but preferably has a lower resistance value than the upper electrode and lower electrode to be connected, and in particular, by increasing the thickness of the upper electrode and lower electrode, It is preferable to reduce the resistance value. The thickness of the current collector is preferably 5 μm or more, more preferably 10 μm or more. Moreover, it is preferable that it is 2 mm or less, More preferably, it is 1 mm or less, More preferably, it is 300 micrometers or less, Most preferably, it is 200 micrometers or less. It is preferable for the thickness to be equal to or more than the above lower limit, since an increase in the resistance value of the current collecting line is suppressed and the generated power is easily taken out to the outside efficiently. Moreover, by being below the above upper limit, the increase in the weight of the organic thin film solar cell module can be suppressed and the flexibility can be maintained, and the occurrence of irregularities on the module surface can be suppressed, and the increase in production cost can be suppressed. Is preferable.
 また、集電線の幅としては、0.5mm以上であることが好ましく、より好ましくは1mm以上、特に好ましくは2mm以上である。また、集電線の幅は、50mm以下であることが好ましく、より好ましくは20mm以下、特に好ましくは10mm以下である。上記範囲より集電線の幅が狭いと、集電線の抵抗値が上昇し、発電した電力を効率よく取り出すことができなくなる恐れがある。また、集電線の機械強度が減少し、破断等の原因になる恐れがある。また、上記範囲より集電線の幅が広いと、モジュール全体における開口率が減少し、モジュールの発電量の低下に繋がる恐れがある。 Further, the width of the current collecting line is preferably 0.5 mm or more, more preferably 1 mm or more, and particularly preferably 2 mm or more. Moreover, it is preferable that the width | variety of a current collection line is 50 mm or less, More preferably, it is 20 mm or less, Most preferably, it is 10 mm or less. If the width of the current collection line is narrower than the above range, the resistance value of the current collection line will increase, and the generated power may not be taken out efficiently. In addition, the mechanical strength of the current collector decreases, which may cause breakage and the like. Moreover, when the width | variety of a current collection line is wider than the said range, the aperture ratio in the whole module will reduce, and there exists a possibility of leading to the fall of the power generation amount of a module.
 また、集電線の形状をエンボス形状にすることもできる。エンボス形状とは、何らかの凹凸形状を型押しする等により施された形状を意味する。集電線をエンボス形状にすることで、接着層を用いても、エンボス形状の凹凸の一部が電極に直接接するか、または極めて近接することができるため導電性が高まる。
 エンボス深さは、通常5~100μmであり、10~50μmであることが好ましい。なお、エンボス深さとは、エンボス加工によって形成された凸部の高さを意味していて、具体的には凸部を含む厚さから集電線の厚さを差し引いた値である。このようなエンボス深さとすることで、エンボスの凸部が電極に直接接することができるため好ましい。
In addition, the shape of the current collector line can be embossed. The embossed shape means a shape formed by embossing some uneven shape. By forming the current collector in an embossed shape, even if an adhesive layer is used, a portion of the embossed unevenness can be in direct contact with or very close to the electrode, so that conductivity is increased.
The emboss depth is usually 5 to 100 μm, and preferably 10 to 50 μm. The emboss depth means the height of the convex portion formed by embossing, and is specifically a value obtained by subtracting the thickness of the current collector from the thickness including the convex portion. Such an embossing depth is preferable because the embossed convex portion can directly contact the electrode.
2-3.接着層
 本発明では、集電線を、導電性の熱硬化性樹脂組成物(図2aにおける接着層9)を介して電極に接続させることを一つの特徴とする。
 従来、集電線を太陽電池の電極に設置する接着成分として、導電性粒子を含む熱可塑性塑性物、はんだ、金属ペースト、等が知られている。
 本発明によれば、熱可塑性樹脂塑性物を用いる場合に対して、熱に対する耐久性の高い有機薄膜太陽電池モジュールを得ることができる。熱可塑性樹脂組成物は一般に線膨張率が高いため、基材や集電線に用いられる材料との線膨張率比が大きい。従って、高温高湿試験や結露凍結試験、ヒートサイクル試験などの耐久性試験を実施した際に、発電層の膜剥がれなどを起こし、集電線と有機薄膜太陽電池素子間の抵抗を増加させ、出力低下を引き起こす恐れがある。
 また、はんだを用いると、接着の際に200℃以上の高温が必要であり、基材の変形や発電層の劣化を引き起こす恐れがある。金属ペーストは流動性が高く、集電線を設置する際にはみ出して外観不良が発生する場合がある。溶剤を含む金属ペーストの場合は、硬化の際にアウトガスが発生し、有機薄膜太陽電池素子の電極と集電線間の抵抗を増大させ、出力低下を起こす恐れがある。また、有機薄膜太陽電池素子の電極を溶解させ、外観などの不良を発生する場合がある。例えば、電極に銀を用いた際、銀食いと呼ばれる銀を溶解させる現象が発生する場合がある。
 導電性熱硬化性樹脂組成物の硬化温度は、特に制限されないが、基板のガラス転移温度(Tg)未満であることが好ましい。硬化の際の基板の変形を防ぎ、モジュールの外観不良及び出力低下を防ぐことができるためである。具体的には、導電性熱硬化性組成物の硬化温度は通常20℃以上、好ましくは40℃以上、より好ましくは60℃以上であり、通常400℃以下、好ましくは300℃以下、より好ましくは200℃以下、特に好ましくは160℃未満である。上記温度範囲であることで、導電性硬化性組成物のポットライフを一定以上にでき、かつ、硬化させる際の熱によって、基板ひいては有機薄膜太陽電池モジュールが熱変形することを抑制できる。
 また、本発明の有機薄膜太陽電池モジュールに用いる封止材が熱硬化性樹脂を含む場合、導電性熱硬化性樹脂組成物の硬化温度は、封止材に含まれる熱硬化性樹脂が硬化しうる温度以下であることが好ましい。集電線を設置したのちに封止材を設置し、封止材を接着、硬化させる際の加熱工程は、モジュール製造時間を短縮するために、モジュール変形や出力低下が起きない限界近くの温度で行うことが多い。したがって、この際に導電性熱硬化性樹脂組成物を同時に硬化できると、導電性硬化性樹脂単独で硬化させる工程を省略できるだけでなく、封止材を硬化させる際にモジュール変形や出力低下を起こさない。
 封止材が例えば熱可塑性樹脂であり、熱ラミネートにより封止する場合も、同様の理由により、導電性熱硬化性樹脂組成物の硬化温度は熱ラミネートを行う温度よりも低い温度であることが好ましい。
2-3. Adhesive layer The present invention is characterized in that the current collector is connected to the electrode via a conductive thermosetting resin composition (adhesive layer 9 in FIG. 2a).
Conventionally, thermoplastic adhesives containing conductive particles, solder, metal paste, and the like are known as adhesive components for installing a current collector on an electrode of a solar cell.
ADVANTAGE OF THE INVENTION According to this invention, the organic thin film solar cell module with high durability with respect to the case where a thermoplastic resin plastic material is used can be obtained. Since the thermoplastic resin composition generally has a high coefficient of linear expansion, the ratio of the coefficient of linear expansion with the material used for the base material or the current collector is large. Therefore, when durability tests such as high-temperature and high-humidity tests, condensation freezing tests, and heat cycle tests are performed, film peeling of the power generation layer occurs, increasing the resistance between the current collector and the organic thin-film solar cell element, and output May cause decline.
In addition, when solder is used, a high temperature of 200 ° C. or higher is required for bonding, which may cause deformation of the base material and deterioration of the power generation layer. The metal paste has a high fluidity and may protrude when a collector wire is installed, resulting in poor appearance. In the case of a metal paste containing a solvent, outgas is generated at the time of curing, which may increase the resistance between the electrode of the organic thin film solar cell element and the current collector line and cause a decrease in output. Moreover, the electrode of an organic thin film solar cell element may be dissolved, and defects such as appearance may occur. For example, when silver is used for the electrode, a phenomenon called silver erosion that dissolves silver may occur.
The curing temperature of the conductive thermosetting resin composition is not particularly limited, but is preferably less than the glass transition temperature (Tg) of the substrate. This is because the deformation of the substrate during curing can be prevented, and the appearance failure of the module and the decrease in output can be prevented. Specifically, the curing temperature of the conductive thermosetting composition is usually 20 ° C. or higher, preferably 40 ° C. or higher, more preferably 60 ° C. or higher, and usually 400 ° C. or lower, preferably 300 ° C. or lower, more preferably. 200 ° C. or less, particularly preferably less than 160 ° C. By being the said temperature range, the pot life of an electroconductive curable composition can be made more than fixed, and it can suppress that a board | substrate and an organic thin-film solar cell module are thermally deformed by the heat | fever at the time of making it harden | cure.
Moreover, when the sealing material used for the organic thin film solar cell module of the present invention contains a thermosetting resin, the curing temperature of the conductive thermosetting resin composition is such that the thermosetting resin contained in the sealing material is cured. It is preferable that the temperature is lower than the maximum temperature. After the current collector is installed, the encapsulant is installed, and the heating process for bonding and curing the encapsulant is performed at a temperature near the limit at which module deformation and output reduction do not occur in order to reduce module manufacturing time. Often done. Therefore, if the conductive thermosetting resin composition can be simultaneously cured at this time, not only the step of curing with the conductive curable resin alone can be omitted, but also the module deformation and output decrease are caused when the sealing material is cured. Absent.
Even when the sealing material is, for example, a thermoplastic resin and is sealed by thermal lamination, for the same reason, the curing temperature of the conductive thermosetting resin composition may be lower than the temperature at which thermal lamination is performed. preferable.
 導電性熱硬化性組成物の硬化温度は、例えば硬化剤の種類を適切に選択することにより制御可能である。エポキシ樹脂の場合は芳香族アミン系等の硬化剤を用いたり、ジシアンジアミド等の潜在硬化型の硬化剤を用いることにより高くすることができ、脂肪族アミン系等の硬化剤を用いることで低くすることができる。アクリル樹脂やウレタン樹脂の場合は、硬化剤にブロックタイプイソシアネート等の潜在硬化型の硬化剤を用いることにより高くすることが出来る。
 また、本発明において導電性熱硬化性組成物の硬化温度は、セイコーインスツル社製DSCにて、25℃から400℃まで2℃/分で加熱したときの発熱量がピークになる温度である。
 なお、導電性熱硬化性組成物が硬化した後は、硬化物から残存硬化剤を抽出し、NMR等を用いて硬化剤の構造を同定することで類推することができる。
 本発明の効果を阻害しない限り、別の層を積層してもよい。熱硬化性樹脂組成物は硬化させる際に熱を加えるため、常温で硬化するものに比べ、硬化後のガスの発生が少ない。そのため、封止後に屋外に設置され、長時間太陽光に晒されることで有機薄膜太陽電池の温度が上昇したとしても、ガスの発生による有機薄膜太陽電池モジュールの劣化を防ぐことができる。なお、導電性とは、少なくとも電気的に接続可能であればよいことを意味するが、室温(25℃)における体積抵抗率では10Ωcm以下、10-6Ωcm以上である。
The curing temperature of the conductive thermosetting composition can be controlled, for example, by appropriately selecting the type of curing agent. In the case of an epoxy resin, it can be increased by using a curing agent such as an aromatic amine or a latent curing type curing agent such as dicyandiamide, and can be decreased by using a curing agent such as an aliphatic amine. be able to. In the case of an acrylic resin or a urethane resin, it can be increased by using a latent curing type curing agent such as block type isocyanate as the curing agent.
Further, in the present invention, the curing temperature of the conductive thermosetting composition is a temperature at which the calorific value becomes a peak when heated at 2 ° C./min from 25 ° C. to 400 ° C. with a DSC manufactured by Seiko Instruments Inc. .
In addition, after a conductive thermosetting composition hardens | cures, it can analogize by extracting a residual hardening | curing agent from hardened | cured material and identifying the structure of a hardening | curing agent using NMR etc.
Another layer may be laminated as long as the effect of the present invention is not impaired. Since the thermosetting resin composition applies heat when it is cured, the generation of gas after curing is less than that generated at room temperature. Therefore, even if the temperature of the organic thin film solar cell is increased after being installed outdoors after being sealed and exposed to sunlight for a long time, deterioration of the organic thin film solar cell module due to generation of gas can be prevented. Note that the term “conductive” means that at least electrical connection is possible, but the volume resistivity at room temperature (25 ° C.) is 10 Ωcm or less and 10 −6 Ωcm or more.
 本発明に用いる導電性の熱硬化性樹脂組成物としては、バインダー樹脂組成物に導電粒子が分散したものを用いることができる。また、導電性熱硬化性樹脂組成物はシート状でもペースト状でもよいが、シート状であることが好ましい。 As the conductive thermosetting resin composition used in the present invention, a conductive resin dispersed in a binder resin composition can be used. The conductive thermosetting resin composition may be in the form of a sheet or paste, but is preferably in the form of a sheet.
 導電粒子としては、金、ニッケル、銅、銀、白金、半田、パラジウム、アルミニウム等、またはそれらの合金などの金属粒子や、カーボンブラック、カーボンチューブ、カーボンファイバー等のカーボン系粒子、金めっきニッケル粒子などの複合金属粒子、金/ニッケルめっき樹脂粒子、銅めっき樹脂粒子、ニッケルめっき樹脂粒子などの金属被覆樹脂粒子等を挙げることができ、導電性の観点から金属粒子、複合金属粒子、金属被覆樹脂粒子が好ましい。このような、導電粒子を、上記の樹脂に、通常0.01体積%以上、好ましくは0.1体積%以上で、通常50体積%以下、好ましくは20体積%以下含有したものを用いる。導電性粒子の含有量が上記下限以上であることで、導電性粒子による接続安定性を躍起しやすく、導電性の低下を抑制することができる。また導電性粒子の含有量が上記上限以下であることで、樹脂層の成形性を維持し、接着強度の低下を抑制することができる。 Conductive particles include metal particles such as gold, nickel, copper, silver, platinum, solder, palladium, aluminum, or alloys thereof, carbon-based particles such as carbon black, carbon tube, and carbon fiber, and gold-plated nickel particles. Composite metal particles such as gold- / nickel-plated resin particles, copper-plated resin particles, nickel-plated resin particles, and other metal-coated resin particles. From the viewpoint of conductivity, metal particles, composite metal particles, metal-coated resin Particles are preferred. Such conductive particles are used in the above-mentioned resin, usually 0.01% by volume or more, preferably 0.1% by volume or more, and usually 50% by volume or less, preferably 20% by volume or less. When the content of the conductive particles is equal to or more than the above lower limit, the connection stability due to the conductive particles can be easily increased, and a decrease in conductivity can be suppressed. Moreover, the moldability of a resin layer can be maintained and the fall of adhesive strength can be suppressed because content of electroconductive particle is below the said upper limit.
 導電粒子の形状は、特に限定されず、球状、針状、繊維状、フレーク状、スパイク状、コイル状などが挙げられる。導電粒子の大きさとしては特に限定されないが、例えば粒径が1~50μm、好ましくは2~20μmである。尚、当該粒径は、BET法により測定した値である。 The shape of the conductive particles is not particularly limited, and examples thereof include a spherical shape, a needle shape, a fiber shape, a flake shape, a spike shape, and a coil shape. The size of the conductive particles is not particularly limited. For example, the particle size is 1 to 50 μm, preferably 2 to 20 μm. The particle size is a value measured by the BET method.
 バインダー樹脂組成物としては、従来の導電接着剤において用いられている熱硬化性のバインダー樹脂組成物の中から適宜選択して使用することができる。例えば、熱硬化性アクリル樹脂、熱硬化型エポキシ樹脂、熱硬化型尿素樹脂、熱硬化型メラミン樹脂、ポリイミド樹脂、不飽和ポリエステル樹脂、ポリウレタン樹脂、ビスマレイミド樹脂、トリアジン-ビスマレイミド樹脂、熱硬化型フェノール樹脂等を挙げることができる。中でも、硬化後の接着強度が良好な点を考慮すると、熱硬化型エポキシ樹脂を使用したバインダー樹脂組成物を好ましく使用することができる。 The binder resin composition can be appropriately selected from thermosetting binder resin compositions used in conventional conductive adhesives. For example, thermosetting acrylic resin, thermosetting epoxy resin, thermosetting urea resin, thermosetting melamine resin, polyimide resin, unsaturated polyester resin, polyurethane resin, bismaleimide resin, triazine-bismaleimide resin, thermosetting type A phenol resin etc. can be mentioned. Especially, when the point with the favorable adhesive strength after hardening is considered, the binder resin composition using a thermosetting epoxy resin can be used preferably.
 上記バインダー樹脂は硬化剤を含んでもよい。硬化剤としては、イミダゾール系硬化剤、ヒドラジド系硬化剤、アミン系硬化剤、フェノール系硬化剤、酸無水物系硬化剤、三フッ化ホウ素-アミン錯体、スルホニウム塩、ヨードニウム塩、ポリアミンの塩、アミンイミド及びジシアンジアミド等が挙げられる。 The binder resin may contain a curing agent. Curing agents include imidazole curing agents, hydrazide curing agents, amine curing agents, phenol curing agents, acid anhydride curing agents, boron trifluoride-amine complexes, sulfonium salts, iodonium salts, polyamine salts, Examples include amine imide and dicyandiamide.
 このような熱硬化型エポキシ樹脂としては、液状でも固体状でもよく、エポキシ当量が通常100~4000程度であって、分子中に2以上のエポキシ基を有するものが好ましい。例えば、ビスフェノールA型エポキシ化合物、フェノールノボラック型エポキシ化合物、クレゾールノボラック型エポキシ化合物、エステル型エポキシ化合物、脂環型エポキシ化合物等を好ましく使用することができる。また、これらの化合物にはモノマーやオリゴマーが含まれる。 Such a thermosetting epoxy resin may be liquid or solid, and preferably has an epoxy equivalent of usually about 100 to 4000 and having two or more epoxy groups in the molecule. For example, a bisphenol A type epoxy compound, a phenol novolac type epoxy compound, a cresol novolac type epoxy compound, an ester type epoxy compound, an alicyclic epoxy compound, or the like can be preferably used. These compounds include monomers and oligomers.
 本発明に用いる導電性の熱硬化性樹脂組成物としてはACF(Anisotropic Conductive Film、異方性導電フィルム)を用いることもできる。ACFは、熱硬化性の樹脂フィルム中に直径が例えば1μm~10μm程度の導電粒子が分散されたものであり、膜厚方向には導電性を持ち、膜面方向には絶縁性を持つものである。本発明で用いる熱硬化性樹脂組成物には、必要に応じてシリカ、マイカなどの充填剤、顔料、帯電防止剤などを含有させることができる。着色料、防腐剤、ポリイソシアネート系架橋剤、シランカップリング剤なども配合することもできる。 ACF (Anisotropic Conductive Film, anisotropic conductive film) can also be used as the conductive thermosetting resin composition used in the present invention. ACF is a material in which conductive particles having a diameter of, for example, about 1 μm to 10 μm are dispersed in a thermosetting resin film, and has conductivity in the film thickness direction and insulation in the film surface direction. is there. The thermosetting resin composition used in the present invention may contain a filler such as silica and mica, a pigment, an antistatic agent, and the like as necessary. Coloring agents, preservatives, polyisocyanate crosslinking agents, silane coupling agents, and the like can also be blended.
 熱硬化性樹脂組成物の導電性が低い場合には、電極と集電線の一部を熱硬化性樹脂組成物で固定し、残りの部分で電極と集電線とが直接接するように設置することもできる。 When the conductivity of the thermosetting resin composition is low, fix the electrode and a part of the current collector with the thermosetting resin composition, and place the electrode and the current collector in direct contact with the remaining part. You can also.
2-4.封止材
 本発明においては、有機薄膜太陽電池素子と集電線とを接続して有機薄膜太陽電池モジュールを製造するが、少なくとも有機薄膜太陽電池素子を封止することが好ましい。有機薄膜太陽電池素子の封止は、有機薄膜太陽電池素子の補強や、耐衝撃性を上げるために行う。
 封止に使用する封止材は、有機薄膜太陽電池モジュールの強度保持の観点から強度が高いことが好ましい。具体的強度については、封止材以外の層の強度とも関係することになり一概には規定しにくいが、有機薄膜太陽電池モジュール全体が良好な曲げ加工性を有し、折り曲げ部分の剥離を生じないような強度を有するのが望ましい。
2-4. Sealing material In the present invention, an organic thin film solar cell module is manufactured by connecting an organic thin film solar cell element and a collector wire, but it is preferable to seal at least the organic thin film solar cell element. The organic thin-film solar cell element is sealed in order to reinforce the organic thin-film solar cell element and increase impact resistance.
The sealing material used for sealing preferably has high strength from the viewpoint of maintaining the strength of the organic thin-film solar cell module. The specific strength is related to the strength of the layers other than the sealing material and is difficult to define in general, but the entire organic thin-film solar cell module has good bending workability and causes peeling of the bent portion. It is desirable to have such strength.
 また、封止材は、有機薄膜太陽電池セルの受光面側に用いられる場合、光吸収を妨げない観点から可視光を透過させるものが好ましい。例えば、可視光(波長360~830nm)の光の透過率は、通常75%以上、好ましくは80%以上、より好ましくは85%以上、さらに好ましくは90%以上、なかでも好ましくは95%以上、特に好ましくは97%以上である。太陽光をより多く電気エネルギーに変換するためである。 Further, when the sealing material is used on the light receiving surface side of the organic thin film solar battery cell, it is preferable to transmit visible light from the viewpoint of preventing light absorption. For example, the transmittance of visible light (wavelength 360 to 830 nm) is usually 75% or more, preferably 80% or more, more preferably 85% or more, further preferably 90% or more, and particularly preferably 95% or more. Particularly preferably, it is 97% or more. This is to convert more sunlight into electrical energy.
 一方、有機薄膜太陽電池素子の受光面と反対側に封止材を用いる場合は、必ずしも可視光を透過させる必要がなく、不透明でもよい。
 さらに、有機薄膜太陽電池モジュールは光を受けて熱せられることが多いため、封止材も熱に対する耐性を有することが好ましい。この観点から、封止材の構成材料の融点は、通常100℃以上、好ましくは120℃以上、より好ましくは130℃以上であり、また、通常350℃以下、好ましくは320℃以下、より好ましくは300℃以下である。融点を高くすることで有機薄膜太陽電池モジュールの使用時に封止材が融解・劣化するのを防ぐことができる。
On the other hand, when a sealing material is used on the side opposite to the light receiving surface of the organic thin film solar cell element, it is not always necessary to transmit visible light, and may be opaque.
Furthermore, since the organic thin film solar cell module is often heated by receiving light, it is preferable that the sealing material also has heat resistance. From this viewpoint, the melting point of the constituent material of the sealing material is usually 100 ° C. or higher, preferably 120 ° C. or higher, more preferably 130 ° C. or higher, and usually 350 ° C. or lower, preferably 320 ° C. or lower, more preferably It is 300 degrees C or less. By increasing the melting point, it is possible to prevent the sealing material from melting and deteriorating when the organic thin film solar cell module is used.
 封止材の厚さは特に規定されないが、通常5μm以上、好ましくは10μm以上、より好ましくは30μm以上であり、また、通常1000μm以下、好ましくは800μm以下、より好ましくは600μm以下である。厚くすることで有機薄膜太陽電池モジュール全体の強度が高まる傾向にあり、薄くすることで柔軟性が高まり、また可視光の透過率が向上する傾向にある。このため、両方の利点を兼ね備える範囲として、上記範囲とするのが望ましい。 The thickness of the sealing material is not particularly defined, but is usually 5 μm or more, preferably 10 μm or more, more preferably 30 μm or more, and usually 1000 μm or less, preferably 800 μm or less, more preferably 600 μm or less. Increasing the thickness tends to increase the strength of the entire organic thin-film solar cell module, and decreasing the thickness tends to increase flexibility and improve visible light transmittance. For this reason, it is desirable to set it as the said range as a range which has both advantages.
 封止材を構成する材料としては、特に限定されず、架橋剤を含む酢酸ビニルエチレン共重合体、ポリウレタン、エポキシ樹脂等の熱硬化性樹脂、ポリオレフィン、ポリエステル、アクリル樹脂等の熱可塑性樹脂、ブチルゴム、シリコーンゴム等のエラストマー系樹脂、または上記の複合体でもよい。
 封止材は、封止できる温度が通常50℃以上、好ましくは100℃以上であり、通常250℃以下、好ましくは200℃以下、より好ましくは180℃以下、更に好ましくは160℃以下、特に好ましくは140℃以下である。上記温度範囲において、導電性熱硬化性樹脂組成物の硬化温度以上の温度で加熱することにより、封止と導電性熱硬化性樹脂組成物の硬化(すなわち有機薄膜太陽電池素子と集電線との接続)とを同時に行うことができる。
 本発明においては封止材が上記熱硬化性樹脂を含むと、有機薄膜太陽電池モジュールを使用する際に、高温に晒されても変形しづらい点で好ましい。
 本発明においては、封止材が熱硬化性樹脂の場合、封止材の硬化温度が導電性熱硬化性樹脂組成物の硬化温度よりも高い、すなわち、導電性熱硬化性樹脂組成物の硬化温度が、封止材に含まれる熱硬化性樹脂が硬化しうる温度以下であると、封止の際に導電性熱硬化性樹脂組成物の硬化も同時に行えるため好ましい。
 封止材に含まれる熱硬化性樹脂の硬化温度(すなわち、熱硬化性樹脂を含む封止材の硬化温度)は、通常50℃以上、好ましくは100℃以上であり、通常250℃以下、好ましくは200℃以下、より好ましくは180℃以下、更に好ましくは160℃以下、特に好ましくは140℃以下である。
 EVAフィルムには通常は耐候性の向上のために架橋剤を配合して架橋構造を構成させる。この架橋剤としては、一般に、100℃以上でラジカルを発生する有機過酸化物が用いられる。このような有機過酸化物としては、例えば、2,5-ジメチルヘキサン、2,5-ジハイドロパーオキサイド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン又は3-ジ-t-ブチルパーオキサイド等を用いることができる。これらの有機過酸化物の配合量は、EVA樹脂100重量部に対して、通常5重量部以下、好ましくは3重量部以下であり、通常1重量部以上である。なお、架橋剤は1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
The material constituting the sealing material is not particularly limited, and is a thermosetting resin such as vinyl acetate ethylene copolymer containing a crosslinking agent, polyurethane or epoxy resin, a thermoplastic resin such as polyolefin, polyester or acrylic resin, or butyl rubber. Further, it may be an elastomeric resin such as silicone rubber, or the above composite.
The sealing material has a sealing temperature of usually 50 ° C. or higher, preferably 100 ° C. or higher, usually 250 ° C. or lower, preferably 200 ° C. or lower, more preferably 180 ° C. or lower, more preferably 160 ° C. or lower, particularly preferably. Is 140 ° C. or lower. In the above temperature range, by heating at a temperature equal to or higher than the curing temperature of the conductive thermosetting resin composition, sealing and curing of the conductive thermosetting resin composition (that is, between the organic thin-film solar cell element and the current collector) Connection) at the same time.
In the present invention, when the sealing material contains the thermosetting resin, it is preferable in that the organic thin film solar cell module is not easily deformed even when exposed to high temperatures.
In the present invention, when the sealing material is a thermosetting resin, the curing temperature of the sealing material is higher than the curing temperature of the conductive thermosetting resin composition, that is, the curing of the conductive thermosetting resin composition. It is preferable that the temperature is equal to or lower than the temperature at which the thermosetting resin contained in the encapsulant can be cured, since the conductive thermosetting resin composition can be cured at the same time during the encapsulation.
The curing temperature of the thermosetting resin contained in the sealing material (that is, the curing temperature of the sealing material containing the thermosetting resin) is usually 50 ° C. or higher, preferably 100 ° C. or higher, and usually 250 ° C. or lower, preferably Is 200 ° C. or lower, more preferably 180 ° C. or lower, still more preferably 160 ° C. or lower, and particularly preferably 140 ° C. or lower.
In order to improve weather resistance, the EVA film is usually blended with a crosslinking agent to form a crosslinked structure. As the crosslinking agent, an organic peroxide that generates radicals at 100 ° C. or higher is generally used. Examples of such organic peroxides include 2,5-dimethylhexane, 2,5-dihydroperoxide, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane, and 3- Di-t-butyl peroxide or the like can be used. The compounding amount of these organic peroxides is usually 5 parts by weight or less, preferably 3 parts by weight or less, and usually 1 part by weight or more with respect to 100 parts by weight of EVA resin. In addition, 1 type may be used for a crosslinking agent and it may use 2 or more types together by arbitrary combinations and a ratio.
 このEVA樹脂組成物には、接着力向上の目的で、シランカップリング剤を含有させてもよい。この目的に供されるシランカップリング剤としては、例えば、γ-クロロプロピルトリメトキシシラン、ビニルトリクロロシラン、ビニルトリエトキシシラン、ビニル-トリス-(β-メトキシエトキシ)シラン、γ-メタクリロキシプロピルトリメトキシシラン又はβ-(3,4-エトキシシクロヘキシル)エチルトリメトキシシラン等を挙げることができる。これらのシランカップリング剤の配合量は、EVA樹脂100重量部に対して、通常5重量部以下、好ましくは2重量部以下であり、通常0.1重量部以上である。なお、シランカップリング剤は1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。 This EVA resin composition may contain a silane coupling agent for the purpose of improving the adhesive strength. Examples of silane coupling agents used for this purpose include γ-chloropropyltrimethoxysilane, vinyltrichlorosilane, vinyltriethoxysilane, vinyl-tris- (β-methoxyethoxy) silane, γ-methacryloxypropyltri Mention may be made of methoxysilane or β- (3,4-ethoxycyclohexyl) ethyltrimethoxysilane. The compounding amount of these silane coupling agents is usually 5 parts by weight or less, preferably 2 parts by weight or less, and usually 0.1 parts by weight or more with respect to 100 parts by weight of the EVA resin. In addition, 1 type may be used for a silane coupling agent and it may use 2 or more types together by arbitrary combinations and a ratio.
 更に、EVA樹脂のゲル分率を向上させ、耐久性を向上するために、EVA樹脂組成物に架橋助剤を含有させてもよい。この目的に供される架橋助剤としては、例えば、トリアリルイソシアヌレート又はトリアリルイソシアネート等の3官能の架橋助剤等の単官能の架橋助剤等が挙げられる。これらの架橋助剤の配合量は、EVA樹脂100重量部に対して、通常10重量部以下、好ましくは5重量部以下であり、また、通常1重量部以上である。なお、架橋助剤は1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。架橋助剤が架橋する温度は、通常50℃以上、好ましくは100℃以上であり、通常250℃以下、好ましくは200℃以下、より好ましくは180℃以下、更に好ましくは160℃以下、特に好ましくは140℃以下である。上記温度範囲であることにより、封止と導電性熱硬化性樹脂組成物の硬化とを同時に行うことができる。 Furthermore, in order to improve the gel fraction of the EVA resin and improve the durability, a crosslinking aid may be included in the EVA resin composition. Examples of the crosslinking aid provided for this purpose include monofunctional crosslinking aids such as trifunctional crosslinking aids such as triallyl isocyanurate or triallyl isocyanate. The amount of these crosslinking aids is usually 10 parts by weight or less, preferably 5 parts by weight or less, and usually 1 part by weight or more with respect to 100 parts by weight of the EVA resin. In addition, 1 type may be used for a crosslinking adjuvant, and 2 or more types may be used together by arbitrary combinations and a ratio. The temperature at which the crosslinking aid crosslinks is usually 50 ° C. or higher, preferably 100 ° C. or higher, usually 250 ° C. or lower, preferably 200 ° C. or lower, more preferably 180 ° C. or lower, still more preferably 160 ° C. or lower, particularly preferably. 140 ° C. or lower. By being the said temperature range, sealing and hardening of a conductive thermosetting resin composition can be performed simultaneously.
 更に、EVA樹脂の安定性を向上する目的で、EVA樹脂組成物に、例えばハイドロキノン、ハイドロキノンモノメチルエーテル、p-ベンゾキノン又はメチルハイドロキノンなどを含有させてもよい。これらの配合量は、EVA樹脂100重量部に対して、通常5重量部以下である。
 しかし、EVA樹脂の架橋処理には比較的時間を要するため、有機薄膜太陽電池モジュールの生産速度及び生産効率を低下させる原因となる場合がある。また、長期間使用の際には、EVA樹脂組成物の分解ガス(酢酸ガス)またはEVA樹脂自体が有する酢酸ビニル基が、有機薄膜太陽電池素子に悪影響を与えて発電効率が低下させる場合がある。そこで、封止材としては、EVAフィルムの他に、プロピレン・エチレン・α-オレフィン共重合体からなる共重合体のフィルムを用いることもできる。
Furthermore, for the purpose of improving the stability of the EVA resin, the EVA resin composition may contain, for example, hydroquinone, hydroquinone monomethyl ether, p-benzoquinone, or methylhydroquinone. These compounding quantities are normally 5 weight part or less with respect to 100 weight part of EVA resin.
However, since the EVA resin cross-linking process requires a relatively long time, it may cause a reduction in production speed and production efficiency of the organic thin-film solar cell module. In addition, when used for a long period of time, the decomposition gas (acetic acid gas) of the EVA resin composition or the vinyl acetate group of the EVA resin itself may adversely affect the organic thin film solar cell element and reduce the power generation efficiency. . Therefore, as the sealing material, in addition to the EVA film, a copolymer film made of a propylene / ethylene / α-olefin copolymer may be used.
 なお、封止材は1種の材料で形成されていてもよく、2種以上の材料で形成されていても良い。また、封止材は単層フィルムにより形成されていても良いが、2層以上のフィルムを備えた積層フィルムであってもよい。 
 封止材は、通常有機薄膜太陽電池素子を挟み込むように設ける。
 また、封止材に、紫外線遮断、熱線遮断、導電性、反射防止、防眩性、光拡散、光散乱、波長変換、ガスバリア性等の機能を付与してもよい。特に、有機薄膜太陽電池の場合は、水や酸素に弱く、太陽光からの強い紫外線にさらされることから、ガスバリア性や紫外線遮断機能を持つことが好ましい。
 このような機能を付与する方法としては、機能を有する層を塗布成膜等により封止材上に積層してもよいし、機能を発現する材料を溶解・分散させるなどして封止材に含有させてもよい。
Note that the sealing material may be formed of one kind of material or may be formed of two or more kinds of materials. Moreover, although the sealing material may be formed with the single layer film, the laminated | multilayer film provided with the film of two or more layers may be sufficient as it.
The sealing material is usually provided so as to sandwich the organic thin film solar cell element.
In addition, the sealing material may be provided with functions such as ultraviolet blocking, heat blocking, conductivity, antireflection, antiglare, light diffusion, light scattering, wavelength conversion, and gas barrier properties. In particular, in the case of an organic thin film solar cell, it is weak against water and oxygen, and is exposed to strong ultraviolet rays from sunlight, and therefore preferably has a gas barrier property and an ultraviolet blocking function.
As a method of imparting such a function, a layer having a function may be laminated on the sealing material by coating film formation or the like, or a material that exhibits the function is dissolved and dispersed in the sealing material. You may make it contain.
 ガスバリア性としては、例えば、以下の水蒸気透過率および酸素透過性を満たすものが挙げられる。
 水蒸気透過率としては、封止材100μm厚における水蒸気透過率Pdが、40℃90%RH環境下で、通常10-1g/m/day以下、好ましくは10-2g/m/day以下、より好ましくは10-3g/m/day以下、さらに好ましくは10-4g/m/day以下である。水蒸気透過率は、JIS K7129に準じた感湿センサ、赤外線センサ、ガスクロマトグラフを備えた装置による測定、カップ法(JIS Z0208)により、40℃90%RH環境で測定する。
Examples of the gas barrier property include those satisfying the following water vapor permeability and oxygen permeability.
The water vapor transmission rate is typically 10 −1 g / m 2 / day or less, preferably 10 −2 g / m 2 / day, at 40 ° C. and 90% RH in a 100 μm-thick sealing material. Hereinafter, it is more preferably 10 −3 g / m 2 / day or less, and further preferably 10 −4 g / m 2 / day or less. The water vapor transmission rate is measured in an environment of 40 ° C. and 90% RH by a measurement using an apparatus equipped with a humidity sensor, an infrared sensor, and a gas chromatograph according to JIS K7129, or by a cup method (JIS Z0208).
 酸素透過性としては、例えば、一般的には、25℃環境下で100μm厚での単位面積(1m)の1日あたりの酸素透過率が、通常1cc/m/day/atm以下であり、1×10-1cc/m/day/atm以下であることが好ましく、1×10-2cc/m/day/atm以下であることがより好ましく、1×10-3cc/m/day/atm以下であることがさらに好ましく、1×10-4cc/m/day/atm以下であることがとりわけ好ましく、1×10-5cc/m/day/atm以下であることが特に好ましい。酸素が透過しなければしないほど、素子の酸化による劣化が抑えられる利点がある。なお、酸素透過率は、JIS K7126Aに準じた差圧法に基づく装置、あるいはJIS K7126Bに準じた等圧法に基づく赤外線センサ、ガスクロマトグラフを備えた装置で測定することができる。 As the oxygen permeability, for example, generally, the oxygen permeability per day of a unit area (1 m 2 ) at a thickness of 100 μm in a 25 ° C. environment is usually 1 cc / m 2 / day / atm or less. , 1 is preferably × 10 -1 or less cc / m 2 / day / atm , more preferably not more than 1 × 10 -2 cc / m 2 / day / atm, 1 × 10 -3 cc / m 2 / day / atm or less is more preferable, and 1 × 10 −4 cc / m 2 / day / atm or less is particularly preferable, and 1 × 10 −5 cc / m 2 / day / atm or less. It is particularly preferred. There is an advantage that deterioration due to oxidation of the element can be suppressed as oxygen does not pass through. The oxygen permeability can be measured with an apparatus based on a differential pressure method according to JIS K7126A, or an apparatus equipped with an infrared sensor and a gas chromatograph based on an isobaric method according to JIS K7126B.
 封止材により有機薄膜太陽電池素子を封止する封止工程は、有機薄膜太陽電池素子に集電線を設置する工程(工程1)の後に行っても良く、工程1の前に行っても良い。
 工程1の後に、更に有機薄膜太陽電池モジュールを封止する工程を有する場合には、集電線も含め有機薄膜太陽電池モジュール全体を封止し、その後、有機薄膜太陽電池モジュールの封止材のうち、電気を取り出したい集電線が存在する箇所にスリットを形成し、該スリットから集電線を取り出すこともできる。
 この場合、上部電極への集電線の接続個所は1か所以上であれば任意であり、所望の電位を取り出せる位置に集電線を接続すればよい。
The sealing step of sealing the organic thin film solar cell element with the sealing material may be performed after the step (step 1) of installing the collector wire on the organic thin film solar cell element, or may be performed before step 1. .
When it has the process of sealing an organic thin film solar cell module after process 1, the whole organic thin film solar cell module including a current collection line is sealed, and after that among the sealing materials of an organic thin film solar cell module It is also possible to form a slit at a location where there is a current collecting wire from which electricity is to be taken out, and take out the current collecting wire from the slit.
In this case, the number of connection points of the collector line to the upper electrode is arbitrary as long as it is one or more, and the collector line may be connected to a position where a desired potential can be taken out.
 工程1の前に、有機薄膜太陽電池モジュールを封止する工程を有する場合には、封止後の封止材に対して、集電線を接続する位置にスリットを形成することで、有機薄膜太陽電池モジュールの表面に上部電極が露出した状態となる。そして、スリットの位置の上部電極と集電線を接続すればよい。また、封止を行う前の封止材に、あらかじめ特定の位置にスリットを設けることで、封止後にスリットを形成する手間が省ける。このようにあらかじめスリットを設けることで、封止後にスリットを形成する際に生じる有機薄膜太陽電池セルへのダメージの可能性を排除することが可能となる。 When it has the process of sealing an organic thin-film solar cell module before the process 1, it forms an organic thin-film solar by forming a slit in the position which connects a current collection line with respect to the sealing material after sealing. The upper electrode is exposed on the surface of the battery module. And what is necessary is just to connect the upper electrode and collector wire of the position of a slit. Moreover, by providing a slit at a specific position in advance in the sealing material before sealing, the labor of forming the slit after sealing can be saved. Providing slits in advance in this way makes it possible to eliminate the possibility of damage to the organic thin film solar cells that occur when the slits are formed after sealing.
 本発明の有機薄膜太陽電池モジュールでは、封止後更に耐候性保護シートを最表面に設けることができる。耐候性保護シートは温度変化、湿度変化、光、風雨などデバイス設置環境から有機薄膜太陽電池モジュールを保護するシート及びフィルムである。耐候性保護シートでデバイス表面を覆うことにより、有機薄膜太陽電池モジュール構成材料、特に有機薄膜太陽電池素子が保護され、劣化することなく、高い発電能力を得ることができるという利点がある。 In the organic thin film solar cell module of the present invention, a weatherproof protective sheet can be further provided on the outermost surface after sealing. The weather-resistant protective sheet is a sheet and film that protects the organic thin-film solar cell module from a device installation environment such as temperature change, humidity change, light, and wind and rain. By covering the device surface with the weather-resistant protective sheet, there is an advantage that the organic thin-film solar cell module constituent material, particularly the organic thin-film solar cell element, is protected and high power generation capability can be obtained without deterioration.
 耐候性保護シートは、有機薄膜太陽電池素子の最表層に位置するため、耐候性、耐熱性、透明性、撥水性、耐汚染性、機械強度などの、有機薄膜太陽電池セルの表面被覆材として好適な性能を備え、しかもそれを屋外暴露において長期間維持する性質を有することが好ましい。
 また、耐候性保護シートは、有機薄膜太陽電池セルの受光面側に用いられる場合、光吸収を妨げない観点から可視光を透過させるものが好ましい。例えば、可視光(波長360~830nm)の光の透過率は、通常75%以上、好ましくは80%以上、より好ましくは85%以上、さらに好ましくは90%以上、なかでも好ましくは95%以上、特に好ましくは97%以上である。太陽光をより多く電気エネルギーに変換するためである。
Since the weather-resistant protective sheet is located on the outermost layer of the organic thin-film solar cell element, it is used as a surface covering material for organic thin-film solar cells such as weather resistance, heat resistance, transparency, water repellency, contamination resistance, and mechanical strength. It is preferable to have a suitable performance and to maintain it for a long period of time in outdoor exposure.
Moreover, when a weather-resistant protective sheet is used for the light-receiving surface side of the organic thin-film solar battery cell, it is preferable to transmit visible light from the viewpoint of not preventing light absorption. For example, the transmittance of visible light (wavelength 360 to 830 nm) is usually 75% or more, preferably 80% or more, more preferably 85% or more, further preferably 90% or more, and particularly preferably 95% or more. Particularly preferably, it is 97% or more. This is to convert more sunlight into electrical energy.
 一方、有機薄膜太陽電池素子の受光面と反対側に耐候性保護シートを用いる場合は、必ずしも可視光を透過させる必要がなく、不透明でもよい。 
 さらに、有機薄膜太陽電池素子は光を受けて熱せられることが多いため、耐候性保護シートも熱に対する耐性を有することが好ましい。この観点から、耐候性保護シートの構成材料の融点は、通常100℃以上、好ましくは120℃以上、より好ましくは130℃以上であり、また、通常350℃以下、好ましくは320℃以下、より好ましくは300℃以下である。融点を高くすることで有機薄膜太陽電池素子の使用時に耐候性保護シートが融解・劣化する可能性を低減できる。
On the other hand, when a weatherproof protective sheet is used on the side opposite to the light receiving surface of the organic thin film solar cell element, it is not always necessary to transmit visible light, and may be opaque.
Furthermore, since the organic thin-film solar cell element is often heated by receiving light, it is preferable that the weather-resistant protective sheet also has heat resistance. From this viewpoint, the melting point of the constituent material of the weatherproof protective sheet is usually 100 ° C. or higher, preferably 120 ° C. or higher, more preferably 130 ° C. or higher, and usually 350 ° C. or lower, preferably 320 ° C. or lower, more preferably. Is 300 ° C. or lower. By increasing the melting point, it is possible to reduce the possibility that the weatherproof protective sheet will melt and deteriorate when the organic thin film solar cell element is used.
 耐候性保護シートを構成する材料は、有機薄膜太陽電池モジュールを保護することができるものであれば任意である。その材料の例を挙げると、ポリエチレン樹脂、ポリプロピレン樹脂、環状ポリオレフィン樹脂、AS(アクリロニトリル-スチレン)樹脂、ABS(アクリロニトリル-ブタジエン-スチレン)樹脂、ポリ塩化ビニル樹脂、フッ素系樹脂、ポリエチレンテレフタラート、ポリエチレンナフタレート等のポリエステル樹脂、フェノール樹脂、ポリアクリル系樹脂、各種ナイロン等のポリアミド樹脂、ポリイミド樹脂、ポリアミド-イミド樹脂、ポリウレタン樹脂、セルロース系樹脂、シリコーン系樹脂、ポリカーボネート樹脂などが挙げられる。 The material constituting the weatherproof protective sheet is arbitrary as long as it can protect the organic thin film solar cell module. Examples of the material include polyethylene resin, polypropylene resin, cyclic polyolefin resin, AS (acrylonitrile-styrene) resin, ABS (acrylonitrile-butadiene-styrene) resin, polyvinyl chloride resin, fluorine resin, polyethylene terephthalate, polyethylene Examples thereof include polyester resins such as naphthalate, phenol resins, polyacrylic resins, polyamide resins such as various nylons, polyimide resins, polyamide-imide resins, polyurethane resins, cellulose resins, silicone resins, and polycarbonate resins.
 中でも好ましくはフッ素系樹脂が挙げられ、その具体例を挙げるとポリテトラフルオロエチレン(PTFE)、4-フッ化エチレン-パークロロアルコキシ共重合体(PFA)、4-フッ化エチレン-6-フッ化プロピレン共重合体(FEP)、2-エチレン-4-フッ化エチレン共重合体(ETFE)、ポリ3-フッ化塩化エチレン(PCTFE)、ポリフッ化ビニリデン(PVDF)及びポリフッ化ビニル(PVF)等が挙げられる。 Among them, fluorine resin is preferable, and specific examples thereof include polytetrafluoroethylene (PTFE), 4-fluoroethylene-perchloroalkoxy copolymer (PFA), 4-fluoroethylene-6-fluoride. Propylene copolymer (FEP), 2-ethylene-4-fluoroethylene copolymer (ETFE), poly-3-fluoroethylene chloride (PCTFE), polyvinylidene fluoride (PVDF), polyvinyl fluoride (PVF), etc. Can be mentioned.
 なお、耐候性保護シートは1種の材料で形成されていてもよく、2種以上の材料で形成されていても良い。また、耐候性保護シートは単層フィルムにより形成されていても良いが、2層以上のフィルムを備えた積層フィルムであってもよい。
 耐候性保護シートの厚さは特に規定されないが、通常10μm以上、好ましくは15μm以上、より好ましくは20μm以上であり、また、通常200μm以下、好ましくは180μm以下、より好ましくは150μm以下である。厚さを厚くすることで機械的強度が高まる傾向にあり、薄くすることで柔軟性が高まる傾向にある。このため、両方の利点を兼ね備える範囲として、上記範囲とするのが望ましい。
In addition, the weather-resistant protective sheet may be formed of one type of material or may be formed of two or more types of materials. Moreover, the weather-resistant protective sheet may be formed of a single layer film, but may be a laminated film including two or more layers.
The thickness of the weatherproof protective sheet is not particularly defined, but is usually 10 μm or more, preferably 15 μm or more, more preferably 20 μm or more, and usually 200 μm or less, preferably 180 μm or less, more preferably 150 μm or less. Increasing the thickness tends to increase mechanical strength, and decreasing the thickness tends to increase flexibility. For this reason, it is desirable to set it as the said range as a range which has both advantages.
 また耐候性保護シートには、他のフィルムとの接着性の改良のために、コロナ処理、プラズマ処理等の表面処理を行なってもよい。 
 耐候性保護シートは、有機薄膜太陽電池モジュールにおいてできるだけ外側に設けることが好ましい。デバイス構成部材のうちより多くのものを保護できるようにするためである。
 また、耐候性保護シートに紫外線遮断、熱線遮断、防汚性、親水性、疎水性、防曇性、耐擦性、導電性、反射防止、防眩性、光拡散、光散乱、波長変換、ガスバリア性等の機能を付与してもよい。特に、有機薄膜太陽電池の場合は、太陽光からの強い紫外線にさらされることから、紫外線遮断機能を持つことが好ましい。
Moreover, you may perform surface treatments, such as a corona treatment and a plasma treatment, in order to improve the adhesiveness with another film to a weather-resistant protective sheet.
The weatherproof protective sheet is preferably provided on the outer side as much as possible in the organic thin film solar cell module. This is because more device components can be protected.
In addition, UV protection, heat ray blocking, antifouling properties, hydrophilicity, hydrophobicity, antifogging properties, abrasion resistance, conductivity, antireflection, antiglare properties, light diffusion, light scattering, wavelength conversion, Functions such as gas barrier properties may be imparted. In particular, the organic thin film solar cell is preferably exposed to strong ultraviolet rays from sunlight, and therefore has an ultraviolet blocking function.
 このような機能を付与する方法としては、機能を有する層を塗布成膜等により耐候性保護シート上に積層してもよいし、機能を発現する材料を溶解・分散させるなどして耐候性保護シートに含有させてもよい。 As a method for imparting such a function, a layer having a function may be laminated on a weather-resistant protective sheet by coating film formation or the like, or a weather-resistant protection is achieved by dissolving or dispersing a material exhibiting the function. You may make it contain in a sheet | seat.
2-5.有機薄膜太陽電池モジュールの層構成
 以下、図3を用いて、有機薄膜太陽電池モジュールの層構成の一例を説明するが、本発明の有機薄膜太陽電池モジュールの層構成は図3の態様に限定されない。
2-5. Layer Configuration of Organic Thin Film Solar Cell Module Hereinafter, an example of the layer configuration of the organic thin film solar cell module will be described with reference to FIG. .
 図3は本発明の一実施形態としての有機薄膜太陽電池モジュールの構成を模式的に示す断面図である。図3に示すように、本実施形態の有機薄膜太陽電池モジュール44は、耐候性保護シート31と、紫外線カットフィルム32と、ガスバリアフィルム33と、ゲッター材フィルム34と、封止材35と、有機薄膜太陽電池素子36と、封止材37と、ゲッター材フィルム38と、ガスバリアフィルム39と、バックシート40とをこの順に備える。そして、耐候性保護シート31が形成された側(図中下方)から光が照射されて、有機薄膜太陽電池素子36が発電するようになっている。なお、後述するバックシート40としてアルミ箔の両面にフッ素系樹脂フィルムを接着したシート等の防水性の高いシートを用いる場合は、用途によりゲッター材フィルム38及び/又はガスバリアフィルム39を用いなくてもよい。 FIG. 3 is a cross-sectional view schematically showing the configuration of an organic thin film solar cell module as one embodiment of the present invention. As shown in FIG. 3, the organic thin-film solar cell module 44 of this embodiment includes a weather-resistant protective sheet 31, an ultraviolet cut film 32, a gas barrier film 33, a getter material film 34, a sealing material 35, and an organic material. A thin film solar cell element 36, a sealing material 37, a getter material film 38, a gas barrier film 39, and a back sheet 40 are provided in this order. And light is irradiated from the side (downward in the figure) where the weatherproof protective sheet 31 is formed, and the organic thin film solar cell element 36 generates electric power. In addition, when using a highly waterproof sheet such as a sheet in which a fluororesin film is bonded to both surfaces of an aluminum foil as the back sheet 40 described later, the getter material film 38 and / or the gas barrier film 39 may not be used depending on the application. Good.
(耐候性保護シート31)
 耐候性保護シートに関しては、上述したとおりである。
(Weather-resistant protective sheet 31)
The weatherproof protective sheet is as described above.
(紫外線カットフィルム32)
 紫外線カットフィルム32は紫外線の透過を防止するフィルムである。
 有機薄膜太陽電池モジュール44の構成部品のなかには紫外線により劣化するものがある。また、ガスバリアフィルム33、39等は種類によっては紫外線により劣化するものがある。そこで、紫外線カットフィルム32を有機薄膜太陽電池モジュール44の受光部分に設け、紫外線カットフィルム32で有機薄膜太陽電池素子36の受光面を覆うことにより、有機薄膜太陽電池素子36及び必要に応じてガスバリアフィルム33、39等を紫外線から保護し、発電能力を高く維持することができるようになっている。
(UV cut film 32)
The ultraviolet cut film 32 is a film that prevents the transmission of ultraviolet rays.
Some components of the organic thin film solar cell module 44 are deteriorated by ultraviolet rays. Some of the gas barrier films 33 and 39 and the like are deteriorated by ultraviolet rays depending on the type. Accordingly, the ultraviolet cut film 32 is provided on the light receiving portion of the organic thin film solar cell module 44, and the light receiving surface of the organic thin film solar cell element 36 is covered with the ultraviolet cut film 32, thereby allowing the organic thin film solar cell element 36 and, if necessary, a gas barrier. The films 33, 39, etc. are protected from ultraviolet rays so that the power generation capacity can be kept high.
 紫外線カットフィルム32に要求される紫外線の透過抑制能力の程度は、紫外線(例えば、波長300nm)の透過率が50%以下であることが好ましく、30%以下であることがより好ましく、特に好ましくは10%以下である。
 また、紫外線カットフィルム32は、有機薄膜太陽電池素子36の光吸収を妨げない観点から可視光を透過させるものが好ましい。例えば、可視光(波長360~830nm)の光の透過率が80%以上であることが好ましく、90%以上であることがより好ましく、特に好ましくは95%以上である。
The degree of the ability to suppress the transmission of ultraviolet rays required for the ultraviolet cut film 32 is such that the transmittance of ultraviolet rays (for example, wavelength 300 nm) is preferably 50% or less, more preferably 30% or less, and particularly preferably. 10% or less.
Further, the ultraviolet cut film 32 is preferably one that transmits visible light from the viewpoint of not preventing the organic thin film solar cell element 36 from absorbing light. For example, the transmittance of visible light (wavelength 360 to 830 nm) is preferably 80% or more, more preferably 90% or more, and particularly preferably 95% or more.
 さらに、有機薄膜太陽電池モジュール44は光を受けて熱せられることが多いため、紫外線カットフィルム32も熱に対する耐性を有することが好ましい。この観点から、紫外線カットフィルム32の構成材料の融点は、通常100℃以上、好ましくは120℃以上、より好ましくは130℃以上である。また、通常350℃以下、好ましくは320℃以下、より好ましくは300℃以下である。融点が低すぎると有機薄膜太陽電池モジュール44の使用時に紫外線カットフィルム32が融解する可能性がある。 Furthermore, since the organic thin film solar cell module 44 is often heated by receiving light, the ultraviolet cut film 32 preferably has resistance to heat. From this viewpoint, the melting point of the constituent material of the ultraviolet cut film 32 is usually 100 ° C. or higher, preferably 120 ° C. or higher, more preferably 130 ° C. or higher. Moreover, it is 350 degrees C or less normally, Preferably it is 320 degrees C or less, More preferably, it is 300 degrees C or less. If the melting point is too low, the ultraviolet cut film 32 may melt when the organic thin film solar cell module 44 is used.
 また、紫外線カットフィルム32は、柔軟性が高く、隣接するフィルムとの接着性が良好であり、水蒸気や酸素をカットしうるものが好ましい。
 紫外線カットフィルム32を構成する材料は、紫外線の強度を弱めることができるものであれば任意である。その材料の例として、エポキシ系、アクリル系、ウレタン系又はエステル系の樹脂に紫外線吸収剤を配合して成膜したフィルム等が挙げられる。また、紫外線吸収剤を樹脂中に分散あるいは溶解させたものの層(以下、適宜「紫外線吸収層」という)を基材フィルム上に形成したフィルムを用いてもよい。
Moreover, the ultraviolet cut film 32 has a high softness | flexibility, its adhesiveness with an adjacent film is favorable, and what can cut water vapor | steam and oxygen is preferable.
The material constituting the ultraviolet cut film 32 is arbitrary as long as it can weaken the intensity of ultraviolet rays. Examples of the material include a film formed by blending an ultraviolet absorber with an epoxy, acrylic, urethane, or ester resin. Further, a film in which a layer of an ultraviolet absorbent dispersed or dissolved in a resin (hereinafter referred to as “ultraviolet absorbing layer” as appropriate) is formed on a base film may be used.
 紫外線吸収剤としては、例えば、サリチル酸系、ベンゾフェノン系、ベンゾトリアゾール系、シアノアクリレート系のものを用いることができる。中でもベンゾフェノン系、ベンゾトリアゾール系が好ましい。この例としては、ベンゾフェノン系やベンゾトリアゾール系の種々の芳香族系有機化合物等が挙げられる。なお、紫外線吸収剤は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
 紫外線カットフィルム32の具体的な商品の例として、カットエース(MKVプラスティック株式会社)等が挙げられる。
As the ultraviolet absorber, for example, salicylic acid-based, benzophenone-based, benzotriazole-based, and cyanoacrylate-based ones can be used. Of these, benzophenone and benzotriazole are preferable. Examples of this include various aromatic organic compounds such as benzophenone and benzotriazole. In addition, a ultraviolet absorber may use 1 type and may use 2 or more types together by arbitrary combinations and a ratio.
Specific examples of the ultraviolet cut film 32 include cut ace (MKV Plastic Co., Ltd.) and the like.
 なお、紫外線カットフィルム32は1種の材料で形成されていてもよく、2種以上の材料で形成されていてもよい。また、紫外線カットフィルム32は単層フィルムにより形成されていてもよいが、2層以上のフィルムを備えた積層フィルムであってもよい。
 紫外線カットフィルム32の厚さは特に規定されないが、通常5μm以上、好ましくは10μm以上、より好ましくは15μm以上である。また、通常200μm以下、好ましくは180μm以下、より好ましくは150μm以下である。厚さを厚くすることで紫外線の吸収が高まる傾向にあり、薄くすることで可視光の透過率を増加させられる傾向にある。
The ultraviolet cut film 32 may be formed of one type of material or may be formed of two or more types of materials. Further, the ultraviolet cut film 32 may be formed of a single layer film, but may be a laminated film including two or more layers.
The thickness of the ultraviolet cut film 32 is not particularly limited, but is usually 5 μm or more, preferably 10 μm or more, more preferably 15 μm or more. Moreover, it is 200 micrometers or less normally, Preferably it is 180 micrometers or less, More preferably, it is 150 micrometers or less. Increasing the thickness tends to increase the absorption of ultraviolet rays, and decreasing the thickness tends to increase the transmittance of visible light.
 紫外線カットフィルム32は、有機薄膜太陽電池素子36の受光面の少なくとも一部を覆う位置に設ければよい。好ましくは有機薄膜太陽電池素子36の受光面の全てを覆う位置に設ける。
 ただし、有機薄膜太陽電池素子36の受光面を覆う位置以外の位置にも紫外線カットフィルム32が設けられていてもよい。
The ultraviolet cut film 32 may be provided at a position covering at least a part of the light receiving surface of the organic thin film solar cell element 36. Preferably, the organic thin film solar cell element 36 is provided at a position covering the entire light receiving surface.
However, the ultraviolet cut film 32 may be provided at a position other than the position covering the light receiving surface of the organic thin film solar cell element 36.
(ガスバリアフィルム33)
 ガスバリアフィルム33は水及び酸素の透過を防止するフィルムである。
(Gas barrier film 33)
The gas barrier film 33 is a film that prevents permeation of water and oxygen.
 有機薄膜太陽電池素子36は湿気及び酸素に弱い傾向があり、特に、ZnO:Al等の透明電極や、化合物半導体系太陽電池素子及び有機薄膜太陽電池素子が水分及び酸素により劣化することがある。そこで、ガスバリアフィルム33で有機薄膜太陽電池素子36を被覆することにより、太陽電池素子36を水及び酸素から保護し、発電能力を高く維持することができる。
 ガスバリアフィルム33に要求される防湿能力の程度は、単位面積(1m)の1日あたりの水蒸気透過率が、1×10-1g/m/day以下であることが好ましく、1×10-2g/m/day以下であることがより好ましく、1×10-3g/m/day以下であることが更に好ましく、1×10-4g/m/day以下であることが中でも好ましく、1×10-5g/m/day以下であることがとりわけ好ましく、1×10-6g/m/day以下であることが特に好ましい。水蒸気が透過しなければしないほど、太陽電池素子36及び当該素子36のZnO:Al等の透明電極の水分との反応に起因する劣化が抑えられるので、発電効率が上がると共に寿命が延びる。
The organic thin film solar cell element 36 tends to be sensitive to moisture and oxygen. In particular, transparent electrodes such as ZnO: Al, compound semiconductor solar cell elements, and organic thin film solar cell elements may be deteriorated by moisture and oxygen. Therefore, by covering the organic thin film solar cell element 36 with the gas barrier film 33, the solar cell element 36 can be protected from water and oxygen, and the power generation capacity can be maintained high.
The degree of moisture-proof capability required for the gas barrier film 33 is such that the water vapor permeability per unit area (1 m 2 ) per day is preferably 1 × 10 −1 g / m 2 / day or less, and 1 × 10 It is more preferably −2 g / m 2 / day or less, further preferably 1 × 10 −3 g / m 2 / day or less, and 1 × 10 −4 g / m 2 / day or less. Among them, it is particularly preferable, and it is particularly preferably 1 × 10 −5 g / m 2 / day or less, and particularly preferably 1 × 10 −6 g / m 2 / day or less. As the water vapor does not pass through, deterioration due to the reaction of the solar cell element 36 and the transparent electrode such as ZnO: Al of the element 36 with moisture is suppressed, so that the power generation efficiency is increased and the life is extended.
 ガスバリアフィルム33に要求される酸素透過性の程度は、単位面積(1m)の1日あたりの酸素透過率が、1×10-1cc/m/day/atm以下であることが好ましく、1×10-2cc/m/day/atm以下であることがより好ましく、1×10-3cc/m/day/atm以下であることが更に好ましく、1×10-4cc/m/day/atm以下であることが中でも好ましく、1×10-5cc/m/day/atm以下であることがとりわけ好ましく、1×10-6cc/m/day/atm以下であることが特に好ましい。酸素が透過しなければしないほど、有機薄膜太陽電池素子36及び当該素子36のZnO:Al等の透明電極の酸化による劣化が抑えられる。 The degree of oxygen permeability required for the gas barrier film 33 is preferably such that the oxygen permeability per unit area (1 m 2 ) per day is 1 × 10 −1 cc / m 2 / day / atm or less, It is more preferably 1 × 10 −2 cc / m 2 / day / atm or less, further preferably 1 × 10 −3 cc / m 2 / day / atm or less, and further preferably 1 × 10 −4 cc / m. 2 / day / atm or less is particularly preferable, and 1 × 10 −5 cc / m 2 / day / atm or less is particularly preferable, and 1 × 10 −6 cc / m 2 / day / atm or less. It is particularly preferred. The deterioration due to oxidation of the organic thin film solar cell element 36 and the transparent electrode such as ZnO: Al of the element 36 is suppressed as oxygen does not permeate.
 従来はこのように高い防湿及び酸素遮断能力を有するガスバリアフィルム33の実装が困難であったため、有機太陽電池素子のように優れた太陽電池素子を備えた太陽電池を実現することが困難であった。しかし、このようなガスバリアフィルム33を適用することにより有機太陽電池素子の優れた性質を活かした有機薄膜太陽電池モジュール44の実施が容易となる。 Conventionally, since it was difficult to mount the gas barrier film 33 having such a high moisture-proof and oxygen-blocking capability, it was difficult to realize a solar cell including an excellent solar cell element such as an organic solar cell element. . However, application of such a gas barrier film 33 facilitates the implementation of the organic thin film solar cell module 44 utilizing the excellent properties of the organic solar cell element.
 また、ガスバリアフィルム33は、有機薄膜太陽電池素子36の光吸収を妨げない観点から可視光を透過させるものが好ましい。例えば、可視光(波長360~830nm)の光の透過率は、通常60%以上、好ましくは70%以上、より好ましくは75%以上、更に好ましくは80%以上、中でも好ましくは85%以上、とりわけ好ましくは90%以上、特に好ましくは95%以上、その中でも特に好ましくは97%以上である。太陽光をより多く電気エネルギーに変換するためである。 Further, the gas barrier film 33 is preferably one that transmits visible light from the viewpoint of not preventing the organic thin film solar cell element 36 from absorbing light. For example, the transmittance of visible light (wavelength 360 to 830 nm) is usually 60% or more, preferably 70% or more, more preferably 75% or more, still more preferably 80% or more, and particularly preferably 85% or more, especially Preferably it is 90% or more, Especially preferably, it is 95% or more, Especially preferably, it is 97% or more. This is to convert more sunlight into electrical energy.
 さらに、有機薄膜太陽電池モジュール44は光を受けて熱せられることが多いため、ガスバリアフィルム33も熱に対する耐性を有することが好ましい。この観点から、ガスバリアフィルム33の構成材料の融点は、通常100℃以上、好ましくは120℃以上、より好ましくは130℃以上であり、また、通常350℃以下、好ましくは320℃以下、より好ましくは300℃以下である。融点を高くすることで有機薄膜太陽電池モジュール44の使用時にガスバリアフィルム33が融解・劣化する可能性を低減できる。 Furthermore, since the organic thin film solar cell module 44 is often heated by receiving light, the gas barrier film 33 preferably has resistance to heat. From this viewpoint, the melting point of the constituent material of the gas barrier film 33 is usually 100 ° C. or higher, preferably 120 ° C. or higher, more preferably 130 ° C. or higher, and usually 350 ° C. or lower, preferably 320 ° C. or lower, more preferably. It is 300 degrees C or less. By increasing the melting point, it is possible to reduce the possibility that the gas barrier film 33 is melted and deteriorated when the organic thin film solar cell module 44 is used.
 ガスバリアフィルム33の具体的な構成は、有機薄膜太陽電池素子36を水から保護できる限り任意である。ただし、ガスバリアフィルム33を透過しうる水蒸気や酸素の量を少なくできるフィルムほど製造コストが高くなるため、これらの点を総合的に勘案して適切なものを使用することが好ましい。 The specific configuration of the gas barrier film 33 is arbitrary as long as the organic thin film solar cell element 36 can be protected from water. However, since the production cost increases as the amount of water vapor or oxygen that can permeate the gas barrier film 33 increases, it is preferable to use an appropriate film considering these points comprehensively.
 中でも好適なガスバリアフィルム33としては、例えば、ポリエチレンテレフタレート(PET)或いはポリエチレンナフタレート(PEN)等の基材フィルムにSiOxを真空蒸着したフィルム等が挙げられる。
 なお、ガスバリアフィルム33は1種の材料で形成されていてもよく、2種以上の材料で形成されていてもよい。また、ガスバリアフィルム33は単層フィルムにより形成されていてもよいが、2層以上のフィルムを備えた積層フィルムであってもよい。
Particularly suitable gas barrier film 33 includes, for example, a film obtained by vacuum-depositing SiOx on a base film such as polyethylene terephthalate (PET) or polyethylene naphthalate (PEN).
The gas barrier film 33 may be formed of one type of material or may be formed of two or more types of materials. The gas barrier film 33 may be formed of a single layer film, but may be a laminated film including two or more layers.
 ガスバリアフィルム33の厚さは特に規定されないが、通常5μm以上、好ましくは10μm以上、より好ましくは15μm以上であり、また、通常200μm以下、好ましくは180μm以下、より好ましくは150μm以下である。厚さを厚くすることでガスバリア性が高まる傾向にあり、薄くすることで柔軟性が高まりまた可視光の透過率が向上する傾向にある。 The thickness of the gas barrier film 33 is not particularly defined, but is usually 5 μm or more, preferably 10 μm or more, more preferably 15 μm or more, and usually 200 μm or less, preferably 180 μm or less, more preferably 150 μm or less. Increasing the thickness tends to increase gas barrier properties, and decreasing the thickness tends to increase flexibility and improve visible light transmittance.
 ガスバリアフィルム33は、有機薄膜太陽電池素子36を被覆して湿気及び酸素から保護できればその形成位置に制限は無いが、有機薄膜太陽電池素子36の正面(受光面側の面。図3では下側の面)及び背面(受光面とは反対側の面。図3では上側の面)を覆うことが好ましい。薄膜太陽電池モジュール44においてはその正面及び背面が他の面よりも大面積に形成されることが多いためである。本実施形態ではガスバリアフィルム33が有機薄膜太陽電池素子36の正面を覆い、後述するガスバリアフィルム39が有機薄膜太陽電池素子36の背面を覆うようになっている。なお、後述するバックシート40としてアルミ箔の両面にフッ素系樹脂フィルムを接着したシート等の防水性の高いシートを用いる場合は、用途によりゲッター材フィルム38及び/又はガスバリアフィルム39を用いなくてもよい。 If the gas barrier film 33 can cover the organic thin film solar cell element 36 and protect it from moisture and oxygen, the formation position is not limited, but the front surface of the organic thin film solar cell element 36 (the surface on the light receiving surface side; the lower side in FIG. 3). And the back surface (surface opposite to the light receiving surface; upper surface in FIG. 3). This is because the front and back surfaces of the thin film solar cell module 44 are often formed in a larger area than the other surfaces. In this embodiment, the gas barrier film 33 covers the front surface of the organic thin film solar cell element 36, and a gas barrier film 39 described later covers the back surface of the organic thin film solar cell element 36. In addition, when using a highly waterproof sheet such as a sheet in which a fluororesin film is bonded to both surfaces of an aluminum foil as the back sheet 40 described later, the getter material film 38 and / or the gas barrier film 39 may not be used depending on the application. Good.
(ゲッター材フィルム34)
 ゲッター材フィルム34は水分及び/又は酸素を吸収するフィルムである。有機薄膜太陽電池素子36の構成部品のなかには前記のように水分で劣化するものがあり、また、酸素によって劣化するものもある。そこで、ゲッター材フィルム34で有機薄膜太陽電池素子36を覆うことにより、有機薄膜太陽電池素子36等を水分及び/又は酸素から保護し、発電能力を高く維持するようにしている。
(Getter material film 34)
The getter material film 34 is a film that absorbs moisture and / or oxygen. Some of the components of the organic thin-film solar cell element 36 are deteriorated by moisture as described above, and some are deteriorated by oxygen. Therefore, by covering the organic thin film solar cell element 36 with the getter material film 34, the organic thin film solar cell element 36 and the like are protected from moisture and / or oxygen, and the power generation capacity is kept high.
 ここで、ゲッター材フィルム34は前記のようなガスバリアフィルム33とは異なり、水分の透過を妨げるものではなく、水分を吸収するものである。水分を吸収するフィルムを用いることにより、ガスバリアフィルム33等で有機薄膜太陽電池素子36を被覆した場合に、ガスバリアフィルム33及び9で形成される空間に僅かに浸入する水分をゲッター材フィルム34が捕捉して水分による有機薄膜太陽電池素子36への影響を排除できる。 Here, unlike the gas barrier film 33 as described above, the getter material film 34 does not prevent moisture permeation, but absorbs moisture. By using a film that absorbs moisture, when the organic thin film solar cell element 36 is covered with the gas barrier film 33 or the like, the getter material film 34 captures moisture that slightly enters the space formed by the gas barrier films 33 and 9. Thus, the influence of moisture on the organic thin film solar cell element 36 can be eliminated.
 ゲッター材フィルム34の水分吸収能力の程度は、通常0.1mg/cm以上、好ましくは0.5mg/cm以上、より好ましくは1mg/cm以上である。この数値が高いほど水分吸収能力が高く有機薄膜太陽電池素子36の劣化を抑制しうる。また、上限に制限は無いが、通常10mg/cm以下である。
 また、ゲッター材フィルム34が酸素を吸収することにより、ガスバリアフィルム33及び39等で有機薄膜太陽電池素子36を被覆した場合に、ガスバリアフィルム33及び39で形成される空間に僅かに浸入する酸素をゲッター材フィルム34が捕捉して酸素による有機薄膜太陽電池素子36への影響を排除できる。
The degree of water absorption capacity of the getter material film 34 is usually 0.1 mg / cm 2 or more, preferably 0.5 mg / cm 2 or more, more preferably 1 mg / cm 2 or more. The higher the numerical value, the higher the water absorption capacity, and the deterioration of the organic thin film solar cell element 36 can be suppressed. Moreover, although there is no restriction | limiting in an upper limit, it is usually 10 mg / cm < 2 > or less.
Further, when the organic thin-film solar cell element 36 is covered with the gas barrier films 33 and 39 or the like due to the absorption of oxygen by the getter material film 34, oxygen that slightly enters the space formed by the gas barrier films 33 and 39 is absorbed. The getter material film 34 can capture and eliminate the influence of oxygen on the organic thin film solar cell element 36.
 さらに、ゲッター材フィルム34は、有機薄膜太陽電池素子36の光吸収を妨げない観点から可視光を透過させるものが好ましい。例えば、可視光(波長360~830nm)の光の透過率は、通常60%以上、好ましくは70%以上、より好ましくは75%以上、更に好ましくは80%以上、中でも好ましくは85%以上、とりわけ好ましくは90%以上、特に好ましくは95%以上、その中でも特に好ましくは97%以上である。太陽光をより多く電気エネルギーに変換するためである。 Furthermore, the getter material film 34 is preferably one that transmits visible light from the viewpoint of not preventing the organic thin-film solar cell element 36 from absorbing light. For example, the transmittance of visible light (wavelength 360 to 830 nm) is usually 60% or more, preferably 70% or more, more preferably 75% or more, still more preferably 80% or more, and particularly preferably 85% or more, especially Preferably it is 90% or more, Especially preferably, it is 95% or more, Especially preferably, it is 97% or more. This is to convert more sunlight into electrical energy.
 さらに、有機薄膜太陽電池モジュール44は光を受けて熱せされることが多いため、ゲッター材フィルム34も熱に対する耐性を有することが好ましい。この観点から、ゲッター材フィルム34の構成材料の融点は、通常100℃以上、好ましくは120℃以上、より好ましくは130℃以上であり、また、通常350℃以下、好ましくは320℃以下、より好ましくは300℃以下である。融点を高くすることで有機薄膜太陽電池モジュール44の使用時にゲッター材フィルム34が融解・劣化する可能性を低減できる。 Furthermore, since the organic thin-film solar cell module 44 is often heated by receiving light, the getter material film 34 preferably has heat resistance. From this viewpoint, the melting point of the constituent material of the getter material film 34 is usually 100 ° C. or higher, preferably 120 ° C. or higher, more preferably 130 ° C. or higher, and usually 350 ° C. or lower, preferably 320 ° C. or lower, more preferably. Is 300 ° C. or lower. By increasing the melting point, it is possible to reduce the possibility that the getter material film 34 melts and deteriorates when the organic thin film solar cell module 44 is used.
 ゲッター材フィルム34を構成する材料は、水分及び/又は酸素を吸収することができるものであれば任意である。その材料の例を挙げると、水分を吸収する物質としてアルカリ金属、アルカリ土類金属又はアルカリ土類金属の酸化物;アルカリ金属又はアルカリ土類金属の水酸化物;シリカゲル、ゼオライト系化合物、硫酸マグネシウム、硫酸ナトリウム又は硫酸ニッケル等の硫酸塩;アルミニウム金属錯体又はアルミニウムオキサイドオクチレート等の有機金属化合物等が挙げられる。具体的には、アルカリ土類金属としては、Ca、Sr又はBa等が挙げられる。アルカリ土類金属の酸化物としては、CaO、SrO又はBaO等が挙げられる。その他にZr-Al-BaOやアルミニウム金属錯体等も挙げられる。具体的な商品名を挙げると、例えば、OleDry(双葉電子社製)等が挙げられる。 The material constituting the getter material film 34 is arbitrary as long as it can absorb moisture and / or oxygen. Examples of the material include alkali metal, alkaline earth metal or alkaline earth metal oxides; alkali metal or alkaline earth metal hydroxides; silica gel, zeolitic compounds, magnesium sulfate. And sulfates such as sodium sulfate and nickel sulfate; and organometallic compounds such as aluminum metal complexes and aluminum oxide octylates. Specifically, examples of the alkaline earth metal include Ca, Sr, and Ba. Examples of the alkaline earth metal oxide include CaO, SrO, and BaO. Other examples include Zr—Al—BaO and aluminum metal complexes. Specific product names include, for example, OleDry (Futaba Electronics).
 酸素を吸収する物質としては、活性炭、シリカゲル、活性アルミナ、モレキュラーシーブ、酸化マグネシウム又は酸化鉄等が挙げられる。またFe、Mn、Zn、及びこれら金属の硫酸塩・塩化物塩・硝酸塩等の無機塩も挙げられる。
 なお、ゲッター材フィルム34は1種の材料で形成されていてもよく、2種以上の材料で形成されていてもよい。また、ゲッター材フィルム34は単層フィルムにより形成されていてもよいが、2層以上のフィルムを備えた積層フィルムであってもよい。
Examples of the substance that absorbs oxygen include activated carbon, silica gel, activated alumina, molecular sieve, magnesium oxide, and iron oxide. In addition, Fe, Mn, Zn, and inorganic salts such as sulfates, chlorides, and nitrates of these metals are also included.
In addition, the getter material film 34 may be formed of one type of material or may be formed of two or more types of materials. The getter material film 34 may be formed of a single layer film, but may be a laminated film including two or more layers.
 ゲッター材フィルム34の厚さは特に規定されないが、通常5μm以上、好ましくは10μm以上、より好ましくは15μm以上であり、また、通常200μm以下、好ましくは180μm以下、より好ましくは150μm以下である。厚さを厚くすることで機械的強度が高まる傾向にあり、薄くすることで柔軟性が高まる傾向にある。
 ゲッター材フィルム34は、ガスバリアフィルム33及び39で形成される空間内であればその形成位置に制限は無いが、有機薄膜太陽電池素子36の正面(受光面側の面。図3では下側の面)及び背面(受光面とは反対側の面。図3では上側の面)を覆うことが好ましい。有機薄膜太陽電池モジュール44においてはその正面及び背面が他の面よりも大面積に形成されることが多いため、これらの面を介して水分及び酸素が浸入する傾向があるからである。この観点から、ゲッター材フィルム34はガスバリアフィルム33と有機薄膜太陽電池素子36との間に設けることが好ましい。本実施形態ではゲッター材フィルム34が有機薄膜太陽電池素子36の正面を覆い、後述するゲッター材フィルム38が有機薄膜太陽電池素子36の背面を覆い、ゲッター材フィルム34、38がそれぞれ有機薄膜太陽電池素子36とガスバリアフィルム33、39との間に位置するようになっている。なお、後述するバックシート40としてアルミ箔の両面にフッ素系樹脂フィルムを接着したシート等防水性の高いシートを用いる場合は、用途によりゲッター材フィルム38及び/又はガスバリアフィルム39を用いなくてもよい。
The thickness of the getter material film 34 is not particularly defined, but is usually 5 μm or more, preferably 10 μm or more, more preferably 15 μm or more, and usually 200 μm or less, preferably 180 μm or less, more preferably 150 μm or less. Increasing the thickness tends to increase mechanical strength, and decreasing the thickness tends to increase flexibility.
The getter material film 34 is not limited in its formation position as long as it is in the space formed by the gas barrier films 33 and 39, but the front surface (light receiving surface side surface of the organic thin film solar cell element 36. Surface) and back surface (surface opposite to the light receiving surface; upper surface in FIG. 3) is preferably covered. This is because in the organic thin film solar cell module 44, the front and back surfaces are often formed in a larger area than the other surfaces, and therefore moisture and oxygen tend to enter through these surfaces. From this viewpoint, the getter material film 34 is preferably provided between the gas barrier film 33 and the organic thin film solar cell element 36. In this embodiment, the getter material film 34 covers the front surface of the organic thin film solar cell element 36, the getter material film 38 described later covers the back surface of the organic thin film solar cell element 36, and the getter material films 34 and 38 are respectively organic thin film solar cells. It is located between the element 36 and the gas barrier films 33 and 39. In addition, when using a highly waterproof sheet such as a sheet obtained by bonding a fluororesin film on both sides of an aluminum foil as the back sheet 40 described later, the getter material film 38 and / or the gas barrier film 39 may not be used depending on the application. .
 ゲッター材フィルム34は吸水剤又は乾燥剤の種類に応じて任意の方法で形成することができるが、例えば、吸水剤又は乾燥剤を分散したフィルムを粘着剤で添付する方法、吸水剤又は乾燥剤の溶液をスピンコート法、インクジェット法又はディスペンサー法等で塗布する方法等を用いることができる。また真空蒸着法やスパッタリング法等の成膜法を使用してもよい。 The getter material film 34 can be formed by any method depending on the type of the water-absorbing agent or desiccant. For example, a method of attaching a film in which the water-absorbing agent or desiccant is dispersed with an adhesive, water-absorbing agent or desiccant The method of apply | coating this solution with a spin coat method, the inkjet method, or a dispenser method etc. can be used. Further, a film forming method such as a vacuum evaporation method or a sputtering method may be used.
 吸水剤又は乾燥剤のためのフィルムとしては、例えば、ポリエチレン系樹脂、ポリプロピレン系樹脂、環状ポリオレフィン系樹脂、ポリスチレン系樹脂、アクリロニトリル-スチレン共重合体(AS樹脂)、アクリロニトリル-ブタジエン-スチレン共重合体(ABS樹脂)、ポリ塩化ビニル系樹脂、フッ素系樹脂、ポリ(メタ)アクリル系樹脂又はポリカーボネート系樹脂等を用いることができる。中でも、ポリエチレン系樹脂、フッ素系樹脂、環状ポリオレフィン系樹脂又はポリカーボネート系樹脂のフィルムが好ましい。なお、前記樹脂は1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。 Examples of the film for the water-absorbing agent or drying agent include polyethylene resins, polypropylene resins, cyclic polyolefin resins, polystyrene resins, acrylonitrile-styrene copolymers (AS resins), and acrylonitrile-butadiene-styrene copolymers. (ABS resin), polyvinyl chloride resin, fluorine resin, poly (meth) acrylic resin, polycarbonate resin, or the like can be used. Among these, a film of polyethylene resin, fluorine resin, cyclic polyolefin resin or polycarbonate resin is preferable. In addition, the said resin may use 1 type and may use 2 or more types together by arbitrary combinations and a ratio.
(封止材35)
 封止材35に関しては、上述したとおりである。本実施形態では、有機薄膜太陽電池素子36の正面及び背面にそれぞれ封止材35及び封止材37を設けるようにしている。
(Sealing material 35)
The sealing material 35 is as described above. In this embodiment, the sealing material 35 and the sealing material 37 are provided on the front surface and the back surface of the organic thin film solar cell element 36, respectively.
(有機薄膜太陽電池素子36)
 有機薄膜太陽電池素子36は、前述の有機薄膜太陽電池素子と同様である。
(Organic thin film solar cell element 36)
The organic thin film solar cell element 36 is the same as the organic thin film solar cell element described above.
 ・太陽電池素子同士の接続
 有機薄膜太陽電池素子36は、有機薄膜太陽電池モジュール44の1個あたり1個だけを設けてもよいが(例えば図3)、通常は、図3に示すように、2個以上の有機薄膜太陽電池素子36を設ける。具体的な太有機薄膜陽電池素子36の個数は任意に設定すればよい。有機薄膜太陽電池素子36を複数設ける場合、有機薄膜太陽電池素子36はアレイ状に並べて設けられていることが多い。
-Connection between solar cell elements Although only one organic thin film solar cell element 36 may be provided per one organic thin film solar cell module 44 (for example, FIG. 3), normally, as shown in FIG. Two or more organic thin film solar cell elements 36 are provided. The specific number of thick organic thin film positive battery elements 36 may be set arbitrarily. When a plurality of organic thin film solar cell elements 36 are provided, the organic thin film solar cell elements 36 are often arranged in an array.
 有機薄膜太陽電池素子36を複数設ける場合、既に各有機薄膜太陽電池素子には集電線が設けられているため、通常は、有機薄膜太陽電池素子36同士は、各有機薄膜太陽電池素子が有する集電線を、必要に応じて他の導電性部材を用いて電気的に接続する。そして、接続された一群の有機薄膜太陽電池素子36から生じた電気を端子(図示せず)から取り出す。この際、電圧を高めるため通常は、有機薄膜太陽電池素子は直列に接続される。
 このように有機薄膜太陽電池素子36同士を接続する場合には、有機薄膜太陽電池素子36間の距離は小さいことが好ましい。ひいては、有機薄膜太陽電池素子36と有機薄膜太陽電池素子36との間の隙間は狭いことが好ましい。有機薄膜太陽電池素子36の受光面積を広くして受光量を増加させ、有機薄膜太陽電池モジュール44の発電量を増加させるためである。
When a plurality of organic thin film solar cell elements 36 are provided, a current collector is already provided in each organic thin film solar cell element. Therefore, normally, the organic thin film solar cell elements 36 are the collectors of each organic thin film solar cell element. The electric wires are electrically connected using other conductive members as necessary. Then, electricity generated from the group of connected organic thin film solar cell elements 36 is taken out from a terminal (not shown). At this time, the organic thin film solar cell elements are usually connected in series in order to increase the voltage.
Thus, when connecting the organic thin film solar cell elements 36, it is preferable that the distance between the organic thin film solar cell elements 36 is small. As a result, it is preferable that the gap between the organic thin film solar cell element 36 and the organic thin film solar cell element 36 is narrow. This is because the light receiving area of the organic thin film solar cell element 36 is widened to increase the amount of received light, and the power generation amount of the organic thin film solar cell module 44 is increased.
(封止材37)
 封止材37に関しては、上述したとおりである。配設位置が異なる他は封止材35と同様のものを同様に用いることができる。
 また、有機薄膜太陽電池素子36よりも背面側の構成部材は必ずしも可視光を透過させる必要が無いため、可視光を透過させないものを用いることもできる。
(Encapsulant 37)
The sealing material 37 is as described above. The thing similar to the sealing material 35 can be used similarly except an arrangement position differing.
Moreover, since the constituent member on the back side of the organic thin film solar cell element 36 does not necessarily need to transmit visible light, a member that does not transmit visible light can be used.
(ゲッター材フィルム38)
 ゲッター材フィルム38は、上述したゲッター材フィルム34と同様のフィルムであり、配設位置が異なる他はゲッター材フィルム34と同様のものを同様に必要に応じて用いることができる。
 また、有機薄膜太陽電池素子36よりも背面側の構成部材は必ずしも可視光を透過させる必要が無いため、可視光を透過させないものを用いることもできる。また使用する水分あるいは酸素吸収剤をゲッター材フィルム34よりも多く含有するフィルムを用いることも可能となる。このような吸収剤としては、水分吸収剤としてCaO、BaO又はZr-Al-BaO等が挙げられ、酸素の吸収剤として活性炭やモレキュラーシーブ等が挙げられる。
(Getter material film 38)
The getter material film 38 is the same film as the getter material film 34 described above, and the same getter material film 34 can be used as necessary except that the arrangement position is different.
Moreover, since the constituent member on the back side of the organic thin film solar cell element 36 does not necessarily need to transmit visible light, a member that does not transmit visible light can be used. It is also possible to use a film containing more of the moisture or oxygen absorbent used than the getter material film 34. Examples of such absorbents include CaO, BaO, Zr—Al—BaO, and the like as moisture absorbents, and activated carbon, molecular sieves, and the like as oxygen absorbents.
(ガスバリアフィルム39)
 ガスバリアフィルム39は、上述したガスバリアフィルム33と同様のフィルムであり、配設位置が異なる他はガスバリアフィルム39と同様のものを同様に必要に応じて用いることができる。
 また、有機薄膜太陽電池素子36よりも背面側の構成部材は必ずしも可視光を透過させる必要が無いため、可視光を透過させないものを用いることもできる。
(Gas barrier film 39)
The gas barrier film 39 is a film similar to the gas barrier film 33 described above, and the same material as the gas barrier film 39 can be used as necessary, except that the arrangement position is different.
Moreover, since the constituent member on the back side of the organic thin film solar cell element 36 does not necessarily need to transmit visible light, a member that does not transmit visible light can be used.
(バックシート40)
 バックシート40は、上述した耐候性保護シート31と同様のフィルムであり、配設位置が異なる他は耐候性保護シート31と同様のものを同様に用いることができる。また、このバックシート40が水及び酸素を透過させ難いものであれば、バックシート40をガスバリア層として機能させることも可能である。
(Backsheet 40)
The back sheet 40 is a film similar to the weather-resistant protective sheet 31 described above, and the same film as the weather-resistant protective sheet 31 can be used in the same manner except that the arrangement position is different. Further, if the back sheet 40 is difficult to permeate water and oxygen, the back sheet 40 can function as a gas barrier layer.
 また、有機薄膜太陽電池素子36よりも背面側の構成部材は必ずしも可視光を透過させる必要が無いため、可視光を透過させないものを用いることもできる。このため、バックシート40としては、以下に説明するもの(i)~(iv)を用いることが特に好ましい。
 (i)バックシート40としては、強度に優れ、耐候性、耐熱性、耐水性及び/又は耐光性に優れた各種の樹脂のフィルム又はシートを使用することができる。例えば、ポリエチレン系樹脂、ポリプロピレン系樹脂、環状ポリオレフィン系樹脂、ポリスチレン系樹脂、アクリロニトリルースチレン共重合体(AS樹脂)、アクリロニトリルーブタジエンースチレン共重合体(ABS樹脂)、ポリ塩化ビニル系樹脂、フッ素系樹脂、ポリ(メタ)アクリル系樹脂、ポリカーボネート系樹脂、ポリエチレンテレフタレート若しくはポリエチレンナフタレート等のポリエステル系樹脂、各種のナイロン等のポリアミド系樹脂、ポリイミド系樹脂、ポリアミドイミド系樹脂、ポリアリールフタレート系樹脂、シリコーン系樹脂、ポリスルホン系樹脂、ポリフェニレンスルフィド系樹脂、ポリエーテルスルホン系樹脂、ポリウレタン系樹脂、アセタール系樹脂、セルロース系樹脂又はその他等の各種の樹脂のシートを使用することができる。これらの樹脂のシートの中でも、フッ素系樹脂、環状ポリオレフィン系樹脂、ポリカーボネート系樹脂、ポリ(メタ)アクリル系樹脂、ポリアミド系樹脂又はポリエステル系樹脂のシートを使用することが好ましい。なお、これらは1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
Moreover, since the constituent member on the back side of the organic thin film solar cell element 36 does not necessarily need to transmit visible light, a member that does not transmit visible light can be used. Therefore, it is particularly preferable to use the following (i) to (iv) as the backsheet 40.
(I) As the back sheet 40, various resin films or sheets excellent in strength and excellent in weather resistance, heat resistance, water resistance and / or light resistance can be used. For example, polyethylene resin, polypropylene resin, cyclic polyolefin resin, polystyrene resin, acrylonitrile-styrene copolymer (AS resin), acrylonitrile-butadiene-styrene copolymer (ABS resin), polyvinyl chloride resin, fluorine Resin, poly (meth) acrylic resin, polycarbonate resin, polyester resin such as polyethylene terephthalate or polyethylene naphthalate, various polyamide resins such as nylon, polyimide resin, polyamideimide resin, polyaryl phthalate resin , Silicone resin, polysulfone resin, polyphenylene sulfide resin, polyethersulfone resin, polyurethane resin, acetal resin, cellulose resin or other resin It can be used. Among these resin sheets, it is preferable to use a fluorine resin, a cyclic polyolefin resin, a polycarbonate resin, a poly (meth) acrylic resin, a polyamide resin, or a polyester resin sheet. In addition, these may use 1 type and may use 2 or more types together by arbitrary combinations and a ratio.
 (ii)バックシート40としては、金属薄膜を用いることもできる。例えば、腐蝕防止したアルミニウム金属箔、ステンレス製薄膜等が挙げられる。なお、前記の金属は1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
 (iii)バックシート40としては、例えばアルミ箔の両面にフッ素系樹脂フィルムを接着した防水性の高いシートを用いてもよい。フッ素系樹脂としては、例えば、一弗化エチレン(商品名:テドラー、デュポン社製)、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレンとエチレン若しくはプロピレンとのコポリマー(ETFE)、フッ化ビニリデン系樹脂(PVDF)又はフッ化ビニル系樹脂(PVF)等が挙げられる。なお、フッ素系樹脂は1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
(Ii) As the back sheet 40, a metal thin film can also be used. For example, corrosion-resistant aluminum metal foil, stainless steel thin film, and the like can be mentioned. In addition, the said metal may use 1 type and may use 2 or more types together by arbitrary combinations and a ratio.
(Iii) As the back sheet 40, for example, a highly waterproof sheet in which a fluorine resin film is bonded to both surfaces of an aluminum foil may be used. Examples of the fluorine resin include ethylene monofluoride (trade name: Tedlar, manufactured by DuPont), polytetrafluoroethylene (PTFE), a copolymer of tetrafluoroethylene and ethylene or propylene (ETFE), and a vinylidene fluoride resin. (PVDF) or vinyl fluoride resin (PVF). In addition, 1 type may be used for fluororesin and it may use 2 or more types together by arbitrary combinations and a ratio.
 (iv)バックシート40としては、例えば、基材フィルムの片面又は両面に、無機酸化物の蒸着膜を設け、更に、上記の無機酸化物の蒸着膜を設けた基材フィルムの両面に、耐熱性のポリプロピレン系樹脂フィルムを積層したものを用いてもよい。なお、通常は、基材フィルムにポリプロピレン系樹脂フィルムを積層する場合には、ラミネート用接着剤で張り合わせることで積層する。無機酸化物の蒸着膜を設けることで、水分及び/又は酸素等の侵入を防止する防湿性に優れたバックシート40として使用できる。 (Iv) As the back sheet 40, for example, a vapor deposition film of an inorganic oxide is provided on one side or both sides of the base film, and further, heat resistance is provided on both sides of the base film provided with the vapor deposition film of the inorganic oxide. What laminated | stacked the property polypropylene-type resin film may be used. Usually, when a polypropylene resin film is laminated on the base film, the lamination is performed by laminating with a laminating adhesive. By providing an inorganic oxide vapor-deposited film, it can be used as a back sheet 40 with excellent moisture resistance that prevents intrusion of moisture and / or oxygen.
 ・基材フィルム
 基材フィルムとしては、基本的には、無機酸化物の蒸着膜等との密接着性に優れ、強度に優れ、耐候性、耐熱性、耐水性、耐光性に優れた各種の樹脂のフィルムを使用することができる。例えば、上記(i)に記載した樹脂を使用することができる。中でも、フッ素系樹脂、環状ポリオレフィン系樹脂、ポリカーボネート系樹脂、ポリ(メタ)アクリル系樹脂、ポリアミド系樹脂又はポリエステル系樹脂のフィルムを使用することが好ましい。
 基材フィルムの厚さとしては、通常12μm以上、好ましくは20μm以上であり、また、通常300μm以下、好ましくは200μm以下である。
・ Base film Basically, the base film is excellent in close adhesion with inorganic oxide deposition film, etc., excellent in strength, weather resistance, heat resistance, water resistance, and light resistance. Resin films can be used. For example, the resin described in (i) above can be used. Among these, it is preferable to use a film of a fluorine resin, a cyclic polyolefin resin, a polycarbonate resin, a poly (meth) acrylic resin, a polyamide resin, or a polyester resin.
As thickness of a base film, it is 12 micrometers or more normally, Preferably it is 20 micrometers or more, and is 300 micrometers or less normally, Preferably it is 200 micrometers or less.
 ・無機酸化物の蒸着膜
 無機酸化物の蒸着膜としては、基本的に金属の酸化物を蒸着した薄膜であれば使用可能である。例えば、ケイ素(Si)やアルミニウム(Al)の酸化物の蒸着膜を使用することができる。この際、酸化ケイ素としては例えばSiOx(x=1.0~2.0)を用いることができ、酸化アルミニウムとしては例えばAlOx(x=0.5~1.5)を用いることができる。
-Vapor deposition film of an inorganic oxide As a vapor deposition film of an inorganic oxide, basically any thin film on which a metal oxide is deposited can be used. For example, a deposited film of an oxide of silicon (Si) or aluminum (Al) can be used. At this time, for example, SiOx (x = 1.0 to 2.0) can be used as the silicon oxide, and AlOx (x = 0.5 to 1.5) can be used as the aluminum oxide.
 なお、使用する金属及び無機酸化物の種類は1種でもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
 無機酸化物の蒸着膜の厚さとしては、通常50Å以上、好ましくは100Å以上であり、また、通常4000Å以下、好ましくは1000Å以下である。
 蒸着膜の作製方法としては、プラズマ化学気相成長法、熱化学気相成長法、光化学気相成長法等の化学気相成長法(Chemical Vapor Deposition法、CVD法)等を用いることができる。
In addition, the kind of metal and inorganic oxide to be used may be 1 type, and may use 2 or more types together by arbitrary combinations and ratios.
The thickness of the deposited inorganic oxide film is usually 50 mm or more, preferably 100 mm or more, and usually 4000 mm or less, preferably 1000 mm or less.
As a method for forming the deposited film, a chemical vapor deposition method (chemical vapor deposition method, CVD method) such as a plasma chemical vapor deposition method, a thermal chemical vapor deposition method, or a photochemical vapor deposition method can be used.
 ・ポリプロピレン系樹脂フィルム
 ポリプロピレン系樹脂としては、例えば、プロピレンの単独重合体又はプロピレンと他のモノマー(例えばα-オレフィン等)との共重合体を使用することができる。また、ポリプロピレン系樹脂としては、アイソタクチック重合体を用いることもできる。
Polypropylene resin film As the polypropylene resin, for example, a homopolymer of propylene or a copolymer of propylene and another monomer (for example, α-olefin) can be used. Moreover, an isotactic polymer can also be used as a polypropylene resin.
 ポリプロピレン系樹脂は、その結晶性により性質が大きく支配されるが、アイソタクチックの高いポリマーは、引っ張り強さ、衝撃強度に優れ、耐熱性、耐屈曲疲労強度を良好であり、かつ、加工性は極めて良好なものである。 Polypropylene resins are largely controlled by their crystallinity, but high isotactic polymers have excellent tensile strength and impact strength, good heat resistance and bending fatigue strength, and workability. Is very good.
 ・接着剤
 基材フィルムにポリプロピレン系樹脂フィルムを積層する場合には、通常はラミネート用接着剤を用いる。これにより、基材フィルムとポリプロピレン系樹脂フィルムとはラミネート用接着剤層を介して積層されることになる。
-Adhesive When laminating a polypropylene resin film on a base film, an adhesive for laminating is usually used. Thereby, a base film and a polypropylene resin film are laminated | stacked via the adhesive bond layer for lamination.
 ラミネート用接着剤層を構成する接着剤としては、例えば、ポリ酢酸ビニル系接着剤、ポリアクリル酸エステル系接着剤、シアノアクリレート系接着剤、エチレン共重合体系接着剤、セルロース系接着剤、ポリエステル系接着剤、ポリアミド系接着剤、ポリイミド系接着剤、アミノ樹脂系接着剤、フェノール樹脂系接着剤、エポキシ系接着剤、ポリウレタン系接着剤、反応型(メタ)アクリル系接着剤又はシリコーン系接着剤等が挙げられる。なお、接着剤は1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。 Examples of the adhesive constituting the adhesive layer for laminating include, for example, a polyvinyl acetate adhesive, a polyacrylate adhesive, a cyanoacrylate adhesive, an ethylene copolymer adhesive, a cellulose adhesive, and a polyester adhesive. Adhesives, polyamide adhesives, polyimide adhesives, amino resin adhesives, phenol resin adhesives, epoxy adhesives, polyurethane adhesives, reactive (meth) acrylic adhesives, silicone adhesives, etc. Is mentioned. In addition, 1 type may be used for an adhesive agent and it may use 2 or more types together by arbitrary combinations and a ratio.
(寸法等)
 本発明の有機薄膜太陽電池モジュール44は、通常、膜状の薄い部材である。このように膜状の部材として有機薄膜太陽電池モジュール44を形成することにより、有機薄膜太陽電池モジュール44を建材、自動車又はインテリア等に容易に設置できるようになっている。有機薄膜太陽電池モジュール44は、軽く、割れにくく、従って安全性の高い太陽電池が得られ、また曲面にも適用可能であるため更に多くの用途に使用しうる。薄くて軽いため輸送や保管等流通面でも好ましい。更に、膜状であるためロール・トゥ・ロール式の製造が可能であり大幅なコストカットが可能である。
(Dimensions etc.)
The organic thin film solar cell module 44 of the present invention is usually a thin film member. Thus, by forming the organic thin film solar cell module 44 as a film-like member, the organic thin film solar cell module 44 can be easily installed in a building material, an automobile, an interior, or the like. The organic thin film solar cell module 44 is light and difficult to break, and thus a highly safe solar cell can be obtained and can be applied to a curved surface, so that it can be used for more applications. Since it is thin and light, it is preferable in terms of distribution such as transportation and storage. Furthermore, since it is in the form of a film, it can be manufactured in a roll-to-roll manner, and a significant cost cut can be achieved.
 有機薄膜太陽電池モジュール44の具体的な寸法に制限は無いが、その厚さは、通常50μm以上、好ましくは100μm以上、より好ましくは150μm以上であり、また、通常3000μm以下、好ましくは2000μm以下、より好ましくは1500μm以下である。 Although there is no restriction | limiting in the specific dimension of the organic thin film solar cell module 44, The thickness is 50 micrometers or more normally, Preferably it is 100 micrometers or more, More preferably, it is 150 micrometers or more, Usually, 3000 micrometers or less, Preferably it is 2000 micrometers or less, More preferably, it is 1500 micrometers or less.
2-6.有機薄膜太陽電池モジュールの製造方法
 本発明は集電線の設置に導電性熱硬化性樹脂組成物を使用するため、有機薄膜太陽電池モジュールを封止する際の加熱により、導電性硬化性樹脂組成物の硬化も同時に行うことができる。加熱の回数を減少することにより、有機薄膜太陽電池モジュールの効率的な製造を実現できる。また、光電変換層の熱履歴の減少に伴い、光電変換層の劣化を抑制できる。すなわち、本発明の製造方法によれば、効率の高い有機薄膜太陽電池モジュールを、効率よく得ることができる。
 具体的には、以下の工程1~3を順次有するのが好ましい。
2-6. BACKGROUND OF THE INVENTION Since the present invention uses a conductive thermosetting resin composition for installing a current collector, the conductive curable resin composition is heated by sealing the organic thin film solar cell module. Can be cured simultaneously. By reducing the number of times of heating, efficient production of the organic thin film solar cell module can be realized. Moreover, deterioration of the photoelectric conversion layer can be suppressed with a decrease in the thermal history of the photoelectric conversion layer. That is, according to the manufacturing method of the present invention, a highly efficient organic thin film solar cell module can be obtained efficiently.
Specifically, it is preferable to sequentially include the following steps 1 to 3.
有機薄膜太陽電池素子に集電線を設置する工程(工程1)
 基板上に、少なくとも下部電極、光電変換層および上部電極が順次積層された有機薄膜太陽電池素子に、導電性熱硬化性樹脂組成物を介して集電線を設置する工程
 工程1では、有機薄膜太陽電池素子の任意の位置に、導電性熱硬化性樹脂組成物を介して集電線を設置する。この際、あらかじめ集電線に導電性熱硬化性樹脂組成物を設置しておき、その後、集電線と導電性熱硬化性樹脂組成物とが一体化されたものを有機薄膜太陽電池素子の電極に載せた後に、ウレタンローラ等を用いて上から圧力をかけることで設置することが好ましい。工程1においては、導電性熱硬化性樹脂組成物を硬化させない。集電線の設置には、任意の装置を用いることができる。
Step of installing a collector wire on the organic thin film solar cell element (Step 1)
A step of installing a current collector via a conductive thermosetting resin composition on an organic thin film solar cell element in which at least a lower electrode, a photoelectric conversion layer, and an upper electrode are sequentially laminated on a substrate. A current collector is installed at an arbitrary position of the battery element via the conductive thermosetting resin composition. At this time, the conductive thermosetting resin composition is previously installed on the current collector, and then the integrated current collector and the conductive thermosetting resin composition are used as the electrodes of the organic thin film solar cell element. After placing, it is preferable to install by applying pressure from above using a urethane roller or the like. In step 1, the conductive thermosetting resin composition is not cured. Arbitrary devices can be used for the installation of the current collector.
封止材設置工程(工程2)
 工程1で得られた集電線を設置した有機薄膜太陽電池素子の、集電線を設置した面に、封止材を設置する工程
 工程2では、工程1で得られた集電線が設置された有機薄膜太陽電池素子に、封止材を設ける。封止材の設置には任意の装置を用いることができる。封止材は、少なくとも有機薄膜太陽電池素子の集電線を設置した面に設置すればよいが、有機薄膜太陽電池素子の両面に設置してもよい。封止材は、有機薄膜太陽電池素子の全面を覆う様に設置することが好ましい。前述の理由により、封止材は、熱硬化性樹脂を含む封止材が好ましい。
Sealing material installation process (process 2)
Step of installing a sealing material on the surface of the organic thin-film solar cell element in which the current collector obtained in Step 1 is installed, on the surface on which the current collector is installed In Step 2, the organic in which the current collector obtained in Step 1 is installed A sealing material is provided on the thin film solar cell element. Arbitrary apparatuses can be used for installation of the sealing material. Although the sealing material should just be installed in the surface which installed the electrical power collector of the organic thin film solar cell element at least, you may install it in both surfaces of an organic thin film solar cell element. The sealing material is preferably installed so as to cover the entire surface of the organic thin film solar cell element. For the above reasons, the sealing material is preferably a sealing material containing a thermosetting resin.
加熱工程(工程3)
 工程2で得られた積層物を加熱し、前記導電性熱硬化性樹脂組成物の硬化と封止材による封止とを同時に行う工程
 工程3では、工程1および2で得られた集電線および封止材が設けられた有機薄膜太陽電池を加熱し、集電線を接着するための導電性熱硬化性樹脂組成物を硬化するのと同時に、封止材による封止を行う。これらの工程により、集電線の接着および封止を同時に行うことができ、製造工程の効率化が可能となる。
 加熱条件は、導電性熱硬化性樹脂組成物と、熱硬化性樹脂を含む封止材と、が十分に硬化し、かつモジュールが変形しない条件であれば特段限定されない。加熱温度は、通常80℃以上、好ましくは100℃以上であり、通常180℃以下、好ましくは160℃以下、より好ましくは140℃以下である。また、加熱時間は、通常5分以上、好ましくは10分以上、通常180分以下、好ましくは120分以下である。
 得られた有機薄膜太陽電池モジュールに対し、下記のようにラミネート法により、その他必要な層を積層してもよい。
Heating process (process 3)
A step of heating the laminate obtained in step 2 and simultaneously curing the conductive thermosetting resin composition and sealing with a sealing material. In step 3, the current collector obtained in steps 1 and 2 and The organic thin film solar cell provided with the sealing material is heated to cure the conductive thermosetting resin composition for adhering the current collector, and at the same time, sealing with the sealing material is performed. By these steps, the current collector can be bonded and sealed at the same time, and the manufacturing process can be made more efficient.
The heating conditions are not particularly limited as long as the conductive thermosetting resin composition and the sealing material containing the thermosetting resin are sufficiently cured and the module is not deformed. The heating temperature is usually 80 ° C. or higher, preferably 100 ° C. or higher, and is usually 180 ° C. or lower, preferably 160 ° C. or lower, more preferably 140 ° C. or lower. The heating time is usually 5 minutes or longer, preferably 10 minutes or longer, usually 180 minutes or shorter, preferably 120 minutes or shorter.
Other necessary layers may be laminated on the obtained organic thin film solar cell module by a laminating method as described below.
 本発明の有機薄膜太陽電池モジュールは、公知の方法により製造することもできる。具体的には、必要となる層を積層させ、真空ラミネーターやロールラミネーターを用いた熱ラミネート法などによっても製造することができる。 The organic thin film solar cell module of the present invention can also be produced by a known method. Specifically, it can be manufactured by laminating necessary layers and using a heat laminating method using a vacuum laminator or a roll laminator.
 熱ラミネートによる場合には、真空条件下で行うことが好ましく、通常真空度が10Pa以上、好ましくは20Pa以上、より好ましくは30Pa以上である。一方上限は、通常150Pa以下、好ましくは120Pa以下、より好ましくは100Pa以下である。上記範囲とすることで、モジュール内の各層において気泡の発生を抑制することができ、生産性も向上するため好ましい。
 真空時間としては、通常1分以上、好ましくは2分以上、より好ましくは3分以上である。一方上限は、通常20分以下、好ましくは18分以下、より好ましくは15分以下である。真空時間を上記範囲とすることで、熱ラミネート後の有機薄膜太陽電池モジュールの外観が良好となり、またモジュール内の各層において熱ラミネート条件による気泡の発生を抑制することができるため好ましい。
In the case of thermal lamination, it is preferably performed under vacuum conditions, and the degree of vacuum is usually 10 Pa or more, preferably 20 Pa or more, more preferably 30 Pa or more. On the other hand, the upper limit is usually 150 Pa or less, preferably 120 Pa or less, more preferably 100 Pa or less. By setting it as the said range, since generation | occurrence | production of a bubble can be suppressed in each layer in a module, and productivity improves, it is preferable.
The vacuum time is usually 1 minute or longer, preferably 2 minutes or longer, more preferably 3 minutes or longer. On the other hand, the upper limit is usually 20 minutes or less, preferably 18 minutes or less, more preferably 15 minutes or less. It is preferable to set the vacuum time in the above range since the appearance of the organic thin-film solar cell module after heat lamination becomes good and generation of bubbles due to heat lamination conditions in each layer in the module can be suppressed.
 熱ラミネートの加圧条件は、通常圧力が50kPa以上、好ましくは70kPa以上、より好ましくは90kPa以上である。一方上限値は、101kPa以下であることが好ましい。上記範囲の加圧条件とすることで、有機薄膜太陽電池モジュールを損傷することなく、また適度な接着性を得ることができるため、耐久性の観点からも好ましい。
 上記圧力の保持時間は、通常1分以上、好ましくは3分以上、より好ましくは5分以上である。一方上限は、通常50分以下、好ましくは40分以下、より好ましくは30分以下である。上記保持時間とすることで、封止材のゲル化率を適正とすることができるため、十分な接着強度を得ることができる。
The pressurizing condition of the thermal laminate is usually a pressure of 50 kPa or more, preferably 70 kPa or more, more preferably 90 kPa or more. On the other hand, the upper limit value is preferably 101 kPa or less. By setting it as the pressurization condition of the said range, since moderate adhesiveness can be acquired, without damaging an organic thin-film solar cell module, it is preferable also from a durable viewpoint.
The holding time of the pressure is usually 1 minute or longer, preferably 3 minutes or longer, more preferably 5 minutes or longer. On the other hand, the upper limit is usually 50 minutes or less, preferably 40 minutes or less, more preferably 30 minutes or less. By setting it as the said holding time, since the gelling rate of a sealing material can be made appropriate, sufficient adhesive strength can be obtained.
 熱ラミネートの温度条件は、通常115℃以上、好ましくは120℃以上、より好ましくは125℃以上である。一方上限値は、通常180℃以下、好ましくは165℃以下、より好ましくは155℃以下である。上記温度範囲とすることで、十分な接着強度を得ることができる。
 また、上記温度の保持時間は、通常1分以上、好ましくは3分以上、より好ましくは5分以上である。一方上限は50分以下、好ましくは40分以下、より好ましくは30分以下である。上記保持時間とすることで、封止材の架橋が適度に行われるため耐久性能が向上し、適度な柔軟性を有することができるため、好ましい。
The temperature condition of the thermal laminate is usually 115 ° C. or higher, preferably 120 ° C. or higher, more preferably 125 ° C. or higher. On the other hand, the upper limit is usually 180 ° C. or lower, preferably 165 ° C. or lower, more preferably 155 ° C. or lower. By setting the temperature range, sufficient adhesive strength can be obtained.
The temperature holding time is usually 1 minute or longer, preferably 3 minutes or longer, more preferably 5 minutes or longer. On the other hand, the upper limit is 50 minutes or less, preferably 40 minutes or less, more preferably 30 minutes or less. By setting it as the said holding time, since crosslinking of a sealing material is performed moderately, durability performance improves and it can have moderate softness | flexibility, and is preferable.
<用途>
 上述した有機薄膜太陽電池モジュール44の用途に制限はなく任意である。例えば、図4に模式的に示すように、何らかの基材42上に有機薄膜太陽電池モジュール44を設けた有機薄膜太陽電池パネル13を用意し、これを使用場所に設置して用いればよい。具定例を挙げると、基材42として建材用板材を使用した場合、この板材の表面に有機薄膜太陽電池モジュール44を設けて太陽電池パネル13として太陽電池パネルを作製し、この太陽電池パネルを建物の外壁等に設置して使用すればよい。
 また、用途に応じて、有機薄膜太陽電池モジュールに対して任意の層を更に積層してもよい(図示せず)。
<Application>
There is no restriction | limiting in the use of the organic thin-film solar cell module 44 mentioned above, It is arbitrary. For example, as schematically shown in FIG. 4, an organic thin film solar cell panel 13 in which an organic thin film solar cell module 44 is provided on a certain base material 42 is prepared and used at a place of use. As a specific example, when a building material plate is used as the base material 42, an organic thin film solar cell module 44 is provided on the surface of the plate material to produce a solar cell panel as the solar cell panel 13. It can be used by installing it on the outer wall of the door.
Moreover, according to a use, you may further laminate | stack arbitrary layers with respect to an organic thin film solar cell module (not shown).
 基材42は有機薄膜太陽電池素子36を支持する支持部材である。基材42を形成する材料としては、例えば、ガラス、サファイア又はチタニア等の無機材料;ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリエーテルスルホン、ポリイミド、ナイロン、ポリスチレン、ポリビニルアルコール、エチレンビニルアルコール共重合体、フッ素樹脂フィルム、塩化ビニル、ポリエチレン、セルロース、ポリ塩化ビニリデン、アラミド、ポリフェニレンスルフィド、ポリウレタン、ポリカーボネート、ポリアリレート、ポリノルボルネン等の有機材料;紙又は合成紙等の紙材料;ステンレス、チタン又はアルミニウム等の金属に絶縁性を付与するために表面をコート又はラミネートしたもの等の複合材料等が挙げられる。なお、基材の材料は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。また、これら有機材料あるいは紙材料に炭素繊維を含ませ、機械的強度を補強させても良い。 The base material 42 is a support member that supports the organic thin film solar cell element 36. Examples of the material for forming the base material 42 include inorganic materials such as glass, sapphire, and titania; polyethylene terephthalate, polyethylene naphthalate, polyethersulfone, polyimide, nylon, polystyrene, polyvinyl alcohol, ethylene vinyl alcohol copolymer, fluorine. Organic materials such as resin film, vinyl chloride, polyethylene, cellulose, polyvinylidene chloride, aramid, polyphenylene sulfide, polyurethane, polycarbonate, polyarylate, polynorbornene; paper materials such as paper or synthetic paper; metals such as stainless steel, titanium or aluminum For example, a composite material such as a material whose surface is coated or laminated in order to impart insulating properties can be used. In addition, 1 type may be used for the material of a base material, and 2 or more types may be used together by arbitrary combinations and a ratio. Moreover, carbon fiber may be included in these organic materials or paper materials to reinforce the mechanical strength.
 本発明の有機薄膜太陽電池モジュールを適用する分野の例を挙げると、建材用太陽電池、自動車用太陽電池、インテリア用太陽電池、鉄道用太陽電池、船舶用太陽電池、飛行機用太陽電池、宇宙機用太陽電池、家電用太陽電池、携帯電話用太陽電池又は玩具用太陽電池等に用いて好適である。 Examples of fields to which the organic thin film solar cell module of the present invention is applied include building material solar cells, automotive solar cells, interior solar cells, railway solar cells, marine solar cells, airplane solar cells, and spacecraft. It is suitable for use in solar cells for home use, solar cells for home appliances, solar cells for mobile phones, solar cells for toys and the like.
 以下、実施例により本発明を更に詳細に説明するが、本発明が以下の実施例にのみ限定されないことはいうまでもない。 Hereinafter, the present invention will be described in more detail with reference to examples, but it goes without saying that the present invention is not limited to the following examples.
 なお、本実施例において、有機薄膜太陽電池モジュールの評価は以下の方法で行った。
(1)外観
有機薄膜太陽電池モジュールの外観を観察し、◎、○、△、×を以下の基準で判定した。
外観評価は、モジュールの変形および/または変色有無を観察し、以下の基準で行った。
モジュールの変形はモジュールを平坦な台に置いた際の台表面からの変形部の最大高さで評価した。
◎:有機薄膜太陽電池モジュールの変形の最大高さが2mm以下および有機薄膜太陽電池素子の変色が観察されない
○:有機薄膜太陽電池モジュールの変形の最大高さが2mm以上および有機薄膜太陽電池素子の変色は観察されない。
△:有機薄膜太陽電池モジュールの変形の最大高さが2mm以下および有機薄膜太陽電池素子の変色が観察される。
×:有機薄膜太陽電池モジュールの変形の最大高さが2mm以上および有機薄膜太陽電池素子の変色が観察される。
(2)耐湿熱試験
試験方法:エスペック社製 恒温恒湿器 PL-1Jを用いて、JIS C8991-2011 10.12の条件に従って、高温高湿試験は、温度85℃、湿度85%で200時間の条件により行った。
評価方法:耐湿熱試験前の光電変換効率に対する、200時間後の光電変換効率を求めた。
(3)結露凍結試験
試験方法:エスペック社製 恒温恒湿器 PL-1Jを用いて、JIS C8991-2011 10.13の条件に従って、85℃、85%RH⇔-40℃のサイクルを10サイクル行った。
評価方法:耐湿熱試験前の光電変換効率に対する、10サイクル後の光電変換効率を求めた。
(4)光電変換効率
 AM1.5、入射エネルギー100mW/cmの光源下で20分以上モジュールに光照射した後、3時間以内に以下の測定を行った。JIS C 8935「アモルファス太陽電池モジュール出力測定方法」に基づき、サンプリング周期を100μsec、設定電圧の印加から実際の測定までの待ち時間を50μsecに設定し、IscからVocの方向に測定を行った。
In this example, evaluation of the organic thin film solar cell module was performed by the following method.
(1) Appearance The appearance of the organic thin film solar cell module was observed, and ◎, ○, Δ, and × were determined according to the following criteria.
Appearance evaluation was performed according to the following criteria by observing whether the module was deformed and / or discolored.
The deformation of the module was evaluated by the maximum height of the deformed part from the surface of the table when the module was placed on a flat table.
A: The maximum deformation height of the organic thin film solar cell module is 2 mm or less and no discoloration of the organic thin film solar cell element is observed. ○: The maximum deformation height of the organic thin film solar cell module is 2 mm or more. No discoloration is observed.
(Triangle | delta): The maximum height of a deformation | transformation of an organic thin film solar cell module is 2 mm or less, and discoloration of an organic thin film solar cell element is observed.
X: The maximum deformation height of the organic thin film solar cell module is 2 mm or more, and discoloration of the organic thin film solar cell element is observed.
(2) Moisture and heat resistance test test method: using a thermo-hygrostat PL-1J manufactured by Espec, in accordance with the conditions of JIS C8991-2011 10.12, the high-temperature and high-humidity test is performed at a temperature of 85 ° C. and a humidity of 85% for 200 hours. It was performed according to the conditions.
Evaluation method: The photoelectric conversion efficiency after 200 hours with respect to the photoelectric conversion efficiency before the wet heat resistance test was determined.
(3) Condensation freezing test test method: 10 cycles of 85 ° C. and 85% RH −40 ° C. were performed according to the conditions of JIS C8991-2011 10.13 using a constant temperature and humidity chamber PL-1J manufactured by Espec. It was.
Evaluation method: The photoelectric conversion efficiency after 10 cycles with respect to the photoelectric conversion efficiency before the wet heat resistance test was determined.
(4) Photoelectric conversion efficiency After irradiating light to the module for 20 minutes or more under a light source with AM 1.5 and incident energy of 100 mW / cm 2 , the following measurements were performed within 3 hours. Based on JIS C 8935 “Amorphous Solar Cell Module Output Measurement Method”, the sampling period was set to 100 μsec, the waiting time from application of the set voltage to actual measurement was set to 50 μsec, and measurement was performed in the direction from Isc to Voc.
 <実施例1>
<有機薄膜太陽電池素子の製造>
 ITO40nm、Ag10nm、ITO40nmが順次積層された、厚さ50μm、60mm角のポリエチレンナフタレート基板(Tm260℃、Tg155℃)に対し、YVOレーザ(波長532nm)でレーザパターニングを施し、下部電極を形成した。
 酸化亜鉛(ビックケミージャパン製 BYK-3841)を、イソプロパノールを用いて重量比で7倍に希釈して酸化亜鉛溶液を調整した。下部電極上に、該酸化亜鉛溶液を#2のワイヤーバーで塗布することにより酸化亜鉛層120nmを形成した。
 P3HT(Rieke製)およびC60ビスインデン付加体を、トルエン:テトラリン(重量比19:1)の溶液に溶解させ、3.5重量パーセントの溶液を作成した。前記酸化亜鉛層上に、該溶液を#4ワイヤーバーを用いて塗布することにより、有機光電変換層としてP3HT:C60ビスインデン付加体200nmを積層した。前期有機光電変換層上に、PH 1000(Heraeus製clevious)を#5ワイヤーバーで塗布することによりPEDOT:PSSを160nm積層し、窒素雰囲気化中で、150℃、10分加熱乾燥した。次いで、YVOレーザ(波長532nm)でレーザパターニングを施した後、スパッタリング法により上部電極としてAgを100nm積層した。Agに対し、YVOレーザ(波長355nm)でレーザパターニングを施すことで、有機薄膜太陽電池セルが直列に4つ接続されたモノリシック構造の有機薄膜太陽電池素子を製造した。
<Example 1>
<Manufacture of organic thin film solar cell element>
ITO40nm, Ag10nm, ITO40nm are sequentially laminated, thickness 50 [mu] m, a polyethylene naphthalate substrate (Tm260 ℃, Tg155 ℃) of 60mm square hand, subjected to laser patterning in a YVO 4 laser (wavelength 532 nm), to form a lower electrode .
A zinc oxide solution was prepared by diluting zinc oxide (BYK-3841 manufactured by Big Chemie Japan) seven times by weight with isopropanol. A zinc oxide layer of 120 nm was formed on the lower electrode by applying the zinc oxide solution with a # 2 wire bar.
P3HT (Rieke) and C60 bisindene adduct were dissolved in a solution of toluene: tetralin (weight ratio 19: 1) to make a 3.5 weight percent solution. On the zinc oxide layer, a P3HT: C60 bisindene adduct 200 nm was laminated as an organic photoelectric conversion layer by applying the solution using a # 4 wire bar. PEDOT: PSS was laminated | stacked 160nm by apply | coating PH1000 (clevieus made from Heraeus) with a # 5 wire bar on the organic photoelectric converting layer of the previous period, and it heat-dried at 150 degreeC for 10 minutes in nitrogen atmosphere. Next, laser patterning was performed with a YVO 4 laser (wavelength 532 nm), and then 100 nm of Ag was laminated as an upper electrode by a sputtering method. Laser patterning was performed on Ag with a YVO 4 laser (wavelength 355 nm), thereby manufacturing an organic thin film solar cell element having a monolithic structure in which four organic thin film solar cells were connected in series.
<集電線の設置>
 得られた有機薄膜太陽電池素子の、両端の有機薄膜太陽電池セルの上部電極上に、導電性熱硬化樹脂組成物付集電線(デグセリアルズ社製 DT101C4、(導電性粒子としてニッケル粒子を含むエポキシ系導電性硬化樹脂、硬化温度120℃)15μm+銅箔35μm厚、幅4mm)を設置した。
<封止>
 三菱樹脂社製バリアフィルム(商品名:ビューバリア、厚さ100μm)に、B-Stageエポキシ系シート状接着剤 (硬化温度120℃、厚さ30μm)をあらかじめ貼合しておいたものを、封止材を内側にして太陽電池素子の受光面側及び非受光面側に積層し、NPC製真空ラミネーターを用いて120℃、10分真空引きした後、3分加圧することにより接着した後、オーブンで120℃、1時間加熱した。こうして得られた有機薄膜太陽電池モジュールの光電変換効率は1.32%であった。
<Installation of current collector>
On the upper electrode of the organic thin-film solar battery cell at both ends of the obtained organic thin-film solar battery element, a collector wire with a conductive thermosetting resin composition (DT101C4 manufactured by Dexerals, Inc. (epoxy system containing nickel particles as conductive particles) Conductive curable resin, curing temperature 120 ° C.) 15 μm + copper foil 35 μm thickness, width 4 mm).
<Sealing>
Sealed with a barrier film (trade name: View Barrier, thickness 100 μm) made by Mitsubishi Plastics Co., Ltd., with B-Stage epoxy sheet adhesive (curing temperature 120 ° C, thickness 30 μm) bonded in advance After laminating on the light-receiving surface side and non-light-receiving surface side of the solar cell element with the stop material inside, after vacuuming at 120 ° C. for 10 minutes using an NPC vacuum laminator, bonding is performed by applying pressure for 3 minutes, and then the oven At 120 ° C. for 1 hour. The photoelectric conversion efficiency of the organic thin film solar cell module obtained in this way was 1.32%.
<実施例2>
 実施例1において導電性熱硬化樹脂組成物付集電線を、ニホンハンダ社製導電ペーストECA100(硬化温度90℃、厚さ30μm)及び日立電線社製スズメッキ銅線 A-TPS(SN)0.18×5.0 (厚さ180μm、幅5mm)とした以外は同様の方法で有機薄膜太陽電池モジュールを製造した。こうして得られた有機薄膜太陽電池モジュールの光電変換効率は1.55%であった。
<比較例1>
 実施例1において導電性熱硬化樹脂組成物付集電線を住友3M社製導電テープ #4305(厚さ50μm、幅5mm)及び日立電線社製スズメッキ銅線 A-TPS(SN)0.18×5.0とした以外は同様の方法で有機薄膜太陽電池モジュールを製造した。こうして得られた有機薄膜太陽電池モジュールの光電変換効率は1.22%であった。
<比較例2>
 実施例1において 導電性熱硬化樹脂組成物付集電線を千重金属工業社製 スパークルハンダ HA60A-1a2N-F2-1.2-B(厚さ30μm)及び日日立電線社製スズメッキ銅線 A-TPS(SN)0.18×5.0 とした以外は同様の方法で有機薄膜太陽電池モジュールを製造した。こうして得られた有機薄膜太陽電池モジュールの光電変換効率は1.41%であった。
<比較例3>
 実施例1において、導電性熱硬化樹脂組成物付集電線を アサヒ化学研究所製導電ペースト LS-411AW(厚さ30μm)及び日立電線社製スズメッキ銅線 A-TPS(SN)0.18×5.0 とした以外は同様の方法で有機薄膜太陽電池モジュールを製造した。こうして得られた有機薄膜太陽電池モジュールの光電変換効率は1.04%であった。
<比較例4>
 実施例1において、導電性熱硬化性樹脂組成物付集電線を、日立電線社製スズメッキ銅線 A-TPS(SN)0.18×5.0 とした以外は同様の方法で有機薄膜太陽電池モジュールを製造した。こうして得られた有機薄膜太陽電池モジュールの光電変換効率は1.87%であった。
<Example 2>
In Example 1, the collected electric wire with the conductive thermosetting resin composition was made of conductive paste ECA100 (curing temperature 90 ° C., thickness 30 μm) manufactured by Nihon Solder Co., Ltd. and tin-plated copper wire A-TPS (SN) 0.18 × manufactured by Hitachi Cable, Ltd. An organic thin film solar cell module was produced in the same manner except that the thickness was 5.0 (thickness 180 μm, width 5 mm). The photoelectric conversion efficiency of the organic thin film solar cell module thus obtained was 1.55%.
<Comparative Example 1>
In Example 1, the collected electric wire with the conductive thermosetting resin composition is Sumitomo 3M conductive tape # 4305 (thickness 50 μm, width 5 mm) and Hitachi Cable tin-plated copper wire A-TPS (SN) 0.18 × 5 An organic thin-film solar cell module was manufactured in the same manner except that it was changed to 0.0. The photoelectric conversion efficiency of the organic thin film solar cell module thus obtained was 1.22%.
<Comparative Example 2>
In Example 1, the collected electric wire with the conductive thermosetting resin composition is made of Sparkle Solder HA60A-1a2N-F2-1.2-B (thickness 30 μm) manufactured by Senju Metal Industry Co., Ltd. and tin-plated copper wire A-TPS manufactured by Nitto Hitachi Cable, Ltd. (SN) The organic thin-film solar cell module was manufactured by the same method except having set it as 0.18 * 5.0. The photoelectric conversion efficiency of the organic thin film solar cell module obtained in this way was 1.41%.
<Comparative Example 3>
In Example 1, the collected electric wire with the conductive thermosetting resin composition was used as conductive paste LS-411AW (thickness 30 μm) manufactured by Asahi Chemical Research Laboratories and tin-plated copper wire A-TPS (SN) 0.18 × 5 manufactured by Hitachi Cable, Ltd. An organic thin-film solar cell module was manufactured in the same manner except that it was set to 0.0. The photoelectric conversion efficiency of the organic thin film solar cell module thus obtained was 1.04%.
<Comparative example 4>
An organic thin-film solar cell was produced in the same manner as in Example 1 except that the collected electric wire with the conductive thermosetting resin composition was tin-plated copper wire A-TPS (SN) 0.18 × 5.0 manufactured by Hitachi Cable, Ltd. A module was manufactured. The photoelectric conversion efficiency of the organic thin film solar cell module obtained in this way was 1.87%.
 実施例1及び比較例1~3で得られた有機薄膜太陽電池モジュールの、外観、および耐熱性試験の結果を表1に示す。表1中、耐久性とは初期効率に対する高温高湿試験後の光電変換効率の比率である。 Table 1 shows the appearance and heat resistance test results of the organic thin-film solar cell modules obtained in Example 1 and Comparative Examples 1 to 3. In Table 1, durability is the ratio of the photoelectric conversion efficiency after the high temperature and high humidity test to the initial efficiency.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示された実験結果より、以下のことが考えられる。
 実施例1は耐久性、外観共に良好であった。熱硬化性樹脂組成物は残存溶剤アウトガスがより少なく、有機薄膜太陽電池モジュール内で該アウトガスの影響が少ないことから、抵抗増加を抑えられるためと考えられる。
 実施例1、比較例1の対比より、導電性粘着テープより熱硬化性導電性樹脂の方が耐久性が高いことが示されている。比較例1が実施例1に対して耐久性が低い理由として、導電性粘着テープは導電性熱硬化性樹脂に比べて線膨張率が大きいため、耐久性試験時の変形が大きく、有機薄膜太陽電池素子の光電変換層の膜剥がれ等が発生したためと考えられる。
 比較例2では、有機薄膜太陽電池素子の電極と集電線の接続にはんだを用いると、耐久性試験後に出力が低下したことが示されている。これは、はんだ接続時に有機薄膜太陽電池素子の電極がはんだに溶解して変形したため、導通が不安定になったことが原因と考えられる。また、接続の際に高温(200 ℃以上)が必要なため、有機薄膜太陽電池素子の基材に変形が生じた。
 比較例3において、有機薄膜太陽電池素子の電極と集電線の接続に導電ペーストを用いると、耐久性試験後に出力が低下している。これは、残存溶剤によるアウトガスが発生し、有機薄膜太陽電池素子の電極と集電線の接続不良や、有機薄膜太陽電池素子の発電層の劣化を引き起こしたからだと考えられる。また、導電ペーストは流動性があるため、接続部からのはみ出し等により外観不良が発生した。
 比較例4において、有機薄膜太陽電池素子の電極と集電線の接続に導電接着剤を使用しない場合、耐久性試験後に出力が低下した。これは集電線と上部電極間に浮き等が発生し、抵抗値が増大したためと考えられる。
From the experimental results shown in Table 1, the following can be considered.
In Example 1, both durability and appearance were good. This is probably because the thermosetting resin composition has less residual solvent outgas and is less affected by the outgas in the organic thin film solar cell module.
The comparison between Example 1 and Comparative Example 1 shows that the thermosetting conductive resin has higher durability than the conductive adhesive tape. The reason why Comparative Example 1 has lower durability than Example 1 is that the conductive adhesive tape has a larger coefficient of linear expansion than that of the conductive thermosetting resin, so that the deformation during the durability test is large, and the organic thin film solar This is considered to be due to the film peeling of the photoelectric conversion layer of the battery element.
In Comparative Example 2, it is shown that when solder is used to connect the electrode of the organic thin film solar cell element and the collector line, the output is reduced after the durability test. This is thought to be because conduction was unstable because the electrodes of the organic thin-film solar cell element were dissolved in the solder and deformed during solder connection. Moreover, since the high temperature (200 degreeC or more) was required in the case of a connection, the base material of the organic thin film solar cell element deform | transformed.
In Comparative Example 3, when a conductive paste is used to connect the electrode of the organic thin film solar cell element and the collector line, the output is reduced after the durability test. This is presumably because outgas due to the residual solvent was generated, resulting in poor connection between the electrode of the organic thin film solar cell element and the current collector, and deterioration of the power generation layer of the organic thin film solar cell element. In addition, since the conductive paste has fluidity, an appearance defect occurred due to protrusion from the connecting portion.
In Comparative Example 4, when the conductive adhesive was not used to connect the electrode of the organic thin film solar cell element and the collector line, the output decreased after the durability test. This is thought to be due to the fact that floating or the like occurred between the current collector and the upper electrode, and the resistance value increased.
<実施例3>
 実施例1において封止時の加熱温度を100℃とした以外は同様に有機薄膜太陽電池モジュールを作成した。
<実施例4>
 実施例2と同様に有機薄膜太陽電池モジュールを作成した。
<実施例5>
 実施例2において封止時の加熱温度を140℃とした以外は同様に有機薄膜太陽電池モジュールを作成した。
<実施例6>
 実施例2において封止時の加熱温度を160℃とした以外は同様に有機薄膜太陽電池モジュールを作成した。
 以下の表2に、実施例3~6の有機薄膜太陽電池モジュールの結露凍結試験及び外観の評価結果を示す。
 結露凍結試験の結果は、初期効率に対する結露凍結試験後の光電変換効率の比率を求め、1以上の場合には○、1以下の場合には×とした。
<Example 3>
An organic thin-film solar cell module was prepared in the same manner except that the heating temperature at the time of sealing was set to 100 ° C. in Example 1.
<Example 4>
An organic thin film solar cell module was prepared in the same manner as in Example 2.
<Example 5>
In Example 2, an organic thin film solar cell module was similarly produced except that the heating temperature at the time of sealing was 140 ° C.
<Example 6>
In Example 2, an organic thin film solar cell module was similarly produced except that the heating temperature at the time of sealing was 160 ° C.
Table 2 below shows the condensation freezing test and appearance evaluation results of the organic thin film solar cell modules of Examples 3 to 6.
As the result of the condensation freezing test, the ratio of the photoelectric conversion efficiency after the condensation freezing test with respect to the initial efficiency was obtained, and when it was 1 or more, it was evaluated as ◯, and when it was 1 or less, it was evaluated as ×.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示された結果より、本発明の有機薄膜太陽電池モジュールは、製造工程時にモジュール変形が生じづらく、変色等も生じないため、外観に優れ、さらに使用環境における耐久性が高いことが示されている。実施例6は実施例3~5に対して外観が劣っているが、160℃以上の過熱処理を行っているため、モジュール変形が起きたものである。これは太陽電池モジュールの製造工程時に、基材のTgを超えた温度で処理しているからと考えられる。
 以上のことより、本発明の太陽電池モジュールは、製造工程時にモジュール変形が生じづらく、さらに使用環境における耐久性が高いことが示されている。
The results shown in Table 2 show that the organic thin-film solar cell module of the present invention is not easily deformed during the manufacturing process, does not cause discoloration, etc., and thus has an excellent appearance and high durability in the use environment. Has been. The appearance of Example 6 is inferior to that of Examples 3 to 5, but the module was deformed because the heat treatment was performed at 160 ° C. or higher. This is probably because the solar cell module is processed at a temperature exceeding the Tg of the substrate during the manufacturing process.
From the above, it has been shown that the solar cell module of the present invention is less likely to undergo module deformation during the manufacturing process, and further has high durability in the use environment.
1  透光性基板
2  下部電極
3  p層
4  i層
5  n層
6  上部電極
7  光電変換層
8  集電線
9  接着層
11 第1の開溝
12 第2の開溝
13 第3の開溝
23 上部電極:光電変換層と積層している領域
24 上部電極:光電変換層と積層していない領域
31 耐候性保護シート
32 紫外線カットフィルム
33,39 ガスバリアフィルム
34,38 ゲッター材フィルム
35,37 封止材
36 有機薄膜太陽電池素子
40 バックシート
42 基材
43 有機薄膜太陽電池パネル
44 有機薄膜太陽電池モジュール
DESCRIPTION OF SYMBOLS 1 Translucent board | substrate 2 Lower electrode 3 p layer 4 i layer 5 n layer 6 Upper electrode 7 Photoelectric conversion layer 8 Current collector 9 Adhesive layer 11 1st groove | channel 12 2nd groove 13 3rd groove 23 Upper part Electrode: Region 24 laminated with the photoelectric conversion layer Upper electrode: Region 31 not laminated with the photoelectric conversion layer 31 Weatherproof protective sheet 32 UV cut film 33, 39 Gas barrier film 34, 38 Getter material film 35, 37 Sealing material 36 Organic Thin Film Solar Cell Element 40 Back Sheet 42 Base Material 43 Organic Thin Film Solar Cell Panel 44 Organic Thin Film Solar Cell Module

Claims (2)

  1.  少なくとも光電変換層と、前記光電変換層を支持する基板と、前記光電変換層の受光面側及び非受光面側で前記光電変換層と接続する少なくとも一対の電極が積層された有機薄膜太陽電池素子と、
     前記電極に接続される少なくとも一対の集電線と、を有する有機薄膜太陽電池を備える有機薄膜太陽電池モジュールにおいて、
     前記集電線が、導電性の熱硬化性樹脂組成物を介して前記電極に接続されていることを特徴とする太陽電池モジュール。
    An organic thin film solar cell element in which at least a photoelectric conversion layer, a substrate that supports the photoelectric conversion layer, and at least a pair of electrodes that are connected to the photoelectric conversion layer on a light receiving surface side and a non-light receiving surface side of the photoelectric conversion layer are stacked. When,
    In an organic thin film solar cell module comprising an organic thin film solar cell having at least a pair of current collectors connected to the electrodes,
    The said collector wire is connected to the said electrode through the electroconductive thermosetting resin composition, The solar cell module characterized by the above-mentioned.
  2.  前記集電線の厚さが200μm以下である、請求項1に記載の有機薄膜太陽電池モジュール。 The organic thin-film solar cell module according to claim 1, wherein the thickness of the collector line is 200 µm or less.
PCT/JP2013/067943 2012-06-29 2013-06-28 Organic thin film solar cell module WO2014003187A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012147602A JP2015167151A (en) 2012-06-29 2012-06-29 solar cell module
JP2012-147602 2012-06-29

Publications (1)

Publication Number Publication Date
WO2014003187A1 true WO2014003187A1 (en) 2014-01-03

Family

ID=49783321

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/067943 WO2014003187A1 (en) 2012-06-29 2013-06-28 Organic thin film solar cell module

Country Status (2)

Country Link
JP (1) JP2015167151A (en)
WO (1) WO2014003187A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150112582A (en) * 2014-03-28 2015-10-07 코오롱인더스트리 주식회사 Flexible device
EP3276695A4 (en) * 2015-03-27 2018-11-07 Mitsubishi Chemical Corporation Organic thin film solar cell module
TWI684285B (en) * 2014-12-26 2020-02-01 日商材料概念股份有限公司 Solar battery module and manufacturing method thereof
EP3586367A4 (en) * 2017-02-24 2020-11-25 Epic Battery Inc. Stable perovskite solar cell

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007125903A1 (en) * 2006-04-26 2007-11-08 Hitachi Chemical Company, Ltd. Adhesive tape and solar cell module using the same
WO2012073675A1 (en) * 2010-12-01 2012-06-07 ソニーケミカル&インフォメーションデバイス株式会社 Thin-film solar cell module and method for manufacturing thin-film solar cell module

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007125903A1 (en) * 2006-04-26 2007-11-08 Hitachi Chemical Company, Ltd. Adhesive tape and solar cell module using the same
WO2012073675A1 (en) * 2010-12-01 2012-06-07 ソニーケミカル&インフォメーションデバイス株式会社 Thin-film solar cell module and method for manufacturing thin-film solar cell module

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150112582A (en) * 2014-03-28 2015-10-07 코오롱인더스트리 주식회사 Flexible device
EP3125307A4 (en) * 2014-03-28 2017-11-08 Kolon Industries, Inc. Flexible device
KR102052358B1 (en) * 2014-03-28 2019-12-05 코오롱인더스트리 주식회사 Flexible device
TWI684285B (en) * 2014-12-26 2020-02-01 日商材料概念股份有限公司 Solar battery module and manufacturing method thereof
EP3276695A4 (en) * 2015-03-27 2018-11-07 Mitsubishi Chemical Corporation Organic thin film solar cell module
EP3586367A4 (en) * 2017-02-24 2020-11-25 Epic Battery Inc. Stable perovskite solar cell

Also Published As

Publication number Publication date
JP2015167151A (en) 2015-09-24

Similar Documents

Publication Publication Date Title
KR101700989B1 (en) Organic electronic device and method for producing the same
US20180019423A1 (en) Organic thin film solar cell module
WO2011158777A1 (en) Solar cell module
US20120305080A1 (en) Solar cell module and method of manufacturing solar cell module
JP2012064645A (en) Organic photoelectric conversion element and method for manufacturing the same
JP6094572B2 (en) Method for manufacturing organic thin film solar cell module, and organic thin film solar cell module
WO2014003187A1 (en) Organic thin film solar cell module
JP2014207321A (en) Organic thin film solar cell element
JP2016225628A (en) Organic Thin Film Solar Cell Module
JP6558022B2 (en) Thin film solar cell module
JP2016186156A (en) Wall material integrated with solar cell
JP2012080060A (en) Organic solar battery module
JP2015194072A (en) Thin membrane solar battery module
JP5621657B2 (en) Solar cell module
JP2015154049A (en) Thin film solar cell module
JP2016058606A (en) Solar cell module
JP2016189466A (en) Organic Thin Film Solar Cell Module
JP2017069395A (en) Organic thin film solar cell module
JP6413208B2 (en) Manufacturing method of organic solar cell
JP2014239087A (en) Installation method of organic thin-film solar cell
JP2012009518A (en) Organic solar cell module
JP2014011320A (en) Solar cell module
JP2015090935A (en) Thin film solar cell module and thin film solar cell array
JP6458591B2 (en) Solar cell device
JP2015154050A (en) Thin film solar cell module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13809533

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13809533

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP