WO2024075654A1 - Electric compressor - Google Patents

Electric compressor Download PDF

Info

Publication number
WO2024075654A1
WO2024075654A1 PCT/JP2023/035718 JP2023035718W WO2024075654A1 WO 2024075654 A1 WO2024075654 A1 WO 2024075654A1 JP 2023035718 W JP2023035718 W JP 2023035718W WO 2024075654 A1 WO2024075654 A1 WO 2024075654A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
housing
electric compressor
insulating tube
tube
Prior art date
Application number
PCT/JP2023/035718
Other languages
French (fr)
Japanese (ja)
Inventor
千輝 高間
ヴァンサン ピカール
Original Assignee
株式会社ヴァレオジャパン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ヴァレオジャパン filed Critical 株式会社ヴァレオジャパン
Publication of WO2024075654A1 publication Critical patent/WO2024075654A1/en

Links

Images

Definitions

  • the present invention relates to an improved technology for an electric compressor that includes a compression mechanism that compresses a refrigerant and an electric motor that drives the compression mechanism.
  • Some electric compressors house the motor in a sealed housing, and the control unit (motor drive circuit such as an inverter) that controls the drive of the motor is located outside the housing.
  • the compression mechanism compresses the refrigerant drawn into the housing and discharges it.
  • an electric compressor has a motor stator fixed inside a housing, and a control circuit chamber sandwiched between the inside of the housing and a partition wall.
  • a sealed terminal is arranged in the partition wall.
  • the sealed terminal has an insulating material filled between the terminal plate and the terminal pin.
  • a cluster block is arranged between the partition wall and the stator.
  • a connection terminal electrically connected to the stator is housed in the cluster block.
  • the terminal pin is fitted into the cluster block and electrically connected to the connection terminal.
  • the terminal pin between the insulating member and the cluster block is inevitably exposed to the refrigerant inside the housing. If the terminal pin comes into contact with liquid refrigerant (liquid refrigerant) or lubricating oil, there is a risk of a short circuit between the terminal pin and the terminal plate, and even between the terminal plate and the housing, so measures are necessary. As measures against this, for example, the technologies of Patent Document 1 and Patent Document 2 are known.
  • Patent Document 1 a ring-shaped insulator is fitted onto a lead pin (corresponding to a terminal pin) that is attached to a hermetic plate (corresponding to a terminal plate), a ring-shaped sealing member is fitted onto the outer peripheral surface of this insulator, and the fitting opening of a connector housing (corresponding to a cluster block) is fitted onto the outer peripheral surface of this sealing member.
  • the technology of Patent Document 1 provides a radial seal using the inner and outer peripheral surfaces of the sealing member.
  • Patent Document 2 a terminal pin (corresponding to a terminal pin) attached to a glass terminal plate (corresponding to a terminal plate) is fitted into the terminal of an internal power line housed in a terminal case (corresponding to a cluster block), and a cylindrical rubber ring is sandwiched between the glass terminal plate and the terminal case.
  • the technology of Patent Document 2 creates an axial seal between the glass terminal plate and the terminal case with both end faces of the rubber ring.
  • the electric compressor known from Patent Document 2 has a configuration in which a cylindrical rubber ring is sandwiched between the glass terminal plate and the terminal case (sealing in the axial direction), so the tolerance of the axial distance from the glass terminal plate to the terminal case affects the sealing performance.
  • This tolerance of the axial distance is inevitably relatively large, as it is a combination of the tolerances of each component.
  • the technology in Patent Document 2 is structured to ensure the insulation distance by the contact area between the sealing surface of the glass terminal plate and the sealing surface of the terminal case, if the flatness or parallelism of the sealing surfaces is poor, the contact area becomes narrow, and there are still issues in ensuring electrical insulation.
  • the present invention was made to solve the above problems, and aims to provide a technology that can improve the electrical insulation between the insulating member and the cluster block.
  • the sealing terminal (130) is a terminal plate (131) fixed to the housing (20); a terminal pin (132) that is inserted through a through hole (131a) of the terminal plate (131) and electrically connects the connection terminal (106) to the outside of the housing (20);
  • An insulating member (140) that is filled between the terminal plate (131) and the terminal pin (132) to seal and insulate the terminal plate (131) and the terminal pin (132),
  • the terminal pin (132) is covered liquid-tightly by an annular insulating tube (150; 350;
  • the insulating tube (150; 350; 450) has low rigidity portions (160, 160; 360, 360) at both axial ends, the low rigidity portions being lower than an axial central portion (170; 470) of the insulating tube (150; 350; 450), and is sandwiched between the cluster block (110) and the insulating member (140).
  • each of the low-rigidity portions (160, 160; 360, 360) has a contraction portion (161, 161) having a gap (Cr) between the outer peripheral surface (132a) of the terminal pin (132) and the inner peripheral surface (150a) of the insulating tube (150).
  • the electric compressor described in 2 there is a support portion (170; 470) between each of the low rigidity portions (160, 160; 360, 360), and the hole diameter (d1) of the support portion (170; 470) is smaller than the diameter (d2) of the terminal pin (132).
  • the tip (163, 163) of each of the low rigidity portions (160, 160; 360, 360) is formed with a curved inner corner (167, 167) between the tip surface (165, 165) and the inner circumferential surface (166, 166) and an outer corner (169, 169) between the tip surface (165, 165) and the outer circumferential surface (168, 168), and the curved surface (167a, 167a) of the inner corner (167, 167) has a larger radius of curvature (r1) than the curved surface (169a, 169a) of the outer corner (169, 169).
  • each of the low rigidity sections (160, 160; 360, 360) is configured with an enlarged diameter section (164, 164) whose diameter increases from the base end (162, 162) to the tip end (163, 163).
  • the wall thickness (t1, t2) of the insulating tube (150) is preferably uniform over its entire length.
  • the cluster block (110) has a tube contact surface (212) that contacts the tip surface (165, 165) of either of the low-rigidity portions (160, 160; 360, 360) provided at both axial ends of the insulating tube (150), and the tube contact surface (212) is a spherical or conical surface.
  • the insulating member (140) has a tube contact surface (242c) that contacts the tip surface (165, 165) of either of the low-rigidity portions (160, 160; 360, 360) provided at both axial ends of the insulating tube (150), and the tube contact surface (242c) is a spherical or conical surface.
  • the insulating tube (350) is configured such that at least a part or the whole of one or both of the low-rigidity sections (360, 360) provided at both axial ends is configured in a bellows shape that can be contracted in the axial direction of the insulating tube (350).
  • At least a portion of the support portion (470) has a grip portion (471) that is thickened radially outwardly of the support portion (470).
  • the present invention can improve the electrical insulation between the insulating member and the cluster block.
  • FIG. 1 is a cross-sectional view of an electric compressor according to a first embodiment.
  • FIG. 2 is an enlarged view of the cluster block and its surroundings shown in FIG. 1 .
  • FIG. 3 is an exploded perspective view of the cluster block and sealing terminal shown in FIG. 2 .
  • FIG. 3 is an enlarged cross-sectional view of the sealed terminal shown in FIG. 2 .
  • 5A is an enlarged view of the insulating tube and its surroundings of the sealed terminal shown in FIG. 2
  • FIG. 5B is an enlarged view of the relationship between the insulator and the insulating tube shown in FIG. 5A
  • FIG. 5C is a conceptual diagram of the insulating tube shown in FIG. 5B elastically deforming radially inward.
  • FIG. 5B is a cross-sectional view of the insulating tube shown in FIG. 5A.
  • FIG. 7 is a cross-sectional view of a modified example of the insulating tube shown in FIG. 6 .
  • FIG. 8A is a first example of an insulating tube and its surroundings of a sealed terminal of an electric compressor according to the second embodiment
  • FIG. 8B is a second example of an insulating tube and its surroundings of a sealed terminal of an electric compressor according to the second embodiment.
  • 9A is a cross-sectional view of an insulating tube and its surroundings of a sealed terminal of an electric compressor according to a third embodiment
  • FIG. 9B is a cross-sectional view of the insulating tube alone shown in FIG. 9A.
  • FIG. 10A is a cross-sectional view of an insulating tube of an electric compressor according to a fourth embodiment
  • FIG. 10B is a cross-sectional view taken along line 10B-10B in FIG. 10A.
  • Example 1 First Embodiment An electric compressor 10 according to a first embodiment will be described with reference to FIGS.
  • the electric compressor 10 is suitable for use in a refrigeration cycle that uses a refrigerant as the working fluid, and is used, for example, in the refrigeration cycle of an automotive air conditioner.
  • this electric compressor 10 is not limited.
  • the electric compressor 10 comprises a sealed housing 20 that can be installed, for example, horizontally, a compression mechanism 50 that compresses and discharges the refrigerant drawn into the housing 20, an electric motor 100 stored in the housing 20 to drive the compression mechanism 50, and a control unit 120 that controls the driving of the electric motor 100.
  • the control unit 120 is composed of an inverter device that receives, for example, electric power supplied from an external source and a compressor operation signal that operates the electric compressor 10, and supplies driving power to the electric motor 100.
  • the housing 20 is a cylindrical member with a bottom, consisting of a bottom wall 21 and a peripheral wall 22, with one end closed by the bottom wall 21 and the other end completely open. In other words, the other end of the housing 20 has an opening 23. This opening 23 is closed by a head member 31 that can be opened and closed.
  • the housing 20 is made by casting a metal material such as aluminum (including aluminum alloys).
  • the outer wall surface 21a and inner wall surface 21b of the bottom wall 21 of the housing 20 are flat surfaces.
  • a cylindrical control housing 32 with a bottom is attached to the outer wall surface 21a.
  • the bottom wall 32a of the control housing 32 overlaps the outer wall surface 21a of the bottom wall 21 of the housing 20 and is fastened to the bottom wall 21 by a fastening member (not shown).
  • the control housing 32 houses the control unit 120.
  • the opening 32b of the control housing 32 is closed by an openable and closable lid 33. Details of the control unit 120 will be described later.
  • the housing 20 has a first storage chamber 24 on the bottom wall 21 side and a second storage chamber 25 on the opening 23 side. These first and second storage chambers 24, 25 are continuous in the longitudinal direction (axial direction) of the housing 20.
  • At least a part (e.g., the entirety) of the compression mechanism 50 is housed in the opening 23 side of the housing 20, i.e., the second storage chamber 25.
  • the electric motor 100 is housed in the bottom wall 21 side of the housing 20, i.e., the first storage chamber 24.
  • the housing 20 has a suction port 26 that draws refrigerant from the outside into the first storage chamber 24.
  • the head member 31 has an oil separation chamber 31a that separates oil from the refrigerant compressed by the compression mechanism 50, and a discharge port (not shown) that discharges the gaseous refrigerant from which the oil has been separated by this oil separation chamber 31a to the outside.
  • the first storage chamber 24 and the second storage chamber 25 are separated by a disk-shaped partition member 34 (also called a drive shaft support member 34).
  • This partition member 34 is restricted in both relative rotation and relative axial movement with respect to the housing 20.
  • the drive shaft support member 34 is fixed to the housing 20 after the electric motor 100 is stored in the housing 20.
  • the first storage chamber 24 may be referred to as the "low pressure chamber 24."
  • the partition member 34 has a plurality of suction holes 34a that connect the first storage chamber 24 and the second storage chamber 25.
  • This partition member 34 can be considered as an element that constitutes the compression mechanism 50. It does not depart from the spirit of the present invention even if the partition wall 34 is considered to be part of the compression mechanism 50.
  • the first storage chamber 24 is provided with a drive shaft 41 located on the longitudinal center line CL1 of the housing 20.
  • This drive shaft 41 also serves as the output shaft 101 (motor shaft 101) of the electric motor 100.
  • the longitudinal center line CL1 of the housing 20 is sometimes referred to as the "center line CL1 of the drive shaft 41 (output shaft 101)."
  • the drive shaft 41 passes through the partition member 34 toward the compression mechanism 50 and is rotatably supported by a first bearing 42 provided in the partition member 34 and a second bearing 43 provided in the bearing holder 21c of the bottom wall 21 of the housing 20.
  • the drive shaft 41 also has an eccentric shaft 44 on one end surface passing through the partition member 34.
  • the eccentric shaft 44 extends from one end surface of the drive shaft 41 toward the compression mechanism 50 and is parallel to the drive shaft 41.
  • the center line CL2 of the eccentric shaft 44 is offset from the center line CL1 of the drive shaft 41.
  • An annular bush 45 is rotatably fitted to the eccentric shaft 44.
  • a counterweight 46 protruding radially is integrally provided to the bush 45.
  • the inner peripheral surface of the third bearing 47 is fitted to the outer peripheral surface of the bush 45.
  • the compression mechanism 50 is configured by a so-called scroll compression mechanism that compresses the refrigerant by combining, for example, a fixed scroll 60 that is supported between a head member 31 and a partition member 34 so as not to rotate relative to the head member 31 and a partition member 34, and an oscillating scroll 70 that is oscillable in a circumferential direction relative to the fixed scroll 60.
  • the fixed scroll 60 has a disk-shaped fixed end plate 61, a cylindrical outer peripheral wall 62, and a spiral-shaped fixed spiral wall 63.
  • the fixed end plate 61 is perpendicular to the center line CL2 of the eccentric shaft 44.
  • the outer peripheral wall 62 extends from the outer peripheral edge of the fixed end plate 61 toward the electric motor 100.
  • a refrigerant suction port 64 is formed in this outer peripheral wall 62 for drawing refrigerant from the radially outer side to the inner side.
  • the fixed spiral wall 63 is located inside the outer peripheral wall 62 and stands upright from the bottom surface of the fixed end plate 61.
  • the oscillating scroll 70 can revolve around the fixed scroll 60.
  • the oscillating scroll 70 has a disk-shaped oscillating mirror plate 71 positioned opposite the fixed spiral wall 63, and a spiral-shaped oscillating spiral wall 72.
  • the oscillating mirror plate 71 is located inside the outer peripheral wall 62 of the fixed scroll 60, and is rotatably supported by the eccentric shaft 44 via the third bearing 47 and the bush 45.
  • the oscillating spiral wall 72 stands upright from the oscillating mirror plate 71 toward the fixed spiral wall 63, and the oscillating spiral wall 72 and the fixed spiral wall 63 are combined to form a plurality of compression chambers 73.
  • the oscillating scroll 70 can revolve (rotate eccentrically) around the axis CL1 of the drive shaft 41.
  • the compression mechanism 50 has an anti-rotation mechanism 80.
  • This anti-rotation mechanism 80 is composed of a number of recesses 81 in the oscillating mirror plate 71, a number of ring members 82 fitted into these recesses 81, and a number of anti-rotation pins 83 extending from the partition member 34 into the ring members 82.
  • Each ring member 82 makes line contact with each anti-rotation pin 83, thereby preventing the oscillating scroll 70 from rotating on its own axis while allowing it to oscillate.
  • the rotation of the drive shaft 41 causes the swing scroll 70 to revolve.
  • the refrigerant sucked in from the suction port 26 passes through the gap of the electric motor 100 in the low pressure chamber 24, passes through the suction hole 34a of the partition member 34, and passes through the refrigerant suction port 64 of the fixed scroll 60, and is taken into the compression chamber 73.
  • the compression chamber 73 moves toward the center while gradually reducing its internal volume. This causes the refrigerant in the compression chamber 73 to be compressed.
  • the pressure in the compression chamber 73 increases to exceed the pressure at which the discharge valve 91 opens, the discharge valve 91 opens due to the pressure difference.
  • the refrigerant in the compression chamber 73 flows into the discharge chamber 93 through the discharge hole 92.
  • the refrigerant in the discharge chamber 93 is discharged to the outside from the discharge port (not shown) via the oil separation chamber 31a.
  • the electric motor 100 is, for example, a three-phase AC brushless motor.
  • the electric motor 100 includes the output shaft 101 (drive shaft 41), a rotor 102 fixed to the output shaft 101, and a cylindrical stator 103 surrounding the rotor 102.
  • the rotor 102 can rotate around the center line CL1 of the output shaft 101, with the longitudinal direction of the housing 20 as its axial center (center of rotation).
  • the stator 103 is disposed radially outside the rotor 102 and is fixed to the inner peripheral surface 20a of the housing 20 (the inner peripheral surface 24a of the first storage chamber 24).
  • connection terminals 106 are electrically connected to the coil 104 of the electric motor 100 and are arranged on the bottom wall 21 side of the electric motor 100.
  • Each connection terminal 106 is incorporated (housed) in a cluster block 110.
  • This cluster block 110 is also called an electrical connector 110.
  • the cluster block 110 is inserted into the space Sp between the bottom wall 21 of the housing 20 and the insulator 107 of the stator 103, i.e., the space Sp between the bottom wall 21 and the stator 103, and is positioned with a gap ga (air gap ga) from the bottom wall 21. Movement of this cluster block 110 in a direction parallel to the bottom wall 21 of the housing 20 (a planar direction perpendicular to the center line CL1 of the output shaft 101) is restricted, and movement in the longitudinal direction of the housing 20 is restricted by the insulator 107. In this way, the cluster block 110 is stored in the housing 20.
  • the cluster block 110 has terminal accommodating portions 111 that accommodate the connection terminals 106, and is formed, for example, from a molded product made of electrically insulating resin. More specifically, the cluster block 110 has a flat opposing surface 112 that faces the bottom wall 21 of the housing 20. This opposing surface 112 is a plane that is perpendicular to the center line CL1 of the output shaft 101. This opposing surface 112 (the surface 112 facing the terminal plate 131) is sometimes referred to as the "tube contact surface 112 of the cluster block 110.”
  • This tube contact surface 112 has multiple pin insertion holes 113 formed through the terminal accommodating portion 111.
  • the positions of the multiple pin insertion holes 113 correspond to the positions of the connection portions 106a of each connection terminal 106.
  • connection terminal 106 housed in the cluster block 110 is electrically connected to the outside of the housing 20 by a sealed terminal 130.
  • the control unit 120 is disposed outside the housing 20 (e.g., inside the control housing 32).
  • Each connection terminal 106 is electrically connected to the control unit 120 by a sealed terminal 130.
  • the control unit 120 includes a configuration in which it is provided directly or indirectly on the outer wall surface 21a of the bottom wall 21 of the housing 20.
  • the control unit 120 is indirectly provided on the outer wall surface 21a of the bottom wall 21 of the housing 20 by being removably stored inside the control housing 32.
  • the control unit 120 is provided directly on the outer wall surface 21a of the bottom wall 21 of the housing 20 without going through the bottom wall 32a of the control housing 32.
  • the control unit 120 includes a board 122 on which control components 121 such as an inverter circuit are mounted, and a board-side connector 123 provided on the board 122.
  • the board-side connector 123 can be connected to the tips of each terminal pin 132 of the sealed terminal 130.
  • each lead wire 105 is electrically connected to the control unit 120. Driving power can be supplied from the control unit 120 to the electric motor 100.
  • the sealed terminal 130 (relay terminal 130) is provided in the housing 20 and is electrically connected to the connection terminal 106.
  • the sealed terminal 130 includes a terminal plate 131 that can be attached to the housing 20, and a number of terminal pins 132 that are assembled to the terminal plate 131.
  • the sealed terminal 130 further includes a number of insulating members 140 that are filled between the terminal plate 131 and each terminal pin 132 to provide a seal (airtight, liquidtight) and electrical insulation.
  • the terminal plate 131 (base 131) is a flat member that can be attached to the bottom wall 21 from the outer wall surface 21a side by fastening members 133.
  • the gap between the terminal plate 131 and the outer wall surface 21a of the bottom wall 21 is sealed by a sealing member 134.
  • the multiple terminal pins 132 are conductive rod-shaped members that extend from inside the control housing 32 into the housing 20 along the center line CL1 of the output shaft 101.
  • the bottom wall 21 of the housing 20 has through holes 21d (see Figure 2) through which the multiple terminal pins 132 and the multiple insulating tubes 150 can be inserted.
  • each terminal pin 132 is removably fitted into the connection terminal 123a of the board-side connector 123, thereby allowing electrical connection to the board-side connector 123. Furthermore, the terminal pin 132 is removably fitted into the connection portion 106a of the connection terminal 106, allowing the sealed terminal 130 to electrically connect the stator 103 and the control unit 120. In this way, each terminal pin 132 is capable of electrically connecting the connection terminal 106 to the outside of the housing 20.
  • the connection portion 106a of the terminal pin 132 and the connection terminal 106 is covered by the cluster block 110.
  • each terminal pin 132 passes through a through hole 131a in the terminal plate 131.
  • the insulating member 140 provides a seal (airtight, liquidtight) and electrical insulation between each terminal pin 132 passing through the through hole 131a and the terminal plate 131, either individually or as a whole, and is composed of a single member or multiple members.
  • the insulating member 140 is composed of a filler 141 filled in the through hole 131a of the terminal plate 131, and a pair of sealing members 142, 143 that seal the filler 141 from both sides of the through hole 131a.
  • the filler 141 is made of a material that has sealing properties (airtightness and liquid tightness) and electrical insulation properties, and is capable of supporting the terminal pin 132.
  • This filler 141 is an inorganic material that has electrical insulation properties, such as glass.
  • the pair of sealing members 142, 143 are made of an electrically insulating material such as ceramic. These sealing members 142, 143 are annular members having insertion holes 142a, 143a through which the terminal pin 132 can be inserted, and have flanges 142b, 143b at one axial end.
  • One of the pair of sealing members 142, 143 is called the first sealing member 142, and the other is called the second sealing member 143.
  • the first sealing member 142 is located on the low pressure chamber 24 (see FIG. 2) side relative to the terminal plate 131, and has an opposing surface 142c facing the opposing surface 112 (tube contact surface 112) of the cluster block 110.
  • This opposing surface 142c is preferably a flat surface parallel to the tube contact surface 112 of the cluster block 110.
  • the second sealing member 143 is located on the control unit 120 (see FIG. 2) side relative to the terminal plate 131.
  • the opposing surface 142c of the first sealing member 142 (the surface 142c facing the tube contact surface 112 of the cluster block 110 shown in FIG. 2) may be referred to as the "tube contact surface 142c of the first sealing member 142" or the “tube contact surface 142c of the insulating member 140.”
  • the filler 141 integrates the terminal pin 132 and the sealing members 142, 143 with respect to the terminal plate 131, for example, as follows. Glass pellets are filled between the through hole 131a of the terminal plate 131 and the terminal pin 132, both sides of the through hole 131a are sealed with the sealing members 142, 143, and the entire sealed terminal 130 is fired. As a result, the glass pellets melt and adhere to the inner surface of the through hole 131a, the terminal pin 132, and the sealing members 142, 143. The molten glass pellets solidify to form the filler 141.
  • the filler 141 seals between the inner surface of the through hole 131a, the terminal pin 132, and the sealing members 142, 143, and positions and fixes (integrates) the terminal pin 132 and the sealing members 142, 143 with respect to the terminal plate 131.
  • the distance from the tube contact surface 112 of the cluster block 110 to the tube contact surface 142c of the insulating member 140 is L1.
  • This distance L1 may be referred to as “the distance L1 between the cluster block 110 and the insulating member 140," “the distance L1 between the contact surfaces 112 and 142c,” or simply "the distance L1.”
  • this clearance dimension L1 has a large tolerance.
  • the reason for this is, for example, the accumulation of the following dimensional tolerances.
  • the first tolerance is the tolerance of the position of the contact surface of the seal member 134 relative to the bottom wall 21 of the housing 20.
  • the second tolerance is the tolerance of the thickness th of the seal member 134.
  • the third tolerance is the assembly tolerance from the first plate surface 131b of the terminal plate 131 to the tube contact surface 142c of the insulating member 140.
  • the fourth tolerance is the axial tolerance of the assembly position of the stator 103 relative to the housing 20.
  • the fifth tolerance is the axial tolerance of the assembly position of the cluster block 110 relative to the stator 103.
  • each terminal pin 132 is liquid-tightly covered by an annular insulating tube 150 that is elastic and electrically insulating.
  • the insulating tube 150 is a hollow body with a circular cross section that matches the cross-sectional shape of the terminal pin 132.
  • An example of a material for the insulating tube 150 is rubber that has electrical insulating properties.
  • the total length L2 of the insulating tube 150 (see FIG. 6), i.e., the natural length L2, is greater than the distance L1 between the contact surfaces 112 and 142c.
  • the dimensional difference ⁇ L L2 - L1 (the dimensional difference ⁇ L is not shown).
  • This insulating tube 150 has low-rigidity sections 160, 160 at both ends in the axial direction, and a central section 170 (support section 170) between these low-rigidity sections 160, 160.
  • the low-rigidity sections 160, 160 at both ends in the axial direction are formed symmetrically and are the same size.
  • the rigidity of each low-rigidity section 160, 160 is lower than the rigidity of the central section 170 (support section 170) in the axial direction of the insulating tube 150.
  • the low-rigidity sections 160, 160 with low rigidity refer to areas that are more easily deformed (contracted) in the axial direction than the central section 170 when the insulating tube 150 is compressed in the axial direction of the terminal pin 132.
  • the support portion 170 is a straight tube with a circular cross section.
  • the hole diameter d1 (see FIG. 6) of the hollow support portion 170, i.e., the inner diameter d1, is smaller than the diameter d2 of the terminal pin 132.
  • the insulating tube 150 configured in this manner is sandwiched between the cluster block 110 and the insulating member 140, that is, between the tube contact surface 112 of the cluster block 110 and the tube contact surface 142c of the insulating member 140.
  • a compressive force in the axial direction of the terminal pin 132 acts on the insulating tube 150 due to the above-mentioned dimensional difference ⁇ L.
  • the low-rigidity portions 160, 160 contract and come into close contact with the respective contact surfaces 112, 142c, thereby improving the liquid-tightness.
  • each low-rigidity portion 160, 160 is composed of a contraction portion 161, 161.
  • Each low-rigidity portion 160, 160 has a contraction portion 161, 161 having gaps Cr, Cr (spaces Cr, Cr) between the outer peripheral surface 132a of the terminal pin 132 and the inner peripheral surface 150a of the insulating tube 150.
  • the contraction portions 161, 161 can easily expand and contract radially outwardly of the insulating tube 150 (see imaginary lines in FIG. 5B) and radially inwardly of the insulating tube 150 (see imaginary lines in FIG. 5C).
  • the tip surfaces 165, 165 of the contraction portions 161, 161 can form a stable sealing surface.
  • each low rigidity section 160, 160 is configured by an enlarged diameter section 164, 164 whose diameter increases from the base end 162, 162 (the base 162, 162 of the low rigidity section 160, 160 relative to the support section 170) to the tip 163, 163.
  • Examples of the shape of the enlarged diameter section 164, 164 include a tapered shape, a trumpet shape, and a bell shape.
  • the tips 163, 163 of the low rigidity portions 160, 160 have tip surfaces 165, 165 (sealing surfaces 165, 165) that can come into close contact with the respective contact surfaces 112, 142c (see FIG. 5A).
  • Each tip 163, 163 has an inner corner 167, 167 formed by the tip surface 165, 165 and the inner peripheral surface 166, 166, and an outer corner 169, 169 formed by the tip surface 165, 165 and the outer peripheral surface 168, 168.
  • the inner corner 167, 167 and the outer corner 169, 169 are formed in a curved shape.
  • the curved surface 167a, 167a (inner curved surface 167a, 167a) of the inner corner 167, 167 has a radius of curvature r1.
  • the curved surface 169a, 169a (outer curved surface 169a, 169a) of the outer corner 169, 169 has a radius of curvature r2, which is smaller than the radius of curvature r1 of the inner curved surface 167a, 167a.
  • the curved surfaces 167a, 167a of the inner corners 167, 167 have a larger radius of curvature than the curved surfaces 169a, 169a of the outer corners 169, 169 (r1>r2).
  • the insulating tube 150 has the wall thickness t1 of the low-rigidity portions 160, 160 and the wall thickness t2 of the support portion 170 set to the same size. In this way, the wall thicknesses t1, t2 of the insulating tube 150 are uniform over the entire length L2.
  • the thickness of the insulating tube 150 can also be set as shown in FIG. 7.
  • Example 1 The explanation of Example 1 can be summarized as follows:
  • the electric compressor 10 comprises a sealed housing 20, a compression mechanism 50 that compresses and discharges refrigerant drawn into the housing 20, an electric motor 100 stored in the housing 20 to drive the compression mechanism 50, a cluster block 110 housed in the housing 20 and containing a connection terminal 106 electrically connected to the electric motor 100, and a sealed terminal 130 provided in the housing 20 and electrically connected to the connection terminal 106.
  • the sealed terminal 130 includes a terminal plate 131 that is fixed to the housing 20, a terminal pin 132 that is inserted through a through hole 131a (see FIG. 4) in the terminal plate 131 and electrically connects the connection terminal 106 to the outside of the housing 20, and an insulating member 140 that is filled between the terminal plate 131 and the terminal pin 132 to seal and insulate.
  • the terminal pin 132 is liquid-tightly covered by an annular insulating tube 150 that is elastic and electrically insulating.
  • the insulating tube 150 has low-rigidity sections 160, 160 at both axial ends that are less rigid than the axial central section 170 (support section 170) of the insulating tube 150, and is sandwiched between the cluster block 110 and the insulating member 140.
  • the distance L1 from the insulating member 140 to the cluster block 110 is shorter than the natural length L2 of the insulating tube 150 (see Figure 6).
  • the insulating tube 150 has low-rigidity sections 160, 160 that are flexible in the axial direction at both ends of the terminal pin 132 in the axial direction, and is sandwiched between the insulating member 140 and the cluster block 110.
  • the tip surfaces 165, 165 (sealing surfaces 165, 165) of one low-rigidity section 160 (first low-rigidity section 160) contact the end surface 142c (tube contact surface 142c) of the insulating member 140 in the axial direction of the terminal pin 132.
  • the tip surfaces 165, 165 (sealing surfaces 165, 165) of the other low-rigidity section 160 (second low-rigidity section 160) contact the end surface 112 (tube contact surface 112) of the cluster block 110 in the axial direction of the terminal pin 132 by fitting the terminal pin 132 into the connection terminal 106.
  • Each low-rigidity portion 160, 160 can easily expand and contract in the radial direction in response to the axial compressive force acting on the insulating tube 150.
  • the length of the insulating tube 150 changes as each low-rigidity portion 160, 160 expands and contracts in the radial direction. Therefore, the length of the insulating tube 150 changes in accordance with the separation distance L1 from the tube contact surface 142c of the insulating member 140 to the tube contact surface 112 of the cluster block 110, allowing it to be clamped.
  • the distance L1 between the insulating member 140 and the cluster block 110 has a large dimensional tolerance.
  • the length L2 (see FIG. 6) of the insulating tube 150 can be changed to absorb the dimensional tolerance.
  • the insulating tube 150 can be sufficiently elastically deformed and contracted in response to a large amount of change in the axial direction, and can hermetically cover the terminal pin 132.
  • the liquid-tightness against liquid refrigerant and lubricating oil can be improved, and the electrical insulation between the insulating member 140 and the cluster block 110 can be further improved.
  • the sealing surfaces 165, 165 of each of the elastic low-rigidity portions 160, 160 are configured to contact the tube contact surface 142c of the insulating member 140 and the tube contact surface 112 of the cluster block 110 in the axial direction of the terminal pin 132.
  • the seal surfaces 165, 165 of each low rigidity portion 160, 160 can elastically deform along each tube contact surface 112, 142c, thereby sufficiently ensuring airtightness and liquid tightness between each tube contact surface 112, 142c (including the terminal pin 132).
  • the electrical insulation between the insulating member 140 and the cluster block 110 can be further improved.
  • Example 1 it is possible to improve the electrical insulation between the insulating member 140 and the cluster block 110.
  • each low-rigidity portion 160, 160 has a contraction portion 161, 161 having gaps Cr, Cr (spaces Cr, Cr) between the outer peripheral surface 132a of the terminal pin 132 and the inner peripheral surface 150a of the insulating tube 150.
  • each low rigidity portion 160, 160 has a contraction portion 161, 161 having a gap Cr, Cr between the outer peripheral surface 132a of the terminal pin 132 and the inner peripheral surface 150a of the insulating tube 150, so that it can easily expand and contract not only radially outward but also radially inward in accordance with the axial compressive force of the terminal pin 132 acting on the insulating tube 150, forming a stable sealing surface, improving liquid tightness against liquid refrigerant and lubricating oil, and improving electrical insulation between the insulating member 140 and the cluster block 110.
  • Example 1 As shown in Figs. 5A and 6, there is a support portion 170 between each of the low rigidity portions 160, 160.
  • the hole diameter d1 (inner diameter d1) of this support portion 170 is smaller than the diameter d2 of the terminal pin 132.
  • the support portion 170 has a hole diameter d1 (inner diameter d1) smaller than the diameter d2 of the terminal pin 132, so that the support portion 170 can maintain its state of being fitted into the terminal pin 132 by its own elasticity, and the contraction portions 161, 161 can be assembled with a certain gap Cr, Cr around the terminal pin 132. Therefore, stable sealing surfaces 165, 165 are formed between the sealing surfaces 165, 165 of the contraction portions 161, 161 and each tube contact surface 112, 142c, which can improve the liquid tightness against liquid refrigerant and lubricating oil, and improve the electrical insulation between the insulating member 140 and the cluster block 110. Furthermore, since the insulating tube 150 does not fall off the terminal pin 132, the terminal pin 132 can be easily assembled to the connection terminal 106.
  • each low rigidity portion 160, 160 are curved at the inner corners 167, 167 formed by the tip faces 165, 165 and the inner circumferential faces 166, 166, and at the outer corners 169, 169 formed by the tip faces 165, 165 and the outer circumferential faces 168, 168.
  • the curved surfaces 167a, 167a of the inner corners 167, 167 have a larger radius of curvature r1 than the curved surfaces 169a, 169a of the outer corners 169, 169.
  • the sealing surfaces 165, 165 can be stably formed in a circular shape surrounding the terminal pin 132.
  • the terminal pin 132 can be liquid-tightly covered by the insulating tube 150. This can improve the liquid-tightness against the liquid refrigerant and lubricating oil sucked into the housing 20, and improve the electrical insulation between the insulating member 140 and the cluster block 110.
  • each low-rigidity portion 160, 160 is configured with an enlarged diameter portion 164, 164 whose diameter increases from the base end 162, 162 to the tip end 163, 163.
  • each low-rigidity portion 160, 160 is configured with an enlarged diameter portion 164, 164 whose diameter increases from the base end 162, 162 to the tip end 163, 163.
  • it is easier to deform than a straight configuration by deforming in the enlarged diameter direction when compressed in the axial direction, and can follow changes in axial length.
  • the low-rigidity portions 160, 160 expand in diameter and contract in the axial direction, and can absorb displacement of the insulating tube 150 due to the dimensional tolerance of the separation distance L1 (see FIG. 5A) from the insulating member 140 to the cluster block 110.
  • Example 1 the wall thicknesses t1, t2, t11, and t12 of the insulating tube 150 are uniform over the entire length L2. If the wall thickness varies greatly depending on the part of the insulating tube 150, elasticity will vary depending on the part, preventing the formation of stable sealing surfaces 165, 165 through uniform shrinkage. However, in Example 1, the wall thicknesses t1, t2, t11, and t12 are uniform over the entire length L2 of the insulating tube 150, so that the shrinkage can be roughly uniform overall. As a result, the entire insulating tube 150 can withstand axial compression, further saving material.
  • Example 2 Second embodiment An electric compressor 200 will be described with reference to Figures 8A and 8B.
  • Figures 8A and 8B correspond to Figure 5A.
  • the electric compressor 200 of the second embodiment is characterized in that the tube contact surfaces 112, 142c of the electric compressor 10 of the first embodiment shown in Figs. 1 to 7 above are changed to the tube contact surfaces 212, 242c shown in Figs. 8A and 8B.
  • the rest of the basic configuration is the same as that of the electric compressor 10 of the first embodiment.
  • the same reference numerals are used for the parts that are the same as those of the electric compressor 10 of the first embodiment, and detailed descriptions are omitted.
  • the cluster block 110 of the second embodiment has a tube contact surface 212 that comes into contact with the tip surface 165 of one of the low-rigidity sections 160, 160 provided at both axial ends of the insulating tube 150.
  • This tube contact surface 212 corresponds to the tube contact surface 112 shown in FIG. 5A, and has a spherical surface configuration shown in FIG. 8A or a conical surface configuration shown in FIG. 8B.
  • the low rigidity portion 160 contacts the tube contact surface 212, which is a spherical surface (see FIG. 8A) or a conical surface (see FIG. 8B), and expands radially outward. Therefore, even if the contact position of the seal surface 165 (tip surface 165) of the low rigidity portion 160 is displaced radially inward relative to the cluster block 110, the seal surface 165 can be stably formed in a circular shape surrounding the terminal pin 132.
  • the terminal pin 132 can be covered liquid-tightly by the insulating tube 150. This improves the liquid-tightness against liquid refrigerant and lubricating oil drawn into the housing 20.
  • the tube contact surface 212 of the cluster block 110 is a spherical or conical surface
  • the tip surface 165 of the contraction section 161 can follow (be centered) by elastically deforming along the spherical or conical surface.
  • the insulating member 140 (first sealing member 142) has a tube contact surface 242c that contacts the tip surface 165 of one of the low-rigidity sections 160, 160 provided at both axial ends of the insulating tube 150.
  • This tube contact surface 242c corresponds to the tube contact surface 142c shown in Figure 5A, and has a spherical surface configuration shown in Figure 8A or a conical surface configuration shown in Figure 8B.
  • the low rigidity portion 160 contacts the tube contact surface 242c, which is a spherical surface (see FIG. 8A) or a conical surface (see FIG. 8B), and expands radially outward. Therefore, even if the contact position of the sealing surface 165 of the low rigidity portion 160 is displaced radially inward with respect to the insulating member 140, the sealing surface 165 can be stably formed into a circular shape surrounding the terminal pin 132.
  • the terminal pin 132 can be covered liquid-tightly by the insulating tube 150. This improves the liquid-tightness against the liquid refrigerant and lubricating oil drawn into the housing 20.
  • the tip surface 165 of the low rigidity portion 160 can follow (be centered) by elastically deforming along the spherical or conical surface.
  • the electric compressor 200 according to the second embodiment can achieve the same effects as the electric compressor 10 according to the first embodiment, in addition to the effects of the second embodiment.
  • Example 3 An electric compressor 300 will be described with reference to Figures 9A and 9B.
  • Figures 9A and 9B correspond to Figure 5A.
  • the electric compressor 300 of the third embodiment is characterized in that the low rigidity portions 160, 160 of the insulating tube 150 of the electric compressor 10 of the first embodiment shown in Figs. 1 to 7 above are replaced with low rigidity portions 360, 360 of the insulating tube 350 shown in Figs. 9A and 9B.
  • the rest of the basic configuration is the same as that of the electric compressor 10 of the first embodiment.
  • the same reference numerals are used for the parts common to the electric compressor 10 of the first embodiment, and detailed descriptions are omitted.
  • the insulating tube 350 is characterized in that at least a part or all of one or both of the low-rigidity sections 360, 360 provided at both axial ends are configured in a bellows shape that can be contracted in the axial direction of the insulating tube 350.
  • the electric compressor 300 according to the third embodiment can achieve the same effects as the electric compressor 10 according to the first embodiment, in addition to the effects of the third embodiment.
  • Example 4 Fourth embodiment An electric compressor 400 according to the present invention will be described with reference to Fig. 10A and Fig. 10B.
  • Fig. 10A corresponds to Fig. 5A.
  • the electric compressor 400 of the fourth embodiment is characterized in that the support portion 170 of the insulating tube 150 of the electric compressor 10 of the first embodiment shown in Figs. 1 to 7 above is replaced with a support portion 470 (central portion 470) of the insulating tube 450 shown in Figs. 10A and 10B.
  • the rest of the basic configuration is the same as that of the electric compressor 10 of the first embodiment.
  • the same reference numerals are used for the parts that are the same as those of the electric compressor 10 of the first embodiment, and detailed descriptions are omitted.
  • the support portion 470 has a gripping portion 471 that thickens radially outward from the support portion 470.
  • the gripping portion 471 is formed integrally with the outer circumferential surface of the hollow support portion 470, or is formed by fastening a separate member to the outer circumferential surface.
  • the gripping portion 471 is set to a shape and size that allows it to be gripped when assembling the insulating tube 150 to the terminal pin 132. Examples of grippable shapes of the gripping portion 471 include a cross-sectional shape, a circular cross-sectional shape, and a thick shape as shown in FIG. 10B.
  • the insulating tube 450 is a small part, by providing a gripping portion 471 that is thicker radially outward of the support portion 470, it is possible to make it easier to grip, and to avoid uneven compression of the contracted portions 161, 161 (expanded portions 164, 164) due to uneven thickness, thereby improving liquid tightness by forming stable sealing surfaces 165, 165. This makes it possible to improve both the electrical insulation between the insulating member 140 and the cluster block 110 and the ease of assembling the insulating tube 150 to the terminal pin 132.
  • the electric compressor 400 according to the fourth embodiment can achieve the same effects as the electric compressor 10 according to the first embodiment, in addition to the effects of the fourth embodiment.
  • the electric compressors 10, 200, 300, 400 according to the present invention are not limited to the embodiments as long as they provide the functions and effects of the present invention. For example, any two or more of the electric compressors 10, 200, 300, and 400 may be combined.
  • the housing 20 may be configured to house only the electric motor 100 without accommodating the compression mechanism 50 .
  • the compression mechanism 50 is not limited to a scroll compression mechanism, but may be any mechanism that is driven by the electric motor 100 and compresses the refrigerant.
  • the electric compressors 10; 200; 300; 400 of the present invention are suitable for use in the refrigeration cycle of vehicle air conditioners.

Abstract

The present invention addresses the problem of improving electric insulation performance between an insulation member and a cluster block. An electric compressor (10) is provided with a sealing terminal (130). The sealing terminal (130) is provided with a terminal plate (131) fixed to a housing (20), a terminal pin (132) that is inserted into a penetration hole (131a) of the terminal plate (131) and electrically connects a connection terminal (106) to the outside of the housing (20), and an insulation member (140) that seals and insulates between the terminal plate (131) and the terminal pin (132). The terminal pin (132) is liquid-tightly covered with an annular insulation tube (150) having elasticity and electric insulation performance. The insulation tube (150) has low rigidity parts (160, 160) having rigidity lower than that of a central part (470) at both ends thereof in an axial direction, and is held between the cluster block (110) and the insulation member (140).

Description

電動圧縮機Electric Compressor
 本発明は、冷媒を圧縮する圧縮機構と、この圧縮機構を駆動する電動モータとを備えた、電動圧縮機の改良技術に関する。 The present invention relates to an improved technology for an electric compressor that includes a compression mechanism that compresses a refrigerant and an electric motor that drives the compression mechanism.
 電動圧縮機のなかには、密閉されたハウジングにモータを格納するとともに、このモータの駆動を制御する制御部(インバータ等のモータ駆動回路)をハウジングの外側に設けたものがある。圧縮機構は、ハウジングに吸入した冷媒を圧縮して吐出する。 Some electric compressors house the motor in a sealed housing, and the control unit (motor drive circuit such as an inverter) that controls the drive of the motor is located outside the housing. The compression mechanism compresses the refrigerant drawn into the housing and discharges it.
 例えば、電動圧縮機は、ハウジングの内部にモータのステータを固定し、ハウジング内と隔壁を挟んで制御回路室を備えている。隔壁には密封ターミナルが配置されている。密封ターミナルは、ターミナル板とターミナルピンとの間に充填された絶縁部材を、備えている。隔壁とステータの間にはクラスタブロックが配置されている。ステータと電気的に接続された接続端子は、クラスタブロックに収容されている。ターミナルピンは、クラスタブロックに嵌め込まれて、接続端子と電気的に接続している。 For example, an electric compressor has a motor stator fixed inside a housing, and a control circuit chamber sandwiched between the inside of the housing and a partition wall. A sealed terminal is arranged in the partition wall. The sealed terminal has an insulating material filled between the terminal plate and the terminal pin. A cluster block is arranged between the partition wall and the stator. A connection terminal electrically connected to the stator is housed in the cluster block. The terminal pin is fitted into the cluster block and electrically connected to the connection terminal.
 絶縁部材とクラスタブロックとの間のターミナルピンは、ハウジング内の冷媒中に露出することが避けられない。ターミナルピンが液状の冷媒(液冷媒)や潤滑油に接触すると、ターミナルピンとターミナル板との短絡、さらにはターミナル板とハウジングとの短絡の心配があるので、対策が必要である。これに対する対策として、例えば特許文献1及び特許文献2の技術が知られている。 The terminal pin between the insulating member and the cluster block is inevitably exposed to the refrigerant inside the housing. If the terminal pin comes into contact with liquid refrigerant (liquid refrigerant) or lubricating oil, there is a risk of a short circuit between the terminal pin and the terminal plate, and even between the terminal plate and the housing, so measures are necessary. As measures against this, for example, the technologies of Patent Document 1 and Patent Document 2 are known.
 特許文献1で知られている技術によれば、ハーメチックプレート(ターミナル板に相当)に組付けられているリードピン(ターミナルピンに相当)に、環状のガイシを嵌め込み、このガイシの外周面に環状の密封部材を嵌め込み、この密封部材の外周面にコネクタハウジング(クラスタブロックに相当)の嵌め込み口を嵌め込むと、いうものである。つまり、特許文献1の技術は、密封部材の内周面及び外周面によって、径方向のシールをするものである。 According to the technology known from Patent Document 1, a ring-shaped insulator is fitted onto a lead pin (corresponding to a terminal pin) that is attached to a hermetic plate (corresponding to a terminal plate), a ring-shaped sealing member is fitted onto the outer peripheral surface of this insulator, and the fitting opening of a connector housing (corresponding to a cluster block) is fitted onto the outer peripheral surface of this sealing member. In other words, the technology of Patent Document 1 provides a radial seal using the inner and outer peripheral surfaces of the sealing member.
 また、特許文献2で知られている技術によれば、ガラス端子板(ターミナル板に相当)に組付けられている端子ピン(ターミナルピンに相当)を、端子ケース(クラスタブロックに相当)に収容されている内部電力線の端子に嵌め込み、ガラス端子板と端子ケースとの間に筒状のゴムリングを挟持するというものである。つまり、特許文献2の技術は、ガラス端子板と端子ケースとの間を、ゴムリングの両端面によって、軸方向のシールをするものである。 Furthermore, according to the technology known from Patent Document 2, a terminal pin (corresponding to a terminal pin) attached to a glass terminal plate (corresponding to a terminal plate) is fitted into the terminal of an internal power line housed in a terminal case (corresponding to a cluster block), and a cylindrical rubber ring is sandwiched between the glass terminal plate and the terminal case. In other words, the technology of Patent Document 2 creates an axial seal between the glass terminal plate and the terminal case with both end faces of the rubber ring.
特開2013-148037号公報JP 2013-148037 A 特開2014-114795号公報JP 2014-114795 A
 しかし、特許文献1で知られている電動圧縮機では、最初にガイシの外周面に環状の密封部材の内周面を嵌め込み(第1回の圧入)、次に密封部材の外周面にコネクタハウジングの嵌め込み口の内周面を嵌め込む(第2回の圧入)ことになる。つまり、環状の密封部材は、内周面と外周面の、両方のシール性を確保する必要がある。そのためには、内周面側の嵌め込み状態と、外周面側の嵌め込み状態の、両方をバランス良く設定する必要がある。密封部材の品質(例えば材質や寸法公差)の維持や、内周面側の公差と外周面側の公差とのバランスを考慮すると、電気絶縁性の確保に課題が残る。 However, in the electric compressor known from Patent Document 1, first the inner peripheral surface of the annular sealing member is fitted into the outer peripheral surface of the insulator (first press-fit), and then the inner peripheral surface of the fitting opening of the connector housing is fitted into the outer peripheral surface of the sealing member (second press-fit). In other words, the annular sealing member needs to ensure sealing on both the inner and outer peripheral surfaces. To achieve this, it is necessary to set a good balance between the fitting state on the inner peripheral surface side and the fitting state on the outer peripheral surface side. Considering the maintenance of the quality of the sealing member (e.g. material and dimensional tolerances) and the balance between the tolerance on the inner peripheral surface side and the tolerance on the outer peripheral surface side, there remain issues in ensuring electrical insulation.
 また、特許文献2で知られている電動圧縮機では、ガラス端子板と端子ケースとの間に筒状のゴムリングを挟持する(軸方向にシールする)構成であるため、ガラス端子板から端子ケースまでの軸方向の離間距離の公差が、シール性に影響を及ぼす。この軸方向の離間距離の公差は、各部材のそれぞれの公差の複合によるので、比較的大きくならざるをえない。さらに特許文献2の技術は、ガラス端子板のシール面及び端子ケースのシール面の、接触面積によって絶縁距離を確保する構造のため、シール面の平面度や平行度が悪い場合、接触面積が狭くなり、電気絶縁性の確保に課題が残る。 In addition, the electric compressor known from Patent Document 2 has a configuration in which a cylindrical rubber ring is sandwiched between the glass terminal plate and the terminal case (sealing in the axial direction), so the tolerance of the axial distance from the glass terminal plate to the terminal case affects the sealing performance. This tolerance of the axial distance is inevitably relatively large, as it is a combination of the tolerances of each component. Furthermore, since the technology in Patent Document 2 is structured to ensure the insulation distance by the contact area between the sealing surface of the glass terminal plate and the sealing surface of the terminal case, if the flatness or parallelism of the sealing surfaces is poor, the contact area becomes narrow, and there are still issues in ensuring electrical insulation.
 本発明は、上述の問題を解決するためになされたものであり、絶縁部材とクラスタブロックとの間の電気絶縁性の向上を図ることができる技術を提供することを、課題とする。 The present invention was made to solve the above problems, and aims to provide a technology that can improve the electrical insulation between the insulating member and the cluster block.
 以下の説明では、本発明の理解を容易にするために添付図面中の参照符号を括弧書きで付記するが、それによって本発明は図示の形態に限定されるものではない。 In the following description, reference symbols in the attached drawings are given in parentheses to facilitate understanding of the present invention, but the present invention is not limited to the illustrated form.
 本発明によれば、第1に、
 密閉されたハウジング(20)と、
 前記ハウジング(20)に吸入した冷媒を圧縮して吐出する圧縮機構(50)と、
 前記圧縮機構(50)を駆動するように前記ハウジング(20)に格納された電動モータ(100)と、
 前記電動モータ(100)に電気的に接続されている接続端子(106)を収容し、前記ハウジング(20)に収納されているクラスタブロック(110)と、
 前記ハウジング(20)に設けられており、前記接続端子(106)に電気的に接続されている密封ターミナル(130)と、を備え、
 前記密封ターミナル(130)は、
 前記ハウジング(20)に固定されるターミナル板(131)と、
 前記ターミナル板(131)の貫通孔(131a)を挿通し、前記接続端子(106)を前記ハウジング(20)の外部と電気的に接続するターミナルピン(132)と、
 前記ターミナル板(131)と前記ターミナルピン(132)との間に充填されシール及び絶縁する絶縁部材(140)と、を備えている電動圧縮機(10;200;300;400)において、
 前記ターミナルピン(132)は、弾性及び電気絶縁性を有した環状の絶縁チューブ(150;350;450)により液密に覆われ、
 前記絶縁チューブ(150;350;450)は、軸方向両端に、前記絶縁チューブ(150;350;450)の軸方向の中央部(170;470)より剛性が低い低剛性部(160,160;360,360)を備えているとともに、前記クラスタブロック(110)と前記絶縁部材(140)との間に挟持されている、ことを特徴とする電動圧縮機が提供される。
According to the present invention, first,
A sealed housing (20);
a compression mechanism (50) that compresses and discharges a refrigerant drawn into the housing (20);
an electric motor (100) housed in the housing (20) so as to drive the compression mechanism (50);
a cluster block (110) that accommodates a connection terminal (106) electrically connected to the electric motor (100) and is housed in the housing (20);
a sealed terminal (130) provided in the housing (20) and electrically connected to the connection terminal (106);
The sealing terminal (130) is
a terminal plate (131) fixed to the housing (20);
a terminal pin (132) that is inserted through a through hole (131a) of the terminal plate (131) and electrically connects the connection terminal (106) to the outside of the housing (20);
An insulating member (140) that is filled between the terminal plate (131) and the terminal pin (132) to seal and insulate the terminal plate (131) and the terminal pin (132),
The terminal pin (132) is covered liquid-tightly by an annular insulating tube (150; 350; 450) having elasticity and electrical insulation properties.
The insulating tube (150; 350; 450) has low rigidity portions (160, 160; 360, 360) at both axial ends, the low rigidity portions being lower than an axial central portion (170; 470) of the insulating tube (150; 350; 450), and is sandwiched between the cluster block (110) and the insulating member (140).
 第2に、好ましくは、第1に記載の電動圧縮機であって、前記各々の低剛性部(160,160;360,360)は、前記ターミナルピン(132)の外周面(132a)と前記絶縁チューブ(150)の内周面(150a)との間に、隙間(Cr)を有する収縮部(161,161)を、それぞれ備えている。 Secondly, preferably, in the electric compressor described in the first, each of the low-rigidity portions (160, 160; 360, 360) has a contraction portion (161, 161) having a gap (Cr) between the outer peripheral surface (132a) of the terminal pin (132) and the inner peripheral surface (150a) of the insulating tube (150).
 第3に、好ましくは、第2に記載の電動圧縮機であって、前記各々の低剛性部(160,160;360,360)の間には、支持部(170;470)を有しており、前記支持部(170;470)は、孔径(d1)が前記ターミナルピン(132)の径(d2)よりも小径である。 Thirdly, preferably, in the electric compressor described in 2, there is a support portion (170; 470) between each of the low rigidity portions (160, 160; 360, 360), and the hole diameter (d1) of the support portion (170; 470) is smaller than the diameter (d2) of the terminal pin (132).
 第4に、好ましくは、第2~第3に記載の電動圧縮機であって、前記各々の低剛性部(160,160;360,360)の先端(163,163)は、先端面(165,165)と内周面(166,166)との成す内側の角部(167,167)と、前記先端面(165,165)と外周面(168,168)との成す外側の角部(169,169)とを、曲面状に形成されており、前記内側の角部(167,167)の曲面(167a,167a)は、前記外側の角部(169,169)の曲面(169a,169a)よりも曲率半径(r1)が大きい。 Fourthly, in the electric compressor described in the second to third aspects, the tip (163, 163) of each of the low rigidity portions (160, 160; 360, 360) is formed with a curved inner corner (167, 167) between the tip surface (165, 165) and the inner circumferential surface (166, 166) and an outer corner (169, 169) between the tip surface (165, 165) and the outer circumferential surface (168, 168), and the curved surface (167a, 167a) of the inner corner (167, 167) has a larger radius of curvature (r1) than the curved surface (169a, 169a) of the outer corner (169, 169).
 第5に、好ましくは、第2~第4に記載の電動圧縮機であって、前記各々の低剛性部(160,160;360,360)は、基端(162,162)から前記先端(163,163)へ向かって径が大きくなる拡径部(164,164)によって構成されている。 Fifthly, preferably, in the electric compressors described in the second to fourth aspects, each of the low rigidity sections (160, 160; 360, 360) is configured with an enlarged diameter section (164, 164) whose diameter increases from the base end (162, 162) to the tip end (163, 163).
 第6に、好ましくは、第2~第5に記載の電動圧縮機であって、前記絶縁チューブ(150)の肉厚(t1,t2)は、全長にわたって一様である。 Sixthly, in the electric compressor described in any one of paragraphs 2 to 5, the wall thickness (t1, t2) of the insulating tube (150) is preferably uniform over its entire length.
 第7に、好ましくは、第2~第6に記載の電動圧縮機であって、前記クラスタブロック(110)は、前記絶縁チューブ(150)の軸方向両端に備えている低剛性部(160,160;360,360)のいずれかの前記先端面(165,165)と接触するチューブ接触面(212)を有し、前記チューブ接触面(212)は、球面又は円錐面である。 Seventhly, preferably, in the electric compressor described in any one of the second to sixth aspects, the cluster block (110) has a tube contact surface (212) that contacts the tip surface (165, 165) of either of the low-rigidity portions (160, 160; 360, 360) provided at both axial ends of the insulating tube (150), and the tube contact surface (212) is a spherical or conical surface.
 第8に、好ましくは、第2~第7に記載の電動圧縮機であって、前記絶縁部材(140)は、前記絶縁チューブ(150)の軸方向両端に備えている低剛性部(160,160;360,360)のいずれかの前記先端面(165,165)と接触するチューブ接触面(242c)を有し、前記チューブ接触面(242c)は、球面又は円錐面である。 Eighth, preferably, in the electric compressor described in any one of the second to seventh, the insulating member (140) has a tube contact surface (242c) that contacts the tip surface (165, 165) of either of the low-rigidity portions (160, 160; 360, 360) provided at both axial ends of the insulating tube (150), and the tube contact surface (242c) is a spherical or conical surface.
 第9に、好ましくは、第2~第8に記載の電動圧縮機であって、前記絶縁チューブ(350)は、軸方向両端に備えている前記低剛性部(360,360)のいずれか一方又は両方の、少なくとも一部又は全部を、前記絶縁チューブ(350)の軸方向へ収縮可能な蛇腹状に構成している。 Ninthly, in the electric compressor described in any one of the second to eighth aspects, the insulating tube (350) is configured such that at least a part or the whole of one or both of the low-rigidity sections (360, 360) provided at both axial ends is configured in a bellows shape that can be contracted in the axial direction of the insulating tube (350).
 第10に、好ましくは、第3~第8に記載の電動圧縮機であって、前記支持部(470)の少なくとも一部は、前記支持部(470)の径方向の外側へ肉厚となる把持部(471)を有している。 Tenthly, preferably, in the electric compressor described in any one of the third to eighth aspects, at least a portion of the support portion (470) has a grip portion (471) that is thickened radially outwardly of the support portion (470).
 本発明では、絶縁部材とクラスタブロックとの間の電気絶縁性の向上を図ることができる。 The present invention can improve the electrical insulation between the insulating member and the cluster block.
実施例1による電動圧縮機の断面図である。1 is a cross-sectional view of an electric compressor according to a first embodiment. 図1に示されるクラスタブロック周りの拡大図である。FIG. 2 is an enlarged view of the cluster block and its surroundings shown in FIG. 1 . 図2に示されるクラスタブロックと密封ターミナルの分解した斜視図である。FIG. 3 is an exploded perspective view of the cluster block and sealing terminal shown in FIG. 2 . 図2に示される密封ターミナルの拡大した断面図である。FIG. 3 is an enlarged cross-sectional view of the sealed terminal shown in FIG. 2 . 図5Aは図2に示される密封ターミナルの絶縁チューブ周りの拡大図、図5Bは図5Aに示される絶縁体と絶縁チューブとの関係の拡大図、図5Cは図5Bに示される絶縁チューブが径方向内側へ弾性変形する概念図である。5A is an enlarged view of the insulating tube and its surroundings of the sealed terminal shown in FIG. 2, FIG. 5B is an enlarged view of the relationship between the insulator and the insulating tube shown in FIG. 5A, and FIG. 5C is a conceptual diagram of the insulating tube shown in FIG. 5B elastically deforming radially inward. 図5Aに示される絶縁チューブ単体の断面図である。FIG. 5B is a cross-sectional view of the insulating tube shown in FIG. 5A. 図6に示される絶縁チューブの変形例の断面図である。FIG. 7 is a cross-sectional view of a modified example of the insulating tube shown in FIG. 6 . 図8Aは実施例2による電動圧縮機の密封ターミナルの絶縁チューブ周りの第1例図、図8Bは実施例2による電動圧縮機の密封ターミナルの絶縁チューブ周りの第2例図である。FIG. 8A is a first example of an insulating tube and its surroundings of a sealed terminal of an electric compressor according to the second embodiment, and FIG. 8B is a second example of an insulating tube and its surroundings of a sealed terminal of an electric compressor according to the second embodiment. 図9Aは実施例3による電動圧縮機の密封ターミナルの絶縁チューブ周りの断面図、図9Bは図9Aに示される絶縁チューブ単体の断面図である。9A is a cross-sectional view of an insulating tube and its surroundings of a sealed terminal of an electric compressor according to a third embodiment, and FIG. 9B is a cross-sectional view of the insulating tube alone shown in FIG. 9A. 図10Aは実施例4による電動圧縮機の絶縁チューブの断面図、図10Bは図10Aの10B-10B線に沿った断面図である。FIG. 10A is a cross-sectional view of an insulating tube of an electric compressor according to a fourth embodiment, and FIG. 10B is a cross-sectional view taken along line 10B-10B in FIG. 10A.
 本発明の実施の形態を添付図に基づいて以下に説明する。なお、添付図に示した形態は本発明の一例であり、本発明は当該形態に限定されない。 The following describes an embodiment of the present invention with reference to the attached drawings. Note that the embodiment shown in the attached drawings is an example of the present invention, and the present invention is not limited to this embodiment.
<実施例1>
 図1~図7を参照しつつ、実施例1の電動圧縮機10を説明する。
Example 1
First Embodiment An electric compressor 10 according to a first embodiment will be described with reference to FIGS.
 図1に示されるように、電動圧縮機10は、冷媒を作動流体とする冷凍サイクル内で使用するのに適しており、例えば、自動車用空調装置の冷凍サイクル内で用いられる。なお、この電動圧縮機10は、用途を限定されるものではない。 As shown in FIG. 1, the electric compressor 10 is suitable for use in a refrigeration cycle that uses a refrigerant as the working fluid, and is used, for example, in the refrigeration cycle of an automotive air conditioner. However, the use of this electric compressor 10 is not limited.
 電動圧縮機10は、例えば横置きに設置可能な密閉されたハウジング20と、このハウジング20に吸入した冷媒を圧縮して吐出する圧縮機構50と、この圧縮機構50を駆動するようにハウジング20に格納された電動モータ100と、この電動モータ100の駆動を制御する制御部120とを備えている。この制御部120は、例えば外部より供給される電力と、電動圧縮機10を運転させる圧縮機運転信号との入力を受けて、電動モータ100に駆動電力を供給するインバータ装置によって構成される。 The electric compressor 10 comprises a sealed housing 20 that can be installed, for example, horizontally, a compression mechanism 50 that compresses and discharges the refrigerant drawn into the housing 20, an electric motor 100 stored in the housing 20 to drive the compression mechanism 50, and a control unit 120 that controls the driving of the electric motor 100. The control unit 120 is composed of an inverter device that receives, for example, electric power supplied from an external source and a compressor operation signal that operates the electric compressor 10, and supplies driving power to the electric motor 100.
 ハウジング20は、底壁21と周壁22とからなる有底筒状の部材であって、一端を底壁21によって閉鎖されるとともに、他端を全面的に開口している。つまり、ハウジング20の他端には、開口部23を有している。この開口部23は、開閉可能なヘッド部材31によって閉鎖されている。ハウジング20は、アルミニウム(アルミニウム合金を含む)等の金属材料の鋳造品によって構成される。 The housing 20 is a cylindrical member with a bottom, consisting of a bottom wall 21 and a peripheral wall 22, with one end closed by the bottom wall 21 and the other end completely open. In other words, the other end of the housing 20 has an opening 23. This opening 23 is closed by a head member 31 that can be opened and closed. The housing 20 is made by casting a metal material such as aluminum (including aluminum alloys).
 ハウジング20の底壁21の外壁面21a及び内壁面21bは平坦面である。この外壁面21aには、有底筒状の制御ハウジング32が組み付けられている。つまり、この制御ハウジング32の底壁32aは、ハウジング20の底壁21の外壁面21aに重なるとともに、底壁21に締結部材(図示せず)によって締結されている。この制御ハウジング32には、制御部120が収納されている。制御ハウジング32の開口部32bは、開閉可能なリッド33によって閉鎖されている。制御部120の詳細は、後述する。 The outer wall surface 21a and inner wall surface 21b of the bottom wall 21 of the housing 20 are flat surfaces. A cylindrical control housing 32 with a bottom is attached to the outer wall surface 21a. In other words, the bottom wall 32a of the control housing 32 overlaps the outer wall surface 21a of the bottom wall 21 of the housing 20 and is fastened to the bottom wall 21 by a fastening member (not shown). The control housing 32 houses the control unit 120. The opening 32b of the control housing 32 is closed by an openable and closable lid 33. Details of the control unit 120 will be described later.
 ハウジング20は、内部に、底壁21側の第1収納室24と、開口部23側の第2収納室25とを有している。これらの第1及び第2収納室24,25は、ハウジング20の長手方向(軸線方向)に連続している。 The housing 20 has a first storage chamber 24 on the bottom wall 21 side and a second storage chamber 25 on the opening 23 side. These first and second storage chambers 24, 25 are continuous in the longitudinal direction (axial direction) of the housing 20.
 ハウジング20の内部の開口部23側、つまり第2収納室25には、圧縮機構50の少なくとも一部(例えば全部)が収納されている。ハウジング20の内部の底壁21側、つまり第1収納室24には、電動モータ100が格納されている。 At least a part (e.g., the entirety) of the compression mechanism 50 is housed in the opening 23 side of the housing 20, i.e., the second storage chamber 25. The electric motor 100 is housed in the bottom wall 21 side of the housing 20, i.e., the first storage chamber 24.
 さらに、ハウジング20は、外部から第1収納室24へ冷媒を吸入する吸入ポート26を有する。ヘッド部材31は、圧縮機構50によって圧縮された冷媒からオイルを分離するオイル分離室31aと、このオイル分離室31aによってオイルが分離されたガス状の冷媒を外部へ吐出する吐出ポート(図示せず)とを有する。 Furthermore, the housing 20 has a suction port 26 that draws refrigerant from the outside into the first storage chamber 24. The head member 31 has an oil separation chamber 31a that separates oil from the refrigerant compressed by the compression mechanism 50, and a discharge port (not shown) that discharges the gaseous refrigerant from which the oil has been separated by this oil separation chamber 31a to the outside.
 第1収納室24と第2収納室25との間は、円盤状の仕切り部材34(駆動軸支持部材34ともいう)によって仕切られている。この仕切り部材34は、ハウジング20に対して相対回転と軸方向への相対移動の両方が規制されている。なお、ハウジング20に対する駆動軸支持部材34の固定は、ハウジング20に電動モータ100を格納した後に行われる。 The first storage chamber 24 and the second storage chamber 25 are separated by a disk-shaped partition member 34 (also called a drive shaft support member 34). This partition member 34 is restricted in both relative rotation and relative axial movement with respect to the housing 20. The drive shaft support member 34 is fixed to the housing 20 after the electric motor 100 is stored in the housing 20.
 第1収納室24のことを「低圧室24」と言い換えることがある。仕切り部材34は、第1収納室24と第2収納室25とを連通した複数の吸入孔34aを有する。この仕切り部材34は、圧縮機構50を構成する要素として考えることが可能である。仕切り壁34を圧縮機構50の一部と考えても、本発明の趣旨を逸脱するものではない。 The first storage chamber 24 may be referred to as the "low pressure chamber 24." The partition member 34 has a plurality of suction holes 34a that connect the first storage chamber 24 and the second storage chamber 25. This partition member 34 can be considered as an element that constitutes the compression mechanism 50. It does not depart from the spirit of the present invention even if the partition wall 34 is considered to be part of the compression mechanism 50.
 第1収納室24にはハウジング20の長手方向の中心線CL1上に位置する駆動軸41が設けられている。この駆動軸41は、電動モータ100の出力軸101(モータ軸101)を兼ねる。ハウジング20の長手方向の中心線CL1のことを、「駆動軸41(出力軸101)の中心線CL1」と言い換えることがある。 The first storage chamber 24 is provided with a drive shaft 41 located on the longitudinal center line CL1 of the housing 20. This drive shaft 41 also serves as the output shaft 101 (motor shaft 101) of the electric motor 100. The longitudinal center line CL1 of the housing 20 is sometimes referred to as the "center line CL1 of the drive shaft 41 (output shaft 101)."
 この駆動軸41は、圧縮機構50へ向かって仕切り部材34を貫通するとともに、仕切り部材34に設けられた第1軸受42と、ハウジング20の底壁21の軸受保持部21cに設けられた第2軸受43とによって、回転可能に支持されている。さらに駆動軸41は、仕切り部材34を貫通した一端面に、偏心軸44を有している。この偏心軸44は、駆動軸41の一端面から圧縮機構50へ向かって延びており、駆動軸41に対し平行である。偏心軸44の中心線CL2は、駆動軸41の中心線CL1に対しオフセットしている。この偏心軸44には、環状のブッシュ45が回転自在に嵌合している。ブッシュ45には、径方向へ突出したカウンタウェイト46が、一体に設けられている。このブッシュ45の外周面には、第3軸受47の内周面が嵌合している。 The drive shaft 41 passes through the partition member 34 toward the compression mechanism 50 and is rotatably supported by a first bearing 42 provided in the partition member 34 and a second bearing 43 provided in the bearing holder 21c of the bottom wall 21 of the housing 20. The drive shaft 41 also has an eccentric shaft 44 on one end surface passing through the partition member 34. The eccentric shaft 44 extends from one end surface of the drive shaft 41 toward the compression mechanism 50 and is parallel to the drive shaft 41. The center line CL2 of the eccentric shaft 44 is offset from the center line CL1 of the drive shaft 41. An annular bush 45 is rotatably fitted to the eccentric shaft 44. A counterweight 46 protruding radially is integrally provided to the bush 45. The inner peripheral surface of the third bearing 47 is fitted to the outer peripheral surface of the bush 45.
 次に、圧縮機構50について説明する。
 図1に示されるように、圧縮機構50は、例えば、ヘッド部材31と仕切り部材34との間に相対回転不能に支持された固定スクロール60と、この固定スクロール60に対して周方向へ揺動可能な揺動スクロール70と、が組み合わされることにより冷媒を圧縮する、いわゆるスクロール圧縮機構によって構成される。
Next, the compression mechanism 50 will be described.
As shown in FIG. 1, the compression mechanism 50 is configured by a so-called scroll compression mechanism that compresses the refrigerant by combining, for example, a fixed scroll 60 that is supported between a head member 31 and a partition member 34 so as not to rotate relative to the head member 31 and a partition member 34, and an oscillating scroll 70 that is oscillable in a circumferential direction relative to the fixed scroll 60.
 固定スクロール60は、円板状の固定鏡板61と、円筒状の外周壁62と、渦巻き状の固定渦巻壁63とを有する。固定鏡板61は、偏心軸44の中心線CL2に対し直交している。外周壁62は、固定鏡板61の外周縁から電動モータ100側へ延びている。この外周壁62には、径外方から内方へ冷媒を吸入するための冷媒吸入口64が形成されている。固定渦巻壁63は、外周壁62の内側に位置するとともに、固定鏡板61の底面から立設している。 The fixed scroll 60 has a disk-shaped fixed end plate 61, a cylindrical outer peripheral wall 62, and a spiral-shaped fixed spiral wall 63. The fixed end plate 61 is perpendicular to the center line CL2 of the eccentric shaft 44. The outer peripheral wall 62 extends from the outer peripheral edge of the fixed end plate 61 toward the electric motor 100. A refrigerant suction port 64 is formed in this outer peripheral wall 62 for drawing refrigerant from the radially outer side to the inner side. The fixed spiral wall 63 is located inside the outer peripheral wall 62 and stands upright from the bottom surface of the fixed end plate 61.
 揺動スクロール70は、固定スクロール60に対して公転することが可能である。この揺動スクロール70は、固定渦巻壁63に対向して位置した円板状の揺動鏡板71と、渦巻き状の揺動渦巻壁72と、を有する。 The oscillating scroll 70 can revolve around the fixed scroll 60. The oscillating scroll 70 has a disk-shaped oscillating mirror plate 71 positioned opposite the fixed spiral wall 63, and a spiral-shaped oscillating spiral wall 72.
 揺動鏡板71は、固定スクロール60の外周壁62の内側に位置し、第3軸受47とブッシュ45を介して偏心軸44によって回転可能に支持されている。揺動渦巻壁72は、揺動鏡板71から固定渦巻壁63へ向かって立設しており、揺動渦巻壁72と固定渦巻壁63とが組み合わされることにより、複数の圧縮室73を形成している。駆動軸41が回転することにより、揺動スクロール70は駆動軸41の軸心CL1を中心として公転(偏心した回転)をすることができる。 The oscillating mirror plate 71 is located inside the outer peripheral wall 62 of the fixed scroll 60, and is rotatably supported by the eccentric shaft 44 via the third bearing 47 and the bush 45. The oscillating spiral wall 72 stands upright from the oscillating mirror plate 71 toward the fixed spiral wall 63, and the oscillating spiral wall 72 and the fixed spiral wall 63 are combined to form a plurality of compression chambers 73. As the drive shaft 41 rotates, the oscillating scroll 70 can revolve (rotate eccentrically) around the axis CL1 of the drive shaft 41.
 さらに、圧縮機構50は自転防止機構80を有する。この自転防止機構80は、揺動鏡板71に有した複数の凹部81と、これらの凹部81に嵌合した複数のリング部材82と、仕切り部材34から複数のリング部材82の内部へ延びた複数の回り止め用ピン83とからなる。各リング部材82が各回り止め用ピン83に線接触することにより、揺動スクロール70の自転を防止しつつ、揺動を許容することができる。 Furthermore, the compression mechanism 50 has an anti-rotation mechanism 80. This anti-rotation mechanism 80 is composed of a number of recesses 81 in the oscillating mirror plate 71, a number of ring members 82 fitted into these recesses 81, and a number of anti-rotation pins 83 extending from the partition member 34 into the ring members 82. Each ring member 82 makes line contact with each anti-rotation pin 83, thereby preventing the oscillating scroll 70 from rotating on its own axis while allowing it to oscillate.
 上述のように、駆動軸41が回転することにより、揺動スクロール70は公転をする。この結果、吸入ポート26から吸入された冷媒は、低圧室24内の電動モータ100の隙間を通り、仕切り部材34の吸入孔34aを経由し、固定スクロール60の冷媒吸入口64を通って、圧縮室73に取り込まれる。揺動スクロール70の公転に伴い、圧縮室73は徐々に内容積を減じながら中心側へ移動していく。これにより、圧縮室73内の冷媒は圧縮される。圧縮室73の圧力が、吐出弁91の開弁の圧力を超えるまで高まると、圧力差によって吐出弁91が開く。圧縮室73内の冷媒は、吐出孔92を通って吐出室93へ流入する。吐出室93内の冷媒は、オイル分離室31aを介して吐出ポート(図示せず)から外方へ吐出される。 As described above, the rotation of the drive shaft 41 causes the swing scroll 70 to revolve. As a result, the refrigerant sucked in from the suction port 26 passes through the gap of the electric motor 100 in the low pressure chamber 24, passes through the suction hole 34a of the partition member 34, and passes through the refrigerant suction port 64 of the fixed scroll 60, and is taken into the compression chamber 73. As the swing scroll 70 revolves, the compression chamber 73 moves toward the center while gradually reducing its internal volume. This causes the refrigerant in the compression chamber 73 to be compressed. When the pressure in the compression chamber 73 increases to exceed the pressure at which the discharge valve 91 opens, the discharge valve 91 opens due to the pressure difference. The refrigerant in the compression chamber 73 flows into the discharge chamber 93 through the discharge hole 92. The refrigerant in the discharge chamber 93 is discharged to the outside from the discharge port (not shown) via the oil separation chamber 31a.
 次に、電動モータ100について説明する。
 図1に示されるように、電動モータ100は、例えば三相交流ブラシレスモータの構成である。この電動モータ100は、前記出力軸101(駆動軸41)と、この出力軸101に固定されているロータ102と、このロータ102の周囲を包囲している筒状のステータ103とを備えている。
Next, the electric motor 100 will be described.
1, the electric motor 100 is, for example, a three-phase AC brushless motor. The electric motor 100 includes the output shaft 101 (drive shaft 41), a rotor 102 fixed to the output shaft 101, and a cylindrical stator 103 surrounding the rotor 102.
 ロータ102は、ハウジング20の長手方向を軸中心(回転中心)とし、出力軸101の中心線CL1を基準として回転可能である。ステータ103は、ロータ102の径方向外側に配置されており、ハウジング20の内周面20a(第1収納室24の内周面24a)に固定されている。 The rotor 102 can rotate around the center line CL1 of the output shaft 101, with the longitudinal direction of the housing 20 as its axial center (center of rotation). The stator 103 is disposed radially outside the rotor 102 and is fixed to the inner peripheral surface 20a of the housing 20 (the inner peripheral surface 24a of the first storage chamber 24).
 次に、電動モータ100と制御部120との電気接続構造について説明する。 Next, the electrical connection structure between the electric motor 100 and the control unit 120 will be described.
 図2及び図3に示されるように、ステータ103のコイル104から引き出された複数の引き出し線105(モータ配線105)は、制御部120側へ延びて、複数の接続端子106(レセプタクル106)に個別に接続されている。つまり、これらの接続端子106は、電動モータ100のコイル104に電気的に接続されるとともに、この電動モータ100に対して底壁21側に配置されている。各接続端子106は、クラスタブロック110に組み込まれている(収容されている)。このクラスタブロック110は、電気コネクタ110ともいう。 As shown in Figures 2 and 3, multiple lead wires 105 (motor wiring 105) drawn from the coil 104 of the stator 103 extend toward the control unit 120 and are individually connected to multiple connection terminals 106 (receptacles 106). In other words, these connection terminals 106 are electrically connected to the coil 104 of the electric motor 100 and are arranged on the bottom wall 21 side of the electric motor 100. Each connection terminal 106 is incorporated (housed) in a cluster block 110. This cluster block 110 is also called an electrical connector 110.
 クラスタブロック110は、ハウジング20の底壁21とステータ103のインシュレータ107との間のスペースSp、つまり、底壁21とステータ103との間のスペースSpに挿入され、底壁21から隙間ga(空隙ga)を有して位置している。このクラスタブロック110は、ハウジング20の底壁21に対して平行方向(出力軸101の中心線CL1に対して直交した平面方向)の移動が規制されているとともに、ハウジング20の長手方向の移動がインシュレータ107によって規制されている。このように、クラスタブロック110は、ハウジング20に収納されている。 The cluster block 110 is inserted into the space Sp between the bottom wall 21 of the housing 20 and the insulator 107 of the stator 103, i.e., the space Sp between the bottom wall 21 and the stator 103, and is positioned with a gap ga (air gap ga) from the bottom wall 21. Movement of this cluster block 110 in a direction parallel to the bottom wall 21 of the housing 20 (a planar direction perpendicular to the center line CL1 of the output shaft 101) is restricted, and movement in the longitudinal direction of the housing 20 is restricted by the insulator 107. In this way, the cluster block 110 is stored in the housing 20.
 クラスタブロック110は、各接続端子106を収容する端子収容部111を有した、例えば電気絶縁性樹脂の成形品によって構成されている。より詳しく述べると、クラスタブロック110は、ハウジング20の底壁21に対向する平坦な対向面112を有している。この対向面112は、出力軸101の中心線CL1に対して直交した平面である。この対向面112(ターミナル板131に向かい合う面112)のことを「クラスタブロック110のチューブ接触面112」と言い換えることがある。 The cluster block 110 has terminal accommodating portions 111 that accommodate the connection terminals 106, and is formed, for example, from a molded product made of electrically insulating resin. More specifically, the cluster block 110 has a flat opposing surface 112 that faces the bottom wall 21 of the housing 20. This opposing surface 112 is a plane that is perpendicular to the center line CL1 of the output shaft 101. This opposing surface 112 (the surface 112 facing the terminal plate 131) is sometimes referred to as the "tube contact surface 112 of the cluster block 110."
 このチューブ接触面112には、端子収容部111に貫通した複数のピン挿通孔113が形成されている。複数のピン挿通孔113の位置は、各接続端子106の接続部106a位置に対応している。 This tube contact surface 112 has multiple pin insertion holes 113 formed through the terminal accommodating portion 111. The positions of the multiple pin insertion holes 113 correspond to the positions of the connection portions 106a of each connection terminal 106.
 クラスタブロック110に収容されている各接続端子106は、密封ターミナル130によって、ハウジング20の外部と電気的に接続される。例えば、ハウジング20の外部(例えば制御ハウジング32内)には、制御部120が配置されている。各接続端子106は、制御部120に密封ターミナル130によって電気的に接続される。 Each connection terminal 106 housed in the cluster block 110 is electrically connected to the outside of the housing 20 by a sealed terminal 130. For example, the control unit 120 is disposed outside the housing 20 (e.g., inside the control housing 32). Each connection terminal 106 is electrically connected to the control unit 120 by a sealed terminal 130.
 この制御部120は、ハウジング20の底壁21の外壁面21aに対して、直接又は間接に設けられている構成を含む。一例を挙げると、制御部120は、制御ハウジング32の内部に取り外し可能に収納されることによって、ハウジング20の底壁21の外壁面21aに間接的に設けられる。他の例を挙げると、制御部120は、制御ハウジング32の底壁32aを介することなく、ハウジング20の底壁21の外壁面21aに直接に設けられる。この制御部120は、インバータ回路等の制御部品121を実装した基板122と、この基板122に設けられた基板側コネクタ123とを備えている。この基板側コネクタ123は、密封ターミナル130の各ターミナルピン132の先端に接続可能である。 The control unit 120 includes a configuration in which it is provided directly or indirectly on the outer wall surface 21a of the bottom wall 21 of the housing 20. As one example, the control unit 120 is indirectly provided on the outer wall surface 21a of the bottom wall 21 of the housing 20 by being removably stored inside the control housing 32. As another example, the control unit 120 is provided directly on the outer wall surface 21a of the bottom wall 21 of the housing 20 without going through the bottom wall 32a of the control housing 32. The control unit 120 includes a board 122 on which control components 121 such as an inverter circuit are mounted, and a board-side connector 123 provided on the board 122. The board-side connector 123 can be connected to the tips of each terminal pin 132 of the sealed terminal 130.
 制御部120が制御ハウジング32内に組み付けられることによって、基板側コネクタ123は各ターミナルピン132に接続されている。この結果、各引き出し線105は、制御部120に電気的に接続されている。制御部120から電動モータ100へ駆動電力を供給することができる。 By assembling the control unit 120 inside the control housing 32, the board side connector 123 is connected to each terminal pin 132. As a result, each lead wire 105 is electrically connected to the control unit 120. Driving power can be supplied from the control unit 120 to the electric motor 100.
 次に、密封ターミナル130について説明する。 Next, we will explain the sealed terminal 130.
 図2及び図3に示されるように、密封ターミナル130(中継ターミナル130)は、ハウジング20に設けられており、接続端子106に電気的に接続されている。 As shown in Figures 2 and 3, the sealed terminal 130 (relay terminal 130) is provided in the housing 20 and is electrically connected to the connection terminal 106.
 密封ターミナル130は、ハウジング20に取り付け可能なターミナル板131と、このターミナル板131に組付けられた複数のターミナルピン132と、を備えている。さらに密封ターミナル130は、ターミナル板131と各ターミナルピン132との間に充填されシール(気密、液密)及び電気絶縁する複数の絶縁部材140を備えている。 The sealed terminal 130 includes a terminal plate 131 that can be attached to the housing 20, and a number of terminal pins 132 that are assembled to the terminal plate 131. The sealed terminal 130 further includes a number of insulating members 140 that are filled between the terminal plate 131 and each terminal pin 132 to provide a seal (airtight, liquidtight) and electrical insulation.
 ターミナル板131(基盤131)は、底壁21に対して外壁面21a側から締結部材133により取り付け可能な平板状の部材である。このターミナル板131と底壁21の外壁面21aとの間は、シール部材134によってシールされている。 The terminal plate 131 (base 131) is a flat member that can be attached to the bottom wall 21 from the outer wall surface 21a side by fastening members 133. The gap between the terminal plate 131 and the outer wall surface 21a of the bottom wall 21 is sealed by a sealing member 134.
 複数のターミナルピン132は、出力軸101の中心線CL1に沿って、制御ハウジング32内からハウジング20内へ延びた、導電性を有する丸棒状の部材である。ハウジング20の底壁21は、複数のターミナルピン132及び複数の絶縁チューブ150を挿通可能な貫通孔21d(図2参照)を有している。 The multiple terminal pins 132 are conductive rod-shaped members that extend from inside the control housing 32 into the housing 20 along the center line CL1 of the output shaft 101. The bottom wall 21 of the housing 20 has through holes 21d (see Figure 2) through which the multiple terminal pins 132 and the multiple insulating tubes 150 can be inserted.
 各ターミナルピン132の先端(一端面)は、基板側コネクタ123の接続端子123aに着脱可能に嵌め込まれることによって、この基板側コネクタ123に対して電気的に接続可能である。また、ターミナルピン132が接続端子106の接続部106aに着脱可能に嵌め込まれることによって、密封ターミナル130はステータ103と制御部120とを電気的に接続可能である。このように、各ターミナルピン132は、接続端子106をハウジング20の外部と電気的に接続することが可能である。ターミナルピン132と接続端子106の接続部106aは、クラスタブロック110によって覆われている。 The tip (one end face) of each terminal pin 132 is removably fitted into the connection terminal 123a of the board-side connector 123, thereby allowing electrical connection to the board-side connector 123. Furthermore, the terminal pin 132 is removably fitted into the connection portion 106a of the connection terminal 106, allowing the sealed terminal 130 to electrically connect the stator 103 and the control unit 120. In this way, each terminal pin 132 is capable of electrically connecting the connection terminal 106 to the outside of the housing 20. The connection portion 106a of the terminal pin 132 and the connection terminal 106 is covered by the cluster block 110.
 図4に示されるように、各ターミナルピン132は、ターミナル板131の貫通孔131aを挿通している。絶縁部材140は、貫通孔131aを貫通した各ターミナルピン132と、ターミナル板131との間を、個別に又は全体的に、シール(気密、液密)及び電気絶縁するものであって、単一の部材又は複数の部材によって構成されている。例えば、絶縁部材140は、ターミナル板131の貫通孔131aに充填された充填材141と、貫通孔131aの両側から充填材141を封鎖する一対の封鎖部材142,143とによって構成される。 As shown in FIG. 4, each terminal pin 132 passes through a through hole 131a in the terminal plate 131. The insulating member 140 provides a seal (airtight, liquidtight) and electrical insulation between each terminal pin 132 passing through the through hole 131a and the terminal plate 131, either individually or as a whole, and is composed of a single member or multiple members. For example, the insulating member 140 is composed of a filler 141 filled in the through hole 131a of the terminal plate 131, and a pair of sealing members 142, 143 that seal the filler 141 from both sides of the through hole 131a.
 充填材141は、シール性(気密性、液密性)及び電気絶縁性を有するとともに、ターミナルピン132を支持可能な材料から成る。この充填材141の一例を挙げると、ガラスなどの電気絶縁性を有した無機質がある。 The filler 141 is made of a material that has sealing properties (airtightness and liquid tightness) and electrical insulation properties, and is capable of supporting the terminal pin 132. One example of this filler 141 is an inorganic material that has electrical insulation properties, such as glass.
 一対の封鎖部材142,143は、セラミック等の電気絶縁性を有する材料によって構成されている。これらの封鎖部材142,143は、ターミナルピン132を挿通することが可能な挿通孔142a,143aを有した環状の部材であって、軸方向の一端にフランジ142b,143bを備えている。一対の封鎖部材142,143の、一方を第1封鎖部材142といい、他方を第2封鎖部材143という。 The pair of sealing members 142, 143 are made of an electrically insulating material such as ceramic. These sealing members 142, 143 are annular members having insertion holes 142a, 143a through which the terminal pin 132 can be inserted, and have flanges 142b, 143b at one axial end. One of the pair of sealing members 142, 143 is called the first sealing member 142, and the other is called the second sealing member 143.
 第1封鎖部材142は、ターミナル板131に対して低圧室24(図2参照)側に位置するとともに、クラスタブロック110の対向面112(チューブ接触面112)に向かい合う対向面142cを有している。この対向面142cは、クラスタブロック110のチューブ接触面112に対して平行な平坦面であることが好ましい。第2封鎖部材143は、ターミナル板131に対して制御部120(図2参照)側に位置している。 The first sealing member 142 is located on the low pressure chamber 24 (see FIG. 2) side relative to the terminal plate 131, and has an opposing surface 142c facing the opposing surface 112 (tube contact surface 112) of the cluster block 110. This opposing surface 142c is preferably a flat surface parallel to the tube contact surface 112 of the cluster block 110. The second sealing member 143 is located on the control unit 120 (see FIG. 2) side relative to the terminal plate 131.
 第1封鎖部材142の対向面142c(図2に示される、クラスタブロック110のチューブ接触面112に向かい合う面142c)のことを「第1封鎖部材142のチューブ接触面142c」又は「絶縁部材140のチューブ接触面142c」と言い換えることがある。 The opposing surface 142c of the first sealing member 142 (the surface 142c facing the tube contact surface 112 of the cluster block 110 shown in FIG. 2) may be referred to as the "tube contact surface 142c of the first sealing member 142" or the "tube contact surface 142c of the insulating member 140."
 上記充填材141は、例えば次のように、ターミナル板131に対するターミナルピン132及び封鎖部材142,143を一体化している。ターミナル板131の貫通孔131aとターミナルピン132との間にガラスペレットを充填し、貫通孔131aの両側を封鎖部材142,143によって封鎖し、密封ターミナル130全体を焼成する。これにより、ガラスペレットは溶融して、貫通孔131aの内周面とターミナルピン132と封鎖部材142,143とに密着する。溶融したガラスペレットは、固化することによって充填材141を構成する。この結果、充填材141は、貫通孔131aの内周面とターミナルピン132と封鎖部材142,143との間をシールするとともに、ターミナル板131に対して、ターミナルピン132と封鎖部材142,143とを位置決め且つ固定する(一体化する)。 The filler 141 integrates the terminal pin 132 and the sealing members 142, 143 with respect to the terminal plate 131, for example, as follows. Glass pellets are filled between the through hole 131a of the terminal plate 131 and the terminal pin 132, both sides of the through hole 131a are sealed with the sealing members 142, 143, and the entire sealed terminal 130 is fired. As a result, the glass pellets melt and adhere to the inner surface of the through hole 131a, the terminal pin 132, and the sealing members 142, 143. The molten glass pellets solidify to form the filler 141. As a result, the filler 141 seals between the inner surface of the through hole 131a, the terminal pin 132, and the sealing members 142, 143, and positions and fixes (integrates) the terminal pin 132 and the sealing members 142, 143 with respect to the terminal plate 131.
 貫通孔131a内は、ガラスペレットが充填された状態では、僅かの隙間を有している。この隙間は、充填されたガラスペレットを溶融することによって、無くなる。これに対応するために、貫通孔131aに充填されているガラスペレットを、一対の封鎖部材142,143によって圧縮しつつ、溶融する。このため、ガラスペレットを圧縮するための圧縮代が必要である。この圧縮代を十分に確保するために、ターミナル板131の両側の板面131b,131cと、一対の封鎖部材142,143のフランジ142b,143bのフランジ面142d,143dとの間には、微小の隙間C1,C2を有している。これらの隙間C1,C2は一定ではなく、公差を有して設定される。 When the through hole 131a is filled with glass pellets, there is a small gap. This gap disappears when the filled glass pellets are melted. To deal with this, the glass pellets filled in the through hole 131a are compressed by the pair of sealing members 142, 143 while being melted. For this reason, a compression allowance is required to compress the glass pellets. To ensure sufficient compression allowance, there are small gaps C1, C2 between the plate surfaces 131b, 131c on both sides of the terminal plate 131 and the flange surfaces 142d, 143d of the flanges 142b, 143b of the pair of sealing members 142, 143. These gaps C1, C2 are not constant and are set with a tolerance.
 図5Aに示されるように、クラスタブロック110のチューブ接触面112から、絶縁部材140のチューブ接触面142cまでの、離間寸法はL1である。この離間寸法L1のことを、適宜「クラスタブロック110と絶縁部材140との間の離間距離L1」、「接触面112,142c間の離間寸法L1」、又は、単に「離間寸法L1」ということがある。 As shown in FIG. 5A, the distance from the tube contact surface 112 of the cluster block 110 to the tube contact surface 142c of the insulating member 140 is L1. This distance L1 may be referred to as "the distance L1 between the cluster block 110 and the insulating member 140," "the distance L1 between the contact surfaces 112 and 142c," or simply "the distance L1."
 図2及び図5Aに示されるように、この離間寸法L1は公差が大きい。その理由としては、例えば次の各寸法公差の積み上げによる。第1の公差は、ハウジング20の底壁21に対するシール部材134の接触面の位置の公差である。第2の公差は、シール部材134の厚さthの公差である。第3の公差は、ターミナル板131の第1板面131bから絶縁部材140のチューブ接触面142cまでの組付け公差である。第4の公差は、ハウジング20に対するステータ103の組付け位置の軸方向の公差である。第5の公差は、ステータ103に対するクラスタブロック110の組付け位置の軸方向の公差である。 As shown in Figures 2 and 5A, this clearance dimension L1 has a large tolerance. The reason for this is, for example, the accumulation of the following dimensional tolerances. The first tolerance is the tolerance of the position of the contact surface of the seal member 134 relative to the bottom wall 21 of the housing 20. The second tolerance is the tolerance of the thickness th of the seal member 134. The third tolerance is the assembly tolerance from the first plate surface 131b of the terminal plate 131 to the tube contact surface 142c of the insulating member 140. The fourth tolerance is the axial tolerance of the assembly position of the stator 103 relative to the housing 20. The fifth tolerance is the axial tolerance of the assembly position of the cluster block 110 relative to the stator 103.
 図5Aに示されるように、各々のターミナルピン132は、弾性及び電気絶縁性を有した環状の各絶縁チューブ150により液密に覆われている。 As shown in FIG. 5A, each terminal pin 132 is liquid-tightly covered by an annular insulating tube 150 that is elastic and electrically insulating.
 次に、複数の絶縁チューブ150の1つを代表して、詳しく説明する。 Next, we will explain in detail one of the multiple insulating tubes 150.
 図5Aに示されるように、絶縁チューブ150は、ターミナルピン132の断面形状に合わせた、円形状断面の中空体の構成である。この絶縁チューブ150の材料を例示すると、電気絶縁性を有したゴムを挙げることができる。絶縁チューブ150の全長L2(図6参照)、つまり自然長L2は、接触面112,142c間の離間寸法L1よりも大きい。寸法差ΔL=L2-L1である(寸法差ΔLは図示せず)。 As shown in FIG. 5A, the insulating tube 150 is a hollow body with a circular cross section that matches the cross-sectional shape of the terminal pin 132. An example of a material for the insulating tube 150 is rubber that has electrical insulating properties. The total length L2 of the insulating tube 150 (see FIG. 6), i.e., the natural length L2, is greater than the distance L1 between the contact surfaces 112 and 142c. The dimensional difference ΔL = L2 - L1 (the dimensional difference ΔL is not shown).
 この絶縁チューブ150は、軸方向両端の低剛性部160,160と、これらの低剛性部160,160の間の中央部170(支持部170)とを備えている。軸方向両端の低剛性部160,160同士は、対称形に形成されており、大きさも互いに同じである。各低剛性部160,160の剛性は、絶縁チューブ150の軸方向の中央部170(支持部170)の剛性よりも低い。ここで、剛性が低い低剛性部160,160とは、絶縁チューブ150がターミナルピン132の軸方向へ圧縮された場合に、中央部170よりも軸方向へ変形し易い(収縮しやすい)部位のことである。 This insulating tube 150 has low- rigidity sections 160, 160 at both ends in the axial direction, and a central section 170 (support section 170) between these low- rigidity sections 160, 160. The low- rigidity sections 160, 160 at both ends in the axial direction are formed symmetrically and are the same size. The rigidity of each low- rigidity section 160, 160 is lower than the rigidity of the central section 170 (support section 170) in the axial direction of the insulating tube 150. Here, the low- rigidity sections 160, 160 with low rigidity refer to areas that are more easily deformed (contracted) in the axial direction than the central section 170 when the insulating tube 150 is compressed in the axial direction of the terminal pin 132.
 支持部170は、円形断面の直管の構成である。中空状の支持部170の孔径d1(図6参照)、つまり内径d1は、ターミナルピン132の径d2よりも小径である。 The support portion 170 is a straight tube with a circular cross section. The hole diameter d1 (see FIG. 6) of the hollow support portion 170, i.e., the inner diameter d1, is smaller than the diameter d2 of the terminal pin 132.
 このように構成された絶縁チューブ150は、クラスタブロック110と絶縁部材140との間、つまり、クラスタブロック110のチューブ接触面112と絶縁部材140のチューブ接触面142cとの間に挟持されている。絶縁チューブ150には、上記寸法差ΔLによって、ターミナルピン132の軸方向の圧縮力が作用する。このように、絶縁チューブ150は、クラスタブロック110と絶縁部材140の間に挟持されることで、低剛性部160,160が収縮しつつ各接触面112,142cに密着することにより、液密性を高めることができる。 The insulating tube 150 configured in this manner is sandwiched between the cluster block 110 and the insulating member 140, that is, between the tube contact surface 112 of the cluster block 110 and the tube contact surface 142c of the insulating member 140. A compressive force in the axial direction of the terminal pin 132 acts on the insulating tube 150 due to the above-mentioned dimensional difference ΔL. In this way, by sandwiching the insulating tube 150 between the cluster block 110 and the insulating member 140, the low- rigidity portions 160, 160 contract and come into close contact with the respective contact surfaces 112, 142c, thereby improving the liquid-tightness.
 より詳しく説明すると、図5A~図5Cに示されるように、各々の低剛性部160,160は、収縮部161,161によって構成されている。各々の低剛性部160,160は、ターミナルピン132の外周面132aと絶縁チューブ150の内周面150aとの間に、隙間Cr,Cr(空間Cr,Cr)を有する収縮部161,161を、それぞれ備えている。 To explain in more detail, as shown in Figures 5A to 5C, each low- rigidity portion 160, 160 is composed of a contraction portion 161, 161. Each low- rigidity portion 160, 160 has a contraction portion 161, 161 having gaps Cr, Cr (spaces Cr, Cr) between the outer peripheral surface 132a of the terminal pin 132 and the inner peripheral surface 150a of the insulating tube 150.
 このため、ターミナルピン132の軸方向の圧縮力が絶縁チューブ150に作用した場合に、収縮部161,161は、絶縁チューブ150の径方向の外側へ伸縮(図5Bの想像線参照)や、絶縁チューブ150の径方向の内側へ伸縮(図5Cの想像線参照)が容易である。収縮部161,161(低剛性部160,160)の先端面165,165は、安定したシール面を形成することができる。 Therefore, when the axial compressive force of the terminal pin 132 acts on the insulating tube 150, the contraction portions 161, 161 can easily expand and contract radially outwardly of the insulating tube 150 (see imaginary lines in FIG. 5B) and radially inwardly of the insulating tube 150 (see imaginary lines in FIG. 5C). The tip surfaces 165, 165 of the contraction portions 161, 161 (low rigidity portions 160, 160) can form a stable sealing surface.
 図6に示されるように、収縮部161,161は、例えば拡径部164,164によって構成することができる。つまり、各々の低剛性部160,160は、基端162,162(支持部170に対する低剛性部160,160の付け根162,162)から先端163,163へ向かって径が大きくなる拡径部164,164によって構成されている。この拡径部164,164の形状を例示すると、テーパ状、ラッパ状、ベル状を挙げることができる。 As shown in FIG. 6, the contraction sections 161, 161 can be configured, for example, by enlarged diameter sections 164, 164. That is, each low rigidity section 160, 160 is configured by an enlarged diameter section 164, 164 whose diameter increases from the base end 162, 162 (the base 162, 162 of the low rigidity section 160, 160 relative to the support section 170) to the tip 163, 163. Examples of the shape of the enlarged diameter section 164, 164 include a tapered shape, a trumpet shape, and a bell shape.
 低剛性部160,160の先端163,163は、各接触面112,142c(図5A参照)に密着することが可能な先端面165,165(シール面165,165)を有する。 The tips 163, 163 of the low rigidity portions 160, 160 have tip surfaces 165, 165 (sealing surfaces 165, 165) that can come into close contact with the respective contact surfaces 112, 142c (see FIG. 5A).
 各先端163,163は、先端面165,165と内周面166,166との成す内側の角部167,167と、先端面165,165と外周面168,168との成す外側の角部169,169とを、有している。内側の角部167,167と外側の角部169,169は、曲面状に形成されている。内側の角部167,167の曲面167a,167a(内側の曲面167a,167a)の曲率半径はr1である。外側の角部169,169の曲面169a,169a(外側の曲面169a,169a)の曲率半径はr2であり、内側の曲面167a,167aの曲率半径r1よりも小さい。つまり、内側の角部167,167の曲面167a,167aは、外側の角部169,169の曲面169a,169aよりも曲率半径が大きい(r1>r2)。 Each tip 163, 163 has an inner corner 167, 167 formed by the tip surface 165, 165 and the inner peripheral surface 166, 166, and an outer corner 169, 169 formed by the tip surface 165, 165 and the outer peripheral surface 168, 168. The inner corner 167, 167 and the outer corner 169, 169 are formed in a curved shape. The curved surface 167a, 167a (inner curved surface 167a, 167a) of the inner corner 167, 167 has a radius of curvature r1. The curved surface 169a, 169a (outer curved surface 169a, 169a) of the outer corner 169, 169 has a radius of curvature r2, which is smaller than the radius of curvature r1 of the inner curved surface 167a, 167a. In other words, the curved surfaces 167a, 167a of the inner corners 167, 167 have a larger radius of curvature than the curved surfaces 169a, 169a of the outer corners 169, 169 (r1>r2).
 図6に示されるように、絶縁チューブ150は、低剛性部160,160の肉厚t1と支持部170の肉厚t2とを、同じ大きさに設定されている。このように、絶縁チューブ150の肉厚t1,t2は、全長L2にわたって一様である。 As shown in FIG. 6, the insulating tube 150 has the wall thickness t1 of the low- rigidity portions 160, 160 and the wall thickness t2 of the support portion 170 set to the same size. In this way, the wall thicknesses t1, t2 of the insulating tube 150 are uniform over the entire length L2.
 なお、絶縁チューブ150の肉厚は、図7に示されるように設定することも可能である。つまり、低剛性部160,160を、絶縁チューブ150の中心線chに対して直交する全ての断面(輪切りにした断面)で見たときに、各断面の肉厚t11,t12が支持部170の肉厚t2と同じ大きさに設定される(t11=r12=t2)。 The thickness of the insulating tube 150 can also be set as shown in FIG. 7. In other words, when the low- rigidity sections 160, 160 are viewed in all cross sections (cross sections cut into rings) perpendicular to the center line ch of the insulating tube 150, the thicknesses t11, t12 of each cross section are set to the same size as the thickness t2 of the support section 170 (t11 = r12 = t2).
 実施例1の説明をまとめると、次のとおりである。 The explanation of Example 1 can be summarized as follows:
 図1及び図2に示されるように、電動圧縮機10は、密閉されたハウジング20と、ハウジング20に吸入した冷媒を圧縮して吐出する圧縮機構50と、圧縮機構50を駆動するようにハウジング20に格納された電動モータ100と、電動モータ100に電気的に接続されている接続端子106を収容し、ハウジング20に収納されているクラスタブロック110と、ハウジング20に設けられており、接続端子106に電気的に接続されている密封ターミナル130と、を備えている。 As shown in Figures 1 and 2, the electric compressor 10 comprises a sealed housing 20, a compression mechanism 50 that compresses and discharges refrigerant drawn into the housing 20, an electric motor 100 stored in the housing 20 to drive the compression mechanism 50, a cluster block 110 housed in the housing 20 and containing a connection terminal 106 electrically connected to the electric motor 100, and a sealed terminal 130 provided in the housing 20 and electrically connected to the connection terminal 106.
 密封ターミナル130は、ハウジング20に固定されるターミナル板131と、ターミナル板131の貫通孔131a(図4参照)を挿通し、接続端子106をハウジング20の外部と電気的に接続するターミナルピン132と、ターミナル板131とターミナルピン132との間に充填されシール及び絶縁する絶縁部材140と、を備えている。 The sealed terminal 130 includes a terminal plate 131 that is fixed to the housing 20, a terminal pin 132 that is inserted through a through hole 131a (see FIG. 4) in the terminal plate 131 and electrically connects the connection terminal 106 to the outside of the housing 20, and an insulating member 140 that is filled between the terminal plate 131 and the terminal pin 132 to seal and insulate.
 図5Aに示されるように、ターミナルピン132は、弾性及び電気絶縁性を有した環状の絶縁チューブ150により液密に覆われている。この絶縁チューブ150は、軸方向両端に、絶縁チューブ150の軸方向の中央部170(支持部170)より剛性が低い低剛性部160,160を備えているとともに、クラスタブロック110と絶縁部材140との間に挟持されている。 As shown in FIG. 5A, the terminal pin 132 is liquid-tightly covered by an annular insulating tube 150 that is elastic and electrically insulating. The insulating tube 150 has low- rigidity sections 160, 160 at both axial ends that are less rigid than the axial central section 170 (support section 170) of the insulating tube 150, and is sandwiched between the cluster block 110 and the insulating member 140.
 絶縁部材140からクラスタブロック110までの離間距離L1は、絶縁チューブ150の自然長L2(図6参照)よりも短い。 The distance L1 from the insulating member 140 to the cluster block 110 is shorter than the natural length L2 of the insulating tube 150 (see Figure 6).
 これに対し、実施例1では、絶縁チューブ150は、ターミナルピン132の軸方向の両端に、軸方向に柔軟性を有する低剛性部160,160を備えており、絶縁部材140とクラスタブロック110との間に挟持される。一方の低剛性部160(第1低剛性部160)の先端面165,165(シール面165,165)は、絶縁部材140の端面142c(チューブ接触面142c)に対して、ターミナルピン132の軸方向に接触する。他方の低剛性部160(第2低剛性部160)の先端面165,165(シール面165,165)は、ターミナルピン132を接続端子106に嵌め込むことにより、クラスタブロック110の端面112(チューブ接触面112)に対して、ターミナルピン132の軸方向に接触する。 In contrast, in the first embodiment, the insulating tube 150 has low- rigidity sections 160, 160 that are flexible in the axial direction at both ends of the terminal pin 132 in the axial direction, and is sandwiched between the insulating member 140 and the cluster block 110. The tip surfaces 165, 165 (sealing surfaces 165, 165) of one low-rigidity section 160 (first low-rigidity section 160) contact the end surface 142c (tube contact surface 142c) of the insulating member 140 in the axial direction of the terminal pin 132. The tip surfaces 165, 165 (sealing surfaces 165, 165) of the other low-rigidity section 160 (second low-rigidity section 160) contact the end surface 112 (tube contact surface 112) of the cluster block 110 in the axial direction of the terminal pin 132 by fitting the terminal pin 132 into the connection terminal 106.
 各々の低剛性部160,160は、絶縁チューブ150に作用する軸方向の圧縮力に従って、径方向へ容易に伸縮することが可能である。各々の低剛性部160,160の径方向への伸縮に伴って、絶縁チューブ150の長さが変化する。このため、絶縁部材140のチューブ接触面142cからクラスタブロック110のチューブ接触面112までの離間距離L1に従って、絶縁チューブ150の長さが変化することにより、挟持することができる。 Each low- rigidity portion 160, 160 can easily expand and contract in the radial direction in response to the axial compressive force acting on the insulating tube 150. The length of the insulating tube 150 changes as each low- rigidity portion 160, 160 expands and contracts in the radial direction. Therefore, the length of the insulating tube 150 changes in accordance with the separation distance L1 from the tube contact surface 142c of the insulating member 140 to the tube contact surface 112 of the cluster block 110, allowing it to be clamped.
 さらに実施例1では、絶縁部材140からクラスタブロック110までの離間距離L1は、寸法公差が大きい。しかし、絶縁チューブ150の長さL2(図6参照)が変化することで、寸法公差を吸収することができる。このように、絶縁チューブ150は、軸方向の大きい変化量に対して、十分に弾性変形して収縮することができ、ターミナルピン132を密封して覆うことができる。この結果、液冷媒及び潤滑油に対する液密性を高めることができ、絶縁部材140とクラスタブロック110との間の電気絶縁性を、より高めることができる。 Furthermore, in Example 1, the distance L1 between the insulating member 140 and the cluster block 110 has a large dimensional tolerance. However, the length L2 (see FIG. 6) of the insulating tube 150 can be changed to absorb the dimensional tolerance. In this way, the insulating tube 150 can be sufficiently elastically deformed and contracted in response to a large amount of change in the axial direction, and can hermetically cover the terminal pin 132. As a result, the liquid-tightness against liquid refrigerant and lubricating oil can be improved, and the electrical insulation between the insulating member 140 and the cluster block 110 can be further improved.
 しかも、実施例1では、絶縁チューブ150が絶縁部材140とクラスタブロック110との間に挟持された場合に、弾性を有している各々の低剛性部160,160のシール面165,165は、絶縁部材140のチューブ接触面142cやクラスタブロック110のチューブ接触面112に対して、ターミナルピン132の軸方向に接触する構成である。 Furthermore, in the first embodiment, when the insulating tube 150 is clamped between the insulating member 140 and the cluster block 110, the sealing surfaces 165, 165 of each of the elastic low- rigidity portions 160, 160 are configured to contact the tube contact surface 142c of the insulating member 140 and the tube contact surface 112 of the cluster block 110 in the axial direction of the terminal pin 132.
 このため、絶縁部材140のチューブ接触面142c及びクラスタブロック110のチューブ接触面112の、平面度や平行度が最適な状態ではなくても、各々の低剛性部160,160のシール面165,165は、各チューブ接触面112,142cに沿って弾性変形をすることにより、各チューブ接触面112,142cとの間(ターミナルピン132を含む)の気密性及び液密性を十分に確保することができる。この結果、絶縁部材140とクラスタブロック110との間の電気絶縁性を、より高めることができる。 For this reason, even if the flatness and parallelism of the tube contact surface 142c of the insulating member 140 and the tube contact surface 112 of the cluster block 110 are not in an optimal state, the seal surfaces 165, 165 of each low rigidity portion 160, 160 can elastically deform along each tube contact surface 112, 142c, thereby sufficiently ensuring airtightness and liquid tightness between each tube contact surface 112, 142c (including the terminal pin 132). As a result, the electrical insulation between the insulating member 140 and the cluster block 110 can be further improved.
 このように実施例1では、絶縁部材140とクラスタブロック110との間の電気絶縁性の向上を、図ることができる。 In this way, in Example 1, it is possible to improve the electrical insulation between the insulating member 140 and the cluster block 110.
 さらに実施例1では、図5A~図5Cに示されるように、各々の低剛性部160,160は、ターミナルピン132の外周面132aと絶縁チューブ150の内周面150aとの間に、隙間Cr,Cr(空間Cr,Cr)を有する収縮部161,161を、それぞれ備えている。 Furthermore, in Example 1, as shown in Figures 5A to 5C, each low- rigidity portion 160, 160 has a contraction portion 161, 161 having gaps Cr, Cr (spaces Cr, Cr) between the outer peripheral surface 132a of the terminal pin 132 and the inner peripheral surface 150a of the insulating tube 150.
 このように、各々の低剛性部160,160は、ターミナルピン132の外周面132aと絶縁チューブ150の内周面150aとの間に、隙間Cr,Crを有する収縮部161,161を備えているので、絶縁チューブ150に作用するターミナルピン132の軸方向の圧縮力に従って、絶縁チューブ150の径方向の外側へのみならず内側へも容易に伸縮することができることで、安定したシール面を形成し、液冷媒及び潤滑油に対する液密性を高めることができ、絶縁部材140とクラスタブロック110との間の電気絶縁性の向上を図ることができる。 In this way, each low rigidity portion 160, 160 has a contraction portion 161, 161 having a gap Cr, Cr between the outer peripheral surface 132a of the terminal pin 132 and the inner peripheral surface 150a of the insulating tube 150, so that it can easily expand and contract not only radially outward but also radially inward in accordance with the axial compressive force of the terminal pin 132 acting on the insulating tube 150, forming a stable sealing surface, improving liquid tightness against liquid refrigerant and lubricating oil, and improving electrical insulation between the insulating member 140 and the cluster block 110.
 さらに実施例1では、図5A及び図6に示されるように、各々の低剛性部160,160の間には、支持部170を有している。この支持部170は、孔径d1(内径d1)がターミナルピン132の径d2よりも小径である。 Furthermore, in Example 1, as shown in Figs. 5A and 6, there is a support portion 170 between each of the low rigidity portions 160, 160. The hole diameter d1 (inner diameter d1) of this support portion 170 is smaller than the diameter d2 of the terminal pin 132.
 このように、支持部170は、孔径d1(内径d1)がターミナルピン132の径d2よりも小径であるので、自己の弾力性によって、ターミナルピン132に嵌め込まれた状態を維持するとともに、収縮部161,161を、ターミナルピン132の周囲に一定の隙間Cr,Crを有して組付けることができる。このため、収縮部161,161のシール面165,165と各チューブ接触面112,142cとの間に、安定したシール面165,165を形成し、液冷媒及び潤滑油に対する液密性を高めることができ、絶縁部材140とクラスタブロック110との間の電気絶縁性の向上を図ることができる。さらに、絶縁チューブ150がターミナルピン132から脱落しないので、接続端子106に対して、ターミナルピン132を容易に組付けることができる。 In this way, the support portion 170 has a hole diameter d1 (inner diameter d1) smaller than the diameter d2 of the terminal pin 132, so that the support portion 170 can maintain its state of being fitted into the terminal pin 132 by its own elasticity, and the contraction portions 161, 161 can be assembled with a certain gap Cr, Cr around the terminal pin 132. Therefore, stable sealing surfaces 165, 165 are formed between the sealing surfaces 165, 165 of the contraction portions 161, 161 and each tube contact surface 112, 142c, which can improve the liquid tightness against liquid refrigerant and lubricating oil, and improve the electrical insulation between the insulating member 140 and the cluster block 110. Furthermore, since the insulating tube 150 does not fall off the terminal pin 132, the terminal pin 132 can be easily assembled to the connection terminal 106.
 さらに実施例1では、図6に示されるように、各々の低剛性部160,160の先端163,163は、先端面165,165と内周面166,166との成す内側の角部167,167と、先端面165,165と外周面168,168との成す外側の角部169,169とを、曲面状に形成されている。内側の角部167,167の曲面167a,167aは、外側の角部169,169の曲面169a,169aよりも曲率半径r1が大きい。 Furthermore, in Example 1, as shown in FIG. 6, the tips 163, 163 of each low rigidity portion 160, 160 are curved at the inner corners 167, 167 formed by the tip faces 165, 165 and the inner circumferential faces 166, 166, and at the outer corners 169, 169 formed by the tip faces 165, 165 and the outer circumferential faces 168, 168. The curved surfaces 167a, 167a of the inner corners 167, 167 have a larger radius of curvature r1 than the curved surfaces 169a, 169a of the outer corners 169, 169.
 このため、絶縁チューブ150がターミナルピン132の軸方向に圧縮されたときに、絶縁部材140のチューブ接触面142c及びクラスタブロック110のチューブ接触面112に対して、収縮部161,161のシール面165,165の接触位置が径方向の内側へ変位した場合であっても、シール面165,165を、ターミナルピン132を囲う円形状に安定して形成することができる。ターミナルピン132を絶縁チューブ150によって液密に覆うことができる。従って、ハウジング20に吸入した液冷媒及び潤滑油に対する液密性を高めることができ、絶縁部材140とクラスタブロック110との間の電気絶縁性の向上を図ることができる。 Therefore, when the insulating tube 150 is compressed in the axial direction of the terminal pin 132, even if the contact position of the sealing surfaces 165, 165 of the contracting portions 161, 161 is displaced radially inward with respect to the tube contact surface 142c of the insulating member 140 and the tube contact surface 112 of the cluster block 110, the sealing surfaces 165, 165 can be stably formed in a circular shape surrounding the terminal pin 132. The terminal pin 132 can be liquid-tightly covered by the insulating tube 150. This can improve the liquid-tightness against the liquid refrigerant and lubricating oil sucked into the housing 20, and improve the electrical insulation between the insulating member 140 and the cluster block 110.
 さらに実施例1では、図6に示されるように、各々の低剛性部160,160は、基端162,162から先端163,163へ向かって径が大きくなる拡径部164,164によって構成されている。このように、各々の低剛性部160,160を、拡径部164,164によって構成することにより、軸方向に圧縮されたときに拡径方向に変形することによって、ストレート状の構成よりも変形しやすく、軸方向長さの変化に追従できる。このように、低剛性部160,160が、拡径になり軸方向に収縮することによって、絶縁部材140からクラスタブロック110までの離間距離L1(図5A参照)の寸法公差による、絶縁チューブ150の変位を吸収できる。 Furthermore, in Example 1, as shown in FIG. 6, each low- rigidity portion 160, 160 is configured with an enlarged diameter portion 164, 164 whose diameter increases from the base end 162, 162 to the tip end 163, 163. In this way, by configuring each low- rigidity portion 160, 160 with an enlarged diameter portion 164, 164, it is easier to deform than a straight configuration by deforming in the enlarged diameter direction when compressed in the axial direction, and can follow changes in axial length. In this way, the low- rigidity portions 160, 160 expand in diameter and contract in the axial direction, and can absorb displacement of the insulating tube 150 due to the dimensional tolerance of the separation distance L1 (see FIG. 5A) from the insulating member 140 to the cluster block 110.
 さらに実施例1では、図6及び図7に示されるように、絶縁チューブ150の肉厚t1,t2,t11,t12は、全長L2にわたって一様である。絶縁チューブ150の部位によって肉厚の変化が大きいと、部位によって弾性にムラができ、均一な収縮による安定したシール面165,165の形成を阻害する。しかし、本実施例1では、絶縁チューブ150の全長L2にわたって、肉厚t1,t2,t11,t12が一様なので、全体的に概ね均一な収縮にすることができる。このため、絶縁チューブ150全体で軸方向の圧縮に対応でき、さらに材料を節約できる。 Furthermore, in Example 1, as shown in Figures 6 and 7, the wall thicknesses t1, t2, t11, and t12 of the insulating tube 150 are uniform over the entire length L2. If the wall thickness varies greatly depending on the part of the insulating tube 150, elasticity will vary depending on the part, preventing the formation of stable sealing surfaces 165, 165 through uniform shrinkage. However, in Example 1, the wall thicknesses t1, t2, t11, and t12 are uniform over the entire length L2 of the insulating tube 150, so that the shrinkage can be roughly uniform overall. As a result, the entire insulating tube 150 can withstand axial compression, further saving material.
<実施例2>
 図8A及び図8Bを参照しつつ、実施例2の電動圧縮機200を説明する。図8A及び図8Bは上記図5Aに相当する。
Example 2
Second embodiment An electric compressor 200 will be described with reference to Figures 8A and 8B. Figures 8A and 8B correspond to Figure 5A.
 実施例2の電動圧縮機200は、上記図1~図7に示される実施例1の電動圧縮機10の各チューブ接触面112,142cを、図8A及び図8Bに示されるチューブ接触面212,242cに変更したことを特徴とする。その他の基本的な構成については、上記実施例1による電動圧縮機10と共通する。実施例1による電動圧縮機10と共通する部分については、符号を流用すると共に、詳細な説明を省略する。 The electric compressor 200 of the second embodiment is characterized in that the tube contact surfaces 112, 142c of the electric compressor 10 of the first embodiment shown in Figs. 1 to 7 above are changed to the tube contact surfaces 212, 242c shown in Figs. 8A and 8B. The rest of the basic configuration is the same as that of the electric compressor 10 of the first embodiment. The same reference numerals are used for the parts that are the same as those of the electric compressor 10 of the first embodiment, and detailed descriptions are omitted.
 実施例2のクラスタブロック110は、絶縁チューブ150の軸方向両端に備えている低剛性部160,160のいずれかの先端面165と接触するチューブ接触面212を有している。このチューブ接触面212は、図5Aに示されるチューブ接触面112に相当し、図8Aに示される球面又は図8Bに示される円錐面の構成である。 The cluster block 110 of the second embodiment has a tube contact surface 212 that comes into contact with the tip surface 165 of one of the low- rigidity sections 160, 160 provided at both axial ends of the insulating tube 150. This tube contact surface 212 corresponds to the tube contact surface 112 shown in FIG. 5A, and has a spherical surface configuration shown in FIG. 8A or a conical surface configuration shown in FIG. 8B.
 絶縁チューブ150がターミナルピン132の軸方向に圧縮されたときに、低剛性部160は球面(図8A参照)又は円錐面(図8B参照)から成るチューブ接触面212に接することによって、径方向の外側へ広がる。このため、クラスタブロック110に対して、低剛性部160のシール面165(先端面165)の接触位置が径方向の内側へ変位した場合であっても、シール面165を、ターミナルピン132を囲う円形状に安定して形成することができる。ターミナルピン132を絶縁チューブ150によって液密に覆うことができる。従って、ハウジング20に吸入した液冷媒や潤滑油に対する液密性を高めることができる。 When the insulating tube 150 is compressed in the axial direction of the terminal pin 132, the low rigidity portion 160 contacts the tube contact surface 212, which is a spherical surface (see FIG. 8A) or a conical surface (see FIG. 8B), and expands radially outward. Therefore, even if the contact position of the seal surface 165 (tip surface 165) of the low rigidity portion 160 is displaced radially inward relative to the cluster block 110, the seal surface 165 can be stably formed in a circular shape surrounding the terminal pin 132. The terminal pin 132 can be covered liquid-tightly by the insulating tube 150. This improves the liquid-tightness against liquid refrigerant and lubricating oil drawn into the housing 20.
 しかも、クラスタブロック110のチューブ接触面212を、球面又は円錐面としたときには、チューブ接触面212の中心線FAに対して低剛性部160のシール面165(先端面165)の中心線chが傾いた場合であっても、球面又は円錐面に沿って、収縮部161の先端面165が弾性変形をすることによって追従する(調心する)ことができる。 Furthermore, when the tube contact surface 212 of the cluster block 110 is a spherical or conical surface, even if the center line ch of the sealing surface 165 (tip surface 165) of the low rigidity section 160 is inclined relative to the center line FA of the tube contact surface 212, the tip surface 165 of the contraction section 161 can follow (be centered) by elastically deforming along the spherical or conical surface.
 さらに、絶縁部材140(第1封鎖部材142)は、絶縁チューブ150の軸方向両端に備えている低剛性部160,160のいずれかの先端面165と接触するチューブ接触面242cを有している。このチューブ接触面242cは、図5Aに示されるチューブ接触面142cに相当し、図8Aに示される球面又は図8Bに示される円錐面の構成である。 Furthermore, the insulating member 140 (first sealing member 142) has a tube contact surface 242c that contacts the tip surface 165 of one of the low- rigidity sections 160, 160 provided at both axial ends of the insulating tube 150. This tube contact surface 242c corresponds to the tube contact surface 142c shown in Figure 5A, and has a spherical surface configuration shown in Figure 8A or a conical surface configuration shown in Figure 8B.
 絶縁チューブ150がターミナルピン132の軸方向に圧縮されたときに、低剛性部160は球面(図8A参照)又は円錐面(図8B参照)から成るチューブ接触面242cに接することによって、径方向の外側へ広がる。このため、絶縁部材140に対して、低剛性部160のシール面165の接触位置が径方向の内側へ変位した場合であっても、シール面165を、ターミナルピン132を囲う円形状に安定して形成することができる。ターミナルピン132を絶縁チューブ150によって液密に覆うことができる。従って、ハウジング20に吸入した液冷媒や潤滑油に対する液密性を高めることができる。 When the insulating tube 150 is compressed in the axial direction of the terminal pin 132, the low rigidity portion 160 contacts the tube contact surface 242c, which is a spherical surface (see FIG. 8A) or a conical surface (see FIG. 8B), and expands radially outward. Therefore, even if the contact position of the sealing surface 165 of the low rigidity portion 160 is displaced radially inward with respect to the insulating member 140, the sealing surface 165 can be stably formed into a circular shape surrounding the terminal pin 132. The terminal pin 132 can be covered liquid-tightly by the insulating tube 150. This improves the liquid-tightness against the liquid refrigerant and lubricating oil drawn into the housing 20.
 しかも、絶縁部材140のチューブ接触面242cを、球面又は円錐面としたときには、チューブ接触面142cの中心線FBに対して低剛性部160の先端面165の中心線chが傾いた場合であっても、球面又は円錐面に沿って、低剛性部160の先端面165が弾性変形をすることによって追従する(調心する)ことができる。 Furthermore, when the tube contact surface 242c of the insulating member 140 is a spherical or conical surface, even if the center line ch of the tip surface 165 of the low rigidity portion 160 is inclined relative to the center line FB of the tube contact surface 142c, the tip surface 165 of the low rigidity portion 160 can follow (be centered) by elastically deforming along the spherical or conical surface.
 実施例2による電動圧縮機200は、実施例2の効果の他に、上記実施例1の電動圧縮機10と同様の効果を発揮することができる。 The electric compressor 200 according to the second embodiment can achieve the same effects as the electric compressor 10 according to the first embodiment, in addition to the effects of the second embodiment.
<実施例3>
 図9A及び図9Bを参照しつつ、実施例3の電動圧縮機300を説明する。図9A及び図9Bは上記図5Aに相当する。
Example 3
Third embodiment An electric compressor 300 will be described with reference to Figures 9A and 9B. Figures 9A and 9B correspond to Figure 5A.
 実施例3の電動圧縮機300は、上記図1~図7に示される実施例1の電動圧縮機10の絶縁チューブ150の低剛性部160,160を、図9A及び図9Bに示される絶縁チューブ350の低剛性部360,360に変更したことを特徴とする。その他の基本的な構成については、上記実施例1による電動圧縮機10と共通する。実施例1による電動圧縮機10と共通する部分については、符号を流用すると共に、詳細な説明を省略する。 The electric compressor 300 of the third embodiment is characterized in that the low rigidity portions 160, 160 of the insulating tube 150 of the electric compressor 10 of the first embodiment shown in Figs. 1 to 7 above are replaced with low rigidity portions 360, 360 of the insulating tube 350 shown in Figs. 9A and 9B. The rest of the basic configuration is the same as that of the electric compressor 10 of the first embodiment. The same reference numerals are used for the parts common to the electric compressor 10 of the first embodiment, and detailed descriptions are omitted.
 絶縁チューブ350は、軸方向両端に備えている低剛性部360,360のいずれか一方又は両方の、少なくとも一部又は全部を、絶縁チューブ350の軸方向へ収縮可能な蛇腹状に構成したことを特徴とする。 The insulating tube 350 is characterized in that at least a part or all of one or both of the low- rigidity sections 360, 360 provided at both axial ends are configured in a bellows shape that can be contracted in the axial direction of the insulating tube 350.
 低剛性部360,360の一部又は全部を、蛇腹状に構成することにより、軸方向に圧縮されたときに軸方向への収縮性を高めることができる。このため、絶縁部材140からクラスタブロック110までの離間距離L1の寸法公差による、絶縁チューブ350の変位を、より一層容易に吸収できる。 By configuring all or part of the low- rigidity sections 360, 360 in a bellows shape, it is possible to increase the axial contractibility when compressed in the axial direction. This makes it easier to absorb the displacement of the insulating tube 350 caused by the dimensional tolerance of the separation distance L1 from the insulating member 140 to the cluster block 110.
 実施例3による電動圧縮機300は、実施例3の効果の他に、上記実施例1の電動圧縮機10と同様の効果を発揮することができる。 The electric compressor 300 according to the third embodiment can achieve the same effects as the electric compressor 10 according to the first embodiment, in addition to the effects of the third embodiment.
<実施例4>
 図10A及び図10Bを参照しつつ、実施例4の電動圧縮機400を説明する。図10Aは上記図5Aに相当する。
Example 4
Fourth embodiment An electric compressor 400 according to the present invention will be described with reference to Fig. 10A and Fig. 10B. Fig. 10A corresponds to Fig. 5A.
 実施例4の電動圧縮機400は、上記図1~図7に示される実施例1の電動圧縮機10の絶縁チューブ150の支持部170を、図10A及び図10Bに示される絶縁チューブ450の支持部470(中央部470)に変更したことを特徴とする。その他の基本的な構成については、上記実施例1による電動圧縮機10と共通する。実施例1による電動圧縮機10と共通する部分については、符号を流用すると共に、詳細な説明を省略する。 The electric compressor 400 of the fourth embodiment is characterized in that the support portion 170 of the insulating tube 150 of the electric compressor 10 of the first embodiment shown in Figs. 1 to 7 above is replaced with a support portion 470 (central portion 470) of the insulating tube 450 shown in Figs. 10A and 10B. The rest of the basic configuration is the same as that of the electric compressor 10 of the first embodiment. The same reference numerals are used for the parts that are the same as those of the electric compressor 10 of the first embodiment, and detailed descriptions are omitted.
 支持部470の少なくとも一部は、支持部470の径方向の外側へ肉厚となる把持部471を有している。例えば、把持部471は、中空状の支持部470の外周面に対して一体に形成、又は別部材を固着した構成である。さらに、把持部471は、ターミナルピン132に絶縁チューブ150を組付ける際に、把持することが可能な形状や大きさに設定される。把持部471の把持可能な形状としては、例えば図10Bに示される断面クロス形状や断面円形状、肉厚形状を挙げることができる。 At least a portion of the support portion 470 has a gripping portion 471 that thickens radially outward from the support portion 470. For example, the gripping portion 471 is formed integrally with the outer circumferential surface of the hollow support portion 470, or is formed by fastening a separate member to the outer circumferential surface. Furthermore, the gripping portion 471 is set to a shape and size that allows it to be gripped when assembling the insulating tube 150 to the terminal pin 132. Examples of grippable shapes of the gripping portion 471 include a cross-sectional shape, a circular cross-sectional shape, and a thick shape as shown in FIG. 10B.
 絶縁チューブ450は小さい部品なので、支持部470の径方向の外側へ肉厚となる把持部471を設けることによって、把持を容易にするとともに、肉厚のムラによる収縮部161,161(拡径部164,164)の不均一な圧縮を回避して、安定したシール面165,165の形成により、液密性を高めることができる。このため、絶縁部材140とクラスタブロック110との間の電気絶縁性の向上と、ターミナルピン132に絶縁チューブ150の組付け性を高めることの、両立を図ることができる。 Since the insulating tube 450 is a small part, by providing a gripping portion 471 that is thicker radially outward of the support portion 470, it is possible to make it easier to grip, and to avoid uneven compression of the contracted portions 161, 161 (expanded portions 164, 164) due to uneven thickness, thereby improving liquid tightness by forming stable sealing surfaces 165, 165. This makes it possible to improve both the electrical insulation between the insulating member 140 and the cluster block 110 and the ease of assembling the insulating tube 150 to the terminal pin 132.
 実施例4による電動圧縮機400は、実施例4の効果の他に、上記実施例1の電動圧縮機10と同様の効果を発揮することができる。 The electric compressor 400 according to the fourth embodiment can achieve the same effects as the electric compressor 10 according to the first embodiment, in addition to the effects of the fourth embodiment.
 なお、本発明による電動圧縮機10;200;300;400は、本発明の作用及び効果を奏する限りにおいて、実施例に限定されるものではない。
 例えば、各電動圧縮機10;200;300;400は、任意の2つ又はそれ以上を組み合わせることが可能である。
 ハウジング20は、圧縮機構50を収納することなく、電動モータ100のみを格納した構成であってもよい。
 圧縮機構50は、スクロール圧縮機構の構成に限定されるものではなく、電動モータ100によって駆動されて、冷媒を圧縮するものであればよい。
The electric compressors 10, 200, 300, 400 according to the present invention are not limited to the embodiments as long as they provide the functions and effects of the present invention.
For example, any two or more of the electric compressors 10, 200, 300, and 400 may be combined.
The housing 20 may be configured to house only the electric motor 100 without accommodating the compression mechanism 50 .
The compression mechanism 50 is not limited to a scroll compression mechanism, but may be any mechanism that is driven by the electric motor 100 and compresses the refrigerant.
 本発明の電動圧縮機10;200;300;400は、車両用空調装置の冷凍サイクル内で用いるのに好適である。 The electric compressors 10; 200; 300; 400 of the present invention are suitable for use in the refrigeration cycle of vehicle air conditioners.
 10;200;300;400  電動圧縮機
 20   ハウジング
 50   圧縮機構
 100  電動モータ
 106  接続端子
 110  クラスタブロック
 112  クラスタブロックのチューブ接触面
 130  密封ターミナル
 131  ターミナル板
 131a 貫通孔
 132  ターミナルピン
 140  絶縁部材
 150;350;450  絶縁チューブ
 150a 絶縁チューブの内周面
 160;360      低剛性部
 161  収縮部
 162  基端
 163  先端
 164  拡径部
 165  先端面(シール面)
 166  内周面
 167  内側の角部
 167a 内側の角部の曲面
 168  外周面
 169  外側の角部
 169a 外側の角部の曲面
 170;470  軸方向の中央部(支持部)
 212  クラスタブロックのチューブ接触面
 242c 絶縁部材のチューブ接触面
 471  把持部
 Cr   隙間
 d1   絶縁チューブの孔径(支持部の孔径)
 d2   ターミナルピンの外径
 r1   内側の角部の曲面の曲率半径
 r2   外側の角部の曲面の曲率半径
 t1,t2,t11,t12  絶縁チューブの肉厚
10; 200; 300; 400 Electric compressor 20 Housing 50 Compression mechanism 100 Electric motor 106 Connection terminal 110 Cluster block 112 Tube contact surface of cluster block 130 Sealed terminal 131 Terminal plate 131a Through hole 132 Terminal pin 140 Insulating member 150; 350; 450 Insulating tube 150a Inner peripheral surface of insulating tube 160; 360 Low rigidity portion 161 Contracted portion 162 Base end 163 Tip 164 Enlarged diameter portion 165 Tip surface (seal surface)
166 Inner peripheral surface 167 Inner corner portion 167a Curved surface of inner corner portion 168 Outer peripheral surface 169 Outer corner portion 169a Curved surface of outer corner portion 170; 470 Axial center portion (support portion)
212 Tube contact surface of cluster block 242c Tube contact surface of insulating member 471 Gripping portion Cr Gap d1 Hole diameter of insulating tube (hole diameter of support portion)
d2 Outer diameter of terminal pin r1 Radius of curvature of inner corner r2 Radius of curvature of outer corner t1, t2, t11, t12 Thickness of insulating tube

Claims (10)

  1.  密閉されたハウジング(20)と、
     前記ハウジング(20)に吸入した冷媒を圧縮して吐出する圧縮機構(50)と、
     前記圧縮機構(50)を駆動するように前記ハウジング(20)に格納された電動モータ(100)と、
     前記電動モータ(100)に電気的に接続されている接続端子(106)を収容し、前記ハウジング(20)に収納されているクラスタブロック(110)と、
     前記ハウジング(20)に設けられており、前記接続端子(106)に電気的に接続されている密封ターミナル(130)と、を備え、
     前記密封ターミナル(130)は、
     前記ハウジング(20)に固定されるターミナル板(131)と、
     前記ターミナル板(131)の貫通孔(131a)を挿通し、前記接続端子(106)を前記ハウジング(20)の外部と電気的に接続するターミナルピン(132)と、
     前記ターミナル板(131)と前記ターミナルピン(132)との間に充填されシール及び絶縁する絶縁部材(140)と、を備えている電動圧縮機(10;200;300;400)において、
     前記ターミナルピン(132)は、弾性及び電気絶縁性を有した環状の絶縁チューブ(150;350;450)により液密に覆われ、
     前記絶縁チューブ(150;350;450)は、軸方向両端に、前記絶縁チューブ(150;350;450)の軸方向の中央部(170;470)より剛性が低い低剛性部(160,160;360,360)を備えているとともに、前記クラスタブロック(110)と前記絶縁部材(140)との間に挟持されている、ことを特徴とする電動圧縮機。
    A sealed housing (20);
    a compression mechanism (50) that compresses and discharges a refrigerant drawn into the housing (20);
    an electric motor (100) housed in the housing (20) so as to drive the compression mechanism (50);
    a cluster block (110) that accommodates a connection terminal (106) electrically connected to the electric motor (100) and is housed in the housing (20);
    a sealed terminal (130) provided in the housing (20) and electrically connected to the connection terminal (106);
    The sealing terminal (130) is
    a terminal plate (131) fixed to the housing (20);
    a terminal pin (132) that is inserted through a through hole (131a) of the terminal plate (131) and electrically connects the connection terminal (106) to the outside of the housing (20);
    An insulating member (140) that is filled between the terminal plate (131) and the terminal pin (132) to seal and insulate the terminal plate (131) and the terminal pin (132),
    The terminal pin (132) is covered liquid-tightly by an annular insulating tube (150; 350; 450) having elasticity and electrical insulation properties.
    the insulating tube (150; 350; 450) has low rigidity portions (160, 160; 360, 360) at both axial ends, the low rigidity portions having lower rigidity than an axial central portion (170; 470) of the insulating tube (150; 350; 450), and is sandwiched between the cluster block (110) and the insulating member (140).
  2.  前記各々の低剛性部(160,160;360,360)は、前記ターミナルピン(132)の外周面(132a)と前記絶縁チューブ(150)の内周面(150a)との間に、隙間(Cr)を有する収縮部(161,161)を、それぞれ備えている、ことを特徴とする請求項1に記載の電動圧縮機。 The electric compressor according to claim 1, characterized in that each of the low-rigidity portions (160, 160; 360, 360) has a contraction portion (161, 161) having a gap (Cr) between the outer peripheral surface (132a) of the terminal pin (132) and the inner peripheral surface (150a) of the insulating tube (150).
  3.  前記各々の低剛性部(160,160;360,360)の間には、支持部(170;470)を有しており、
     前記支持部(170;470)は、孔径(d1)が前記ターミナルピン(132)の径(d2)よりも小径である、ことを特徴とする請求項2に記載の電動圧縮機。
    A support portion (170; 470) is provided between each of the low rigidity portions (160, 160; 360, 360),
    3. The electric compressor according to claim 2, wherein the support portion (170; 470) has a hole diameter (d1) smaller than a diameter (d2) of the terminal pin (132).
  4.  前記各々の低剛性部(160,160;360,360)の先端(163,163)は、先端面(165,165)と内周面(166,166)との成す内側の角部(167,167)と、前記先端面(165,165)と外周面(168,168)との成す外側の角部(169,169)とを、曲面状に形成されており、
     前記内側の角部(167,167)の曲面(167a,167a)は、前記外側の角部(169,169)の曲面(169a,169a)よりも曲率半径(r1)が大きい、ことを特徴とする請求項2に記載の電動圧縮機。
    a tip end (163, 163) of each of the low rigidity portions (160, 160; 360, 360) is formed such that an inner corner (167, 167) formed by a tip end surface (165, 165) and an inner circumferential surface (166, 166) and an outer corner (169, 169) formed by the tip end surface (165, 165) and an outer circumferential surface (168, 168) are curved,
    3. The electric compressor according to claim 2, wherein the curved surface (167a, 167a) of the inner corner portion (167, 167) has a larger radius of curvature (r1) than the curved surface (169a, 169a) of the outer corner portion (169, 169).
  5.  前記各々の低剛性部(160,160;360,360)は、基端(162,162)から先端(163,163)へ向かって径が大きくなる拡径部(164,164)によって構成されている、ことを特徴とする請求項2に記載の電動圧縮機。 The electric compressor according to claim 2, characterized in that each of the low-rigidity sections (160, 160; 360, 360) is composed of an enlarged diameter section (164, 164) whose diameter increases from the base end (162, 162) to the tip end (163, 163).
  6.  前記絶縁チューブ(150)の肉厚(t1,t2)は、全長にわたって一様である、ことを特徴とする請求項2に記載の電動圧縮機。 The electric compressor according to claim 2, characterized in that the wall thickness (t1, t2) of the insulating tube (150) is uniform throughout its entire length.
  7.  前記クラスタブロック(110)は、前記絶縁チューブ(150)の軸方向両端に備えている低剛性部(160,160)のいずれかの前記先端面(165)と接触するチューブ接触面(212)を有し、
     前記チューブ接触面(212)は、球面又は円錐面である、ことを特徴とする請求項2に記載の電動圧縮機。
    The cluster block (110) has a tube contact surface (212) that comes into contact with either of the tip surfaces (165) of the low rigidity portions (160, 160) provided at both axial ends of the insulating tube (150),
    3. The electric compressor of claim 2, wherein the tube contact surface (212) is a spherical or conical surface.
  8.  前記絶縁部材(140)は、前記絶縁チューブ(150)の軸方向両端に備えている低剛性部(160,160)のいずれかの前記先端面(165)と接触するチューブ接触面(242c)を有し、
     前記チューブ接触面(242c)は、球面又は円錐面である、ことを特徴とする請求項2に記載の電動圧縮機。
    The insulating member (140) has a tube contact surface (242c) that comes into contact with either of the tip surfaces (165) of low-rigidity portions (160, 160) provided at both axial ends of the insulating tube (150),
    3. The electric compressor according to claim 2, wherein the tube contact surface (242c) is a spherical or conical surface.
  9.  前記絶縁チューブ(350)は、軸方向両端に備えている前記低剛性部(360,360)のいずれか一方又は両方の、少なくとも一部又は全部を、前記絶縁チューブ(350)の軸方向へ収縮可能な蛇腹状に構成している、ことを特徴とする請求項2に記載の電動圧縮機。 The electric compressor according to claim 2, characterized in that the insulating tube (350) is configured such that at least a part or all of one or both of the low-rigidity sections (360, 360) provided at both axial ends thereof is configured in a bellows shape that can be contracted in the axial direction of the insulating tube (350).
  10.  前記支持部(470)の少なくとも一部は、前記支持部(470)の径方向の外側へ肉厚となる把持部(471)を有している、ことを特徴とする請求項3に記載の電動圧縮機。 The electric compressor according to claim 3, characterized in that at least a portion of the support portion (470) has a gripping portion (471) that is thicker radially outward of the support portion (470).
PCT/JP2023/035718 2022-10-06 2023-09-29 Electric compressor WO2024075654A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022161892 2022-10-06
JP2022-161892 2022-10-06

Publications (1)

Publication Number Publication Date
WO2024075654A1 true WO2024075654A1 (en) 2024-04-11

Family

ID=90608507

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/035718 WO2024075654A1 (en) 2022-10-06 2023-09-29 Electric compressor

Country Status (1)

Country Link
WO (1) WO2024075654A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012112274A (en) * 2010-11-24 2012-06-14 Valeo Japan Co Ltd Electric compressor
JP2012186969A (en) * 2011-03-08 2012-09-27 Toyota Industries Corp Electric compressor
JP2013245555A (en) * 2012-05-23 2013-12-09 Panasonic Corp Motor-driven compressor
WO2014068914A1 (en) * 2012-10-30 2014-05-08 パナソニック株式会社 Electric compressor
JP2015183668A (en) * 2014-03-26 2015-10-22 サンデンホールディングス株式会社 electric compressor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012112274A (en) * 2010-11-24 2012-06-14 Valeo Japan Co Ltd Electric compressor
JP2012186969A (en) * 2011-03-08 2012-09-27 Toyota Industries Corp Electric compressor
JP2013245555A (en) * 2012-05-23 2013-12-09 Panasonic Corp Motor-driven compressor
WO2014068914A1 (en) * 2012-10-30 2014-05-08 パナソニック株式会社 Electric compressor
JP2015183668A (en) * 2014-03-26 2015-10-22 サンデンホールディングス株式会社 electric compressor

Similar Documents

Publication Publication Date Title
EP1390619B1 (en) Reciprocating compressor
JP5109642B2 (en) Electric compressor
US8113800B2 (en) Scroll fluid machine
WO2014068914A1 (en) Electric compressor
JP2000320463A (en) Small pump
KR920004909Y1 (en) Scroll compressor
KR100536792B1 (en) Electric compressor
WO2008140765A9 (en) Compressor hermetic terminal
JP5007169B2 (en) Electric compressor
JP6601246B2 (en) Electric compressor
WO2024075654A1 (en) Electric compressor
CN110319000B (en) Electric compressor
JP2006042409A (en) Motor integrated compressor
WO2019234881A1 (en) Sealed compressor and manufacturing method for sealed compressor
JP7306282B2 (en) electric compressor
JP2002155862A (en) Compressor
JP2006097557A (en) Terminal connection part structure for compressor with built-in motor
KR20180111594A (en) Motor-driven compressor
CN218162049U (en) Fixing structure of motor junction box
JP3327702B2 (en) Scroll compressor
JP7403336B2 (en) electric compressor
WO2024084914A1 (en) Electric compressor
JPH08219060A (en) Hermetic compressor
JP2023018374A (en) Motor-driven compressor
WO2024062859A1 (en) Electric compressor