WO2024075482A1 - Resin composition for medical simulator and molded product thereof - Google Patents

Resin composition for medical simulator and molded product thereof Download PDF

Info

Publication number
WO2024075482A1
WO2024075482A1 PCT/JP2023/033313 JP2023033313W WO2024075482A1 WO 2024075482 A1 WO2024075482 A1 WO 2024075482A1 JP 2023033313 W JP2023033313 W JP 2023033313W WO 2024075482 A1 WO2024075482 A1 WO 2024075482A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
resin
polyol
composition according
mass
Prior art date
Application number
PCT/JP2023/033313
Other languages
French (fr)
Japanese (ja)
Inventor
英利香 金子
悠太 萩原
Original Assignee
デンカ株式会社
学校法人 聖マリアンナ医科大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社, 学校法人 聖マリアンナ医科大学 filed Critical デンカ株式会社
Publication of WO2024075482A1 publication Critical patent/WO2024075482A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B23/00Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes
    • G09B23/28Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for medicine
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B9/00Simulators for teaching or training purposes

Definitions

  • the present invention relates to a resin composition for medical simulators and molded articles made from the composition.
  • Diagnosis using ultrasound equipment can be performed simply by placing an ultrasound probe outside the body, so it is unlikely to cause damage to tissues or organs and has a wide range of applications, making it an important method of medical diagnosis today.
  • Patent Documents 1 and 2 As a result, there is an increasing demand for technical training models compatible with ultrasound diagnostic equipment, and ultrasound diagnostic phantoms have been proposed to improve skills and the quality of medical procedures (Patent Documents 1 and 2).
  • the objective of the present invention is to provide a resin composition and a molded article thereof that improves the visibility of tissues and blood vessels during ultrasound diagnostic training.
  • the present invention comprises the following: [1] A resin composition for a medical simulator, comprising a curable resin and organic fibers. [2] The resin composition according to [1], wherein the resin composition has a maximum tan ⁇ of 0.4 or less at 25° C. in a viscoelastic measurement at a frequency of 0.01 to 100 Hz, and a maximum storage modulus of 10 6 Pa or less at 25° C. in a frequency of 0.01 to 10,000 Hz. [3] The resin composition according to [1] or [2], wherein the resin composition has an Asker E hardness of 10 or less.
  • the present invention provides a resin composition and a molded article thereof that improves the visibility of tissues and blood vessels during ultrasound diagnostic training.
  • 1 is a diagram showing an ultrasound image of the human neck.
  • 1 is a diagram showing an echo image of a neck ultrasound diagnostic phantom having a simulated blood vessel therein, which was produced using a resin composition according to one embodiment of the present invention.
  • 1 is a diagram showing an echo image of a neck ultrasound diagnostic phantom having a simulated blood vessel therein, which was produced using a resin composition according to a comparative example.
  • the resin composition for a medical simulator of the present invention contains a curable resin and organic fibers.
  • the curable resin is not particularly limited as long as it can obtain the effects of the present invention, and may include one or more selected from polyurethane resins, silicone resins, phenol resins, epoxy resins, melamine resins, urea resins, unsaturated polyester resins, alkyd resins, and thermosetting polyimide resins.
  • a curable resin selected from polyurethane resins or silicone resins may be preferably used.
  • the content of the curable resin is preferably 30 to 75 mass%, more preferably 33 to 75 mass%, and even more preferably 35 to 75 mass%, relative to the total mass of the resin composition.
  • the curable resin may be a polyurethane resin made from a polyol and a polyisocyanate compound.
  • the number average molecular weight of the polyurethane resin is preferably 10 4 to 10 10 , and more preferably 10 4 to 10 9 .
  • the number average molecular weight can be determined based on gel permeation chromatography (GPC) under the following conditions.
  • crosslink density of polyurethane resins can also affect acoustic attenuation.
  • This crosslink density is determined primarily by the molecular weight of the polyol, and as the molecular weight increases, the density of crosslinking points formed by reaction with isocyanate decreases. As a result, the molecules become more mobile, energy loss during ultrasonic propagation is reduced, and the acoustic attenuation coefficient tends to become smaller.
  • the structure of the polyol in the polyurethane resin, its molecular weight, and the amount of isocyanate compound added are important in controlling acoustic attenuation.
  • the crosslinking index (CI) is an index that represents the amount of polyol components that contribute to crosslinking and the amount of polyol components that have only reacted insufficiently in a polyurethane resin.
  • the crosslinking index which indicates the crosslinking density of a polyurethane resin, is defined by the following formula. ...Equation (1)
  • WU Total weight of polyurethane resin [g]
  • W0 Weight [g] of the isocyanate compound contained in WU [g] of the polyurethane resin
  • WOH Weight [g] of polyol contained in WU [g] of polyurethane resin
  • MOH Number average molecular weight of polyol [g/mol]
  • EqOH active hydroxyl group equivalent of polyol [g/eq]
  • Eq0 active isocyanate equivalent of the isocyanate compound [g/eq]
  • COH Total number of moles of polyols [mol] contained in WU [g] of polyurethane resin [OH]: Number of moles [mol] of active hydroxyl groups contained in WU [g] of polyurethane resin [NCO]: number of moles [mol] of active isocyanate groups contained in WU [g] of
  • the crosslinking index of the polyurethane resin is designed to be greater than 5000.
  • Polyol Representative examples of the polyol include polyether polyol, polyester polyol, and polycarbonate polyol.
  • the hardness of the urethane resin tends to vary depending on the number average molecular weight of the polyol; when the number average molecular weight is large, the hardness tends to be low, and when the number average molecular weight is small, the hardness tends to be high.
  • the number average molecular weight of the polyol is preferably 1,000 to 8,000 in terms of ease of availability, and more preferably 4,000 to 7,000 in order to produce a solid that is easy to handle.
  • the number average molecular weight can be measured using gel permeation chromatography (GPC).
  • the hydroxyl value of the polyol is preferably 20-160, more preferably 20-80, and even more preferably 25-60.
  • the hydroxyl value of the polyol can be determined by titration in accordance with JIS K 1557-1, where the unit of the hydroxyl value is mgKOH/g.
  • the active hydroxyl group equivalent of the polyol is preferably 350 to 2805 equivalents/kg, more preferably 701 to 2805 equivalents/kg, and even more preferably 935 to 2244 equivalents/kg.
  • the active hydroxyl group equivalent of a polyol can be determined by measuring the amount of hydroxyl groups by a known method. An example of a method for determining the active hydroxyl group equivalent from the hydroxyl value will be described below.
  • the polyol is dissolved in a pyridine solution containing acetic anhydride, and the hydroxyl groups are acetylated. The excess acetylation reagent is then hydrolyzed with water, and the resulting acetic acid is titrated with potassium hydroxide.
  • the end point is the inflection point on the titration curve, and the hydroxyl value of the polyol can be calculated from the amount of potassium hydroxide solution titrated up to the end point.
  • the active hydroxyl equivalent can be calculated from this hydroxyl value.
  • the polyetherol is not particularly limited as long as it has two or more functional groups in the molecule, and any appropriate polyether polyol can be used. These can be used alone or in combination of two or more. Polyether polyols are described below.
  • the polyether polyol components include (oxypropylene) glycol, oxyethylene glycol, oxytetramethylene glycol, ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, neopentyl glycol, pentanediol, 1,6-hexanediol, 1,8-octanediol, 1,10-decanediol, 1-methyl-1,3-butylene glycol, 2-methyl-1,3-butylene glycol, 1-methyl-1,4-pentylene glycol, 2-methyl-1,4-pentylene glycol, 1,2-dimethyl-neopentyl glycol, 2,3-dimethyl-neopentyl glycol, and the like.
  • polyether polyols examples include glycol, 1-methyl-1,5-pentylene glycol, 2-methyl-1,5-pentylene glycol, 3-methyl-1,5-pentylene glycol, 1,2-dimethylbutylene glycol, 1,3-dimethylbutylene glycol, 2,3-dimethylbutylene glycol, 1,4-dimethylbutylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, dipropylene glycol, polypropylene glycol, 1,4-cyclohexanedimethanol, 1,4-cyclohexanediol, bisphenol A, bisphenol F, hydrogenated bisphenol A, hydrogenated bisphenol F, and polyoxyethylene polyoxypropylene glycol. These can be polymerized alone or in combination by a known method to obtain a polyether polyol.
  • the isocyanate compound is not particularly limited as long as it is an isocyanate compound having two or more isocyanate groups, and any appropriate one can be adopted. These can be used alone or in combination of two or more.
  • the isocyanate compound will be described below, but is not limited thereto.
  • the isocyanate compounds include, for example, aliphatic diisocyanates such as tetramethylene diisocyanate, dodecamethylene diisocyanate, 1,4-butane diisocyanate, hexamethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, 2,4,4-trimethylhexamethylene diisocyanate, lysine diisocyanate, 2-methylpentane-1,5-diisocyanate, and 3-methylpentane-1,5-diisocyanate; isophorone diisocyanate, hydrogenated xylylene diisocyanate, 4,4'-cyclohexylmethane diisocyanate, 1,4-cyclohexane diisocyanate, methylcyclohexylene diisocyanate, and 1,3-bis(isocyanate methyl ) cyclohexane and other alicyclic diisocyanates; aromatic diisocyanates
  • the isocyanate compound can also be prepared as a modified product within the scope of the present invention, so long as the effects of the present invention are not impaired.
  • modified polyisocyanates include, but are not limited to, polymers (dimers (e.g., uretdione modified products), trimers (e.g., isocyanurate modified products, iminooxadiazinedione modified products), biuret modified products (e.g., biuret modified products produced by reaction with water), allophanate modified products (e.g., allophanate modified products produced by reaction with monool or low molecular weight polyol), polyol modified products (e.g., polyol modified products produced by reaction with low molecular weight polyol or high molecular weight polyol), oxadiazinetrione modified products (e.g., oxadiazinetrione produced by reaction with carbon dioxide), and carbodiimide modified products (carbodiimide modified products produced by decarboxylation condensation reaction
  • the active isocyanate equivalent of the isocyanate compound is preferably 160-420, and more preferably 160-280.
  • the active isocyanate equivalent of an isocyanate compound can be determined by measuring the amount of hydroxyl groups by a known method. An example of a method for measuring the isocyanate equivalent will be described below.
  • the isocyanate equivalent can be calculated from the titration amount up to the end point.
  • a suitable amount of catalyst that promotes the reaction between the hydroxyl group of the polyol and the isocyanate group of the isocyanate compound may be added to the polyol or polyisocyanate.
  • a known urethane catalyst can be used as the catalyst, and specific examples of the catalyst include organic metal compounds such as dibutyltin dilaurate, dibutyltin diacetate, and dioctyltin dilaurate, and organic amines such as triethylenediamine and triethylamine, and salts thereof. These catalysts can be used alone or in combination of two or more.
  • the content of the urethanization catalyst is preferably 0.01 to 0.05 mass %, and more preferably 0.02 to 0.04 mass %, relative to the total mass of the resin composition.
  • a silicone-based resin can be used as the curable resin.
  • silicone-based resins include those that are cured by addition reaction or radical crosslinking reaction.
  • the addition reaction curable resin include those that contain a diorganosiloxane having an alkenyl group, an MQ resin having R 3 SiO 0.5 and SiO 2 units, an organohydrogenpolysiloxane having a plurality of SiH groups, a platinum catalyst, an addition reaction inhibitor, and an organic solvent, as described in JP 2015-193803 A.
  • radical crosslinking reaction curable resin examples include those that contain a diorganopolysiloxane that may or may not have an alkenyl group, an MQ resin having R 3 SiO 0.5 and SiO 2 units, an organic peroxide, and an organic solvent, as described in JP 2015-193803 A.
  • R is a substituted or unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms.
  • MQ resin contains a lot of silanols, so adding this improves adhesive strength, but since it is not crosslinkable, it is not molecularly bonded to the polysiloxane.
  • Modified siloxanes having a group selected from amino groups, oxirane groups, oxetane groups, polyether groups, hydroxyl groups, carboxyl groups, mercapto groups, methacryl groups, acrylic groups, phenol groups, silanol groups, carboxylic anhydride groups, aryl groups, aralkyl groups, amide groups, ester groups, and lactone rings can also be added to the silicone resin.
  • the modified siloxanes may be modified at one end, both ends, or the side chains.
  • the organic fiber is used as an adjustment material for the acoustic performance of the composition.
  • the organic fiber include aramid fiber, cellulose fiber, nylon fiber, vinylon fiber, polyester fiber, acrylic fiber, polyolefin fiber, rayon fiber, polyvinyl chloride fiber, polyvinylidene chloride fiber, polyurethane fiber, polylactic acid fiber, plant fiber such as cotton or hemp, and animal fiber such as wool or silk. These may be used alone or in combination of two or more.
  • Examples of the cross-sectional shape of the organic fibers include a circle, an ellipse, and a polygon.
  • the ratio L/D of the average length L to the average fiber diameter D of the organic fibers is, for example, more than 10, preferably 50 or more, and more preferably 100 or more.
  • the upper limit of L/D is not particularly specified, but is, for example, 10,000.
  • the average fiber diameter D of the organic fibers is, for example, 10 to 80 ⁇ m, preferably 15 to 70 ⁇ m, and more preferably 20 to 60 ⁇ m.
  • the average length L of the organic fibers is, for example, 0.05 to 10 mm, preferably 0.1 to 8 mm, and more preferably 0.2 to 5 mm.
  • the organic fiber content is preferably 0.5 to 3.0% by mass, and more preferably 1.0 to 3.0% by mass, relative to the total mass of the resin composition.
  • ultrasound inserted into the composition is scattered, and when it is used as a diagnostic phantom, muscle tissue, etc., which appears white in an echo image, can be suitably reproduced.
  • the echo image can be made closer to that of the human body.
  • the echo image can be displayed more clearly, both overall and in fine detail.
  • the resin composition may contain additives such as a plasticizer, a colorant, a flame retardant, a stabilizer, and a release agent.
  • the resin composition contains a plasticizer as necessary.
  • the plasticizer is not particularly limited, but may be, for example, a phthalate ester, a trimellitate ester, a pyromellitate ester, an aliphatic monobasic acid ester, an aliphatic dibasic acid ester, a phosphoric acid ester, or an ester of a polyhydric alcohol. These may be used alone or in combination of two or more kinds.
  • the above phthalate esters include dimethyl phthalate, diethyl phthalate, dipropyl phthalate, diisopropyl phthalate, dibutyl phthalate, diisobutyl phthalate, diamyl phthalate, di-n-hexyl phthalate, dicyclohexyl phthalate, diheptyl phthalate, di-n-octyl phthalate, dinonyl phthalate, diisononyl phthalate, diisodecyl phthalate, diundecyl phthalate, ditridecyl phthalate, diphenyl phthalate, di(2-ethylhexyl) phthalate, di(2-butoxyethyl) phthalate, benzyl 2-ethylhexyl phthalate, benzyl n-butyl phthalate, benzyl isononyl phthalate, and dimethyl isophthalate.
  • trimellitic acid esters examples include tributyl trimellitate, trihexyl trimellitate, tri-n-octyl trimellitate, tri-2-ethylhexyl trimellitate, triisodecyl trimellitate, etc.
  • Examples of the pyromellitic acid ester include tetrabutyl pyromellitic acid, tetrahexyl pyromellitic acid, tetra-n-octyl pyromellitic acid, tetra-2-ethylhexyl pyromellitic acid, and tetradecyl pyromellitic acid.
  • Examples of the aliphatic monobasic acid ester include butyl oleate, methyl oleate, methyl octanoate, butyl octanoate, methyl dodecanoate, butyl dodecanoate, methyl palmitate, butyl palmitate, methyl stearate, butyl stearate, methyl linoleate, butyl linoleate, methyl isostearate, butyl isostearate, methyl acetyl ricinoleate, and butyl acetyl ricinoleate.
  • the above aliphatic dibasic acid esters include dimethyl adipate, diethyl adipate, di-n-propyl adipate, diisopropyl adipate, diisobutyl adipate, di-n-octyl adipate, di(2-ethylhexyl) adipate (bis(2-ethylhexyl) adipate), diisononyl adipate, diisodecyl adipate, di(2-butoxyethyl) adipate, di(butyldiglycol) adipate, and heptyl nonyl adipate.
  • the above phosphate esters include trimethyl phosphate, triethyl phosphate, tributyl phosphate, tri-n-amyl phosphate, triphenyl phosphate, tri-o-cresyl phosphate, trixylenyl phosphate, diphenyl 2-ethylhexyl phosphate, diphenylcresyl phosphate, tris(2-butoxyethyl) phosphate, tris(2-ethylhexyl) phosphate, etc.
  • Esters of the above polyhydric alcohols include diethylene glycol diacetylate, diethylene glycol dibenzoate, glycerol monooleate, glycerol tributyrate, glycerol triacetate, glyceryl tri(acetyl ricinoleate), triethylene glycol diacetate, etc.
  • the content of the plasticizer is preferably 20 to 80 mass %, more preferably 25 to 75 mass %, and even more preferably 30 to 70 mass %, relative to the total mass of the resin composition.
  • Examples of the colorant include master batches, colored pellets, dry colors, paste colors, liquid colors, and inks. The colorant may be kneaded with a resin in an extruder and colored, and a method of kneading a master batch with a resin in an extruder and coloring the resin is preferred.
  • Examples of the colorant used in the colorant include carbon black, inorganic pigments, organic pigments, basic dyes, and acid dyes.
  • the amount of the colorant added is preferably 0.01% by mass to 5% by mass, more preferably 0.02% by mass to 3% by mass, and even more preferably 0.05% by mass to 2% by mass, based on the total mass of the resin composition, as the final colorant content.
  • flame retardants examples include bromine-based flame retardants, phosphorus-based flame retardants, nitrogen-based flame retardants, hydrated metal compounds, etc.
  • the content of the flame retardant is preferably 0.01 to 1.0 mass%, more preferably 0.01 to 0.5 mass%, and even more preferably 0.01 to 0.3 mass%, relative to the total mass of the resin composition.
  • phenol-based antioxidants such as 2,6-di-t-butyl-4-methylphenol, 2-t-butyl-6-(3-t-butyl-2-hydroxy-5-methylbenzyl)-4-methylphenyl acrylate, 2-[1-(2-hydroxy-3,5-di-t-pentylphenyl)-ethyl]-4,6-di-pentylphenyl acrylate, n-octadecyl-3-(4'-hydroxy-3',5'-di-t-butylphenyl)propionate, phosphorus-based antioxidants such as 2,2-methylenebyl(4,6-di-t-butylphenyl)octylphosphite, trisnonylphenylphosphite, etc.
  • the content of the stabilizer is preferably 0.1 to 3.0% by mass, more preferably 0.1 to 2.5% by mass, and even more preferably 0.1 to 2.0% by mass, based on the total mass of the resin composition.
  • release agent natural wax such as carnauba wax, synthetic wax, higher fatty acid such as zinc stearate and its metal salt, and paraffin can be used.
  • the content of the release agent is preferably 0.1 to 2.0 mass%, more preferably 0.1 to 1.5 mass%, and further preferably 0.1 to 1.0 mass%, based on the total mass of the resin composition.
  • the resin composition contains a curable resin and organic fibers, and is suitable for producing a medical simulator, in particular, an ultrasound diagnostic phantom.
  • the maximum value of tan ⁇ at 25°C at frequencies of 0.01 to 100 Hz is preferably 0.4 or less, more preferably 0.01 to 0.35, and even more preferably 0.01 to 0.3.
  • the ultrasonic attenuation effect of the resin composition becomes appropriate, and ultrasonic echo visibility close to that of the human body and the inside can be clearly observed.
  • the maximum storage modulus of the resin composition at 25° C. in a frequency range of 0.01 to 10,000 Hz is preferably 10 6 Pa or less, more preferably 10 3 to 10 6 Pa, and even more preferably 10 4 to 10 6 Pa.
  • the maximum storage modulus is 10 6 Pa or less, the shape retention of the resin composition is good, and the resin composition can be easily handled as a simulator model.
  • More detailed conditions for measuring the viscoelasticity of the resin composition are as follows.
  • the resin composition is punched out to produce a molded product having a thickness of 5 mm and a diameter of 20 mm.
  • the samples are stored in a room at 23° C. and 50% RH for 24 hours for aging treatment.
  • RSA-III dynamic viscoelasticity measuring device
  • E' storage modulus
  • E loss modulus
  • the Asker E hardness of the resin composition is preferably 10 or less, more preferably 0 to 8, and even more preferably 0 to 4. Having an Asker E hardness of 10 or less gives the resin composition a feel similar to that of the human body, and the feel of pressing an ultrasonic probe against the resin composition during ultrasonic diagnosis also feels similar to that of the human body, which is expected to improve medical techniques in ultrasonic diagnosis. Furthermore, having an Asker E hardness of 10 or less makes it easier for the ultrasonic probe to follow the area to be diagnosed, improving the visibility of ultrasonic echo images.
  • the Asker E hardness can be measured in accordance with JIS K 6253-3:2012.
  • the resin composition has an acoustic attenuation rate of preferably 0.3 to 1.5 dB/cm/MHz, more preferably 0.3 to 1.2 dB/cm/MHz, and even more preferably 0.3 to 1.0 dB/cm/MHz.
  • the acoustic attenuation rate of the resin composition can be measured, for example, by the method described in the Examples below.
  • the sound velocity in the resin composition is preferably 1200 to 1700 m/s, and more preferably 1200 to 1600 m/s. This range is equivalent to that of fatty tissue in a living body.
  • the sound speed of the resin composition can be measured using the same measuring instrument as for the acoustic attenuation rate by calculating the difference in the arrival time of the received wave when a test piece is placed on the measuring instrument and when it is not placed on the measuring instrument, and taking the tolerance function of the waveform obtained with an oscilloscope. The difference in the arrival time of the received wave can then be calculated using the following formula (2).
  • C1 The speed of sound in water at the water temperature at the time of measurement (m/s).
  • C2 Sound velocity of the test piece (m/s).
  • t thickness of test piece (m).
  • delay time ⁇ (s) of the arrival of the received wave when the test piece is installed.
  • the density of the resin composition is preferably 900 to 1300 kg/m 3 , and more preferably 950 to 1200 kg/m 3.
  • the sound speed and density are correlated with acoustic impedance, and by adjusting the density and sound speed within a specified range, visibility in ultrasonic echoes becomes close to that of the human body and is good.
  • the density of the resin composition can be measured using an electronic specific gravity meter based on JIS K7112:1999.
  • the molded article of the present invention is produced by molding the resin composition of the present invention.
  • the molded article can be used as a medical simulator, for example, for the head, neck, chest, abdomen, pelvis, upper limbs, and lower limbs.
  • additives such as colorants such as pigments and dyes, fragrances, antioxidants, antibacterial agents, etc. may be used within the scope that does not impede the purpose.
  • colorants such as pigments and dyes, fragrances, antioxidants, antibacterial agents, etc.
  • the molded product can be molded by known molding methods.
  • the curable composition is injected into a mold of your choice, heated, cooled, and solidified.
  • multiple parts can be molded separately using injection molding or other methods, and then bonded together to complete the medical simulator.
  • the molded product can be used as an ultrasound diagnostic phantom.
  • the molded product can be used as an ultrasound diagnostic phantom having simulated blood vessels made of resin such as epoxy resin inside.
  • the molded product can be used as an ultrasound diagnostic phantom of the neck including the carotid artery where ultrasound diagnosis is actually performed.
  • the methods for evaluating various properties of the resin compositions prepared in the examples and comparative examples are as follows.
  • Two Shodex KD-806M columns (manufactured by Showa Denko K.K.) and one Shodex KD-802 column (manufactured by Showa Denko K.K.) were arranged in series in a gel permeation chromatography (GPC) apparatus (manufactured by WATERS Corporation), and the measurement was performed with an RI (Refractive Index) detector at 40° C. using N,N′-dimethylformamide as a developing solvent.
  • the number average molecular weight obtained is a polyethylene glycol equivalent value.
  • the density of the resin composition was measured using an electronic specific gravity meter (MD-300S, manufactured by Alpha Mirage Co., Ltd.) based on the method for measuring density and specific gravity of plastics - non-foamed plastics (JIS K7112:1999).
  • the probe used for measuring the acoustic attenuation coefficient was an ultrasonic transducer (transmitter) (V303 (center frequency 1 MHz) manufactured by Olympus NDT Inc.) and a hydrophone (receiver) (needle-type hydrophone manufactured by Toray Engineering Co., Ltd.).
  • the transducer and hydrophone were fixed in the tank using a jig so that the centers of the sound axes were aligned.
  • the distance between the transducer and hydrophone was 40 mm.
  • the cured resin composition was poured into a mold measuring 50 mm x 50 mm and 50 mm thick, and the resin was cured by heating at 90°C for 2 hours. The mold was then demolded to obtain a plate-shaped test specimen measuring 50 mm x 50 mm and 20 mm thick. The test specimen was fixed using a jig between the transducer and hydrophone of the above experimental system so that the incident angle of the ultrasonic signal to the plate-shaped test specimen was 0°.
  • an 8-cycle sine wave (transmitting voltage 100V) was transmitted from the transducer using a function generator (NF Circuit Design Co., Ltd., WF1946).
  • the maximum amplitude of the received voltage of the hydrophone when each test piece was installed and when no test piece was installed was then determined using an oscilloscope (LeCroy Japan Co., Ltd., WaveRunner 64Xi).
  • the acoustic attenuation rate was calculated using the following formula (3) from the maximum amplitude of the voltage when the test piece was installed and when it was not installed in the measurement system.
  • attenuation coefficient (dB/cm/MHz)
  • t thickness of the test piece (cm).
  • A' maximum amplitude value (mV) of the received voltage when the test piece is installed.
  • A0 Maximum amplitude value (mV) of the received voltage when no test piece is installed.
  • Z 1 Acoustic impedance of water (MRayls).
  • Z2 Acoustic impedance of the test specimen (MRayls).
  • the acoustic impedance used in the above formula (3) is calculated as the product of density and sound speed.
  • the sound speed and density required for the calculation were calculated by actual measurement.
  • the sound speed was calculated by taking the cross-correlation of the waveforms obtained with an oscilloscope to find the difference in the arrival time of the received wave when a test piece was installed and when it was not installed in the measurement system, using a similar measurement system for the acoustic attenuation rate, and the sound speed was calculated from this difference in the arrival time of the received wave using the following formula (2).
  • C 1 The speed of sound in water (m/s) at the water temperature at the time of measurement.
  • C2 Sound velocity of the test piece (m/s).
  • t thickness of test piece (m).
  • delay time ⁇ (s) of the arrival of the received wave when the test piece is installed.
  • Examples 2 to 9 and Comparative Example 2 Except for the raw materials and compositions of the resin compositions shown in Tables 1 and 2, resin compositions were prepared in the same manner as in Example 1, and physical properties were measured in the same manner as in Example 1. The results are shown in Tables 1 and 2. The crosslinking index of the resin compositions in the above examples was all over 5,000.
  • a neck ultrasound diagnostic phantom was produced using the resin compositions of the above examples and comparative examples as the outer shell and having a simulated blood vessel made of an epoxy resin inside, and an echo image was taken.
  • Fig. 1 shows an actual echo image of the neck of a human body.
  • FIG. 2 is an echo image taken of a neck ultrasound diagnostic phantom prepared using the resin composition of Example 1, in which, similar to FIG. 1, the blood vessels appear black and the outer periphery appears white.
  • FIG. 3 is an echo image taken of a neck ultrasound diagnostic phantom made using the resin composition of Comparative Example 1. There is little difference in brightness between the blood vessels and the outer shell, and both appear black, indicating that the visibility of the blood vessels was not adequately reproduced.
  • the resin composition for medical simulators of the present invention can be used to manufacture medical simulators.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Educational Technology (AREA)
  • Educational Administration (AREA)
  • Business, Economics & Management (AREA)
  • Medical Informatics (AREA)
  • Veterinary Medicine (AREA)
  • Radiology & Medical Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • Molecular Biology (AREA)
  • Public Health (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Surgery (AREA)
  • Pathology (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Algebra (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Physics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Provided are a resin composition for a medical simulator and a molded product thereof with improved visibility of a blood vessel in training for ultrasound diagnosis. This resin composition for a medical simulator comprises a curable resin and an organic fiber.

Description

医療シミュレータ用樹脂組成物及びその成形品Resin composition for medical simulator and molded product thereof
 本発明は、医療シミュレータ用樹脂組成物及びその成形品に関する。 The present invention relates to a resin composition for medical simulators and molded articles made from the composition.
 超音波装置を用いた診断は、体外から超音波探触子を当てるだけで検査できるため、組織、臓器への障害を起こしにくく、適用範囲が広いなどの理由から、現在の医療診断の重要な手法となっている。しかしながら、超音波検査を施行し得る技術を持った検者は限られており、検査を普及させるためには検者の技量を上げることが必要となる。超音波診断技術の訓練は、患者を対象に行うことが望ましいが、様々な制限があるだけでなく、患者への負担もあり、十分に行われていないのが現状である。 Diagnosis using ultrasound equipment can be performed simply by placing an ultrasound probe outside the body, so it is unlikely to cause damage to tissues or organs and has a wide range of applications, making it an important method of medical diagnosis today. However, there are only a limited number of examiners with the skills to perform ultrasound examinations, and in order to popularize the use of the test, it is necessary to improve the skills of examiners. It is desirable to train patients in ultrasound diagnostic techniques, but there are various restrictions and it is a burden on patients, so the current situation is that this is not being done sufficiently.
 そのため、超音波診断用装置に対応した、技術訓練用モデルに対する需要が高くなってきており、これまでに技術向上および医療行為の品質向上のため、超音波診断ファントムの提案がされている(特許文献1、2)。 As a result, there is an increasing demand for technical training models compatible with ultrasound diagnostic equipment, and ultrasound diagnostic phantoms have been proposed to improve skills and the quality of medical procedures (Patent Documents 1 and 2).
特開2003-310610号公報JP 2003-310610 A 特開2011-209691号公報JP 2011-209691 A
 現在、心筋梗塞や脳卒中といった循環器系疾患は、死因の三分の一を占めるなど、主な死因の一つとなっており、血管の狭窄やプラークの検出は重要となってきている。しかしながら、これまでの超音波診断ファントムは、人体同様の走査感を十分に再現できておらず、血管と組織が人体同様に識別できる画像を提供することができていなかった。
 そこで、人に近い感覚と医療手技を訓練することができる医療シミュレータの開発が望まれている。
 一方、超音波診断画像の構成には生体内において超音波の減衰や反射、散乱など音響的性質が複雑に関係している。超音波診断ファントムではそのように複雑な人体の音響的挙動を再現する必要がある。
Currently, cardiovascular diseases such as myocardial infarction and stroke are one of the leading causes of death, accounting for one-third of all deaths, and the detection of blood vessel stenosis and plaque has become increasingly important. However, previous ultrasound diagnostic phantoms have not been able to fully reproduce the same scanning sensation as the human body, and have not been able to provide images in which blood vessels and tissues can be distinguished in the same way as the human body.
Therefore, there is a need for the development of a medical simulator that can provide a similar sensation to that of a human and allows training in medical procedures.
On the other hand, the composition of ultrasound diagnostic images is intricately related to acoustic properties such as attenuation, reflection, scattering, etc. of ultrasound within the body, and it is necessary to reproduce such complex acoustic behavior of the human body in an ultrasound diagnostic phantom.
 本発明は、超音波診断の訓練において、組織および血管の視認性が改善された樹脂組成物及びその成形品を提供することを課題とする。 The objective of the present invention is to provide a resin composition and a molded article thereof that improves the visibility of tissues and blood vessels during ultrasound diagnostic training.
 すなわち、本発明者は、様々な手段を検討した結果、硬化性樹脂に、有機繊維を含有させることで、人体に類似した音響性能を保持し、組織および血管の視認性が人体相当となる樹脂組成物となることを見出し、本発明を完成するに至った。 In other words, after examining various methods, the inventors discovered that by incorporating organic fibers into a curable resin, a resin composition could be created that retains acoustic performance similar to that of the human body and provides tissue and blood vessel visibility equivalent to that of the human body, which led to the completion of the present invention.
 本発明は下記より構成される。
[1]硬化性樹脂と、有機繊維とを含む、医療シミュレータ用樹脂組成物。
[2]前記樹脂組成物の、粘弾性測定における周波数0.01~100Hzにおける25℃のtanδの最大値が0.4以下であり、周波数0.01~10000Hzにおける25℃の貯蔵弾性率の最大値が10Pa以下である、[1]に記載の樹脂組成物。
[3]前記樹脂組成物のアスカーE硬度が10以下である、[1]又は[2]に記載の樹脂組成物。
[4]前記硬化性樹脂が、ポリオールとイソシアネート化合物を原料とするポリウレタン系樹脂である、[1]から[3]のいずれかに記載の樹脂組成物。
[5]前記有機繊維が、セルロース繊維又はナイロン繊維を含む、[1]から[4]のいずれかに記載の樹脂組成物。
[6]前記有機繊維は、平均繊維径が10~80μmであり、含有量が前記樹脂組成物の総質量に対して0.5~3.0質量%である、[1]から[5]のいずれかに記載の樹脂組成物。
[7]超音波診断ファントム用である、[1]から[6]のいずれかに記載の樹脂組成物。
[8][1]から[7]のいずれかに記載の樹脂組成物の成形品。
[9]超音波診断ファントムである、[8]に記載の成形品。
The present invention comprises the following:
[1] A resin composition for a medical simulator, comprising a curable resin and organic fibers.
[2] The resin composition according to [1], wherein the resin composition has a maximum tan δ of 0.4 or less at 25° C. in a viscoelastic measurement at a frequency of 0.01 to 100 Hz, and a maximum storage modulus of 10 6 Pa or less at 25° C. in a frequency of 0.01 to 10,000 Hz.
[3] The resin composition according to [1] or [2], wherein the resin composition has an Asker E hardness of 10 or less.
[4] The resin composition according to any one of [1] to [3], wherein the curable resin is a polyurethane-based resin made from a polyol and an isocyanate compound.
[5] The resin composition according to any one of [1] to [4], wherein the organic fibers include cellulose fibers or nylon fibers.
[6] The resin composition according to any one of [1] to [5], wherein the organic fibers have an average fiber diameter of 10 to 80 μm and a content of 0.5 to 3.0 mass% relative to the total mass of the resin composition.
[7] The resin composition according to any one of [1] to [6], which is for use in an ultrasound diagnostic phantom.
[8] A molded article of the resin composition according to any one of [1] to [7].
[9] The molded article according to [8], which is an ultrasound diagnostic phantom.
 本発明によれば、超音波診断の訓練において、組織および血管の視認性が改善された樹脂組成物及びその成形品を提供することができる。 The present invention provides a resin composition and a molded article thereof that improves the visibility of tissues and blood vessels during ultrasound diagnostic training.
人体の頸部のエコー画像を示す図面である。1 is a diagram showing an ultrasound image of the human neck. 本発明の一実施形態に係る樹脂組成物を用いて作製した内部に模擬血管を有する頸部超音波診断ファントムのエコー画像を示す図面である。1 is a diagram showing an echo image of a neck ultrasound diagnostic phantom having a simulated blood vessel therein, which was produced using a resin composition according to one embodiment of the present invention. 比較例に係る樹脂組成物を用いて作製した内部に模擬血管を有する頸部超音波診断ファントムのエコー画像を示す図面である。1 is a diagram showing an echo image of a neck ultrasound diagnostic phantom having a simulated blood vessel therein, which was produced using a resin composition according to a comparative example.
 以下、本発明の一実施形態について詳細に説明する。本発明は、以下の実施形態に限定されるものではなく、本発明の効果を阻害しない範囲で適宜変更を加えて実施することができる。一実施形態について記載した特定の説明が他の実施形態についても当てはまる場合には、他の実施形態においてはその説明を省略している場合がある。本明細書において数値範囲を示す「X~Y」との表現は、「X以上Y以下」であることを意味している。 Below, one embodiment of the present invention will be described in detail. The present invention is not limited to the following embodiment, and can be implemented by making appropriate modifications within the scope that does not impair the effects of the present invention. When a specific explanation given for one embodiment also applies to other embodiments, the explanation may be omitted in other embodiments. In this specification, the expression "X to Y" indicating a numerical range means "X or more and Y or less."
[医療シミュレータ用樹脂組成物]
 本発明の医療シミュレータ用樹脂組成物は、硬化性樹脂と、有機繊維とを含む。
[Resin composition for medical simulator]
The resin composition for a medical simulator of the present invention contains a curable resin and organic fibers.
{硬化性樹脂}
 硬化性樹脂としては、本発明の効果が得られるものであれば特に限定されないが、ポリウレタン系樹脂、シリコーン系樹脂、フェノール系樹脂、エポキシ系樹脂、メラミン系樹脂、尿素系樹脂、不飽和ポリエステル系樹脂、アルキド系樹脂、熱硬化性ポリイミド系樹脂から選択される1種以上を含む硬化性樹脂を用いることができる。特に、所望の硬度が得られやすいという観点から、ポリウレタン系樹脂又はシリコーン系樹脂から選択される硬化性樹脂を好適に用いることができる。
 一実施形態において、硬化性樹脂の含有量は、樹脂組成物の総質量に対して、30~75質量%であることが好ましく、33~75質量%であることがより好ましく、35~75質量%であることがさらに好ましい。
{Curable resin}
The curable resin is not particularly limited as long as it can obtain the effects of the present invention, and may include one or more selected from polyurethane resins, silicone resins, phenol resins, epoxy resins, melamine resins, urea resins, unsaturated polyester resins, alkyd resins, and thermosetting polyimide resins. In particular, from the viewpoint of facilitating the attainment of a desired hardness, a curable resin selected from polyurethane resins or silicone resins may be preferably used.
In one embodiment, the content of the curable resin is preferably 30 to 75 mass%, more preferably 33 to 75 mass%, and even more preferably 35 to 75 mass%, relative to the total mass of the resin composition.
(ポリウレタン系樹脂)
 一実施形態においては、硬化性樹脂として、ポリオールとポリイソシアネート化合物とを原料とするポリウレタン系樹脂を用いることができる。
 一実施形態において、ポリウレタン系樹脂の数平均分子量は、10~1010であることが好ましく、10~10であることがより好ましい。
 数平均分子量は、ゲル浸透クロマトグラフィ(GPC)に基づいて以下の条件下で求めることができる。
[ゲル浸透クロマトグラフィ(GPC)]
 ゲル浸透クロマトグラフィ装置(ウォーターズ(WATERS)株式会社製)で、Shodex KD-806M カラム(昭和電工株式会社製)2本、Shodex KD-802 カラム(昭和電工株式会社製)1本を直列に配置し、40℃、展開溶媒としてN、N’-ジメチルホルムアミドを用い、RI(Refractive Index、示差屈折率)検出器により測定する。得られた数平均分子量は、ポリエチレングリコール換算値として求められる。
(Polyurethane resin)
In one embodiment, the curable resin may be a polyurethane resin made from a polyol and a polyisocyanate compound.
In one embodiment, the number average molecular weight of the polyurethane resin is preferably 10 4 to 10 10 , and more preferably 10 4 to 10 9 .
The number average molecular weight can be determined based on gel permeation chromatography (GPC) under the following conditions.
[Gel Permeation Chromatography (GPC)]
Two Shodex KD-806M columns (manufactured by Showa Denko K.K.) and one Shodex KD-802 column (manufactured by Showa Denko K.K.) are arranged in series in a gel permeation chromatography apparatus (manufactured by WATERS Corporation), and measurements are performed with an RI (Refractive Index) detector at 40° C. using N,N′-dimethylformamide as a developing solvent. The number average molecular weight obtained is calculated as a polyethylene glycol equivalent value.
 また、ポリウレタン系樹脂の架橋密度は、音響減衰に影響し得る。この架橋密度は、ポリオールの分子量によって主に定まり、分子量が長くなることで、イソシアネートと反応して形成される架橋点の密度が低下する。その結果として、分子は運動しやすくなり、超音波伝搬時のエネルギー損失が低減され、音響減衰係数が小さくなる傾向にある。 The crosslink density of polyurethane resins can also affect acoustic attenuation. This crosslink density is determined primarily by the molecular weight of the polyol, and as the molecular weight increases, the density of crosslinking points formed by reaction with isocyanate decreases. As a result, the molecules become more mobile, energy loss during ultrasonic propagation is reduced, and the acoustic attenuation coefficient tends to become smaller.
 また、イソシアネート基の添加量が少ない場合、ポリオール中の1分子中の1つ以上の水酸基が反応せず、自由に運動できるポリオール鎖が増加するとともに、分子鎖の運動を抑制する効果がある架橋点も減少する。結果、ポリウレタン系樹脂中の分子の運動性が向上すると考えられ、超音波伝搬時のエネルギー損失が低減され、音響減衰係数は小さくなると考えられる。 In addition, when the amount of isocyanate groups added is small, one or more hydroxyl groups in each molecule of the polyol do not react, and the number of polyol chains that can move freely increases, while the number of crosslinking points that have the effect of suppressing the movement of molecular chains also decreases. As a result, it is believed that the mobility of molecules in the polyurethane resin improves, energy loss during ultrasonic propagation is reduced, and the acoustic attenuation coefficient becomes smaller.
 以上の点から、ポリウレタン系樹脂中のポリオールの構造およびその分子量とイソシアネート化合物の添加量が音響減衰の制御に重要となる。 For these reasons, the structure of the polyol in the polyurethane resin, its molecular weight, and the amount of isocyanate compound added are important in controlling acoustic attenuation.
 架橋インデックス(CI)は、架橋に寄与するポリオール成分と不十分な反応しかしていないポリオール成分のポリウレタン系樹脂における量を表す指標である。 The crosslinking index (CI) is an index that represents the amount of polyol components that contribute to crosslinking and the amount of polyol components that have only reacted insufficiently in a polyurethane resin.
 また、ポリウレタン系樹脂の架橋密度を示す架橋インデックスは、以下の式で定義される。
Figure JPOXMLDOC01-appb-I000001
・・・式(1)
 WU:ポリウレタン系樹脂の総重量[g]
 W0:WU[g]のポリウレタン系樹脂中に含まれるイソシアネート化合物の重量[g]
 WOH:WU[g]のポリウレタン系樹脂中に含まれるポリオールの重量[g]
 MOH:ポリオールの数平均分子量[g/mol]
 EqOH:ポリオールの活性水酸基当量[g/eq]
 Eq0:イソシアネート化合物の活性イソシアネート当量[g/eq]
 COH:WU[g]のポリウレタン系樹脂中に含まれるポリオール全モル数[mol]
 [OH]:WU[g]のポリウレタン系樹脂中に含まれる活性水酸基のモル数[mol]
 [NCO]:WU[g]のポリウレタン系樹脂中に含まれる活性イソシアネート基のモル数[mol]
The crosslinking index, which indicates the crosslinking density of a polyurethane resin, is defined by the following formula.
Figure JPOXMLDOC01-appb-I000001
...Equation (1)
WU: Total weight of polyurethane resin [g]
W0: Weight [g] of the isocyanate compound contained in WU [g] of the polyurethane resin
WOH: Weight [g] of polyol contained in WU [g] of polyurethane resin
MOH: Number average molecular weight of polyol [g/mol]
EqOH: active hydroxyl group equivalent of polyol [g/eq]
Eq0: active isocyanate equivalent of the isocyanate compound [g/eq]
COH: Total number of moles of polyols [mol] contained in WU [g] of polyurethane resin
[OH]: Number of moles [mol] of active hydroxyl groups contained in WU [g] of polyurethane resin
[NCO]: number of moles [mol] of active isocyanate groups contained in WU [g] of polyurethane resin
 一実施形態において、ポリウレタン系樹脂の架橋インデックスは、5000超となるように設計されている。 In one embodiment, the crosslinking index of the polyurethane resin is designed to be greater than 5000.
・ポリオール
 代表的な前記ポリオールとしては、ポリエーテルポリオール、ポリエステルポリオール、ポリカーボネートポリオール等が挙げられる。
Polyol Representative examples of the polyol include polyether polyol, polyester polyol, and polycarbonate polyol.
 ポリオールの数平均分子量によってウレタン樹脂の硬度に傾向があり、数平均分子量が大きい場合には、硬度が低くなりやすく、数平均分子量が小さい場合には、硬度が高くなりやすい。一実施形態において、ポリオールの数平均分子量は、入手の容易性の点から、1000~8000であることが好ましく、取り扱い性が容易な固形物を作製するには4000~7000であることがより好ましい。数平均分子量はゲル浸透クロマトグラフィ(GPC)を用いることで測定できる。 The hardness of the urethane resin tends to vary depending on the number average molecular weight of the polyol; when the number average molecular weight is large, the hardness tends to be low, and when the number average molecular weight is small, the hardness tends to be high. In one embodiment, the number average molecular weight of the polyol is preferably 1,000 to 8,000 in terms of ease of availability, and more preferably 4,000 to 7,000 in order to produce a solid that is easy to handle. The number average molecular weight can be measured using gel permeation chromatography (GPC).
 一実施形態において、ポリオールの水酸基価は、20~160であることが好ましく、20~80であることがより好ましく、25~60であることがさらに好ましい。
 ポリオールの水酸基価は、JIS K 1557-1に従って、滴定で求めることができる。ここで、水酸基価の単位は、mgKOH/gである。
In one embodiment, the hydroxyl value of the polyol is preferably 20-160, more preferably 20-80, and even more preferably 25-60.
The hydroxyl value of the polyol can be determined by titration in accordance with JIS K 1557-1, where the unit of the hydroxyl value is mgKOH/g.
 一実施形態において、ポリオールの活性水酸基当量は、350~2805当量/kgであることが好ましく、701~2805当量/kgであることがより好ましく、935~2244当量/kgであることがさらに好ましい。
 ポリオールの活性水酸基当量は、公知の方法で水酸基の量を測定し、求めることができる。以下、水酸基価から活性水酸基当量を求める方法の一例を説明する。
 ポリオールを無水酢酸を含むピリジン溶液とし、水酸基をアセチル化させた後、過剰のアセチル化試薬は水によって加水分解し、生成した酢酸を水酸化カリウムで滴定を行う。終点は滴定曲線上の変曲点とし、水酸化カリウム溶液の終点までの滴定量から、ポリオールの水酸基価を算出できる。この水酸基価から活性水酸基当量を求めることができる。
In one embodiment, the active hydroxyl group equivalent of the polyol is preferably 350 to 2805 equivalents/kg, more preferably 701 to 2805 equivalents/kg, and even more preferably 935 to 2244 equivalents/kg.
The active hydroxyl group equivalent of a polyol can be determined by measuring the amount of hydroxyl groups by a known method. An example of a method for determining the active hydroxyl group equivalent from the hydroxyl value will be described below.
The polyol is dissolved in a pyridine solution containing acetic anhydride, and the hydroxyl groups are acetylated. The excess acetylation reagent is then hydrolyzed with water, and the resulting acetic acid is titrated with potassium hydroxide. The end point is the inflection point on the titration curve, and the hydroxyl value of the polyol can be calculated from the amount of potassium hydroxide solution titrated up to the end point. The active hydroxyl equivalent can be calculated from this hydroxyl value.
 一実施形態において、ポリエーテルオールとしては、分子中に官能基を2個以上有するものであれば特に限定されず、任意の適切なポリエーテルポリオールを採用し得る。これらは単独で、または2種以上を組み合わせて用いることができる。以下、ポリエーテルポリオールについて説明する。 In one embodiment, the polyetherol is not particularly limited as long as it has two or more functional groups in the molecule, and any appropriate polyether polyol can be used. These can be used alone or in combination of two or more. Polyether polyols are described below.
 前記ポリエーテルポリオール成分としては、(オキシプロピレン)グリコール、オキシエチレングリコール、オキシテトラメチレングリコール、エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、ネオペンチルグリコール、ペンタンジオール、1,6-ヘキサンジオール、1,8-オクタンジオール、1,10-デカンジオール、1-メチル-1,3-ブチレングリコール、2-メチル-1,3-ブチレングリコール、1-メチル-1,4-ペンチレングリコール、2-メチル-1,4-ペンチレングリコール、1,2-ジメチル-ネオペンチルグリコール、2,3-ジメチル-ネオペンチルグリコール、1-メチル-1,5-ペンチレングリコール、2-メチル-1,5-ペンチレングリコール、3-メチル-1,5-ペンチレングリコール、1,2-ジメチルブチレングリコール、1,3-ジメチルブチレングリコール、2,3-ジメチルブチレングリコール、1,4-ジメチルブチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、ジプロピレングリコール、ポリプロピレングリコール、1,4-シクロヘキサンジメタノール、1,4-シクロヘキサンジオール、ビスフェノールA、ビスフェノールF、水添ビスフェノールA、水添ビスフェノールF、ポリオキシエチレンポリオキシプロピレングリコール等が挙げられる。これらは単独で、または2種以上を組み合わせて公知の方法で重合することで、ポリエーテルポリオールを得ることができる。 The polyether polyol components include (oxypropylene) glycol, oxyethylene glycol, oxytetramethylene glycol, ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, neopentyl glycol, pentanediol, 1,6-hexanediol, 1,8-octanediol, 1,10-decanediol, 1-methyl-1,3-butylene glycol, 2-methyl-1,3-butylene glycol, 1-methyl-1,4-pentylene glycol, 2-methyl-1,4-pentylene glycol, 1,2-dimethyl-neopentyl glycol, 2,3-dimethyl-neopentyl glycol, and the like. Examples of such polyether polyols include glycol, 1-methyl-1,5-pentylene glycol, 2-methyl-1,5-pentylene glycol, 3-methyl-1,5-pentylene glycol, 1,2-dimethylbutylene glycol, 1,3-dimethylbutylene glycol, 2,3-dimethylbutylene glycol, 1,4-dimethylbutylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, dipropylene glycol, polypropylene glycol, 1,4-cyclohexanedimethanol, 1,4-cyclohexanediol, bisphenol A, bisphenol F, hydrogenated bisphenol A, hydrogenated bisphenol F, and polyoxyethylene polyoxypropylene glycol. These can be polymerized alone or in combination by a known method to obtain a polyether polyol.
・イソシアネート化合物
 一実施形態において、イソシアネート化合物は、イソシアネート基を2個以上有するイソシアネート化合物であれば特に限定されず、任意の適切なものを採用し得る。これらは単独で、または2種以上を組み合わせて用いることができる。以下、イソシアネート化合物について、説明するが、これに限られるものではない。
Isocyanate Compound In one embodiment, the isocyanate compound is not particularly limited as long as it is an isocyanate compound having two or more isocyanate groups, and any appropriate one can be adopted. These can be used alone or in combination of two or more. The isocyanate compound will be described below, but is not limited thereto.
 前記イソシアネート化合物としては、例えば、テトラメチレンジイソシアネート、ドデカメチレンジイソシアネート、1,4-ブタンジイソシアネート、ヘキサメチレンジイソシアネート、2,2,4-トリメチルヘキサメチレンジイソシアネート、2,4,4-トリメチルヘキサメチレンジイソシアネート、リジンジイソシアネート、2-メチルペンタン-1,5-ジイソシアネート、3-メチルペンタン-1,5-ジイソシアネート等の脂肪族ジイソシアネート;イソホロンジイソシアネート、水添キシリレンジイソシアネート、4,4’-シクロヘキシルメタンジイソシアネート、1,4-シクロヘキサンジイソシアネート、メチルシクロヘキシレンジイソシアネート、1,3-ビス(イソシアネートメチル)シクロヘキサン等の脂環族ジイソシアネート;トリレンジイソシアネート、2,2’-ジフェニルメタンジイソシアネート、2,4’-ジフェニルメタンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、4,4’-ジフェニルジメチルメタンジイソシアネート、4,4’-ジベンジルジイソシアネート、1,5-ナフチレンジイソシアネート、キシリレンジイソシアネート、1,3-フェニレンジイソシアネート、1,4-フェニレンジイソシアネート等の芳香族ジイソシアネート;ジアルキルジフェニルメタンジイソシアネート、テトラアルキルジフェニルメタンジイソシアネート、α,α,α,α-テトラメチルキシリレンジイソシアネート等の芳香脂肪族ジイソシアネート等が挙げられる。これらは単独で、または2種以上を組み合わせて用いることができる。 The isocyanate compounds include, for example, aliphatic diisocyanates such as tetramethylene diisocyanate, dodecamethylene diisocyanate, 1,4-butane diisocyanate, hexamethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, 2,4,4-trimethylhexamethylene diisocyanate, lysine diisocyanate, 2-methylpentane-1,5-diisocyanate, and 3-methylpentane-1,5-diisocyanate; isophorone diisocyanate, hydrogenated xylylene diisocyanate, 4,4'-cyclohexylmethane diisocyanate, 1,4-cyclohexane diisocyanate, methylcyclohexylene diisocyanate, and 1,3-bis(isocyanate methyl ) cyclohexane and other alicyclic diisocyanates; aromatic diisocyanates such as tolylene diisocyanate, 2,2'-diphenylmethane diisocyanate, 2,4'-diphenylmethane diisocyanate, 4,4'-diphenylmethane diisocyanate, 4,4'-diphenyldimethylmethane diisocyanate, 4,4'-dibenzyl diisocyanate, 1,5-naphthylene diisocyanate, xylylene diisocyanate, 1,3-phenylene diisocyanate, and 1,4-phenylene diisocyanate; aromatic aliphatic diisocyanates such as dialkyldiphenylmethane diisocyanate, tetraalkyldiphenylmethane diisocyanate, and α,α,α,α-tetramethylxylylene diisocyanate. These can be used alone or in combination of two or more.
 また、前記イソシアネート化合物は、本発明の効果を阻害しない範囲において、変性体として調製することもできる。ポリイソシアネート変性体としては、例えば、多量体(ダイマー(例えば、ウレトジオン変性体など)、トリマー(例えば、イソシアヌレート変性体、イミノオキサジアジンジオン変性体など)など)、ビュレット変性体(例えば、水との反応により生成するビュレット変性体など)、アロファネート変性体(例えば、モノオールまたは低分子量ポリオールとの反応より生成するアロファネート変性体など)、ポリオール変性体(例えば、低分子量ポリオールまたは高分子量ポリオールとの反応より生成するポリオール変性体など)、オキサジアジントリオン変性体(例えば、炭酸ガスとの反応により生成するオキサジアジントリオンなど)、カルボジイミド変性体(脱炭酸縮合反応により生成するカルボジイミド変性体など)などが挙げられるが、これに限られるものではない。 The isocyanate compound can also be prepared as a modified product within the scope of the present invention, so long as the effects of the present invention are not impaired. Examples of modified polyisocyanates include, but are not limited to, polymers (dimers (e.g., uretdione modified products), trimers (e.g., isocyanurate modified products, iminooxadiazinedione modified products), biuret modified products (e.g., biuret modified products produced by reaction with water), allophanate modified products (e.g., allophanate modified products produced by reaction with monool or low molecular weight polyol), polyol modified products (e.g., polyol modified products produced by reaction with low molecular weight polyol or high molecular weight polyol), oxadiazinetrione modified products (e.g., oxadiazinetrione produced by reaction with carbon dioxide), and carbodiimide modified products (carbodiimide modified products produced by decarboxylation condensation reaction).
 一実施形態において、イソシアネート化合物の活性イソシアネート当量は、160~420であることが好ましく、160~280であることがより好ましい。
 イソシアネート化合物の活性イソシアネート当量は、公知の方法で水酸基の量を測定し、求めることができる。以下、イソシアネート当量の測定方法の一例を説明する。
In one embodiment, the active isocyanate equivalent of the isocyanate compound is preferably 160-420, and more preferably 160-280.
The active isocyanate equivalent of an isocyanate compound can be determined by measuring the amount of hydroxyl groups by a known method. An example of a method for measuring the isocyanate equivalent will be described below.
 イソシアネート化合物を脱水トルエンに溶解後、過剰のジノルマルブチルアミン溶液を加えて反応させ、残ったジノルマルブチルアミンを塩酸で逆滴定し、滴定曲線上の変曲点を終点とする。終点までの滴定量から、イソシアネート当量を算出することができる。 After dissolving the isocyanate compound in dehydrated toluene, an excess of di-n-butylamine solution is added and reacted, and the remaining di-n-butylamine is back-titrated with hydrochloric acid, with the inflection point on the titration curve being the end point. The isocyanate equivalent can be calculated from the titration amount up to the end point.
・ウレタン化触媒
 ポリオールまたはポリイソシアネートに、ポリオールが有する水酸基とイソシアネート化合物が有するイソシアネート基の反応を促進する触媒を適量加えてもよい。触媒としては、公知のウレタン化触媒を用いることができ、触媒の具体例としては、ジブチル錫ジラウレート、ジブチル錫ジアセテート、ジオクチル錫ジラウレート等の有機金属化合物や、トリエチレンジアミンやトリエチルアミン等の有機アミンやその塩を選択して用いる。これらの触媒は、単独または2種以上を併用して用いることができる。
 一実施形態において、ウレタン化触媒の含有量は、樹脂組成物の総質量に対して、0.01~0.05質量%であることが好ましく、0.02~0.04質量%であることがより好ましい。
- Urethane catalyst A suitable amount of catalyst that promotes the reaction between the hydroxyl group of the polyol and the isocyanate group of the isocyanate compound may be added to the polyol or polyisocyanate. A known urethane catalyst can be used as the catalyst, and specific examples of the catalyst include organic metal compounds such as dibutyltin dilaurate, dibutyltin diacetate, and dioctyltin dilaurate, and organic amines such as triethylenediamine and triethylamine, and salts thereof. These catalysts can be used alone or in combination of two or more.
In one embodiment, the content of the urethanization catalyst is preferably 0.01 to 0.05 mass %, and more preferably 0.02 to 0.04 mass %, relative to the total mass of the resin composition.
(シリコーン系樹脂)
 一実施形態においては、硬化性樹脂として、シリコーン系樹脂を用いることができる。シリコーン系樹脂としては、付加反応硬化型又はラジカル架橋反応硬化型のものが挙げられる。付加反応硬化型としては、例えば、特開2015-193803号公報に記載の、アルケニル基を有するジオルガノシロキサン、RSiO0.5及びSiO単位を有するMQレジン、SiH基を複数有するオルガノハイドロジェンポリシロキサン、白金触媒、付加反応制御剤、及び有機溶剤を含有するものを用いることができる。また、ラジカル架橋反応硬化型としては、例えば、特開2015-193803号公報に記載の、アルケニル基を有していてもいなくてもよいジオルガノポリシロキサン、RSiO0.5及びSiO単位を有するMQレジン、有機過酸化物、及び有機溶剤を含有するものを用いることができる。ここでRは炭素数1~10の置換又は非置換の一価の炭化水素基である。
(Silicone resin)
In one embodiment, a silicone-based resin can be used as the curable resin. Examples of silicone-based resins include those that are cured by addition reaction or radical crosslinking reaction. Examples of the addition reaction curable resin include those that contain a diorganosiloxane having an alkenyl group, an MQ resin having R 3 SiO 0.5 and SiO 2 units, an organohydrogenpolysiloxane having a plurality of SiH groups, a platinum catalyst, an addition reaction inhibitor, and an organic solvent, as described in JP 2015-193803 A. Examples of the radical crosslinking reaction curable resin include those that contain a diorganopolysiloxane that may or may not have an alkenyl group, an MQ resin having R 3 SiO 0.5 and SiO 2 units, an organic peroxide, and an organic solvent, as described in JP 2015-193803 A. Here, R is a substituted or unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms.
 また、ポリマー末端や側鎖にシラノールを有するポリシロキサンと、MQレジンを縮合反応させて形成したポリシロキサン・レジン一体型化合物を用いることもできる。MQレジンはシラノールを多く含有するためにこれを添加することによって粘着力が向上するが、架橋性がないためにポリシロキサンと分子的に結合していない。 It is also possible to use an integrated polysiloxane-resin compound formed by a condensation reaction between polysiloxane that has silanols at the polymer end or side chain and MQ resin. MQ resin contains a lot of silanols, so adding this improves adhesive strength, but since it is not crosslinkable, it is not molecularly bonded to the polysiloxane.
 また、シリコーン系樹脂には、アミノ基、オキシラン基、オキセタン基、ポリエーテル基、ヒドロキシ基、カルボキシル基、メルカプト基、メタクリル基、アクリル基、フェノール基、シラノール基、カルボン酸無水物基、アリール基、アラルキル基、アミド基、エステル基、ラクトン環から選ばれる基を有する変性シロキサンを添加することもできる。変性シロキサンはシロキサンの片末端、両末端、側鎖のいずれが変性されたものでも構わない。 Modified siloxanes having a group selected from amino groups, oxirane groups, oxetane groups, polyether groups, hydroxyl groups, carboxyl groups, mercapto groups, methacryl groups, acrylic groups, phenol groups, silanol groups, carboxylic anhydride groups, aryl groups, aralkyl groups, amide groups, ester groups, and lactone rings can also be added to the silicone resin. The modified siloxanes may be modified at one end, both ends, or the side chains.
{有機繊維}
 有機繊維は、組成物における音響性能の調整材として使用される。有機繊維としては、アラミド系繊維、セルロース系繊維、ナイロン系繊維、ビニロン系繊維、ポリエステル系繊維、アクリル系繊維、ポリオレフィン系繊維、レーヨン系繊維、ポリ塩化ビニル系繊維、ポリ塩化ビニリデン系繊維、ポリウレタン系繊維、ポリ乳酸系繊維や、木綿や麻などの植物系繊維、羊毛や絹などの動物系繊維などのいずれかを含むものが挙げられる。これらを単独で用いても2種以上を組み合わせて用いてもよい。
{Organic fiber}
The organic fiber is used as an adjustment material for the acoustic performance of the composition. Examples of the organic fiber include aramid fiber, cellulose fiber, nylon fiber, vinylon fiber, polyester fiber, acrylic fiber, polyolefin fiber, rayon fiber, polyvinyl chloride fiber, polyvinylidene chloride fiber, polyurethane fiber, polylactic acid fiber, plant fiber such as cotton or hemp, and animal fiber such as wool or silk. These may be used alone or in combination of two or more.
 有機繊維の断面形状としては、例えば、円形、楕円形、多角形などが挙げられる。有機繊維の平均長さLと平均繊維径Dの比L/Dは、例えば、10超であり、50以上であることが好ましく、100以上であることがさらに好ましい。L/Dの上限は、特に規定されないが、例えば、10000である。有機繊維の平均繊維径Dは、例えば、10~80μmであり、15~70μmであることが好ましく、20~60μmであることがさらに好ましい。有機繊維の平均長さLは、例えば、0.05~10mmであり、0.1~8mmであることが好ましく、0.2~5mmであることがさらに好ましい。 Examples of the cross-sectional shape of the organic fibers include a circle, an ellipse, and a polygon. The ratio L/D of the average length L to the average fiber diameter D of the organic fibers is, for example, more than 10, preferably 50 or more, and more preferably 100 or more. The upper limit of L/D is not particularly specified, but is, for example, 10,000. The average fiber diameter D of the organic fibers is, for example, 10 to 80 μm, preferably 15 to 70 μm, and more preferably 20 to 60 μm. The average length L of the organic fibers is, for example, 0.05 to 10 mm, preferably 0.1 to 8 mm, and more preferably 0.2 to 5 mm.
 一実施形態において、有機繊維の含有量は、樹脂組成物の総質量に対して0.5~3.0質量%であることが好ましく、1.0~3.0質量%であることがより好ましい。規定の範囲にすることで、組成物に差し込んだ超音波を散乱し、診断用ファントムとした際、エコー画像において白く視認できる筋組織などを好適に再現できる。0.5質量%以上とすることで、エコー画像をより人体のものに近づけることができる。3.0質量%以下とすることで、エコー画像として全体及び細微をより鮮明に映すことができるようになる。 In one embodiment, the organic fiber content is preferably 0.5 to 3.0% by mass, and more preferably 1.0 to 3.0% by mass, relative to the total mass of the resin composition. By keeping it within the specified range, ultrasound inserted into the composition is scattered, and when it is used as a diagnostic phantom, muscle tissue, etc., which appears white in an echo image, can be suitably reproduced. By making it 0.5% by mass or more, the echo image can be made closer to that of the human body. By making it 3.0% by mass or less, the echo image can be displayed more clearly, both overall and in fine detail.
{添加剤}
 一実施形態において、樹脂組成物に、添加剤として可塑剤、着色剤、難燃剤、安定剤、離型剤等を含有させてもよい。
{Additive}
In one embodiment, the resin composition may contain additives such as a plasticizer, a colorant, a flame retardant, a stabilizer, and a release agent.
(可塑剤)
 一実施形態において、樹脂組成物には、必要に応じて可塑剤が含有されている。可塑剤としては、特に限定されないが、例えばフタル酸エステル、トリメリット酸エステル、ピロメリット酸エステル、脂肪族一塩基酸エステル、脂肪族二塩基酸エステル、リン酸エステル、多価アルコールのエステル等が挙げられる。これらは、単独であるいは2種以上を組み合わせて用いることができる。
(Plasticizer)
In one embodiment, the resin composition contains a plasticizer as necessary. The plasticizer is not particularly limited, but may be, for example, a phthalate ester, a trimellitate ester, a pyromellitate ester, an aliphatic monobasic acid ester, an aliphatic dibasic acid ester, a phosphoric acid ester, or an ester of a polyhydric alcohol. These may be used alone or in combination of two or more kinds.
 上記フタル酸エステルとしては、フタル酸ジメチル、フタル酸ジエチル、フタル酸ジプロピル、フタル酸ジイソプロピル、フタル酸ジブチル、フタル酸ジイソブチル、フタル酸ジアミル、フタル酸ジ-n-ヘキシル、フタル酸ジシクロヘキシル、フタル酸ジヘプチル、フタル酸ジ-n-オクチル、フタル酸ジノニル、フタル酸ジイソノニル、フタル酸ジイソデシル、フタル酸ジウンデシル、フタル酸ジトリデシル、フタル酸ジフェニル、フタル酸ジ(2-エチルヘキシル)、フタル酸ジ(2-ブトキシエチル)、フタル酸ベンジル2-エチルヘキシル、フタル酸ベンジルn-ブチル、フタル酸ベンジルイソノニル、イソフタル酸ジメチル等が挙げられる。 The above phthalate esters include dimethyl phthalate, diethyl phthalate, dipropyl phthalate, diisopropyl phthalate, dibutyl phthalate, diisobutyl phthalate, diamyl phthalate, di-n-hexyl phthalate, dicyclohexyl phthalate, diheptyl phthalate, di-n-octyl phthalate, dinonyl phthalate, diisononyl phthalate, diisodecyl phthalate, diundecyl phthalate, ditridecyl phthalate, diphenyl phthalate, di(2-ethylhexyl) phthalate, di(2-butoxyethyl) phthalate, benzyl 2-ethylhexyl phthalate, benzyl n-butyl phthalate, benzyl isononyl phthalate, and dimethyl isophthalate.
 上記トリメリット酸エステルとしては、トリメリット酸トリブチル、トリメリット酸トリヘキシル、トリメリット酸トリ-n-オクチル、トリメリット酸トリ-2-エチルヘキシル、トリメリット酸トリイソデシル等が挙げられる。 Examples of the trimellitic acid esters include tributyl trimellitate, trihexyl trimellitate, tri-n-octyl trimellitate, tri-2-ethylhexyl trimellitate, triisodecyl trimellitate, etc.
 上記ピロメリット酸エステルとしては、ピロメリット酸テトラブチル、ピロメリット酸テトラヘキシル、ピロメリット酸テトラ-n-オクチル、ピロメリット酸テトラ-2-エチルヘキシル、ピロメリット酸テトラデシル等が挙げられる
 上記脂肪族一塩基酸エステルとしては、オレイン酸ブチル、オレイン酸メチル、オクタン酸メチル、オクタン酸ブチル、ドデカン酸メチル、ドデカン酸ブチル、パルミチン酸メチル、パルミチン酸ブチル、ステアリン酸メチル、ステアリン酸ブチル、リノール酸メチル、リノール酸ブチル、イソステアリン酸メチル、イソステアリン酸ブチル、メチルアセチルリシノレート、ブチルアセチルリシノレート等が挙げられる。
Examples of the pyromellitic acid ester include tetrabutyl pyromellitic acid, tetrahexyl pyromellitic acid, tetra-n-octyl pyromellitic acid, tetra-2-ethylhexyl pyromellitic acid, and tetradecyl pyromellitic acid. Examples of the aliphatic monobasic acid ester include butyl oleate, methyl oleate, methyl octanoate, butyl octanoate, methyl dodecanoate, butyl dodecanoate, methyl palmitate, butyl palmitate, methyl stearate, butyl stearate, methyl linoleate, butyl linoleate, methyl isostearate, butyl isostearate, methyl acetyl ricinoleate, and butyl acetyl ricinoleate.
 上記脂肪族二塩基酸エステルとしては、アジピン酸ジメチル、アジピン酸ジエチル、アジピン酸ジ-n-プロピル、アジピン酸ジイソプロピル、アジピン酸ジイソブチル、アジピン酸ジ-n-オクチル、アジピン酸ジ(2-エチルヘキシル)(アジピン酸ビス(2-エチルヘキシル))、アジピン酸ジイソノニル、アジピン酸ジイソデシル、アジピン酸ジ(2-ブトキシエチル)、アジピン酸ジ(ブチルジグリコール)、アジピン酸ヘプチルノニル、アゼライン酸ジメチル、アゼライン酸ジ-n-オクチル、アゼライン酸ジ(2-エチルヘキシル)、コハク酸ジエチル、セバシン酸ジメチル、セバシン酸ジエチル、セバシン酸ジブチル、セバシン酸ジ-n-オクチル、セバシン酸ジ(2-エチルヘキシル)、フマル酸ジブチル、フマル酸ジ(2-エチルヘキシル)、マレイン酸ジメチル、マレイン酸ジエチル、マレイン酸ジ-n-ブチル、マレイン酸ジ(2-エチルヘキシル)等が挙げられる。 The above aliphatic dibasic acid esters include dimethyl adipate, diethyl adipate, di-n-propyl adipate, diisopropyl adipate, diisobutyl adipate, di-n-octyl adipate, di(2-ethylhexyl) adipate (bis(2-ethylhexyl) adipate), diisononyl adipate, diisodecyl adipate, di(2-butoxyethyl) adipate, di(butyldiglycol) adipate, and heptyl nonyl adipate. dimethyl azelate, di-n-octyl azelate, di(2-ethylhexyl) azelate, diethyl succinate, dimethyl sebacate, diethyl sebacate, dibutyl sebacate, di-n-octyl sebacate, di(2-ethylhexyl) sebacate, dibutyl fumarate, di(2-ethylhexyl) fumarate, dimethyl maleate, diethyl maleate, di-n-butyl maleate, di(2-ethylhexyl) maleate, etc.
 上記リン酸エステルとしては、リン酸トリメチル、リン酸トリエチル、リン酸トリブチル、リン酸トリ-n-アミル、リン酸トリフェニル、リン酸トリ-o-クレジル、リン酸トリキシレニル、リン酸ジフェニル2-エチルヘキシル、リン酸ジフェニルクレジル、リン酸トリス(2-ブトキシエチル)、リン酸トリス(2-エチルヘキシル)等が挙げられる。 The above phosphate esters include trimethyl phosphate, triethyl phosphate, tributyl phosphate, tri-n-amyl phosphate, triphenyl phosphate, tri-o-cresyl phosphate, trixylenyl phosphate, diphenyl 2-ethylhexyl phosphate, diphenylcresyl phosphate, tris(2-butoxyethyl) phosphate, tris(2-ethylhexyl) phosphate, etc.
 上記多価アルコールのエステルとしては、ジエチレングリコールジアセチレート、ジエチレングリコールジベンゾエート、グリセロールモノオレイエート、グリセロールトリブチレート、グリセロールトリアセテート、グリセリル-トリ(アセチルリシノレート)、トリエチレングリコールジアセテート等が挙げられる。 Esters of the above polyhydric alcohols include diethylene glycol diacetylate, diethylene glycol dibenzoate, glycerol monooleate, glycerol tributyrate, glycerol triacetate, glyceryl tri(acetyl ricinoleate), triethylene glycol diacetate, etc.
 一実施形態において、可塑剤の含有量は、樹脂組成物の総質量に対して、20~80質量%であることが好ましく、25~75質量%であることがより好ましく、30~70質量%であることがさらに好ましい。 In one embodiment, the content of the plasticizer is preferably 20 to 80 mass %, more preferably 25 to 75 mass %, and even more preferably 30 to 70 mass %, relative to the total mass of the resin composition.
(着色剤)
 着色剤としては、マスターバッチ、着色ペレット、ドライカラー、ペーストカラー、リキッドカラー、インクなどが挙げられる。押出機で樹脂と混練し着色してもよく、なかでも、マスターバッチを押出機で樹脂と混練し着色する手法が好適である。着色剤に使用される色材としては、カーボンブラック、無機顔料、有機顔料、塩基性染料、酸性染料などが挙げられる。着色剤の添加量は、最終的な色剤の含有量として、樹脂組成物の総質量に対して0.01質量%から5質量%であることが好ましく、0.02質量%から3質量%であることがより好ましく、0.05質量%から2質量%であることがさらに好ましい。
(難燃剤)
 難燃剤としては、臭素系難燃剤、リン系難燃剤、窒素系難燃剤、水和金属化合物等を用いることができる。難燃剤の含有量は、樹脂組成物の総質量に対して、0.01~1.0質量%であることが好ましく、0.01~0.5質量%であることがより好ましく、0.01~0.3質量%であることがさらに好ましい。
(安定剤)
 安定剤としては、2,6-ジ-t-ブチル-4-メチルフェノール、2-t-ブチル-6-(3-t-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート、2-[1-(2-ヒドロキシ-3,5-ジ-t-ペンチルフェニル)-エチル]-4,6-ジ-ペンチルフェニルアクリレート、n-オクタデシル-3-(4’-ヒドロキシ-3’,5’-ジ-t-ブチルフェニル)プロピオネート等のフェノール系酸化防止剤、2,2-メチレンビル(4,6-ジ-t-ブチルフェニル)オクチルフォスファイト、トリスノニルフェニルフォスファイト等の燐系酸化防止剤等を用いることができる。安定剤の含有量は、樹脂組成物の総質量に対して、0.1~3.0質量%であることが好ましく、0.1~2.5質量%であることがより好ましく、0.1~2.0質量%であることがさらに好ましい。
(離型剤)
 離型剤としては、カルナバワックス等の天然ワックス、合成ワックス、ステアリン酸亜鉛等の高級脂肪酸及びその金属塩、パラフィンを用いることができる。離型剤の含有量は、樹脂組成物の総質量に対して、0.1~2.0質量%であることが好ましく、0.1~1.5質量%であることがより好ましく、0.1~1.0質量%であることがさらに好ましい。
(Coloring Agent)
Examples of the colorant include master batches, colored pellets, dry colors, paste colors, liquid colors, and inks. The colorant may be kneaded with a resin in an extruder and colored, and a method of kneading a master batch with a resin in an extruder and coloring the resin is preferred. Examples of the colorant used in the colorant include carbon black, inorganic pigments, organic pigments, basic dyes, and acid dyes. The amount of the colorant added is preferably 0.01% by mass to 5% by mass, more preferably 0.02% by mass to 3% by mass, and even more preferably 0.05% by mass to 2% by mass, based on the total mass of the resin composition, as the final colorant content.
(Flame retardants)
Examples of the flame retardant that can be used include bromine-based flame retardants, phosphorus-based flame retardants, nitrogen-based flame retardants, hydrated metal compounds, etc. The content of the flame retardant is preferably 0.01 to 1.0 mass%, more preferably 0.01 to 0.5 mass%, and even more preferably 0.01 to 0.3 mass%, relative to the total mass of the resin composition.
(Stabilizer)
As the stabilizer, phenol-based antioxidants such as 2,6-di-t-butyl-4-methylphenol, 2-t-butyl-6-(3-t-butyl-2-hydroxy-5-methylbenzyl)-4-methylphenyl acrylate, 2-[1-(2-hydroxy-3,5-di-t-pentylphenyl)-ethyl]-4,6-di-pentylphenyl acrylate, n-octadecyl-3-(4'-hydroxy-3',5'-di-t-butylphenyl)propionate, phosphorus-based antioxidants such as 2,2-methylenebyl(4,6-di-t-butylphenyl)octylphosphite, trisnonylphenylphosphite, etc. can be used. The content of the stabilizer is preferably 0.1 to 3.0% by mass, more preferably 0.1 to 2.5% by mass, and even more preferably 0.1 to 2.0% by mass, based on the total mass of the resin composition.
(Release agent)
As the release agent, natural wax such as carnauba wax, synthetic wax, higher fatty acid such as zinc stearate and its metal salt, and paraffin can be used. The content of the release agent is preferably 0.1 to 2.0 mass%, more preferably 0.1 to 1.5 mass%, and further preferably 0.1 to 1.0 mass%, based on the total mass of the resin composition.
{樹脂組成物}
 本実施形態において、樹脂組成物は、硬化性樹脂と、有機繊維とを含み、医療シミュレータ、特に超音波診断ファントムを作製する上で適したものとなっている。
{Resin composition}
In this embodiment, the resin composition contains a curable resin and organic fibers, and is suitable for producing a medical simulator, in particular, an ultrasound diagnostic phantom.
 一実施形態において、樹脂組成物の粘弾性測定における周波数0.01~100Hzにおける25℃のtanδの最大値は0.4以下であることが好ましく、0.01~0.35であることがより好ましく、0.01~0.3であることがさらに好ましい。tanδの最大値が0.4以下であることにより、樹脂組成物の超音波減衰効果が適度となり、人体に近い超音波エコー視認性と内部が鮮明に観察できるようになる。 In one embodiment, in the viscoelasticity measurement of the resin composition, the maximum value of tan δ at 25°C at frequencies of 0.01 to 100 Hz is preferably 0.4 or less, more preferably 0.01 to 0.35, and even more preferably 0.01 to 0.3. By having a maximum value of tan δ of 0.4 or less, the ultrasonic attenuation effect of the resin composition becomes appropriate, and ultrasonic echo visibility close to that of the human body and the inside can be clearly observed.
 一実施形態において、樹脂組成物の周波数0.01~10000Hzにおける25℃の貯蔵弾性率の最大値は10Pa以下であることが好ましく、10~10Paであることがより好ましく、10~10Paであることがさらに好ましい。貯蔵弾性率の最大値が10Pa以下であることにより、樹脂組成物の形状保持性が良好で、シミュレーターモデルとして取り扱いが容易となる。 In one embodiment, the maximum storage modulus of the resin composition at 25° C. in a frequency range of 0.01 to 10,000 Hz is preferably 10 6 Pa or less, more preferably 10 3 to 10 6 Pa, and even more preferably 10 4 to 10 6 Pa. When the maximum storage modulus is 10 6 Pa or less, the shape retention of the resin composition is good, and the resin composition can be easily handled as a simulator model.
 樹脂組成物の粘弾性測定のより詳細な条件は以下のとおりである。
(i)樹脂組成物を打ち抜きにより切り出し、厚さ5mm、直径20mmの成形品を作製する。サンプルの測定状態を統一するため、23℃、50%RH室内に24時間保管して養生処理を施す。
(ii)動的粘弾性測定装置RSA-III(TA Instruments製)を用いて、ひずみ0.1%、25℃の温度条件における貯蔵弾性率(E’)、及び損失弾性率(E”)を測定し、E”/E’を損失正接値(tanδ)として算出する。
More detailed conditions for measuring the viscoelasticity of the resin composition are as follows.
(i) The resin composition is punched out to produce a molded product having a thickness of 5 mm and a diameter of 20 mm. In order to standardize the measurement conditions of the samples, the samples are stored in a room at 23° C. and 50% RH for 24 hours for aging treatment.
(ii) Using a dynamic viscoelasticity measuring device RSA-III (manufactured by TA Instruments), the storage modulus (E') and loss modulus (E") are measured under conditions of a strain of 0.1% and a temperature of 25°C, and E"/E' is calculated as the loss tangent value (tan δ).
 一実施形態において、樹脂組成物のアスカーE硬度は10以下であることが好ましく、0~8であることがより好ましく、0~4であることがさらに好ましい。アスカーE硬度が10以下であることにより、樹脂組成物が人体に近い触感となり、超音波診断時に超音波プローブを押し当てる感触もまた人体に近い感触となり、超音波診断における医療手技の向上が望める。また、アスカーE硬度が10以下であることにより、超音波プローブが診断の対象箇所に追随しやすくなるため、超音波エコー画像の視認性が向上する。アスカーE硬度はJIS K 6253-3:2012に従って測定することができる。 In one embodiment, the Asker E hardness of the resin composition is preferably 10 or less, more preferably 0 to 8, and even more preferably 0 to 4. Having an Asker E hardness of 10 or less gives the resin composition a feel similar to that of the human body, and the feel of pressing an ultrasonic probe against the resin composition during ultrasonic diagnosis also feels similar to that of the human body, which is expected to improve medical techniques in ultrasonic diagnosis. Furthermore, having an Asker E hardness of 10 or less makes it easier for the ultrasonic probe to follow the area to be diagnosed, improving the visibility of ultrasonic echo images. The Asker E hardness can be measured in accordance with JIS K 6253-3:2012.
 一実施形態において、樹脂組成物の音響減衰率は、0.3~1.5dB/cm/MHzであることが好ましく、0.3~1.2dB/cm/MHzであることがより好ましく、0.3~1.0dB/cm/MHzであることがさらに好ましい。樹脂組成物の音響減衰率をこの範囲とすることで、音響信号の減衰が生体と同様となり、超音波診断において人体と近いエコー視認性となる。
 樹脂組成物の音響減衰率は、例えば、後述の実施例に記載の方法で測定できる。
In one embodiment, the resin composition has an acoustic attenuation rate of preferably 0.3 to 1.5 dB/cm/MHz, more preferably 0.3 to 1.2 dB/cm/MHz, and even more preferably 0.3 to 1.0 dB/cm/MHz. By setting the acoustic attenuation rate of the resin composition within this range, the attenuation of acoustic signals becomes similar to that of a living body, and echo visibility in ultrasonic diagnosis becomes similar to that of the human body.
The acoustic attenuation rate of the resin composition can be measured, for example, by the method described in the Examples below.
 また、樹脂組成物における音速としては1200~1700m/sであることが好ましく、1200~1600m/sであることがより好ましい。この範囲とすることで、生体の脂肪組織と同等の範囲となる。樹脂組成物の密度と音速との積で定義される音響インピーダンスは1.5MRaylである(1MRayl=1×10kg・m-2・s-1)。
 樹脂組成物の音速は、音響減衰率と同様の測定計で、試験片を測定計に設置した場合と設置しない場合における受信波到達時間の差を、オシロスコープで得られる波形の公差関数をとることで求め、この受信波到達時間の差から下記式(2)を用いて測定することができる。
The sound velocity in the resin composition is preferably 1200 to 1700 m/s, and more preferably 1200 to 1600 m/s. This range is equivalent to that of fatty tissue in a living body. The acoustic impedance of the resin composition, defined as the product of the density and the sound velocity, is 1.5 MRayl (1 MRayl = 1 x 10 kg m -2 s -1 ).
The sound speed of the resin composition can be measured using the same measuring instrument as for the acoustic attenuation rate by calculating the difference in the arrival time of the received wave when a test piece is placed on the measuring instrument and when it is not placed on the measuring instrument, and taking the tolerance function of the waveform obtained with an oscilloscope. The difference in the arrival time of the received wave can then be calculated using the following formula (2).
Figure JPOXMLDOC01-appb-I000002
・・・式(2)
 C1:測定時の水温における水の音速(m/s)。
 C2:試験片の音速(m/s)。
 t:試験片の厚み(m)。
 τ:試験片を設置した場合の受信波到達の遅れ時間τ(s)。
Figure JPOXMLDOC01-appb-I000002
...Equation (2)
C1: The speed of sound in water at the water temperature at the time of measurement (m/s).
C2: Sound velocity of the test piece (m/s).
t: thickness of test piece (m).
τ: delay time τ (s) of the arrival of the received wave when the test piece is installed.
 一実施形態において、樹脂組成物の密度は、900~1300kg/mであることが好ましく、950~1200kg/mであることがより好ましい。音速および密度は音響インピーダンスと相関しており、密度と音速を規定の範囲に調整することで、超音波エコーにおける視認性が人体に近く、良好なものとなる。
 樹脂組成物の密度は、JIS K7112:1999に基づいて、電子比重計を用いて測定することができる。
In one embodiment, the density of the resin composition is preferably 900 to 1300 kg/m 3 , and more preferably 950 to 1200 kg/m 3. The sound speed and density are correlated with acoustic impedance, and by adjusting the density and sound speed within a specified range, visibility in ultrasonic echoes becomes close to that of the human body and is good.
The density of the resin composition can be measured using an electronic specific gravity meter based on JIS K7112:1999.
[成形品]
 本発明の成形品は、本発明の樹脂組成物を成形してなる。
[Molding]
The molded article of the present invention is produced by molding the resin composition of the present invention.
 一実施形態において、成形品は、例えば頭部、頸部、胸部、腹部、骨盤部、上肢、下肢の医療シミュレータとして使用できる。 In one embodiment, the molded article can be used as a medical simulator, for example, for the head, neck, chest, abdomen, pelvis, upper limbs, and lower limbs.
 本実施形態の成形品を医療シミュレータとして利用する場合、目的を阻害しない範囲で、例えば、顔料、染料等の着色剤、香料、酸化防止剤、抗菌剤等の添加剤を使用してもよい。本発明の医療シミュレータを生体に近似させるために、着色剤により生体に近似した色に着色することが好ましい。 When the molded product of this embodiment is used as a medical simulator, additives such as colorants such as pigments and dyes, fragrances, antioxidants, antibacterial agents, etc. may be used within the scope that does not impede the purpose. In order to make the medical simulator of the present invention resemble a living body, it is preferable to color it with a colorant in a color similar to that of a living body.
 成形品は、公知の成形方法により成形することができる。例えば、硬化性組成物を任意の型に注入し、加熱、冷却し固化させる。また、射出成形等で複数の部位を別々に成形し、その後接着させて医療シミュレータを完成させることもできる。 The molded product can be molded by known molding methods. For example, the curable composition is injected into a mold of your choice, heated, cooled, and solidified. Alternatively, multiple parts can be molded separately using injection molding or other methods, and then bonded together to complete the medical simulator.
 一実施形態において、成形品は、超音波診断ファントムとして利用することができる。また、エポキシ系樹脂等の樹脂製の模擬血管を内部に有する超音波診断ファントムとして特に適切に利用することができる。さらに、実際に超音波診断が行われている頸動脈を含む頸部の超音波診断ファントムとして特に適切に利用することができる。 In one embodiment, the molded product can be used as an ultrasound diagnostic phantom. In particular, the molded product can be used as an ultrasound diagnostic phantom having simulated blood vessels made of resin such as epoxy resin inside. Furthermore, the molded product can be used as an ultrasound diagnostic phantom of the neck including the carotid artery where ultrasound diagnosis is actually performed.
 以下、本発明の一実施形態について詳細に説明する。本発明は、以下の実施形態に限定されるものではなく、本発明の効果を阻害しない範囲で適宜変更を加えて実施することができる。 Below, one embodiment of the present invention will be described in detail. The present invention is not limited to the following embodiment, and can be implemented with appropriate modifications within the scope that does not impair the effects of the present invention.
 実施例等で用いた各種原料は以下の通りである。
(1)ポリオール
・ポリエーテルポリオール1(ポリオキシエチレンポリオキシプロピレングリコール、数平均分子量=5000、水酸基当量=1650g/mol、「EXCENOL828」AGC株式会社製)
・ポリエーテルポリオール2(ポリプロピレングリコール、数平均分子量=3200、水酸基当量=1234g/mol、「RU-835A」日新レジン株式会社製、可塑剤(アジピン酸ビス(2-エチルヘキシル))含有)
(2)イソシアネート化合物
・トリレンジイソシアネート1(ヘキサメチレンジイソシアネート三量体、イソシアネート当量=190g/mol、「コロネートHX」東ソー株式会社製)
・トリレンジイソシアネート2(ヘキサメチレンジイソシアネート三量体、イソシアネート当量=666g/mol、「RU-835B」日新レジン株式会社製、可塑剤(アジピン酸ビス(2-エチルヘキシル))含有)
(3)可塑剤
・アジピン酸ビス(2-エチルヘキシル)(「サンソサイザーDOA」新日本理化株式会社製)
(4)有機繊維
・セルロース系繊維1(平均径25μm、「KCフロック W-400G」日本製紙株式会社製)
・セルロース系繊維2(平均径10μm、「KCフロック W-10MG2」日本製紙株式会社製)
・セルロース系繊維3(平均径45μm、「KCフロック W-50」日本製紙株式会社製)
・ナイロン系繊維(平均径50μm、京都パイル繊維工業株式会社製)
(5)ウレタン化触媒
・ジオクチル錫ジラウレート(「ネオスタンU-810」日東化成株式会社製)
The various raw materials used in the examples are as follows.
(1) Polyol/Polyether polyol 1 (polyoxyethylene polyoxypropylene glycol, number average molecular weight = 5000, hydroxyl equivalent = 1650 g/mol, "EXCENOL828" manufactured by AGC Inc.)
Polyether polyol 2 (polypropylene glycol, number average molecular weight = 3200, hydroxyl equivalent = 1234 g/mol, "RU-835A" manufactured by Nisshin Resin Co., Ltd., containing plasticizer (bis(2-ethylhexyl) adipate))
(2) Isocyanate compound Tolylene diisocyanate 1 (hexamethylene diisocyanate trimer, isocyanate equivalent = 190 g/mol, "Coronate HX" manufactured by Tosoh Corporation)
Tolylene diisocyanate 2 (hexamethylene diisocyanate trimer, isocyanate equivalent = 666 g/mol, "RU-835B" manufactured by Nisshin Resin Co., Ltd., containing plasticizer (bis(2-ethylhexyl) adipate))
(3) Plasticizer: Bis(2-ethylhexyl) adipate ("Sanso Cizer DOA" manufactured by New Japan Chemical Co., Ltd.)
(4) Organic fiber/cellulosic fiber 1 (average diameter 25 μm, "KC Flock W-400G" manufactured by Nippon Paper Industries Co., Ltd.)
Cellulosic fiber 2 (average diameter 10 μm, "KC Flock W-10MG2" manufactured by Nippon Paper Industries Co., Ltd.)
Cellulosic fiber 3 (average diameter 45 μm, "KC Flock W-50" manufactured by Nippon Paper Industries Co., Ltd.)
Nylon fiber (average diameter 50 μm, manufactured by Kyoto Pile Textile Industry Co., Ltd.)
(5) Urethane catalyst: dioctyltin dilaurate ("Neostan U-810" manufactured by Nitto Kasei Co., Ltd.)
 実施例および比較例で作製した樹脂組成物についての各種特性の評価方法は以下の通りである。
(1)数平均分子量(Mn)
 ゲルパーミエションクロマトグラフィー(Gel Permeation Chromatography、GPC)装置(ウォーターズ(WATERS)株式会社製)で、Shodex KD-806M カラム(昭和電工株式会社製)2本、Shodex KD-802 カラム(昭和電工株式会社製)1本を直列に配置し、40℃、展開溶媒としてN、N’-ジメチルホルムアミドを用い、RI(Refractive Index、示差屈折率)検出器により測定した。得られた数平均分子量はポリエチレングリコール換算値である。
The methods for evaluating various properties of the resin compositions prepared in the examples and comparative examples are as follows.
(1) Number average molecular weight (Mn)
Two Shodex KD-806M columns (manufactured by Showa Denko K.K.) and one Shodex KD-802 column (manufactured by Showa Denko K.K.) were arranged in series in a gel permeation chromatography (GPC) apparatus (manufactured by WATERS Corporation), and the measurement was performed with an RI (Refractive Index) detector at 40° C. using N,N′-dimethylformamide as a developing solvent. The number average molecular weight obtained is a polyethylene glycol equivalent value.
(2)ポリオールの活性水酸基当量
 ポリエーテルポリオールを無水酢酸を含むピリジン溶液とし、水酸基をアセチル化させた後、過剰のアセチル化試薬を水によって加水分解し、生成した酢酸を水酸化カリウムで滴定を行った。終点は滴定曲線上の変曲点とし、水酸化カリウム溶液の終点までの滴定量から、ポリエーテルポリオールの水酸基価を算出できる。水酸基当量(水酸基1モルあたりのグラム数)=水酸化カリウムの分子量(56100mg)/水酸基価(mgKOH/g)であるので、水酸基価から活性水酸基当量を求めた。
(2) Active hydroxyl equivalent of polyol Polyether polyol was dissolved in pyridine containing acetic anhydride, and the hydroxyl was acetylated. The excess acetylation reagent was hydrolyzed with water, and the resulting acetic acid was titrated with potassium hydroxide. The end point was the inflection point on the titration curve, and the hydroxyl value of polyether polyol was calculated from the titration amount up to the end point of the potassium hydroxide solution. Hydroxyl equivalent (grams per mole of hydroxyl) = molecular weight of potassium hydroxide (56100 mg) / hydroxyl value (mg KOH/g), so the active hydroxyl equivalent was calculated from the hydroxyl value.
(3)イソシアネート化合物の活性イソシアネート当量
 イソシアネート化合物を脱水トルエンに溶解後、過剰のジノルマルブチルアミン溶液を加えて反応させ、残ったジノルマルブチルアミンを塩酸で逆滴定し、滴定曲線上の変曲点を終点とする。終点までの滴定量から、イソシアネート含有率を計算した。イソシアネート当量(イソシアネート基1モルあたりのグラム数)=イソシアネート基の分子量(1モルあたり42g)/(イソシアネート含有率/100)であるので、イソシアネート含有率から、活性イソシアネート当量を求めた。本実施例で使用したイソシアネート化合物であるヘキサメチレンジイソシアネートの三量体は、イソシアネート含量21.7%であり、活性イソシアネート当量は194(g/モル)であった。
(3) Active isocyanate equivalent of isocyanate compound After dissolving the isocyanate compound in dehydrated toluene, an excess of di-n-butylamine solution is added to react, and the remaining di-n-butylamine is back-titrated with hydrochloric acid, and the inflection point on the titration curve is taken as the end point. The isocyanate content was calculated from the titration amount up to the end point. Since the isocyanate equivalent (grams per mole of isocyanate group) = molecular weight of isocyanate group (42 g per mole) / (isocyanate content / 100), the active isocyanate equivalent was calculated from the isocyanate content. The trimer of hexamethylene diisocyanate, which is the isocyanate compound used in this example, had an isocyanate content of 21.7% and an active isocyanate equivalent of 194 (g / mole).
(4)密度
 プラスチック-非発泡プラスチックの密度及び比重の測定方法(JIS K7112:1999)に基づき、電子比重計(MD-300S、アルファーミラージュ株式会社製)を用いて樹脂組成物の密度を測定した。
(4) Density The density of the resin composition was measured using an electronic specific gravity meter (MD-300S, manufactured by Alpha Mirage Co., Ltd.) based on the method for measuring density and specific gravity of plastics - non-foamed plastics (JIS K7112:1999).
(5)音響減衰率
 音響減衰係数測定に用いる探触子は、超音波トランスデューサー(送信部)(Olympus NDT Inc.製、V303(中心周波数1MHz))、および、ハイドロフォン(受信部)(東レエンジニアリング株式会社製、ニードル型ハイドロフォン)を用いた。
(5) Acoustic Attenuation Rate The probe used for measuring the acoustic attenuation coefficient was an ultrasonic transducer (transmitter) (V303 (center frequency 1 MHz) manufactured by Olympus NDT Inc.) and a hydrophone (receiver) (needle-type hydrophone manufactured by Toray Engineering Co., Ltd.).
 治具によりトランスデューサーとハイドロフォンを音軸の中心が一致するように水槽内に固定した。トランスデューサーとハイドロフォンの距離は40mmとした。 The transducer and hydrophone were fixed in the tank using a jig so that the centers of the sound axes were aligned. The distance between the transducer and hydrophone was 40 mm.
 試験片については、硬化させた樹脂組成物を50mm×50mm、厚さ50mmの型に注型し、90℃にて2時間加熱することによる樹脂を硬化させた。その後、型を脱型し、サイズ50mm×50mm、厚さ20mmの板状試験片を得た。前記試験片を、治具を用いて上記実験系のトランスデューサーとハイドロフォンの間に板状試験片に対する超音波信号の入射角が0°となるように固定した。 For the test specimens, the cured resin composition was poured into a mold measuring 50 mm x 50 mm and 50 mm thick, and the resin was cured by heating at 90°C for 2 hours. The mold was then demolded to obtain a plate-shaped test specimen measuring 50 mm x 50 mm and 20 mm thick. The test specimen was fixed using a jig between the transducer and hydrophone of the above experimental system so that the incident angle of the ultrasonic signal to the plate-shaped test specimen was 0°.
 次に、トランスデューサーから8サイクルのサイン波(送信電圧100V)をファンクションジェネレーター(NF回路設計株式会社製、WF1946)を用いて送信した。そして、各試験片設置時および試験片を設置していない場合のハイドロフォンの受信電圧最大振幅値をオシロスコープ(レクロイ・ジャパン株式会社製、WaveRunner 64Xi)を用いて求めた。試験片を測定系に設置した場合と設置しない場合における電圧最大振幅値から、下記式(3)を用いて、音響減衰率を求めた。 Next, an 8-cycle sine wave (transmitting voltage 100V) was transmitted from the transducer using a function generator (NF Circuit Design Co., Ltd., WF1946). The maximum amplitude of the received voltage of the hydrophone when each test piece was installed and when no test piece was installed was then determined using an oscilloscope (LeCroy Japan Co., Ltd., WaveRunner 64Xi). The acoustic attenuation rate was calculated using the following formula (3) from the maximum amplitude of the voltage when the test piece was installed and when it was not installed in the measurement system.
Figure JPOXMLDOC01-appb-I000003
・・・式(3)
Figure JPOXMLDOC01-appb-I000003
...Equation (3)
 α:減衰係数(dB/cm/MHz)
 t:試験片の厚み(cm)。
 A’:試験片設置時の受信電圧最大振幅値(mV)。
 A0:試験片を設置していない時の受信電圧最大振幅値(mV)。
 Z:水の音響インピーダンス(MRayls)。
 Z:試験片の音響インピーダンス(MRayls)。
α: attenuation coefficient (dB/cm/MHz)
t: thickness of the test piece (cm).
A': maximum amplitude value (mV) of the received voltage when the test piece is installed.
A0: Maximum amplitude value (mV) of the received voltage when no test piece is installed.
Z 1 : Acoustic impedance of water (MRayls).
Z2 : Acoustic impedance of the test specimen (MRayls).
 上記、式(3)で使用する音響インピーダンスは、密度と音速の積として求められる。計算に必要となる音速と密度は実測して算出した。音速は、音響減衰率の同様の測定系で、試験片を測定系に設置した場合と設置しない場合における受信波到達時間の差を、オシロスコープで得られた波形の交差相関をとることで求め、この受信波到達時間の差から下記式(2)を用いて音速を求めた。 The acoustic impedance used in the above formula (3) is calculated as the product of density and sound speed. The sound speed and density required for the calculation were calculated by actual measurement. The sound speed was calculated by taking the cross-correlation of the waveforms obtained with an oscilloscope to find the difference in the arrival time of the received wave when a test piece was installed and when it was not installed in the measurement system, using a similar measurement system for the acoustic attenuation rate, and the sound speed was calculated from this difference in the arrival time of the received wave using the following formula (2).
Figure JPOXMLDOC01-appb-I000004
・・・式(2)
 C:測定時の水温における水の音速(m/s)。
 C:試験片の音速(m/s)。
 t:試験片の厚み(m)。
 τ:試験片を設置した場合の受信波到達の遅れ時間τ(s)。
Figure JPOXMLDOC01-appb-I000004
...Equation (2)
C 1 : The speed of sound in water (m/s) at the water temperature at the time of measurement.
C2 : Sound velocity of the test piece (m/s).
t: thickness of test piece (m).
τ: delay time τ (s) of the arrival of the received wave when the test piece is installed.
(6)硬さ試験
 厚さ20mmの試験片を作製し、アスカーゴム硬度計E型(高分子計器株式会社製)を押し当て、樹脂組成物の硬度を測定した。
(6) Hardness Test A test piece having a thickness of 20 mm was prepared, and an Asker Rubber Hardness Tester Type E (manufactured by Kobunshi Keiki Co., Ltd.) was pressed against the test piece to measure the hardness of the resin composition.
[実施例1]
 ポリオール(「EXCENOL828」、ポリエーテルポリオール、数平均分子量=5000、水酸基当量=1650g/mol)47gに、ウレタン化触媒(ジオクチル錫ジラウレート)0.03g、有機繊維(セルロース系繊維、平均径25μm)2g、可塑剤(アジピン酸ビス(2-エチルヘキシル))48gを添加し、よく撹拌し、ポリオール調整液を得た。その後、調整液にイソシアネート化合物(ヘキサメチレンジイソシアネート三量体、イソシアネート当量=190g/mol)を3.0g添加した。調整した液を均一に混合後、型に注型し、90度で2時間加熱し、樹脂組成物を得た。得られた樹脂組成物の物性を測定した。結果を表1に示す。
[Example 1]
0.03 g of urethane catalyst (dioctyltin dilaurate), 2 g of organic fiber (cellulose fiber, average diameter 25 μm), and 48 g of plasticizer (bis(2-ethylhexyl) adipate) were added to 47 g of polyol ("EXCENOL828", polyether polyol, number average molecular weight = 5000, hydroxyl equivalent = 1650 g / mol), and stirred well to obtain a polyol adjustment liquid. Then, 3.0 g of an isocyanate compound (hexamethylene diisocyanate trimer, isocyanate equivalent = 190 g / mol) was added to the adjustment liquid. After uniformly mixing the adjusted liquid, it was poured into a mold and heated at 90 degrees for 2 hours to obtain a resin composition. The physical properties of the obtained resin composition were measured. The results are shown in Table 1.
[実施例2-9及び比較例2]
 樹脂組成物の原料及び組成を表1及び表2に示す通りとした以外は、実施例1と同様の方法で樹脂組成物を調製し、実施例1と同様の方法で物性を測定した。結果を表1及び表2に示す。なお、上記実施例の樹脂組成物の架橋インデックスは、いずれも5000超であった。
[Examples 2 to 9 and Comparative Example 2]
Except for the raw materials and compositions of the resin compositions shown in Tables 1 and 2, resin compositions were prepared in the same manner as in Example 1, and physical properties were measured in the same manner as in Example 1. The results are shown in Tables 1 and 2. The crosslinking index of the resin compositions in the above examples was all over 5,000.
[比較例1]
 ポリオール(「RU-835A」、ポリエーテルポリオール2、数平均分子量=3660、水酸基当量=1234g/mol)、トリレンジイソシアネート2(「RU-835B」、ヘキサメチレンジイソシアネート三量体、イソシアネート当量=666g/mol)を撹拌し混合液を得た。得られた液を型に注型し、90度で2時間加熱し、樹脂組成物を得た(樹脂組成物の組成を表2に示す)。得られた樹脂組成物の物性を実施例1と同様の方法で測定した。結果を表2に示す。
[Comparative Example 1]
Polyol ("RU-835A", polyether polyol 2, number average molecular weight = 3660, hydroxyl equivalent = 1234 g/mol) and tolylene diisocyanate 2 ("RU-835B", hexamethylene diisocyanate trimer, isocyanate equivalent = 666 g/mol) were stirred to obtain a mixed liquid. The obtained liquid was poured into a mold and heated at 90°C for 2 hours to obtain a resin composition (the composition of the resin composition is shown in Table 2). The physical properties of the obtained resin composition were measured in the same manner as in Example 1. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 さらに、上記実施例及び比較例の樹脂組成物を外郭部として用いて、内部にエポキシ系樹脂製の模擬血管を有する頸部超音波診断ファントムを作製し、エコー画像を撮影した。
 図1は、実際に人体の頸部を撮影したエコー画像を示している。図1に示されるように、血管部は黒く、外郭部は白く視認される。
 それに対し、図2は、実施例1の樹脂組成物を用いて作製した頸部超音波診断ファントムを撮影したエコー画像であり、図1と同様に血管部は黒く、外郭部は白く視認されていた。
 一方、図3は、比較例1の樹脂組成物を用いて作製した頸部超音波診断ファントムを撮影したエコー画像であるが、血管部と外郭部との輝度の差が少なく、いずれも黒く視認されており、血管の視認性が十分に再現できていなかった。
Furthermore, a neck ultrasound diagnostic phantom was produced using the resin compositions of the above examples and comparative examples as the outer shell and having a simulated blood vessel made of an epoxy resin inside, and an echo image was taken.
Fig. 1 shows an actual echo image of the neck of a human body. As shown in Fig. 1, blood vessels appear black and their outer lining appears white.
In contrast, FIG. 2 is an echo image taken of a neck ultrasound diagnostic phantom prepared using the resin composition of Example 1, in which, similar to FIG. 1, the blood vessels appear black and the outer periphery appears white.
On the other hand, FIG. 3 is an echo image taken of a neck ultrasound diagnostic phantom made using the resin composition of Comparative Example 1. There is little difference in brightness between the blood vessels and the outer shell, and both appear black, indicating that the visibility of the blood vessels was not adequately reproduced.
 本発明の医療シミュレータ用樹脂組成物は、医療シミュレータの製造に用いることができる。 The resin composition for medical simulators of the present invention can be used to manufacture medical simulators.

Claims (9)

  1.  硬化性樹脂と、有機繊維とを含む、医療シミュレータ用樹脂組成物。 A resin composition for a medical simulator, comprising a curable resin and organic fibers.
  2.  前記樹脂組成物の、粘弾性測定における周波数0.01~100Hzにおける25℃のtanδの最大値が0.4以下であり、周波数0.01~10000Hzにおける25℃の貯蔵弾性率の最大値が10Pa以下である、請求項1に記載の樹脂組成物。 The resin composition according to claim 1, wherein the resin composition has a maximum tan δ of 0.4 or less at 25°C at a frequency of 0.01 to 100 Hz in a viscoelastic measurement, and a maximum storage modulus of 10 6 Pa or less at 25°C at a frequency of 0.01 to 10,000 Hz.
  3.  前記樹脂組成物のアスカーE硬度が10以下である、請求項1又は2に記載の樹脂組成物。 The resin composition according to claim 1 or 2, wherein the Asker E hardness of the resin composition is 10 or less.
  4.  前記硬化性樹脂が、ポリオールとイソシアネート化合物を原料とするポリウレタン系樹脂である、請求項1又は2に記載の樹脂組成物。 The resin composition according to claim 1 or 2, wherein the curable resin is a polyurethane resin made from polyol and an isocyanate compound.
  5.  前記有機繊維が、セルロース繊維又はナイロン繊維を含む、請求項1又は2に記載の樹脂組成物。 The resin composition according to claim 1 or 2, wherein the organic fibers include cellulose fibers or nylon fibers.
  6.  前記有機繊維は、平均繊維径が10~80μmであり、含有量が前記樹脂組成物の総質量に対して0.5~3.0質量%である、請求項1又は2に記載の樹脂組成物。 The resin composition according to claim 1 or 2, wherein the organic fibers have an average fiber diameter of 10 to 80 μm and are contained in an amount of 0.5 to 3.0 mass% relative to the total mass of the resin composition.
  7.  超音波診断ファントム用である、請求項1又は2に記載の樹脂組成物。 The resin composition according to claim 1 or 2, which is for use in an ultrasound diagnostic phantom.
  8.  請求項1又は2に記載の樹脂組成物の成形品。 A molded article made from the resin composition according to claim 1 or 2.
  9.  超音波診断ファントムである、請求項8に記載の成形品。
     
     
    9. The molded article of claim 8 which is an ultrasound diagnostic phantom.

PCT/JP2023/033313 2022-10-07 2023-09-13 Resin composition for medical simulator and molded product thereof WO2024075482A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-162291 2022-10-07
JP2022162291 2022-10-07

Publications (1)

Publication Number Publication Date
WO2024075482A1 true WO2024075482A1 (en) 2024-04-11

Family

ID=90607894

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/033313 WO2024075482A1 (en) 2022-10-07 2023-09-13 Resin composition for medical simulator and molded product thereof

Country Status (1)

Country Link
WO (1) WO2024075482A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011209691A (en) * 2010-03-09 2011-10-20 Canon Inc Photoacoustic matching material and human tissue simulation material
JP2018011772A (en) * 2016-07-21 2018-01-25 キヤノン株式会社 Phantom, and evaluation method
JP2020166187A (en) * 2019-03-29 2020-10-08 国立大学法人東北大学 Medical procedure training skin model, echo image visibility adjustment method in medical procedure training skin model, and puncture procedure training method for ultrasound guiding method
US20220304922A1 (en) * 2019-09-10 2022-09-29 Norwegian University Of Science And Technology (Ntnu) Ultrasound phantom

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011209691A (en) * 2010-03-09 2011-10-20 Canon Inc Photoacoustic matching material and human tissue simulation material
JP2018011772A (en) * 2016-07-21 2018-01-25 キヤノン株式会社 Phantom, and evaluation method
JP2020166187A (en) * 2019-03-29 2020-10-08 国立大学法人東北大学 Medical procedure training skin model, echo image visibility adjustment method in medical procedure training skin model, and puncture procedure training method for ultrasound guiding method
US20220304922A1 (en) * 2019-09-10 2022-09-29 Norwegian University Of Science And Technology (Ntnu) Ultrasound phantom

Similar Documents

Publication Publication Date Title
JP6292846B2 (en) Phantom used in acoustic wave diagnostic equipment
US9283306B2 (en) Photoacoustic matching material and human tissue simulation material
Li et al. Polyvinyl chloride as a multimodal tissue‐mimicking material with tuned mechanical and medical imaging properties
JP7421609B2 (en) Biorenewable high performance polyester polyol
Król et al. Study of chemical, physico-mechanical and biological properties of 4, 4′-methylenebis (cyclohexyl isocyanate)-based polyurethane films
Uscátegui et al. Candidate polyurethanes based on castor oil (ricinus communis), with polycaprolactone diol and chitosan additions, for use in biomedical applications
Fernández-d’Arlas et al. Studies on the morphology, properties and biocompatibility of aliphatic diisocyanate-polycarbonate polyurethanes
WO2024075482A1 (en) Resin composition for medical simulator and molded product thereof
Chatelin et al. Investigation of polyvinyl chloride plastisol tissue-mimicking phantoms for MR-and ultrasound-elastography
Valero et al. Polyurethane elastomers-based modified castor oil and poly (ε-caprolactone) for surface-coating applications: Synthesis, characterization, and in vitro degradation
Jia et al. Influence of well-defined hard segment length on the properties of medical segmented polyesterurethanes based on poly (ε-caprolactone-co-L-lactide) and aliphatic urethane diisocyanates
Jafary et al. Fabrication and characterization of tissue-mimicking phantoms for ultrasound-guided cannulation training
CN117683273A (en) Bionic body model and preparation method thereof
JP2008261990A (en) Brain model for training of surgical operation
JP6941227B2 (en) Polyurethane gel material, polyurethane gel, pseudo-biomaterial, and method for producing polyurethane gel
JP6938771B2 (en) Polyurethane gel material, polyurethane gel, pseudo-biomaterial, and method for producing polyurethane gel
JPWO2020066892A1 (en) Simulated sclera and simulated eyeball
CN109553747A (en) A kind of preparation method of the biodegradable aqueous polyurethane of large arch dam
JP2016214667A (en) phantom
CN112831013B (en) Functionalized polyurethane and preparation method and application thereof
TW202230309A (en) Imitation biomembrane model and imitation eyeball model
KR101134051B1 (en) Phantom for Conducting a Performance Test of Ultrasound System and Method of Manufacturing Thereof
US20150316491A1 (en) Simulated biological material for photoacoustic diagnostic apparatus and method for manufacturing the same
Lam et al. Non‐isocyanate polyurethane‐acrylate as UV‐and thermo‐responsive plasticizer for thermoplastic elastomer
Mori et al. Bioequivalent and Non-Aqueous Polyurethane Gel for Ultrasound Phantom

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23874611

Country of ref document: EP

Kind code of ref document: A1