WO2024075451A1 - Drive device for vibrating-type compressor - Google Patents

Drive device for vibrating-type compressor Download PDF

Info

Publication number
WO2024075451A1
WO2024075451A1 PCT/JP2023/032040 JP2023032040W WO2024075451A1 WO 2024075451 A1 WO2024075451 A1 WO 2024075451A1 JP 2023032040 W JP2023032040 W JP 2023032040W WO 2024075451 A1 WO2024075451 A1 WO 2024075451A1
Authority
WO
WIPO (PCT)
Prior art keywords
period
cross position
vibration
zero cross
compressor
Prior art date
Application number
PCT/JP2023/032040
Other languages
French (fr)
Japanese (ja)
Inventor
正夫 生井
Original Assignee
澤藤電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 澤藤電機株式会社 filed Critical 澤藤電機株式会社
Publication of WO2024075451A1 publication Critical patent/WO2024075451A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/04Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the present invention relates to a drive device for a vibration compressor.
  • the drive device for the vibration compressor described in Patent Document 1 includes an inverter that converts direct current to alternating current by alternately turning on an upper switch and a lower switch, and a frequency tracking circuit that controls the on/off of the upper switch and the lower switch based on the current input to the vibration compressor.
  • the frequency tracking circuit has a peak hold circuit, and controls the upper switch and the lower switch according to the second peak of the current.
  • the present invention was made in consideration of the above-mentioned circumstances, and its purpose is to provide a drive device for a vibration compressor that can easily detect the first zero cross position, efficiently operate the vibration compressor, and reduce power consumption.
  • the present invention also provides a drive device for a vibration compressor that can perform frequency tracking regardless of the type of vibration compressor.
  • a drive device for a vibrating compressor is characterized by the following [1] to [18].
  • an inverter having a first switch element and a second switch element connected in series with each other, which converts direct current into alternating current by alternately turning on the first switch element and the second switch element, and supplies the converted alternating current to an electromagnetic coil of a vibration type compressor; a first zero-cross position detection unit that detects a first zero-cross position of an induced voltage generated in the electromagnetic coil of the vibration type compressor during a first period from when the first switch element is turned off to when the second switch element is turned on; an inverter control unit that controls an on/off period of the first switch element and the second switch element based on the first zero cross position, The inverter control unit sets the first period to be longer than a second period from when the second switch element is turned off to when the first switch element is turned on.
  • the inverter control unit makes the first period longer than the second period during a certain startup period immediately after power is turned on, and makes the first period equal to the second period after the startup period.
  • a second zero-cross position detector that detects a second zero-cross position of an induced voltage generated in the electromagnetic coil of the vibration compressor during the second period;
  • An abnormal vibration detection unit that detects abnormal vibration of the vibration type compressor, After the start-up period, a third period is half a period between one of the first zero cross position and the second zero cross position detected in an n-th period (n is an integer) and the one of the first zero cross position and the second zero cross position detected in an n+1-th period; a period between the one of the first zero cross position and the second zero cross position detected in the nth period and the other of the first zero cross position and the second zero cross position detected in the nth period is defined as a fourth period, an
  • a second zero-cross position detector that detects a second zero-cross position of an induced voltage generated in the electromagnetic coil of the vibration compressor during the second period
  • the abnormal vibration escape unit is a drive device for a vibration compressor that reduces an on-duty of the first switch element and the second switch element to damp resonance of a spring system of the vibration compressor, thereby escaping from the abnormal vibration.
  • a third period is a half of a period between the second zero cross position detected in the nth cycle and the second zero cross position detected in the n+1th cycle; a fourth period is defined as a period between the second zero cross position detected in the nth period and the first zero cross position detected in the nth period; determining the difference between the third period and the fourth period;
  • the first predetermined period is 10 waves to 50 waves, with one cycle from the second zero cross position detected in the nth cycle to the second zero cross position detected in the n+1th cycle being one wave. It is a driving device for a vibrating compressor.
  • the predetermined threshold is set so that a ratio of the difference with respect to the third period is 0.23% to 0.59%.
  • the first predetermined number of times that the predetermined threshold value is exceeded consecutively is 3 to 10 times.
  • the abnormal vibration escape unit is a driving device for a vibration type compressor that reduces the on-duty of the first switch element and the second switch element to a value between 0% and 50%.
  • the abnormal vibration escape unit is a drive device for a vibration compressor, which varies an on/off period of the first switch element and the second switch element to vary a resonance frequency of a spring system of the vibration compressor.
  • the inverter control unit is a drive device for a vibration-type compressor, and if the inverter control unit detects the abnormal vibration a second predetermined number of times during a second predetermined period after the abnormal vibration state is escaped by the abnormal vibration escape unit, the inverter control unit performs normal operation for a certain period thereafter.
  • the second predetermined period is one minute, and the second predetermined number of times is three.
  • the certain period is three minutes.
  • the inverter control unit sets the on-duty of the first switch element and the second switch element to a minimum on-duty at which an induced voltage can be detected immediately after the compressor starts operating, and then performs a soft start by gradually increasing the on-duty.
  • the vibration type compressor is a drive device for a vibration type compressor that drives a refrigerator having an upward-opening lid.
  • an inverter having a first switch element and a second switch element connected in series with each other, which converts direct current into alternating current by alternately turning on the first switch element and the second switch element, and supplies the converted alternating current to an electromagnetic coil of a vibration type compressor; and a microcomputer that controls the on/off timing of the first switch element and the second switch element based on an input from the vibration type compressor, and outputs a drive pulse in accordance with a fluctuation in a resonance frequency of a movable part including a coil and a piston of the vibration type compressor.
  • the input of the vibration type compressor is an induced voltage.
  • the input of the vibration type compressor is an induced current.
  • the drive device for a vibrating compressor having the configuration [1] above by making the first period greater than the second period, even when the amplitude of the vibrating compressor is small, it is possible to lengthen the generation period of an induced voltage having a first zero cross position, make it easier to detect a minute first zero cross position, and operate the vibrating compressor efficiently, thereby reducing power consumption.
  • the first period can be made greater than the second period during startup when the amplitude of the vibrating compressor is small, and startup can be performed stably.
  • the driving device for a vibrating compressor having the configurations [3] and [4] above it is possible to detect abnormal vibrations and escape from the abnormal vibrations without installing a vibration sensor or the like.
  • the driving device for a vibrating compressor having the configuration [5] above the resonance of the spring system of the vibrating compressor is damped, and it is possible to escape from abnormal vibration.
  • the vibrating compressor driving device having the configurations [6] to [8] above abnormal vibration can be detected.
  • the vibrating compressor drive device having the configurations [9] and [10] above it is possible to escape from abnormal vibration.
  • the drive device for a vibrating compressor having the configurations [11] to [13] above excessive stoppage of a refrigerator driven by the vibrating compressor can be prevented and cooling performance can be maintained.
  • the vibrating compressor can be started stably after power is turned on.
  • the drive device for the vibrating compressor having the configuration [15] above even when the refrigerator is restarted and the cooling performance is reduced due to a drop in output of the vibrating compressor, cool air is unlikely to leak, so that the cooling performance can be maintained.
  • the driving device for a vibrating compressor having the configurations [16] to [18] above frequency tracking is possible regardless of the type of vibrating compressor.
  • the present invention provides a vibration compressor that is easy to detect the first zero cross position, can operate efficiently, and can reduce power consumption.
  • FIG. 1 is a circuit diagram showing an embodiment of a drive device for a vibrating compressor according to the present invention.
  • FIG. 2 is a schematic cross-sectional view of the vibrating compressor shown in FIG.
  • FIG. 3 is a time chart of the inverter output voltage, the piston position, the timer count value, the on/off states of the upper transistor and the lower transistor, the first induced voltage pulse, the first detection range, the first induced voltage pulse in the first detection range, the second induced voltage pulse, the second detection range, and the second induced voltage pulse in the second detection range, during duty-up and steady state of the drive device of the vibrating compressor shown in FIG. 1 .
  • FIG. 4 is a flowchart showing the procedure of the main process executed by the MCU shown in FIG. FIG.
  • FIG. 5 is a flowchart showing the procedure of the output period processing executed by the MCU shown in FIG.
  • FIG. 6 is a flowchart showing the procedure of the interrupt process executed by the MCU shown in FIG.
  • FIG. 7 is a flowchart showing a procedure of the timer process executed by the MCU shown in FIG.
  • FIG. 8 is a time chart showing the on/off of the power supply and the compressor current of the vibration type compressor shown in FIG.
  • FIG. 9 is a time chart showing the on/off states of the upper and lower transistors, the output voltage of the inverter, and the first detection range when the driving device for the vibrating compressor shown in FIG. 1 is started up.
  • FIG. 10 is a time chart of the output voltage of the inverter for explaining the abnormal vibration detection process.
  • FIG. 11 is a flowchart showing a procedure of the abnormal vibration detection process executed by the MCU shown in FIG.
  • FIG. 1 is a circuit diagram showing one embodiment of a drive device for a vibration compressor of the present invention.
  • the vibration compressor 20 is for driving a refrigerator, for example, mounted on an automobile or a refrigerator in which the container itself is a refrigerator, and operates on a low AC voltage.
  • the vibration compressor 20 drives a refrigerator having a top-opening lid.
  • the drive device 1 (hereinafter simply referred to as the "drive device") for the vibration compressor 20 shown in FIG. 1 drives the vibration compressor 20 using a battery 30 such as that installed in an automobile when the commercial AC power source 40 is not connected to the plug 14.
  • the drive device 1 is a device that drives the vibration compressor 20 using the commercial AC power source 40 when the commercial AC power source 40 is connected to the plug 14.
  • the vibration compressor 20 includes a sealed container 21, a compressor body 22 housed in the sealed container 21, and a pair of vibration-proof springs 23, 23 provided between the sealed container 21 and the compressor body 22 from above and below.
  • the compressor body 22 includes a cylindrical external core 221, a cylindrical internal core 222 inserted into the external core 221, a permanent magnet 223 disposed on the outer surface of the internal core 222, an electromagnetic coil 224 disposed in an annular gap formed by the permanent magnet 223 and the external core 221 so as to be able to vibrate up and down, a piston 225 connected to the electromagnetic coil 224, and a pair of resonant springs 226, 226 that bias the piston 225 from above and below.
  • the vibration compressor 20 supplies AC power to the electromagnetic coil 224 to vibrate the piston 225 connected to the electromagnetic coil 224, and flows low-pressure refrigerant into the sealed container 21 and discharges the compressed high-pressure refrigerant.
  • the drive device 1 includes an AC/DC converter 2, a DC/DC converter 3, diodes D1 and D2, an inverter 4, an MCU (Main Control Unit) 5 as a computer, a PC (Personal Computer) communication unit 6, an induced voltage detection unit 7, a driver 8, an input voltage detection unit 9, a DC/DC converter IC 10, a DC voltage detection unit 11, a DC/DC converter 12, and a fan 13.
  • AC/DC converter 2 converts AC power from commercial AC power source 40 into the desired DC power.
  • DC/DC converter 3 boosts DC battery voltage VB supplied from battery 30 and converts it into the desired DC power.
  • DC/DC converter 3 includes Zener diodes DZ1 and DZ2 for surge protection, a filter circuit 31 that removes high-frequency components from battery voltage VB, a backflow prevention circuit 32, coil L1, transistor TR1, diode D2, capacitors C11 and C12, and capacitors C21 and C22.
  • the transistor TR1 is composed of an N-channel field-effect transistor.
  • the drain of the transistor TR1 is connected to the other end of the coil L1, and the source is connected to ground.
  • the anode of the diode D2 is connected to the other end of the coil L1 and the drain of the transistor TR1.
  • the capacitors C11 and C12 are connected between one end of the coil L1 and the ground.
  • the capacitors C21 and C22 are connected between the cathode of the diode D2 and the ground.
  • the DC/DC converter 3 configured as described above, when the transistor TR1 is turned on, the voltages across the capacitors C11 and C12, which are charged to the battery voltage VB, are supplied to the capacitors C21 and C22. At this time, energy is stored in the coil L1. Next, when the transistor TR1 is turned off, the sum of the voltages across the capacitors C11 and C12 and the coil L1 is supplied to the capacitors C21 and C22. The voltages across the capacitors C21 and C22 are supplied to the inverter 4 in the next stage as DC voltages converted (boosted) by the DC/DC converter 3.
  • Diode D1 is connected between AC/DC converter 2 and inverter 4. To explain in more detail, the anode of diode D1 is connected to the AC/DC converter 2 side and the cathode is connected to the inverter 4 side, and the DC power converted by AC/DC converter 2 is supplied to inverter 4 via diode D1.
  • Diode D2 is connected between DC/DC converter 3 and inverter 4.
  • the anode of diode D2 is connected to the DC/DC converter 3 side
  • the cathode is connected to the inverter 4 side
  • the DC power converted by DC/DC converter 3 is supplied to inverter 4 via diode D2.
  • the inverter 4 converts the DC power source converted by the AC/DC converter 2 or the DC/DC converter 3 into AC power source and supplies it to the electromagnetic coil 224 of the vibration compressor 20.
  • the inverter 4 includes an upper transistor TR21 as a first switch element and a lower transistor TR22 as a second switch element connected in series between the cathodes of the diodes D1, D2 and the ground, capacitors C31, C32 for cutting the DC component, and a smoothing coil L2.
  • the upper transistor TR21 and the lower transistor TR22 are composed of N-channel field effect transistors.
  • the upper transistor TR21 has a drain connected to the cathodes of the diodes D1 and D2, and a source connected to the drain of the lower transistor TR22.
  • the lower transistor TR22 has a drain connected to the source of the upper transistor TR21, and a source connected to ground.
  • the upper transistor TR21 and the lower transistor TR22 are connected to the DC/DC converter IC10, which will be described later, and are alternately turned on and off.
  • each of the capacitors C31 and C32 is connected to the source of the upper transistor TR21 and the drain of the lower transistor T22, and the other end is connected to one end of the coil L2.
  • the other end of the coil L2 is connected to one end of the electromagnetic coil 224 of the vibration compressor 20.
  • the other end of the electromagnetic coil 224 is connected to ground.
  • the on/off of the upper transistor TR21 and the lower transistor TR22 during duty up and steady state, the output voltage VOUT of the inverter 4, and the position of the piston 225 will be described with reference to FIG. 3.
  • the first and second detection ranges are indicated by diagonal lines.
  • the upper transistor TR21 and the lower transistor TR22 are alternately turned on.
  • a first dead time DT1 first period
  • a second dead time DT2 second period
  • the source voltage of the upper transistor TR21 (the drain voltage of the lower transistor TR22) becomes the input voltage VIN, and the capacitors C31 and C32 are charged.
  • the input voltage VIN is a direct current voltage supplied from the AC/DC converter 2 or the DC/DC converter 3.
  • the output voltage VOUT supplied to the electromagnetic coil 224 is a positive voltage obtained by subtracting the voltages across the capacitors C31 and C32 from the input voltage VIN.
  • the output voltage VOUT supplied to the electromagnetic coil 224 is a negative voltage obtained by subtracting the voltage across the capacitors C31 and C32 from 0V.
  • the MCU 5 is a well-known computer that operates according to a program, and controls the entire drive device 1.
  • the MCU 5 has a built-in temperature sensor.
  • the PC communication unit 6 is an interface for communicating with a PC, and is controlled by the MCU 5.
  • the induced voltage detection unit 7 generates a first induced voltage pulse and a second induced voltage pulse (see FIG. 3) that are at H level when the output voltage VOUT of the inverter 4 is a positive voltage or a negative voltage, and outputs them to the MCU 5.
  • the driver 8 outputs drive pulses to the gates of the upper transistor TR21 and the lower transistor TR22 according to the control of the MCU 5.
  • the input voltage detection unit 9 detects the input voltage VIN input to the inverter 4, and supplies the AD value converted by AD conversion to the MCU 5.
  • the MCU 5 controls the duty cycle based on the voltage of the input voltage detection unit 9 so that the power supplied to the vibration compressor 20 is constant.
  • the DC/DC converter IC10 detects the input voltage VIN, i.e., the output voltage of the DC/DC converter 3, and controls the on/off of the transistor TR1 so that the input voltage VIN becomes the desired voltage. While an enable signal is being output from the MCU 5, the DC/DC converter IC10 controls the on/off of the transistor TR1 so that the input voltage VIN becomes the desired DC voltage, and stops the on/off control of the transistor TR1 when the output of the enable signal from the MCU 5 is stopped.
  • VIN i.e., the output voltage of the DC/DC converter 3
  • the DC voltage detection unit 11 is connected to the output voltage VOUT2 of the AC/DC converter 2 via a diode D3.
  • the DC voltage detection unit 11 detects the output voltage VOUT2, and outputs the AD-converted AD value to the MCU 5.
  • the cathode of the diode D3 is connected to the cathode of the diode D4.
  • the anode of the diode D4 is connected to one end of the coil L1 and is supplied with the battery voltage VB.
  • the DC/DC converter 12 has the cathodes of the diodes D3 and D4 connected thereto, and converts the output voltage VOUT2 and the battery voltage VB into the desired DC voltage (for example, 11 V) and outputs it to the fan 13.
  • the MCU 5 performs initialization and fault diagnosis (S1, S2).
  • the MCU 5 takes in the AD value output from the DC voltage detection unit 11 (S3) and performs AC priority processing (S4).
  • the MCU 5 determines whether or not the commercial AC power supply 40 is connected to the plug 14 based on the AD value acquired in S3.
  • the AC/DC converter 2 outputs an output voltage VOUT2 higher than the battery voltage VB. If the AD value acquired in S3 is higher than the battery voltage VB, the MCU 5 determines that the commercial AC power supply 40 is connected to the plug 14, and stops outputting the permission signal to the DC/DC converter IC 10. While the permission signal is stopped, the DC/DC converter IC 10 stops controlling the transistor TR1 and does not perform the boost operation. As a result, when the commercial AC power supply 40 is connected to the plug 14, the boost operation of the DC/DC converter 3 is stopped, and the vibrating compressor 20 is driven by the commercial AC power supply 40.
  • the MCU 5 determines that the commercial AC power supply 40 is not connected to the plug 14, and outputs an enable signal to the DC/DC converter IC 10. While the enable signal is being output, the DC/DC converter IC 10 controls the transistor TR1 and performs a boost operation. As a result, when the commercial AC power supply 40 is not connected to the plug 14, the DC/DC converter 3 performs a boost operation, and the vibrating compressor 20 is driven by the battery 30.
  • the MCU 5 performs communication processing with, for example, a PC or a controller (S5), and performs fan processing to control the fan 13 (S6). Thereafter, the MCU 5 functions as an inverter control unit, and performs output cycle processing to set the on-duty and output cycle of the upper transistor TR21 and the lower transistor TR22 (S7). The output cycle processing will be described later.
  • the MCU 5 functions as an abnormal vibration detection unit, and performs abnormal vibration detection processing (S8), and then returns to S2 again. The abnormal vibration detection processing will also be described later.
  • the MCU 5 sets the on-duty of the upper transistor TR21 and the lower transistor TR22 (S71).
  • the MCU 5 detects the ambient temperature using the built-in temperature sensor and sets the on-duty according to the ambient temperature. Specifically, the MCU 5 sets the on-duty so that it is large when the ambient temperature is high and small when the ambient temperature is low.
  • the MCU 5 determines whether the first zero cross position A is greater than a reference (S72).
  • This first zero cross position A will be described with reference to FIG. 3.
  • the first zero cross position A is the position (timing) at which the piston 225 reaches top dead center, and is the position at which the induced voltage generated in the electromagnetic coil 224 becomes 0V during the first dead time DT1 from when the upper transistor TR21 turns off to when the lower transistor TR22 turns on.
  • the MCU 5 repeatedly performs timer processing that counts up from 0 to 1023.
  • the first zero cross position A is the count value by the timer processing when the induced voltage reaches 0V.
  • the time it takes to count from 0 to 1023 is roughly equal to the resonance period of the resonant spring 226.
  • the resonance period of the moving part including the electromagnetic coil 224 and the piston 225 changes due to factors such as the temperature of the resonant spring 226 and load fluctuations.
  • the MCU 5 fine-tunes the output period (on/off period) of the upper transistor TR21 and the lower transistor TR22 based on the first zero-cross position A, and performs frequency tracking control so that the moving part including the electromagnetic coil 224 and the piston 225 vibrates at the resonance frequency of the resonant spring 226.
  • the MCU 5 determines that the currently set output period is shorter than the resonance period of the resonance spring 226, and lengthens the next output period slightly (S73), before proceeding to S74. On the other hand, if the first zero cross position A is equal to or smaller than the reference (N in S72), the MCU 5 immediately proceeds to S74. In S74, the MCU 5 determines whether the first zero cross position A is smaller than the reference.
  • the MCU 5 determines that the currently set output period is longer than the resonance period of the resonance spring 226, shortens the next output period slightly (S75), and then proceeds to S76. On the other hand, if the first zero cross position A is equal to the reference (N in S74), the MCU 5 immediately proceeds to S76. Next, the MCU 5 sets the next output period to the period adjusted in S73 and S75 (S75), and ends the output period processing.
  • the reference for the first zero cross position A is "512".
  • the first zero cross position A detected in the first timer processing is equal to the reference, so the MCU 5 does not change the next output period T12.
  • the first zero cross position A detected in the next timer processing is "511", which is smaller than the reference, so the MCU 5 slightly shortens the next output period T13.
  • the first zero cross position A detected in the next timer processing is "513", which is larger than the reference, so the MCU 5 slightly lengthens the next output period T14.
  • the MCU 5 also executes the first interrupt process shown in FIG. 6 to detect the first zero cross position A. As shown in FIG. 3, the MCU 5 sets the first dead time DT1 as the first detection range. The MCU 5 determines that a zero cross has occurred when the first induced voltage pulse falls while in the first detection range, and executes the first interrupt process. In the first interrupt process, the MCU 5 functions as a first zero cross position detector, stores the count value of the timer at this time as the first zero cross position A (S9), and ends the first interrupt process.
  • the MCU5 also functions as an inverter control unit, and executes the timer process shown in FIG. 7, which controls the on/off of the upper transistor TR21 and the lower transistor TR22.
  • the MCU5 executes the timer process at the same time as the timer starts.
  • the MCU5 performs a duty output process that captures the on-duty set in the output period process (S10).
  • the MCU5 performs an output process (period) that captures the output period set in the output period process, and outputs the captured on-duty and drive pulses of the output period to the upper transistor TR21 and the lower transistor TR22 (S11).
  • the MCU 5 executes a soft start immediately after power is applied.
  • the MCU 5 executes S71 in FIG. 5 at startup, for example 2 seconds after power is applied, it sets the on-duty to a predetermined minimum duty without setting the on-duty based on temperature.
  • the minimum duty is set to 5% to ensure an induced voltage above a certain level (1 V or higher).
  • the MCU 5 executes S71 in FIG. 5 during a duty-up period of, for example, 3 seconds after startup, it gradually increases the on-duty. After that, when the MCU 5 executes S17 in FIG. 5 during a steady state after the duty-up, it sets the on-duty according to the temperature as described above.
  • the compressor current flowing through the electromagnetic coil 224 is small and the amplitude of the piston 225 is small, making it difficult to detect the first zero-cross position A. Therefore, when the MCU 5 executes S11 in FIG. 7 at startup, as shown in FIG. 9, it makes the first dead time DT1 longer than the second dead time DT2 from when the lower transistor TR22 is turned off to when the upper transistor TR21 is turned on. Note that the first detection range is also indicated by diagonal lines in FIG. 9.
  • the MCU 5 executes S11 in FIG. 7 during duty-up and steady state, it makes the first dead time DT1 and the second dead time DT2 equal, as shown in FIG. 3.
  • the first detection range can be lengthened even at startup when the amplitude of the piston 225 is small, making it easier to detect the minute first zero cross position A, allowing the vibration compressor 20 to be operated efficiently and reducing power consumption.
  • the MCU 5 performs abnormal vibration detection process during normal operation, but does not perform it during duty-up or startup.
  • the resonant spring 226 and vibration-proof spring 23 of the vibration compressor 20 vibrate abnormally due to the road conditions of the vehicle, the vehicle suspension, the vehicle installation conditions, etc., and the compressor body 22 hits the sealed container 21, generating abnormal noise (rattling sound).
  • the abnormal vibration is transmitted to the sealed container 21 of the vibration compressor 20 and then to the piston 225, affecting the induced voltage, so the abnormal vibration detection process can detect such abnormal vibration.
  • the MCU 5 detects the second zero cross position B.
  • the second zero cross position B is the position (timing) at which the piston 225 reaches the bottom dead center, and is the position at which the induced voltage generated in the electromagnetic coil 224 during the second dead time DT2 becomes 0V.
  • the second zero cross position B is the count value by the timer processing when the induced voltage reaches 0V.
  • the MCU5 executes a second interrupt process (not shown) to detect the second zero cross position B. As shown in FIG. 3, the MCU sets the second dead time DT2 as the second detection range. The MCU5 determines that a zero cross has occurred when the second induced voltage pulse falls while in the second detection range, and executes the second interrupt process. In the second interrupt process, the MCU5 functions as a second zero cross position detector, stores the count value of the timer at this time as the second zero cross position B, and ends the second interrupt process.
  • the MCU 5 calculates the difference ⁇ T between the half cycle T3/2 and the period T4 (S801).
  • the MCU 5 accumulates the calculated difference ⁇ T (S802).
  • one wave is one cycle from the second zero cross position B detected in the nth cycle to the second zero cross position B detected in the n+1th cycle
  • the MCU 5 judges whether the accumulated value exceeds the threshold value (S804).
  • the first predetermined period is a period of one wave, where one wave is one cycle from the second zero cross position B detected in the nth cycle to the second zero cross position B detected in the n+1th cycle, or a period of multiple waves.
  • the first predetermined period is set to 25 waves, but it has been experimentally found that if it is set to 10 to 50 waves, it is possible to suppress erroneous detection of abnormal vibration during normal operation.
  • the MCU 5 judges that the accumulated value does not exceed the threshold value (N in S804), it immediately ends the abnormal vibration detection process without detecting abnormal vibration.
  • the first predetermined number is the number of times that the integrated value exceeds the threshold consecutively, and is set to six in this embodiment. If the integrated value exceeds the threshold six times in a row (Y in S805), the MCU 5 detects abnormal vibration (S806).
  • the threshold value can be set to 25 x 0.25% x T3/2 to 25 x 0.59% x T3/2.
  • the MCU 5 does not detect abnormal vibration and immediately ends the abnormal vibration detection process.
  • the MCU 5 executes an escape process (S808).
  • the MCU 5 reduces the on-duty of the upper transistor TR21 and the lower transistor TR22 to 0% to stop the operation of the vibration type compressor 20.
  • the MCU 5 may, for example, vary the output period of the upper transistor TR21 and the lower transistor TR22.
  • the second predetermined time is the period after the abnormal vibration state is escaped, and is set to one minute in this embodiment.
  • the second predetermined number is the number of times abnormal vibration is detected during the second predetermined period after the abnormal vibration state is escaped, and is set to three times in this embodiment.
  • the fixed time is the period after abnormal vibration is detected the second predetermined number of times during the second predetermined period after the abnormal vibration is escaped, and is set to three minutes in this embodiment.
  • the MCU 5 accumulates the difference ⁇ T of 25 waves, and detects abnormal vibration when the accumulated value exceeds the threshold value six times in a row. If abnormal vibration is detected, an escape process for the abnormal vibration is performed. This makes it possible to detect abnormal vibration and escape from the abnormal vibration without installing a vibration sensor or the like.
  • the MCU 5 lowers the duty of the upper transistor TR21 and the lower transistor TR22 in the escape process. This dampens the resonance of the resonant spring 226 and the vibration-proof spring 23 of the vibration compressor 20, allowing the compressor to escape from the abnormal vibration.
  • the MCU 5 varies the output periods of the upper transistor TR21 and the lower transistor TR22 in the escape process. This makes it possible to escape from abnormal vibration.
  • the MCU 5 if abnormal vibration is detected three times within one minute after performing the abnormal vibration escape process, the MCU 5 will not perform the escape process for three minutes. As a result, after the escape process is performed once and cooling is stopped, cooling will not be stopped for three minutes, preventing excessive stopping of the refrigerator and maintaining cooling performance.
  • the MCU 5 minimizes the on-off duty of the upper transistor TR21 and the lower transistor TR22 immediately after power is turned on, and then performs a soft start by gradually increasing the on-duty. This allows the vibration compressor 20 to start up stably after power is turned on. In addition, the current capacity of the AC/DC converter 2 can be reduced, which contributes to making the drive device smaller, lighter, and less expensive.
  • the drive unit 1 drives a refrigerator having a top-opening lid.
  • the MCU 5 controls the on/off timing of the upper transistor TR21 and the lower transistor TR22 to vibrate the vibration compressor 20 in accordance with the resonant frequency.
  • This makes it possible to change the software (e.g., threshold value, etc.) depending on the type of vibration compressor 20 (e.g., type of resonant spring 226), making it possible to follow the frequency regardless of the type of vibration compressor 20.
  • the present invention is not limited to the above-described embodiment, and can be modified, improved, etc. as appropriate.
  • the material, shape, dimensions, number, location, etc. of each component in the above-described embodiment are arbitrary and not limited as long as they can achieve the present invention.
  • the above-described embodiment is not limited to top-opening lids, and can also be applied to refrigerators with front-opening doors.
  • the first predetermined period for detecting abnormal vibrations was set to 25 waves, but this is not limited to this. It has been experimentally confirmed that abnormal vibrations can be detected if the first predetermined period is set between 10 waves and 50 waves.
  • the first predetermined number of times for detecting abnormal vibrations is set to six times, but this is not limited to this. It has been experimentally confirmed that abnormal vibrations can be detected if the first predetermined number of times is set between three and ten times.
  • the MCU 5 reduces the on-duty of the upper transistor TR21 and the lower transistor TR22 to 0% in the process of escaping from abnormal vibration, but this is not limited to this. It has been experimentally confirmed that it is possible to escape from abnormal vibration by reducing the on-duty between 0% and 50%.
  • the MCU 5 controls the on/off of the upper transistor TR21 and the lower transistor TR22 based on the output voltage VOUT input to the vibration compressor 20, but this is not limited to the above.
  • the MCU 5 may also control the on/off of the upper transistor TR21 and the lower transistor TR22 based on the current input to the vibration compressor 20.
  • the MCU 5 may control the on/off of the upper transistor TR21 and the lower transistor TR22 in response to the second peak of the current.
  • the upper transistor TR21 is the first switch element and the lower transistor TR22 is the second switch element, but this is not limited to the above.
  • the lower transistor TR22 may be the first switch element and the upper transistor TR21 may be the second switch element.
  • the second zero cross position B corresponds to the first zero cross position, and the MCU5 controls the on/off of the upper transistor TR21 and the lower transistor TR22 based on the second zero cross position B.
  • the MCU 5 calculates the difference ⁇ T between the half cycle T3/2, which is half of one period T3 from the previous second zero cross position B to the next second zero cross position B, and the period T4 from the previous second zero cross position B to the next first zero cross position A, but this is not limited to the above.
  • the MCU 5 may also calculate the difference ⁇ T between the half cycle T3/2, which is half of one period T3 from the previous first zero cross position A to the next first zero cross position A, and the period T4 from the previous first zero cross position A to the next second zero cross position B.
  • the MCU 5 detects abnormal vibration when the integrated value of the difference ⁇ T exceeds a threshold value, but this is not limited to the above.
  • the MCU 5 may also detect abnormal vibration when the difference ⁇ T exceeds a predetermined value.
  • the present invention provides a drive device for a vibration compressor that can easily detect the first zero cross position, efficiently operate the vibration compressor, and reduce power consumption.
  • the present invention which has this effect, is useful for drive devices for vibration compressors.
  • Inverter 5 MCU (first zero cross position detection unit, inverter control unit, second zero cross position detection unit, abnormal vibration detection unit, abnormal vibration escape unit) 20 Vibration type compressor 224 Electromagnetic coil A First zero cross position B Second zero cross position DT1 First dead time (first period) DT2 Second dead time (second period) TR21 Upper stage transistor (first switch element) TR22 Lower stage transistor (second switch element)

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Inverter Devices (AREA)

Abstract

An MCU (5) detects a first zero cross position (A) of induced voltage generated in an electromagnetic coil (224) of a vibrating-type compressor (20) during a first dead time (DT1) from when an upper-stage transistor (TR21) is turned off to when a lower-stage transistor (TR22) is turned on. The MCU (5) controls an on/off cycle of the upper-stage transistor TR (21) and the lower-stage transistor (TR22) on the basis of the first zero cross position (A). Further, the MCU (5) causes the first dead time (DT1) to be longer than a second dead time (DT2) at the starting time.

Description

振動型圧縮機の駆動装置Vibration compressor drive
 本発明は、振動型圧縮機の駆動装置に関する。 The present invention relates to a drive device for a vibration compressor.
 上述した振動型圧縮機の駆動装置として、例えば、特許文献1に記載されたものが知られている。特許文献1に記載された振動型圧縮機の駆動装置は、上段スイッチ及び下段スイッチを交互にオンして、直流を交流に変換するインバータと、振動型圧縮機に入力される電流に基づいて、上段スイッチ及び下段スイッチのオンオフを制御する周波数追従回路を備えている。周波数追従回路は、ピークホールド回路を有し、電流の2回目のピークに応じて上段スイッチ及び下段スイッチを制御している。 A known example of a drive device for the above-mentioned vibration compressor is described in Patent Document 1. The drive device for the vibration compressor described in Patent Document 1 includes an inverter that converts direct current to alternating current by alternately turning on an upper switch and a lower switch, and a frequency tracking circuit that controls the on/off of the upper switch and the lower switch based on the current input to the vibration compressor. The frequency tracking circuit has a peak hold circuit, and controls the upper switch and the lower switch according to the second peak of the current.
 また、2回目のピーク以外にも振動型圧縮機に入力される誘起電圧が0Vとなるゼロクロス位置に基づいて上段スイッチ及び下段スイッチを制御することが考えられる。しかしながら、起動時は振動型圧縮機の振幅が小さくゼロクロス位置を検出しにくく、振動型圧縮機を効率的に運転することができない、という課題があった。 It is also possible to control the upper and lower switches based on the zero-cross position where the induced voltage input to the vibration compressor is 0V other than the second peak. However, there is an issue that the amplitude of the vibration compressor is small at start-up, making it difficult to detect the zero-cross position, and the vibration compressor cannot be operated efficiently.
 また、特許文献1の振動型圧縮機の駆動装置は、振動型圧縮機の種類に応じて周波数追従回路を変更する必要がある、という課題があった。  In addition, the drive device for the vibration compressor in Patent Document 1 had the problem that the frequency tracking circuit needed to be changed depending on the type of vibration compressor.
日本国特開2001-178149号公報Japanese Patent Publication No. 2001-178149
 本発明は、上述した事情に鑑みてなされたものであり、その目的は、第1ゼロクロス位置を検出しやすく、振動型圧縮機を効率的に運転することができ、消費電力を削減できる振動型圧縮機の駆動装置を提供することにある。 The present invention was made in consideration of the above-mentioned circumstances, and its purpose is to provide a drive device for a vibration compressor that can easily detect the first zero cross position, efficiently operate the vibration compressor, and reduce power consumption.
 また、本発明は、振動型圧縮機の種類によらず、周波数追従を行うことができる振動型圧縮機の駆動装置を提供する。 The present invention also provides a drive device for a vibration compressor that can perform frequency tracking regardless of the type of vibration compressor.
 前述した目的を達成するために、本発明に係る振動型圧縮機の駆動装置は、下記[1]~[18]を特徴としている。
[1]
 互いに直列接続された第1スイッチ素子及び第2スイッチ素子を有し、前記第1スイッチ素子及び前記第2スイッチ素子を交互にオンすることにより直流を交流に変換して、振動型圧縮機の電磁コイルに供給するインバータと、
 前記第1スイッチ素子がオフしてから前記第2スイッチ素子がオンするまでの第1期間中に前記振動型圧縮機の前記電磁コイルに発生する誘起電圧の第1ゼロクロス位置を検出する第1ゼロクロス位置検出部と、
 前記第1ゼロクロス位置に基づいて、前記第1スイッチ素子及び前記第2スイッチ素子のオンオフ周期を制御するインバータ制御部と、を備え、
 前記インバータ制御部は、前記第1期間を、前記第2スイッチ素子がオフしてから前記第1スイッチ素子がオンするまでの第2期間よりも長くする
 振動型圧縮機の駆動装置であること。
[2]
 [1]に記載の振動型圧縮機の駆動装置において、
 前記インバータ制御部は、電源投入直後から一定の起動期間に、前記第1期間を前記第2期間よりも長くし、前記起動期間後、前記第1期間と前記第2期間とを等しくする
 振動型圧縮機の駆動装置であること。
[3]
 [2]に記載の振動型圧縮機の駆動装置において、
 前記第2期間中に前記振動型圧縮機の前記電磁コイルに発生する誘起電圧の第2ゼロクロス位置を検出する第2ゼロクロス位置検出部と、
 前記振動型圧縮機の異常振動を検出する異常振動検出部であって、
 前記起動期間後、
 n周期目(nは整数)に検出された前記第1ゼロクロス位置及び前記第2ゼロクロス位置の一方と、n+1周期目に検出された前記第1ゼロクロス位置及び前記第2ゼロクロス位置の前記一方と、の間の期間の半分を第3期間とし、
 前記n周期目に検出された前記第1ゼロクロス位置及び前記第2ゼロクロス位置の前記一方と、前記n周期目に検出された前記第1ゼロクロス位置及び前記第2ゼロクロス位置の他方と、の間の期間を第4期間とし、
 前記第3期間と前記第4期間との差分が所定の値を越えた場合に当該振動型圧縮機の前記異常振動として検出する異常振動検出部と、
 前記異常振動検出部により検出された前記異常振動の状態を脱出する異常振動脱出部と、を有する
 振動型圧縮機の駆動装置であること。
[4]
 [2]に記載の振動型圧縮機の駆動装置において、
 前記第2期間中に前記振動型圧縮機の前記電磁コイルに発生する誘起電圧の第2ゼロクロス位置を検出する第2ゼロクロス位置検出部と、
 前記振動型圧縮機の異常振動を検出する異常振動検出部であって、
 前記起動期間後、
 n周期目(nは整数)に検出された前記第1ゼロクロス位置及び前記第2ゼロクロス位置の一方と、n+1周期目に検出された前記第1ゼロクロス位置及び前記第2ゼロクロス位置の前記一方と、の間の期間の半分を第3期間とし、
 前記n周期目に検出された前記第1ゼロクロス位置及び前記第2ゼロクロス位置の前記一方と、前記n周期目に検出された前記第1ゼロクロス位置及び前記第2ゼロクロス位置の他方と、の間の期間を第4期間とし、
 第1所定期間毎に前記第3期間と前記第4期間との差分を積算した積算値が、連続して所定の閾値を第1所定回数超えた場合に当該振動型圧縮機の前記異常振動として検出する異常振動検出部と、
 前記異常振動検出部により検出された前記異常振動の状態を脱出する異常振動脱出部と、を有する
 振動型圧縮機の駆動装置であること。
[5]
 [3]に記載の振動型圧縮機の駆動装置において、
 前記異常振動脱出部は、前記第1スイッチ素子及び前記第2スイッチ素子のオンデューティを下げ、当該振動型圧縮機のバネ系の共振を減衰させて、前記異常振動の脱出を行う
 振動型圧縮機の駆動装置であること。
[6]
 [4]に記載の振動型圧縮機の駆動装置において、
 前記異常振動検出部は、前記起動期間後、
 前記n周期目に検出された前記第2ゼロクロス位置と、前記n+1周期に検出された前記第2ゼロクロス位置と、の間の期間の半分を前記第3期間とし、
 前記n周期目に検出された前記第2ゼロクロス位置と、前記n周期目に検出された前記第1ゼロクロス位置と、の間を前記第4期間とし、
 前記第3期間と前記第4期間との前記差分を求め、
 前記第1所定期間は、前記n周期目に検出された前記第2ゼロクロス位置から前記n+1周期目に検出された前記第2ゼロクロス位置までの1周期を1波とした10波~50波である、
 振動型圧縮機の駆動装置であること。
[7]
 [4]に記載の振動型圧縮機の駆動装置において、
 前記所定の閾値が、前記第3期間に対する前記差分の割合が0.23%~0.59%となるように設定される
 振動型圧縮機の駆動装置であること。
[8]
 [4]に記載の振動型圧縮機の駆動装置において、
 連続して前記所定の閾値を超える前記第1所定回数は、3回~10回である
 振動型圧縮機の駆動装置であること。
[9]
 [3]に記載の振動型圧縮機の駆動装置において、
 前記異常振動脱出部は、前記第1スイッチ素子及び前記第2スイッチ素子のオンデューティを0%~50%の間に下げる
 振動型圧縮機の駆動装置であること。
[10]
 [3]に記載の振動型圧縮機の駆動装置において、
 前記異常振動脱出部は、前記第1スイッチ素子及び前記第2スイッチ素子のオンオフ周期を変動させ、当該振動型圧縮機のバネ系の共振周波数を変動させる
 振動型圧縮機の駆動装置であること。
[11]
 [3]~[10]の何れか1項に記載の振動型圧縮機の駆動装置において、
 前記インバータ制御部は、前記異常振動脱出部による異常振動の状態が脱出された後の第2所定期間中に第2所定回数、前記異常振動を検出した場合、その後一定期間は通常動作を行う
 振動型圧縮機の駆動装置であること。
[12]
 [11]に記載の振動型圧縮機の駆動装置において、
 前記第2所定期間が1分間であり、前記第2所定回数が3回である
 振動型圧縮機の駆動装置であること。
[13]
 [11]に記載の振動型圧縮機の駆動装置において、
 前記一定期間は、3分間である
 振動型圧縮機の駆動装置であること。
[14]
 [1]に記載の振動型圧縮機の駆動装置において、
 前記インバータ制御部は、コンプレッサ動作開始直後は前記第1スイッチ素子及び前記第2スイッチ素子のオンデューティを誘導電圧が検出可能な最小のオンデューティとし、その後、前記オンデューティを徐々に大きくするソフトスタートを行う
 振動型圧縮機の駆動装置であること。
[15]
 [1]に記載の振動型圧縮機の駆動装置において、
 前記振動型圧縮機は、上開き型の蓋を有する冷蔵庫を駆動する
 振動型圧縮機の駆動装置であること。
[16]
 互いに直列接続された第1スイッチ素子及び第2スイッチ素子を有し、前記第1スイッチ素子及び前記第2スイッチ素子を交互にオンすることにより直流を交流に変換して、振動型圧縮機の電磁コイルに供給するインバータと、
 前記振動型圧縮機の入力に基づいて、前記第1スイッチ素子及び前記第2スイッチ素子のオン、オフのタイミングを制御して、前記振動型圧縮機のコイル及びピストンを含む可動部の共振周波数の変動に追従して駆動パルスを出力させるマイクロコンピュータと、を備えた
 振動型圧縮機の駆動装置であること。
[17]
 [16]に記載の振動型圧縮機の駆動装置において、
 前記振動型圧縮機の入力は誘起電圧である
 振動型圧縮機の駆動装置であること。
[18]
 [16]に記載の振動型圧縮機の駆動装置において、
 前記振動型圧縮機の入力は誘起電流である
 振動型圧縮機の駆動装置であること。
In order to achieve the above-mentioned object, a drive device for a vibrating compressor according to the present invention is characterized by the following [1] to [18].
[1]
an inverter having a first switch element and a second switch element connected in series with each other, which converts direct current into alternating current by alternately turning on the first switch element and the second switch element, and supplies the converted alternating current to an electromagnetic coil of a vibration type compressor;
a first zero-cross position detection unit that detects a first zero-cross position of an induced voltage generated in the electromagnetic coil of the vibration type compressor during a first period from when the first switch element is turned off to when the second switch element is turned on;
an inverter control unit that controls an on/off period of the first switch element and the second switch element based on the first zero cross position,
The inverter control unit sets the first period to be longer than a second period from when the second switch element is turned off to when the first switch element is turned on.
[2]
In the drive device of the vibration type compressor according to [1],
the inverter control unit makes the first period longer than the second period during a certain startup period immediately after power is turned on, and makes the first period equal to the second period after the startup period.
[3]
In the drive device of the vibration type compressor according to [2],
a second zero-cross position detector that detects a second zero-cross position of an induced voltage generated in the electromagnetic coil of the vibration compressor during the second period;
An abnormal vibration detection unit that detects abnormal vibration of the vibration type compressor,
After the start-up period,
a third period is half a period between one of the first zero cross position and the second zero cross position detected in an n-th period (n is an integer) and the one of the first zero cross position and the second zero cross position detected in an n+1-th period;
a period between the one of the first zero cross position and the second zero cross position detected in the nth period and the other of the first zero cross position and the second zero cross position detected in the nth period is defined as a fourth period,
an abnormal vibration detection unit that detects the abnormal vibration of the vibrating compressor when a difference between the third period and the fourth period exceeds a predetermined value;
an abnormal vibration escape unit that escapes from the abnormal vibration state detected by the abnormal vibration detection unit.
[4]
In the drive device of the vibration type compressor according to [2],
a second zero-cross position detector that detects a second zero-cross position of an induced voltage generated in the electromagnetic coil of the vibration compressor during the second period;
An abnormal vibration detection unit that detects abnormal vibration of the vibration type compressor,
After the start-up period,
a third period is half a period between one of the first zero cross position and the second zero cross position detected in an n-th period (n is an integer) and the one of the first zero cross position and the second zero cross position detected in an n+1-th period;
a period between the one of the first zero cross position and the second zero cross position detected in the nth period and the other of the first zero cross position and the second zero cross position detected in the nth period is defined as a fourth period,
an abnormal vibration detection unit that detects the abnormal vibration of the vibrating compressor when an integrated value obtained by integrating the difference between the third period and the fourth period for each first predetermined period exceeds a predetermined threshold value a first predetermined number of times in succession;
an abnormal vibration escape unit that escapes from the abnormal vibration state detected by the abnormal vibration detection unit.
[5]
In the drive device of the vibration type compressor according to [3],
The abnormal vibration escape unit is a drive device for a vibration compressor that reduces an on-duty of the first switch element and the second switch element to damp resonance of a spring system of the vibration compressor, thereby escaping from the abnormal vibration.
[6]
In the drive device of the vibration type compressor according to [4],
After the startup period, the abnormal vibration detection unit
a third period is a half of a period between the second zero cross position detected in the nth cycle and the second zero cross position detected in the n+1th cycle;
a fourth period is defined as a period between the second zero cross position detected in the nth period and the first zero cross position detected in the nth period;
determining the difference between the third period and the fourth period;
The first predetermined period is 10 waves to 50 waves, with one cycle from the second zero cross position detected in the nth cycle to the second zero cross position detected in the n+1th cycle being one wave.
It is a driving device for a vibrating compressor.
[7]
In the drive device of the vibration type compressor according to [4],
the predetermined threshold is set so that a ratio of the difference with respect to the third period is 0.23% to 0.59%.
[8]
In the drive device of the vibration type compressor according to [4],
The first predetermined number of times that the predetermined threshold value is exceeded consecutively is 3 to 10 times.
[9]
In the drive device of the vibration type compressor according to [3],
The abnormal vibration escape unit is a driving device for a vibration type compressor that reduces the on-duty of the first switch element and the second switch element to a value between 0% and 50%.
[10]
In the drive device of the vibration type compressor according to [3],
The abnormal vibration escape unit is a drive device for a vibration compressor, which varies an on/off period of the first switch element and the second switch element to vary a resonance frequency of a spring system of the vibration compressor.
[11]
In the drive device for a vibration type compressor according to any one of [3] to [10],
The inverter control unit is a drive device for a vibration-type compressor, and if the inverter control unit detects the abnormal vibration a second predetermined number of times during a second predetermined period after the abnormal vibration state is escaped by the abnormal vibration escape unit, the inverter control unit performs normal operation for a certain period thereafter.
[12]
In the drive device of the vibration type compressor according to [11],
The second predetermined period is one minute, and the second predetermined number of times is three.
[13]
In the drive device of the vibration type compressor according to [11],
The certain period is three minutes.
[14]
In the drive device of the vibration type compressor according to [1],
The inverter control unit sets the on-duty of the first switch element and the second switch element to a minimum on-duty at which an induced voltage can be detected immediately after the compressor starts operating, and then performs a soft start by gradually increasing the on-duty.
[15]
In the drive device of the vibration type compressor according to [1],
The vibration type compressor is a drive device for a vibration type compressor that drives a refrigerator having an upward-opening lid.
[16]
an inverter having a first switch element and a second switch element connected in series with each other, which converts direct current into alternating current by alternately turning on the first switch element and the second switch element, and supplies the converted alternating current to an electromagnetic coil of a vibration type compressor;
and a microcomputer that controls the on/off timing of the first switch element and the second switch element based on an input from the vibration type compressor, and outputs a drive pulse in accordance with a fluctuation in a resonance frequency of a movable part including a coil and a piston of the vibration type compressor.
[17]
In the drive device of the vibration type compressor according to [16],
The input of the vibration type compressor is an induced voltage.
[18]
In the drive device of the vibration type compressor according to [16],
The input of the vibration type compressor is an induced current.
 上記[1]の構成の振動型圧縮機の駆動装置によれば、第1期間>第2期間とすることにより、振動型圧縮機の振幅が小さいときであっても、第1ゼロクロス位置を有する誘起電圧の発生期間を長くすることができ、微小な第1ゼロクロス位置を検出しやすくでき、振動型圧縮機を効率よく運転することができ、消費電力を削減できる。
 上記[2]の構成の振動型圧縮機の駆動装置によれば、振動型圧縮機の振幅が小さい起動時に第1期間>第2期間とすることができ、起動を安定して行えることができる。
 上記[3]及び[4]の構成の振動型圧縮機の駆動装置によれば、振動センサなどを設置することなく、異常振動を検出して、異常振動から脱出することができる。
 上記[5]の構成の振動型圧縮機の駆動装置によれば、振動型圧縮機のバネ系の共振が減衰し、異常振動から脱出することができる。
 上記[6]~[8]の構成の振動型圧縮機の駆動装置によれば、異常振動を検出することができる。
 上記[9]及び[10]の構成の振動型圧縮機の駆動装置によれば、異常振動から脱出することができる。
 上記[11]~[13]の構成の振動型圧縮機の駆動装置によれば、振動型圧縮機によって駆動される冷蔵庫の過剰な停止を防止し冷却性能を維持することができる。
 上記[14]の構成の振動型圧縮機の駆動装置によれば、電源投入後、安定して振動型圧縮機を起動できる。
 上記[15]の構成の振動型圧縮機の駆動装置によれば、冷蔵庫が再起動し、振動型圧縮機の出力低下による冷却性能が低下したときでも、冷気が漏れにくいので冷却性能を保持できる。
 上記[16]~[18]の構成の振動型圧縮機の駆動装置によれば、振動型圧縮機の種類よらず周波数追従が可能となる。
According to the drive device for a vibrating compressor having the configuration [1] above, by making the first period greater than the second period, even when the amplitude of the vibrating compressor is small, it is possible to lengthen the generation period of an induced voltage having a first zero cross position, make it easier to detect a minute first zero cross position, and operate the vibrating compressor efficiently, thereby reducing power consumption.
According to the driving device for a vibrating compressor having the configuration [2] above, the first period can be made greater than the second period during startup when the amplitude of the vibrating compressor is small, and startup can be performed stably.
According to the driving device for a vibrating compressor having the configurations [3] and [4] above, it is possible to detect abnormal vibrations and escape from the abnormal vibrations without installing a vibration sensor or the like.
According to the driving device for a vibrating compressor having the configuration [5] above, the resonance of the spring system of the vibrating compressor is damped, and it is possible to escape from abnormal vibration.
According to the vibrating compressor driving device having the configurations [6] to [8] above, abnormal vibration can be detected.
According to the vibrating compressor drive device having the configurations [9] and [10] above, it is possible to escape from abnormal vibration.
According to the drive device for a vibrating compressor having the configurations [11] to [13] above, excessive stoppage of a refrigerator driven by the vibrating compressor can be prevented and cooling performance can be maintained.
According to the driving device for a vibrating compressor having the configuration described above in [14], the vibrating compressor can be started stably after power is turned on.
According to the drive device for the vibrating compressor having the configuration [15] above, even when the refrigerator is restarted and the cooling performance is reduced due to a drop in output of the vibrating compressor, cool air is unlikely to leak, so that the cooling performance can be maintained.
According to the driving device for a vibrating compressor having the configurations [16] to [18] above, frequency tracking is possible regardless of the type of vibrating compressor.
 本発明によれば、第1ゼロクロス位置を検出しやすく、振動型圧縮機を効率的に運転することができ、消費電力を削減できる振動型圧縮機を提供することができる。 The present invention provides a vibration compressor that is easy to detect the first zero cross position, can operate efficiently, and can reduce power consumption.
 以上、本発明について簡潔に説明した。更に、以下に説明される発明を実施するための形態(以下、「実施形態」という。)を添付の図面を参照して通読することにより、本発明の詳細は更に明確化されるであろう。 The present invention has been briefly described above. Furthermore, the details of the present invention will become clearer by reading the following description of the mode for carrying out the invention (hereinafter referred to as "embodiment") with reference to the attached drawings.
図1は、本発明の振動型圧縮機の駆動装置の一実施形態を示す回路図である。FIG. 1 is a circuit diagram showing an embodiment of a drive device for a vibrating compressor according to the present invention. 図2は、図1に示す振動型圧縮機の概略断面図である。FIG. 2 is a schematic cross-sectional view of the vibrating compressor shown in FIG. 図3は、図1に示す振動型圧縮機の駆動装置のデューティアップ時、定常時におけるインバータの出力電圧、ピストンの位置、タイマーカウント値、上段トランジスタ及び下段トランジスタのオンオフ状態、第1誘起電圧パルス、第1検出範囲、第1検出範囲中の第1誘起電圧パルス、第2誘起電圧パルス、第2検出範囲、第2検出範囲中の第2誘起電圧パルスのタイムチャートである。FIG. 3 is a time chart of the inverter output voltage, the piston position, the timer count value, the on/off states of the upper transistor and the lower transistor, the first induced voltage pulse, the first detection range, the first induced voltage pulse in the first detection range, the second induced voltage pulse, the second detection range, and the second induced voltage pulse in the second detection range, during duty-up and steady state of the drive device of the vibrating compressor shown in FIG. 1 . 図4は、図1に示すMCUが実行するメイン処理の処理手順を示すフローチャートである。FIG. 4 is a flowchart showing the procedure of the main process executed by the MCU shown in FIG. 図5は、図1に示すMCUが実行する出力周期処理の処理手順を示すフローチャートである。FIG. 5 is a flowchart showing the procedure of the output period processing executed by the MCU shown in FIG. 図6は、図1に示すMCUが実行する割込み処理の処理手順を示すフローチャートである。FIG. 6 is a flowchart showing the procedure of the interrupt process executed by the MCU shown in FIG. 図7は、図1に示すMCUが実行するタイマー処理の処理手順を示すフローチャートである。FIG. 7 is a flowchart showing a procedure of the timer process executed by the MCU shown in FIG. 図8は、図1に示す振動型圧縮機の電源のオンオフ、コンプレッサ電流のタイムチャートである。FIG. 8 is a time chart showing the on/off of the power supply and the compressor current of the vibration type compressor shown in FIG. 図9は、図1に示す振動型圧縮機の駆動装置の起動時における上段トランジスタ及び下段トランジスタのオンオフ状態、インバータの出力電圧、第1検出範囲のタイムチャートである。FIG. 9 is a time chart showing the on/off states of the upper and lower transistors, the output voltage of the inverter, and the first detection range when the driving device for the vibrating compressor shown in FIG. 1 is started up. 図10は、異常振動の検出処理について説明するためのインバータの出力電圧のタイムチャートである。FIG. 10 is a time chart of the output voltage of the inverter for explaining the abnormal vibration detection process. 図11は、図1に示すMCUが実行する異常振動の検出処理の処理手順を示すフローチャートである。FIG. 11 is a flowchart showing a procedure of the abnormal vibration detection process executed by the MCU shown in FIG.
 本発明に関する具体的な実施形態について、各図を参照しながら以下に説明する。 Specific embodiments of the present invention are described below with reference to the figures.
 図1は、本発明の振動型圧縮機の駆動装置の一実施形態を示す回路図である。振動型圧縮機20は、例えば自動車などに搭載されている冷蔵庫、或いはコンテナ自体が冷蔵庫となっている場合の冷蔵庫を駆動するためのものであり、低電圧の交流電圧で動作する。本実施形態では、振動型圧縮機20は、上開き型の蓋を有する冷蔵庫を駆動する。 FIG. 1 is a circuit diagram showing one embodiment of a drive device for a vibration compressor of the present invention. The vibration compressor 20 is for driving a refrigerator, for example, mounted on an automobile or a refrigerator in which the container itself is a refrigerator, and operates on a low AC voltage. In this embodiment, the vibration compressor 20 drives a refrigerator having a top-opening lid.
 図1に示す振動型圧縮機20の駆動装置1(以下、単に「駆動装置」と略記する)は、プラグ14に商用交流電源40が接続されていないときは、自動車に搭載されているようなバッテリ30によって振動型圧縮機20を駆動する。駆動装置1は、プラグ14に商用交流電源40が接続されているときは、商用交流電源40によって振動型圧縮機20を駆動する装置である。 The drive device 1 (hereinafter simply referred to as the "drive device") for the vibration compressor 20 shown in FIG. 1 drives the vibration compressor 20 using a battery 30 such as that installed in an automobile when the commercial AC power source 40 is not connected to the plug 14. The drive device 1 is a device that drives the vibration compressor 20 using the commercial AC power source 40 when the commercial AC power source 40 is connected to the plug 14.
 まず、駆動装置1の構成について説明する前に、図2を参照して、振動型圧縮機20について説明する。振動型圧縮機20は、密閉容器21と、密閉容器21に収容された圧縮機本体22と、密閉容器21と圧縮機本体22の上下との間に設けた一対の防振バネ23,23と、を備えている。圧縮機本体22は、円筒状の外部鉄心221と、外部鉄心221内に挿入された円柱状の内部鉄心222と、内部鉄心222の外側面に配設された永久磁石223と、永久磁石223と外部鉄心221とで形成される環状の隙間に上下に振動可能に配置された電磁コイル224と、電磁コイル224に連結されたピストン225と、ピストン225を上下から付勢する一対の共振バネ226,226と、を備えている。振動型圧縮機20は、電磁コイル224に交流電源を供給して電磁コイル224に連結されたピストン225を振動させ、密閉容器21内に低圧の冷媒を流入し圧縮された高圧の冷媒を吐出するものである。 First, before describing the configuration of the drive unit 1, the vibration compressor 20 will be described with reference to Figure 2. The vibration compressor 20 includes a sealed container 21, a compressor body 22 housed in the sealed container 21, and a pair of vibration-proof springs 23, 23 provided between the sealed container 21 and the compressor body 22 from above and below. The compressor body 22 includes a cylindrical external core 221, a cylindrical internal core 222 inserted into the external core 221, a permanent magnet 223 disposed on the outer surface of the internal core 222, an electromagnetic coil 224 disposed in an annular gap formed by the permanent magnet 223 and the external core 221 so as to be able to vibrate up and down, a piston 225 connected to the electromagnetic coil 224, and a pair of resonant springs 226, 226 that bias the piston 225 from above and below. The vibration compressor 20 supplies AC power to the electromagnetic coil 224 to vibrate the piston 225 connected to the electromagnetic coil 224, and flows low-pressure refrigerant into the sealed container 21 and discharges the compressed high-pressure refrigerant.
 図1に示すように、駆動装置1は、AC/DCコンバータ2と、DC/DCコンバータ3と、ダイオードD1,D2と、インバータ4と、コンピュータとしてのMCU(Main Control Unit)5と、PC(Personal Computer)通信部6と、誘起電圧検出部7と、ドライバ8と、入力電圧検出部9と、DC/DCコンバータIC10と、直流電圧検出部11と、DC/DCコンバータ12と、ファン13と、を備えている。 As shown in FIG. 1, the drive device 1 includes an AC/DC converter 2, a DC/DC converter 3, diodes D1 and D2, an inverter 4, an MCU (Main Control Unit) 5 as a computer, a PC (Personal Computer) communication unit 6, an induced voltage detection unit 7, a driver 8, an input voltage detection unit 9, a DC/DC converter IC 10, a DC voltage detection unit 11, a DC/DC converter 12, and a fan 13.
 AC/DCコンバータ2は、商用交流電源40からの交流電源を所望の直流電源に変換する。DC/DCコンバータ3は、バッテリ30から供給される直流のバッテリ電圧VBを昇圧して所望の直流電源に変換する。DC/DCコンバータ3は、サージ保護用のツェナーダイオードDZ1,DZ2と、バッテリ電圧VBから高周波成分を除去するフィルタ回路31と、逆流防止回路32と、コイルL1、トランジスタTR1と、ダイオードD2と、コンデンサC11,C12と、コンデンサC21,C22と、を備えている。 AC/DC converter 2 converts AC power from commercial AC power source 40 into the desired DC power. DC/DC converter 3 boosts DC battery voltage VB supplied from battery 30 and converts it into the desired DC power. DC/DC converter 3 includes Zener diodes DZ1 and DZ2 for surge protection, a filter circuit 31 that removes high-frequency components from battery voltage VB, a backflow prevention circuit 32, coil L1, transistor TR1, diode D2, capacitors C11 and C12, and capacitors C21 and C22.
 コイルL1の一端は、フィルタ回路31を介してバッテリ30の正極に接続され、高周波成分が除去されたバッテリ電圧VBが供給される。トランジスタTR1は、Nチャンネルの電界効果トランジスタから構成されている。トランジスタTR1は、ドレインがコイルL1の他端に接続され、ソースがグランドに接続されている。ダイオードD2は、アノードがコイルL1の他端及びトランジスタTR1のドレインに接続されている。コンデンサC11,C12は、コイルL1の一端とグランドとの間に接続されている。コンデンサC21,C22は、ダイオードD2のカソードとグランドとの間に接続されている。 One end of the coil L1 is connected to the positive electrode of the battery 30 via the filter circuit 31, and is supplied with the battery voltage VB from which high-frequency components have been removed. The transistor TR1 is composed of an N-channel field-effect transistor. The drain of the transistor TR1 is connected to the other end of the coil L1, and the source is connected to ground. The anode of the diode D2 is connected to the other end of the coil L1 and the drain of the transistor TR1. The capacitors C11 and C12 are connected between one end of the coil L1 and the ground. The capacitors C21 and C22 are connected between the cathode of the diode D2 and the ground.
 上述した構成のDC/DCコンバータ3によれば、トランジスタTR1をオンすると、バッテリ電圧VBに充電されたコンデンサC11,C12の両端電圧をコンデンサC21,C22に供給する。このとき、コイルL1にエネルギーが蓄積される。次に、トランジスタTR1をオフすると、コンデンサC11,C12とコイルL1の両端電圧の和がコンデンサC21,C22に供給される。コンデンサC21,C22の電圧が、DC/DCコンバータ3により変換(昇圧)された直流電圧として、次段のインバータ4へ供給される。 In the DC/DC converter 3 configured as described above, when the transistor TR1 is turned on, the voltages across the capacitors C11 and C12, which are charged to the battery voltage VB, are supplied to the capacitors C21 and C22. At this time, energy is stored in the coil L1. Next, when the transistor TR1 is turned off, the sum of the voltages across the capacitors C11 and C12 and the coil L1 is supplied to the capacitors C21 and C22. The voltages across the capacitors C21 and C22 are supplied to the inverter 4 in the next stage as DC voltages converted (boosted) by the DC/DC converter 3.
 ダイオードD1は、AC/DCコンバータ2とインバータ4との間に接続される。詳しく説明すると、ダイオードD1のアノードがAC/DCコンバータ2側に接続され、カソードがインバータ4側に接続され、ダイオードD1を介してAC/DCコンバータ2によって変換された直流電源がインバータ4に供給される。 Diode D1 is connected between AC/DC converter 2 and inverter 4. To explain in more detail, the anode of diode D1 is connected to the AC/DC converter 2 side and the cathode is connected to the inverter 4 side, and the DC power converted by AC/DC converter 2 is supplied to inverter 4 via diode D1.
 ダイオードD2は、DC/DCコンバータ3とインバータ4との間に接続される。詳しく説明すると、ダイオードD2のアノードがDC/DCコンバータ3側に接続され、カソードがインバータ4側に接続され、ダイオードD2を介してDC/DCコンバータ3によって変換された直流電源がインバータ4に供給される。 Diode D2 is connected between DC/DC converter 3 and inverter 4. To explain in more detail, the anode of diode D2 is connected to the DC/DC converter 3 side, and the cathode is connected to the inverter 4 side, and the DC power converted by DC/DC converter 3 is supplied to inverter 4 via diode D2.
 インバータ4は、AC/DCコンバータ2又はDC/DCコンバータ3により変換された直流電源を交流電源に変換して、振動型圧縮機20の電磁コイル224に供給する。インバータ4は、ダイオードD1,D2のカソードとグランドとの間に直列接続された第1スイッチ素子としての上段トランジスタTR21及び第2スイッチ素子としての下段トランジスタTR22と、直流成分カット用のコンデンサC31,C32及び平滑用のコイルL2と、を備えている。 The inverter 4 converts the DC power source converted by the AC/DC converter 2 or the DC/DC converter 3 into AC power source and supplies it to the electromagnetic coil 224 of the vibration compressor 20. The inverter 4 includes an upper transistor TR21 as a first switch element and a lower transistor TR22 as a second switch element connected in series between the cathodes of the diodes D1, D2 and the ground, capacitors C31, C32 for cutting the DC component, and a smoothing coil L2.
 上段トランジスタTR21及び下段トランジスタTR22は、Nチャンネルの電界効果トランジスタから構成されている。上段トランジスタTR21は、ドレインがダイオードD1,D2のカソードに接続され、ソースが下段トランジスタTR22のドレインに接続されている。下段トランジスタTR22は、ドレインが上段トランジスタTR21のソースに接続され、ソースがグランドに接続されている。上段トランジスタTR21及び下段トランジスタTR22は、後述するDC/DCコンバータIC10に接続され、交互にオンオフ制御される。 The upper transistor TR21 and the lower transistor TR22 are composed of N-channel field effect transistors. The upper transistor TR21 has a drain connected to the cathodes of the diodes D1 and D2, and a source connected to the drain of the lower transistor TR22. The lower transistor TR22 has a drain connected to the source of the upper transistor TR21, and a source connected to ground. The upper transistor TR21 and the lower transistor TR22 are connected to the DC/DC converter IC10, which will be described later, and are alternately turned on and off.
 コンデンサC31,C32は、一端が上段トランジスタTR21のソース及び下段トランジスタT22のドレインに接続され、他端がコイルL2の一端に接続されている。コイルL2の他端は、振動型圧縮機20の電磁コイル224の一端に接続されている。電磁コイル224の他端は、グランドに接続されている。 One end of each of the capacitors C31 and C32 is connected to the source of the upper transistor TR21 and the drain of the lower transistor T22, and the other end is connected to one end of the coil L2. The other end of the coil L2 is connected to one end of the electromagnetic coil 224 of the vibration compressor 20. The other end of the electromagnetic coil 224 is connected to ground.
 次に、後述するデューティアップ時、定常時における上段トランジスタTR21及び下段トランジスタTR22のオンオフ、インバータ4の出力電圧VOUT、ピストン225の位置と、について図3を参照して説明する。なお、図3中、第1検出範囲、第2検出範囲については斜線で示す。同図に示すように、上段トランジスタTR21及び下段トランジスタTR22は交互にオンされる。上段トランジスタTR21のオン期間と、下段トランジスタTR22のオン期間と、の間には上段トランジスタT21及び下段トランジスタTR22の双方がオフとなる第1デッドタイムDT1(=第1期間),第2デッドタイムDT2(第2期間)が設けられている。 Next, the on/off of the upper transistor TR21 and the lower transistor TR22 during duty up and steady state, the output voltage VOUT of the inverter 4, and the position of the piston 225 will be described with reference to FIG. 3. In FIG. 3, the first and second detection ranges are indicated by diagonal lines. As shown in the figure, the upper transistor TR21 and the lower transistor TR22 are alternately turned on. Between the on period of the upper transistor TR21 and the on period of the lower transistor TR22, there is provided a first dead time DT1 (=first period) and a second dead time DT2 (second period) during which both the upper transistor TR21 and the lower transistor TR22 are off.
 上段トランジスタTR21がオン、下段トランジスタTR22がオフすると、上段トランジスタTR21のソース電圧(下段トランジスタTR22のドレイン電圧)が入力電圧VINとなり、コンデンサC31,C32が充電される。入力電圧VINは、AC/DCコンバータ2又はDC/DCコンバータ3から供給される直流電圧である。このとき、電磁コイル224に供給される出力電圧VOUTは、入力電圧VINからコンデンサC31,C32の両端電圧を差し引いた正の電圧が供給される。電磁コイル224に正の電圧が供給されると、電磁コイル224にピストン225を上死点に移動させる力が発生し、ピストン225は上下の共振バネ226が釣り合う中立位置を越えて上死点に向かって移動する。 When the upper transistor TR21 is on and the lower transistor TR22 is off, the source voltage of the upper transistor TR21 (the drain voltage of the lower transistor TR22) becomes the input voltage VIN, and the capacitors C31 and C32 are charged. The input voltage VIN is a direct current voltage supplied from the AC/DC converter 2 or the DC/DC converter 3. At this time, the output voltage VOUT supplied to the electromagnetic coil 224 is a positive voltage obtained by subtracting the voltages across the capacitors C31 and C32 from the input voltage VIN. When a positive voltage is supplied to the electromagnetic coil 224, a force is generated in the electromagnetic coil 224 that moves the piston 225 to the top dead center, and the piston 225 moves toward the top dead center beyond the neutral position where the upper and lower resonant springs 226 are balanced.
 次に、上段トランジスタTR21及び下段トランジスタTR22の双方がオフすると、出力電圧VOUTには負の反起電力(逆起電力)が発生する。また、上段トランジスタTR21及び下段トランジスタTR22の双方がオフした後も、ピストン225は、慣性力により上死点に向かって移動し、これにより出力電圧VOUTには正の誘起電圧が発生する。ピストン225が上死点に達して停止すると、出力電圧VOUTは0Vとなる。ピストン225は、上死点に達した後、共振バネ226の付勢力により下死点側にある中立位置に向かって移動し、これにより出力電圧VOUTには負の誘起電圧が発生する。 Next, when both the upper transistor TR21 and the lower transistor TR22 are turned off, a negative counter electromotive force (counter electromotive force) is generated in the output voltage VOUT. Even after both the upper transistor TR21 and the lower transistor TR22 are turned off, the piston 225 continues to move toward the top dead center due to inertia, which generates a positive induced voltage in the output voltage VOUT. When the piston 225 reaches the top dead center and stops, the output voltage VOUT becomes 0V. After reaching the top dead center, the piston 225 moves toward the neutral position on the bottom dead center side due to the biasing force of the resonant spring 226, which generates a negative induced voltage in the output voltage VOUT.
 次に、上段トランジスタTR21がオフ、下段トランジスタTR22がオンすると、上段トランジスタTR21のソース電圧(下段トランジスタTR22のドレイン電圧)がグランド(0V)となり、コンデンサC31,C32が放電される。このとき、電磁コイル224に供給される出力電圧VOUTは、0VからコンデンサC31,C32の両端電圧を差し引いた負の電圧が供給される。電磁コイル224に負の電圧が供給されると、電磁コイル224にピストン225を下死点に移動させる力が発生し、ピストン225が中立位置を越えて下死点に向かって移動する。 Next, when the upper transistor TR21 is turned off and the lower transistor TR22 is turned on, the source voltage of the upper transistor TR21 (the drain voltage of the lower transistor TR22) becomes ground (0V), and the capacitors C31 and C32 are discharged. At this time, the output voltage VOUT supplied to the electromagnetic coil 224 is a negative voltage obtained by subtracting the voltage across the capacitors C31 and C32 from 0V. When a negative voltage is supplied to the electromagnetic coil 224, a force is generated in the electromagnetic coil 224 that moves the piston 225 to the bottom dead center, and the piston 225 moves beyond the neutral position toward the bottom dead center.
 また、次に、上段トランジスタTR21及び下段トランジスタTR22の双方がオフすると、出力電圧VOUTには正の反起電力が発生する。上段トランジスタTR21及び下段トランジスタTR22の双方がオフした後も、ピストン225は、慣性力により下死点に向かって移動し、これにより出力電圧VOUTには負の誘起電圧が発生する。ピストン225が下死点に達して停止すると、出力電圧VOUTは0Vとなる。ピストン225は、下死点に達した後、共振バネ226の付勢力により上死点側にある中立位置に向かって移動し、これにより出力電圧VOUTには正の誘起電圧が発生する。 Next, when both the upper transistor TR21 and the lower transistor TR22 are turned off, a positive counter-electromotive force is generated in the output voltage VOUT. Even after both the upper transistor TR21 and the lower transistor TR22 are turned off, the piston 225 continues to move toward the bottom dead center due to inertia, which generates a negative induced voltage in the output voltage VOUT. When the piston 225 reaches the bottom dead center and stops, the output voltage VOUT becomes 0V. After reaching the bottom dead center, the piston 225 moves toward the neutral position on the top dead center side due to the biasing force of the resonant spring 226, which generates a positive induced voltage in the output voltage VOUT.
 MCU5は、プログラムに従って動作する周知のコンピュータであり、駆動装置1全体の制御を司る。本実施形態においては、MCU5は、温度センサが内蔵されている。PC通信部6は、PCと通信を行うためのインタフェースであり、MCU5によって制御される。誘起電圧検出部7は、インバータ4の出力電圧VOUTが正の電圧、負の電圧のときにHレベルとなる第1誘起電圧パルス、第2誘起電圧パルス(図3参照)を生成して、MCU5に出力する。ドライバ8は、MCU5の制御に応じて、上段トランジスタTR21及び下段トランジスタTR22のゲートに駆動パルスを出力する。入力電圧検出部9は、インバータ4に入力される入力電圧VINを検出して、AD変換したAD値をMCU5に供給する。なお、入力電圧検出部9の電圧に基づいて、振動型圧縮機20に供給する電力が一定になるようにデューティを可変させてMCU5で制御を行っている。 The MCU 5 is a well-known computer that operates according to a program, and controls the entire drive device 1. In this embodiment, the MCU 5 has a built-in temperature sensor. The PC communication unit 6 is an interface for communicating with a PC, and is controlled by the MCU 5. The induced voltage detection unit 7 generates a first induced voltage pulse and a second induced voltage pulse (see FIG. 3) that are at H level when the output voltage VOUT of the inverter 4 is a positive voltage or a negative voltage, and outputs them to the MCU 5. The driver 8 outputs drive pulses to the gates of the upper transistor TR21 and the lower transistor TR22 according to the control of the MCU 5. The input voltage detection unit 9 detects the input voltage VIN input to the inverter 4, and supplies the AD value converted by AD conversion to the MCU 5. The MCU 5 controls the duty cycle based on the voltage of the input voltage detection unit 9 so that the power supplied to the vibration compressor 20 is constant.
 DC/DCコンバータIC10は、入力電圧VIN、即ちDC/DCコンバータ3の出力電圧を検出し、入力電圧VINが所望の電圧となるようにトランジスタTR1のオンオフを制御する。DC/DCコンバータIC10は、MCU5から許可信号が出力されている間、入力電圧VINが所望の直流電圧となるようにトランジスタTR1のオンオフ制御を行い、MCU5から許可信号の出力が停止されると、トランジスタTR1のオンオフ制御を停止する。 The DC/DC converter IC10 detects the input voltage VIN, i.e., the output voltage of the DC/DC converter 3, and controls the on/off of the transistor TR1 so that the input voltage VIN becomes the desired voltage. While an enable signal is being output from the MCU 5, the DC/DC converter IC10 controls the on/off of the transistor TR1 so that the input voltage VIN becomes the desired DC voltage, and stops the on/off control of the transistor TR1 when the output of the enable signal from the MCU 5 is stopped.
 直流電圧検出部11は、AC/DCコンバータ2の出力電圧VOUT2にダイオードD3を介して接続されている。直流電圧検出部11は、出力電圧VOUT2を検出し、AD変換したAD値をMCU5に出力する。なお、ダイオードD3のカソードは、ダイオードD4のカソードに接続されている。ダイオードD4のアノードは、コイルL1の一端に接続され、バッテリ電圧VBが供給される。DC/DCコンバータ12は、ダイオードD3,D4のカソードが接続され、出力電圧VOUT2、バッテリ電圧VBを所望の直流電圧(例えば11V)に変換して、ファン13に対して出力する。 The DC voltage detection unit 11 is connected to the output voltage VOUT2 of the AC/DC converter 2 via a diode D3. The DC voltage detection unit 11 detects the output voltage VOUT2, and outputs the AD-converted AD value to the MCU 5. The cathode of the diode D3 is connected to the cathode of the diode D4. The anode of the diode D4 is connected to one end of the coil L1 and is supplied with the battery voltage VB. The DC/DC converter 12 has the cathodes of the diodes D3 and D4 connected thereto, and converts the output voltage VOUT2 and the battery voltage VB into the desired DC voltage (for example, 11 V) and outputs it to the fan 13.
 次に、上述した構成の駆動装置1の動作について、図4に示すフローチャートを参照して以下説明する。まず、電源がオンされると、MCU5は、初期化、故障診断を行う(S1、S2)。次に、MCU5は、直流電圧検出部11から出力されるAD値を取り込み(S3)、AC優先処理を行う(S4)。 Next, the operation of the drive device 1 configured as described above will be described below with reference to the flowchart shown in FIG. 4. First, when the power is turned on, the MCU 5 performs initialization and fault diagnosis (S1, S2). Next, the MCU 5 takes in the AD value output from the DC voltage detection unit 11 (S3) and performs AC priority processing (S4).
 AC優先処理において、MCU5は、S3で取り込んだAD値に基づいてプラグ14に商用交流電源40が接続されているか否かを判定する。AC/DCコンバータ2は、バッテリ電圧VBよりも高い出力電圧VOUT2を出力する。MCU5は、S3で取り込んだAD値がバッテリ電圧VBよりも高い場合、プラグ14に商用交流電源40が接続されていると判定し、DC/DCコンバータIC10に対して許可信号の出力を停止する。DC/DCコンバータIC10は、許可信号が停止されている間はトランジスタTR1の制御を停止し、昇圧動作を行わない。これにより、プラグ14に商用交流電源40が接続されている場合は、DC/DCコンバータ3の昇圧動作が停止され、商用交流電源40によって振動型圧縮機20を駆動する。 In the AC priority process, the MCU 5 determines whether or not the commercial AC power supply 40 is connected to the plug 14 based on the AD value acquired in S3. The AC/DC converter 2 outputs an output voltage VOUT2 higher than the battery voltage VB. If the AD value acquired in S3 is higher than the battery voltage VB, the MCU 5 determines that the commercial AC power supply 40 is connected to the plug 14, and stops outputting the permission signal to the DC/DC converter IC 10. While the permission signal is stopped, the DC/DC converter IC 10 stops controlling the transistor TR1 and does not perform the boost operation. As a result, when the commercial AC power supply 40 is connected to the plug 14, the boost operation of the DC/DC converter 3 is stopped, and the vibrating compressor 20 is driven by the commercial AC power supply 40.
 一方、MCU5は、S3で取り込んだAD値がバッテリ電圧VBであった場合、プラグ14に商用交流電源40が接続されていないと判定し、DC/DCコンバータIC10に対して許可信号を出力する。DC/DCコンバータIC10は、許可信号が出力されている間はトランジスタTR1の制御を行い、昇圧動作を行う。これにより、プラグ14に商用交流電源40が接続されていない場合は、DC/DCコンバータ3の昇圧動作が行われ、バッテリ30によって振動型圧縮機20を駆動する。 On the other hand, if the AD value captured in S3 is the battery voltage VB, the MCU 5 determines that the commercial AC power supply 40 is not connected to the plug 14, and outputs an enable signal to the DC/DC converter IC 10. While the enable signal is being output, the DC/DC converter IC 10 controls the transistor TR1 and performs a boost operation. As a result, when the commercial AC power supply 40 is not connected to the plug 14, the DC/DC converter 3 performs a boost operation, and the vibrating compressor 20 is driven by the battery 30.
 次に、MCU5は、例えばPCやコントローラ等との通信処理を行い(S5)、ファン13を制御するファン処理を行う(S6)。その後、MCU5は、インバータ制御部として機能し、上段トランジスタTR21及び下段トランジスタTR22のオンデューティ、出力周期を設定する出力周期処理を行う(S7)。出力周期処理については後述する。次に、MCU5は、異常振動検出部として機能し、異常振動の検出処理を行った後(S8)、再びS2に戻る。異常振動の検出処理についても後述する。 Then, the MCU 5 performs communication processing with, for example, a PC or a controller (S5), and performs fan processing to control the fan 13 (S6). Thereafter, the MCU 5 functions as an inverter control unit, and performs output cycle processing to set the on-duty and output cycle of the upper transistor TR21 and the lower transistor TR22 (S7). The output cycle processing will be described later. Next, the MCU 5 functions as an abnormal vibration detection unit, and performs abnormal vibration detection processing (S8), and then returns to S2 again. The abnormal vibration detection processing will also be described later.
 まず、出力周期処理について図5を参照して説明する。まず、MCU5は、上段トランジスタTR21及び下段トランジスタTR22のオンデューティをセットする(S71)。S71において、MCU5は、内蔵された温度センサから周囲温度を検出し、周囲温度に応じてオンデューティをセットする。具体的には、MCU5は、周囲温度が高いときにオンデューティが大きく、周囲温度が低いときにオンデューティが小さくなるようにセットする。 First, the output period processing will be described with reference to FIG. 5. First, the MCU 5 sets the on-duty of the upper transistor TR21 and the lower transistor TR22 (S71). In S71, the MCU 5 detects the ambient temperature using the built-in temperature sensor and sets the on-duty according to the ambient temperature. Specifically, the MCU 5 sets the on-duty so that it is large when the ambient temperature is high and small when the ambient temperature is low.
 次に、MCU5は、第1ゼロクロス位置Aが基準より大きいか否かを判定する(S72)。この第1ゼロクロス位置Aについて図3を参照して説明する。第1ゼロクロス位置Aは、ピストン225が上死点に達する位置(タイミング)であり、上段トランジスタTR21がオフしてから下段トランジスタTR22がオンするまでの第1デッドタイムDT1中に電磁コイル224に発生する誘起電圧が0Vとなる位置である。より詳しく説明すると、MCU5は、0~1023までのカウントアップを行うタイマー処理を繰り返し行っている。第1ゼロクロス位置Aは、誘起電圧が0Vに達した時のタイマー処理によるカウント値である。 Next, the MCU 5 determines whether the first zero cross position A is greater than a reference (S72). This first zero cross position A will be described with reference to FIG. 3. The first zero cross position A is the position (timing) at which the piston 225 reaches top dead center, and is the position at which the induced voltage generated in the electromagnetic coil 224 becomes 0V during the first dead time DT1 from when the upper transistor TR21 turns off to when the lower transistor TR22 turns on. To explain in more detail, the MCU 5 repeatedly performs timer processing that counts up from 0 to 1023. The first zero cross position A is the count value by the timer processing when the induced voltage reaches 0V.
 0~1023のカウントに係る時間は、共振バネ226の共振周期と概ね等しい。しかしながら、電磁コイル224及びピストン225を含む可動部の共振周期は、共振バネ226の温度や負荷変動などにより変化する。このために、本実施形態ではMCU5は、第1ゼロクロス位置Aに基づいて上段トランジスタTR21及び下段トランジスタTR22の出力周期(オンオフ周期)を微調整して、電磁コイル224及びピストン225を含む可動部が共振バネ226の共振周波数で振動するように周波数追従制御を行っている。 The time it takes to count from 0 to 1023 is roughly equal to the resonance period of the resonant spring 226. However, the resonance period of the moving part including the electromagnetic coil 224 and the piston 225 changes due to factors such as the temperature of the resonant spring 226 and load fluctuations. For this reason, in this embodiment, the MCU 5 fine-tunes the output period (on/off period) of the upper transistor TR21 and the lower transistor TR22 based on the first zero-cross position A, and performs frequency tracking control so that the moving part including the electromagnetic coil 224 and the piston 225 vibrates at the resonance frequency of the resonant spring 226.
 話を図5のフローチャートに戻すと、MCU5は、第1ゼロクロス位置Aが基準より大きい場合(S72でY)、現在セットされている出力周期が共振バネ226の共振周期よりも短いと判断して、次の出力周期を少し長くした(S73)後、S74に進む。一方、MCU5は、第1ゼロクロス位置Aが基準以下の場合(S72でN)、直ちにS74に進む。S74においては、MCU5は、第1ゼロクロス位置Aが基準より小さいか否かを判定する。 Returning to the flowchart of FIG. 5, if the first zero cross position A is greater than the reference (Y in S72), the MCU 5 determines that the currently set output period is shorter than the resonance period of the resonance spring 226, and lengthens the next output period slightly (S73), before proceeding to S74. On the other hand, if the first zero cross position A is equal to or smaller than the reference (N in S72), the MCU 5 immediately proceeds to S74. In S74, the MCU 5 determines whether the first zero cross position A is smaller than the reference.
 MCU5は、第1ゼロクロス位置Aが基準より小さい場合(S74でY)、現在セットされている出力周期が共振バネ226の共振周期よりも長いと判断して、次の出力周期を少し短くした(S75)後、S76に進む。一方、MCU5は、第1ゼロクロス位置Aが基準と等しい場合(S74でN)、直ちにS76に進む。次に、MCU5は、S73、S75で調整した周期に次の出力周期をセットして(S75)、出力周期処理を終了する。 If the first zero cross position A is smaller than the reference (Y in S74), the MCU 5 determines that the currently set output period is longer than the resonance period of the resonance spring 226, shortens the next output period slightly (S75), and then proceeds to S76. On the other hand, if the first zero cross position A is equal to the reference (N in S74), the MCU 5 immediately proceeds to S76. Next, the MCU 5 sets the next output period to the period adjusted in S73 and S75 (S75), and ends the output period processing.
 上記出力周期処理によりセットされた出力周期の具体的な一例について図3を参照して説明する。第1ゼロクロス位置Aの基準を「512」とする。図3中、最初のタイマー処理で検出された第1ゼロクロス位置Aは基準と等しため、MCU5は、次の出力周期T12は変更しない。次のタイマー処理で検出された第1ゼロクロス位置Aは「511」であり基準より小さいため、MCU5は、次の出力周期T13を少し短くする。さらに次のタイマー処理で検出された第1ゼロクロス位置Aは「513」であり基準より大きいため、MCU5は、次の出力周期T14を少し長くする。 A specific example of the output period set by the above output period processing will be described with reference to FIG. 3. The reference for the first zero cross position A is "512". In FIG. 3, the first zero cross position A detected in the first timer processing is equal to the reference, so the MCU 5 does not change the next output period T12. The first zero cross position A detected in the next timer processing is "511", which is smaller than the reference, so the MCU 5 slightly shortens the next output period T13. Furthermore, the first zero cross position A detected in the next timer processing is "513", which is larger than the reference, so the MCU 5 slightly lengthens the next output period T14.
 また、MCU5は、第1ゼロクロス位置Aを検出するために図6に示す第1割込み処理を実行する。MCU5は、図3に示すように、第1デッドタイムDT1を第1検出範囲とする。MCU5は、第1検出範囲となっている間に第1誘起電圧パルスが立ち下がったタイミングで、ゼロクロスが発生したと判断して、第1割込み処理を実行する。第1割込み処理では、MCU5は、第1ゼロクロス位置検出部として機能し、このときのタイマーのカウント値を第1ゼロクロス位置Aとして記憶し(S9)、第1割込み処理を終了する。 The MCU 5 also executes the first interrupt process shown in FIG. 6 to detect the first zero cross position A. As shown in FIG. 3, the MCU 5 sets the first dead time DT1 as the first detection range. The MCU 5 determines that a zero cross has occurred when the first induced voltage pulse falls while in the first detection range, and executes the first interrupt process. In the first interrupt process, the MCU 5 functions as a first zero cross position detector, stores the count value of the timer at this time as the first zero cross position A (S9), and ends the first interrupt process.
 また、MCU5は、インバータ制御部として機能し、上段トランジスタTR21及び下段トランジスタTR22のオンオフを制御する図7に示すタイマー処理を実行する。まず、MCU5は、タイマースタートと同時にタイマー処理を実行する。タイマー処理において、MCU5は、出力周期処理でセットしたオンデューティを取り込むデューティ出力処理を行う(S10)。次に、MCU5は、出力周期処理でセットした出力周期を取り込み、取り込んだオンデューティ、出力周期の駆動パルスを上段トランジスタTR21及び下段トランジスタTR22に出力する出力処理(周期)を行う(S11)。 The MCU5 also functions as an inverter control unit, and executes the timer process shown in FIG. 7, which controls the on/off of the upper transistor TR21 and the lower transistor TR22. First, the MCU5 executes the timer process at the same time as the timer starts. In the timer process, the MCU5 performs a duty output process that captures the on-duty set in the output period process (S10). Next, the MCU5 performs an output process (period) that captures the output period set in the output period process, and outputs the captured on-duty and drive pulses of the output period to the upper transistor TR21 and the lower transistor TR22 (S11).
 MCU5は、図8に示すように、電源投入直後はソフトスタートを実行する。同図に示すように、MCU5は、電源投入から例えば2s間の起動時に図5のS71を実行するとき、温度によるオンデューティのセットを行わずに、予め定めた最小デューティにセットする。本実施形態では、最小デューティは、一定以上(1V以上)の誘起電圧を確保するため、5%に設定されているものとする。 As shown in FIG. 8, the MCU 5 executes a soft start immediately after power is applied. As shown in the figure, when the MCU 5 executes S71 in FIG. 5 at startup, for example 2 seconds after power is applied, it sets the on-duty to a predetermined minimum duty without setting the on-duty based on temperature. In this embodiment, the minimum duty is set to 5% to ensure an induced voltage above a certain level (1 V or higher).
 次に、MCU5は、起動後、例えば3s間のデューティアップ時に図5のS71を実行するとき、徐々にオンデューティを上げる。その後、MCU5は、デューティアップ後の定常時に図5のS17を実行するとき、上述したように温度によるオンデューティのセットを行う。 Next, when the MCU 5 executes S71 in FIG. 5 during a duty-up period of, for example, 3 seconds after startup, it gradually increases the on-duty. After that, when the MCU 5 executes S17 in FIG. 5 during a steady state after the duty-up, it sets the on-duty according to the temperature as described above.
 また、起動時は、電磁コイル224に流れるコンプレッサ電流が小さく、ピストン225の振幅が小さいため、第1ゼロクロス位置Aを検出しにくい。そこで、MCU5は、起動時に、図7のS11を実行するとき、図9に示すように、第1デッドタイムDT1を、下段トランジスタTR22をオフしてから上段トランジスタTR21をオンするまでの第2デッドタイムDT2よりも長くする。なお、図9においても第1検出範囲については斜線で示している。 In addition, at startup, the compressor current flowing through the electromagnetic coil 224 is small and the amplitude of the piston 225 is small, making it difficult to detect the first zero-cross position A. Therefore, when the MCU 5 executes S11 in FIG. 7 at startup, as shown in FIG. 9, it makes the first dead time DT1 longer than the second dead time DT2 from when the lower transistor TR22 is turned off to when the upper transistor TR21 is turned on. Note that the first detection range is also indicated by diagonal lines in FIG. 9.
 その後、MCU5は、デューティアップ時、定常時に、図7のS11を実行するときに、図3に示すように、第1デッドタイムDT1と、第2デッドタイムDT2と、を等しくする。 After that, when the MCU 5 executes S11 in FIG. 7 during duty-up and steady state, it makes the first dead time DT1 and the second dead time DT2 equal, as shown in FIG. 3.
 上述したように起動時に第1デッドタイムDT1>第2デッドタイムDT2とすることにより、ピストン225の振幅が小さい起動時であっても、第1検出範囲を長くすることができ、微小な第1ゼロクロス位置Aを検出しやすくできるので、振動型圧縮機20を効率よく運転することができ、消費電力を削減できる。 As described above, by making the first dead time DT1 > the second dead time DT2 at startup, the first detection range can be lengthened even at startup when the amplitude of the piston 225 is small, making it easier to detect the minute first zero cross position A, allowing the vibration compressor 20 to be operated efficiently and reducing power consumption.
 次に、上述した異常振動の検出処理の詳細について図10及び図11を参照して説明する。MCU5は、定常時に異常振動の検出処理を行い、デューティアップ時及び起動時には、行わない。振動型圧縮機20の共振バネ226、防振バネ23が、車の路面状況、車のサスペンション、車載設置状況等により、異常振動し、圧縮機本体22が密閉容器21に当たって異音(ゴトゴト音)が発生する。異常振動が振動型圧縮機20の密閉容器21に伝わり、ピストン225に伝わって、誘起電圧に影響を及ぼすので、異常振動の検出処理では、このような異常振動を検出することができる。 Next, the details of the abnormal vibration detection process described above will be explained with reference to Figures 10 and 11. The MCU 5 performs abnormal vibration detection process during normal operation, but does not perform it during duty-up or startup. The resonant spring 226 and vibration-proof spring 23 of the vibration compressor 20 vibrate abnormally due to the road conditions of the vehicle, the vehicle suspension, the vehicle installation conditions, etc., and the compressor body 22 hits the sealed container 21, generating abnormal noise (rattling sound). The abnormal vibration is transmitted to the sealed container 21 of the vibration compressor 20 and then to the piston 225, affecting the induced voltage, so the abnormal vibration detection process can detect such abnormal vibration.
 異常振動の検出処理を行うために、MCU5は、第2ゼロクロス位置Bを検出する。第2ゼロクロス位置Bは、ピストン225が下死点に達する位置(タイミング)であり、第2デッドタイムDT2中に電磁コイル224に発生する誘起電圧が0Vとなる位置である。第2ゼロクロス位置Bは、誘起電圧が0Vに達した時のタイマー処理によるカウント値である。 To perform abnormal vibration detection processing, the MCU 5 detects the second zero cross position B. The second zero cross position B is the position (timing) at which the piston 225 reaches the bottom dead center, and is the position at which the induced voltage generated in the electromagnetic coil 224 during the second dead time DT2 becomes 0V. The second zero cross position B is the count value by the timer processing when the induced voltage reaches 0V.
 MCU5は、第2ゼロクロス位置Bを検出するために第2割込み処理(図示せず)を実行する。MCUは、図3に示すように、第2デッドタイムDT2を第2検出範囲とする。MCU5は、第2検出範囲となっている間に第2誘起電圧パルスが立ち下がったタイミングで、ゼロクロスが発生したと判断して、第2割込み処理を実行する。第2割込み処理では、MCU5は、第2ゼロクロス位置検出部として機能し、このときのタイマーのカウント値を第2ゼロクロス位置Bとして記憶し、第2割込み処理を終了する。 The MCU5 executes a second interrupt process (not shown) to detect the second zero cross position B. As shown in FIG. 3, the MCU sets the second dead time DT2 as the second detection range. The MCU5 determines that a zero cross has occurred when the second induced voltage pulse falls while in the second detection range, and executes the second interrupt process. In the second interrupt process, the MCU5 functions as a second zero cross position detector, stores the count value of the timer at this time as the second zero cross position B, and ends the second interrupt process.
 異常振動の検出処理において、図10に示すように、n周期目(nは整数)に検出された第2ゼロクロス位置Bと、n+1周期目に検出された第2ゼロクロス位置Bと、の間の期間T3の半分を半周期T3/2(=第3期間)とする。n周期目に検出された第2ゼロクロス位置Bと、n周期目に検出された第1ゼロクロス位置Aと、の間を期間T4(=第4期間)とする。MCU5は、半周期T3/2と期間T4との差分ΔTを求める(S801)。 In the abnormal vibration detection process, as shown in FIG. 10, half of the period T3 between the second zero cross position B detected in the nth cycle (n is an integer) and the second zero cross position B detected in the n+1th cycle is set as a half cycle T3/2 (=third period). The period between the second zero cross position B detected in the nth cycle and the first zero cross position A detected in the nth cycle is set as a period T4 (=fourth period). The MCU 5 calculates the difference ΔT between the half cycle T3/2 and the period T4 (S801).
 次に、MCU5は、求めた差分ΔTを積算する(S802)。n周期目に検出された第2ゼロクロス位置Bから、n+1周期目に検出された第2ゼロクロス位置Bまでの1周期を1波とした25波分(=第1所定期間)の差分ΔTが積算されると(S803でY)、MCU5は、積算値が閾値を超えたか否かを判定する(S804)。なお、第1所定期間は、n周期目に検出された第2ゼロクロス位置Bから、n+1周期目に検出された第2ゼロクロス位置Bまでの1周期を1波とした1波の期間または複数の波の期間である。本実施形態では、第1所定期間は25波としたが、10~50波で設定すれば、正常時に異常振動を誤検出することを抑制できることが実験的に分かっている。MCU5は、積算値が閾値を超えていないと判定すると(S804でN)、異常振動を検出することなく、直ちに異常振動の検出処理を終了する。 Next, the MCU 5 accumulates the calculated difference ΔT (S802). When the difference ΔT for 25 waves (=first predetermined period), where one wave is one cycle from the second zero cross position B detected in the nth cycle to the second zero cross position B detected in the n+1th cycle, is accumulated (Y in S803), the MCU 5 judges whether the accumulated value exceeds the threshold value (S804). The first predetermined period is a period of one wave, where one wave is one cycle from the second zero cross position B detected in the nth cycle to the second zero cross position B detected in the n+1th cycle, or a period of multiple waves. In this embodiment, the first predetermined period is set to 25 waves, but it has been experimentally found that if it is set to 10 to 50 waves, it is possible to suppress erroneous detection of abnormal vibration during normal operation. When the MCU 5 judges that the accumulated value does not exceed the threshold value (N in S804), it immediately ends the abnormal vibration detection process without detecting abnormal vibration.
 MCU5は、積算値が閾値を超えていると判定すると(S804でY)、積算値が連続して6回(=第1所定回数)、閾値を超えたか否かを判定する(S805)。第1所定回数は、積算値が連続して閾値を超える回数であり、本実施形態では6回に設定されている。積算値が連続して6回、閾値を超えていれば(S805でY)、MCU5は、異常振動を検出する(S806)。25波分の差分ΔTの積算値を算出するとき、半周期T3/2に対する差分ΔTの割合が0.23%~0.59%となるような閾値を設定すれば、正常時に異常振動を誤検出することを抑制できることが実験的に分かっている。即ち、閾値は、25×0.25%×T3/2~25×0.59%×T3/2に設定すればよい。 When the MCU 5 determines that the integrated value exceeds the threshold (Y in S804), it determines whether the integrated value has exceeded the threshold six times in a row (=first predetermined number of times) (S805). The first predetermined number is the number of times that the integrated value exceeds the threshold consecutively, and is set to six in this embodiment. If the integrated value exceeds the threshold six times in a row (Y in S805), the MCU 5 detects abnormal vibration (S806). When calculating the integrated value of the difference ΔT for 25 waves, it has been experimentally found that false detection of abnormal vibration during normal times can be suppressed by setting a threshold value such that the ratio of the difference ΔT to the half cycle T3/2 is 0.23% to 0.59%. That is, the threshold value can be set to 25 x 0.25% x T3/2 to 25 x 0.59% x T3/2.
 一方、MCU5は、差分ΔTの積算値が連続して6回、閾値を超えていなければ(S805でN)、異常振動の検出をすることなく、直ちに異常振動の検出処理を終了する。 On the other hand, if the integrated value of the difference ΔT does not exceed the threshold value six consecutive times (N in S805), the MCU 5 does not detect abnormal vibration and immediately ends the abnormal vibration detection process.
 また、MCU5は、異常振動が検出されると、後述する3分(=一定期間)をカウントする3分タイマーのカウント中でなければ(S807でN)、脱出処理を実行する(S808)。脱出処理において、MCU5は、例えば、上段トランジスタTR21及び下段トランジスタTR22のオンデューティを0%に引き下げて、振動型圧縮機20の駆動を停止させる。また、MCU5は、例えば、上段トランジスタTR21及び下段トランジスタTR22の出力周期を変動させるようにしてもよい。 Furthermore, when abnormal vibration is detected, if a three-minute timer that counts three minutes (= a fixed period) described below is not currently counting (N in S807), the MCU 5 executes an escape process (S808). In the escape process, the MCU 5, for example, reduces the on-duty of the upper transistor TR21 and the lower transistor TR22 to 0% to stop the operation of the vibration type compressor 20. Furthermore, the MCU 5 may, for example, vary the output period of the upper transistor TR21 and the lower transistor TR22.
 次に、MCU5は、1分間(=第2所定期間)で3回目(=第2所定回数)の異常振動が検出されたか否かを判定する(S809)。3回目の異常振動の検出であれば(S809でY)、MCU5は、3分タイマーをスタートさせた後、(S810)、異常振動の検出処理を終了する。一方、MCU5は、異常振動が検出されても、3分タイマーがカウント中の場合(S807でY)、脱出処理を行うことなく、直ちに異常振動の検出処理を終了する。上記第2所定時間は、異常振動の状態が脱出された後の期間であり、本実施形態では1分間に設定されている。第2所定回数は、異常振動の状態が脱出された後の第2所定期間中に異常振動を検出した回数であり、本実施形態では3回に設定されている。一定時間は、異常振動が脱出された後の第2所定期間中に第2所定回数、異常振動を検出した後の期間であり、本実施形態では3分に設定されている。 Next, the MCU5 judges whether or not abnormal vibration has been detected for the third time (=second predetermined number of times) in one minute (=second predetermined period) (S809). If abnormal vibration has been detected for the third time (Y in S809), the MCU5 starts a three-minute timer (S810) and then ends the abnormal vibration detection process. On the other hand, if abnormal vibration is detected but the three-minute timer is still counting (Y in S807), the MCU5 does not perform the escape process but immediately ends the abnormal vibration detection process. The second predetermined time is the period after the abnormal vibration state is escaped, and is set to one minute in this embodiment. The second predetermined number is the number of times abnormal vibration is detected during the second predetermined period after the abnormal vibration state is escaped, and is set to three times in this embodiment. The fixed time is the period after abnormal vibration is detected the second predetermined number of times during the second predetermined period after the abnormal vibration is escaped, and is set to three minutes in this embodiment.
 上述した実施形態によれば、MCU5は、25波の差分ΔTを積算し、積算した積算値が6回、連続して閾値を超えた場合に異常振動を検出し、異常振動を検出した場合、異常振動の脱出処理を行う。これにより、振動センサなどを設置することなく、異常振動を検出して、異常振動から脱出することができる。 According to the embodiment described above, the MCU 5 accumulates the difference ΔT of 25 waves, and detects abnormal vibration when the accumulated value exceeds the threshold value six times in a row. If abnormal vibration is detected, an escape process for the abnormal vibration is performed. This makes it possible to detect abnormal vibration and escape from the abnormal vibration without installing a vibration sensor or the like.
 上述した実施形態によれば、MCU5は、脱出処理において、上段トランジスタTR21及び下段トランジスタTR22のデューティを下げる。これにより、振動型圧縮機20の共振バネ226、防振バネ23の共振が減衰し、異常振動から脱出することができる。 In the above-described embodiment, the MCU 5 lowers the duty of the upper transistor TR21 and the lower transistor TR22 in the escape process. This dampens the resonance of the resonant spring 226 and the vibration-proof spring 23 of the vibration compressor 20, allowing the compressor to escape from the abnormal vibration.
 上述した実施形態によれば、MCU5は、脱出処理において、上段トランジスタTR21及び下段トランジスタTR22の出力周期を変動させている。これにより、異常振動から脱出することができる。 In the embodiment described above, the MCU 5 varies the output periods of the upper transistor TR21 and the lower transistor TR22 in the escape process. This makes it possible to escape from abnormal vibration.
 上述した実施形態によれば、MCU5は、異常振動の脱出処理を行った後、1分間に3回異常振動が検出された場合、3分間は脱出処理を行わない。これにより、1度、脱出処理が行われて冷却が停止された後は3分間は冷却が停止されないため、冷蔵庫の過剰な停止を防止し冷却性能を維持することができる。 According to the above-described embodiment, if abnormal vibration is detected three times within one minute after performing the abnormal vibration escape process, the MCU 5 will not perform the escape process for three minutes. As a result, after the escape process is performed once and cooling is stopped, cooling will not be stopped for three minutes, preventing excessive stopping of the refrigerator and maintaining cooling performance.
 上述した実施形態によれば、MCU5は、電源投入直後は上段トランジスタTR21及び下段トランジスタTR22のオンオフデューティを最小にし、その後、オンデューティを徐々に大きくするソフトスタートを行う。これにより、電源投入後、安定して振動型圧縮機20を起動できる。また、AC/DCコンバータ2の電流容量を少なくできるので、駆動装置の小型軽量化及びコストダウンに寄与できる。 According to the embodiment described above, the MCU 5 minimizes the on-off duty of the upper transistor TR21 and the lower transistor TR22 immediately after power is turned on, and then performs a soft start by gradually increasing the on-duty. This allows the vibration compressor 20 to start up stably after power is turned on. In addition, the current capacity of the AC/DC converter 2 can be reduced, which contributes to making the drive device smaller, lighter, and less expensive.
 上述した実施形態によれば、駆動装置1は、上開き型の蓋を有する冷蔵庫を駆動する。これにより、冷蔵庫が再起動し、振動型圧縮機20の出力低下による冷却性能が低下したときでも、冷気が漏れにくいので冷却性能を保持できる。 In the above-described embodiment, the drive unit 1 drives a refrigerator having a top-opening lid. As a result, even when the refrigerator is restarted and the cooling performance is reduced due to a drop in the output of the vibration compressor 20, the cooling performance can be maintained because cold air is unlikely to leak.
 上述した実施形態によれば、MCU5が、上段トランジスタTR21及び下段トランジスタTR22のオン、オフのタイミングを制御して、振動型圧縮機20を共振周波数に追従して振動させている。これにより、振動型圧縮機20の種類(例えば共振バネ226の種類)に応じて、ソフトウェア(例えば閾値など)を変えて対応することができ、振動型圧縮機20の種類よらず周波数追従が可能となる。 According to the embodiment described above, the MCU 5 controls the on/off timing of the upper transistor TR21 and the lower transistor TR22 to vibrate the vibration compressor 20 in accordance with the resonant frequency. This makes it possible to change the software (e.g., threshold value, etc.) depending on the type of vibration compressor 20 (e.g., type of resonant spring 226), making it possible to follow the frequency regardless of the type of vibration compressor 20.
 なお、本発明は、上述した実施形態に限定されるものではなく、適宜、変形、改良、等が可能である。その他、上述した実施形態における各構成要素の材質、形状、寸法、数、配置箇所、等は本発明を達成できるものであれば任意であり、限定されない。なお、上述した実施形態は上開き型の蓋に限らず、前開き型の扉の冷蔵庫などにも適用できる。 The present invention is not limited to the above-described embodiment, and can be modified, improved, etc. as appropriate. In addition, the material, shape, dimensions, number, location, etc. of each component in the above-described embodiment are arbitrary and not limited as long as they can achieve the present invention. The above-described embodiment is not limited to top-opening lids, and can also be applied to refrigerators with front-opening doors.
 上述した実施形態によれば、異常振動を検出するための第1所定期間は、25波に設定されていたが、これに限ったものではない。第1所定期間としては、10波~50波の間に設定すれば、異常振動を検出できることが実験的に確認された。 In the above-described embodiment, the first predetermined period for detecting abnormal vibrations was set to 25 waves, but this is not limited to this. It has been experimentally confirmed that abnormal vibrations can be detected if the first predetermined period is set between 10 waves and 50 waves.
 また、上述した実施形態によれば、異常振動を検出するための第1所定回数は、6回に設定されていたが、これに限ったものではない。第1所定回数としては、3回~10回の間に設定すれば、異常振動を検出できることが実験的に確認された。 In addition, in the above-described embodiment, the first predetermined number of times for detecting abnormal vibrations is set to six times, but this is not limited to this. It has been experimentally confirmed that abnormal vibrations can be detected if the first predetermined number of times is set between three and ten times.
 また、上述した実施形態によれば、MCU5は、異常振動の脱出処理において、上段トランジスタTR21及び下段トランジスタTR22のオンデューティを0%に引き下げていたが、これに限ったものではない。0%~50%の間でオンデューティを引き下げれば、異常振動から脱出できることが実験的に確認された。 In addition, in the above-described embodiment, the MCU 5 reduces the on-duty of the upper transistor TR21 and the lower transistor TR22 to 0% in the process of escaping from abnormal vibration, but this is not limited to this. It has been experimentally confirmed that it is possible to escape from abnormal vibration by reducing the on-duty between 0% and 50%.
 上述した実施形態によれば、MCU5は、振動型圧縮機20に入力される出力電圧VOUTに基づいて上段トランジスタTR21及び下段トランジスタTR22のオンオフを制御していたが、これに限ったものではない。MCU5は、振動型圧縮機20に入力される電流に基づいて上段トランジスタTR21及び下段トランジスタTR22のオンオフを制御するようにしてもよい。この場合、特許文献1のように、MCU5は、電流の2回目のピークに応じて上段トランジスタTR21及び下段トランジスタTR22のオンオフを制御するようにしてもよい。 In the above-described embodiment, the MCU 5 controls the on/off of the upper transistor TR21 and the lower transistor TR22 based on the output voltage VOUT input to the vibration compressor 20, but this is not limited to the above. The MCU 5 may also control the on/off of the upper transistor TR21 and the lower transistor TR22 based on the current input to the vibration compressor 20. In this case, as in Patent Document 1, the MCU 5 may control the on/off of the upper transistor TR21 and the lower transistor TR22 in response to the second peak of the current.
 上述した実施形態によれば、上段トランジスタTR21を第1スイッチ素子、下段トランジスタTR22を第2スイッチ素子としていたが、これに限ったものではない。下段トランジスタTR22を第1スイッチ素子、上段トランジスタTR21を第2スイッチ素子としてもよい。この場合、第2ゼロクロス位置Bが第1ゼロクロス位置に相当し、MCU5は、第2ゼロクロス位置Bに基づいて上段トランジスタTR21、下段トランジスタTR22のオンオフを制御する。 In the above-described embodiment, the upper transistor TR21 is the first switch element and the lower transistor TR22 is the second switch element, but this is not limited to the above. The lower transistor TR22 may be the first switch element and the upper transistor TR21 may be the second switch element. In this case, the second zero cross position B corresponds to the first zero cross position, and the MCU5 controls the on/off of the upper transistor TR21 and the lower transistor TR22 based on the second zero cross position B.
 上述した実施形態によれば、MCU5は、前の第2ゼロクロス位置Bから次の第2ゼロクロス位置Bまでの1期間T3の半分である半周期T3/2と、前の第2ゼロクロス位置Bから次の第1ゼロクロス位置Aまでの期間T4と、の差分ΔTを求めていたが、これに限ったものではない。MCU5は、前の第1ゼロクロス位置Aから次の第1ゼロクロス位置Aまでの1期間T3の半分である半周期T3/2と、前の第1ゼロクロス位置Aから次の第2ゼロクロス位置Bまでの期間T4と、の差分ΔTを求めてもよい。 In the above-described embodiment, the MCU 5 calculates the difference ΔT between the half cycle T3/2, which is half of one period T3 from the previous second zero cross position B to the next second zero cross position B, and the period T4 from the previous second zero cross position B to the next first zero cross position A, but this is not limited to the above. The MCU 5 may also calculate the difference ΔT between the half cycle T3/2, which is half of one period T3 from the previous first zero cross position A to the next first zero cross position A, and the period T4 from the previous first zero cross position A to the next second zero cross position B.
 上述した実施形態によれば、MCU5は、上記差分ΔTの積分値が閾値を超えた場合に、異常振動を検出していたが、これに限ったものではない。MCU5は、上記差分ΔTが所定の値を越えた場合に、異常振動を検出するようにしてもよい。 In the above-described embodiment, the MCU 5 detects abnormal vibration when the integrated value of the difference ΔT exceeds a threshold value, but this is not limited to the above. The MCU 5 may also detect abnormal vibration when the difference ΔT exceeds a predetermined value.
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。 Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
 本出願は、2022年10月5日出願の日本特許出願(特願2022-161063)に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on a Japanese patent application (Patent Application No. 2022-161063) filed on October 5, 2022, the contents of which are incorporated herein by reference.
 本発明によれば、第1ゼロクロス位置を検出しやすく、振動型圧縮機を効率的に運転することができ、消費電力を削減できる振動型圧縮機の駆動装置を提供することができる。この効果を奏する本発明は、振動型圧縮機の駆動装置に関して有用である。 The present invention provides a drive device for a vibration compressor that can easily detect the first zero cross position, efficiently operate the vibration compressor, and reduce power consumption. The present invention, which has this effect, is useful for drive devices for vibration compressors.
 4 インバータ
 5 MCU(第1ゼロクロス位置検出部、インバータ制御部、第2ゼロクロス位置検出部、異常振動検出部、異常振動脱出部)
 20 振動型圧縮機
 224 電磁コイル
 A 第1ゼロクロス位置
 B 第2ゼロクロス位置
 DT1 第1デッドタイム(第1期間)
 DT2 第2デッドタイム(第2期間)
 TR21 上段トランジスタ(第1スイッチ素子)
 TR22 下段トランジスタ(第2スイッチ素子)
4 Inverter 5 MCU (first zero cross position detection unit, inverter control unit, second zero cross position detection unit, abnormal vibration detection unit, abnormal vibration escape unit)
20 Vibration type compressor 224 Electromagnetic coil A First zero cross position B Second zero cross position DT1 First dead time (first period)
DT2 Second dead time (second period)
TR21 Upper stage transistor (first switch element)
TR22 Lower stage transistor (second switch element)

Claims (18)

  1.  互いに直列接続された第1スイッチ素子及び第2スイッチ素子を有し、前記第1スイッチ素子及び前記第2スイッチ素子を交互にオンすることにより直流を交流に変換して、振動型圧縮機の電磁コイルに供給するインバータと、
     前記第1スイッチ素子がオフしてから前記第2スイッチ素子がオンするまでの第1期間中に前記振動型圧縮機の前記電磁コイルに発生する誘起電圧の第1ゼロクロス位置を検出する第1ゼロクロス位置検出部と、
     前記第1ゼロクロス位置に基づいて、前記第1スイッチ素子及び前記第2スイッチ素子のオンオフ周期を制御するインバータ制御部と、を備え、
     前記インバータ制御部は、前記第1期間を、前記第2スイッチ素子がオフしてから前記第1スイッチ素子がオンするまでの第2期間よりも長くする
     振動型圧縮機の駆動装置。
    an inverter having a first switch element and a second switch element connected in series with each other, which converts direct current into alternating current by alternately turning on the first switch element and the second switch element, and supplies the converted alternating current to an electromagnetic coil of a vibration type compressor;
    a first zero-cross position detection unit that detects a first zero-cross position of an induced voltage generated in the electromagnetic coil of the vibration type compressor during a first period from when the first switch element is turned off to when the second switch element is turned on;
    an inverter control unit that controls an on/off period of the first switch element and the second switch element based on the first zero cross position,
    The inverter control unit sets the first period to be longer than a second period from when the second switch element is turned off to when the first switch element is turned on.
  2.  請求項1に記載の振動型圧縮機の駆動装置において、
     前記インバータ制御部は、電源投入直後から一定の起動期間に、前記第1期間を前記第2期間よりも長くし、前記起動期間後、前記第1期間と前記第2期間とを等しくする
     振動型圧縮機の駆動装置。
    2. The drive device for a vibration type compressor according to claim 1,
    the inverter control unit makes the first period longer than the second period during a certain startup period immediately after power is turned on, and makes the first period equal to the second period after the startup period.
  3.  請求項2に記載の振動型圧縮機の駆動装置において、
     前記第2期間中に前記振動型圧縮機の前記電磁コイルに発生する誘起電圧の第2ゼロクロス位置を検出する第2ゼロクロス位置検出部と、
     前記振動型圧縮機の異常振動を検出する異常振動検出部であって、
     前記起動期間後、
     n周期目(nは整数)に検出された前記第1ゼロクロス位置及び前記第2ゼロクロス位置の一方と、n+1周期目に検出された前記第1ゼロクロス位置及び前記第2ゼロクロス位置の前記一方と、の間の期間の半分を第3期間とし、
     前記n周期目に検出された前記第1ゼロクロス位置及び前記第2ゼロクロス位置の前記一方と、前記n周期目に検出された前記第1ゼロクロス位置及び前記第2ゼロクロス位置の他方と、の間の期間を第4期間とし、
     前記第3期間と前記第4期間との差分が所定の値を越えた場合に当該振動型圧縮機の前記異常振動として検出する異常振動検出部と、
     前記異常振動検出部により検出された前記異常振動の状態を脱出する異常振動脱出部と、を有する
     振動型圧縮機の駆動装置。
    3. The vibrating compressor drive device according to claim 2,
    a second zero-cross position detector that detects a second zero-cross position of an induced voltage generated in the electromagnetic coil of the vibration compressor during the second period;
    An abnormal vibration detection unit that detects abnormal vibration of the vibration type compressor,
    After the start-up period,
    a third period is half a period between one of the first zero cross position and the second zero cross position detected in an n-th period (n is an integer) and the one of the first zero cross position and the second zero cross position detected in an n+1-th period;
    a period between the one of the first zero cross position and the second zero cross position detected in the nth period and the other of the first zero cross position and the second zero cross position detected in the nth period is defined as a fourth period,
    an abnormal vibration detection unit that detects the abnormal vibration of the vibrating compressor when a difference between the third period and the fourth period exceeds a predetermined value;
    an abnormal vibration escape unit that escapes from the abnormal vibration state detected by the abnormal vibration detection unit.
  4.  請求項2に記載の振動型圧縮機の駆動装置において、
     前記第2期間中に前記振動型圧縮機の前記電磁コイルに発生する誘起電圧の第2ゼロクロス位置を検出する第2ゼロクロス位置検出部と、
     前記振動型圧縮機の異常振動を検出する異常振動検出部であって、
     前記起動期間後、
     n周期目(nは整数)に検出された前記第1ゼロクロス位置及び前記第2ゼロクロス位置の一方と、n+1周期目に検出された前記第1ゼロクロス位置及び前記第2ゼロクロス位置の前記一方と、の間の期間の半分を第3期間とし、
     前記n周期目に検出された前記第1ゼロクロス位置及び前記第2ゼロクロス位置の前記一方と、前記n周期目に検出された前記第1ゼロクロス位置及び前記第2ゼロクロス位置の他方と、の間の期間を第4期間とし、
     第1所定期間毎に前記第3期間と前記第4期間との差分を積算した積算値が、連続して所定の閾値を第1所定回数超えた場合に当該振動型圧縮機の前記異常振動として検出する異常振動検出部と、
     前記異常振動検出部により検出された前記異常振動の状態を脱出する異常振動脱出部と、を有する
     振動型圧縮機の駆動装置。
    3. The vibrating compressor drive device according to claim 2,
    a second zero-cross position detector that detects a second zero-cross position of an induced voltage generated in the electromagnetic coil of the vibration compressor during the second period;
    An abnormal vibration detection unit that detects abnormal vibration of the vibration type compressor,
    After the start-up period,
    a third period is half a period between one of the first zero cross position and the second zero cross position detected in an n-th period (n is an integer) and the one of the first zero cross position and the second zero cross position detected in an n+1-th period;
    a period between the one of the first zero cross position and the second zero cross position detected in the nth period and the other of the first zero cross position and the second zero cross position detected in the nth period is defined as a fourth period,
    an abnormal vibration detection unit that detects the abnormal vibration of the vibrating compressor when an integrated value obtained by integrating the difference between the third period and the fourth period for each first predetermined period exceeds a predetermined threshold value a first predetermined number of times in succession;
    an abnormal vibration escape unit that escapes from the abnormal vibration state detected by the abnormal vibration detection unit.
  5.  請求項3に記載の振動型圧縮機の駆動装置において、
     前記異常振動脱出部は、前記第1スイッチ素子及び前記第2スイッチ素子のオンデューティを下げ、当該振動型圧縮機のバネ系の共振を減衰させて、前記異常振動の脱出を行う
     振動型圧縮機の駆動装置。
    4. The vibrating compressor drive device according to claim 3,
    The abnormal vibration escape section reduces an on-duty of the first switch element and the second switch element to attenuate resonance of a spring system of the vibration compressor, thereby escaping from the abnormal vibration.
  6.  請求項4に記載の振動型圧縮機の駆動装置において、
     前記異常振動検出部は、前記起動期間後、
     前記n周期目に検出された前記第2ゼロクロス位置と、前記n+1周期に検出された前記第2ゼロクロス位置と、の間の期間の半分を前記第3期間とし、
     前記n周期目に検出された前記第2ゼロクロス位置と、前記n周期目に検出された前記第1ゼロクロス位置と、の間を前記第4期間とし、
     前記第3期間と前記第4期間との前記差分を求め、
     前記第1所定期間は、前記n周期目に検出された前記第2ゼロクロス位置から前記n+1周期目に検出された前記第2ゼロクロス位置までの1周期を1波とした10波~50波である、
     振動型圧縮機の駆動装置。
    5. The drive device for a vibration type compressor according to claim 4,
    After the startup period, the abnormal vibration detection unit
    a third period is a half of a period between the second zero cross position detected in the nth cycle and the second zero cross position detected in the n+1th cycle;
    a fourth period is defined as a period between the second zero cross position detected in the nth period and the first zero cross position detected in the nth period;
    determining the difference between the third period and the fourth period;
    The first predetermined period is 10 waves to 50 waves, with one wave being one cycle from the second zero cross position detected in the nth cycle to the second zero cross position detected in the n+1th cycle.
    Drive device for vibrating compressor.
  7.  請求項4に記載の振動型圧縮機の駆動装置において、
     前記所定の閾値が、前記第3期間に対する前記差分の割合が0.23%~0.59%となるように設定される
     振動型圧縮機の駆動装置。
    5. The drive device for a vibration type compressor according to claim 4,
    the predetermined threshold is set so that a ratio of the difference with respect to the third period is 0.23% to 0.59%.
  8.  請求項4に記載の振動型圧縮機の駆動装置において、
     連続して前記所定の閾値を超える前記第1所定回数は、3回~10回である
     振動型圧縮機の駆動装置。
    5. The drive device for a vibration type compressor according to claim 4,
    The first predetermined number of times that the predetermined threshold value is exceeded consecutively is 3 to 10 times.
  9.  請求項3に記載の振動型圧縮機の駆動装置において、
     前記異常振動脱出部は、前記第1スイッチ素子及び前記第2スイッチ素子のオンデューティを0%~50%の間に下げる
     振動型圧縮機の駆動装置。
    4. The vibrating compressor drive device according to claim 3,
    The abnormal vibration escape section reduces the on-duty of the first switch element and the second switch element to a value between 0% and 50%.
  10.  請求項3に記載の振動型圧縮機の駆動装置において、
     前記異常振動脱出部は、前記第1スイッチ素子及び前記第2スイッチ素子のオンオフ周期を変動させ、当該振動型圧縮機のバネ系の共振周波数を変動させる
     振動型圧縮機の駆動装置。
    4. The vibrating compressor drive device according to claim 3,
    The abnormal vibration escape section varies an on/off period of the first switch element and the second switch element to vary a resonance frequency of a spring system of the vibrating compressor.
  11.  請求項3~10の何れか1項に記載の振動型圧縮機の駆動装置において、
     前記インバータ制御部は、前記異常振動脱出部による異常振動の状態が脱出された後の第2所定期間中に第2所定回数、前記異常振動を検出した場合、その後一定期間は通常動作を行う
     振動型圧縮機の駆動装置。
    The drive device for a vibration type compressor according to any one of claims 3 to 10,
    When the abnormal vibration is detected a second predetermined number of times during a second predetermined period after the abnormal vibration state is escaped by the abnormal vibration escape section, the inverter control section performs normal operation for a certain period thereafter.
  12.  請求項11に記載の振動型圧縮機の駆動装置において、
     前記第2所定期間が1分間であり、前記第2所定回数が3回である
     振動型圧縮機の駆動装置。
    The drive device for a vibrating compressor according to claim 11,
    The drive device for a vibrating compressor, wherein the second predetermined period is one minute, and the second predetermined number of times is three times.
  13.  請求項11に記載の振動型圧縮機の駆動装置において、
     前記一定期間は、3分間である
     振動型圧縮機の駆動装置。
    The drive device for a vibrating compressor according to claim 11,
    The driving device for a vibration type compressor, wherein the certain period is 3 minutes.
  14.  請求項1に記載の振動型圧縮機の駆動装置において、
     前記インバータ制御部は、コンプレッサ動作開始直後は前記第1スイッチ素子及び前記第2スイッチ素子のオンデューティを誘導電圧が検出可能な最小のオンデューティとし、その後、前記オンデューティを徐々に大きくするソフトスタートを行う
     振動型圧縮機の駆動装置。
    2. The drive device for a vibration type compressor according to claim 1,
    the inverter control unit sets the on-duty of the first switch element and the second switch element to a minimum on-duty at which an induced voltage can be detected immediately after a compressor operation starts, and then performs a soft start by gradually increasing the on-duty.
  15.  請求項1に記載の振動型圧縮機の駆動装置において、
     前記振動型圧縮機は、上開き型の蓋を有する冷蔵庫を駆動する
     振動型圧縮機の駆動装置。
    2. The drive device for a vibration type compressor according to claim 1,
    The vibrating compressor is a driving device for a vibrating compressor that drives a refrigerator having an upward-opening lid.
  16.  互いに直列接続された第1スイッチ素子及び第2スイッチ素子を有し、前記第1スイッチ素子及び前記第2スイッチ素子を交互にオンすることにより直流を交流に変換して、振動型圧縮機の電磁コイルに供給するインバータと、
     前記振動型圧縮機の入力に基づいて、前記第1スイッチ素子及び前記第2スイッチ素子のオン、オフのタイミングを制御して、前記振動型圧縮機のコイル及びピストンを含む可動部の共振周波数の変動に追従して駆動パルスを出力させるマイクロコンピュータと、を備えた
     振動型圧縮機の駆動装置。
    an inverter having a first switch element and a second switch element connected in series with each other, which converts direct current into alternating current by alternately turning on the first switch element and the second switch element, and supplies the converted alternating current to an electromagnetic coil of a vibration type compressor;
    a microcomputer that controls the on/off timing of the first switch element and the second switch element based on an input from the vibration type compressor, and outputs a drive pulse in accordance with a fluctuation in a resonance frequency of a movable part including a coil and a piston of the vibration type compressor.
  17.  請求項16に記載の振動型圧縮機の駆動装置において、
     前記振動型圧縮機の入力は誘起電圧である
     振動型圧縮機の駆動装置。
    17. The drive device for a vibrating compressor according to claim 16,
    A driving device for a vibration type compressor, wherein an input to the vibration type compressor is an induced voltage.
  18.  請求項16に記載の振動型圧縮機の駆動装置において、
     前記振動型圧縮機の入力は誘起電流である
     振動型圧縮機の駆動装置。
    17. The drive device for a vibrating compressor according to claim 16,
    A driving device for a vibration type compressor, wherein an input of the vibration type compressor is an induced current.
PCT/JP2023/032040 2022-10-05 2023-08-31 Drive device for vibrating-type compressor WO2024075451A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-161063 2022-10-05
JP2022161063A JP2024054672A (en) 2022-10-05 2022-10-05 Vibration compressor drive

Publications (1)

Publication Number Publication Date
WO2024075451A1 true WO2024075451A1 (en) 2024-04-11

Family

ID=90607801

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/032040 WO2024075451A1 (en) 2022-10-05 2023-08-31 Drive device for vibrating-type compressor

Country Status (2)

Country Link
JP (1) JP2024054672A (en)
WO (1) WO2024075451A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001178149A (en) * 1999-12-20 2001-06-29 Sawafuji Electric Co Ltd Driver for vibration compressor
JP2008005632A (en) * 2006-06-22 2008-01-10 Matsushita Electric Ind Co Ltd Motor drive device, motor drive method and disk drive device
JP2011200044A (en) * 2010-03-19 2011-10-06 Sawafuji Electric Co Ltd Power supply device for vibration compressor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001178149A (en) * 1999-12-20 2001-06-29 Sawafuji Electric Co Ltd Driver for vibration compressor
JP2008005632A (en) * 2006-06-22 2008-01-10 Matsushita Electric Ind Co Ltd Motor drive device, motor drive method and disk drive device
JP2011200044A (en) * 2010-03-19 2011-10-06 Sawafuji Electric Co Ltd Power supply device for vibration compressor

Also Published As

Publication number Publication date
JP2024054672A (en) 2024-04-17

Similar Documents

Publication Publication Date Title
US7468896B2 (en) Drive circuit for a switch in a switching converter
JP5179893B2 (en) Switching power supply
JP5806413B2 (en) Power supply control device and control method for power supply control device
JP6402610B2 (en) Switching power supply, switching power supply control method, and switching power supply control circuit
US10690130B2 (en) Air compressor
WO2011158284A1 (en) Switching power supply device, and semiconductor device
JP2009503336A (en) Linear compressor controller
EP2312159A3 (en) Drive unit for compressor and refrigerator
US8395489B2 (en) Vehicle burglar alarm circuit
CN104521124A (en) DC-DC converter and display apparatus
WO2024075451A1 (en) Drive device for vibrating-type compressor
CN111564960A (en) Control device of switch power supply
JP7360317B2 (en) Semiconductor integrated circuit device
US20130119956A1 (en) Control ic having auto recovery circuit, auto recovery circuit of control ic, power converter system and method for auto recovering control ic
JP2007214647A (en) High-side driver circuit
JP5384973B2 (en) Switching power supply
JP5844432B1 (en) Power circuit
WO2020075371A1 (en) Power supply circuit, start-up circuit, power generating device, and electronic apparatus
JP2017034827A (en) Control device for switching power supply
US11569771B2 (en) Control apparatus and sensor apparatus
JP2001231253A (en) Life predicting circuit and power device
US7595618B2 (en) DC voltage converter with a detector circuit configured to distinguish between operating modes
JPH0866043A (en) Power supply for vibration type compressor
JP2011200044A (en) Power supply device for vibration compressor
KR20010099748A (en) Magnet-field-induced driving circuit of voltage control type and sewing machine having the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23874581

Country of ref document: EP

Kind code of ref document: A1