WO2024075392A1 - Electrical device - Google Patents

Electrical device Download PDF

Info

Publication number
WO2024075392A1
WO2024075392A1 PCT/JP2023/029028 JP2023029028W WO2024075392A1 WO 2024075392 A1 WO2024075392 A1 WO 2024075392A1 JP 2023029028 W JP2023029028 W JP 2023029028W WO 2024075392 A1 WO2024075392 A1 WO 2024075392A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrical
electrical device
inner frame
internal space
outer frame
Prior art date
Application number
PCT/JP2023/029028
Other languages
French (fr)
Japanese (ja)
Inventor
勇一郎 吉武
順平 楠川
央 上妻
良一 高畑
欣也 中津
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2024075392A1 publication Critical patent/WO2024075392A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • This disclosure relates to electrical equipment.
  • Patent Document 1 discloses a power conversion device that can withstand environmental conditions such as corrosion and temperature changes, and has a cooling structure with excellent heat dissipation and reliability, in which switching elements and a control unit housed in a housing are provided with a refrigerant passage that forcibly circulates a liquid refrigerant to exchange heat.
  • Patent Document 2 discloses a PCU (Power Control Unit) mounted on a hybrid vehicle in which a capacitor and an inverter are housed in a case body, and a wave structure is provided on at least a portion of the wall of the case body to prevent vibrations generated in the capacitor from being transmitted to the vehicle body, and a capacitor element is integrally provided with the case body via a resin mold and a resin case, so that heat generated in the capacitor element is actively dissipated via the case body to the cooling water flowing in the cooling water passage, improving cooling efficiency.
  • a PCU Power Control Unit
  • Patent documents 1 and 2 disclose a configuration for cooling electrical components housed in a case.
  • cooling is an important issue, but other issues include discharges in low pressure, condensation and icing due to sudden changes in outside temperature, and lightning resistance.
  • the purpose of this disclosure is to maintain the strength of electrical equipment, reduce temperature changes in the internal space of the electrical equipment even if the temperature around the electrical equipment changes suddenly, and prevent condensation on the inner wall surfaces that form the internal space.
  • the electrical device disclosed herein comprises an electrical component, an electrical component support, an outer frame, and an inner frame, an internal space is formed between the electrical component support and the inner frame, the electrical component is installed in the internal space, and a heat insulating layer is provided between the outer frame and the inner frame.
  • the strength of the electrical equipment can be maintained, and even if the temperature around the electrical equipment changes suddenly, the temperature change in the internal space of the electrical equipment can be reduced, and condensation can be prevented on the inner wall surface that defines the internal space.
  • FIG. 1 is a schematic cross-sectional view showing an electrical device according to a first embodiment.
  • FIG. 11 is a schematic cross-sectional view showing an electrical device according to a second embodiment.
  • FIG. 11 is a schematic cross-sectional view showing an electric device according to a modified example of the second embodiment.
  • FIG. 11 is a schematic cross-sectional view showing an electrical device according to a third embodiment.
  • FIG. 13 is a schematic cross-sectional view showing an electric device according to a modified example of the third embodiment.
  • FIG. 11 is a schematic cross-sectional view showing an electrical device according to a fourth embodiment.
  • FIG. 13 is a schematic cross-sectional view showing an electrical device according to a fifth embodiment.
  • electrical devices and electronic devices that use electricity as an energy source are collectively referred to as “electrical devices.” Electrical devices also include power conversion devices.
  • FIG. 1 is a schematic cross-sectional view showing an electrical device according to the first embodiment.
  • the electrical device shown in this diagram is a power conversion device with a liquid cooling mechanism.
  • the power conversion device includes a switching element 1, a substrate 2, a substrate support 21, a heat conductive member 22, an outer frame 90, an inner frame 91, and a heat insulating layer 92.
  • the substrate support section 21 is provided with a liquid flow path 8.
  • the substrate support section 21 is provided with a substrate 2 and a heat conductive member 22.
  • the switching element 1 is arranged so as to be in contact with the heat conductive member 22.
  • the insulating layer 92 is provided between the outer frame 90 and the inner frame 91. These are fixed to the board support part 21 so as to cover the switching element 1, the board 2, and the heat conductive member 22. This forms an internal space between the board support part 21 and the inner frame 91. The internal space is completely sealed to prevent air from entering or leaving from the outside.
  • the switching element 1, the board 2, and the heat conductive member 22 are configured so as not to come into contact with the inner frame 91. Dry air, etc. is sealed in the internal space.
  • the switching element 1 includes a MOSFET (metal oxide semiconductor field effect transistor) or a power module.
  • the substrate support 21 is made of metal.
  • components that function when electricity is passed through them, such as the switching element 1, are collectively referred to as "electrical components.”
  • the outer frame 90 is made of a metal such as an aluminum alloy or stainless steel, and provides strength as a cover for the switching element 1.
  • the thickness of the outer frame 90 depends on the material, but is preferably about 2 to 3 mm.
  • the inner frame 91 is made of a relatively lightweight material, such as polymethyl methacrylate (acrylic resin), resin such as polypropylene, fiber reinforced plastic (FRP), carbon, paper, wood, or a honeycomb structure material made of any of these.
  • the insulating layer 92 may be a vacuum maintained, may be filled with a gas such as dry air, or may be filled with a solid insulating material. If a solid insulating material is used, a lightweight insulating material is preferable, and foamed resins such as polyurethane, polystyrene, polyethylene, polypropylene, and silicone are suitable. Vacuum insulating materials with a core material such as glass wool or silica powder are also preferable. Note that the materials of the insulating layer 92 are not limited to these.
  • the three-layer structure of the outer frame 90, insulating layer 92, and inner frame 91 maintains strength and can slow down temperature changes in the internal space of the power conversion device even if the temperature around the power conversion device changes suddenly, resulting in small temperature changes. In addition, dry air, etc. is sealed in the internal space, so there is almost no water vapor. This prevents condensation from forming on the inner frame 91. Furthermore, this three-layer structure makes it possible to obtain a relatively lightweight and highly strong insulating structure.
  • the contact area between the substrate support 21 and the heat conductive member 22, and the contact area between the switching element 1 and the heat conductive member 22, are sufficiently large so that the heat generated in the switching element 1 can be sufficiently removed.
  • the liquid flow path 8 of the substrate support 21 is arranged so that the liquid flowing through the liquid flow path 8 can sufficiently remove heat from the heat conductive member 22.
  • liquid flowing through the liquid flow path 8 include water, mineral oil, fluorocarbon-based coolant, vegetable oil, etc. Note that in this specification, cooling of a power conversion device, etc.
  • the cooling mechanism of the electrical device is not limited to this, and may be a gas such as air, a refrigerant that undergoes a phase change, etc. Specifically, it may be a forced air cooling or a heat pipe.
  • the substrate support section 21 having the liquid flow path 8 is preferably at ground potential.
  • the substrate support section 21 is preferably made of an aluminum alloy, stainless steel, copper alloy, or other metal.
  • the partial discharge inception voltage is significantly lower than under atmospheric pressure. Therefore, it is necessary to use a solid or liquid with a partial discharge inception voltage about 10 times higher than that of air on the surface to which the voltage is applied and the surface that is grounded.
  • a solid insulating material such as silicone. This makes it difficult for partial discharges to occur under low pressure.
  • suitable solid insulating materials include polyphenylene sulfide resin (PPS), epoxy resin, and unsaturated polyester.
  • FIG. 2A is a schematic cross-sectional view showing an electrical device according to Example 2.
  • a vent filter 99 (adjustment valve) is provided on the inner frame 91.
  • Volatile gases may be generated from the switching element 1, substrate 2, etc., enclosed in the internal space due to a rise in temperature caused by heat generation from the switching element 1, etc. Such volatile gases may increase the pressure in the internal space.
  • the vent filter 99 has the function of releasing the gas in the internal space into the insulating layer 92, thereby mitigating the pressure increase.
  • FIG. 2B is a schematic cross-sectional view showing an electric device according to a modified example.
  • the vent filter 99 penetrates the outer frame 90, the insulating layer 92, and the inner frame 91.
  • a dehumidifying material such as silica gel
  • the dehumidifying material can prevent outside air containing water vapor from flowing into the internal space.
  • a vent filter 99 is necessary depends on the properties of the parts installed in the internal space. For example, if an electrolytic capacitor (not shown) is installed in the power conversion device, the vent filter 99 may be necessary. Note that if a ceramic capacitor or film capacitor is used instead of an electrolytic capacitor, the vent filter 99 may not be necessary.
  • small holes may be provided in the outer frame 90 and inner frame 91 for venting purposes to ensure the integrity of the inside of the power conversion device.
  • FIG. 3 is a schematic cross-sectional view showing an electrical device according to the third embodiment.
  • an air layer 93 is provided between the outer frame 90 and the inner frame 91, instead of the insulating layer 92 in the first embodiment. From the standpoint of cost and insulation, it is preferable that the air layer 93 contains approximately 80% nitrogen and approximately 20% oxygen, which are components of normal air.
  • FIG. 4 is a schematic cross-sectional view showing an electric device according to a modified example of the third embodiment.
  • a vacuum layer 94 is provided between an outer frame 90 and an inner frame 91.
  • the air pressure inside the vacuum layer 94 is preferably 1 Pa or less, more preferably 10 ⁇ 1 Pa or less, and even more preferably 10 ⁇ 3 Pa or less.
  • FIG. 5 is a schematic cross-sectional view showing an electrical device according to Example 4.
  • a lightweight insulating material 95 is provided between the outer frame 90 and the inner frame 91.
  • suitable lightweight insulating materials 95 include foamed resins such as polyurethane, polystyrene, polyethylene, polypropylene, and silicone. Vacuum insulating materials with a core material such as glass wool or silica powder are also desirable.
  • the lightweight insulating material 95 is not limited to these.
  • temperature sensors 41 are provided on the outer surface of the outer frame 90 and on the inner space side of the inner frame 91. This makes it possible to obtain internal and external temperature data and control the adjustment of parameters that contribute to cooling, such as the flow rate of liquid flowing through the liquid flow path 8, in response to temperature changes. In this case, it is desirable to prevent temperature changes in the internal space as much as possible.
  • the ambient temperature of the electrical device of this embodiment when the ambient temperature of the electrical device of this embodiment is high, it is considered that the temperature of the internal space when the electrical device is in use will be high, and in this case, the flow rate flowing through the liquid flow path 8 is increased to improve cooling performance.
  • the ambient temperature when the ambient temperature is changed from a high state to a state where the ambient temperature is low, for example, when moving into the sky or underwater (seawater), the heat in the internal space is also removed from the surface of the outer frame 90. In this case, if water vapor is contained in the internal space, there is a risk of condensation forming on the internal space side of the inner frame 91 due to the sudden temperature change.
  • the lightweight insulation material 95 and adjusting the flow rate flowing through the liquid flow path 8 it is possible to prevent condensation from forming and prevent breakdowns of the electrical device due to leakage current, etc.
  • FIG. 6 is a schematic cross-sectional view showing an electrical device according to a fifth embodiment.
  • bus bar 48 is used for electrical connection to the outside, and a BNC connector 49 (Bayonet Neill-Concelman connector) is provided to facilitate the connection process.
  • BNC connector 49 Boyonet Neill-Concelman connector
  • the electrical device has the board 2, the board support part 21, and the thermally conductive member 22, but the electrical device according to the present disclosure does not necessarily have these components, and may have a member that supports the electrical components instead of the board support part 21.
  • An internal space may be formed between the member and the inner frame 91.
  • the board support part 21 and the member are collectively referred to as the "electrical component support part.”
  • the electrical equipment disclosed herein can also be applied to mobility in general, including aircraft, transportation equipment, and construction machinery.
  • the outer frame is made of a metallic material
  • the inner frame is made of a non-metallic material.
  • the insulation layer is composed of foamed resin containing one or more of polyurethane, polystyrene, polyethylene, polypropylene, and silicone, or vacuum insulation material containing one or more of glass wool and silica powder as a core material.
  • the inner frame is made of a material containing one or more of the following: resin including one or more of polymethyl methacrylate and polypropylene, fiber-reinforced plastic, carbon, paper, and wood, or a honeycomb structural material containing one or more of these.
  • the outer frame includes one or more of an aluminum alloy and stainless steel.
  • the electrical component support section is provided with a liquid flow path.
  • Temperature sensors are placed on the outer surface of the outer frame and on the inner space side of the inner frame, and are configured to obtain temperature data on the outside and the inner space of the outer frame and to control the adjustment of parameters that contribute to cooling, including the flow rate of liquid flowing through the liquid flow path.
  • All or part of the electrical components are covered with solid insulating material.
  • the outer frame By forming the outer frame from metal, it is possible to prevent components made of organic matter from catching fire due to lightning, and also to prevent overcurrent from occurring in electrical components. It can also absorb noise.
  • Insulating the equipment makes it easier to control the temperature inside.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Inverter Devices (AREA)

Abstract

This electrical device comprising an electrical component, an electrical component support, an outer frame, and an inner frame, wherein an internal space is formed between the electrical component support and the inner frame, the electrical component is installed in the internal space, and a heat insulating layer is provided between the outer frame and the inner frame. As a result, the strength of the electrical device is maintained, and even if the temperature around the electrical device changes suddenly, the temperature change in the internal space of the electrical device can be reduced and condensation on the inner walls that form the internal space can be prevented.

Description

電気機器Electrical Equipment
 本開示は、電気機器に関する。 This disclosure relates to electrical equipment.
 ゼロカーボン社会の実現に向け、各国においてCO排出規制が強く求められており、化石燃料を使用するエンジンの代替として、動力系統の電動化が盛んに進められている。
あらゆるエンジン駆動のモビリティ製品において、パワーエレクトロニクス機器の適用が検討され、その出力密度の向上が求められている。これに伴い、パワーエレクトロニクス機器には、世界中のあらゆる気候に適用できることが求められている。航空機においては、急激な高度の変化に対応できる耐環境性が必須となる。同時に、冷却性能向上、高電圧化、軽量化などが求められ、そのための技術開発が進められている。
In order to realize a zero-carbon society, there is a strong demand in each country for CO2 emission restrictions, and the electrification of power systems is being actively promoted as an alternative to engines that use fossil fuels.
The application of power electronics devices is being considered for all engine-driven mobility products, and there is a demand for improved output density. Accordingly, power electronics devices are required to be applicable to any climate around the world. For aircraft, environmental resistance to sudden changes in altitude is essential. At the same time, there is a demand for improved cooling performance, higher voltage, and lighter weight, and technological development is underway to achieve these goals.
 特許文献1には、腐食や温度変化の環境条件に耐えることができ、且つ、放熱効果、信頼性に優れた冷却構造を有する電力変換装置として、筐体に収納されたスイッチング素子及び制御部を、液体冷媒を強制循環させる冷媒通路を設けて熱交換するようにしたものが開示されている。 Patent Document 1 discloses a power conversion device that can withstand environmental conditions such as corrosion and temperature changes, and has a cooling structure with excellent heat dissipation and reliability, in which switching elements and a control unit housed in a housing are provided with a refrigerant passage that forcibly circulates a liquid refrigerant to exchange heat.
 特許文献2には、ハイブリッド車両に搭載されたPCU(Power Control Unit)として、コンデンサおよびインバータをケース体に収容し、ケース体の壁面の少なくとも一部にウェーブ構造を設けることにより、コンデンサで発生する振動が車両本体に伝達することを抑制するとともに、コンデンサ素子が、樹脂モールドおよび樹脂ケースを介してケース体と一体に設けられた構成により、コンデンサ素子で発生した熱を、積極的にケース体を介して、冷却水通路に流れる冷却水に放熱されるようにして、冷却効率を向上するものが開示されている。 Patent Document 2 discloses a PCU (Power Control Unit) mounted on a hybrid vehicle in which a capacitor and an inverter are housed in a case body, and a wave structure is provided on at least a portion of the wall of the case body to prevent vibrations generated in the capacitor from being transmitted to the vehicle body, and a capacitor element is integrally provided with the case body via a resin mold and a resin case, so that heat generated in the capacitor element is actively dissipated via the case body to the cooling water flowing in the cooling water passage, improving cooling efficiency.
特開2004-274959号公報JP 2004-274959 A 特開2007-220794号公報JP 2007-220794 A
 特許文献1及び2においては、ケースに収容された電気部品の冷却のための構成が開示されている。 Patent documents 1 and 2 disclose a configuration for cooling electrical components housed in a case.
 ケースに収容された電気部品を有する電気機器においては、冷却も重要な課題であるが、低気圧下での放電、急激な外気温変化による結露や着氷、耐雷性等も課題となっている。 For electrical equipment that has electrical components housed in a case, cooling is an important issue, but other issues include discharges in low pressure, condensation and icing due to sudden changes in outside temperature, and lightning resistance.
 本開示は、電気機器の強度を維持するとともに、電気機器の周囲の温度が急変しても、電気機器の内部空間の温度変化を小さくし、内部空間を形成する内壁面における結露を防止することを目的とする。 The purpose of this disclosure is to maintain the strength of electrical equipment, reduce temperature changes in the internal space of the electrical equipment even if the temperature around the electrical equipment changes suddenly, and prevent condensation on the inner wall surfaces that form the internal space.
 本開示の電気機器は、電気部品と、電気部品支持部と、外側フレームと、内側フレームと、を備え、電気部品支持部と内側フレームとの間には、内部空間が形成され、電気部品は、内部空間に設置され、外側フレームと内側フレームとの間には、断熱層が設けられている。 The electrical device disclosed herein comprises an electrical component, an electrical component support, an outer frame, and an inner frame, an internal space is formed between the electrical component support and the inner frame, the electrical component is installed in the internal space, and a heat insulating layer is provided between the outer frame and the inner frame.
 本開示によれば、電気機器の強度を維持するとともに、電気機器の周囲の温度が急変しても、電気機器の内部空間の温度変化を小さくし、内部空間を形成する内壁面における結露を防止することができる。 According to the present disclosure, the strength of the electrical equipment can be maintained, and even if the temperature around the electrical equipment changes suddenly, the temperature change in the internal space of the electrical equipment can be reduced, and condensation can be prevented on the inner wall surface that defines the internal space.
実施例1の電気機器を示す模式断面図である。FIG. 1 is a schematic cross-sectional view showing an electrical device according to a first embodiment. 実施例2の電気機器を示す模式断面図である。FIG. 11 is a schematic cross-sectional view showing an electrical device according to a second embodiment. 実施例2の変形例の電気機器を示す模式断面図である。FIG. 11 is a schematic cross-sectional view showing an electric device according to a modified example of the second embodiment. 実施例3の電気機器を示す模式断面図である。FIG. 11 is a schematic cross-sectional view showing an electrical device according to a third embodiment. 実施例3の変形例の電気機器を示す模式断面図である。FIG. 13 is a schematic cross-sectional view showing an electric device according to a modified example of the third embodiment. 実施例4の電気機器を示す模式断面図である。FIG. 11 is a schematic cross-sectional view showing an electrical device according to a fourth embodiment. 実施例5の電気機器を示す模式断面図である。FIG. 13 is a schematic cross-sectional view showing an electrical device according to a fifth embodiment.
 以下、本開示に係る実施例について、図面を参照して詳細に説明する。 Below, examples of the present disclosure are described in detail with reference to the drawings.
 なお、本明細書においては、電気をエネルギー源として機能する電気機器及び電子機器を「電気機器」と総称する。電気機器には、電力変換装置も含まれる。 In this specification, electrical devices and electronic devices that use electricity as an energy source are collectively referred to as "electrical devices." Electrical devices also include power conversion devices.
 図1は、実施例1の電気機器を示す模式断面図である。 FIG. 1 is a schematic cross-sectional view showing an electrical device according to the first embodiment.
 本図に示す電気機器は、液冷機構を有する電力変換装置である。電力変換装置は、スイッチング素子1と、基板2と、基板支持部21と、熱伝導部材22と、外側フレーム90と、内側フレーム91と、断熱層92と、を備えている。 The electrical device shown in this diagram is a power conversion device with a liquid cooling mechanism. The power conversion device includes a switching element 1, a substrate 2, a substrate support 21, a heat conductive member 22, an outer frame 90, an inner frame 91, and a heat insulating layer 92.
 基板支持部21には、液体流路8が設けられている。基板支持部21には、基板2及び熱伝導部材22が設置されている。スイッチング素子1は、熱伝導部材22に接するように配置されている。 The substrate support section 21 is provided with a liquid flow path 8. The substrate support section 21 is provided with a substrate 2 and a heat conductive member 22. The switching element 1 is arranged so as to be in contact with the heat conductive member 22.
 断熱層92は、外側フレーム90と内側フレーム91との間に設けられている。これらは、スイッチング素子1、基板2及び熱伝導部材22を覆うように基板支持部21に固定されている。これにより、基板支持部21と内側フレーム91との間に内部空間が形成されている。内部空間は、外部と空気の出入りがないように完全に密封されている。スイッチング素子1、基板2及び熱伝導部材22は、内側フレーム91に接しないように構成されている。内部空間には、乾燥空気等が封入されている。 The insulating layer 92 is provided between the outer frame 90 and the inner frame 91. These are fixed to the board support part 21 so as to cover the switching element 1, the board 2, and the heat conductive member 22. This forms an internal space between the board support part 21 and the inner frame 91. The internal space is completely sealed to prevent air from entering or leaving from the outside. The switching element 1, the board 2, and the heat conductive member 22 are configured so as not to come into contact with the inner frame 91. Dry air, etc. is sealed in the internal space.
 スイッチング素子1は、MOSFET(金属酸化膜半導体電界効果トランジスタ)又はパワーモジュールを含む。基板支持部21は、金属製である。なお、本明細書においては、スイッチング素子1のように通電することにより機能する部品を「電気部品」と総称する。 The switching element 1 includes a MOSFET (metal oxide semiconductor field effect transistor) or a power module. The substrate support 21 is made of metal. In this specification, components that function when electricity is passed through them, such as the switching element 1, are collectively referred to as "electrical components."
 外側フレーム90は、アルミニウム合金、ステンレス鋼等の金属製であり、スイッチング素子1のカバーとしての強度を担っている。外側フレーム90の厚さは、材質にもよるが、2~3mm程度が望ましい。一方、内側フレーム91は、比較的軽量の材料を用いる。例えば、ポリメチルメタクリレート(アクリル樹脂)、ポリプロピレン等の樹脂、繊維強化プラスチック(FRP)、カーボン、紙、木材等、又はこれらのいずれかで形成されたハニカム構造材等である。 The outer frame 90 is made of a metal such as an aluminum alloy or stainless steel, and provides strength as a cover for the switching element 1. The thickness of the outer frame 90 depends on the material, but is preferably about 2 to 3 mm. On the other hand, the inner frame 91 is made of a relatively lightweight material, such as polymethyl methacrylate (acrylic resin), resin such as polypropylene, fiber reinforced plastic (FRP), carbon, paper, wood, or a honeycomb structure material made of any of these.
 断熱層92は、真空が維持される場合、乾燥空気等の気体が封入されている場合、固体の断熱材が充填される場合などがある。固体の断熱材を使用する場合、軽量断熱材が望ましく、ポリウレタン、ポリスチレン、ポリエチレン、ポリプロピレン、シリコーン等の発泡樹脂等が好適である。また、グラスウール、シリカ粉等を芯材とする真空断熱材等も望ましい。なお、断熱層92の材料は、これらに限定されるものではない。 The insulating layer 92 may be a vacuum maintained, may be filled with a gas such as dry air, or may be filled with a solid insulating material. If a solid insulating material is used, a lightweight insulating material is preferable, and foamed resins such as polyurethane, polystyrene, polyethylene, polypropylene, and silicone are suitable. Vacuum insulating materials with a core material such as glass wool or silica powder are also preferable. Note that the materials of the insulating layer 92 are not limited to these.
 外側フレーム90、断熱層92及び内側フレーム91の三層構造により、強度を維持するとともに、電力変換装置の周囲の温度が急変しても、電力変換装置の内部空間の温度変化を緩やかにすることができ、結果的に温度変化を小さくすることができる。また、内部空間には、乾燥空気等が封入されているため、水蒸気がほとんど存在しない。これにより、内側フレーム91に結露が生じることがないようになっている。さらに、このような三層構造により、比較的軽量でかつ高強度の断熱構造を得ることができる。 The three-layer structure of the outer frame 90, insulating layer 92, and inner frame 91 maintains strength and can slow down temperature changes in the internal space of the power conversion device even if the temperature around the power conversion device changes suddenly, resulting in small temperature changes. In addition, dry air, etc. is sealed in the internal space, so there is almost no water vapor. This prevents condensation from forming on the inner frame 91. Furthermore, this three-layer structure makes it possible to obtain a relatively lightweight and highly strong insulating structure.
 また、外側フレーム90を金属製としたことにより、落雷が生じても、電力変換装置の内部にノイズ電流が生じにくくなり、誤動作を生じにくくすることができる。 In addition, by making the outer frame 90 out of metal, noise currents are less likely to occur inside the power conversion device even if a lightning strike occurs, making it less likely that malfunctions will occur.
 基板支持部21と熱伝導部材22との接触面積、及びスイッチング素子1と熱伝導部材22との接触面積は、スイッチング素子1に発生する熱が十分に除去されるように、十分広くすることが望ましい。また、基板支持部21の液体流路8は、液体流路8を流れる液体が熱伝導部材22から十分に熱を除去できるように配置することが望ましい。液体流路8に流れる液体の例としては、水、鉱油、フルオロカーボン系冷却材、植物油などが挙げられる。なお、本明細書においては、液体流路8に流れる液体による電力変換装置等の冷却について説明しているが、本開示に係る電気機器の冷却機構は、これに限定されるものではなく、空気等の気体によるもの、相変化を伴う冷媒によるもの等であってもよい。具体的には、強制空冷によるものやヒートパイプを用いるものであってもよい。 It is desirable that the contact area between the substrate support 21 and the heat conductive member 22, and the contact area between the switching element 1 and the heat conductive member 22, are sufficiently large so that the heat generated in the switching element 1 can be sufficiently removed. In addition, it is desirable that the liquid flow path 8 of the substrate support 21 is arranged so that the liquid flowing through the liquid flow path 8 can sufficiently remove heat from the heat conductive member 22. Examples of liquid flowing through the liquid flow path 8 include water, mineral oil, fluorocarbon-based coolant, vegetable oil, etc. Note that in this specification, cooling of a power conversion device, etc. by a liquid flowing through the liquid flow path 8 is described, but the cooling mechanism of the electrical device according to the present disclosure is not limited to this, and may be a gas such as air, a refrigerant that undergoes a phase change, etc. Specifically, it may be a forced air cooling or a heat pipe.
 液体流路8を有する基板支持部21は、接地電位とすることが望ましい。基板支持部21は、アルミニウム合金、ステンレス鋼、銅合金その他の金属で形成されることが望ましい。 The substrate support section 21 having the liquid flow path 8 is preferably at ground potential. The substrate support section 21 is preferably made of an aluminum alloy, stainless steel, copper alloy, or other metal.
 低気圧環境下においては、部分放電開始電圧は、大気圧下に比べて大きく低下する。よって、電圧が印加される面と接地される面においては、空気よりも部分放電開始電圧が10倍程度高い固体もしくは液体を適用する必要がある。 In a low pressure environment, the partial discharge inception voltage is significantly lower than under atmospheric pressure. Therefore, it is necessary to use a solid or liquid with a partial discharge inception voltage about 10 times higher than that of air on the surface to which the voltage is applied and the surface that is grounded.
 電圧が高い、電界ストレスが高いなどにより部分放電開始が懸念される場合、例えばスイッチング素子1の周辺のような電気的ストレスの高い部分には、シリコーン等の固体絶縁材で被覆することが望ましい。これにより、低気圧下における部分放電を発生しにくくすることができる。固体絶縁材としては、このほか、ポリフェニレンサルファイド樹脂(PPS)、エポキシ樹脂、不飽和ポリエステルなどが好適である。 If there is concern about partial discharges occurring due to high voltages or high electric field stress, it is desirable to cover areas with high electrical stress, such as the area around the switching element 1, with a solid insulating material such as silicone. This makes it difficult for partial discharges to occur under low pressure. Other suitable solid insulating materials include polyphenylene sulfide resin (PPS), epoxy resin, and unsaturated polyester.
 本実施例においては、実施例1と異なる構成についてのみ説明する。 In this embodiment, only the configuration that differs from embodiment 1 will be explained.
 図2Aは、実施例2の電気機器を示す模式断面図である。 FIG. 2A is a schematic cross-sectional view showing an electrical device according to Example 2.
 本図においては、内側フレーム91にベントフィルタ99(調整弁)を設けている。 In this diagram, a vent filter 99 (adjustment valve) is provided on the inner frame 91.
 内部空間に封入されているスイッチング素子1、基板2等からは、スイッチング素子1等の発熱による温度上昇により、揮発性のガスが発生することがある。このような揮発性のガスは、内部空間の圧力を高める場合がある。ベントフィルタ99は、このような場合に内部空間のガスを断熱層92に放出し、圧力上昇を緩和する機能を有する。 Volatile gases may be generated from the switching element 1, substrate 2, etc., enclosed in the internal space due to a rise in temperature caused by heat generation from the switching element 1, etc. Such volatile gases may increase the pressure in the internal space. In such cases, the vent filter 99 has the function of releasing the gas in the internal space into the insulating layer 92, thereby mitigating the pressure increase.
 (変形例)
 図2Bは、変形例の電気機器を示す模式断面図である。
(Modification)
FIG. 2B is a schematic cross-sectional view showing an electric device according to a modified example.
 本図においては、ベントフィルタ99は、外側フレーム90、断熱層92及び内側フレーム91を貫通している。この場合、ベントフィルタ99には、シリカゲル等の除湿材を入れておくことが望ましい。除湿材により、水蒸気を含む外気が内部空間に流入することを防止することができる。 In this diagram, the vent filter 99 penetrates the outer frame 90, the insulating layer 92, and the inner frame 91. In this case, it is desirable to put a dehumidifying material such as silica gel in the vent filter 99. The dehumidifying material can prevent outside air containing water vapor from flowing into the internal space.
 ベントフィルタ99が必要か否かは、内部空間に設置されている部品の性質に依存する。例えば、電力変換装置に電解コンデンサ(図示しない)が設置されている場合等は、ベントフィルタ99が必要な場合がある。なお、電解コンデンサの代わりに、セラミックコンデンサやフィルムコンデンサを用いる場合には、ベントフィルタ99を必要としない場合もあり得る。 Whether or not a vent filter 99 is necessary depends on the properties of the parts installed in the internal space. For example, if an electrolytic capacitor (not shown) is installed in the power conversion device, the vent filter 99 may be necessary. Note that if a ceramic capacitor or film capacitor is used instead of an electrolytic capacitor, the vent filter 99 may not be necessary.
 電力変換装置の駆動中に大きな温度上昇が予想される場合においては、外側フレーム90及び内側フレーム91には、ベントを目的として小さな穴を設け、電力変換装置内部の保全性を確保することもある。 If a large temperature rise is expected while the power conversion device is in operation, small holes may be provided in the outer frame 90 and inner frame 91 for venting purposes to ensure the integrity of the inside of the power conversion device.
 本実施例においては、実施例1と異なる構成についてのみ説明する。 In this embodiment, only the configuration that differs from embodiment 1 will be explained.
 図3は、実施例3の電気機器を示す模式断面図である。 FIG. 3 is a schematic cross-sectional view showing an electrical device according to the third embodiment.
 本図においては、外側フレーム90と内側フレーム91との間に、実施例1の断熱層92の代わりに、空気層93を設けている。空気層93は、通常の大気の成分である窒素約80%及び酸素約20%を含むものがコスト及び絶縁性の面から望ましい。 In this figure, an air layer 93 is provided between the outer frame 90 and the inner frame 91, instead of the insulating layer 92 in the first embodiment. From the standpoint of cost and insulation, it is preferable that the air layer 93 contains approximately 80% nitrogen and approximately 20% oxygen, which are components of normal air.
 (変形例)
 図4は、実施例3の変形例の電気機器を示す模式断面図である。
(Modification)
FIG. 4 is a schematic cross-sectional view showing an electric device according to a modified example of the third embodiment.
 本図においては、外側フレーム90と内側フレーム91との間に真空層94を設けている。真空層94の内部の気圧は、1Pa以下が望ましく、10-1Pa以下が更に望ましく、10-3Pa以下が更に望ましい。 In this figure, a vacuum layer 94 is provided between an outer frame 90 and an inner frame 91. The air pressure inside the vacuum layer 94 is preferably 1 Pa or less, more preferably 10 −1 Pa or less, and even more preferably 10 −3 Pa or less.
 本実施例においては、実施例1と異なる構成についてのみ説明する。 In this embodiment, only the configuration that differs from embodiment 1 will be explained.
 図5は、実施例4の電気機器を示す模式断面図である。 FIG. 5 is a schematic cross-sectional view showing an electrical device according to Example 4.
 本図においては、外側フレーム90と内側フレーム91との間に、軽量断熱材95を設けている。軽量断熱材95としては、例えば、ポリウレタン、ポリスチレン、ポリエチレン、ポリプロピレン、シリコーン等の発泡樹脂等が好適である。また、グラスウール、シリカ粉等を芯材とする真空断熱材等も望ましい。なお、軽量断熱材95は、これらに限定されるものではない。 In this diagram, a lightweight insulating material 95 is provided between the outer frame 90 and the inner frame 91. Examples of suitable lightweight insulating materials 95 include foamed resins such as polyurethane, polystyrene, polyethylene, polypropylene, and silicone. Vacuum insulating materials with a core material such as glass wool or silica powder are also desirable. However, the lightweight insulating material 95 is not limited to these.
 また、本図においては、外側フレーム90の外表面及び内側フレーム91の内部空間側に温度センサ41を設けている。これにより、内外の温度データを取得し、温度変化に応じて液体流路8を流れる液体の流量等の冷却に寄与するパラメータを調整する制御が可能となる。この場合、内部空間の温度変化が極力発生しないようにすることが望ましい。 In addition, in this figure, temperature sensors 41 are provided on the outer surface of the outer frame 90 and on the inner space side of the inner frame 91. This makes it possible to obtain internal and external temperature data and control the adjustment of parameters that contribute to cooling, such as the flow rate of liquid flowing through the liquid flow path 8, in response to temperature changes. In this case, it is desirable to prevent temperature changes in the internal space as much as possible.
 例えば、本実施例の電気機器の周囲温度が高い場合、電気機器の使用時における内部空間の温度は高くなると考えられ、この場合は、冷却性能を高めるために液体流路8に流れる流量等を大きくする。一方、周囲温度が高い状態から、周囲温度が低くなる条件、例えば、上空や水中(海水中)に移動した場合には、内部空間の熱が外側フレーム90の表面からも除去される。この場合には、内部空間に水蒸気が含まれると、急激な温度変化により内側フレーム91の内部空間側に結露が発生するおそれがある。上述のとおり、軽量断熱材95を用いるとともに、液体流路8に流れる流量等を調整することにより、結露の発生を防止することができ、電気機器の漏電等による故障を防止することができる。 For example, when the ambient temperature of the electrical device of this embodiment is high, it is considered that the temperature of the internal space when the electrical device is in use will be high, and in this case, the flow rate flowing through the liquid flow path 8 is increased to improve cooling performance. On the other hand, when the ambient temperature is changed from a high state to a state where the ambient temperature is low, for example, when moving into the sky or underwater (seawater), the heat in the internal space is also removed from the surface of the outer frame 90. In this case, if water vapor is contained in the internal space, there is a risk of condensation forming on the internal space side of the inner frame 91 due to the sudden temperature change. As described above, by using the lightweight insulation material 95 and adjusting the flow rate flowing through the liquid flow path 8, it is possible to prevent condensation from forming and prevent breakdowns of the electrical device due to leakage current, etc.
 本実施例においては、実施例1と異なる構成についてのみ説明する。 In this embodiment, only the configuration that differs from embodiment 1 will be explained.
 図6は、実施例5の電気機器を示す模式断面図である。 FIG. 6 is a schematic cross-sectional view showing an electrical device according to a fifth embodiment.
 本図においては、バスバ48で外部と電気的に接続する構成を有し、BNCコネクタ49(Bayonet Neill-Concelman connector)を設けることにより、接続の作業を容易にすることができる。 In this diagram, the bus bar 48 is used for electrical connection to the outside, and a BNC connector 49 (Bayonet Neill-Concelman connector) is provided to facilitate the connection process.
 なお、上記の実施例においては、電気機器は、基板2、基板支持部21及び熱伝導部材22を有しているが、本開示に係る電気機器は、これらの部品を必ずしも有していなくてもよく、基板支持部21に代えて、電気部品を支持する部材を有するものであってもよい。そして、当該部材と内側フレーム91との間に内部空間が形成された構成であってもよい。本明細書においては、基板支持部21及び当該部材を「電気部品支持部」と総称する。 In the above embodiment, the electrical device has the board 2, the board support part 21, and the thermally conductive member 22, but the electrical device according to the present disclosure does not necessarily have these components, and may have a member that supports the electrical components instead of the board support part 21. An internal space may be formed between the member and the inner frame 91. In this specification, the board support part 21 and the member are collectively referred to as the "electrical component support part."
 なお、本開示に係る電気機器は、航空機、輸送機器、建設機械等のモビリティ全般にも適用可能である。 The electrical equipment disclosed herein can also be applied to mobility in general, including aircraft, transportation equipment, and construction machinery.
 以下、本開示に係る電気機器の望ましい実施形態について、まとめて説明する。 Below, we summarize preferred embodiments of the electrical device disclosed herein.
 外側フレームは、金属材料で構成され、内側フレームは、非金属材料で構成されている。 The outer frame is made of a metallic material, and the inner frame is made of a non-metallic material.
 断熱層は、ポリウレタン、ポリスチレン、ポリエチレン、ポリプロピレン及びシリコーンのうちいずれか一つ以上を含む発泡樹脂、又はグラスウール及びシリカ粉のうちいずれか一つ以上を芯材として含む真空断熱材で構成されている。 The insulation layer is composed of foamed resin containing one or more of polyurethane, polystyrene, polyethylene, polypropylene, and silicone, or vacuum insulation material containing one or more of glass wool and silica powder as a core material.
 内側フレームは、ポリメチルメタクリレート及びポリプロピレンのうちいずれか一つ以上を含む樹脂、繊維強化プラスチック、カーボン、紙及び木材のうちいずれか一つ以上を含む材料、又はこれらのいずれか一つ以上を含むハニカム構造材で構成されている。 The inner frame is made of a material containing one or more of the following: resin including one or more of polymethyl methacrylate and polypropylene, fiber-reinforced plastic, carbon, paper, and wood, or a honeycomb structural material containing one or more of these.
 外側フレームは、アルミニウム合金及びステンレス鋼のうちいずれか一つ以上を含む。 The outer frame includes one or more of an aluminum alloy and stainless steel.
 電気部品支持部には、液体流路が設けられている。 The electrical component support section is provided with a liquid flow path.
 外側フレームの外表面及び内側フレームの内部空間側には、温度センサが配置され、これらの温度センサにより外側フレームの外部及び内部空間の温度データを取得し、液体流路を流れる液体の流量を含む冷却に寄与するパラメータを調整する制御をするように構成されている。 Temperature sensors are placed on the outer surface of the outer frame and on the inner space side of the inner frame, and are configured to obtain temperature data on the outside and the inner space of the outer frame and to control the adjustment of parameters that contribute to cooling, including the flow rate of liquid flowing through the liquid flow path.
 外部と電気的に接続するバスバ及びBNCコネクタを有する。 Has a bus bar and BNC connector for electrical connection to the outside.
 電気部品の全部又は一部は、固体絶縁材で被覆されている。 All or part of the electrical components are covered with solid insulating material.
 以下、本開示に係る電気機器の効果について、まとめて説明する。 The effects of the electrical device disclosed herein are summarized below.
 外側フレームを金属で形成することにより、有機物で形成された部品が雷により発火することを防止するとともに、電気部品に過電流が発生することを防止することができる。
また、ノイズを吸収することができる。
By forming the outer frame from metal, it is possible to prevent components made of organic matter from catching fire due to lightning, and also to prevent overcurrent from occurring in electrical components.
It can also absorb noise.
 断熱することにより、電気機器の内部の温度を制御しやすくすることができる。 Insulating the equipment makes it easier to control the temperature inside.
 さらに、小型の電気機器である電力変換ユニットを複数用いて、モータを駆動すれば、モータへの電力供給に冗長性を持たせることができ、モータの運転時の安全性を向上することができる。 Furthermore, if multiple power conversion units, which are small electrical devices, are used to drive a motor, it is possible to provide redundancy in the power supply to the motor, thereby improving safety during motor operation.
 また、低気圧下での放電を防止するとともに、急激な外気温変化による結露や着氷に対し動作を保証することができる。 It also prevents discharges in low pressure environments and ensures operation against condensation and icing caused by sudden changes in outside temperature.
 高高度環境での絶縁不良、結露発生に起因した腐食、耐雷サージによる誤作動などを防止することができる。 It can prevent poor insulation in high altitude environments, corrosion caused by condensation, and malfunctions caused by lightning surges.
 1:スイッチング素子、2:基板、8:液体流路、21:基板支持部、22:熱伝導部材、41:温度センサ、90:外側フレーム、91:内側フレーム、92:断熱層、93:空気層、94:真空層、95:軽量断熱材、99:ベントフィルタ。 1: Switching element, 2: Substrate, 8: Liquid flow path, 21: Substrate support, 22: Heat conductive member, 41: Temperature sensor, 90: Outer frame, 91: Inner frame, 92: Insulation layer, 93: Air layer, 94: Vacuum layer, 95: Lightweight insulation material, 99: Vent filter.

Claims (10)

  1.  電気部品と、
     電気部品支持部と、
     外側フレームと、
     内側フレームと、を備え、
     前記電気部品支持部と前記内側フレームとの間には、内部空間が形成され、
     前記電気部品は、前記内部空間に設置され、
     前記外側フレームと前記内側フレームとの間には、断熱層が設けられている、電気機器。
    Electrical components,
    An electrical component support;
    The outer frame and
    An inner frame,
    An internal space is formed between the electrical component support portion and the inner frame,
    The electrical component is installed in the internal space,
    An electrical device, wherein a heat insulating layer is provided between the outer frame and the inner frame.
  2.  前記外側フレームは、金属材料で構成され、
     前記内側フレームは、非金属材料で構成されている、請求項1記載の電気機器。
    The outer frame is made of a metal material;
    The electrical device of claim 1 , wherein the inner frame is constructed from a non-metallic material.
  3.  前記断熱層は、ポリウレタン、ポリスチレン、ポリエチレン、ポリプロピレン及びシリコーンのうちいずれか一つ以上を含む発泡樹脂、又はグラスウール及びシリカ粉のうちいずれか一つ以上を芯材として含む真空断熱材で構成されている、請求項1記載の電気機器。 The electrical device according to claim 1, wherein the insulating layer is made of a foamed resin containing one or more of polyurethane, polystyrene, polyethylene, polypropylene, and silicone, or a vacuum insulating material containing one or more of glass wool and silica powder as a core material.
  4.  前記内側フレームは、ポリメチルメタクリレート及びポリプロピレンのうちいずれか一つ以上を含む樹脂、繊維強化プラスチック、カーボン、紙及び木材のうちいずれか一つ以上を含む材料、又はこれらのいずれか一つ以上を含むハニカム構造材で構成されている、請求項1記載の電気機器。 The electrical device according to claim 1, wherein the inner frame is made of a material including at least one of resins containing polymethyl methacrylate and polypropylene, fiber-reinforced plastic, carbon, paper, and wood, or a honeycomb structure material including at least one of these materials.
  5.  前記外側フレームは、アルミニウム合金及びステンレス鋼のうちいずれか一つ以上を含む、請求項1記載の電気機器。 The electrical device of claim 1, wherein the outer frame includes at least one of an aluminum alloy and stainless steel.
  6.  前記電気部品支持部には、液体流路が設けられている、請求項1記載の電気機器。 The electrical device according to claim 1, wherein the electrical component support portion is provided with a liquid flow path.
  7.  前記外側フレームの外表面及び前記内側フレームの前記内部空間側には、温度センサが配置され、
     これらの温度センサにより前記外側フレームの外部及び前記内部空間の温度データを取得し、前記液体流路を流れる液体の流量を含む冷却に寄与するパラメータを調整する制御をするように構成されている、請求項6記載の電気機器。
    Temperature sensors are disposed on an outer surface of the outer frame and on the inner frame facing the internal space,
    The electrical equipment of claim 6, wherein these temperature sensors are configured to obtain temperature data of the outside and the internal space of the outer frame and to control adjustment of parameters that contribute to cooling, including the flow rate of liquid flowing through the liquid flow path.
  8.  外部と電気的に接続するバスバ及びBNCコネクタを有する、請求項1記載の電気機器。 The electrical device according to claim 1, which has a bus bar and a BNC connector for electrical connection to the outside.
  9.  前記電気部品の全部又は一部は、固体絶縁材で被覆されている、請求項1記載の電気機器。 The electrical device according to claim 1, wherein all or part of the electrical components are covered with a solid insulating material.
  10.  電力変換装置である、請求項1記載の電気機器。 The electrical device of claim 1, which is a power conversion device.
PCT/JP2023/029028 2022-10-06 2023-08-09 Electrical device WO2024075392A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022161658A JP2024055057A (en) 2022-10-06 2022-10-06 Electrical Equipment
JP2022-161658 2022-10-06

Publications (1)

Publication Number Publication Date
WO2024075392A1 true WO2024075392A1 (en) 2024-04-11

Family

ID=90607951

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/029028 WO2024075392A1 (en) 2022-10-06 2023-08-09 Electrical device

Country Status (2)

Country Link
JP (1) JP2024055057A (en)
WO (1) WO2024075392A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005071824A1 (en) * 2004-01-26 2005-08-04 Hitachi, Ltd. Semiconductor device
JP2017212286A (en) * 2016-05-24 2017-11-30 ローム株式会社 Intelligent power module, electric vehicle or hybrid car, and method of assembling intelligent power module
WO2019044832A1 (en) * 2017-08-30 2019-03-07 株式会社日立製作所 Power conversion device and power conversion method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005071824A1 (en) * 2004-01-26 2005-08-04 Hitachi, Ltd. Semiconductor device
JP2017212286A (en) * 2016-05-24 2017-11-30 ローム株式会社 Intelligent power module, electric vehicle or hybrid car, and method of assembling intelligent power module
WO2019044832A1 (en) * 2017-08-30 2019-03-07 株式会社日立製作所 Power conversion device and power conversion method

Also Published As

Publication number Publication date
JP2024055057A (en) 2024-04-18

Similar Documents

Publication Publication Date Title
US7557295B2 (en) Isolating tube for a cooling element which can be loaded with high voltage
JP7116653B2 (en) Heat dissipation structure and battery with same
EP3529851B1 (en) Heat dissipating structure and battery provided with the same
US20090273916A1 (en) Capacitor Apparatus
EP2144259A2 (en) Interphase transformer
JP2010133366A (en) Inverter-integrated electric compressor and inverter device thereof
JPWO2006090922A1 (en) Fuel cell system and vehicle equipped with fuel cell system
WO2019146314A1 (en) Secondary battery module
KR20220020962A (en) energy storage system
US11054193B2 (en) Vehicle with vibration isolated electronics
WO2024075392A1 (en) Electrical device
WO2021220563A1 (en) Power conversion device
JPH07283071A (en) Power converter
WO2015044021A1 (en) Subsea enclosure system for disposal of generated heat
US20080156554A1 (en) Fuel Cell System and Vehicle Using Fuel Cell
US20200052253A1 (en) Method for the production of an energy store, and energy store
JP2005340582A (en) Electric instrument
WO2024075393A1 (en) Electric device
JP2011114248A (en) Electric double-layer capacitor module
JP7516294B2 (en) Power conversion unit and power conversion device
JP2021190442A (en) Housing for electrical equipment
JP2006202611A (en) Fuel cell system, and vehicle and electronic apparatus mounting it
CN220776357U (en) Domain controller and vehicle
JP2011014400A (en) Fuel cell voltage monitoring device
US12016161B2 (en) Power conductor and vehicle power distribution circuit incorporating the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23874525

Country of ref document: EP

Kind code of ref document: A1