WO2024075261A1 - 端末、無線通信方法及び基地局 - Google Patents

端末、無線通信方法及び基地局 Download PDF

Info

Publication number
WO2024075261A1
WO2024075261A1 PCT/JP2022/037516 JP2022037516W WO2024075261A1 WO 2024075261 A1 WO2024075261 A1 WO 2024075261A1 JP 2022037516 W JP2022037516 W JP 2022037516W WO 2024075261 A1 WO2024075261 A1 WO 2024075261A1
Authority
WO
WIPO (PCT)
Prior art keywords
csi
information
resource
prediction
model
Prior art date
Application number
PCT/JP2022/037516
Other languages
English (en)
French (fr)
Inventor
春陽 越後
浩樹 原田
リュー リュー
ラン チン
ツーシン チェン
ヨン リ
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2022/037516 priority Critical patent/WO2024075261A1/ja
Publication of WO2024075261A1 publication Critical patent/WO2024075261A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/06Testing, supervising or monitoring using simulated traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports

Definitions

  • This disclosure relates to terminals, wireless communication methods, and base stations in next-generation mobile communication systems.
  • LTE Long Term Evolution
  • UMTS Universal Mobile Telecommunications System
  • Non-Patent Document 1 LTE-Advanced (3GPP Rel. 10-14) was specified for the purpose of achieving higher capacity and greater sophistication over LTE (Third Generation Partnership Project (3GPP (registered trademark)) Release (Rel.) 8, 9).
  • LTE 5th generation mobile communication system
  • 5G+ 5th generation mobile communication system
  • 6G 6th generation mobile communication system
  • NR New Radio
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • E-UTRAN Evolved Universal Terrestrial Radio Access Network
  • AI artificial intelligence
  • ML machine learning
  • Beam reporting Beam reporting
  • BM AI-based beam management
  • Temporal DL beam prediction may be called, for example, time domain Channel State Information (CSI) prediction.
  • CSI Channel State Information
  • time-domain CSI prediction that does not use an AI model (e.g., using a function for a specific prediction) is also being considered.
  • the resource settings (number of resources, period, selection method, etc.) for channel measurements to obtain past information for input to the AI model/prediction function have yet to be considered.
  • the base station's recognition of which channel information for the prediction result is for the output of the AI model/prediction function (number of resources, period, selection method, etc.) has yet to be considered.
  • the reporting settings for predicted channel information (CSI) have yet to be considered.
  • one of the objectives of this disclosure is to provide a terminal, a wireless communication method, and a base station that can achieve optimal overhead reduction/channel estimation/resource utilization.
  • a terminal has a receiving unit that receives information regarding an instruction for predicting Channel State Information (CSI), and a control unit that performs CSI prediction based on the information.
  • CSI Channel State Information
  • FIG. 1 is a diagram illustrating an example of a framework for managing AI models.
  • 2A and 2B are diagrams illustrating an example of an AI-based beam report.
  • 3A and 3B are diagrams showing an example of a CSI reporting configuration related to prediction in embodiment 1.1.
  • FIG. 4 is a diagram showing an example of a CSI reporting configuration related to prediction in embodiment 1.1.
  • Figure 5 is a diagram showing an example of a MAC CE for instructing CSI prediction in embodiment 1.2.
  • 6A and 6B are diagrams showing an example of a MAC CE for indicating CSI prediction in embodiment 1.2.
  • FIG. 7 is a diagram showing an example of a P/SP-historical CSI resource.
  • FIG. 8 is a diagram showing an example of information related to P/SP-historical CSI resources.
  • FIG. 9 is a diagram showing an example of information related to P/SP-historical CSI resources.
  • FIG. 10 is a diagram showing an example of information related to P/SP-historical CSI resources.
  • FIG. 11 is a diagram showing an example of information related to P/SP-historical CSI resources.
  • FIG. 12 is a diagram showing an example of an A-historical CSI resource.
  • FIG. 13 is a diagram showing an example of an A-historical CSI resource.
  • FIG. 14 is a diagram showing an example of an A-historical CSI resource.
  • FIG. 15 is a diagram showing an example of an A-historical CSI resource.
  • FIG. 16 is a diagram showing an example of information regarding A-historical CSI resources.
  • FIG. 10 is a diagram showing an example of information related to P/SP-historical CSI resources.
  • FIG. 11 is a diagram showing an example of information related to P/SP-historical CSI resources.
  • FIG. 12 is a diagram showing an example of an A
  • FIG. 17 is a diagram showing an example of information regarding A-historical CSI resources.
  • FIG. 18 is a diagram showing an example of information regarding A-historical CSI resources.
  • FIG. 19 is a diagram showing an example of information regarding A-historical CSI resources.
  • FIG. 20 is a diagram showing an example of P/SP-Future CSI resources.
  • FIG. 21 is a diagram showing an example of information regarding P/SP-Future CSI resources.
  • FIG. 22 is a diagram showing an example of information regarding P/SP-Future CSI resources.
  • FIG. 23 is a diagram showing an example of information regarding P/SP-Future CSI resources.
  • FIG. 24 is a diagram showing an example of information regarding P/SP-Future CSI resources.
  • FIG. 24 is a diagram showing an example of information regarding P/SP-Future CSI resources.
  • FIG. 25 is a diagram showing an example of P/SP/A-Future CSI resources.
  • FIG. 26 is a diagram showing an example of information regarding P/SP/A-Future CSI resources.
  • FIG. 27 is a diagram showing an example of information regarding P/SP/A-Future CSI resources.
  • FIG. 28 is a diagram showing an example of information regarding P/SP/A-Future CSI resources.
  • FIG. 29 is a diagram showing an example of information regarding P/SP/A-Future CSI resources.
  • FIG. 30 is a diagram illustrating an example of a reporting time.
  • FIG. 31 is a diagram illustrating an example of information regarding a report time.
  • FIG. 32 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment.
  • FIG. 32 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment.
  • FIG. 33 is a diagram illustrating an example of the configuration of a base station according to an embodiment.
  • FIG. 34 is a diagram illustrating an example of the configuration of a user terminal according to an embodiment.
  • FIG. 35 is a diagram showing an example of the hardware configuration of a base station and a user terminal according to an embodiment.
  • FIG. 36 is a diagram illustrating an example of a vehicle according to an embodiment.
  • AI Artificial Intelligence
  • ML machine learning
  • CSI channel state information
  • UE user equipment
  • BS base stations
  • CSI channel state information
  • UE user equipment
  • beam management e.g., improving accuracy, prediction in the time/space domain
  • position measurement e.g., improving position estimation/prediction
  • the AI model may output at least one piece of information such as an estimate, a prediction, a selected action, a classification, etc. based on the input information.
  • the UE/BS may input channel state information, reference signal measurements, etc. to the AI model, and output highly accurate channel state information/measurements/beam selection/position, future channel state information/radio link quality, etc.
  • AI may be interpreted as an object (also called a target, object, data, function, program, etc.) having (implementing) at least one of the following characteristics: - Estimation based on observed or collected information; - making choices based on observed or collected information; - Predictions based on observed or collected information.
  • estimation, prediction, and inference may be interpreted as interchangeable. Also, in this disclosure, estimate, predict, and infer may be interpreted as interchangeable.
  • an object may be, for example, an apparatus such as a UE or a BS, or a device. Also, in the present disclosure, an object may correspond to a program/model/entity that operates in the apparatus.
  • an AI model may be interpreted as an object having (implementing) at least one of the following characteristics: - Producing estimates by feeding information, - Predicting estimates by providing information - Discover features by providing information, - Select an action by providing information.
  • an AI model may refer to a data-driven algorithm that applies AI techniques to generate a set of outputs based on a set of inputs.
  • AI model, model, ML model, predictive analytics, predictive analysis model, tool, autoencoder, encoder, decoder, neural network model, AI algorithm, scheme, etc. may be interchangeable.
  • AI model may be derived using at least one of regression analysis (e.g., linear regression analysis, multiple regression analysis, logistic regression analysis), support vector machine, random forest, neural network, deep learning, etc.
  • autoencoder may be interchangeably referred to as any autoencoder, such as a stacked autoencoder or a convolutional autoencoder.
  • the encoder/decoder of this disclosure may employ models such as Residual Network (ResNet), DenseNet, and RefineNet.
  • encoder encoding, encoding/encoded, modification/alteration/control by an encoder, compressing, compress/compressed, generating, generate/generated, etc. may be read as interchangeable terms.
  • decoder decoding, decode/decoded, modification/alteration/control by a decoder, decompressing, decompress/decompressed, reconstructing, reconstruct/reconstructed, etc.
  • decompressing decompress/decompressed, reconstructing, reconstruct/reconstructed, etc.
  • a layer for an AI model
  • a layer may be interpreted as a layer (input layer, intermediate layer, etc.) used in an AI model.
  • a layer in the present disclosure may correspond to at least one of an input layer, intermediate layer, output layer, batch normalization layer, convolution layer, activation layer, dense layer, normalization layer, pooling layer, attention layer, dropout layer, fully connected layer, etc.
  • methods for training an AI model may include supervised learning, unsupervised learning, reinforcement learning, federated learning, and the like.
  • Supervised learning may refer to the process of training a model from inputs and corresponding labels.
  • Unsupervised learning may refer to the process of training a model without labeled data.
  • Reinforcement learning may refer to the process of training a model from inputs (i.e., states) and feedback signals (i.e., rewards) resulting from the model's outputs (i.e., actions) in the environment with which the model interacts.
  • terms such as generate, calculate, derive, etc. may be interchangeable.
  • terms such as implement, operate, operate, execute, etc. may be interchangeable.
  • terms such as train, learn, update, retrain, etc. may be interchangeable.
  • terms such as infer, after-training, live use, actual use, etc. may be interchangeable.
  • terms such as signal and signal/channel may be interchangeable.
  • Figure 1 shows an example of a framework for managing an AI model.
  • each stage related to the AI model is shown as a block.
  • This example is also expressed as life cycle management of an AI model.
  • the data collection stage corresponds to the stage of collecting data for generating/updating an AI model.
  • the data collection stage may include data organization (e.g., determining which data to transfer for model training/model inference), data transfer (e.g., transferring data to an entity (e.g., UE, gNB) that performs model training/model inference), etc.
  • data collection may refer to a process in which data is collected by a network node, management entity, or UE for the purpose of AI model training/data analysis/inference.
  • process and procedure may be interpreted as interchangeable.
  • collection may also refer to obtaining a data set (e.g., usable as input/output) for training/inference of an AI model based on measurements (channel measurements, beam measurements, radio link quality measurements, position estimation, etc.).
  • offline field data may be data collected from the field (real world) and used for offline training of an AI model.
  • online field data may be data collected from the field (real world) and used for online training of an AI model.
  • model training is performed based on the data (training data) transferred from the collection stage.
  • This stage may include data preparation (e.g., performing data preprocessing, cleaning, formatting, conversion, etc.), model training/validation, model testing (e.g., checking whether the trained model meets performance thresholds), model exchange (e.g., transferring the model for distributed learning), model deployment/update (deploying/updating the model to the entities that will perform model inference), etc.
  • AI model training may refer to a process for training an AI model in a data-driven manner and obtaining a trained AI model for inference.
  • AI model validation may refer to a sub-process of training to evaluate the quality of an AI model using a dataset different from the dataset used to train the model. This sub-process helps select model parameters that generalize beyond the dataset used to train the model.
  • AI model testing may refer to a sub-process of training to evaluate the performance of the final AI model using a dataset different from the dataset used for model training/validation. Note that testing, unlike validation, does not necessarily require subsequent model tuning.
  • model inference is performed based on the data (inference data) transferred from the collection stage.
  • This stage may include data preparation (e.g., performing data preprocessing, cleaning, formatting, transformation, etc.), model inference, model monitoring (e.g., monitoring the performance of model inference), model performance feedback (feeding back model performance to the entity training the model), and output (providing model output to the actor).
  • AI model inference may refer to the process of using a trained AI model to produce a set of outputs from a set of inputs.
  • a UE side model may refer to an AI model whose inference is performed entirely in the UE.
  • a network side model may refer to an AI model whose inference is performed entirely in the network (e.g., gNB).
  • a one-sided model may refer to a UE-side model or a network-side model.
  • a two-sided model may refer to a pair of AI models where joint inference is performed.
  • joint inference may include AI inference where the inference is performed jointly across the UE and the network, e.g., a first part of the inference may be performed first by the UE and the remaining part by the gNB (or vice versa).
  • AI model monitoring may refer to the process of monitoring the inference performance of an AI model, and may be interchangeably read as model performance monitoring, performance monitoring, etc.
  • model registration may refer to making a model executable (registering) through assigning a version identifier to the model and compiling it into the specific hardware used in the inference phase.
  • Model deployment may refer to distributing (or activating at) a fully developed and tested runtime image (or image of the execution environment) of the model to the target (e.g., UE/gNB) where inference will be performed.
  • Actor stages may include action triggers (e.g., deciding whether to trigger an action on another entity), feedback (e.g., feeding back information needed for training data/inference data/performance feedback), etc.
  • action triggers e.g., deciding whether to trigger an action on another entity
  • feedback e.g., feeding back information needed for training data/inference data/performance feedback
  • training of a model for mobility optimization may be performed in, for example, Operation, Administration and Maintenance (Management) (OAM) in a network (NW)/gNodeB (gNB).
  • OAM Operation, Administration and Maintenance
  • NW network
  • gNodeB gNodeB
  • In the former case interoperability, large capacity storage, operator manageability, and model flexibility (feature engineering, etc.) are advantageous.
  • the latency of model updates and the absence of data exchange for model deployment are advantageous.
  • Inference of the above model may be performed in, for example, a gNB.
  • the entity performing the training/inference may be different.
  • the function of the AI model may include beam management, beam prediction, autoencoder (or information compression), CSI feedback, positioning, etc.
  • the OAM/gNB may perform model training and the gNB may perform model inference.
  • a Location Management Function may perform model training and the LMF may perform model inference.
  • the OAM/gNB/UE may perform model training and the gNB/UE may perform model inference (jointly).
  • the OAM/gNB/UE may perform model training and the UE may perform model inference.
  • model activation may mean activating an AI model for a particular function.
  • Model deactivation may mean disabling an AI model for a particular function.
  • Model switching may mean deactivating a currently active AI model for a particular function and activating a different AI model.
  • Model transfer may also refer to distributing an AI model over the air interface. This may include distributing either or both of the parameters of the model structure already known at the receiving end, or a new model with the parameters. This may also include a complete model or a partial model.
  • Model download may refer to model transfer from the network to the UE.
  • Model upload may refer to model transfer from the UE to the network.
  • AI-based beam report As a use case of utilizing the AI model, spatial domain downlink (DL) beam prediction or temporal DL beam prediction using a one-sided AI model in the UE or NW is being considered.
  • DL spatial domain downlink
  • BM Beam Management
  • FIG. 2A and 2B are diagrams showing an example of an AI-based beam report.
  • FIG. 2A shows spatial domain DL beam prediction.
  • the UE may measure a spatially sparse (or thick) beam, input the measurement results, etc., into an AI model, and output a predicted result of the beam quality of a spatially dense (or thin) beam.
  • Figure 2B shows temporal DL beam prediction.
  • the UE may measure the time series of beams, input the measurement results, etc. into an AI model, and output the predicted beam quality of the future beam.
  • spatial domain DL beam prediction may be referred to as BM case 1
  • temporal DL beam prediction may be referred to as BM case 2.
  • temporal DL beam prediction may be referred to as, for example, time domain CSI prediction.
  • the beams associated with the output (prediction result) of the AI model may be referred to as set of beams A.
  • the beams associated with the input of the AI model may be referred to as set of beams B.
  • Candidates for input to the AI model for BM Case 1/2 include L1-RSRP (Layer 1 Reference Signal Received Power), assistance information (e.g., beam shape information, UE position/direction information, transmit beam usage information), Channel Impulse Response (CIR) information, and corresponding DL transmit/receive beam IDs.
  • L1-RSRP Layer 1 Reference Signal Received Power
  • assistance information e.g., beam shape information, UE position/direction information, transmit beam usage information
  • CIR Channel Impulse Response
  • Possible outputs of the AI model for BM Case 1 include the IDs of the top K (K is an integer) transmit/receive beams, the predicted L1-RSRP of these beams, the probability that each beam is in the top K, and the angles of these beams.
  • the candidates for the output of the AI model in BM Case 2 include predicted beam failures.
  • the UE generates (also called determining, calculating, estimating, measuring, etc.) CSI based on a reference signal (RS) (or a resource for the RS) and transmits (also called reporting, feedback, etc.) the generated CSI to a network (e.g., a base station).
  • RS reference signal
  • the CSI may be transmitted to the base station using, for example, an uplink control channel (e.g., a Physical Uplink Control Channel (PUCCH)) or an uplink shared channel (e.g., a Physical Uplink Shared Channel (PUSCH)).
  • PUCCH Physical Uplink Control Channel
  • PUSCH Physical Uplink Shared Channel
  • CSI includes a Channel Quality Indicator (CQI), a Precoding Matrix Indicator (PMI), a CSI-RS Resource Indicator (CRI), a SS/PBCH Block Resource Indicator (SSBRI), a Layer Indicator (LI), a Rank Indicator (RI), and a Layer 1 Reference Signal Received Power (L1-RSRP).
  • CQI Channel Quality Indicator
  • PMI Precoding Matrix Indicator
  • CRI CSI-RS Resource Indicator
  • SSBRI SS/PBCH Block Resource Indicator
  • LI Layer Indicator
  • RI Rank Indicator
  • L1-RSRP Layer 1 Reference Signal Received Power
  • L1-Reference Signal Received Power L1-RSRQ
  • L1-SINR Signal to Interference plus Noise Ratio
  • L1-SNR Signal to Noise Ratio
  • information on the channel matrix or channel coefficients
  • information on the precoding matrix or precoding coefficients
  • information on the beam/Transmission Configuration Indication state TCI state/spatial relation, etc.
  • the RS used to generate the CSI may be, for example, at least one of a Channel State Information Reference Signal (CSI-RS), a Synchronization Signal/Physical Broadcast Channel (SS/PBCH) block, a Synchronization Signal (SS), and a DeModulation Reference Signal (DMRS).
  • CSI-RS Channel State Information Reference Signal
  • SS/PBCH Synchronization Signal/Physical Broadcast Channel
  • SS Synchronization Signal
  • DMRS DeModulation Reference Signal
  • RS Non Zero Power (NZP) CSI-RS, Zero Power (ZP) CSI-RS, CSI Interference Measurement (CSI-IM), CSI-SSB, and SSB
  • NZP Non Zero Power
  • ZP Zero Power
  • CSI-IM CSI Interference Measurement
  • CSI-SSB CSI Interference Measurement
  • SSB SSB
  • CSI-RS may include other reference signals.
  • the UE may receive configuration information regarding CSI reporting (which may be referred to as CSI report configuration, report setting, etc.) and control CSI reporting based on the configuration information.
  • the report configuration information may be, for example, a Radio Resource Control (RRC) Information Element (IE) "CSI-ReportConfig.”
  • RRC Radio Resource Control
  • IE Radio Resource Control Information Element
  • the CSI reporting configuration may include at least one of the following information: Information regarding the CSI resources used for CSI measurements (resource configuration ID, for example, "CSI-ResourceConfigId”); Information regarding one or more quantities (CSI parameters) of CSI to be reported (report quantity information, e.g., "reportQuantity”); Report type information (eg, "reportConfigType”) indicating the time domain behavior of the reporting configuration.
  • resource configuration ID for example, "CSI-ResourceConfigId”
  • Information regarding one or more quantities (CSI parameters) of CSI to be reported (report quantity information, e.g., "reportQuantity”
  • Report type information eg, "reportConfigType" indicating the time domain behavior of the reporting configuration.
  • a CSI resource may be interchangeably referred to as a time instance, a CSI-RS opportunity/CSI-IM opportunity/SSB opportunity, a CSI-RS resource (one/multiple) opportunity, a CSI opportunity, an opportunity, a CSI-RS resource/CSI-IM resource/SSB resource, a time resource, a frequency resource, an antenna port (e.g., a CSI-RS port), etc.
  • the time unit of a CSI resource may be a slot, a symbol, etc.
  • the information on the CSI resources may include information on CSI resources for channel measurement, information on CSI resources for interference measurement (NZP-CSI-RS resources), information on CSI-IM resources for interference measurement, etc.
  • the reporting amount information may specify any one of the above CSI parameters (e.g., CRI, RI, PMI, CQI, LI, L1-RSRP, etc.) or a combination of these.
  • CSI parameters e.g., CRI, RI, PMI, CQI, LI, L1-RSRP, etc.
  • the report type information may indicate a periodic CSI (Periodic CSI (P-CSI)) report, an aperiodic CSI (A-CSI) report, or a semi-persistent CSI (Semi-Persistent CSI (SP-CSI)) report.
  • P-CSI Period CSI
  • A-CSI aperiodic CSI
  • SP-CSI semi-persistent CSI
  • the UE performs CSI-RS/SSB/CSI-IM measurements based on the CSI resource configuration corresponding to the CSI reporting configuration (CSI resource configuration associated with CSI-ResourceConfigId) and derives the CSI to report based on the measurement results.
  • the CSI reporting configuration CSI resource configuration associated with CSI-ResourceConfigId
  • the CSI resource configuration (e.g., the CSI-ResourceConfig information element) may include a csi-RS-ResourceSetList field indicating more specific CSI-RS/SSB resources, resource type information (e.g., "resourceType") indicating the time domain behavior of the resource configuration, etc.
  • the resource type information may indicate a P-CSI resource, an A-CSI resource, or an SP-CSI resource.
  • the timing of the P/SP-CSI resource (e.g., transmission/reception timing) may be determined by periodicity and offset information (CSI-ResourcePeriodicityAndOffset) included in the CSI resource configuration.
  • the P/SP-CSI resource may be transmitted in a slot corresponding to a position that is a multiple of the periodicity, taking the offset into account.
  • the timing of the A-CSI resource may be determined based on a set offset (aperiodicTriggeringOffset).
  • the offset may correspond to the time difference from a triggering DCI (e.g., a DCI including a CSI request field indicating a specific triggering state) that triggers the A-CSI resource/A-CSI report to the A-CSI resource. If not set, the value of the offset may be 0.
  • the report timing of the P/SP-CSI report may be determined by information on the period and offset (CSI-ReportPeriodicityAndOffset) included in the CSI report configuration.
  • the P/SP-CSI report (on PUCCH) may be transmitted in a slot corresponding to a position that is a multiple of the period, taking the offset into consideration.
  • the timing of the SP-CSI report may be determined based on the slot period information (reportSlotConfig) and slot offset information (reportSlotOffsetList) included in the CSI report configuration.
  • the SP-CSI report (on PUSCH) may be transmitted in a slot that is a multiple of the slot period after the slot offset based on the reception of the triggering DCI that triggers the SP-CSI report.
  • the slot offset may be determined based on the slot offset information and a field of the triggering DCI (e.g., the CSI request field).
  • SP-CSI measurement/reporting may be enabled/disabled a certain time after receiving the activation/deactivation MAC CE of the SP-CSI reporting setting.
  • SP-CSI measurement/reporting (on PUSCH) may be performed based on a trigger state (e.g., a trigger state included in the SemiPersistentOnPUSCH-TriggerStateList information element) activated by a CSI request field included in a DCI format (e.g., DCI format 0_1/0_2) to which a Cyclic Redundancy Check (CRC) scrambled by the SP-CSI-Radio Network Temporary Identifier (RNTI)) is added.
  • a trigger state e.g., a trigger state included in the SemiPersistentOnPUSCH-TriggerStateList information element
  • CRC Cyclic Redundancy Check
  • the timing of the A-CSI report may be determined based on slot offset information (reportSlotOffsetList) included in the CSI reporting configuration.
  • the A-CSI report may be transmitted in a slot after the slot offset based on the reception of a triggering DCI that triggers the A-CSI report.
  • the slot offset may be determined based on the slot offset information and a field of the triggering DCI (e.g., a CSI request field).
  • the timing of the A-CSI report may be determined based on information of multiple slot offsets for the more than one A-CSI report and the time domain resource allocation field of the triggering DCI.
  • a higher layer parameter related to a time constraint of a measurement e.g., timeRestrictionForChannelMeasurements related to a time constraint for a channel measurement, timeRestrictionForInterferenceMeasurements for an interference measurement, etc.
  • timeRestrictionForChannelMeasurements related to a time constraint for a channel measurement timeRestrictionForInterferenceMeasurements for an interference measurement, etc.
  • a channel measurement for calculating the CSI to be reported is derived based on the most recent NZP CSI-RS occasion related to the CSI reporting configuration that is not later than the CSI reference resource.
  • the channel measurement in the present disclosure may be read as an interference measurement or the like.
  • the channel measurement for calculating the CSI to be reported is derived based on an NZP CSI-RS occasion associated with the CSI reporting configuration that is not later than the CSI reference resource.
  • the reported CSI may be derived based on one or more NZP CSI-RS occasions.
  • the CSI reference resource for CSI reporting in UL slot n′ is defined in the time domain by a single DL slot n ⁇ n CSI_ref , where n corresponds to the DL slot that corresponds (overlaps) with UL slot n′.
  • n CSI_ref may be determined such that the CSI reference resource is in the same valid DL slot as the corresponding CSI request; otherwise, n CSI_ref may be the minimum value equal to or greater than a certain value corresponding to a delay requirement, such that the single DL slot corresponds to a valid DL slot.
  • CSI prediction may be performed for beams/PMI.
  • the resource settings (number of resources, period, selection method, etc.) for channel measurements to obtain past information for input to the AI model/prediction function have yet to be considered.
  • the base station's recognition of which channel information for the prediction result is for the output of the AI model/prediction function (number of resources, period, selection method, etc.) has yet to be considered.
  • the reporting settings for predicted channel information (CSI) have yet to be considered.
  • each embodiment of the present disclosure may also be applied when AI is not used.
  • A/B and “at least one of A and B” may be interpreted as interchangeable. Also, in this disclosure, “A/B/C” may mean “at least one of A, B, and C.”
  • Radio Resource Control RRC
  • RRC parameters RRC parameters
  • RRC messages higher layer parameters, fields, information elements (IEs), settings, etc.
  • IEs information elements
  • CE Medium Access Control
  • update commands activation/deactivation commands, etc.
  • higher layer signaling may be, for example, Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, broadcast information, or any combination thereof.
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • the MAC signaling may use, for example, a MAC Control Element (MAC CE), a MAC Protocol Data Unit (PDU), etc.
  • the broadcast information may be, for example, a Master Information Block (MIB), a System Information Block (SIB), Remaining Minimum System Information (RMSI), Other System Information (OSI), etc.
  • MIB Master Information Block
  • SIB System Information Block
  • RMSI Remaining Minimum System Information
  • OSI System Information
  • the physical layer signaling may be, for example, Downlink Control Information (DCI), Uplink Control Information (UCI), etc.
  • DCI Downlink Control Information
  • UCI Uplink Control Information
  • index identifier
  • indicator indicator
  • resource ID etc.
  • sequence list, set, group, cluster, subset, etc.
  • TRP
  • timing, time, duration, time instance, slot, subslot, symbol, subframe, etc. may be interpreted as interchangeable.
  • channel measurement/estimation may be performed using at least one of, for example, a Channel State Information Reference Signal (CSI-RS), a Synchronization Signal (SS), a Synchronization Signal/Physical Broadcast Channel (SS/PBCH) block, a DeModulation Reference Signal (DMRS), a Sounding Reference Signal (SRS), etc.
  • CSI-RS Channel State Information Reference Signal
  • SS Synchronization Signal
  • SS/PBCH Synchronization Signal/Physical Broadcast Channel
  • DMRS DeModulation Reference Signal
  • SRS Sounding Reference Signal
  • channel state, channel status, channel, channel environment, etc. may be interpreted as interchangeable.
  • UCI, CSI report, CSI feedback, feedback information, feedback bit, CSI feedback method, CSI feedback scheme, beam report, beam report scheme, etc. may be interchangeable.
  • bit, bit string, bit sequence, sequence, value, information, value obtained from a bit, information obtained from a bit, etc. may be interchangeable.
  • the CSI-RS resource set, the configuration parameters of the CSI-RS resource set, the NZP CSI-RS resource set, the configuration parameters of the NZP CSI-RS resource set (NZP-CSI-RS-ResourceSet), the configuration parameters of the resource set of the SSB for CSI measurement (CSI-SSB-ResourceSet), and the configuration parameters of the CSI-IM resource set (CSI-IM-ResourceSet) may be read as interchangeable.
  • CSI-RS resources CSI-RS resource configuration parameters, NZP CSI-RS resources, NZP CSI-RS resource configuration parameters (NZP-CSI-RS-Resource), CSI resources, etc. may be read as interchangeable.
  • the 0th embodiment relates to performing time-domain CSI prediction and reporting the predicted CSI.
  • the 0th embodiment may be the premise for the following embodiments.
  • the UE performs time domain CSI prediction when at least one of the following conditions is met: Condition 1: An AI model for time-domain CSI prediction is configured/registered/activated; Condition 2: A specific CSI reporting configuration is configured/triggered/activated; Condition 3: Decide to perform prediction on its own based on the CSI reporting setting, and transmit information regarding the decision to perform prediction to the NW.
  • Condition 1 An AI model for time-domain CSI prediction is configured/registered/activated
  • Condition 2 A specific CSI reporting configuration is configured/triggered/activated
  • Condition 3 Decide to perform prediction on its own based on the CSI reporting setting, and transmit information regarding the decision to perform prediction to the NW.
  • performing CSI prediction may also mean calculating predicted CSI-related information (e.g., PMI, information on the channel matrix, etc.).
  • information regarding the time offset from the signal (reception of information) for configuration/registration/activation to the performance of CSI prediction may be notified to the UE or may be predefined.
  • the information regarding the time offset may be associated with an AI model.
  • the specific CSI reporting configuration may include at least one of the following: - Instructions (or indicators) for "CSI prediction", Information about CSI resources for measuring historical CSI information (historical CSI); - Information regarding CSI resources corresponding to future predicted CSI information (future CSI).
  • the past CSI information may correspond to a set of CSI for each CSI-RS opportunity.
  • the past CSI information may also include current CSI information.
  • the CSI resource for measuring past CSI information may be interchangeably referred to as a historical CSI resource, a time-series CSI resource, set B, a resource of set B, a CSI resource for prediction, etc.
  • the historical CSI resource may correspond to each opportunity of the CSI-RS resource.
  • the CSI resource corresponding to the predicted CSI information may be interchangeably referred to as a future CSI resource, set A, a resource of set A, a predicted CSI resource, a CSI resource corresponding to the reported CSI, etc.
  • the UE may input values/information based on the measurement results of the historical CSI resource into an AI model/prediction function to predict the CSI corresponding to the future CSI resource.
  • the instructions for CSI prediction are described in detail in the first embodiment.
  • the historical CSI resources are described in detail in the second embodiment.
  • the future CSI resources are described in detail in the third embodiment.
  • information regarding a decision to make a prediction may be read as information regarding the prediction to be made.
  • the UE reports predicted CSI (e.g., CSI corresponding to a future CSI resource) when at least one of the following conditions is met:
  • Condition 1 An AI model for time-domain CSI prediction is configured/registered/activated;
  • Condition 2 A specific CSI reporting configuration is configured/triggered/activated;
  • Condition 3 Decide by itself to perform prediction/reporting based on the CSI reporting setting, and transmit information regarding the decision to perform prediction/reporting to the NW.
  • information regarding the time offset from the signal (reception of information) for configuration/registration/activation to the performance of CSI reporting to which CSI prediction is applied, or from the performance of CSI prediction to the performance of the above CSI reporting may be notified to the UE or may be defined in advance.
  • the information regarding the time offset may be associated with an AI model.
  • the specific CSI reporting configuration may include at least one of the following: - Instructions (or indicators) for "CSI prediction", Information about the time instances (or resources) for reporting the predicted CSI information.
  • information regarding a decision to carry out a forecast/report may be read as information regarding the forecast/report to be carried out.
  • the UE can appropriately control the implementation of time-domain CSI prediction and the reporting of the predicted CSI.
  • the first embodiment relates to indication of CSI prediction.
  • the UE may receive the indication information for CSI prediction by at least one of RRC signaling, MAC signaling, and DCI.
  • the list of CSI reporting configurations configured in the UE may include both prediction-unrelated and prediction-related CSI reporting configurations.
  • the UE may only perform prediction-unrelated CSI reporting based on the prediction-unrelated CSI reporting configuration (and may not expect to perform prediction-related CSI reporting based on the configuration).
  • the UE may only perform prediction-related CSI reporting based on the CSI reporting configurations included in the second list of CSI reporting configurations (and may not expect to perform prediction-unrelated CSI reporting based on the configuration).
  • the list of CSI reporting configurations may be csi-ReportConfigToAddModList included in the CSI measurement configuration (CSI-MeasConfig).
  • the CSI reporting configurations relevant to the prediction may correspond to the CSI reporting configurations included in a particular entry (which may also be called an element) or a particular range of entries in the list of CSI reporting configurations, or may correspond to the CSI reporting configurations associated with a particular value or range of CSI reporting configuration IDs (CSI-ReportConfigId).
  • the UE may also be configured with a list of first CSI reporting configurations unrelated to prediction and a list of second CSI reporting configurations for prediction.
  • the UE may only perform CSI reporting unrelated to prediction based on the CSI reporting configurations included in the list of first CSI reporting configurations (and may not expect to perform CSI reporting related to prediction based on said configurations).
  • the UE may only perform CSI reporting related to prediction based on the CSI reporting configurations included in the list of second CSI reporting configurations (and may not expect to perform CSI reporting unrelated to prediction based on said configurations).
  • the first CSI reporting configuration list may be csi-ReportConfigToAddModList included in the CSI measurement configuration (CSI-MeasConfig).
  • the second CSI reporting configuration list may be called csi-ReportConfigToAddModList-Prediction, for example, and may be included in the CSI measurement configuration.
  • Figures 3A and 3B are diagrams showing an example of a CSI reporting configuration related to prediction in embodiment 1.1.
  • CSI reporting configurations with a reporting configuration ID of K+1 or more correspond to the CSI reporting configuration related to prediction.
  • the list of CSI reporting configurations corresponds to the list of the first CSI reporting configuration described above
  • another list of CSI reporting configurations corresponds to the list of the second CSI reporting configuration described above.
  • the list of CSI reporting configurations may be an information element of a list of CSI reporting configurations (e.g., csi-ReportConfigToAddModList), an information element of a list of trigger states for SP-CSI reporting (e.g., CSI-SemiPersistentOnPUSCH-TriggerStateList), or an information element of a list of trigger states for A-CSI reporting (e.g., CSI-AperiodicTriggerStateList).
  • the list of CSI reporting configurations may include a list of CSI reporting configuration IDs.
  • whether a CSI report is relevant to prediction may be identified based on an explicit CSI prediction instruction included in the CSI reporting configuration, rather than based on a list of CSI reporting configurations or a CSI reporting configuration ID.
  • FIG. 4 is a diagram showing an example of a CSI reporting configuration related to prediction according to embodiment 1.1. This example is described using Abstract Syntax Notation One (ASN.1) notation (note that this is merely an example and may not be a complete description). The following drawings may also use ASN.1 notation.
  • ASN.1 Abstract Syntax Notation One
  • RRC information elements may be given a suffix indicating that they were introduced in a specific release (for example, "_r18" or "-r18" for Rel. 18).
  • the suffix does not have to be given, or a different word may be given.
  • the CSI reporting configuration (CSI-ReportConfig information element) in FIG. 4 is similar to the existing CSI reporting configuration up to Rel. 17 NR, but differs in that it includes information (predictionIndicator) for indicating an instruction for "CSI prediction".
  • predictionIndicator information for indicating an instruction for "CSI prediction".
  • normal CSI measurement report may be read as traditional/existing CSI measurement report and vice versa.
  • the UE may be informed of the indication of CSI prediction related to the CSI report by a MAC CE, which may be a MAC CE for A-CSI reporting or a MAC CE for SP-CSI reporting.
  • a MAC CE which may be a MAC CE for A-CSI reporting or a MAC CE for SP-CSI reporting.
  • the MAC CE for the A-CSI report may be, for example, a MAC CE for selecting a predetermined number (e.g., 2 ⁇ N TS ⁇ 1) of trigger states from all trigger states for the A-CSI report set in the UE (Aperiodic CSI Trigger State Subselection MAC CE) or a MAC CE obtained by extending/modifying the MAC CE.
  • NTS of the CSI request field may be set by a higher layer parameter (reportTriggerSize).
  • NTS may be, for example , 0, 1, 2, 3, 4, 5, or 6 bits, but is not limited thereto and may be 7 bits or more.
  • FIG. 5 is a diagram showing an example of a MAC CE for instructing CSI prediction according to embodiment 1.2.
  • the MAC CE may, for example, include a field indicating at least one of the following: Serving cell (cell, component carrier, carrier) identifier (ID), - Bandwidth Part (BWP) Identifier (ID), The selection state of the trigger state set by higher layer parameters (e.g., aperiodicTriggerStateList); - Instructions for "CSI prediction".
  • the selection state field is composed of a bit T i corresponding to the i th trigger state set in the upper layer parameters. If bit T i is set to "1", it indicates that the i th trigger state is mapped to a code point of the CSI request field in the DCI. On the other hand, if bit T i is set to "0", it indicates that the i th trigger state is not mapped to a code point of the CSI request field in the DCI.
  • trigger conditions with bit T i set to "1" may be mapped to code points in the CSI request field in ascending order of the trigger condition identifier (index), e.g., the lowest index value trigger condition with bit T i set to “1” may be mapped to CSI request field code point "1” and the next index value trigger condition with bit T i set to "1" may be mapped to CSI request field code point "2".
  • index the trigger condition identifier
  • information for indicating an instruction for "CSI prediction” may be indicated by a P field.
  • the field indicates '1' it means that for a trigger state in which bit T i is set to "1”, CSI prediction is performed based on a CSI reporting configuration corresponding to the trigger state, and when the field indicates '0', it may mean that for a trigger state in which bit T i is set to "1", CSI prediction is not performed based on a CSI reporting configuration corresponding to the trigger state (normal CSI measurement report is performed), or vice versa.
  • the MAC CE for the SP-CSI report may be, for example, an SP-CSI reporting activation/deactivation MAC CE on a PUCCH (SP CSI reporting on PUCCH Activation/Deactivation MAC CE) or a MAC CE that is an extension/modification of the MAC CE.
  • Figures 6A and 6B are diagrams showing an example of a MAC CE for instructing CSI prediction according to embodiment 1.2.
  • the MAC CE may, for example, include a field indicating at least one of the following: Serving cell (cell, component carrier, carrier) identifier (ID), - Bandwidth Part (BWP) Identifier (ID), Activation/deactivation of SP-CSI reporting corresponding to higher layer parameters (e.g. CSI configuration report list csi-ReportConfigToAddModList); - Instructions for "CSI prediction".
  • Serving cell cell, component carrier, carrier
  • BWP Bandwidth Part
  • ID Bandwidth Part
  • Activation/deactivation of SP-CSI reporting corresponding to higher layer parameters e.g. CSI configuration report list csi-ReportConfigToAddModList
  • CSI prediction e.g. CSI configuration report list csi-ReportConfigToAddModList
  • the field indicating activation/deactivation of SP-CSI reporting may correspond to bit S i (i is an integer).
  • S i may refer to a CSI reporting configuration including PUCCH resources for SP-CSI reporting in a specified cell and BWP, and having the (i+1)th smallest CSI reporting configuration ID (CSI-ReportConfigId) indicating the type of SP-CSI reporting on PUCCH (semiPersistentOnPUCCH) in the CSI configuration report list. That is, S 0 corresponds to the smallest CSI reporting configuration ID indicating the type of SP-CSI reporting on PUCCH.
  • the MAC CE in Fig. 6A can control S0 to S3
  • the number of SP-CSI reports in the PUCCH may be further increased, and for example, a MAC CE capable of controlling S0 to S7 as shown in Fig. 6B may be used. Also, a MAC CE corresponding to even more Si may be used.
  • the MAC CE shown in FIGS. 6A and 6B may correspond to a newly defined SP-CSI reporting activation/deactivation MAC CE in PUSCH or a predicted CSI activation/deactivation MAC CE for SP-CSI reporting in PUSCH.
  • S i may refer to the CSI reporting configuration with the (i+1)-th smallest CSI reporting configuration ID (CSI-ReportConfigId) indicating the type of SP-CSI reporting on PUSCH (semiPersistentOnPUSCH) in the CSI configuration report list for the specified cell and BWP, i.e., S 0 corresponds to the smallest CSI reporting configuration ID indicating the type of SP-CSI reporting on PUSCH.
  • CSI-ReportConfigId the type of SP-CSI reporting on PUSCH (semiPersistentOnPUSCH) in the CSI configuration report list for the specified cell and BWP, i.e., S 0 corresponds to the smallest CSI reporting configuration ID indicating the type of SP-CSI reporting on PUSCH.
  • S i may correspond to the (i+1)th entry or the (i+1)th smallest CSI reporting configuration ID (CSI-ReportConfigId) of a list of trigger states for SP-CSI reporting on PUSCH (CSI-SemiPersistentOnPUSCH-TriggerStateList) for a specified cell and BWP.
  • CSI-ReportConfigId CSI-ReportConfigId
  • SP-CSI measurement/reporting may be enabled/disabled a certain time after receiving the activation/deactivation MAC CE of the SP-CSI reporting setting.
  • SP-CSI measurement/reporting (on PUSCH) may be performed based on a trigger state (e.g., a trigger state included in the SemiPersistentOnPUSCH-TriggerStateList information element) activated by a CSI request field included in a DCI format (e.g., DCI format 0_1/0_2) to which a Cyclic Redundancy Check (CRC) scrambled by the SP-CSI-Radio Network Temporary Identifier (RNTI)) is added.
  • a trigger state e.g., a trigger state included in the SemiPersistentOnPUSCH-TriggerStateList information element
  • CRC Cyclic Redundancy Check
  • the MAC CE for SP-CSI reporting in PUSCH only controls on/off of prediction, and activation/deactivation of SP-CSI reporting using PUSCH is controlled by DCI.
  • the UE may report predicted CSI for the corresponding CSI reporting setting when the MAC CE indicates that CSI prediction is performed, and may report normal CSI otherwise.
  • the UE may be informed of an indication of CSI prediction related to the CSI report by a DCI, which may be a DCI for triggering an A-CSI report or a DCI for triggering (activating) an SP-CSI report in a PUSCH.
  • a DCI which may be a DCI for triggering an A-CSI report or a DCI for triggering (activating) an SP-CSI report in a PUSCH.
  • the indication of CSI prediction signaled by the DCI may include at least one of the following: RNTI used to scramble the CRC attached to the DCI; one or more existing fields included in the DCI; - A reserved bit (or a new field) included in the DCI.
  • the above RNTI may be a cell RNTI (C-RNTI) indicating "CSI prediction" (e.g., Cell-prediction-RNTI (C-PRED-RNTI)) or an SP-CSI-RNTI indicating "CSI prediction” (e.g., SP-CSI-prediction-RNTI (SP-CSI-PRED-RNTI)).
  • C-PRED-RNTI may be used for triggering DCI of A-CSI report
  • SP-CSI-PRED-RNTI may be used for triggering DCI of SP-CSI report in PUSCH.
  • the above existing fields may be interpreted as indication fields for CSI prediction only if certain conditions are met (e.g., if enabled by higher layer signaling).
  • the new field may be called, for example, a CSI prediction instruction field, and for example, the field indicating '1' may mean that CSI prediction is performed based on the CSI reporting setting corresponding to the triggered trigger state, and the field indicating '0' may mean that CSI prediction is not performed based on the CSI reporting setting corresponding to the triggered trigger state (normal CSI measurement reporting is performed).
  • the UE can appropriately determine whether or not to perform CSI prediction based on an instruction from the base station.
  • the second embodiment relates to historical CSI resources.
  • the historical CSI resource may be a resource at a time before a certain offset from the timing of the start of prediction or the report of the prediction result (predicted CSI).
  • the historical CSI resource may correspond to a CSI resource that is not later than the CSI reference resource obtained by replacing the uplink slot n' for CSI reporting with the slot for the start of prediction or the slot for the report of the prediction result (predicted CSI) in the definition of the existing CSI reference resource.
  • n CSI_ref for defining the CSI reference resource (for the historical CSI resource) may be a minimum value equal to or greater than the value X such that a single DL slot n-n CSI_ref corresponds to a valid DL slot.
  • the X may be determined based on at least one of the following: a setting related to the historical CSI resource (for example, a CSI-Prediction field or information contained in the field described later), a CSI reporting setting, and an AI model used (linked) for CSI prediction.
  • a setting related to the historical CSI resource for example, a CSI-Prediction field or information contained in the field described later
  • CSI reporting setting for example, a CSI reporting setting
  • an AI model used (linked) for CSI prediction for example, a CSI-Prediction field or information contained in the field described later.
  • the UE may determine the historical CSI resource based on the setting from the NW, or may determine it based on its own UE capability.
  • the historical CSI resource may be predefined in the standard.
  • the above offset may also be determined based on the setting from the NW/UE capability. The value of the above offset may be 0.
  • the UE may determine the historical CSI resource by itself based on the CSI reporting configuration that is configured/triggered/activated and indicated as "CSI prediction".
  • the UE may transmit information about the determined historical CSI resource to the NW.
  • the UE may determine historical CSI resources corresponding to a length/number/bitmap predefined in the standard for a CSI reporting configuration/CSI resource configuration indicated as "CSI prediction".
  • the UE may determine the historical CSI resources based on information associated with the AI model being configured/registered/activated. That is, information regarding the historical CSI resources may be associated with the AI model.
  • periodic/semi-persistent/non-periodic historical CSI resources are also referred to as P/SP/A-historical CSI resources, respectively.
  • one historical CSI resource means one time resource/time instance/opportunity/resource set/CSI-RS opportunity for the historical CSI resource, and it is assumed that one opportunity includes one CSI-RS resource including RS corresponding to eight antenna ports, or eight CSI resources corresponding to one resource set.
  • one resource set may correspond to one CSI measurement/report.
  • Information regarding the P/SP-Historical CSI resource may be included in the CSI reporting configuration (e.g., the CSI-ReportConfig information element), the CSI resource configuration (e.g., the CSI-ResourceConfig information element), the NZP-CSI-RS resource set configuration (e.g., the NZP-CSI-RS-ResourceSet information element), or the NZP-CSI-RS resource configuration (e.g., the NZP-CSI-RS-Resource information element).
  • the CSI reporting configuration e.g., the CSI-ReportConfig information element
  • the CSI resource configuration e.g., the CSI-ResourceConfig information element
  • the NZP-CSI-RS resource set configuration e.g., the NZP-CSI-RS-ResourceSet information element
  • the NZP-CSI-RS resource configuration e.g., the NZP-CSI-RS-Resource information element
  • the information about the P/SP-Historical CSI resources may include information about at least one of the following: A time period of the historical CSI resource (which may be denoted as P1, for example); The number of historical CSI resources (which may be represented as N1, for example); A bitmap for historical CSI resources (which may be represented as B1, for example).
  • the information regarding P1 may directly indicate the value of P1, or may indicate the value of a scaling factor (which may be expressed as, for example, ⁇ ) of the period (which may be expressed as, for example, P) of the CSI resource to be set. In the latter case, P1 may be equal to ⁇ *P. Note that the period in this disclosure may be expressed in any time unit, such as slot units or symbol units. P1 and ⁇ may be integers or decimals.
  • N1 may indicate the maximum number of CSI resources (or the maximum number of time positions) available for prediction among the historical CSI resources of the period P1.
  • N1 may be an integer.
  • the above B1 may indicate the CSI resource (or the time position) to be used for prediction among the N1 historical CSI resources in the period P1.
  • a bit '1' in B1 may mean that the corresponding CSI resource is used for prediction, and a bit '0' may mean that the corresponding CSI resource is not used for prediction, or vice versa.
  • the UE may use values predefined in the standard. For example, the UE may use a bitmap consisting of N1 '1's as B1.
  • FIG. 7 is a diagram showing an example of P/SP-historical CSI resources.
  • a CSI resource with a period P is configured for the UE.
  • the historical CSI resources used for prediction or measurement correspond to a total of 16 CSI resources for the two hatched occasions.
  • the upward arrow in the figure indicates the timing at which the predicted CSI can be reported (described later in the fourth embodiment). This is the same in subsequent similar figures.
  • the UE transmits the predicted CSI at the timing at which it can be reported after the prediction process (Prediction in the figure) is completed.
  • the hatched upward arrow indicates the timing at which the CSI is transmitted.
  • FIGS. 8 to 11 are diagrams showing examples of information related to P/SP-Historical CSI resources.
  • Each of FIG. 8 to FIG. 11 shows an example in which the CSI-Prediction field, which is information related to P/SP-Historical CSI resources, is included in a CSI report configuration (e.g., a CSI-ReportConfig information element), a CSI resource configuration (e.g., a CSI-ResourceConfig information element), an NZP-CSI-RS resource set configuration (e.g., an NZP-CSI-RS-ResourceSet information element), and an NZP-CSI-RS resource configuration (e.g., an NZP-CSI-RS-Resource information element).
  • a CSI report configuration e.g., a CSI-ReportConfig information element
  • a CSI resource configuration e.g., a CSI-ResourceConfig information element
  • an NZP-CSI-RS resource set configuration e.g., an NZP-
  • the parameter historicalPeriodicityScaling corresponds to the information ⁇ above
  • the parameter inputNumber corresponds to the information N1 above
  • the parameter inputBitmap corresponds to the information B1 above.
  • Information regarding the A-historical CSI resource may be included in the CSI reporting configuration (e.g., the CSI-ReportConfig information element), the CSI resource configuration (e.g., the CSI-ResourceConfig information element), the NZP-CSI-RS resource set configuration (e.g., the NZP-CSI-RS-ResourceSet information element), or the NZP-CSI-RS resource configuration (e.g., the NZP-CSI-RS-Resource information element).
  • the CSI reporting configuration e.g., the CSI-ReportConfig information element
  • the CSI resource configuration e.g., the CSI-ResourceConfig information element
  • the NZP-CSI-RS resource set configuration e.g., the NZP-CSI-RS-ResourceSet information element
  • the NZP-CSI-RS resource configuration e.g., the NZP-CSI-RS-Resource information element
  • the information on the A-historical CSI resource included in the CSI reporting configuration/CSI resource configuration/NZP-CSI-RS resource set configuration may include information on a bitmap (e.g., may be represented as B1) for the historical CSI resource.
  • B1 may indicate the CSI resource (time position) to be used for prediction among the N1 historical CSI resources.
  • the above N1 may correspond to the number of CSI resource configurations (e.g., the number of CSI-ResourceConfigIDs) configured by (or associated with) the CSI reporting configuration or the maximum number of CSI resource configurations that can be configured (e.g., 3).
  • the number of CSI resource configurations e.g., the number of CSI-ResourceConfigIDs
  • the maximum number of CSI resource configurations that can be configured e.g., 3
  • FIG. 12 is a diagram showing an example of A-Historical CSI Resources.
  • the historical CSI resources used for prediction or measured correspond to the three hatched occasions, totaling 24 CSI resources (corresponding to the second CSI resource setting).
  • the above N1 may correspond to the number of resource set configurations configured by the CSI resource configuration (or associated with the CSI resource configuration) (e.g., the number of NZP-CSI-RS resource set IDs (NZP-CSI-RS-ResourceSetId)/CSI-SSB resource set IDs (CSI-SSB-ResourceSetId)/CSI-IM resource set IDs (CSI-IM-ResourceSetId) included in the csi-RS-ResourceSetList) or the maximum number of resource set configurations that can be configured (e.g., the maximum number of NZP-CSI-RS resource sets per configuration (maxNrofNZP-CSI-RS-ResourceSetsPerConfig) + the maximum number of CSI-SSB resource sets per configuration (maxNrofCSI-SSB-ResourceSetsPerConfig), or the maximum number of CSI-IM resource sets per configuration (maxNrofCSI-IM-ResourceSetsPerConfig)).
  • FIG. 13 is a diagram showing an example of A-Historical CSI resources.
  • the historical CSI resources used for prediction or measurement correspond to a total of 16 CSI resources (corresponding to the second and fourth resource set configurations) for the two hatched opportunities.
  • the above N1 may correspond to the number of NZP-CSI-RS resource configurations (e.g., the number of NZP-CSI-RS resource IDs (NZP-CSI-RS-ResourceId) included in nzp-CSI-RS-Resources) configured by the NZP-CSI-RS resource set configuration (or associated with the NZP-CSI-RS resource set configuration) or the maximum number of NZP-CSI-RS resource configurations that can be configured (e.g., the maximum number of NZP-CSI-RS resources per resource set (maxNrofNZP-CSI-RS-ResourcesPerSet)).
  • NZP-CSI-RS resource configurations e.g., the number of NZP-CSI-RS resource IDs (NZP-CSI-RS-ResourceId) included in nzp-CSI-RS-Resources
  • FIG. 14 is a diagram showing an example of A-Historical CSI resources.
  • B1 01010000
  • the historical CSI resources used for prediction or measurement correspond to the two CSI resources of one opportunity that are hatched.
  • the information on the A-Historical CSI resource included in the NZP-CSI-RS resource set configuration/NZP-CSI-RS resource configuration may include information on at least one of the following: An offset from the triggering DCI to a particular historical CSI resource (e.g., may be represented as X); A time period of the historical CSI resource (which may be denoted as P1, for example); The number of historical CSI resources (which may be represented as N1, for example); A bitmap for historical CSI resources (which may be represented as B1, for example).
  • the UE may assume that there are N1 CSI resources in the forward/backward direction in time with respect to X, with a period P1.
  • the particular historical CSI resource may be, for example, the first historical CSI resource, the last historical CSI resource, etc.
  • P1/X/N1/B1 may be explicitly/implicitly indicated to the UE by a field of the triggering DCI.
  • P1/N1/B1 may be configured for the UE in the same manner as described above for the information on the P/SP-historical CSI resource.
  • P1 may mean the number of valid downlink slots determined based on a notification from the base station.
  • the valid downlink slots may correspond to slots that do not include a specific downlink (or uplink) channel/reference signal (e.g., SSB), slots that do not include an uplink symbol/flexible symbol, or a combination thereof.
  • FIG. 15 is a diagram showing an example of an A-historical CSI resource.
  • N1 3, and the number of slots receiving the triggering DCI is n.
  • the historical CSI resource used for prediction or measured corresponds to the three hatched occasions (slots n+X, n+X+P1, and n+X+2P1).
  • the CSI resource (CSI resource specified by P1/X/N1/B1) transmitted on multiple occasions in FIG. 15 may correspond to the same CSI-RS resource (e.g., CSI-RS resource/CSI-RS resource set having the same time/frequency position within the slot) transmitted repeatedly or periodically at different times (e.g., different slots).
  • the CSI resource (CSI resource specified by B1) transmitted on multiple occasions in FIG. 12/13 may correspond to different CSI-RS resources transmitted at different times (e.g., different slots).
  • FIGS. 16 to 19 are diagrams showing examples of information related to A-Historical CSI resources.
  • FIG. 16 to FIG. 18 respectively show examples in which the CSI-Prediction field, which is information related to A-Historical CSI resources, is included in the CSI report configuration (e.g., CSI-ReportConfig information element), CSI resource configuration (e.g., CSI-ResourceConfig information element), NZP-CSI-RS resource set configuration (e.g., NZP-CSI-RS-ResourceSet information element), and NZP-CSI-RS resource configuration (e.g., NZP-CSI-RS-Resource information element).
  • the parameter inputBitmap corresponds to the information in B1 above.
  • Figure 19 shows another example in which the CSI-Prediction field, which is information about the A-Historical CSI resource, is included in the NZP-CSI-RS resource set configuration (e.g., the NZP-CSI-RS-ResourceSet information element).
  • the UE can appropriately determine the historical CSI resources.
  • the third embodiment relates to future CSI resources.
  • the future CSI resource may be a resource at a time after a certain offset from the start (/end) of the prediction or the timing of reporting the prediction result (predicted CSI).
  • the UE may determine the future CSI resource based on the setting from the NW, or may determine it based on its own UE capability.
  • the future CSI resource may be predefined in the standard.
  • the above offset may also be determined based on the setting from the NW/UE capability. The value of the above offset may be 0.
  • the UE may determine the future CSI resources by itself based on the CSI reporting configuration that is configured/triggered/activated and indicated as "CSI prediction".
  • the UE may transmit information about the determined future CSI resources to the NW.
  • the UE may determine future CSI resources corresponding to the length/number/bitmap predefined in the standard for a CSI reporting configuration/CSI resource configuration indicated as "CSI prediction".
  • the UE may determine future CSI resources based on information associated with the AI model being configured/registered/activated. That is, information regarding future CSI resources may be associated with the AI model.
  • periodic/semi-persistent/non-periodic future CSI resources are also referred to as P/SP/A-future CSI resources, respectively.
  • one future CSI resource means one time resource/time instance/opportunity/resource set for the future CSI resource, and it is assumed that one opportunity includes eight CSI resources.
  • one resource set may correspond to one CSI measurement/report.
  • Information regarding P/SP-Feature CSI resources may be included in the CSI reporting configuration (e.g., the CSI-ReportConfig information element), the CSI resource configuration (e.g., the CSI-ResourceConfig information element), the NZP-CSI-RS resource set configuration (e.g., the NZP-CSI-RS-ResourceSet information element), or the NZP-CSI-RS resource configuration (e.g., the NZP-CSI-RS-Resource information element).
  • the CSI reporting configuration e.g., the CSI-ReportConfig information element
  • the CSI resource configuration e.g., the CSI-ResourceConfig information element
  • the NZP-CSI-RS resource set configuration e.g., the NZP-CSI-RS-ResourceSet information element
  • the NZP-CSI-RS resource configuration e.g., the NZP-CSI-RS-Resource information element
  • the information about P/SP-Future CSI resources may include information about at least one of the following: A time period of future CSI resources (which may be denoted as P2, for example); The number of future CSI resources (which may be represented as, for example, N2); A bitmap for future CSI resources (which may be represented as B2, for example).
  • N2 may indicate the maximum number of CSI resources (or the maximum number of time positions) that are predicted (to be predicted) among the future CSI resources of the period P2.
  • N2 may be an integer.
  • the above B2 may indicate the CSI resource (or the time position) to be predicted among the N2 future CSI resources in period P2.
  • a bit '1' in B2 may mean predicting CSI for the corresponding CSI resource, and a bit '0' may mean not predicting CSI for the corresponding CSI resource, or vice versa.
  • the UE may use values predefined in the standard. For example, the UE may use a bitmap consisting of N2 '1's as B2.
  • FIG. 20 is a diagram showing an example of P/SP-future CSI resources.
  • a CSI resource with period P is configured for the UE.
  • the future CSI resources used for prediction correspond to a total of 16 CSI resources for the two hatched opportunities.
  • FIGS. 21 to 24 are diagrams showing examples of information related to P/SP-Future CSI resources.
  • Each of FIG. 21 to FIG. 24 shows an example in which the CSI-Prediction field, which is information related to P/SP-Future CSI resources, is included in a CSI report configuration (e.g., a CSI-ReportConfig information element), a CSI resource configuration (e.g., a CSI-ResourceConfig information element), an NZP-CSI-RS resource set configuration (e.g., an NZP-CSI-RS-ResourceSet information element), and an NZP-CSI-RS resource configuration (e.g., an NZP-CSI-RS-Resource information element).
  • a CSI report configuration e.g., a CSI-ReportConfig information element
  • a CSI resource configuration e.g., a CSI-ResourceConfig information element
  • an NZP-CSI-RS resource set configuration e.g., an NZP-
  • the parameter predictionPeriodicityScaling corresponds to the information ⁇ above
  • the parameter outputNumber corresponds to the information N2 above
  • the parameter outputBitmap corresponds to the information B2 above.
  • Information regarding P/SP/A-Feature CSI resources may be included in a CSI reporting configuration (e.g., a CSI-ReportConfig information element), a CSI resource configuration (e.g., a CSI-ResourceConfig information element), an NZP-CSI-RS resource set configuration (e.g., an NZP-CSI-RS-ResourceSet information element), or an NZP-CSI-RS resource configuration (e.g., an NZP-CSI-RS-Resource information element).
  • a CSI reporting configuration e.g., a CSI-ReportConfig information element
  • a CSI resource configuration e.g., a CSI-ResourceConfig information element
  • an NZP-CSI-RS resource set configuration e.g., an NZP-CSI-RS-ResourceSet information element
  • an NZP-CSI-RS resource configuration e.g., an NZP-CSI-RS-Resource information element
  • the information about P/SP/A-Future CSI resources may include information about at least one of the following: Offset from a specific timing to a specific future CSI resource; A time period of future CSI resources (which may be represented as P3, for example); The number of future CSI resources (which may be represented as N3, for example); A bitmap for future CSI resources (which may be represented as B3, for example).
  • the offset may be expressed as, for example, Y if the specific timing is the transmission timing of a CSI report, or as, for example, Y' if the specific timing is a CSI reference resource.
  • the information on the P/SP/A-future CSI resource may include information indicating which specific timing the offset is based on (for example, information indicating that the offset corresponds to Y or Y').
  • the UE may determine the information indicating which specific timing the offset is based on (for example, information indicating that the offset corresponds to Y or Y') based on information notified from the NW, or based on information on the AI model to be applied.
  • the UE may assume that there are N3 CSI resources in a period P3, forward/backward in time from the specific timing after the offset has elapsed.
  • the specific future CSI resource may be, for example, the first future CSI resource, the last future CSI resource, etc.
  • N3 may indicate the maximum number of CSI resources (or the maximum number of time positions) to be predicted among the future CSI resources in period P3.
  • N3 may be an integer.
  • the above B3 may indicate the CSI resource (or the time position) to be predicted among the N3 future CSI resources in period P3.
  • a bit '1' in B3 may mean predicting CSI for the corresponding CSI resource, and a bit '0' may mean not predicting CSI for the corresponding CSI resource, or vice versa.
  • the UE may use values predefined in the standard. For example, the UE may use a bitmap consisting of N3 '1's as B3.
  • P3/Y/Y'/N3/B3 may be explicitly/implicitly indicated to the UE for A-Future CSI resources by fields in the triggering DCI.
  • FIG. 25 is a diagram showing an example of P/SP/A-future CSI resources.
  • the future CSI resources to be predicted correspond to the CSI resources of the two hatched opportunities.
  • This example also shows examples of Y and Y'.
  • FIGS. 26 to 29 are diagrams showing an example of information related to P/SP/A-Future CSI resources.
  • FIG. 26 to FIG. 29 show examples in which the CSI-Prediction field, which is information related to P/SP/A-Future CSI resources, is included in the CSI report configuration (e.g., CSI-ReportConfig information element), the CSI resource configuration (e.g., CSI-ResourceConfig information element), the NZP-CSI-RS resource set configuration (e.g., NZP-CSI-RS-ResourceSet information element), and the NZP-CSI-RS resource configuration (e.g., NZP-CSI-RS-Resource information element).
  • the CSI report configuration e.g., CSI-ReportConfig information element
  • the CSI resource configuration e.g., CSI-ResourceConfig information element
  • the NZP-CSI-RS resource set configuration e.g., NZP-CSI-RS-ResourceSet information element
  • the parameter timeOffsettoReport corresponds to the offset information above
  • the parameter predictionPeriodicity corresponds to the P3 information above
  • the parameter outputNumber corresponds to the N3 information above
  • the parameter outputBitmap corresponds to the B3 information above.
  • the UE can appropriately determine future CSI resources.
  • the fourth embodiment relates to the time for reporting CSI.
  • the time for reporting CSI may be referred to as a CSI reporting time, a reporting time, a reporting opportunity, etc.
  • CSI may mean future CSI or may mean normal CSI (CSI that is not future CSI).
  • the UE may determine the reporting time based on settings from the network, or based on its own UE capabilities.
  • the reporting time may be specified in advance in the standard.
  • the UE may determine the reporting time by itself.
  • the UE may transmit information regarding the determined reporting time to the NW.
  • the UE may use a reporting time that is predefined in the standard.
  • the predefined reporting time may be predefined with respect to a CSI reporting configuration/CSI resource configuration indicated as "CSI prediction.”
  • the UE may determine the report time based on the setting from the NW.
  • A-CSI reporting the method of determining the report time in the existing NR may be used.
  • P4 information on the time period of the report time (which may be expressed as P4, for example) may be set in the CSI reporting setting indicated as "CSI prediction".
  • the UE may also determine the report time based on a valid uplink slot determined based on a notification from the base station.
  • the valid uplink slot may correspond to a slot that does not include a specific downlink (or uplink) channel/reference signal (e.g., SSB), a slot that does not include a downlink symbol/flexible symbol, or a combination of these.
  • Slots that do not include a particular downlink (or uplink) channel/reference signal may be determined based on RRC configuration of downlink (or uplink) channel/reference signal, trigger of DCI, etc.
  • Slots that do not include downlink symbols/flexible symbols may be determined based on RRC TDD UL-DL configuration, slot format specified by RRC/DCI, etc.
  • the UE may report CSI, for example, when P4 valid uplink slots have passed since the last CSI report.
  • the UE may determine the reporting time based on information associated with the AI model being configured/registered/activated. That is, the information regarding the reporting time may be associated with the AI model. For example, when an AI model related to the prediction is activated, future CSI may be reported at a long interval, and when an AI model related to the prediction is deactivated, normal CSI (CSI that is not future CSI) may be reported at a short interval. In other words, the reporting time may be changed based on model activation/deactivation without RRC reconfiguration.
  • Figure 30 shows an example of a reporting time.
  • an existing CSI reporting period parameter indicating period P is set for the UE.
  • FIG. 31 is a diagram showing an example of information related to the report time.
  • the parameter predictionReportPeriodicityScaling corresponds to the information ⁇ described above.
  • the start slot of the report time may be specified by (the offset indicated by) CSI-ReportPeriodicityAndOffset, for example.
  • the UE can appropriately determine the reporting time.
  • the fifth embodiment relates to a CSI reporting configuration.
  • the UE may configure (generate) one UCI/CSI report/reporting instance per time instance (e.g., one historical CSI resource/one future CSI resource). That is, one UCI/CSI report/reporting instance may correspond to one time instance.
  • one UCI/CSI report/reporting instance may correspond to one time instance.
  • the UE may configure (generate) one UCI/CSI report/report instance for multiple time instances (e.g., multiple historical CSI resources/multiple future CSI resources) in one or multiple CSI reports. That is, one UCI/CSI report/report instance may correspond to multiple time instances.
  • the bit width/bit structure for Future CSI may be scaled according to the number of time instances of Future CSI.
  • CRI/SSBRI/RSRP/SINR/RI/CQI/RI of Future CSI may be scaled according to the number of time instances of Future CSI included in one CSI report.
  • the number of bits of CRI/SSBRI/RSRP/SINR/RI/CQI/RI of Future CSI may be supported to be larger than the number of bits specified in Tables 6.3.1.1.2-1 to 6 of the existing TS 38.212.
  • mapping order of CSI for multiple time instances in one CSI may follow the mapping order specified in Tables 6.3.1.1.2-7 to 11 of the existing TS 38.212, or may be an extension of this order.
  • mapping order of multiple CSI reports to the UCI bit sequence may follow the mapping order specified in Tables 6.3.1.1.2-12 to 14 of the existing TS 38.212, or may be an extension of this order.
  • Fields in the CSI report may be configured to distinguish time instances. For example, a field for time instance #0 and a field for time instance #1 may be included in the CSI report. Note that fields in the CSI report (e.g., CRI/SSBRI field, RSRP field, etc.) may be extended to include other CSI (e.g., CQI/RI/PMI).
  • one CSI report may include both a field corresponding to measurement results in historical CSI resources and a field corresponding to future CSI.
  • inference/evaluation based on an AI model can be appropriately performed on the UE side.
  • AI model information may mean information including at least one of the following: - AI model input/output information, - Pre-processing/post-processing information for input/output of AI models; ⁇ Information on the parameters of the AI model, - Training information for the AI model; - Inference information for AI models, ⁇ Performance information about the AI model.
  • the input/output information of the AI model may include information regarding at least one of the following: Content of input/output data (e.g. RSRP, SINR, amplitude/phase information in the channel matrix (or precoding matrix), information on the Angle of Arrival (AoA), information on the Angle of Departure (AoD), location information); - auxiliary information of the data (which may be called meta-information); - Input/output data types (e.g. immutable values, floating point numbers), - Bit width of input/output data (e.g. 64 bits for each input value), Quantization interval (quantization step size) of input/output data (e.g., 1 dBm for L1-RSRP); The range that the input/output data can take (e.g., [0, 1]).
  • Content of input/output data e.g. RSRP, SINR, amplitude/phase information in the channel matrix (or precoding matrix), information on the Angle of Arrival (AoA), information on the
  • the information regarding AoA may include information regarding at least one of the azimuth angle of arrival and the zenith angle of arrival (ZoA). Furthermore, the information regarding AoD may include information regarding at least one of the azimuth angle of departure and the zenith angle of departure (ZoD).
  • the location information may be location information regarding the UE/NW.
  • the location information may include at least one of information (e.g., latitude, longitude, altitude) obtained using a positioning system (e.g., a satellite positioning system (Global Navigation Satellite System (GNSS), Global Positioning System (GPS), etc.)), information on the BS adjacent to (or serving) the UE (e.g., a BS/cell identifier (ID), a BS-UE distance, a direction/angle of the BS (UE) as seen from the UE (BS), coordinates of the BS (UE) as seen from the UE (BS) (e.g., coordinates on the X/Y/Z axes), etc.), a specific address of the UE (e.g., an Internet Protocol (IP) address), etc.
  • IP Internet Protocol
  • the location information of the UE is not limited to information based on the position of the BS, and may be information based on a specific point.
  • the location information may include information about its implementation (e.g., location/position/orientation of antennas, location/orientation of antenna panels, number of antennas, number of antenna panels, etc.).
  • the location information may include mobility information.
  • the mobility information may include information indicating at least one of the following: a mobility type, a moving speed of the UE, an acceleration of the UE, and a moving direction of the UE.
  • the mobility type may correspond to at least one of fixed location UE, movable/moving UE, no mobility UE, low mobility UE, middle mobility UE, high mobility UE, cell-edge UE, not-cell-edge UE, etc.
  • environmental information may be information regarding the environment in which the data is acquired/used, and may correspond to, for example, frequency information (such as a band ID), environmental type information (information indicating at least one of indoor, outdoor, Urban Macro (UMa), Urban Micro (Umi), etc.), information indicating Line Of Site (LOS)/Non-Line Of Site (NLOS), etc.
  • frequency information such as a band ID
  • environmental type information information indicating at least one of indoor, outdoor, Urban Macro (UMa), Urban Micro (Umi), etc.
  • LOS Line Of Site
  • NLOS Non-Line Of Site
  • LOS may mean that the UE and BS are in an environment where they can see each other (or there is no obstruction)
  • NLOS may mean that the UE and BS are not in an environment where they can see each other (or there is an obstruction).
  • Information indicating LOS/NLOS may indicate a soft value (e.g., the probability of LOS/NLOS) or a hard value (e.g., either LOS or NLOS).
  • meta-information may mean, for example, information regarding input/output information suitable for an AI model, information regarding data that has been acquired/can be acquired, etc.
  • meta-information may include information regarding beams of RS (e.g., CSI-RS/SRS/SSB, etc.) (e.g., the pointing angle of each beam, 3 dB beam width, the shape of the pointed beam, the number of beams), layout information of gNB/UE antennas, frequency information, environmental information, meta-information ID, etc.
  • RS e.g., CSI-RS/SRS/SSB, etc.
  • meta-information may be used as input/output of an AI model.
  • the pre-processing/post-processing information for the input/output of the AI model may include information regarding at least one of the following: Whether to apply normalization (e.g., Z-score normalization, min-max normalization), Parameters for normalization (e.g. mean/variance for Z-score normalization, min/max for min-max normalization); Whether to apply a specific numeric transformation method (e.g., one hot encoding, label encoding, etc.); Selection rule for whether or not to use as training data.
  • normalization e.g., Z-score normalization, min-max normalization
  • Parameters for normalization e.g. mean/variance for Z-score normalization, min/max for min-max normalization
  • a specific numeric transformation method e.g., one hot encoding, label encoding, etc.
  • the information of the parameters of the AI model may include information regarding at least one of the following: - Weight information in an AI model (e.g., neuron coefficients (connection coefficients)), ⁇ Structure of the AI model, -
  • the type of AI model as a model component e.g., Residual Network (ResNet), DenseNet, RefineNet, Transformer model, CRBlock, Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU)
  • - Functions of the AI model as model components e.g., decoder, encoder.
  • the weight information in the AI model may include information regarding at least one of the following: - Bit width (size) of weight information Quantization interval of weight information, - Granularity of weight information, - The range of possible weight information - Weight parameters in the AI model, - Information on the difference from the AI model before the update (if updating), - Method of weight initialization (e.g., zero initialization, random initialization (based on normal/uniform/truncated normal distribution), Xavier initialization (for sigmoid function), He initialization (for Rectified Linear Units (ReLU))).
  • the structure of the AI model may also include information regarding at least one of the following: Number of layers, - Type of layer (e.g., convolutional, activation, dense, normalization, pooling, attention); - Layer information, Time series specific parameters (e.g. bidirectionality, time step), Parameters for training (e.g., type of feature (L2 regularization, dropout feature, etc.), where to put this feature (e.g., after which layer)).
  • Number of layers e.g., - Type of layer (e.g., convolutional, activation, dense, normalization, pooling, attention); - Layer information, Time series specific parameters (e.g. bidirectionality, time step), Parameters for training (e.g., type of feature (L2 regularization, dropout feature, etc.), where to put this feature (e.g., after which layer)).
  • - Type of layer e.g., convolutional, activation, dense, normalization, pooling, attention
  • - Layer information e
  • the layer information may include information regarding at least one of the following: - The number of neurons in each layer, - kernel size, strides for pooling/convolutional layers, Pooling method (MaxPooling, AveragePooling, etc.), - Information on the residual block, Number of heads, - Normalization method (batch normalization, instance normalization, layer normalization, etc.), Activation functions (sigmoid, tanh function, ReLU, leaky ReLU information, Maxout, Softmax).
  • An AI model may be included as a component of another AI model.
  • an AI model may be an AI model in which processing proceeds in the order of model component #1 (ResNet), model component #2 (a transformer model), a dense layer, and a normalization layer.
  • ResNet model component #1
  • model component #2 a transformer model
  • dense layer a dense layer
  • normalization layer a normalization layer
  • Training information for the AI model may include information regarding at least one of the following: Information for the optimization algorithm (e.g., type of optimization (Stochastic Gradient Descent (SGD)), AdaGrad, Adam, etc.), parameters of the optimization (learning rate, momentum information, etc.), Loss function information (e.g., information on metrics of the loss function (Mean Absolute Error (MAE)), Mean Square Error (MSE), Cross Entropy Loss, NLL Loss, Kullback-Leibler (KL) Divergence, etc.)); - parameters to be frozen for training (e.g. layers, weights), - parameters to be updated (e.g.
  • Information for the optimization algorithm e.g., type of optimization (Stochastic Gradient Descent (SGD)), AdaGrad, Adam, etc.
  • parameters of the optimization learning rate, momentum information, etc.
  • Loss function information e.g., information on metrics of the loss function (Mean Absolute Error (MAE)
  • layers, weights - parameters that should be (used as) initial parameters for training (e.g. layers, weights); How to train/update the AI model (e.g., (recommended) number of epochs, batch size, number of data used for training).
  • the inference information for the AI model may include information regarding decision tree branch pruning, parameter quantization, and the function of the AI model.
  • the function of the AI model may correspond to at least one of, for example, time domain beam prediction, spatial domain beam prediction, autoencoder for CSI feedback, and autoencoder for beam management.
  • An autoencoder for CSI feedback may be used as follows: The UE inputs the CSI/channel matrix/precoding matrix into the AI model of the encoder and transmits the encoded bits as CSI feedback (CSI report); - The BS reconstructs the CSI/channel matrix/precoding matrix, which is output as input to the AI model of the decoder using the received encoded bits.
  • the UE/BS may input measurement results (beam quality, e.g., RSRP) based on sparse (or thick) beams into an AI model to output dense (or thin) beam quality.
  • beam quality e.g., RSRP
  • the UE/BS may input time series (past, present, etc.) measurement results (beam quality, e.g., RSRP) into an AI model and output future beam quality.
  • time series past, present, etc.
  • beam quality e.g., RSRP
  • the performance information regarding the AI model may include information regarding the expected value of a loss function defined for the AI model.
  • the AI model information in this disclosure may include information regarding the scope of application (scope of applicability) of the AI model.
  • the scope of application may be indicated by a physical cell ID, a serving cell index, etc.
  • Information regarding the scope of application may be included in the above-mentioned environmental information.
  • AI model information regarding a specific AI model may be predetermined in a standard, or may be notified to the UE from the network (NW).
  • An AI model defined in a standard may be referred to as a reference AI model.
  • AI model information regarding a reference AI model may be referred to as reference AI model information.
  • the AI model information in the present disclosure may include an index for identifying the AI model (e.g., may be called an AI model index, an AI model ID, a model ID, etc.).
  • the AI model information in the present disclosure may include an AI model index in addition to/instead of the input/output information of the AI model described above.
  • the association between the AI model index and the AI model information (e.g., input/output information of the AI model) may be predetermined in a standard, or may be notified to the UE from the NW.
  • the AI model information in this disclosure may be associated with an AI model and may be referred to as AI model relevant information, simply relevant information, etc.
  • the AI model relevant information does not need to explicitly include information for identifying the AI model.
  • the AI model relevant information may be information that includes only meta information, for example.
  • the model ID may be interchangeably read as an ID (model set ID) corresponding to a set of AI models.
  • the model ID may be interchangeably read as a meta information ID.
  • the meta information (or meta information ID) may be associated with information regarding the beam (beam setting) as described above.
  • the meta information (or meta information ID) may be used by the UE to select an AI model taking into account which beam the BS is using, or may be used to notify the BS of which beam to use to apply the AI model deployed by the UE.
  • the meta information ID may be interchangeably read as an ID (meta information set ID) corresponding to a set of meta information.
  • any information may be notified to the UE (from the NW) (in other words, any information received from the BS in the UE) using physical layer signaling (e.g., DCI), higher layer signaling (e.g., RRC signaling, MAC CE), a specific signal/channel (e.g., PDCCH, PDSCH, reference signal), or a combination thereof.
  • physical layer signaling e.g., DCI
  • higher layer signaling e.g., RRC signaling, MAC CE
  • a specific signal/channel e.g., PDCCH, PDSCH, reference signal
  • the MAC CE may be identified by including a new Logical Channel ID (LCID) in the MAC subheader that is not specified in existing standards.
  • LCID Logical Channel ID
  • the notification When the notification is made by a DCI, the notification may be made by a specific field of the DCI, a Radio Network Temporary Identifier (RNTI) used to scramble Cyclic Redundancy Check (CRC) bits assigned to the DCI, the format of the DCI, etc.
  • RNTI Radio Network Temporary Identifier
  • CRC Cyclic Redundancy Check
  • notification of any information to the UE in the above-mentioned embodiments may be performed periodically, semi-persistently, or aperiodically.
  • notification of any information from the UE (to the NW) may be performed using physical layer signaling (e.g., UCI), higher layer signaling (e.g., RRC signaling, MAC CE), a specific signal/channel (e.g., PUCCH, PUSCH, reference signal), or a combination thereof.
  • physical layer signaling e.g., UCI
  • higher layer signaling e.g., RRC signaling, MAC CE
  • a specific signal/channel e.g., PUCCH, PUSCH, reference signal
  • the MAC CE may be identified by including a new LCID in the MAC subheader that is not specified in existing standards.
  • the notification may be transmitted using PUCCH or PUSCH.
  • notification of any information from the UE may be performed periodically, semi-persistently, or aperiodically.
  • At least one of the above-mentioned embodiments may be applied when a specific condition is satisfied, which may be specified in a standard or may be notified to a UE/BS using higher layer signaling/physical layer signaling.
  • At least one of the above-described embodiments may be applied only to UEs that have reported or support a particular UE capability.
  • the specific UE capabilities may indicate at least one of the following: Supporting specific processing/operations/control/information for at least one of the above embodiments; Supporting CSI prediction; P/SP/A - supporting CSI prediction based on historical CSI resources; Supporting CSI prediction based on P/SP/A-future CSI resources.
  • the above-mentioned specific UE capabilities may be capabilities that are applied across all frequencies (commonly regardless of frequency), capabilities per frequency (e.g., one or a combination of a cell, band, band combination, BWP, component carrier, etc.), capabilities per frequency range (e.g., Frequency Range 1 (FR1), FR2, FR3, FR4, FR5, FR2-1, FR2-2), capabilities per subcarrier spacing (SubCarrier Spacing (SCS)), or capabilities per Feature Set (FS) or Feature Set Per Component-carrier (FSPC).
  • FR1 Frequency Range 1
  • FR2 FR2, FR3, FR4, FR5, FR2-1, FR2-2
  • SCS subcarrier Spacing
  • FS Feature Set
  • FSPC Feature Set Per Component-carrier
  • the specific UE capabilities may be capabilities that are applied across all duplexing methods (commonly regardless of the duplexing method), or may be capabilities for each duplexing method (e.g., Time Division Duplex (TDD) and Frequency Division Duplex (FDD)).
  • TDD Time Division Duplex
  • FDD Frequency Division Duplex
  • the above-mentioned embodiments may be applied when the UE configures/activates/triggers specific information related to the above-mentioned embodiments (or performs the operations of the above-mentioned embodiments) by higher layer signaling/physical layer signaling.
  • the specific information may be information indicating the enablement of the use of an AI model, information indicating the enablement of CSI prediction, any RRC parameters for a particular release (e.g., Rel. 18/19), etc.
  • the UE may, for example, apply Rel. 15/16 operations.
  • [Appendix 1] a receiver for receiving information regarding an indication of a Channel State Information (CSI) prediction; and a control unit that performs CSI prediction based on the information.
  • the control unit determines that a CSI reporting setting included in a specific entry or a specific range of entries in a list of CSI reporting settings is associated with the information, and performs the CSI prediction based on the CSI reporting setting.
  • the terminal according to Supplementary Note 1.
  • a terminal comprising: a control unit that performs CSI prediction based on a measurement result of the CSI resource.
  • the information includes, as the information on periodic or semi-persistent CSI resources, information on a time period, information on the number of CSI resources, and a bitmap;
  • the terminal according to Supplementary Note 1, wherein the control unit performs the CSI prediction based on measurement results of CSI resources at positions designated for use in prediction by the bitmap, among the number of CSI resources existing in the time period.
  • the information includes, as the information regarding the aperiodic CSI resource, information regarding a time period and information regarding an offset;
  • the terminal according to claim 1 or 2 wherein the control unit performs the CSI prediction based on measurement results of a plurality of CSI resources that exist in the time period starting after the offset from downlink control information that triggers measurement of the aperiodic CSI resource.
  • a terminal comprising: a control unit that performs CSI prediction on the CSI resource.
  • the information includes, as the information on periodic or semi-persistent CSI resources, information on a time period, information on the number of CSI resources, and a bitmap;
  • the terminal according to Supplementary Note 1, wherein the control unit performs the CSI prediction on a CSI resource at a position designated as a prediction target by the bitmap, among the number of CSI resources existing in the time period.
  • the information includes information about an offset, information about a time period, information about a number of CSI resources, and a bitmap.
  • the terminal according to claim 1 or 2 wherein the control unit assumes that there are the number of CSI resources that exist in the time period based on a time after the offset has elapsed from a specific timing, and performs the CSI prediction on CSI resources at positions designated as prediction targets by the bitmap among the number of CSI resources.
  • Wired communication system A configuration of a wireless communication system according to an embodiment of the present disclosure will be described below.
  • communication is performed using any one of the wireless communication methods according to the above embodiments of the present disclosure or a combination of these.
  • FIG. 32 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment.
  • the wireless communication system 1 (which may simply be referred to as system 1) may be a system that realizes communication using Long Term Evolution (LTE) specified by the Third Generation Partnership Project (3GPP), 5th generation mobile communication system New Radio (5G NR), or the like.
  • LTE Long Term Evolution
  • 3GPP Third Generation Partnership Project
  • 5G NR 5th generation mobile communication system New Radio
  • the wireless communication system 1 may also support dual connectivity between multiple Radio Access Technologies (RATs) (Multi-RAT Dual Connectivity (MR-DC)).
  • MR-DC may include dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), dual connectivity between NR and LTE (NR-E-UTRA Dual Connectivity (NE-DC)), etc.
  • RATs Radio Access Technologies
  • MR-DC may include dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), dual connectivity between NR and LTE (NR-E-UTRA Dual Connectivity (NE-DC)), etc.
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • EN-DC E-UTRA-NR Dual Connectivity
  • NE-DC NR-E-UTRA Dual Connectivity
  • the LTE (E-UTRA) base station (eNB) is the master node (MN), and the NR base station (gNB) is the secondary node (SN).
  • the NR base station (gNB) is the MN, and the LTE (E-UTRA) base station (eNB) is the SN.
  • the wireless communication system 1 may support dual connectivity between multiple base stations within the same RAT (e.g., dual connectivity in which both the MN and SN are NR base stations (gNBs) (NR-NR Dual Connectivity (NN-DC))).
  • dual connectivity in which both the MN and SN are NR base stations (gNBs) (NR-NR Dual Connectivity (NN-DC))).
  • gNBs NR base stations
  • N-DC Dual Connectivity
  • the wireless communication system 1 may include a base station 11 that forms a macrocell C1 with a relatively wide coverage, and base stations 12 (12a-12c) that are arranged within the macrocell C1 and form a small cell C2 that is narrower than the macrocell C1.
  • a user terminal 20 may be located within at least one of the cells. The arrangement and number of each cell and user terminal 20 are not limited to the embodiment shown in the figure. Hereinafter, when there is no need to distinguish between the base stations 11 and 12, they will be collectively referred to as base station 10.
  • the user terminal 20 may be connected to at least one of the multiple base stations 10.
  • the user terminal 20 may utilize at least one of carrier aggregation (CA) using multiple component carriers (CC) and dual connectivity (DC).
  • CA carrier aggregation
  • CC component carriers
  • DC dual connectivity
  • Each CC may be included in at least one of a first frequency band (Frequency Range 1 (FR1)) and a second frequency band (Frequency Range 2 (FR2)).
  • Macro cell C1 may be included in FR1
  • small cell C2 may be included in FR2.
  • FR1 may be a frequency band of 6 GHz or less (sub-6 GHz)
  • FR2 may be a frequency band above 24 GHz (above-24 GHz). Note that the frequency bands and definitions of FR1 and FR2 are not limited to these, and for example, FR1 may correspond to a higher frequency band than FR2.
  • the user terminal 20 may communicate using at least one of Time Division Duplex (TDD) and Frequency Division Duplex (FDD) in each CC.
  • TDD Time Division Duplex
  • FDD Frequency Division Duplex
  • the multiple base stations 10 may be connected by wire (e.g., optical fiber conforming to the Common Public Radio Interface (CPRI), X2 interface, etc.) or wirelessly (e.g., NR communication).
  • wire e.g., optical fiber conforming to the Common Public Radio Interface (CPRI), X2 interface, etc.
  • NR communication e.g., NR communication
  • base station 11 which corresponds to the upper station
  • IAB Integrated Access Backhaul
  • base station 12 which corresponds to a relay station
  • the base station 10 may be connected to the core network 30 directly or via another base station 10.
  • the core network 30 may include at least one of, for example, an Evolved Packet Core (EPC), a 5G Core Network (5GCN), a Next Generation Core (NGC), etc.
  • EPC Evolved Packet Core
  • 5GCN 5G Core Network
  • NGC Next Generation Core
  • the core network 30 may include network functions (Network Functions (NF)) such as, for example, a User Plane Function (UPF), an Access and Mobility management Function (AMF), a Session Management Function (SMF), a Unified Data Management (UDM), an Application Function (AF), a Data Network (DN), a Location Management Function (LMF), and Operation, Administration and Maintenance (Management) (OAM).
  • NF Network Functions
  • UPF User Plane Function
  • AMF Access and Mobility management Function
  • SMF Session Management Function
  • UDM Unified Data Management
  • AF Application Function
  • DN Data Network
  • LMF Location Management Function
  • OAM Operation, Administration and Maintenance
  • the user terminal 20 may be a terminal that supports at least one of the communication methods such as LTE, LTE-A, and 5G.
  • a wireless access method based on Orthogonal Frequency Division Multiplexing may be used.
  • OFDM Orthogonal Frequency Division Multiplexing
  • CP-OFDM Cyclic Prefix OFDM
  • DFT-s-OFDM Discrete Fourier Transform Spread OFDM
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the radio access method may also be called a waveform.
  • other radio access methods e.g., other single-carrier transmission methods, other multi-carrier transmission methods
  • a downlink shared channel (Physical Downlink Shared Channel (PDSCH)) shared by each user terminal 20, a broadcast channel (Physical Broadcast Channel (PBCH)), a downlink control channel (Physical Downlink Control Channel (PDCCH)), etc. may be used as the downlink channel.
  • PDSCH Physical Downlink Shared Channel
  • PBCH Physical Broadcast Channel
  • PDCCH Physical Downlink Control Channel
  • an uplink shared channel (Physical Uplink Shared Channel (PUSCH)) shared by each user terminal 20, an uplink control channel (Physical Uplink Control Channel (PUCCH)), a random access channel (Physical Random Access Channel (PRACH)), etc. may be used as an uplink channel.
  • PUSCH Physical Uplink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • PRACH Physical Random Access Channel
  • SIB System Information Block
  • PDSCH User data, upper layer control information, System Information Block (SIB), etc.
  • SIB System Information Block
  • PUSCH User data, upper layer control information, etc.
  • MIB Master Information Block
  • PBCH Physical Broadcast Channel
  • Lower layer control information may be transmitted by the PDCCH.
  • the lower layer control information may include, for example, downlink control information (Downlink Control Information (DCI)) including scheduling information for at least one of the PDSCH and the PUSCH.
  • DCI Downlink Control Information
  • the DCI for scheduling the PDSCH may be called a DL assignment or DL DCI
  • the DCI for scheduling the PUSCH may be called a UL grant or UL DCI.
  • the PDSCH may be interpreted as DL data
  • the PUSCH may be interpreted as UL data.
  • a control resource set (COntrol REsource SET (CORESET)) and a search space may be used to detect the PDCCH.
  • the CORESET corresponds to the resources to search for DCI.
  • the search space corresponds to the search region and search method of PDCCH candidates.
  • One CORESET may be associated with one or multiple search spaces. The UE may monitor the CORESET associated with a search space based on the search space configuration.
  • a search space may correspond to PDCCH candidates corresponding to one or more aggregation levels.
  • One or more search spaces may be referred to as a search space set. Note that the terms “search space,” “search space set,” “search space setting,” “search space set setting,” “CORESET,” “CORESET setting,” etc. in this disclosure may be read as interchangeable.
  • the PUCCH may transmit uplink control information (UCI) including at least one of channel state information (CSI), delivery confirmation information (which may be called, for example, Hybrid Automatic Repeat reQuest ACKnowledgement (HARQ-ACK), ACK/NACK, etc.), and a scheduling request (SR).
  • UCI uplink control information
  • CSI channel state information
  • HARQ-ACK Hybrid Automatic Repeat reQuest ACKnowledgement
  • ACK/NACK ACK/NACK
  • SR scheduling request
  • the PRACH may transmit a random access preamble for establishing a connection with a cell.
  • downlink, uplink, etc. may be expressed without adding "link.”
  • various channels may be expressed without adding "Physical” to the beginning.
  • a synchronization signal (SS), a downlink reference signal (DL-RS), etc. may be transmitted.
  • a cell-specific reference signal (CRS), a channel state information reference signal (CSI-RS), a demodulation reference signal (DMRS), a positioning reference signal (PRS), a phase tracking reference signal (PTRS), etc. may be transmitted.
  • the synchronization signal may be, for example, at least one of a Primary Synchronization Signal (PSS) and a Secondary Synchronization Signal (SSS).
  • a signal block including an SS (PSS, SSS) and a PBCH (and a DMRS for PBCH) may be called an SS/PBCH block, an SS Block (SSB), etc.
  • the SS, SSB, etc. may also be called a reference signal.
  • a measurement reference signal Sounding Reference Signal (SRS)
  • a demodulation reference signal DMRS
  • UL-RS uplink reference signal
  • DMRS may also be called a user equipment-specific reference signal (UE-specific Reference Signal).
  • the base station 33 is a diagram showing an example of a configuration of a base station according to an embodiment.
  • the base station 10 includes a control unit 110, a transceiver unit 120, a transceiver antenna 130, and a transmission line interface 140. Note that one or more of each of the control unit 110, the transceiver unit 120, the transceiver antenna 130, and the transmission line interface 140 may be provided.
  • this example mainly shows the functional blocks of the characteristic parts of this embodiment, and the base station 10 may also be assumed to have other functional blocks necessary for wireless communication. Some of the processing of each part described below may be omitted.
  • the control unit 110 controls the entire base station 10.
  • the control unit 110 can be configured from a controller, a control circuit, etc., which are described based on a common understanding in the technical field to which this disclosure pertains.
  • the control unit 110 may control signal generation, scheduling (e.g., resource allocation, mapping), etc.
  • the control unit 110 may control transmission and reception using the transceiver unit 120, the transceiver antenna 130, and the transmission path interface 140, measurement, etc.
  • the control unit 110 may generate data, control information, sequences, etc. to be transmitted as signals, and transfer them to the transceiver unit 120.
  • the control unit 110 may perform call processing of communication channels (setting, release, etc.), status management of the base station 10, management of radio resources, etc.
  • the transceiver unit 120 may include a baseband unit 121, a radio frequency (RF) unit 122, and a measurement unit 123.
  • the baseband unit 121 may include a transmission processing unit 1211 and a reception processing unit 1212.
  • the transceiver unit 120 may be composed of a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transceiver circuit, etc., which are described based on a common understanding in the technical field to which the present disclosure relates.
  • the transceiver unit 120 may be configured as an integrated transceiver unit, or may be composed of a transmission unit and a reception unit.
  • the transmission unit may be composed of a transmission processing unit 1211 and an RF unit 122.
  • the reception unit may be composed of a reception processing unit 1212, an RF unit 122, and a measurement unit 123.
  • the transmitting/receiving antenna 130 can be configured as an antenna described based on common understanding in the technical field to which this disclosure pertains, such as an array antenna.
  • the transceiver 120 may transmit the above-mentioned downlink channel, synchronization signal, downlink reference signal, etc.
  • the transceiver 120 may receive the above-mentioned uplink channel, uplink reference signal, etc.
  • the transceiver 120 may form at least one of the transmit beam and the receive beam using digital beamforming (e.g., precoding), analog beamforming (e.g., phase rotation), etc.
  • digital beamforming e.g., precoding
  • analog beamforming e.g., phase rotation
  • the transceiver 120 may perform Packet Data Convergence Protocol (PDCP) layer processing, Radio Link Control (RLC) layer processing (e.g., RLC retransmission control), Medium Access Control (MAC) layer processing (e.g., HARQ retransmission control), etc., on data and control information obtained from the control unit 110, and generate a bit string to be transmitted.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access Control
  • HARQ retransmission control HARQ retransmission control
  • the transceiver 120 may perform transmission processing such as channel coding (which may include error correction coding), modulation, mapping, filtering, Discrete Fourier Transform (DFT) processing (if necessary), Inverse Fast Fourier Transform (IFFT) processing, precoding, and digital-to-analog conversion on the bit string to be transmitted, and output a baseband signal.
  • transmission processing such as channel coding (which may include error correction coding), modulation, mapping, filtering, Discrete Fourier Transform (DFT) processing (if necessary), Inverse Fast Fourier Transform (IFFT) processing, precoding, and digital-to-analog conversion on the bit string to be transmitted, and output a baseband signal.
  • channel coding which may include error correction coding
  • DFT Discrete Fourier Transform
  • IFFT Inverse Fast Fourier Transform
  • the transceiver unit 120 may perform modulation, filtering, amplification, etc., on the baseband signal to a radio frequency band, and transmit the radio frequency band signal via the transceiver antenna 130.
  • the transceiver unit 120 may perform amplification, filtering, demodulation to a baseband signal, etc. on the radio frequency band signal received by the transceiver antenna 130.
  • the transceiver 120 may apply reception processing such as analog-to-digital conversion, Fast Fourier Transform (FFT) processing, Inverse Discrete Fourier Transform (IDFT) processing (if necessary), filtering, demapping, demodulation, decoding (which may include error correction decoding), MAC layer processing, RLC layer processing, and PDCP layer processing to the acquired baseband signal, and acquire user data, etc.
  • reception processing such as analog-to-digital conversion, Fast Fourier Transform (FFT) processing, Inverse Discrete Fourier Transform (IDFT) processing (if necessary), filtering, demapping, demodulation, decoding (which may include error correction decoding), MAC layer processing, RLC layer processing, and PDCP layer processing to the acquired baseband signal, and acquire user data, etc.
  • FFT Fast Fourier Transform
  • IDFT Inverse Discrete Fourier Transform
  • the transceiver 120 may perform measurements on the received signal.
  • the measurement unit 123 may perform Radio Resource Management (RRM) measurements, Channel State Information (CSI) measurements, etc. based on the received signal.
  • the measurement unit 123 may measure received power (e.g., Reference Signal Received Power (RSRP)), received quality (e.g., Reference Signal Received Quality (RSRQ), Signal to Interference plus Noise Ratio (SINR), Signal to Noise Ratio (SNR)), signal strength (e.g., Received Signal Strength Indicator (RSSI)), propagation path information (e.g., CSI), etc.
  • RSRP Reference Signal Received Power
  • RSSI Received Signal Strength Indicator
  • the measurement results may be output to the control unit 110.
  • the transmission path interface 140 may transmit and receive signals (backhaul signaling) between devices included in the core network 30 (e.g., network nodes providing NF), other base stations 10, etc., and may acquire and transmit user data (user plane data), control plane data, etc. for the user terminal 20.
  • devices included in the core network 30 e.g., network nodes providing NF
  • other base stations 10, etc. may acquire and transmit user data (user plane data), control plane data, etc. for the user terminal 20.
  • the transmitter and receiver of the base station 10 in this disclosure may be configured with at least one of the transmitter/receiver 120, the transmitter/receiver antenna 130, and the transmission path interface 140.
  • the transceiver 120 may transmit information regarding an instruction to predict Channel State Information (CSI) to the user terminal 20.
  • the transceiver 120 may receive CSI predicted in the user terminal 20 based on the information.
  • the transceiver 120 may also transmit information about CSI resources for measuring past channel state information (CSI) to the user terminal 20.
  • the transceiver 120 may also receive CSI predicted in the user terminal 20 based on the measurement results of the CSI resources.
  • the transceiver 120 may also transmit information regarding CSI resources for predicting future channel state information (CSI) to the user terminal 20.
  • the transceiver 120 may also receive CSI predicted in the user terminal 20 for the CSI resources.
  • the user terminal 20 includes a control unit 210, a transmitting/receiving unit 220, and a transmitting/receiving antenna 230. Note that the control unit 210, the transmitting/receiving unit 220, and the transmitting/receiving antenna 230 may each include one or more.
  • this example mainly shows the functional blocks of the characteristic parts of this embodiment, and the user terminal 20 may also be assumed to have other functional blocks necessary for wireless communication. Some of the processing of each part described below may be omitted.
  • the control unit 210 controls the entire user terminal 20.
  • the control unit 210 can be configured from a controller, a control circuit, etc., which are described based on a common understanding in the technical field to which this disclosure pertains.
  • the control unit 210 may control signal generation, mapping, etc.
  • the control unit 210 may control transmission and reception using the transceiver unit 220 and the transceiver antenna 230, measurement, etc.
  • the control unit 210 may generate data, control information, sequences, etc. to be transmitted as signals, and transfer them to the transceiver unit 220.
  • the transceiver unit 220 may include a baseband unit 221, an RF unit 222, and a measurement unit 223.
  • the baseband unit 221 may include a transmission processing unit 2211 and a reception processing unit 2212.
  • the transceiver unit 220 may be composed of a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transceiver circuit, etc., which are described based on a common understanding in the technical field to which the present disclosure relates.
  • the transceiver unit 220 may be configured as an integrated transceiver unit, or may be composed of a transmission unit and a reception unit.
  • the transmission unit may be composed of a transmission processing unit 2211 and an RF unit 222.
  • the reception unit may be composed of a reception processing unit 2212, an RF unit 222, and a measurement unit 223.
  • the transmitting/receiving antenna 230 can be configured as an antenna described based on common understanding in the technical field to which this disclosure pertains, such as an array antenna.
  • the transceiver 220 may receive the above-mentioned downlink channel, synchronization signal, downlink reference signal, etc.
  • the transceiver 220 may transmit the above-mentioned uplink channel, uplink reference signal, etc.
  • the transceiver 220 may form at least one of the transmit beam and receive beam using digital beamforming (e.g., precoding), analog beamforming (e.g., phase rotation), etc.
  • digital beamforming e.g., precoding
  • analog beamforming e.g., phase rotation
  • the transceiver 220 may perform PDCP layer processing, RLC layer processing (e.g., RLC retransmission control), MAC layer processing (e.g., HARQ retransmission control), etc. on the data and control information acquired from the controller 210, and generate a bit string to be transmitted.
  • RLC layer processing e.g., RLC retransmission control
  • MAC layer processing e.g., HARQ retransmission control
  • the transceiver 220 may perform transmission processing such as channel coding (which may include error correction coding), modulation, mapping, filtering, DFT processing (if necessary), IFFT processing, precoding, and digital-to-analog conversion on the bit string to be transmitted, and output a baseband signal.
  • transmission processing such as channel coding (which may include error correction coding), modulation, mapping, filtering, DFT processing (if necessary), IFFT processing, precoding, and digital-to-analog conversion on the bit string to be transmitted, and output a baseband signal.
  • Whether or not to apply DFT processing may be based on the settings of transform precoding.
  • the transceiver unit 220 transmission processing unit 2211
  • the transceiver unit 220 may perform DFT processing as the above-mentioned transmission processing in order to transmit the channel using a DFT-s-OFDM waveform, and when transform precoding is not enabled, it is not necessary to perform DFT processing as the above-mentioned transmission processing.
  • the transceiver unit 220 may perform modulation, filtering, amplification, etc., on the baseband signal to a radio frequency band, and transmit the radio frequency band signal via the transceiver antenna 230.
  • the transceiver unit 220 may perform amplification, filtering, demodulation to a baseband signal, etc. on the radio frequency band signal received by the transceiver antenna 230.
  • the transceiver 220 may apply reception processing such as analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filtering, demapping, demodulation, decoding (which may include error correction decoding), MAC layer processing, RLC layer processing, and PDCP layer processing to the acquired baseband signal to acquire user data, etc.
  • reception processing such as analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filtering, demapping, demodulation, decoding (which may include error correction decoding), MAC layer processing, RLC layer processing, and PDCP layer processing to the acquired baseband signal to acquire user data, etc.
  • the transceiver 220 may perform measurements on the received signal. For example, the measurement unit 223 may perform RRM measurements, CSI measurements, etc. based on the received signal.
  • the measurement unit 223 may measure received power (e.g., RSRP), received quality (e.g., RSRQ, SINR, SNR), signal strength (e.g., RSSI), propagation path information (e.g., CSI), etc.
  • the measurement results may be output to the control unit 210.
  • the transmitting unit and receiving unit of the user terminal 20 in this disclosure may be configured by at least one of the transmitting/receiving unit 220 and the transmitting/receiving antenna 230.
  • the transceiver unit 220 may receive information regarding an instruction to predict Channel State Information (CSI).
  • the control unit 210 may perform CSI prediction based on the information.
  • the control unit 210 may determine that a CSI reporting setting included in a specific entry or a specific range of entries in the list of CSI reporting settings is associated with the information, and perform the CSI prediction based on the CSI reporting setting.
  • the information may be a field contained in a Medium Access Control control element (MAC Control Element (CE)) for aperiodic CSI reporting or a MAC CE for semi-persistent CSI reporting.
  • MAC Control Element CE
  • the information may be a radio network temporary identifier (SP-CSI-Radio Network Temporary Identifier (RNTI)) used to scramble a Cyclic Redundancy Check (CRC) that is added to downlink control information to activate or trigger CSI reporting.
  • SP-CSI-Radio Network Temporary Identifier RNTI
  • CRC Cyclic Redundancy Check
  • the transceiver 220 may also receive information about CSI resources for measuring past channel state information (CSI).
  • the control unit 210 may perform CSI prediction based on the measurement results of the CSI resources.
  • the information may include information on a time period, information on the number of CSI resources, and a bitmap as the information on periodic or semi-persistent CSI resources.
  • the control unit 210 may perform the CSI prediction based on the measurement results of CSI resources at positions designated for use in prediction by the bitmap, among the number of CSI resources present in the time period.
  • the information may include information on a time period and information on an offset as the information on the aperiodic CSI resource.
  • the control unit 210 may perform the CSI prediction based on measurement results of a plurality of CSI resources that exist in the time period starting after the offset from the downlink control information that triggers the measurement of the aperiodic CSI resource.
  • the transceiver 220 may also receive information about CSI resources for predicting future Channel State Information (CSI).
  • the control unit 210 may perform CSI prediction for the CSI resources.
  • the information may include information on a time period, information on the number of CSI resources, and a bitmap as the information on periodic or semi-persistent CSI resources.
  • the control unit 210 may perform the CSI prediction on a CSI resource at a position designated as a prediction target by the bitmap among the number of CSI resources that exist in the time period.
  • the information may include information on an offset, information on a time period, information on the number of CSI resources, and a bitmap.
  • the control unit 210 may assume that there are the number of CSI resources that exist in the time period based on the offset from a specific timing, and may perform the CSI prediction for the CSI resources at positions designated as prediction targets by the bitmap among the number of CSI resources.
  • each functional block may be realized using one device that is physically or logically coupled, or may be realized using two or more devices that are physically or logically separated and directly or indirectly connected (for example, using wires, wirelessly, etc.).
  • the functional blocks may be realized by combining the one device or the multiple devices with software.
  • the functions include, but are not limited to, judgement, determination, judgment, calculation, computation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, resolution, selection, election, establishment, comparison, assumption, expectation, deeming, broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, and assignment.
  • a functional block (component) that performs the transmission function may be called a transmitting unit, a transmitter, and the like. In either case, as mentioned above, there are no particular limitations on the method of realization.
  • a base station, a user terminal, etc. in one embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method of the present disclosure.
  • FIG. 35 is a diagram showing an example of the hardware configuration of a base station and a user terminal according to one embodiment.
  • the above-mentioned base station 10 and user terminal 20 may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, etc.
  • the terms apparatus, circuit, device, section, unit, etc. may be interpreted as interchangeable.
  • the hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of the devices shown in the figures, or may be configured to exclude some of the devices.
  • processor 1001 may be implemented by one or more chips.
  • the functions of the base station 10 and the user terminal 20 are realized, for example, by loading specific software (programs) onto hardware such as the processor 1001 and memory 1002, causing the processor 1001 to perform calculations, control communications via the communication device 1004, and control at least one of the reading and writing of data in the memory 1002 and storage 1003.
  • the processor 1001 for example, runs an operating system to control the entire computer.
  • the processor 1001 may be configured as a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, registers, etc.
  • CPU central processing unit
  • control unit 110 210
  • transmission/reception unit 120 220
  • etc. may be realized by the processor 1001.
  • the processor 1001 also reads out programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these.
  • the programs used are those that cause a computer to execute at least some of the operations described in the above embodiments.
  • the control unit 110 (210) may be realized by a control program stored in the memory 1002 and running on the processor 1001, and similar implementations may be made for other functional blocks.
  • Memory 1002 is a computer-readable recording medium and may be composed of at least one of, for example, Read Only Memory (ROM), Erasable Programmable ROM (EPROM), Electrically EPROM (EEPROM), Random Access Memory (RAM), and other suitable storage media. Memory 1002 may also be called a register, cache, main memory, etc. Memory 1002 can store executable programs (program codes), software modules, etc. for implementing a wireless communication method according to one embodiment of the present disclosure.
  • ROM Read Only Memory
  • EPROM Erasable Programmable ROM
  • EEPROM Electrically EPROM
  • RAM Random Access Memory
  • Memory 1002 may also be called a register, cache, main memory, etc.
  • Memory 1002 can store executable programs (program codes), software modules, etc. for implementing a wireless communication method according to one embodiment of the present disclosure.
  • Storage 1003 is a computer-readable recording medium and may be composed of at least one of a flexible disk, a floppy disk, a magneto-optical disk (e.g., a compact disk (Compact Disc ROM (CD-ROM)), a digital versatile disk, a Blu-ray disk), a removable disk, a hard disk drive, a smart card, a flash memory device (e.g., a card, a stick, a key drive), a magnetic stripe, a database, a server, or other suitable storage medium.
  • Storage 1003 may also be referred to as an auxiliary storage device.
  • the communication device 1004 is hardware (transmitting/receiving device) for communicating between computers via at least one of a wired network and a wireless network, and is also called, for example, a network device, a network controller, a network card, or a communication module.
  • the communication device 1004 may be configured to include a high-frequency switch, a duplexer, a filter, a frequency synthesizer, etc., to realize at least one of Frequency Division Duplex (FDD) and Time Division Duplex (TDD).
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • the above-mentioned transmitting/receiving unit 120 (220), transmitting/receiving antenna 130 (230), etc. may be realized by the communication device 1004.
  • the transmitting/receiving unit 120 (220) may be implemented as a transmitting unit 120a (220a) and a receiving unit 120b (220b) that are physically or logically separated.
  • the input device 1005 is an input device (e.g., a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts input from the outside.
  • the output device 1006 is an output device (e.g., a display, a speaker, a Light Emitting Diode (LED) lamp, etc.) that outputs to the outside.
  • the input device 1005 and the output device 1006 may be integrated into one structure (e.g., a touch panel).
  • each device such as the processor 1001 and memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using different buses between each device.
  • the base station 10 and the user terminal 20 may be configured to include hardware such as a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), or a field programmable gate array (FPGA), and some or all of the functional blocks may be realized using the hardware.
  • the processor 1001 may be implemented using at least one of these pieces of hardware.
  • a channel, a symbol, and a signal may be read as mutually interchangeable.
  • a signal may also be a message.
  • a reference signal may be abbreviated as RS, and may be called a pilot, a pilot signal, or the like depending on the applied standard.
  • a component carrier may also be called a cell, a frequency carrier, a carrier frequency, or the like.
  • a radio frame may be composed of one or more periods (frames) in the time domain.
  • Each of the one or more periods (frames) constituting a radio frame may be called a subframe.
  • a subframe may be composed of one or more slots in the time domain.
  • a subframe may have a fixed time length (e.g., 1 ms) that is independent of numerology.
  • the numerology may be a communication parameter that is applied to at least one of the transmission and reception of a signal or channel.
  • the numerology may indicate, for example, at least one of the following: SubCarrier Spacing (SCS), bandwidth, symbol length, cyclic prefix length, Transmission Time Interval (TTI), number of symbols per TTI, radio frame configuration, a specific filtering process performed by the transceiver in the frequency domain, a specific windowing process performed by the transceiver in the time domain, etc.
  • SCS SubCarrier Spacing
  • TTI Transmission Time Interval
  • radio frame configuration a specific filtering process performed by the transceiver in the frequency domain
  • a specific windowing process performed by the transceiver in the time domain etc.
  • a slot may consist of one or more symbols in the time domain (such as Orthogonal Frequency Division Multiplexing (OFDM) symbols, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbols, etc.).
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • a slot may also be a time unit based on numerology.
  • a slot may include multiple minislots. Each minislot may consist of one or multiple symbols in the time domain. A minislot may also be called a subslot. A minislot may consist of fewer symbols than a slot.
  • a PDSCH (or PUSCH) transmitted in a time unit larger than a minislot may be called PDSCH (PUSCH) mapping type A.
  • a PDSCH (or PUSCH) transmitted using a minislot may be called PDSCH (PUSCH) mapping type B.
  • a radio frame, a subframe, a slot, a minislot, and a symbol all represent time units when transmitting a signal.
  • a different name may be used for a radio frame, a subframe, a slot, a minislot, and a symbol, respectively.
  • the time units such as a frame, a subframe, a slot, a minislot, and a symbol in this disclosure may be read as interchangeable.
  • one subframe may be called a TTI
  • multiple consecutive subframes may be called a TTI
  • one slot or one minislot may be called a TTI.
  • at least one of the subframe and the TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (e.g., 1-13 symbols), or a period longer than 1 ms.
  • the unit representing the TTI may be called a slot, minislot, etc., instead of a subframe.
  • TTI refers to, for example, the smallest time unit for scheduling in wireless communication.
  • a base station schedules each user terminal by allocating radio resources (such as frequency bandwidth and transmission power that can be used by each user terminal) in TTI units.
  • radio resources such as frequency bandwidth and transmission power that can be used by each user terminal
  • the TTI may be a transmission time unit for a channel-coded data packet (transport block), a code block, a code word, etc., or may be a processing unit for scheduling, link adaptation, etc.
  • the time interval e.g., the number of symbols
  • the time interval in which a transport block, a code block, a code word, etc. is actually mapped may be shorter than the TTI.
  • one or more TTIs may be the minimum time unit of scheduling.
  • the number of slots (minislots) that constitute the minimum time unit of scheduling may be controlled.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in 3GPP Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc.
  • a TTI shorter than a normal TTI may be called a shortened TTI, short TTI, partial or fractional TTI, shortened subframe, short subframe, minislot, subslot, slot, etc.
  • a long TTI (e.g., a normal TTI, a subframe, etc.) may be interpreted as a TTI having a time length of more than 1 ms
  • a short TTI e.g., a shortened TTI, etc.
  • TTI length shorter than the TTI length of a long TTI and equal to or greater than 1 ms.
  • a resource block is a resource allocation unit in the time domain and frequency domain, and may include one or more consecutive subcarriers in the frequency domain.
  • the number of subcarriers included in an RB may be the same regardless of numerology, and may be, for example, 12.
  • the number of subcarriers included in an RB may be determined based on numerology.
  • an RB may include one or more symbols in the time domain and may be one slot, one minislot, one subframe, or one TTI in length.
  • One TTI, one subframe, etc. may each be composed of one or more resource blocks.
  • one or more RBs may be referred to as a physical resource block (Physical RB (PRB)), a sub-carrier group (Sub-Carrier Group (SCG)), a resource element group (Resource Element Group (REG)), a PRB pair, an RB pair, etc.
  • PRB Physical RB
  • SCG sub-carrier Group
  • REG resource element group
  • PRB pair an RB pair, etc.
  • a resource block may be composed of one or more resource elements (REs).
  • REs resource elements
  • one RE may be a radio resource area of one subcarrier and one symbol.
  • a Bandwidth Part which may also be referred to as partial bandwidth, may represent a subset of contiguous common resource blocks (RBs) for a given numerology on a given carrier, where the common RBs may be identified by an index of the RB relative to a common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within the BWP.
  • the BWP may include a UL BWP (BWP for UL) and a DL BWP (BWP for DL).
  • BWP UL BWP
  • BWP for DL DL BWP
  • One or more BWPs may be configured for a UE within one carrier.
  • At least one of the configured BWPs may be active, and the UE may not expect to transmit or receive a given signal/channel outside the active BWP.
  • BWP bitmap
  • radio frames, subframes, slots, minislots, and symbols are merely examples.
  • the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, the number of subcarriers included in an RB, as well as the number of symbols in a TTI, the symbol length, and the cyclic prefix (CP) length can be changed in various ways.
  • the information, parameters, etc. described in this disclosure may be represented using absolute values, may be represented using relative values from a predetermined value, or may be represented using other corresponding information.
  • a radio resource may be indicated by a predetermined index.
  • the names used for parameters and the like in this disclosure are not limiting in any respect. Furthermore, the formulas and the like using these parameters may differ from those explicitly disclosed in this disclosure.
  • the various channels (PUCCH, PDCCH, etc.) and information elements may be identified by any suitable names, and therefore the various names assigned to these various channels and information elements are not limiting in any respect.
  • the information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies.
  • the data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, optical fields or photons, or any combination thereof.
  • information, signals, etc. may be output from a higher layer to a lower layer and/or from a lower layer to a higher layer.
  • Information, signals, etc. may be input/output via multiple network nodes.
  • Input/output information, signals, etc. may be stored in a specific location (e.g., memory) or may be managed using a management table. Input/output information, signals, etc. may be overwritten, updated, or added to. Output information, signals, etc. may be deleted. Input information, signals, etc. may be transmitted to another device.
  • a specific location e.g., memory
  • Input/output information, signals, etc. may be overwritten, updated, or added to.
  • Output information, signals, etc. may be deleted.
  • Input information, signals, etc. may be transmitted to another device.
  • the notification of information is not limited to the aspects/embodiments described in this disclosure, and may be performed using other methods.
  • the notification of information in this disclosure may be performed by physical layer signaling (e.g., Downlink Control Information (DCI), Uplink Control Information (UCI)), higher layer signaling (e.g., Radio Resource Control (RRC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB)), etc.), Medium Access Control (MAC) signaling), other signals, or a combination of these.
  • DCI Downlink Control Information
  • UCI Uplink Control Information
  • RRC Radio Resource Control
  • MIB Master Information Block
  • SIB System Information Block
  • MAC Medium Access Control
  • the physical layer signaling may be called Layer 1/Layer 2 (L1/L2) control information (L1/L2 control signal), L1 control information (L1 control signal), etc.
  • the RRC signaling may be called an RRC message, for example, an RRC Connection Setup message, an RRC Connection Reconfiguration message, etc.
  • the MAC signaling may be notified, for example, using a MAC Control Element (CE).
  • CE MAC Control Element
  • notification of specified information is not limited to explicit notification, but may be implicit (e.g., by not notifying the specified information or by notifying other information).
  • the determination may be based on a value represented by a single bit (0 or 1), a Boolean value represented by true or false, or a comparison of numerical values (e.g., with a predetermined value).
  • Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executable files, threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
  • Software, instructions, information, etc. may also be transmitted and received via a transmission medium.
  • a transmission medium For example, if the software is transmitted from a website, server, or other remote source using at least one of wired technologies (such as coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL)), and/or wireless technologies (such as infrared, microwave, etc.), then at least one of these wired and wireless technologies is included within the definition of a transmission medium.
  • wired technologies such as coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL)
  • wireless technologies such as infrared, microwave, etc.
  • Network may refer to the devices included in the network (e.g., base stations).
  • precoding "precoder,” “weight (precoding weight),” “Quasi-Co-Location (QCL),” “Transmission Configuration Indication state (TCI state),” "spatial relation,” “spatial domain filter,” “transmit power,” “phase rotation,” “antenna port,” “antenna port group,” “layer,” “number of layers,” “rank,” “resource,” “resource set,” “resource group,” “beam,” “beam width,” “beam angle,” “antenna,” “antenna element,” and “panel” may be used interchangeably.
  • Base Station may also be referred to by terms such as macrocell, small cell, femtocell, picocell, etc.
  • a base station can accommodate one or more (e.g., three) cells.
  • a base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, and each smaller area can also provide communication services by a base station subsystem (e.g., a small base station for indoor use (Remote Radio Head (RRH))).
  • RRH Remote Radio Head
  • the term "cell” or “sector” refers to a part or the entire coverage area of at least one of the base station and base station subsystems that provide communication services in this coverage.
  • a base station transmitting information to a terminal may be interpreted as the base station instructing the terminal to control/operate based on the information.
  • MS Mobile Station
  • UE User Equipment
  • a mobile station may also be referred to as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable terminology.
  • At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a wireless communication device, etc.
  • at least one of the base station and the mobile station may be a device mounted on a moving object, the moving object itself, etc.
  • the moving body in question refers to an object that can move, and the moving speed is arbitrary, and of course includes the case where the moving body is stationary.
  • the moving body in question includes, but is not limited to, vehicles, transport vehicles, automobiles, motorcycles, bicycles, connected cars, excavators, bulldozers, wheel loaders, dump trucks, forklifts, trains, buses, handcarts, rickshaws, ships and other watercraft, airplanes, rockets, artificial satellites, drones, multicopters, quadcopters, balloons, and objects mounted on these.
  • the moving body in question may also be a moving body that moves autonomously based on an operating command.
  • the moving object may be a vehicle (e.g., a car, an airplane, etc.), an unmanned moving object (e.g., a drone, an autonomous vehicle, etc.), or a robot (manned or unmanned).
  • a vehicle e.g., a car, an airplane, etc.
  • an unmanned moving object e.g., a drone, an autonomous vehicle, etc.
  • a robot manned or unmanned
  • at least one of the base station and the mobile station may also include devices that do not necessarily move during communication operations.
  • at least one of the base station and the mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • FIG. 36 is a diagram showing an example of a vehicle according to an embodiment.
  • the vehicle 40 includes a drive unit 41, a steering unit 42, an accelerator pedal 43, a brake pedal 44, a shift lever 45, left and right front wheels 46, left and right rear wheels 47, an axle 48, an electronic control unit 49, various sensors (including a current sensor 50, a rotation speed sensor 51, an air pressure sensor 52, a vehicle speed sensor 53, an acceleration sensor 54, an accelerator pedal sensor 55, a brake pedal sensor 56, a shift lever sensor 57, and an object detection sensor 58), an information service unit 59, and a communication module 60.
  • various sensors including a current sensor 50, a rotation speed sensor 51, an air pressure sensor 52, a vehicle speed sensor 53, an acceleration sensor 54, an accelerator pedal sensor 55, a brake pedal sensor 56, a shift lever sensor 57, and an object detection sensor 58
  • an information service unit 59 including a communication module 60.
  • the drive unit 41 is composed of at least one of an engine, a motor, and a hybrid of an engine and a motor, for example.
  • the steering unit 42 includes at least a steering wheel (also called a handlebar), and is configured to steer at least one of the front wheels 46 and the rear wheels 47 based on the operation of the steering wheel operated by the user.
  • the electronic control unit 49 is composed of a microprocessor 61, memory (ROM, RAM) 62, and a communication port (e.g., an Input/Output (IO) port) 63. Signals are input to the electronic control unit 49 from various sensors 50-58 provided in the vehicle.
  • the electronic control unit 49 may also be called an Electronic Control Unit (ECU).
  • ECU Electronic Control Unit
  • Signals from the various sensors 50-58 include a current signal from a current sensor 50 that senses the motor current, a rotation speed signal of the front wheels 46/rear wheels 47 acquired by a rotation speed sensor 51, an air pressure signal of the front wheels 46/rear wheels 47 acquired by an air pressure sensor 52, a vehicle speed signal acquired by a vehicle speed sensor 53, an acceleration signal acquired by an acceleration sensor 54, a depression amount signal of the accelerator pedal 43 acquired by an accelerator pedal sensor 55, a depression amount signal of the brake pedal 44 acquired by a brake pedal sensor 56, an operation signal of the shift lever 45 acquired by a shift lever sensor 57, and a detection signal for detecting obstacles, vehicles, pedestrians, etc. acquired by an object detection sensor 58.
  • the information service unit 59 is composed of various devices, such as a car navigation system, audio system, speakers, displays, televisions, and radios, for providing (outputting) various information such as driving information, traffic information, and entertainment information, and one or more ECUs that control these devices.
  • the information service unit 59 uses information acquired from external devices via the communication module 60, etc., to provide various information/services (e.g., multimedia information/multimedia services) to the occupants of the vehicle 40.
  • various information/services e.g., multimedia information/multimedia services
  • the information service unit 59 may include input devices (e.g., a keyboard, a mouse, a microphone, a switch, a button, a sensor, a touch panel, etc.) that accept input from the outside, and may also include output devices (e.g., a display, a speaker, an LED lamp, a touch panel, etc.) that perform output to the outside.
  • input devices e.g., a keyboard, a mouse, a microphone, a switch, a button, a sensor, a touch panel, etc.
  • output devices e.g., a display, a speaker, an LED lamp, a touch panel, etc.
  • the driving assistance system unit 64 is composed of various devices that provide functions for preventing accidents and reducing the driver's driving load, such as a millimeter wave radar, a Light Detection and Ranging (LiDAR), a camera, a positioning locator (e.g., a Global Navigation Satellite System (GNSS)), map information (e.g., a High Definition (HD) map, an Autonomous Vehicle (AV) map, etc.), a gyro system (e.g., an Inertial Measurement Unit (IMU), an Inertial Navigation System (INS), etc.), an Artificial Intelligence (AI) chip, and an AI processor, and one or more ECUs that control these devices.
  • the driving assistance system unit 64 also transmits and receives various information via the communication module 60 to realize a driving assistance function or an autonomous driving function.
  • the communication module 60 can communicate with the microprocessor 61 and components of the vehicle 40 via the communication port 63.
  • the communication module 60 transmits and receives data (information) via the communication port 63 between the drive unit 41, steering unit 42, accelerator pedal 43, brake pedal 44, shift lever 45, left and right front wheels 46, left and right rear wheels 47, axles 48, the microprocessor 61 and memory (ROM, RAM) 62 in the electronic control unit 49, and the various sensors 50-58 that are provided on the vehicle 40.
  • the communication module 60 is a communication device that can be controlled by the microprocessor 61 of the electronic control unit 49 and can communicate with an external device. For example, it transmits and receives various information to and from the external device via wireless communication.
  • the communication module 60 may be located either inside or outside the electronic control unit 49.
  • the external device may be, for example, the above-mentioned base station 10 or user terminal 20.
  • the communication module 60 may also be, for example, at least one of the above-mentioned base station 10 and user terminal 20 (it may function as at least one of the base station 10 and user terminal 20).
  • the communication module 60 may transmit at least one of the signals from the various sensors 50-58 described above input to the electronic control unit 49, information obtained based on the signals, and information based on input from the outside (user) obtained via the information service unit 59 to an external device via wireless communication.
  • the electronic control unit 49, the various sensors 50-58, the information service unit 59, etc. may be referred to as input units that accept input.
  • the PUSCH transmitted by the communication module 60 may include information based on the above input.
  • the communication module 60 receives various information (traffic information, signal information, vehicle distance information, etc.) transmitted from an external device and displays it on an information service unit 59 provided in the vehicle.
  • the information service unit 59 may also be called an output unit that outputs information (for example, outputs information to a device such as a display or speaker based on the PDSCH (or data/information decoded from the PDSCH) received by the communication module 60).
  • the communication module 60 also stores various information received from external devices in memory 62 that can be used by the microprocessor 61. Based on the information stored in memory 62, the microprocessor 61 may control the drive unit 41, steering unit 42, accelerator pedal 43, brake pedal 44, shift lever 45, left and right front wheels 46, left and right rear wheels 47, axles 48, various sensors 50-58, and the like provided on the vehicle 40.
  • the base station in the present disclosure may be read as a user terminal.
  • each aspect/embodiment of the present disclosure may be applied to a configuration in which communication between a base station and a user terminal is replaced with communication between multiple user terminals (which may be called, for example, Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.).
  • the user terminal 20 may be configured to have the functions of the base station 10 described above.
  • terms such as "uplink” and "downlink” may be read as terms corresponding to terminal-to-terminal communication (for example, "sidelink").
  • the uplink channel, downlink channel, etc. may be read as the sidelink channel.
  • the user terminal in this disclosure may be interpreted as a base station.
  • the base station 10 may be configured to have the functions of the user terminal 20 described above.
  • operations that are described as being performed by a base station may in some cases be performed by its upper node.
  • a network that includes one or more network nodes having base stations, it is clear that various operations performed for communication with terminals may be performed by the base station, one or more network nodes other than the base station (such as, but not limited to, a Mobility Management Entity (MME) or a Serving-Gateway (S-GW)), or a combination of these.
  • MME Mobility Management Entity
  • S-GW Serving-Gateway
  • each aspect/embodiment described in this disclosure may be used alone, in combination, or switched between depending on the implementation.
  • the processing procedures, sequences, flow charts, etc. of each aspect/embodiment described in this disclosure may be rearranged as long as there is no inconsistency.
  • the methods described in this disclosure present elements of various steps in an exemplary order, and are not limited to the particular order presented.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • LTE-B LTE-Beyond
  • SUPER 3G IMT-Advanced
  • 4th generation mobile communication system 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • 6G 6th generation mobile communication system
  • xG x is, for example, an integer or decimal
  • Future Radio Access FX
  • GSM Global System for Mobile communications
  • CDMA2000 Code Division Multiple Access
  • UMB Ultra Mobile Broadband
  • IEEE 802.11 Wi-Fi
  • IEEE 802.16 WiMAX (registered trademark)
  • IEEE 802.20 Ultra-WideBand (UWB), Bluetooth (registered trademark), and other appropriate wireless communication methods, as well as next-generation systems that are expanded, modified,
  • the phrase “based on” does not mean “based only on,” unless expressly stated otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
  • any reference to an element using a designation such as "first,” “second,” etc., used in this disclosure does not generally limit the quantity or order of those elements. These designations may be used in this disclosure as a convenient method of distinguishing between two or more elements. Thus, a reference to a first and second element does not imply that only two elements may be employed or that the first element must precede the second element in some way.
  • determining may encompass a wide variety of actions. For example, “determining” may be considered to be judging, calculating, computing, processing, deriving, investigating, looking up, search, inquiry (e.g., looking in a table, database, or other data structure), ascertaining, etc.
  • Determining may also be considered to mean “determining” receiving (e.g., receiving information), transmitting (e.g., sending information), input, output, accessing (e.g., accessing data in a memory), etc.
  • “Judgment” may also be considered to mean “deciding” to resolve, select, choose, establish, compare, etc.
  • judgment may also be considered to mean “deciding” to take some kind of action.
  • the "maximum transmit power" referred to in this disclosure may mean the maximum value of transmit power, may mean the nominal UE maximum transmit power, or may mean the rated UE maximum transmit power.
  • connection and “coupled,” or any variation thereof, refer to any direct or indirect connection or coupling between two or more elements, and may include the presence of one or more intermediate elements between two elements that are “connected” or “coupled” to each other.
  • the coupling or connection between the elements may be physical, logical, or a combination thereof. For example, "connected” may be read as "accessed.”
  • a and B are different may mean “A and B are different from each other.”
  • the term may also mean “A and B are each different from C.”
  • Terms such as “separate” and “combined” may also be interpreted in the same way as “different.”
  • words meaning “good,” “bad,” “big,” “small,” “high,” “low,” “fast,” “slow,” etc. may be read as interchangeable (without being limited to positive, comparative, or superlative).
  • words meaning “good,” “bad,” “big,” “small,” “high,” “low,” “fast,” “slow,” etc. may be read as interchangeable (without being limited to positive, comparative, or superlative) with “ith” added (for example, “best” may be read as “ith best”).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本開示の一態様に係る端末は、チャネル状態情報(Channel State Information(CSI))予測の指示に関する情報を受信する受信部と、前記情報に基づいてCSI予測を実施する制御部と、を有する。本開示の一態様によれば、好適なオーバーヘッド低減/チャネル推定/リソースの利用を実現できる。

Description

端末、無線通信方法及び基地局
 本開示は、次世代移動通信システムにおける端末、無線通信方法及び基地局に関する。
 Universal Mobile Telecommunications System(UMTS)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてLong Term Evolution(LTE)が仕様化された(非特許文献1)。また、LTE(Third Generation Partnership Project(3GPP(登録商標)) Release(Rel.)8、9)の更なる大容量、高度化などを目的として、LTE-Advanced(3GPP Rel.10-14)が仕様化された。
 LTEの後継システム(例えば、5th generation mobile communication system(5G)、5G+(plus)、6th generation mobile communication system(6G)、New Radio(NR)、3GPP Rel.15以降などともいう)も検討されている。
 将来の無線通信技術について、ネットワーク/デバイスの制御、管理などに、機械学習(Machine Learning(ML))のような人工知能(Artificial Intelligence(AI))技術を活用することが検討されている。
 AIモデルの活用のユースケースとして、空間ドメイン(spatial domain)下りリンク(Downlink(DL))ビーム予測、時間的(temporal)DLビーム予測などが検討されている。このようなビーム予測方法は、AIベースドビーム予測(ビーム報告)、AIベースドビーム管理(Beam Management(BM))などと呼ばれてもよい。時間的DLビーム予測は、例えば時間ドメインチャネル状態情報(Channel State Information(CSI))予測(prediction)などと呼ばれてもよい。
 ところで、Rel.18 NRの議論では、上述したAIモデルベースの時間ドメインCSI予測だけでなく、AIモデルを用いない(例えば、特定の予測のための関数を用いる)時間ドメインCSI予測が検討されている。
 しかしながら、このようなAIモデル/予測関数の入出力について、まだ検討されていないことが多くある。例えば、AIモデル/予測関数の入力のための、過去の情報を得るためのチャネル測定についてのリソースの設定(リソースの数、期間、選択方法など)について、まだ検討が進んでいない。また、AIモデル/予測関数の出力のための、予測結果に対するチャネル情報がどれかを基地局が認識すること(リソースの数、期間、選択方法など)について、まだ検討が進んでいない。また、予測されるチャネル情報(CSI)のための報告設定について、まだ検討が進んでいない。
 このように、CSI予測のための設定について十分な検討がなされなければ、適切なオーバーヘッド低減/高精度なチャネル推定/高効率なリソースの利用が達成できず、通信スループット/通信品質の向上が抑制されるおそれがある。
 そこで、本開示は、好適なオーバーヘッド低減/チャネル推定/リソースの利用を実現できる端末、無線通信方法及び基地局を提供することを目的の1つとする。
 本開示の一態様に係る端末は、チャネル状態情報(Channel State Information(CSI))予測の指示に関する情報を受信する受信部と、前記情報に基づいてCSI予測を実施する制御部と、を有する。
 本開示の一態様によれば、好適なオーバーヘッド低減/チャネル推定/リソースの利用を実現できる。
図1は、AIモデルの管理のフレームワークの一例を示す図である。 図2A及び2Bは、AIベースドビーム報告の一例を示す図である。 図3A及び3Bは、実施形態1.1にかかる予測に関係あるCSI報告設定の一例を示す図である。 図4は、実施形態1.1にかかる予測に関係あるCSI報告設定の一例を示す図である。 図5は、実施形態1.2にかかる、CSI予測を指示するためのMAC CEの一例を示す図である。 図6A及び6Bは、実施形態1.2にかかる、CSI予測を指示するためのMAC CEの一例を示す図である。 図7は、P/SP-ヒストリカルCSIリソースの一例を示す図である。 図8は、P/SP-ヒストリカルCSIリソースに関する情報の一例を示す図である。 図9は、P/SP-ヒストリカルCSIリソースに関する情報の一例を示す図である。 図10は、P/SP-ヒストリカルCSIリソースに関する情報の一例を示す図である。 図11は、P/SP-ヒストリカルCSIリソースに関する情報の一例を示す図である。 図12は、A-ヒストリカルCSIリソースの一例を示す図である。 図13は、A-ヒストリカルCSIリソースの一例を示す図である。 図14は、A-ヒストリカルCSIリソースの一例を示す図である。 図15は、A-ヒストリカルCSIリソースの一例を示す図である。 図16は、A-ヒストリカルCSIリソースに関する情報の一例を示す図である。 図17は、A-ヒストリカルCSIリソースに関する情報の一例を示す図である。 図18は、A-ヒストリカルCSIリソースに関する情報の一例を示す図である。 図19は、A-ヒストリカルCSIリソースに関する情報の一例を示す図である。 図20は、P/SP-フューチャーCSIリソースの一例を示す図である。 図21は、P/SP-フューチャーCSIリソースに関する情報の一例を示す図である。 図22は、P/SP-フューチャーCSIリソースに関する情報の一例を示す図である。 図23は、P/SP-フューチャーCSIリソースに関する情報の一例を示す図である。 図24は、P/SP-フューチャーCSIリソースに関する情報の一例を示す図である。 図25は、P/SP/A-フューチャーCSIリソースの一例を示す図である。 図26は、P/SP/A-フューチャーCSIリソースに関する情報の一例を示す図である。 図27は、P/SP/A-フューチャーCSIリソースに関する情報の一例を示す図である。 図28は、P/SP/A-フューチャーCSIリソースに関する情報の一例を示す図である。 図29は、P/SP/A-フューチャーCSIリソースに関する情報の一例を示す図である。 図30は、報告時間の一例を示す図である。 図31は、報告時間に関する情報の一例を示す図である。 図32は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。 図33は、一実施形態に係る基地局の構成の一例を示す図である。 図34は、一実施形態に係るユーザ端末の構成の一例を示す図である。 図35は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。 図36は、一実施形態に係る車両の一例を示す図である。
(無線通信への人工知能(Artificial Intelligence(AI))技術の適用)
 将来の無線通信技術について、ネットワーク/デバイスの制御、管理などに、機械学習(Machine Learning(ML))のようなAI技術を活用することが検討されている。
 例えば、チャネル状態情報(Channel State Information(CSI))フィードバックの向上(例えば、オーバーヘッド低減、正確度改善、予測)、ビームマネジメントの改善(例えば、正確度改善、時間/空間領域での予測)、位置測定の改善(例えば、位置推定/予測の改善)などのために、端末(terminal、ユーザ端末(user terminal)、User Equipment(UE))/基地局(Base Station(BS))がAI技術を活用することが検討されている。
 AIモデルは、入力される情報に基づいて、推定値、予測値、選択される動作、分類、などの少なくとも1つの情報を出力してもよい。UE/BSは、AIモデルに対して、チャネル状態情報、参照信号測定値などを入力して、高精度なチャネル状態情報/測定値/ビーム選択/位置、将来のチャネル状態情報/無線リンク品質などを出力してもよい。
 なお、本開示において、AIは、以下の少なくとも1つの特徴を有する(実施する)オブジェクト(対象、客体、データ、関数、プログラムなどとも呼ばれる)で読み替えられてもよい:
・観測又は収集される情報に基づく推定、
・観測又は収集される情報に基づく選択、
・観測又は収集される情報に基づく予測。
 本開示において、推定(estimation)、予測(prediction)、推論(inference)は、互いに読み替えられてもよい。また、本開示において、推定する(estimate)、予測する(predict)、推論する(infer)は、互いに読み替えられてもよい。
 本開示において、オブジェクトは、例えば、UE、BSなどの装置、デバイスなどであってもよい。また、本開示において、オブジェクトは、当該装置において動作するプログラム/モデル/エンティティに該当してもよい。
 また、本開示において、AIモデルは、以下の少なくとも1つの特徴を有する(実施する)オブジェクトで読み替えられてもよい:
・情報を与えること(feeding)によって、推定値を生み出す、
・情報を与えることによって、推定値を予測する、
・情報を与えることによって、特徴を発見する、
・情報を与えることによって、動作を選択する。
 また、本開示において、AIモデルは、AI技術を適用し、入力のセットに基づいて出力のセットを生成するデータドリブンアルゴリズムを意味してもよい。
 また、本開示において、AIモデル、モデル、MLモデル、予測分析(predictive analytics)、予測分析モデル、ツール、自己符号化器(オートエンコーダ(autoencoder))、エンコーダ、デコーダ、ニューラルネットワークモデル、AIアルゴリズム、スキームなどは、互いに読み替えられてもよい。また、AIモデルは、回帰分析(例えば、線形回帰分析、重回帰分析、ロジスティック回帰分析)、サポートベクターマシン、ランダムフォレスト、ニューラルネットワーク、ディープラーニングなどの少なくとも1つを用いて導出されてもよい。
 本開示において、オートエンコーダは、積層オートエンコーダ、畳み込みオートエンコーダなど任意のオートエンコーダと互いに読み替えられてもよい。本開示のエンコーダ/デコーダは、Residual Network(ResNet)、DenseNet、RefineNetなどのモデルを採用してもよい。
 また、本開示において、エンコーダ、エンコーディング(encoding)、エンコードする/される(encode/encoded)、エンコーダによる修正/変更/制御、圧縮(compressing)、圧縮する/される(compress/compressed)、生成(generating)、生成する/される(generate/generated)などは、互いに読み替えられてもよい。
 また、本開示において、デコーダ、デコーディング(decoding)、デコードする/される(decode/decoded)、デコーダによる修正/変更/制御、展開(decompressing)、展開する/される(decompress/decompressed)、再構成(reconstructing)、再構成する/される(reconstruct/reconstructed)などは、互いに読み替えられてもよい。
 本開示において、(AIモデルについての)レイヤは、AIモデルにおいて利用されるレイヤ(入力層、中間層など)と互いに読み替えられてもよい。本開示のレイヤ(層)は、入力層、中間層、出力層、バッチ正規化層、畳み込み層、活性化層、デンス(dense)層、正規化層、プーリング層、アテンション層、ドロップアウト層、全結合層などの少なくとも1つに該当してもよい。
 本開示において、AIモデルの訓練方法には、教師あり学習(supervised learning)、教師なし学習(unsupervised learning)、強化学習(Reinforcement learning)、連合学習(federated learning)などが含まれてもよい。教師あり学習は、入力及び対応するラベルからモデルを訓練する処理を意味してもよい。教師なし学習は、ラベル付きデータなしでモデルを訓練する処理を意味してもよい。強化学習は、モデルが相互作用している環境において、入力(言い換えると、状態)と、モデルの出力(言い換えると、アクション)から生じるフィードバック信号(言い換えると、報酬)と、からモデルを訓練する処理を意味してもよい。
 本開示において、生成、算出、導出などは、互いに読み替えられてもよい。本開示において、実施、運用、動作、実行などは、互いに読み替えられてもよい。本開示において、訓練、学習、更新、再訓練などは、互いに読み替えられてもよい。本開示において、推論、訓練後(after-training)、本番の利用、実際の利用、などは互いに読み替えられてもよい。本開示において、信号は、信号/チャネルと互いに読み替えられてもよい。
 図1は、AIモデルの管理のフレームワークの一例を示す図である。本例では、AIモデルに関連する各ステージがブロックで示されている。本例は、AIモデルのライフサイクル管理とも表現される。
 データ収集ステージは、AIモデルの生成/更新のためのデータを収集する段階に該当する。データ収集ステージは、データ整理(例えば、どのデータをモデル訓練/モデル推論のために転送するかの決定)、データ転送(例えば、モデル訓練/モデル推論を行うエンティティ(例えば、UE、gNB)に対して、データを転送)などを含んでもよい。
 なお、データ収集は、AIモデル訓練/データ分析/推論を目的として、ネットワークノード、管理エンティティ又はUEによってデータが収集される処理を意味してもよい。本開示において、処理、手順は互いに読み替えられてもよい。また、本開示において、収集は、測定(チャネル測定、ビーム測定、無線リンク品質測定、位置推定など)に基づいてAIモデルの訓練/推論のための(例えば、入力/出力として利用できる)データセットを取得することを意味してもよい。
 本開示において、オフラインフィールドデータは、フィールド(現実世界)から収集され、AIモデルのオフライン訓練のために用いられるデータであってもよい。また、本開示において、オンラインフィールドデータは、フィールド(現実世界)から収集され、AIモデルのオンライン訓練のために用いられるデータであってもよい。
 モデル訓練ステージでは、収集ステージから転送されるデータ(訓練用データ)に基づいてモデル訓練が行われる。このステージは、データ準備(例えば、データの前処理、クリーニング、フォーマット化、変換などの実施)、モデル訓練/バリデーション(検証)、モデルテスティング(例えば、訓練されたモデルが性能の閾値を満たすかの確認)、モデル交換(例えば、分散学習のためのモデルの転送)、モデルデプロイメント/更新(モデル推論を行うエンティティに対してモデルをデプロイ/更新)などを含んでもよい。
 なお、AIモデル訓練(AI model training)は、データドリブンな方法でAIモデルを訓練し、推論のための訓練されたAIモデルを取得するための処理を意味してもよい。
 また、AIモデルバリデーション(AI model validation)は、モデル訓練に使用したデータセットとは異なるデータセットを用いてAIモデルの品質を評価するための訓練のサブ処理を意味してもよい。当該サブ処理は、モデル訓練に使用したデータセットを超えて汎化するモデルパラメータの選択に役立つ。
 また、AIモデルテスティング(AI model testing)は、モデル訓練/バリデーションに使用したデータセットとは異なるデータセットを使用して、最終的なAIモデルの性能を評価するための訓練のサブ処理を意味してもよい。なお、テスティングは、バリデーションとは異なり、その後のモデルチューニングを前提としなくてもよい。
 モデル推論ステージでは、収集ステージから転送されるデータ(推論用データ)に基づいてモデル推論が行われる。このステージは、データ準備(例えば、データの前処理、クリーニング、フォーマット化、変換などの実施)、モデル推論、モデルモニタリング(例えば、モデル推論の性能をモニタ)、モデル性能フィードバック(モデル訓練を行うエンティティに対してモデル性能をフィードバック)、出力(アクターに対してモデルの出力を提供)などを含んでもよい。
 なお、AIモデル推論(AI model inference)は、訓練されたAIモデルを用いて入力のセットから出力のセットを産み出すための処理を意味してもよい。
 また、UE側(UE side)モデルは、その推論が完全にUEにおいて実施されるAIモデルを意味してもよい。ネットワーク側(Network side)モデルは、その推論が完全にネットワーク(例えば、gNB)において実施されるAIモデルを意味してもよい。
 また、片側(one-sided)モデルは、UE側モデル又はネットワーク側モデルを意味してもよい。両側(two-sided)モデルは、共同推論(joint inference)が行われるペアのAIモデルを意味してもよい。ここで、共同推論は、その推論がUEとネットワークにわたって共同で行われるAI推論を含んでもよく、例えば、推論の第1の部分がUEによって最初に行われ、残りの部分がgNBによって行われてもよい(又はその逆が行われてもよい)。
 また、AIモデルモニタリング(AI model monitoring)は、AIモデルの推論性能をモニタするための処理を意味してもよく、モデル性能モニタリング、性能モニタリングなどと互いに読み替えられてもよい。
 なお、モデル登録(モデルレジストレーション(model registration))は、モデルにバージョン識別子を付与し、推論段階において利用される特定のハードウェアにコンパイルすることを介して当該モデルを実行可能にする(レジスターする)ことを意味してもよい。また、モデル配置(モデルデプロイメント(model deployment))は、完全に開発されテストされたモデルのランタイムイメージ(又は実行環境のイメージ)を、推論が実施されるターゲット(例えば、UE/gNB)に配信する(又は当該ターゲットにおいて有効化する)ことを意味してもよい。
 アクターステージは、アクショントリガ(例えば、他のエンティティに対してアクションをトリガするか否かの決定)、フィードバック(例えば、訓練用データ/推論用データ/性能フィードバックのために必要な情報をフィードバック)などを含んでもよい。
 なお、例えばモビリティ最適化のためのモデルの訓練は、例えば、ネットワーク(Network(NW))における保守運用管理(Operation、Administration and Maintenance(Management)(OAM))/gNodeB(gNB)において行われてもよい。前者の場合、相互運用、大容量ストレージ、オペレータの管理性、モデルの柔軟性(フィーチャーエンジニアリングなど)が有利である。後者の場合、モデル更新のレイテンシ、モデル展開のためのデータ交換などが不要な点が有利である。上記モデルの推論は、例えば、gNBにおいて行われてもよい。
 ユースケース(言い換えると、AIモデルの機能)に応じて、訓練/推論を行うエンティティは異なってもよい。AIモデルの機能(function)は、ビーム管理、ビーム予測、オートエンコーダ(又は情報圧縮)、CSIフィードバック、位置測位などを含んでもよい。
 例えば、メジャメントレポートに基づくAI支援ビーム管理については、OAM/gNBがモデル訓練を行い、gNBがモデル推論を行ってもよい。
 AI支援UEアシステッドポジショニングについては、Location Management Function(LMF)がモデル訓練を行い、当該LMFがモデル推論を行ってもよい。
 オートエンコーダを用いるCSIフィードバック/チャネル推定については、OAM/gNB/UEがモデル訓練を行い、gNB/UEが(ジョイントで)モデル推論を行ってもよい。
 ビーム測定に基づくAI支援ビーム管理又はAI支援UEベースドポジショニングについては、OAM/gNB/UEがモデル訓練を行い、UEがモデル推論を行ってもよい。
 なお、モデルアクティベーションは、特定の機能のためのAIモデルを有効化することを意味してもよい。モデルディアクティベーションは、特定の機能のためのAIモデルを無効化することを意味してもよい。モデルスイッチングは、特定の機能のための現在アクティブなAIモデルをディアクティベートし、異なるAIモデルをアクティベートすることを意味してもよい。
 また、モデル転送(model transfer)は、エアインターフェース上でAIモデルを配信することを意味してもよい。この配信は、受信側において既知のモデル構造のパラメータ、又はパラメータを有する新しいモデルの一方又は両方を配信することを含んでもよい。また、この配信は、完全なモデル又は部分的なモデルを含んでもよい。モデルダウンロードは、ネットワークからUEへのモデル転送を意味してもよい。モデルアップロードは、UEからネットワークへのモデル転送を意味してもよい。
(AIベースドビーム報告)
 AIモデルの活用のユースケースとして、UE又はNWにおける片側AIモデルを用いる空間ドメイン(spatial domain)下りリンク(Downlink(DL))ビーム予測又は時間的(temporal)DLビーム予測が検討されている。このようなビーム予測方法は、AIベースドビーム予測(ビーム報告)、AIベースドビーム管理(Beam Management(BM))などと呼ばれてもよい。
 図2A及び2Bは、AIベースドビーム報告の一例を示す図である。図2Aは、空間ドメインDLビーム予測を示す。UEは、空間的に疎な(又は太い)ビームを測定して、測定結果などをAIモデルに入力し、空間的に密な(又は細い)ビームのビーム品質の予測結果を出力してもよい。
 図2Bは、時間的DLビーム予測を示す。UEは、時系列のビームを測定して、測定結果などをAIモデルに入力し、将来のビームのビーム品質の予測結果を出力してもよい。
 なお、空間ドメインDLビーム予測は、BMケース1と呼ばれてもよいし、時間的DLビーム予測は、BMケース2と呼ばれてもよい。また、時間的DLビーム予測は、例えば時間ドメインCSI予測(CSI prediction)などと呼ばれてもよい。
 また、AIモデルの出力(予測結果)に関連するビームは、ビームのセットAと呼ばれてもよい。AIモデルの入力に関連するビームは、ビームのセットBと呼ばれてもよい。
 BMケース1/2のAIモデルの入力の候補は、L1-RSRP(レイヤ1における参照信号受信電力(Layer 1 Reference Signal Received Power))、アシスタンス情報(例えば、ビーム形状情報、UE位置/方向情報、送信ビーム用途情報)、チャネルインパルス応答(Channel Impulse Response(CIR))の情報、対応するDL送信/受信ビームIDなどが挙げられる。
 BMケース1のAIモデルの出力の候補は、上位K個(Kは整数)の送信/受信ビームのID、これらのビームの予測L1-RSRP(predicted L1-RSRP)、各ビームが上位K個に入る確率、これらのビームの角度などが挙げられる。
 BMケース2のAIモデルの出力の候補は、BMケース1のAIモデルの出力の候補以外に、予測されるビーム障害が挙げられる。
(チャネル状態情報(Channel State Information(CSI))測定/報告)
 既存のNR規格(例えば、Rel.15-17 NR)におけるCSI測定/報告について説明する。UEは、参照信号(Reference Signal(RS))(又は、当該RS用のリソース)に基づいてCSIを生成(決定、計算、推定、測定等ともいう)し、生成したCSIをネットワーク(例えば、基地局)に送信(報告、フィードバック等ともいう)する。当該CSIは、例えば、上りリンク制御チャネル(例えば、Physical Uplink Control Channel(PUCCH))又は上りリンク共有チャネル(例えば、Physical Uplink Shared Channel(PUSCH))を用いて基地局に送信されてもよい。
 本開示において、CSIは、チャネル品質インディケーター(Channel Quality Indicator(CQI))、プリコーディング行列インディケーター(Precoding Matrix Indicator(PMI))、CSI-RSリソースインディケーター(CSI-RS Resource Indicator(CRI))、SS/PBCHブロックリソースインディケーター(SS/PBCH Block Resource Indicator(SSBRI))、レイヤインディケーター(Layer Indicator(LI))、ランクインディケーター(Rank Indicator(RI))、L1-RSRP(レイヤ1における参照信号受信電力(Layer 1 Reference Signal Received Power))、L1-RSRQ(Reference Signal Received Quality)、L1-SINR(Signal to Interference plus Noise Ratio)、L1-SNR(Signal to Noise Ratio)、チャネル行列(又はチャネル係数)に関する情報、プリコーディング行列(又はプリコーディング係数)に関する情報、ビーム/Transmission Configuration Indication state(TCI状態)/空間関係(spatial relation)に関する情報などの少なくとも1つを含んでもよい。
 CSIの生成に用いられるRSは、例えば、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、同期信号/ブロードキャストチャネル(Synchronization Signal/Physical Broadcast Channel(SS/PBCH))ブロック、同期信号(Synchronization Signal(SS))、復調用参照信号(DeModulation Reference Signal(DMRS))などの少なくとも1つであってもよい。
 本開示において、RS、CSI-RS、ノンゼロパワー(Non Zero Power(NZP))CSI-RS、ゼロパワー(Zero Power(ZP))CSI-RS、CSI干渉測定(CSI Interference Measurement(CSI-IM))、CSI-SSB及びSSBは、互いに読み替えられてもよい。また、CSI-RSは、その他の参照信号を含んでもよい。
 UEは、CSI報告に関する設定情報(CSI報告設定(CSI report configuration)、報告セッティング(report setting)などと呼ばれてもよい)を受信し、当該設定情報に基づいてCSI報告を制御してもよい。当該報告設定情報は、例えば、無線リソース制御(Radio Resource Control(RRC))情報要素(Information Element(IE))の「CSI-ReportConfig」であってもよい。
 CSI報告設定は、以下の情報の少なくとも1つを含んでもよい:
・CSI測定に用いられるCSIリソースに関する情報(リソース設定ID、例えば、「CSI-ResourceConfigId」)、
・報告すべきCSIの1つ以上の量(quantity)(CSIパラメータ)に関する情報(報告量情報、例えば、「reportQuantity」)、
・報告設定の時間ドメインのふるまいを示す報告タイプ情報(例えば、「reportConfigType」)。
 本開示において、CSIリソースは、時間インスタンス、CSI-RS機会/CSI-IM機会/SSB機会、CSI-RSリソースの(1つ/複数の)機会、CSI機会、機会、CSI-RSリソース/CSI-IMリソース/SSBリソース、時間リソース、周波数リソース、アンテナポート(例えば、CSI-RSポート)などと互いに読み替えられてもよい。CSIリソースの時間単位は、スロット、シンボルなどであってもよい。
 上記CSIリソースに関する情報は、チャネル測定のためのCSIリソースに関する情報、干渉測定のためのCSIリソース(NZP-CSI-RSリソース)に関する情報、干渉測定のためのCSI-IMリソースに関する情報などを含んでもよい。
 報告量情報は、上記CSIパラメータ(例えば、CRI、RI、PMI、CQI、LI、L1-RSRPなど)のいずれか又はこれらの組み合わせを指定してもよい。
 報告タイプ情報は、周期的なCSI(Periodic CSI(P-CSI))報告、非周期的なCSI(Aperiodic CSI(A-CSI))報告、又は、半永続的(半持続的、セミパーシステント(Semi-Persistent))なCSI(Semi-Persistent CSI(SP-CSI))報告を示してもよい。
 UEは、CSI報告設定に対応するCSIリソース設定(CSI-ResourceConfigIdに関連付けられるCSIリソース設定)に基づいて、CSI-RS/SSB/CSI-IMの測定を実施し、測定結果に基づいて報告するCSIを導出する。
 CSIリソース設定(例えば、CSI-ResourceConfig情報要素)は、より具体的なCSI-RS/SSBのリソースを示すcsi-RS-ResourceSetListフィールド、リソース設定の時間ドメインのふるまいを示すリソースタイプ情報(例えば、「resourceType」)などを含んでもよい。
 リソースタイプ情報は、P-CSIリソース、A-CSIリソース又はSP-CSIリソースを示してもよい。
<CSIリソースのタイミング>
 P/SP-CSIリソースのタイミング(例えば、送信/受信タイミング)は、CSIリソース設定に含まれる周期及びオフセットの情報(CSI-ResourcePeriodicityAndOffset)によって決定されてもよい。P/SP-CSIリソースは、オフセットを考慮して周期の倍数の位置に該当するスロットにおいて、送信されてもよい。
 A-CSIリソースのタイミングは、設定されるオフセット(aperiodicTriggeringOffset)に基づいて決定されてもよい。当該オフセットは、A-CSIリソース/A-CSI報告をトリガするトリガリングDCI(例えば、特定のトリガ状態を示すCSIリクエストフィールドを含むDCI)からA-CSIリソースまでの時間差に該当してもよい。なお、設定されない場合には当該オフセットの値は0であってもよい。
<CSI報告のタイミング>
 P/SP-CSI報告(on PUCCH)の報告タイミングは、CSI報告設定に含まれる周期及びオフセットの情報(CSI-ReportPeriodicityAndOffset)によって決定されてもよい。P/SP-CSI報告(on PUCCH)は、オフセットを考慮して周期の倍数の位置に該当するスロットにおいて、送信されてもよい。
 SP-CSI報告(on PUSCH)のタイミングは、CSI報告設定に含まれるスロット周期の情報(reportSlotConfig)及びスロットオフセットの情報(reportSlotOffsetList)に基づいて決定されてもよい。SP-CSI報告(on PUSCH)は、SP-CSI報告をトリガするトリガリングDCIの受信を基準として、スロットオフセット後かつスロット周期の倍数の位置に該当するスロットにおいて、送信されてもよい。なお、スロットオフセットは、上記スロットオフセットの情報と、上記トリガリングDCIのフィールド(例えば、CSIリクエストフィールド)に基づいて決定されてもよい。
 なお、SP-CSI測定/報告(on PUCCH)は、SP-CSI報告設定のアクティベーション/ディアクティベーションMAC CEの受信から、一定時間後に有効/無効になってもよい。また、SP-CSI測定/報告(on PUSCH)は、SP-CSI無線ネットワーク一時識別子(SP-CSI-Radio Network Temporary Identifier(RNTI))によってスクランブルされる巡回冗長検査(Cyclic Redundancy Check(CRC))が付加されるDCIフォーマット(例えば、DCIフォーマット0_1/0_2)に含まれるCSIリクエストフィールドによってアクティベートされるトリガ状態(例えば、SemiPersistentOnPUSCH-TriggerStateList情報要素に含まれるトリガ状態)に基づいて実施されてもよい。
 A-CSI報告のタイミングは、CSI報告設定に含まれるスロットオフセットの情報(reportSlotOffsetList)に基づいて決定されてもよい。A-CSI報告は、A-CSI報告をトリガするトリガリングDCIの受信を基準として、スロットオフセット後のスロットにおいて、送信されてもよい。なお、スロットオフセットは、上記スロットオフセットの情報と、上記トリガリングDCIのフィールド(例えば、CSIリクエストフィールド)に基づいて決定されてもよい。
 なお、1つより多いA-CSI報告がトリガリングDCIによって指定される場合には、当該1つより多いA-CSI報告についての複数のスロットオフセットの情報と、上記トリガリングDCIの時間ドメインリソース割り当てフィールドと、に基づいて、A-CSI報告のタイミングが決定されてもよい。
<CSI参照リソース>
 既存のNR規格では、測定の時間制約に関する上位レイヤパラメータ(例えば、チャネル測定のための時間制約に関するtimeRestrictionForChannelMeasurements、干渉測定のためのtimeRestrictionForInterferenceMeasurementsなど)が設定される(当該パラメータの値が”configured”を示すことを意味してもよい)場合、CSI参照リソースより遅くない、CSI報告設定に関連する最近の(most recent)NZP CSI-RS機会(occasion)に基づいて、報告するCSIの算出のためのチャネル測定を導出することが規定されている。なお、本開示のチャネル測定は、干渉測定と互いに読み替えられてもよい。
 また、既存のNR規格では、上記測定の時間制約に関する上位レイヤパラメータが設定されない(当該パラメータの値が”notConfigured”を示すことを意味してもよい)場合、CSI参照リソースより遅くない、CSI報告設定に関連するNZP CSI-RS機会(occasion)に基づいて、報告するCSIの算出のためのチャネル測定を導出することが規定されている。この場合、報告されるCSIは、1つ又は複数のNZP CSI-RS機会に基づいて導出されてもよい。
 サービングセルについて、ULスロットn’内におけるCSI報告のためのCSI参照リソースは、時間ドメインにおいて、単一のDLスロットn-nCSI_refによって定義される。nは、ULスロットn’に対応する(重複する)DLスロットに該当する。
 P/SP-CSI報告の場合、nCSI_refは、上記単一のDLスロットが有効なDLスロットに対応するような、最小の値(単一のCSI-RS/SSBリソースが設定される場合は4・2μDL以上の最小の値、複数のCSI-RS/SSBリソースが設定される場合は5・2μDL以上の最小の値)である。なお、μDLはDLのためのサブキャリア間隔の設定に該当する(例えば、μDL=0、1、2、3)。
 A-CSI報告について、UEがCSIリクエストと同じスロットにおいてCSIを報告するようにトリガリングDCIによって指定される場合には、nCSI_refは、CSI参照リソースが対応するCSIリクエストと同じ有効なDLスロットにあるように決定されてもよく、そうでない場合には、nCSI_refは、上記単一のDLスロットが有効なDLスロットに対応するような、遅延要求に対応する特定の値以上の最小の値であってもよい。
 ところで、Rel.18 NRの議論では、上述したAIモデルベースの時間ドメインCSI予測だけでなく、AIモデルを用いない(例えば、特定の予測のための関数を用いる)時間ドメインCSI予測(例えば、CSI参照リソース後、CSI報告スロット後、CSI-RSが存在するスロット後、などにおけるCSI/チャネル予測)が検討されている。CSI予測は、ビーム/PMIのために行われてもよい。
 しかしながら、このようなAIモデル/予測関数の入出力について、まだ検討されていないことが多くある。例えば、AIモデル/予測関数の入力のための、過去の情報を得るためのチャネル測定についてのリソースの設定(リソースの数、期間、選択方法など)について、まだ検討が進んでいない。また、AIモデル/予測関数の出力のための、予測結果に対するチャネル情報がどれかを基地局が認識すること(リソースの数、期間、選択方法など)について、まだ検討が進んでいない。また、予測されるチャネル情報(CSI)のための報告設定について、まだ検討が進んでいない。
 このように、CSI予測のための設定について十分な検討がなされなければ、適切なオーバーヘッド低減/高精度なチャネル推定/高効率なリソースの利用が達成できず、通信スループット/通信品質の向上が抑制されるおそれがある。
 そこで、本発明者らは、CSI予測のための好適な設定方法を着想した。なお、本開示の各実施形態は、AIが利用されない場合に適用されてもよい。
 以下、本開示に係る実施形態について、図面を参照して詳細に説明する。各実施形態に係る無線通信方法は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。
 本開示において、「A/B」及び「A及びBの少なくとも一方」は、互いに読み替えられてもよい。また、本開示において、「A/B/C」は、「A、B及びCの少なくとも1つ」を意味してもよい。
 本開示において、通知、アクティベート、ディアクティベート、指示(又は指定(indicate))、選択(select)、設定(configure)、更新(update)、決定(determine)などは、互いに読み替えられてもよい。本開示において、サポートする、制御する、制御できる、動作する、動作できるなどは、互いに読み替えられてもよい。
 本開示において、無線リソース制御(Radio Resource Control(RRC))、RRCパラメータ、RRCメッセージ、上位レイヤパラメータ、フィールド、情報要素(Information Element(IE))、設定などは、互いに読み替えられてもよい。本開示において、Medium Access Control制御要素(MAC Control Element(CE))、更新コマンド、アクティベーション/ディアクティベーションコマンドなどは、互いに読み替えられてもよい。
 本開示において、上位レイヤシグナリングは、例えば、Radio Resource Control(RRC)シグナリング、Medium Access Control(MAC)シグナリング、ブロードキャスト情報などのいずれか、又はこれらの組み合わせであってもよい。
 本開示において、MACシグナリングは、例えば、MAC制御要素(MAC Control Element(MAC CE))、MAC Protocol Data Unit(PDU)などを用いてもよい。ブロードキャスト情報は、例えば、マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))、最低限のシステム情報(Remaining Minimum System Information(RMSI))、その他のシステム情報(Other System Information(OSI))などであってもよい。
 本開示において、物理レイヤシグナリングは、例えば、下りリンク制御情報(Downlink Control Information(DCI))、上りリンク制御情報(Uplink Control Information(UCI))などであってもよい。
 本開示において、インデックス、識別子(Identifier(ID))、インディケーター、リソースIDなどは、互いに読み替えられてもよい。本開示において、シーケンス、リスト、セット、グループ、群、クラスター、サブセットなどは、互いに読み替えられてもよい。
 本開示において、パネル、UEパネル、パネルグループ、ビーム、ビームグループ、プリコーダ、Uplink(UL)送信エンティティ、送受信ポイント(Transmission/Reception Point(TRP))、基地局、空間関係情報(Spatial Relation Information(SRI))、空間関係、SRSリソースインディケーター(SRS Resource Indicator(SRI))、制御リソースセット(COntrol REsource SET(CORESET))、Physical Downlink Shared Channel(PDSCH)、コードワード(Codeword(CW))、トランスポートブロック(Transport Block(TB))、参照信号(Reference Signal(RS))、アンテナポート(例えば、復調用参照信号(DeModulation Reference Signal(DMRS))ポート)、アンテナポートグループ(例えば、DMRSポートグループ)、グループ(例えば、空間関係グループ、符号分割多重(Code Division Multiplexing(CDM))グループ、参照信号グループ、CORESETグループ、Physical Uplink Control Channel(PUCCH)グループ、PUCCHリソースグループ)、リソース(例えば、参照信号リソース、SRSリソース)、リソースセット(例えば、参照信号リソースセット)、CORESETプール、下りリンクのTransmission Configuration Indication state(TCI状態)(DL TCI状態)、上りリンクのTCI状態(UL TCI状態)、統一されたTCI状態(unified TCI state)、共通TCI状態(common TCI state)、擬似コロケーション(Quasi-Co-Location(QCL))、QCL想定などは、互いに読み替えられてもよい。
 本開示において、タイミング、時刻、時間、時間インスタンス、スロット、サブスロット、シンボル、サブフレームなどは、互いに読み替えられてもよい。
 本開示において、チャネル測定/推定は、例えば、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、同期信号(Synchronization Signal(SS))、同期信号/ブロードキャストチャネル(Synchronization Signal/Physical Broadcast Channel(SS/PBCH))ブロック、復調用参照信号(DeModulation Reference Signal(DMRS))、測定用参照信号(Sounding Reference Signal(SRS))などの少なくとも1つを用いて行われてもよい。
 なお、本開示において、チャネル状態、チャネルステータス、チャネル、チャネル環境などは、互いに読み替えられてもよい。
 本開示において、UCI、CSIレポート、CSIフィードバック、フィードバック情報、フィードバックビット、CSIフィードバック方法、CSIフィードバックスキーム、ビームレポート、ビーム報告スキームなどは、互いに読み替えられてもよい。また、本開示において、ビット、ビット列、ビット系列、系列、値、情報、ビットから得られる値、ビットから得られる情報などは、互いに読み替えられてもよい。
 なお、本開示において、CSI-RSリソースセット、CSI-RSリソースセットの設定パラメータ、NZP CSI-RSリソースセット、NZP CSI-RSリソースセットの設定パラメータ(NZP-CSI-RS-ResourceSet)、CSI測定用SSBのリソースセットの設定パラメータ(CSI-SSB-ResourceSet)、CSI-IMのリソースセットの設定パラメータ(CSI-IM-ResourceSet)、は互いに読み替えられてもよい。
 また、本開示において、CSI-RSリソース、CSI-RSリソースの設定パラメータ、NZP CSI-RSリソース、NZP CSI-RSリソースの設定パラメータ(NZP-CSI-RS-Resource)、CSIリソースなどは、互いに読み替えられてもよい。
(無線通信方法)
<第0の実施形態>
 第0の実施形態は、時間ドメインCSI予測の実施及び予測されたCSIの報告に関する。第0の実施形態は、以降の実施形態の前提であってもよい。
[実施形態0.1:時間ドメインCSI予測の実施]
 第0の実施形態において、UEは、以下の少なくとも1つの条件を満たす場合に、時間ドメインCSI予測の実施を行う:
 ・条件1:時間ドメインCSI予測に関するAIモデルを設定/レジスター/アクティベートされる、
 ・条件2:特定のCSI報告設定を設定/トリガー/アクティベートされる、
 ・条件3:CSI報告設定に基づいて予測を実施することを自身で決定し、予測を実施することを決定したことに関する情報をNWに送信する。
 なお、CSI予測の実施は、予測されるCSI関連情報(例えば、PMI、チャネル行列に関する情報など)の計算を意味してもよい。
 上記条件1について、設定/レジストレーション/アクティベーションのための信号(情報の受信)からCSI予測の実施までの時間オフセットに関する情報は、UEに通知されてもよいし、予め定義されてもよい。当該時間オフセットに関する情報は、AIモデルに関連付けられてもよい。
 上記条件2について、特定のCSI報告設定は、以下の少なくとも1つを含んでもよい:
 ・「CSI予測」のための指示(又はインディケーター)、
 ・過去の(ヒストリカルな)CSI情報(過去のCSI)を測定するためのCSIリソースに関する情報、
 ・未来の予測されるCSI情報(未来のCSI)に対応するCSIリソースに関する情報。
 なお、過去のCSI情報は、CSI-RS機会ごとのCSIのセットに該当してもよい。過去のCSI情報は、現在のCSI情報を含んでもよい。
 過去のCSI情報を測定するためのCSIリソースは、ヒストリカルCSIリソース、時系列のCSIリソース、セットB、セットBのリソース、予測のためのCSIリソース、などと互いに読み替えられてもよい。また、ヒストリカルCSIリソースはCSI-RSリソースの各機会に対応しても良い。予測されるCSI情報に対応するCSIリソースは、フューチャーCSIリソース、セットA、セットAのリソース、予測されるCSIリソース、報告されるCSIに対応するCSIリソースなどと互いに読み替えられてもよい。
 UEは、ヒストリカルCSIリソースの測定結果に基づく値/情報を、AIモデル/予測関数に入力し、フューチャーCSIリソースに対応するCSIを予測してもよい。
 CSI予測のための指示については、第1の実施形態において詳述する。また、ヒストリカルCSIリソースについては、第2の実施形態において詳述する。また、フューチャーCSIリソースについては、第3の実施形態において詳述する。
 上記条件3について、予測を実施することを決定したことに関する情報は、実施される予測に関する情報と互いに読み替えられてもよい。
[実施形態0.2:予測されたCSIの報告]
 第0の実施形態において、UEは、以下の少なくとも1つの条件を満たす場合に、予測されたCSI(例えば、フューチャーCSIリソースに対応するCSI)の報告を行う:
 ・条件1:時間ドメインCSI予測に関するAIモデルを設定/レジスター/アクティベートされる、
 ・条件2:特定のCSI報告設定を設定/トリガー/アクティベートされる、
 ・条件3:CSI報告設定に基づいて予測/報告を実施することを自身で決定し、予測/報告を実施することを決定したことに関する情報をNWに送信する。
 上記条件1について、設定/レジストレーション/アクティベーションのための信号(情報の受信)からCSI予測を適用したCSI報告の実施まで、又は、CSI予測の実施から上記CSI報告の実施まで、の時間オフセットに関する情報は、UEに通知されてもよいし、予め定義されてもよい。当該時間オフセットに関する情報は、AIモデルに関連付けられてもよい。
 上記条件2について、特定のCSI報告設定は、以下の少なくとも1つを含んでもよい:
 ・「CSI予測」のための指示(又はインディケーター)、
 ・予測されるCSI情報を報告するための時間インスタンス(又はリソース)に関する情報。
 上記条件3について、予測/報告を実施することを決定したことに関する情報は、実施される予測/報告に関する情報と互いに読み替えられてもよい。
 以上説明した第0の実施形態によれば、UEは、時間ドメインCSI予測の実施及び予測されたCSIの報告を適切に制御できる。
<第1の実施形態>
 第1の実施形態は、CSI予測の指示に関する。
 第1の実施形態において、UEは、RRCシグナリング、MACシグナリング及びDCIの少なくとも1つによって、CSI予測の指示情報を受信してもよい。
[実施形態1.1:RRC]
 UEに設定されるCSI報告設定のリストは、予測に関係ないCSI報告設定及び予測に関係あるCSI報告設定の両方を含んでもよい。UEは、予測に関係ないCSI報告設定に基づいて、予測に関係ないCSI報告のみを実施してもよい(当該設定に基づいて予測に関係あるCSI報告を実施することは予期しなくてもよい)。UEは、上記第2のCSI報告設定のリストに含まれるCSI報告設定に基づいて、予測に関係あるCSI報告のみを実施してもよい(当該設定に基づいて予測に関係ないCSI報告を実施することは予期しなくてもよい)。
 当該CSI報告設定のリストは、CSI測定設定(CSI-MeasConfig)に含まれるcsi-ReportConfigToAddModListであってもよい。予測に関係あるCSI報告設定は、CSI報告設定のリスト内の特定のエントリ(要素と呼ばれてもよい)又は特定の範囲のエントリに含まれるCSI報告設定に該当してもよいし、特定の値又は範囲のCSI報告設定ID(CSI-ReportConfigId)に関連付けられるCSI報告設定に該当してもよい。
 また、UEは、予測に関係ない第1のCSI報告設定のリストと、予測用の第2のCSI報告設定のリストと、を設定されてもよい。UEは、上記第1のCSI報告設定のリストに含まれるCSI報告設定に基づいて、予測に関係ないCSI報告のみを実施してもよい(当該設定に基づいて予測に関係あるCSI報告を実施することは予期しなくてもよい)。UEは、上記第2のCSI報告設定のリストに含まれるCSI報告設定に基づいて、予測に関係あるCSI報告のみを実施してもよい(当該設定に基づいて予測に関係ないCSI報告を実施することは予期しなくてもよい)。
 第1のCSI報告設定のリストは、CSI測定設定(CSI-MeasConfig)に含まれるcsi-ReportConfigToAddModListであってもよい。第2のCSI報告設定のリストは、csi-ReportConfigToAddModList-Predictionなどと呼ばれてもよく、例えばCSI測定設定に含まれてもよい。
 図3A及び3Bは、実施形態1.1にかかる予測に関係あるCSI報告設定の一例を示す図である。図3Aにおいては、CSI報告設定のリスト(csi-ReportConfigToAddModList)のうち、報告設定IDがK+1以上のCSI報告設定が、予測に関係あるCSI報告設定に該当する。図3Bにおいては、CSI報告設定のリスト(csi-ReportConfigToAddModList)は上述の第1のCSI報告設定のリストに該当し、別のCSI報告設定のリスト(csi-ReportConfigToAddModList-Prediction)は上述の第2のCSI報告設定のリストに該当する。
 なお、本開示において、CSI報告設定のリストは、CSI報告設定のリストの情報要素(例えば、csi-ReportConfigToAddModList)であってもよいし、SP-CSI報告用のトリガ状態のリストの情報要素(例えば、CSI-SemiPersistentOnPUSCH-TriggerStateList)であってもよいし、A-CSI報告用のトリガ状態のリストの情報要素(例えば、CSI-AperiodicTriggerStateList)であってもよい。CSI報告設定のリストは、CSI報告設定IDのリストを含んでもよい。
 上述のように、CSI報告設定のリスト又はCSI報告設定IDに基づいてではなく、CSI報告設定に含まれる明示的なCSI予測の指示に基づいて、CSI報告が予測に関係あるかないかが特定されてもよい。
 図4は、実施形態1.1にかかる予測に関係あるCSI報告設定の一例を示す図である。本例は、Abstract Syntax Notation One(ASN.1)記法を用いて記載されている(なお、あくまで例であるため、完全な記載ではない可能性がある)。以降の図面でも、ASN.1記法を用いて記載される場合がある。
 なお、本開示において、RRC情報要素、RRCフィールドなどの名称には、特定のリリースで導入された旨を示す接尾語(例えば、Rel.18であれば、”_r18”, “-r18”など)が付されてもよい。当該接尾語は、付されなくてもよいし、別の言葉が付されてもよい。
 図4のCSI報告設定(CSI-ReportConfig情報要素)は、Rel.17 NRまでの既存のCSI報告設定と同様であるが、「CSI予測」のための指示を示すための情報(predictionIndicator)を含む点が異なる。当該情報が1を示すことは、当該CSI報告設定に基づいてCSI予測を行うことを意味し、0を示すことは、当該CSI報告設定に基づいてCSI予測を行わない(通常のCSI測定報告を行う)ことを意味してもよく、またこれらは逆であってもよい。本開示において、通常のCSI測定報告は、伝統的な(traditional)/既存のCSI測定報告と互いに読み替えられてもよい。
[実施形態1.2:MAC CE]
 UEは、CSI報告に関連するCSI予測の指示を、MAC CEによって通知されてもよい。当該MAC CEは、A-CSI報告のためのMAC CEであってもよいし、SP-CSI報告のためのMAC CEであってもよい。
[[A-CSI報告のためのMAC CE]]
 上記A-CSI報告のためのMAC CEは、例えば、UEに設定されるA-CSI報告のための全トリガ状態の中から所定数(例えば、2^NTS-1個)のトリガ状態を選択するためのMAC CE(Aperiodic CSI Trigger State Subselection MAC CE)又は当該MAC CEを拡張/変更したMAC CEであってもよい。
 なお、CSIリクエストフィールドのビット数NTSは、上位レイヤパラメータ(reportTriggerSize)によって設定されてもよい。NTSは、例えば、0、1、2、3、4、5又は6ビットであるが、これに限られず、7ビット以上であってもよい。
 図5は、実施形態1.2にかかる、CSI予測を指示するためのMAC CEの一例を示す図である。
 当該MAC CEは、例えば、以下の少なくとも1つを示すフィールドを含んでもよい:
 ・サービングセル(セル、コンポーネントキャリア、キャリア)の識別子(ID)、
 ・帯域幅部分(BWP)の識別子(ID)、
 ・上位レイヤパラメータ(例えば、aperiodicTriggerStateList)によって設定されるトリガ状態の選択状態、
 ・「CSI予測」のための指示。
 ここで、選択状態を示すフィールドは、上位レイヤパラメータに設定されるi番目のトリガ状態に対応するビットTで構成される。ビットTが“1”に設定される場合、i番目のトリガ状態がDCI内のCSIリクエストフィールドのコードポイントにマップされることを示す。一方、ビットTが“0”に設定される場合、i番目のトリガ状態はDCI内のCSIリクエストフィールドのコードポイントにマッピングされないことを示す。
 例えば、ビットTが“1”に設定されるトリガ状態は、トリガ状態の識別子(インデックス)の昇順にCSIリクエストフィールドのコードポイントにマッピングされてもよい。例えば、ビットTが“1”に設定される最小のインデックス値のトリガ状態は、CSI要求フィールド“1”にマッピングされ、ビットTが“1”に設定される次のインデックス値のトリガ状態は、CSI要求フィールドのコードポイント“2”にマッピングされてもよい。
 また、「CSI予測」のための指示を示すための情報は、Pフィールドによって示されてもよい。当該フィールドが‘1’を示すことは、ビットTが“1”に設定されるトリガ状態については、当該トリガ状態に対応するCSI報告設定に基づいてCSI予測を行うことを意味し、‘0’を示すことは、ビットTが“1”に設定されるトリガ状態については、当該トリガ状態に対応するCSI報告設定に基づいてCSI予測を行わない(通常のCSI測定報告を行う)ことを意味してもよく、またこれらは逆であってもよい。
[[PUCCHにおけるSP-CSI報告のためのMAC CE]]
 上記SP-CSI報告のためのMAC CEは、例えば、PUCCHにおけるSP-CSI報告アクティベーション/ディアクティベーションMAC CE(SP CSI reporting on PUCCH Activation/Deactivation MAC CE)又は当該MAC CEを拡張/変更したMAC CEであってもよい。
 図6A及び6Bは、実施形態1.2にかかる、CSI予測を指示するためのMAC CEの一例を示す図である。
 当該MAC CEは、例えば、以下の少なくとも1つを示すフィールドを含んでもよい:
 ・サービングセル(セル、コンポーネントキャリア、キャリア)の識別子(ID)、
 ・帯域幅部分(BWP)の識別子(ID)、
 ・上位レイヤパラメータ(例えば、CSI設定報告リストであるcsi-ReportConfigToAddModList)に対応するSP-CSI報告のアクティベーション/ディアクティベーション、
 ・「CSI予測」のための指示。
 ここで、SP-CSI報告のアクティベーション/ディアクティベーションを示すフィールドは、ビットS(iは整数)に該当してもよい。Sは、指定されるセル及びBWPにおけるSP-CSI報告のためのPUCCHリソースを含むCSI報告設定であって、CSI設定報告リスト内の、PUCCHにおけるSP-CSI報告(semiPersistentOnPUCCH)のタイプを示すi+1番目に小さいCSI報告設定ID(CSI-ReportConfigId)を有するCSI報告設定を参照してもよい。つまりSが、PUCCHにおけるSP-CSI報告のタイプを示す最小のCSI報告設定IDに対応する。
 UEは、図6AのMAC CEについて、S=1に対応するCSI報告設定についてCSI予測を行うと判断してもよい(つまりSが「CSI予測」のための指示を兼ねてもよい)し、図5と同様な「CSI予測」のための指示を示すためのPフィールドに基づいてS=1に対応するCSI報告設定についてCSI予測を行うと判断してもよい。
 図6AのMAC CEはSからSまでを制御できたが、さらにPUCCHにおけるSP-CSI報告の数を増大させてもよく、例えば図6BのようなSからSまでを制御できるMAC CEが用いられてもよい。また、さらに多くのSに対応したMAC CEが用いられてもよい。
[[PUSCHにおけるSP-CSI報告のためのMAC CE]]
 図6A及び6Bで示したMAC CEは、新たに規定されるPUSCHにおけるSP-CSI報告アクティベーション/ディアクティベーションMAC CE又はPUSCHにおけるSP-CSI報告の予測CSIアクティベーション/ディアクティベーションMAC CEに該当してもよい。
 この場合Sは、指定されるセル及びBWPについての、CSI設定報告リスト内の、PUSCHにおけるSP-CSI報告(semiPersistentOnPUSCH)のタイプを示すi+1番目に小さいCSI報告設定ID(CSI-ReportConfigId)を有するCSI報告設定を参照してもよい。つまりSが、PUSCHにおけるSP-CSI報告のタイプを示す最小のCSI報告設定IDに対応する。
 もしくは、Sは、指定されるセル及びBWPについての、PUSCHにおけるSP-CSI報告向けのトリガ状態のリスト(CSI-SemiPersistentOnPUSCH-TriggerStateList)のi+1番目のエントリ又はi+1番目に小さいCSI報告設定ID(CSI-ReportConfigId)に対応するCSI報告設定に該当してもよい。
 なお、SP-CSI測定/報告(on PUCCH)は、SP-CSI報告設定のアクティベーション/ディアクティベーションMAC CEの受信から、一定時間後に有効/無効になってもよい。また、SP-CSI測定/報告(on PUSCH)は、SP-CSI無線ネットワーク一時識別子(SP-CSI-Radio Network Temporary Identifier(RNTI))によってスクランブルされる巡回冗長検査(Cyclic Redundancy Check(CRC))が付加されるDCIフォーマット(例えば、DCIフォーマット0_1/0_2)に含まれるCSIリクエストフィールドによってアクティベートされるトリガ状態(例えば、SemiPersistentOnPUSCH-TriggerStateList情報要素に含まれるトリガ状態)に基づいて実施されてもよい。
 上述したとおり、UEは、図6A/6BのMAC CEについて、S=1に対応するCSI報告設定についてCSI予測を行うと判断してもよいし、「CSI予測」のための指示を示すためのPフィールドに基づいてS=1に対応するCSI報告設定についてCSI予測を行うと判断してもよい。ただし、PUSCHにおけるSP-CSI報告のためのMAC CEはあくまで予測のオンオフだけを制御するものであって、PUSCHを用いるSP-CSI報告のアクティベーション/ディアクティベーションは、DCIによって制御される。つまり、DCIによってアクティベートされるSP-CSI測定/報告(on PUSCH)について、UEは、対応するCSI報告設定について、上記MAC CEによってCSI予測を行うことが示される場合には、予測されるCSIを報告し、そうでない場合には、通常のCSIを報告してもよい。
[実施形態1.3:DCI]
 UEは、CSI報告に関連するCSI予測の指示を、DCIによって通知されてもよい。当該DCIは、A-CSI報告をトリガするためのDCIであってもよいし、PUSCHにおけるSP-CSI報告をトリガ(アクティベート)するためのDCIであってもよい。
 DCIによって通知されるCSI予測の指示は、以下の少なくとも1つを含んでもよい:
 ・当該DCIに付加されているCRCのスクランブルに用いられるRNTI、
 ・当該DCIに含まれる1つ又は複数の既存のフィールド、
 ・当該DCIに含まれる予約ビット(又は新しいフィールド)。
 上記RNTIは、「CSI予測」を示すセルRNTI(Cell-RNTI(C-RNTI))(例えば、Cell-prediction-RNTI(C-PRED-RNTI))であってもよいし、「CSI予測」を示すSP-CSI-RNTI(例えば、SP-CSI-prediction-RNTI(SP-CSI-PRED-RNTI))であってもよい。C-PRED-RNTIは、A-CSI報告のトリガリングDCIのために用いられてもよいし、SP-CSI-PRED-RNTIは、PUSCHにおけるSP-CSI報告のトリガリングDCIのために用いられてもよい。
 上記既存のフィールドは、特定の条件を満たす場合(例えば、上位レイヤシグナリングによって有効化される場合)にのみ、CSI予測の指示フィールドとして解釈されてもよい。
 上記新しいフィールドは、例えばCSI予測指示フィールドと呼ばれてもよく、例えば当該フィールドが‘1’を示すことは、トリガされるトリガ状態に対応するCSI報告設定に基づいてCSI予測を行うことを意味し、‘0’を示すことは、トリガされるトリガ状態に対応するCSI報告設定に基づいてCSI予測を行わない(通常のCSI測定報告を行う)ことを意味してもよい。
 以上説明した第1の実施形態によれば、UEは、CSI予測を行うか否かを、基地局からの指示に基づいて好適に判断できる。
<第2の実施形態>
 第2の実施形態は、ヒストリカルCSIリソースに関する。
 ヒストリカルCSIリソースは、予測の開始又は予測結果(予測CSI)の報告のタイミングから、あるオフセットより前の時間におけるリソースであってもよい。例えば、ヒストリカルCSIリソースは、既存のCSI参照リソースの定義において、CSI報告のための上りリンクスロットn’を予測の開始のスロット又は予測結果(予測CSI)の報告のためのスロットで読み替えたCSI参照リソースより遅くないCSIリソースに該当してもよい。なお、この場合の(ヒストリカルCSIリソースについての)CSI参照リソースを定義するためのnCSI_refは、単一のDLスロットn-nCSI_refが有効なDLスロットに対応するような、値X以上の最小の値であってもよい。ここで、当該Xは、ヒストリカルCSIリソースに関する設定(例えば、後述のCSI-Predictionフィールド又は当該フィールドに含まれる情報)、CSI報告設定、CSI予測のために用いられる(紐づいている)AIモデル、の少なくとも1つに基づいて決定されてもよい。 
 第2の実施形態において、UEは、ヒストリカルCSIリソースを、NWからの設定に基づいて決定してもよいし、自身のUE能力に基づいて決定してもよい。なお、ヒストリカルCSIリソースは規格において予め規定されてもよい。上記オフセットも、NWからの設定/UE能力に基づいて決定されてもよい。上記オフセットの値は、0であってもよい。
 例えば、第2の実施形態において、UEは、設定/トリガー/アクティベートされ、かつ「CSI予測」として指示されるCSI報告設定に基づいて、ヒストリカルCSIリソースを自身で決定してもよい。UEは、決定したヒストリカルCSIリソースに関する情報をNWに送信してもよい。
 第2の実施形態において、UEは、「CSI予測」として指示されるCSI報告設定/CSIリソース設定に関して、規格において予め規定される長さ/数/ビットマップに対応するヒストリカルCSIリソースを決定してもよい。
 第2の実施形態において、UEは、設定/レジスター/アクティベートされるAIモデルに関連付けられる情報に基づいて、ヒストリカルCSIリソースを決定してもよい。つまり、ヒストリカルCSIリソースに関する情報は、AIモデルに関連付けられてもよい。
 以下、ヒストリカルCSIリソースを示すNWからの通知の一例について具体的に説明する。本開示では、周期的/セミパーシステント/非周期的なヒストリカルCSIリソースを、それぞれP/SP/A-ヒストリカルCSIリソースとも呼ぶ。
 なお、以降では、特筆しない限り、1つのヒストリカルCSIリソースは、ヒストリカルCSIリソースのための1つの時間リソース/時間インスタンス/機会/リソースセット/CSI-RS機会を意味し、1つの機会中には、8つのアンテナポートに対応するRSを含んだ1つのCSI-RSリソース又は1つのリソースセットに対応する8つのCSIリソースが含まれると想定して説明する。なお、1つのリソースセットが1つのCSI測定/報告に対応してもよい。
[P/SP-ヒストリカルCSIリソース]
 P/SP-ヒストリカルCSIリソースに関する情報は、CSI報告設定(例えば、CSI-ReportConfig情報要素)に含まれてもよいし、CSIリソース設定(例えば、CSI-ResourceConfig情報要素)に含まれてもよいし、NZP-CSI-RSリソースセット設定(例えば、NZP-CSI-RS-ResourceSet情報要素)に含まれてもよいし、NZP-CSI-RSリソース設定(例えば、NZP-CSI-RS-Resource情報要素)に含まれてもよい。
 P/SP-ヒストリカルCSIリソースに関する情報は、以下の少なくとも1つに関する情報を含んでもよい:
 ・ヒストリカルCSIリソースの時間周期(例えば、P1と表されてもよい)、
 ・ヒストリカルCSIリソースの数(例えば、N1と表されてもよい)、
 ・ヒストリカルCSIリソースのためのビットマップ(例えば、B1と表されてもよい)。
 上記P1に関する情報は、直接P1の値を示してもよいし、設定されるCSIリソースの周期(例えば、Pと表されてもよい)のスケーリングファクター(例えば、αと表されてもよい)の値を示してもよい。後者の場合、P1=α*Pであってもよい。なお、本開示における周期は、任意の時間単位で表されてもよく、例えば、スロット単位、シンボル単位などであってもよい。P1、αは整数であってもよいし、小数であってもよい。
 上記N1は、周期P1のヒストリカルCSIリソースのうち、予測のために利用可能な最大のCSIリソース数(又は最大の時間的な位置の数)を示してもよい。N1は整数であってもよい。
 上記B1は、周期P1の、N1個のヒストリカルCSIリソースのうち、予測のために利用するCSIリソース(又は時間的な位置)を示してもよい。例えば、B1内のビット‘1’は、対応するCSIリソースを予測に用いることを意味し、ビット‘0’は対応するCSIリソースを予測に用いないことを意味してもよく、またこれらは逆であってもよい。
 UEは、いずれかの情報要素によって設定されないP1/N1/B1については、規格において予め規定される値を用いてもよい。例えば、UEは、N1個の‘1’から構成されるビットマップをB1として用いてもよい。
 図7は、P/SP-ヒストリカルCSIリソースの一例を示す図である。本例では、UEに対して周期PのCSIリソースが設定されている。また、本例では、UEに対して、α=3、N1=3かつB1=“011”が設定されたと想定する。この場合、予測のために用いられる又は計測するヒストリカルCSIリソースは、ハッチングされる2つの機会の計16個のCSIリソースに該当する。
 なお、図示される上方向の矢印は、予測されるCSIの報告可能タイミング(第4の実施形態において後述する)を意味する。以降の同様な図面において、同じである。予測の処理(図中のPrediction)が終わった後の報告可能タイミングにおいて、UEは予測されるCSIを送信する。各図面において、ハッチングされる上方向の矢印は、CSIが送信されるタイミングを示す。
 図8から図11は、P/SP-ヒストリカルCSIリソースに関する情報の一例を示す図である。図8から図11はそれぞれ、P/SP-ヒストリカルCSIリソースに関する情報であるCSI-Predictionフィールドが、CSI報告設定(例えば、CSI-ReportConfig情報要素)、CSIリソース設定(例えば、CSI-ResourceConfig情報要素)、NZP-CSI-RSリソースセット設定(例えば、NZP-CSI-RS-ResourceSet情報要素)、及びNZP-CSI-RSリソース設定(例えば、NZP-CSI-RS-Resource情報要素)に含まれる例を示す。
 ここで、パラメータhistorcialPeriodicityScalingは上記αの情報に該当し、パラメータinputNumberは上記N1の情報に該当し、パラメータinputBitmapは上記B1の情報に該当する。
[A-ヒストリカルCSIリソース]
 A-ヒストリカルCSIリソースに関する情報は、CSI報告設定(例えば、CSI-ReportConfig情報要素)に含まれてもよいし、CSIリソース設定(例えば、CSI-ResourceConfig情報要素)に含まれてもよいし、NZP-CSI-RSリソースセット設定(例えば、NZP-CSI-RS-ResourceSet情報要素)に含まれてもよいし、NZP-CSI-RSリソース設定(例えば、NZP-CSI-RS-Resource情報要素)に含まれてもよい。
 CSI報告設定/CSIリソース設定/NZP-CSI-RSリソースセット設定に含まれるA-ヒストリカルCSIリソースに関する情報は、ヒストリカルCSIリソースのためのビットマップ(例えば、B1と表されてもよい)に関する情報を含んでもよい。上記B1は、N1個のヒストリカルCSIリソースのうち、予測のために利用するCSIリソース(時間的な位置)を示してもよい。
 上記N1は、CSI報告設定によって設定される(又は当該CSI報告設定に関連付けられる)CSIリソース設定の数(例えば、CSI-ResourceConfigIDの数)又は設定され得るCSIリソース設定の最大数(例えば、3)に該当してもよい。
 図12は、A-ヒストリカルCSIリソースの一例を示す図である。本例では、UEに対してCSI報告設定によって3つのCSIリソース設定が設定されており(つまりN1=3)、各CSIリソース設定はそれぞれ3つの機会に関連付けられている。また、本例では、UEに対して、B1=“010”が設定されたと想定する。この場合、予測のために用いられる又は計測するヒストリカルCSIリソースは、ハッチングされる3つの機会の計24個のCSIリソース(2番目のCSIリソース設定に対応)に該当する。
 また、上記N1は、CSIリソース設定によって設定される(又は当該CSIリソース設定に関連付けられる)リソースセット設定の数(例えば、csi-RS-ResourceSetListに含まれるNZP-CSI-RSリソースセットID(NZP-CSI-RS-ResourceSetId)/CSI-SSBリソースセットID(CSI-SSB-ResourceSetId)/CSI-IMリソースセットID(CSI-IM-ResourceSetId)の数)又は設定され得るリソースセット設定の最大数(例えば、設定あたりNZP-CSI-RSリソースセットの最大数(maxNrofNZP-CSI-RS-ResourceSetsPerConfig)+設定あたりCSI-SSBリソースセットの最大数(maxNrofCSI-SSB-ResourceSetsPerConfig)、又は、設定あたりCSI-IMリソースセットの最大数(maxNrofCSI-IM-ResourceSetsPerConfig))に該当してもよい。
 図13は、A-ヒストリカルCSIリソースの一例を示す図である。本例では、UEに対してCSIリソース設定によって5つのリソースセット設定が設定されており(つまりN1=5)、各リソースセット設定はそれぞれ1つの機会に関連付けられている。また、本例では、UEに対して、B1=“01010”が設定されたと想定する。この場合、予測のために用いられる又は計測するヒストリカルCSIリソースは、ハッチングされる2つの機会の計16個のCSIリソース(2番目及び4番目のリソースセット設定に対応)に該当する。
 また、上記N1は、NZP-CSI-RSリソースセット設定によって設定される(又は当該NZP-CSI-RSリソースセット設定に関連付けられる)NZP-CSI-RSリソース設定の数(例えば、nzp-CSI-RS-Resourcesに含まれるNZP-CSI-RSリソースID(NZP-CSI-RS-ResourceId)の数)又は設定され得るNZP-CSI-RSリソース設定の最大数(例えば、リソースセットあたりNZP-CSI-RSリソースの最大数(maxNrofNZP-CSI-RS-ResourcesPerSet))に該当してもよい。
 図14は、A-ヒストリカルCSIリソースの一例を示す図である。本例では、UEに対してNZP-CSI-RSリソースセット設定によって8つのNZP-CSI-RSリソース設定が設定されており(つまりN1=8)、各NZP-CSI-RSリソース設定はそれぞれ同じ機会に関連付けられている。また、本例では、UEに対して、B1=“01010000”が設定されたと想定する。この場合、予測のために用いられる又は計測するヒストリカルCSIリソースは、ハッチングされる1つの機会の2つのCSIリソースに該当する。
 NZP-CSI-RSリソースセット設定/NZP-CSI-RSリソース設定に含まれるA-ヒストリカルCSIリソースに関する情報は、以下の少なくとも1つに関する情報を含んでもよい:
 ・トリガリングDCIから特定のヒストリカルCSIリソースまでのオフセット(例えば、Xと表されてもよい)、
 ・ヒストリカルCSIリソースの時間周期(例えば、P1と表されてもよい)、
 ・ヒストリカルCSIリソースの数(例えば、N1と表されてもよい)、
 ・ヒストリカルCSIリソースのためのビットマップ(例えば、B1と表されてもよい)。
 UEは、Xを基準として時間的に前/後ろ方向に、周期P1でN1個のCSIリソースがあると想定してもよい。上記特定のヒストリカルCSIリソースは、例えば、先頭のヒストリカルCSIリソース、最後のヒストリカルCSIリソースなどのいずれかであってもよい。
 P1/X/N1/B1は、トリガリングDCIのフィールドによって、UEに対して明示的/暗示的に示されてもよい。また、P1/N1/B1は、P/SP-ヒストリカルCSIリソースに関する情報について上述したのと同様に、UEに対して設定されてもよい。この時、P1は、基地局からの通知に基づいて判断される有効な下りリンクスロット(valid downlink slot)の数を意味してもよい。ここで、有効な下りリンクスロットは、特定の下り(又は上り)リンクチャネル/参照信号(例えば、SSB)を含まないスロット、上りリンクシンボル/フレキシブルシンボルを含まないスロット、又はこれらの組み合わせのスロットに該当してもよい。特定の下り(又は上り)リンクチャネル/参照信号を含まないスロットは、下り(又は上り)リンクチャネル/参照信号のRRC設定、DCIのトリガなどに基づいて判断されてもよい。上りリンクシンボル/フレキシブルシンボルを含まないスロットは、RRCのTDD UL-DL設定、RRC/DCIによって指定されるスロットフォーマットなどに基づいて判断されてもよい。
 図15は、A-ヒストリカルCSIリソースの一例を示す図である。本例では、N1=3であり、トリガリングDCIの受信スロットをnとする。この場合、予測のために用いられる又は計測するヒストリカルCSIリソースは、ハッチングされる3つの機会(スロットn+X、n+X+P1、n+X+2P1)に該当する。なお、図15の複数の機会において送信されるCSIリソース(P1/X/N1/B1によって特定されるCSIリソース)は、異なる時間(例えば、異なるスロット)において繰り返し又は周期的に送信される同じCSI-RSリソース(例えば、スロット内の時間/周波数位置が同じCSI-RSリソース/CSI-RSリソースセット)に該当してもよい。一方で、図12/13の複数の機会において送信されるCSIリソース(B1によって特定されるCSIリソース)は、異なる時間(例えば、異なるスロット)においてそれぞれ送信される別々のCSI-RSリソースに該当してもよい。
 図16から図19は、A-ヒストリカルCSIリソースに関する情報の一例を示す図である。図16から図18はそれぞれ、A-ヒストリカルCSIリソースに関する情報であるCSI-Predictionフィールドが、CSI報告設定(例えば、CSI-ReportConfig情報要素)、CSIリソース設定(例えば、CSI-ResourceConfig情報要素)、NZP-CSI-RSリソースセット設定(例えば、NZP-CSI-RS-ResourceSet情報要素)、及びNZP-CSI-RSリソース設定(例えば、NZP-CSI-RS-Resource情報要素)に含まれる例を示す。ここで、パラメータinputBitmapは上記B1の情報に該当する。
 図19は、A-ヒストリカルCSIリソースに関する情報であるCSI-Predictionフィールドが、NZP-CSI-RSリソースセット設定(例えば、NZP-CSI-RS-ResourceSet情報要素)に含まれる別の例を示す。ここで、パラメータhistorcialPeriodicityは上記P1の情報に該当する(例えば、slots2がP1=2スロットを、slots4がP1=4スロットを示す)。
 以上説明した第2の実施形態によれば、UEは、ヒストリカルCSIリソースを適切に判断できる。
<第3の実施形態>
 第3の実施形態は、フューチャーCSIリソースに関する。
 フューチャーCSIリソースは、予測の開始(/終了)又は予測結果(予測CSI)の報告のタイミングから、あるオフセット以降の時間におけるリソースであってもよい。
 第3の実施形態において、UEは、フューチャーCSIリソースを、NWからの設定に基づいて決定してもよいし、自身のUE能力に基づいて決定してもよい。なお、フューチャーCSIリソースは規格において予め規定されてもよい。上記オフセットも、NWからの設定/UE能力に基づいて決定されてもよい。上記オフセットの値は、0であってもよい。
 例えば、第3の実施形態において、UEは、設定/トリガー/アクティベートされ、かつ「CSI予測」として指示されるCSI報告設定に基づいて、フューチャーCSIリソースを自身で決定してもよい。UEは、決定したフューチャーCSIリソースに関する情報をNWに送信してもよい。
 第3の実施形態において、UEは、「CSI予測」として指示されるCSI報告設定/CSIリソース設定に関して、規格において予め規定される長さ/数/ビットマップに対応するフューチャーCSIリソースを決定してもよい。
 第3の実施形態において、UEは、設定/レジスター/アクティベートされるAIモデルに関連付けられる情報に基づいて、フューチャーCSIリソースを決定してもよい。つまり、フューチャーCSIリソースに関する情報は、AIモデルに関連付けられてもよい。
 以下、フューチャーCSIリソースを示すNWからの通知の一例について具体的に説明する。本開示では、周期的/セミパーシステント/非周期的なフューチャーCSIリソースを、それぞれP/SP/A-フューチャーCSIリソースとも呼ぶ。
 なお、以降では、特筆しない限り、1つのフューチャーCSIリソースは、フューチャーCSIリソースのための1つの時間リソース/時間インスタンス/機会/リソースセットを意味し、1つの機会中には8つのCSIリソースが含まれると想定して説明する。なお、1つのリソースセットが1つのCSI測定/報告に対応してもよい。
[P/SP-フューチャーCSIリソース]
 P/SP-フューチャーCSIリソースに関する情報は、CSI報告設定(例えば、CSI-ReportConfig情報要素)に含まれてもよいし、CSIリソース設定(例えば、CSI-ResourceConfig情報要素)に含まれてもよいし、NZP-CSI-RSリソースセット設定(例えば、NZP-CSI-RS-ResourceSet情報要素)に含まれてもよいし、NZP-CSI-RSリソース設定(例えば、NZP-CSI-RS-Resource情報要素)に含まれてもよい。
 P/SP-フューチャーCSIリソースに関する情報は、以下の少なくとも1つに関する情報を含んでもよい:
 ・フューチャーCSIリソースの時間周期(例えば、P2と表されてもよい)、
 ・フューチャーCSIリソースの数(例えば、N2と表されてもよい)、
 ・フューチャーCSIリソースのためのビットマップ(例えば、B2と表されてもよい)。
 上記P2に関する情報は、直接P2の値を示してもよいし、設定されるCSIリソースの周期(例えば、Pと表されてもよい)のスケーリングファクター(例えば、βと表されてもよい)の値を示してもよい。後者の場合、P2=β*Pであってもよい。P2、βは整数であってもよいし、小数であってもよい。
 上記N2は、周期P2のフューチャーCSIリソースのうち、予測される(予測対象の)最大のCSIリソース数(又は最大の時間的な位置の数)を示してもよい。N2は整数であってもよい。
 上記B2は、周期P2の、N2個のフューチャーCSIリソースのうち、予測対象のCSIリソース(又は時間的な位置)を示してもよい。例えば、B2内のビット‘1’は、対応するCSIリソースについてのCSIを予測することを意味し、ビット‘0’は対応するCSIリソースについてのCSIを予測しないことを意味してもよく、またこれらは逆であってもよい。
 なお、UEは、いずれかの情報要素によって設定されないP2/N2/B2については、規格において予め規定される値を用いてもよい。例えば、UEは、N2個の‘1’から構成されるビットマップをB2として用いてもよい。
 図20は、P/SP-フューチャーCSIリソースの一例を示す図である。本例では、UEに対して周期PのCSIリソースが設定されている。また、本例では、UEに対して、α=4、N2=3かつB1=“110”が設定されたと想定する。この場合、予測のために用いられるフューチャーCSIリソースは、ハッチングされる2つの機会の計16個のCSIリソースに該当する。
 図21から図24は、P/SP-フューチャーCSIリソースに関する情報の一例を示す図である。図21から図24はそれぞれ、P/SP-フューチャーCSIリソースに関する情報であるCSI-Predictionフィールドが、CSI報告設定(例えば、CSI-ReportConfig情報要素)、CSIリソース設定(例えば、CSI-ResourceConfig情報要素)、NZP-CSI-RSリソースセット設定(例えば、NZP-CSI-RS-ResourceSet情報要素)、及びNZP-CSI-RSリソース設定(例えば、NZP-CSI-RS-Resource情報要素)に含まれる例を示す。
 ここで、パラメータpredictionPeriodicityScalingは上記βの情報に該当し、パラメータoutputNumberは上記N2の情報に該当し、パラメータoutputBitmapは上記B2の情報に該当する。
[P/SP/A-フューチャーCSIリソース]
 P/SP/A-フューチャーCSIリソースに関する情報は、CSI報告設定(例えば、CSI-ReportConfig情報要素)に含まれてもよいし、CSIリソース設定(例えば、CSI-ResourceConfig情報要素)に含まれてもよいし、NZP-CSI-RSリソースセット設定(例えば、NZP-CSI-RS-ResourceSet情報要素)に含まれてもよいし、NZP-CSI-RSリソース設定(例えば、NZP-CSI-RS-Resource情報要素)に含まれてもよい。
 P/SP/A-フューチャーCSIリソースに関する情報は、以下の少なくとも1つに関する情報を含んでもよい:
 ・特定のタイミングから特定のフューチャーCSIリソースまでのオフセット、
 ・フューチャーCSIリソースの時間周期(例えば、P3と表されてもよい)、
 ・フューチャーCSIリソースの数(例えば、N3と表されてもよい)、
 ・フューチャーCSIリソースのためのビットマップ(例えば、B3と表されてもよい)。
 上記オフセットは、上記特定のタイミングがCSI報告の送信タイミングである場合には、例えば、Yと表されてもよいし、上記特定のタイミングがCSI参照リソースである場合には、例えば、Y’と表されてもよい。なお、P/SP/A-フューチャーCSIリソースに関する情報に、上記オフセットがどの特定のタイミングに基づくかを示す情報(例えば、上記オフセットがY又はY’に該当することを示す情報)が含まれてもよい。また、UEは、上記オフセットがどの特定のタイミングに基づくかを示す情報(例えば、上記オフセットがY又はY’に該当することを示す情報)を、NWから通知される情報に基づいて決定してもよいし、適用するAIモデルの情報に基づいて決定してもよい。
 UEは、上記特定のタイミングから上記オフセット経過後を基準として時間的に前/後ろ方向に、周期P3でN3個のCSIリソースがあると想定してもよい。上記特定のフューチャーCSIリソースは、例えば、先頭のフューチャーCSIリソース、最後のフューチャーCSIリソースなどのいずれかであってもよい。
 上記P3に関する情報は、直接P3の値を示してもよいし、P/SP-フューチャーCSIリソースについては、設定されるCSIリソースの周期(例えば、Pと表されてもよい)のスケーリングファクター(例えば、γと表されてもよい)の値を示してもよい。後者の場合、P3=γ*Pであってもよい。P3、γは整数であってもよいし、小数であってもよい。
 上記N3は、周期P3のフューチャーCSIリソースのうち、予測対象の最大のCSIリソース数(又は最大の時間的な位置の数)を示してもよい。N3は整数であってもよい。
 上記B3は、周期P3の、N3個のフューチャーCSIリソースのうち、予測対象のCSIリソース(又は時間的な位置)を示してもよい。例えば、B3内のビット‘1’は、対応するCSIリソースについてのCSIを予測することを意味し、ビット‘0’は対応するCSIリソースについてのCSIを予測しないことを意味してもよく、またこれらは逆であってもよい。
 なお、UEは、いずれかの情報要素によって設定されないP3/N3/B3については、規格において予め規定される値を用いてもよい。例えば、UEは、N3個の‘1’から構成されるビットマップをB3として用いてもよい。
 P3/Y/Y’/N3/B3は、A-フューチャーCSIリソースについては、トリガリングDCIのフィールドによって、UEに対して明示的/暗示的に示されてもよい。
 図25は、P/SP/A-フューチャーCSIリソースの一例を示す図である。本例では、UEに対して、N3=3、B3=“110”と、P3(値は任意)と、が設定されたと想定する。この場合、予測対象のフューチャーCSIリソースは、ハッチングされる2つの機会のCSIリソースに該当する。また、本例にはY及びY’の例が示されている。
 図26から図29は、P/SP/A-フューチャーCSIリソースに関する情報の一例を示す図である。図26から図29は、P/SP/A-フューチャーCSIリソースに関する情報であるCSI-Predictionフィールドが、CSI報告設定(例えば、CSI-ReportConfig情報要素)、CSIリソース設定(例えば、CSI-ResourceConfig情報要素)、NZP-CSI-RSリソースセット設定(例えば、NZP-CSI-RS-ResourceSet情報要素)、及びNZP-CSI-RSリソース設定(例えば、NZP-CSI-RS-Resource情報要素)に含まれる例を示す。
 ここで、パラメータtimeOffsettoReportは上記オフセットの情報に該当し、パラメータpredictionPeriodicityは上記P3の情報に該当し、パラメータoutputNumberは上記N3の情報に該当し、パラメータoutputBitmapは上記B3の情報に該当する。
 以上説明した第3の実施形態によれば、UEは、フューチャーCSIリソースを適切に判断できる。
<第4の実施形態>
 第4の実施形態は、CSIの報告を行う時間に関する。
 本開示において、CSIの報告を行う時間は、CSI報告時間(CSI reporting time)、報告時間、報告機会などと呼ばれてもよい。第4の実施形態では、CSIは、フューチャーCSIを意味してもよいし、通常のCSI(フューチャーCSIでないCSI)を意味してもよい。
 第4の実施形態において、UEは、報告時間を、NWからの設定に基づいて決定してもよいし、自身のUE能力に基づいて決定してもよい。なお、報告時間は規格において予め規定されてもよい。
 例えば、第4の実施形態において、UEは、報告時間を自身で決定してもよい。UEは、決定した報告時間に関する情報をNWに送信してもよい。
 第4の実施形態において、UEは、規格において予め規定される報告時間を用いてもよい。当該規定される報告時間は、「CSI予測」として指示されるCSI報告設定/CSIリソース設定に関して予め規定されてもよい。
 第4の実施形態において、UEは、NWからの設定に基づいて、報告時間を決定してもよい。A-CSI報告については、既存のNRにおける報告時間の決定方法が用いられてもよい。P/SP-CSI報告については、例えば、「CSI予測」として指示されるCSI報告設定において報告時間の時間周期(例えば、P4と表されてもよい)に関する情報が設定されてもよい。上記P4に関する情報は、直接P4の値を示してもよいし、設定されるCSI報告の周期(既存のCSI報告周期のパラメータによって示される。例えば、Pと表されてもよい)のスケーリングファクター(例えば、δと表されてもよい)の値を示してもよい。後者の場合、P4=δ*Pであってもよい。P4、δは整数であってもよいし、小数であってもよい。また、UEは、基地局からの通知に基づいて判断される有効な上りリンクスロット(valid uplink slot)に基づいて報告時間を決定してもよい。ここで、有効な上りリンクスロットは、特定の下り(又は上り)リンクチャネル/参照信号(例えば、SSB)を含まないスロット、下りリンクシンボル/フレキシブルシンボルを含まないスロット、又はこれらの組み合わせのスロットに該当してもよい。特定の下り(又は上り)リンクチャネル/参照信号を含まないスロットは、下り(又は上り)リンクチャネル/参照信号のRRC設定、DCIのトリガなどに基づいて判断されてもよい。下りリンクシンボル/フレキシブルシンボルを含まないスロットは、RRCのTDD UL-DL設定、RRC/DCIによって指定されるスロットフォーマットなどに基づいて判断されてもよい。UEは、例えば、前回のCSI報告からP4個の有効な上りリンクスロットが経過する場合にCSIを報告してもよい。
 第4の実施形態において、UEは、設定/レジスター/アクティベートされるAIモデルに関連付けられる情報に基づいて、報告時間を決定してもよい。つまり、報告時間に関する情報は、AIモデルに関連付けられてもよい。例えば、予測に関連するAIモデルがアクティベートされている場合、フューチャーCSIの報告は長い周期で行われ、当該予測に関連するAIモデルがディアクティベートされている場合、通常のCSI(フューチャーCSIでないCSI)の報告は短い周期で行われてもよい。言い換えると、RRCの再設定なしで、報告時間はモデルアクティベーション/ディアクティベーションに基づいて変更されてもよい。
 図30は、報告時間の一例を示す図である。本例では、UEに対して周期Pを示す既存のCSI報告周期のパラメータが設定されている。また、本例では、UEに対して、δ=3が設定されたと想定する。この場合、報告時間は、図示される報告周期P4=3*Pに対応するタイミングである。
 図31は、報告時間に関する情報の一例を示す図である。パラメータpredictionReportPeriodicityScalingは上記δの情報に該当する。なお、報告時間の開始スロットは、例えばCSI-ReportPeriodicityAndOffsetによって(示されるオフセットによって)指定されてもよい。
 以上説明した第4の実施形態によれば、UEは、報告時間を適切に判断できる。
<第5の実施形態>
 第5の実施形態は、CSI報告の構成に関する。
 第5の実施形態において、UEは、1つの時間インスタンス(例えば、1つのヒストリカルCSIリソース/1つのフューチャーCSIリソース)につき1つのUCI/CSI報告/報告インスタンスを構成(生成)してもよい。つまり、1つのUCI/CSI報告/報告インスタンスは、1つの時間インスタンスに対応してもよい。
 第5の実施形態において、UEは、1つ又は複数のCSI報告において、複数の時間インスタンス(例えば、複数のヒストリカルCSIリソース/複数のフューチャーCSIリソース)につき1つのUCI/CSI報告/報告インスタンスを構成(生成)してもよい。つまり、1つのUCI/CSI報告/報告インスタンスは、複数の時間インスタンスに対応してもよい。
 フューチャーCSIについてのビット幅/ビット構造は、フューチャーCSIの時間インスタンス数に従ってスケールされてもよい。例えば、フューチャーCSIのCRI/SSBRI/RSRP/SINR/RI/CQI/RIは、1つのCSI報告に含まれるフューチャーCSIの時間インスタンス数に従ってスケールされてもよい。
 また、フューチャーCSIのCRI/SSBRI/RSRP/SINR/RI/CQI/RIのビット数は、既存のTS 38.212のTable 6.3.1.1.2-1から6に規定されるビット数よりも大きなサイズがサポートされてもよい。
 1つのCSIにおける複数の時間インスタンスのCSIのマッピング順は、既存のTS 38.212のTable 6.3.1.1.2-7から11に規定されるマッピング順に従ってもよいし、これを拡張した順であってもよい。
 UCIビットシーケンスへの複数のCSI報告のマッピング順は、既存のTS 38.212のTable 6.3.1.1.2-12から14に規定されるマッピング順に従ってもよいし、これを拡張した順であってもよい。
 CSI報告中のフィールド(例えば、CRI/SSBRIフィールド、RSRPフィールドなど)は、時間インスタンスが区別されるように構成されてもよい。例えば、時間インスタンス#0についてのフィールドと、時間インスタンス#1についてのフィールドと、がCSI報告に含まれてもよい。なお、CSI報告中のフィールド(例えば、CRI/SSBRIフィールド、RSRPフィールドなど)は、他のCSI(例えば、CQI/RI/PMI)を含むように拡張されてもよい。
 なお、1つのCSI報告には、ヒストリカルCSIリソースにおける測定結果に対応するフィールドと、フューチャーCSIに対応するフィールドと、の両方が含まれてもよい。
 以上説明した第5の実施形態によれば、UE側におけるAIモデルに基づく推論/評価を適切に実施できる。
<補足>
[AIモデル情報]
 本開示において、AIモデル情報は、以下の少なくとも1つを含む情報を意味してもよい:
 ・AIモデルの入力/出力の情報、
 ・AIモデルの入力/出力のための前処理/後処理の情報、
 ・AIモデルのパラメータの情報、
 ・AIモデルのための訓練情報(トレーニング情報)、
 ・AIモデルのための推論情報、
 ・AIモデルに関する性能情報。
 ここで、上記AIモデルの入力/出力の情報は、以下の少なくとも1つに関する情報を含んでもよい:
 ・入力/出力データの内容(例えば、RSRP、SINR、チャネル行列(又はプリコーディング行列)における振幅/位相情報、到来角度(Angle of Arrival(AoA))に関する情報、放射角度(Angle of Departure(AoD))に関する情報、位置情報)、
 ・データの補助情報(メタ情報と呼ばれてもよい)、
 ・入力/出力データのタイプ(例えば、不変値(immutable value)、浮動小数点数)、
 ・入力/出力データのビット幅(例えば、各入力値について64ビット)、
 ・入力/出力データの量子化間隔(量子化ステップサイズ)(例えば、L1-RSRPについて、1dBm)、
 ・入力/出力データが取り得る範囲(例えば、[0、1])。
 なお、本開示において、AoAに関する情報は、到来方位角度(azimuth angle of arrival)及び到来天頂角度(zenith angle of arrival(ZoA))の少なくとも1つに関する情報を含んでもよい。また、AoDに関する情報は、例えば、放射方位角度(azimuth angle of departure)及び放射天頂角度(zenith angle of depature(ZoD))の少なくとも1つに関する情報を含んでもよい。
 本開示において、位置情報は、UE/NWに関する位置情報であってもよい。位置情報は、測位システム(例えば、衛星測位システム(Global Navigation Satellite System(GNSS)、Global Positioning System(GPS)など))を用いて得られる情報(例えば、緯度、経度、高度)、当該UEに隣接する(又はサービング中の)BSの情報(例えば、BS/セルの識別子(Identifier(ID))、BS-UE間の距離、UE(BS)から見たBS(UE)の方向/角度、UE(BS)から見たBS(UE)の座標(例えば、X/Y/Z軸の座標)など)、UEの特定のアドレス(例えば、Internet Protocol(IP)アドレス)などの少なくとも1つを含んでもよい。UEの位置情報は、BSの位置を基準とする情報に限られず、特定のポイントを基準とする情報であってもよい。
 位置情報は、自身の実装に関する情報(例えば、アンテナの位置(location/position)/向き、アンテナパネルの位置/向き、アンテナの数、アンテナパネルの数など)を含んでもよい。
 位置情報は、モビリティ情報を含んでもよい。モビリティ情報は、モビリティタイプを示す情報、UEの移動速度、UEの加速度、UEの移動方向などの少なくとも1つを示す情報を含んでもよい。
 ここで、モビリティタイプは、固定位置UE(fixed location UE)、移動可能/移動中UE(movable/moving UE)、モビリティ無しUE(no mobility UE)、低モビリティUE(low mobility UE)、中モビリティUE(middle mobility UE)、高モビリティUE(high mobility UE)、セル端UE(cell-edge UE)、非セル端UE(not-cell-edge UE)などの少なくとも1つに該当してもよい。
 本開示において、(データのための)環境情報は、データが取得される/利用される環境に関する情報であってもよく、例えば、周波数情報(バンドIDなど)、環境タイプ情報(屋内(indoor)、屋外(outdoor)、Urban Macro(UMa)、Urban Micro(Umi)などの少なくとも1つを示す情報)、Line Of Site(LOS)/Non-Line Of Site(NLOS)を示す情報などに該当してもよい。
 ここで、LOSは、UE及びBSが互いに見通せる環境にある(又は遮蔽物がない)ことを意味してもよく、NLOSは、UE及びBSが互いに見通せる環境にない(又は遮蔽物がある)ことを意味してもよい。LOS/NLOSを示す情報は、ソフト値(例えば、LOS/NLOSの確率)を示してもよいし、ハード値(例えば、LOS/NLOSのいずれか)を示してもよい。
 本開示において、メタ情報は、例えば、AIモデルに適した入力/出力情報に関する情報、取得した/取得できるデータに関する情報などを意味してもよい。メタ情報は、具体的には、RS(例えば、CSI-RS/SRS/SSBなど)のビームに関する情報(例えば、各ビームの指向している角度、3dBビーム幅、指向しているビームの形状、ビームの数)、gNB/UEのアンテナのレイアウト情報、周波数情報、環境情報、メタ情報IDなどを含んでもよい。なお、メタ情報は、AIモデルの入力/出力として用いられてもよい。
 上記AIモデルの入力/出力のための前処理/後処理の情報は、以下の少なくとも1つに関する情報を含んでもよい:
 ・正規化(例えば、Zスコア正規化(標準化)、最小-最大(min-max)正規化)を適用するか否か、
 ・正規化のためのパラメータ(例えば、Zスコア正規化については平均/分散、最小-最大正規化については最小値/最大値)、
 ・特定の数値変換方法(例えば、ワンホットエンコーディング(one hot encoding)、ラベルエンコーディング(label encoding)など)を適用するか否か、
 ・訓練データとして用いられるか否かの選択ルール。
 例えば、入力情報xに対して前処理としてZスコア正規化(xnew=(x-μ)/σ。ここで、μはxの平均、σは標準偏差)を行った正規化済み入力情報xnewをAIモデルに入力してもよく、AIモデルからの出力youtに後処理を掛けて最終的な出力yが得られてもよい。
 上記AIモデルのパラメータの情報は、以下の少なくとも1つに関する情報を含んでもよい:
 ・AIモデルにおける重み(例えば、ニューロンの係数(結合係数))情報、
 ・AIモデルの構造(structure)、
 ・モデルコンポーネントとしてのAIモデルのタイプ(例えば、Residual Network(ResNet)、DenseNet、RefineNet、トランスフォーマー(Transformer)モデル、CRBlock、回帰型ニューラルネットワーク(Recurrent Neural Network(RNN))、長・短期記憶(Long Short-Term Memory(LSTM))、ゲート付き回帰型ユニット(Gated Recurrent Unit(GRU))),
 ・モデルコンポーネントとしてのAIモデルの機能(例えば、デコーダ、エンコーダ)。
 なお、上記AIモデルにおける重み情報は、以下の少なくとも1つに関する情報を含んでもよい:
 ・重み情報のビット幅(サイズ)、
 ・重み情報の量子化間隔、
 ・重み情報の粒度、
 ・重み情報が取り得る範囲、
 ・AIモデルにおける重みのパラメータ、
 ・更新前のAIモデルからの差分の情報(更新する場合)、
 ・重み初期化(weight initialization)の方法(例えば、ゼロ初期化、ランダム初期化(正規分布/一様分布/切断正規分布に基づく)、Xavier初期化(シグモイド関数向け)、He初期化(整流化線形ユニット(Rectified Linear Units(ReLU))向け))。
 また、上記AIモデルの構造は、以下の少なくとも1つに関する情報を含んでもよい:
 ・レイヤ数、
 ・レイヤのタイプ(例えば、畳み込み層、活性化層、デンス(dense)層、正規化層、プーリング層、アテンション層)、
 ・レイヤ情報、
 ・時系列特有のパラメータ(例えば、双方向性、時間ステップ)、
 ・訓練のためのパラメータ(例えば、機能のタイプ(L2正則化、ドロップアウト機能など)、どこに(例えば、どのレイヤの後に)この機能を置くか)。
 上記レイヤ情報は、以下の少なくとも1つに関する情報を含んでもよい:
 ・各レイヤにおけるニューロン数、
 ・カーネルサイズ、
 ・プーリング層/畳み込み層のためのストライド、
 ・プーリング方法(MaxPooling、AveragePoolingなど)、
 ・残差ブロックの情報、
 ・ヘッド(head)数、
 ・正規化方法(バッチ正規化、インスタンス正規化、レイヤ正規化など)、
 ・活性化関数(シグモイド、tanh関数、ReLU、リーキーReLUの情報、Maxout、Softmax)。
 あるAIモデルは、別のAIモデルのコンポーネントとして含まれてもよい。例えば、あるAIモデルは、モデルコンポーネント#1であるResNet、モデルコンポーネント#2であるトランスフォーマーモデル、デンス層及び正規化層の順に処理が進むAIモデルであってもよい。
 上記AIモデルのための訓練情報は、以下の少なくとも1つに関する情報を含んでもよい:
 ・最適化アルゴリズムのための情報(例えば、最適化の種類(確率的勾配降下法(Stochastic Gradient Descent(SGD)))、AdaGrad、Adamなど)、最適化のパラメータ(学習率(learning rate)、モメンタム情報など)、
 ・損失関数の情報(例えば、損失関数の指標(metrics)に関する情報(平均絶対誤差(Mean Absolute Error(MAE))、平均二乗誤差(Mean Square Error(MSE))、クロスエントロピーロス、NLLLoss、Kullback-Leibler(KL)ダイバージェンスなど))、
 ・訓練用に凍結されるべきパラメータ(例えば、レイヤ、重み)、
 ・更新されるべきパラメータ(例えば、レイヤ、重み)、
 ・訓練用の初期パラメータであるべき(初期パラメータとして用いられるべき)パラメータ(例えば、レイヤ、重み)、
 ・AIモデルの訓練/更新方法(例えば、(推奨)エポック数、バッチサイズ、訓練に使用するデータ数)。
 上記AIモデルのための推論情報は、決定木の枝剪定(branch pruning)、パラメータ量子化、AIモデルの機能などに関する情報を含んでもよい。ここで、AIモデルの機能は、例えば、時間ドメインビーム予測、空間ドメインビーム予測、CSIフィードバック向けのオートエンコーダ、ビーム管理向けのオートエンコーダなどの少なくとも1つに該当してもよい。
 CSIフィードバック向けのオートエンコーダは、以下のように用いられてもよい:
 ・UEは、エンコーダのAIモデルに、CSI/チャネル行列/プリコーディング行列を入力して出力される、エンコードされるビットを、CSIフィードバック(CSIレポート)として送信する、
 ・BSは、デコーダのAIモデルに、受信したエンコードされるビットを入力して出力される、CSI/チャネル行列/プリコーディング行列を再構成する。
 空間ドメインビーム予測では、UE/BSは、AIモデルに、疎な(又は太い)ビームに基づく測定結果(ビーム品質。例えば、RSRP)を入力して、密な(又は細い)ビーム品質を出力してもよい。
 時間ドメインビーム予測では、UE/BSは、AIモデルに、時系列(過去、現在などの)測定結果(ビーム品質。例えば、RSRP)を入力して、将来のビーム品質を出力してもよい。
 上記AIモデルに関する性能情報は、AIモデルのために定義される損失関数の期待値に関する情報を含んでもよい。
 本開示におけるAIモデル情報は、AIモデルの適用範囲(適用可能範囲)に関する情報を含んでもよい。当該適用範囲は、物理セルID、サービングセルインデックスなどによって示されてもよい。適用範囲に関する情報は、上述の環境情報に含まれてもよい。
 特定のAIモデルに関するAIモデル情報は、規格において予め定められてもよいし、ネットワーク(Network(NW))からUEに通知されてもよい。規格において規定されるAIモデルは、参照(reference)AIモデルと呼ばれてもよい。参照AIモデルに関するAIモデル情報は、参照AIモデル情報と呼ばれてもよい。
 なお、本開示におけるAIモデル情報は、AIモデルを特定するためのインデックス(例えば、AIモデルインデックス、AIモデルID、モデルIDなどと呼ばれてもよい)を含んでもよい。本開示におけるAIモデル情報は、上述のAIモデルの入力/出力の情報などに加えて/の代わりに、AIモデルインデックスを含んでもよい。AIモデルインデックスとAIモデル情報(例えば、AIモデルの入力/出力の情報)との関連付けは、規格において予め定められてもよいし、NWからUEに通知されてもよい。
 本開示におけるAIモデル情報は、AIモデルに関連付けられてもよく、AIモデル関連情報(relevant information)、単に関連情報などと呼ばれてもよい。AIモデル関連情報には、AIモデルを特定するための情報は明示的に含まれなくてもよい。AIモデル関連情報は、例えばメタ情報のみを含んだ情報であってもよい。
 本開示において、モデルIDは、AIモデルのセットに対応するID(モデルセットID)と互いに読み替えられてもよい。また、本開示において、モデルIDは、メタ情報IDと互いに読み替えられてもよい。メタ情報(又はメタ情報ID)は、上述したようにビームに関する情報(ビーム設定)と関連付けられてもよい。例えば、メタ情報(又はメタ情報ID)は、どのビームをBSが使用しているかを考慮してUEがAIモデルを選択するために用いられてもよいし、UEがデプロイしたAIモデルを適用するためにBSがどのビームを使用すべきかを通知するために用いられてもよい。なお、本開示において、メタ情報IDは、メタ情報のセットに対応するID(メタ情報セットID)と互いに読み替えられてもよい。
[UEへの情報の通知]
 上述の実施形態における(NWから)UEへの任意の情報の通知(言い換えると、UEにおけるBSからの任意の情報の受信)は、物理レイヤシグナリング(例えば、DCI)、上位レイヤシグナリング(例えば、RRCシグナリング、MAC CE)、特定の信号/チャネル(例えば、PDCCH、PDSCH、参照信号)、又はこれらの組み合わせを用いて行われてもよい。
 上記通知がMAC CEによって行われる場合、当該MAC CEは、既存の規格では規定されていない新たな論理チャネルID(Logical Channel ID(LCID))がMACサブヘッダに含まれることによって識別されてもよい。
 上記通知がDCIによって行われる場合、上記通知は、当該DCIの特定のフィールド、当該DCIに付与される巡回冗長検査(Cyclic Redundancy Check(CRC))ビットのスクランブルに用いられる無線ネットワーク一時識別子(Radio Network Temporary Identifier(RNTI))、当該DCIのフォーマットなどによって行われてもよい。
 また、上述の実施形態におけるUEへの任意の情報の通知は、周期的、セミパーシステント又は非周期的に行われてもよい。
[UEからの情報の通知]
 上述の実施形態におけるUEから(NWへ)の任意の情報の通知(言い換えると、UEにおけるBSへの任意の情報の送信/報告)は、物理レイヤシグナリング(例えば、UCI)、上位レイヤシグナリング(例えば、RRCシグナリング、MAC CE)、特定の信号/チャネル(例えば、PUCCH、PUSCH、参照信号)、又はこれらの組み合わせを用いて行われてもよい。
 上記通知がMAC CEによって行われる場合、当該MAC CEは、既存の規格では規定されていない新たなLCIDがMACサブヘッダに含まれることによって識別されてもよい。
 上記通知がUCIによって行われる場合、上記通知は、PUCCH又はPUSCHを用いて送信されてもよい。
 また、上述の実施形態におけるUEからの任意の情報の通知は、周期的、セミパーシステント又は非周期的に行われてもよい。
[各実施形態の適用について]
 上述の実施形態の少なくとも1つは、特定の条件を満たす場合に適用されてもよい。当該特定の条件は、規格において規定されてもよいし、上位レイヤシグナリング/物理レイヤシグナリングを用いてUE/BSに通知されてもよい。
 上述の実施形態の少なくとも1つは、特定のUE能力(UE capability)を報告した又は当該特定のUE能力をサポートするUEに対してのみ適用されてもよい。
 当該特定のUE能力は、以下の少なくとも1つを示してもよい:
 ・上記実施形態の少なくとも1つについての特定の処理/動作/制御/情報をサポートすること、
 ・CSI予測をサポートすること、
 ・P/SP/A-ヒストリカルCSIリソースに基づくCSI予測をサポートすること、
 ・P/SP/A-フューチャーCSIリソースに基づくCSI予測をサポートすること。
 また、上記特定のUE能力は、全周波数にわたって(周波数に関わらず共通に)適用される能力であってもよいし、周波数(例えば、セル、バンド、バンドコンビネーション、BWP、コンポーネントキャリアなどの1つ又はこれらの組み合わせ)ごとの能力であってもよいし、周波数レンジ(例えば、Frequency Range 1(FR1)、FR2、FR3、FR4、FR5、FR2-1、FR2-2)ごとの能力であってもよいし、サブキャリア間隔(SubCarrier Spacing(SCS))ごとの能力であってもよいし、Feature Set(FS)又はFeature Set Per Component-carrier(FSPC)ごとの能力であってもよい。
 また、上記特定のUE能力は、全複信方式にわたって(複信方式に関わらず共通に)適用される能力であってもよいし、複信方式(例えば、時分割複信(Time Division Duplex(TDD))、周波数分割複信(Frequency Division Duplex(FDD)))ごとの能力であってもよい。
 また、上述の実施形態の少なくとも1つは、UEが上位レイヤシグナリング/物理レイヤシグナリングによって、上述の実施形態に関連する特定の情報(又は上述の実施形態の動作を実施すること)を設定/アクティベート/トリガされた場合に適用されてもよい。例えば、当該特定の情報は、AIモデルの利用を有効化することを示す情報、CSI予測を有効化することを示す情報、特定のリリース(例えば、Rel.18/19)向けの任意のRRCパラメータなどであってもよい。
 UEは、上記特定のUE能力の少なくとも1つをサポートしない又は上記特定の情報を設定されない場合、例えばRel.15/16の動作を適用してもよい。
(付記)
 本開示の一実施形態に関して、以下の発明を付記する。
[付記1]
 チャネル状態情報(Channel State Information(CSI))予測の指示に関する情報を受信する受信部と、
 前記情報に基づいてCSI予測を実施する制御部と、を有する端末。
[付記2]
 前記制御部は、CSI報告設定のリスト内の特定のエントリ又は特定の範囲のエントリに含まれるCSI報告設定が、前記情報に関連付けられると判断し、当該CSI報告設定に基づいて前記CSI予測を実施する付記1に記載の端末。
[付記3]
 前記情報は、非周期的CSI報告のためのMedium Access Control制御要素(MAC Control Element(CE))又はセミパーシステントCSI報告のためのMAC CEに含まれるフィールドである付記1又は付記2に記載の端末。
[付記4]
 前記情報は、CSI報告をアクティベート又はトリガするための下りリンク制御情報に付加されている巡回冗長検査(Cyclic Redundancy Check(CRC))のスクランブルに用いられる無線ネットワーク一時識別子(SP-CSI-Radio Network Temporary Identifier(RNTI))である付記1から付記3のいずれかに記載の端末。
(付記)
 本開示の一実施形態に関して、以下の発明を付記する。
[付記1]
 過去のチャネル状態情報(Channel State Information(CSI))を測定するためのCSIリソースに関する情報を受信する受信部と、
 前記CSIリソースの測定結果に基づいてCSI予測を実施する制御部と、を有する端末。
[付記2]
 前記情報は、周期的又はセミパーシステントなCSIリソースに関する前記情報として、時間周期に関する情報、CSIリソースの数に関する情報、ビットマップを含み、
 前記制御部は、前記時間周期で存在する前記数のCSIリソースのうち、前記ビットマップによって予測に用いることが指定される位置のCSIリソースの測定結果に基づいて前記CSI予測を実施する付記1に記載の端末。
[付記3]
 前記情報は、非周期的なCSIリソースに関する前記情報として、時間周期に関する情報、オフセットに関する情報を含み、
 前記制御部は、前記非周期的なCSIリソースの測定をトリガする下りリンク制御情報から前記オフセット後から開始する、前記時間周期で存在する複数のCSIリソースの測定結果に基づいて前記CSI予測を実施する付記1又は付記2に記載の端末。
(付記)
 本開示の一実施形態に関して、以下の発明を付記する。
[付記1]
 未来のチャネル状態情報(Channel State Information(CSI))を予測するためのCSIリソースに関する情報を受信する受信部と、
 前記CSIリソースについてCSI予測を実施する制御部と、を有する端末。
[付記2]
 前記情報は、周期的又はセミパーシステントなCSIリソースに関する前記情報として、時間周期に関する情報、CSIリソースの数に関する情報、ビットマップを含み、
 前記制御部は、前記時間周期で存在する前記数のCSIリソースのうち、前記ビットマップによって予測対象として指定される位置のCSIリソースについて前記CSI予測を実施する付記1に記載の端末。
[付記3]
 前記情報は、前記情報として、オフセットに関する情報、時間周期に関する情報、CSIリソースの数に関する情報、ビットマップを含み、
 前記制御部は、特定のタイミングから上記オフセット経過後を基準として前記時間周期で存在する前記数のCSIリソースがあると想定し、前記数のCSIリソースのうち、前記ビットマップによって予測対象として指定される位置のCSIリソースについて前記CSI予測を実施する付記1又は付記2に記載の端末。
(無線通信システム)
 以下、本開示の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本開示の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
 図32は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1(単にシステム1と呼ばれてもよい)は、Third Generation Partnership Project(3GPP)によって仕様化されるLong Term Evolution(LTE)、5th generation mobile communication system New Radio(5G NR)などを用いて通信を実現するシステムであってもよい。
 また、無線通信システム1は、複数のRadio Access Technology(RAT)間のデュアルコネクティビティ(マルチRATデュアルコネクティビティ(Multi-RAT Dual Connectivity(MR-DC)))をサポートしてもよい。MR-DCは、LTE(Evolved Universal Terrestrial Radio Access(E-UTRA))とNRとのデュアルコネクティビティ(E-UTRA-NR Dual Connectivity(EN-DC))、NRとLTEとのデュアルコネクティビティ(NR-E-UTRA Dual Connectivity(NE-DC))などを含んでもよい。
 EN-DCでは、LTE(E-UTRA)の基地局(eNB)がマスタノード(Master Node(MN))であり、NRの基地局(gNB)がセカンダリノード(Secondary Node(SN))である。NE-DCでは、NRの基地局(gNB)がMNであり、LTE(E-UTRA)の基地局(eNB)がSNである。
 無線通信システム1は、同一のRAT内の複数の基地局間のデュアルコネクティビティ(例えば、MN及びSNの双方がNRの基地局(gNB)であるデュアルコネクティビティ(NR-NR Dual Connectivity(NN-DC)))をサポートしてもよい。
 無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する基地局12(12a-12c)と、を備えてもよい。ユーザ端末20は、少なくとも1つのセル内に位置してもよい。各セル及びユーザ端末20の配置、数などは、図に示す態様に限定されない。以下、基地局11及び12を区別しない場合は、基地局10と総称する。
 ユーザ端末20は、複数の基地局10のうち、少なくとも1つに接続してもよい。ユーザ端末20は、複数のコンポーネントキャリア(Component Carrier(CC))を用いたキャリアアグリゲーション(Carrier Aggregation(CA))及びデュアルコネクティビティ(DC)の少なくとも一方を利用してもよい。
 各CCは、第1の周波数帯(Frequency Range 1(FR1))及び第2の周波数帯(Frequency Range 2(FR2))の少なくとも1つに含まれてもよい。マクロセルC1はFR1に含まれてもよいし、スモールセルC2はFR2に含まれてもよい。例えば、FR1は、6GHz以下の周波数帯(サブ6GHz(sub-6GHz))であってもよいし、FR2は、24GHzよりも高い周波数帯(above-24GHz)であってもよい。なお、FR1及びFR2の周波数帯、定義などはこれらに限られず、例えばFR1がFR2よりも高い周波数帯に該当してもよい。
 また、ユーザ端末20は、各CCにおいて、時分割複信(Time Division Duplex(TDD))及び周波数分割複信(Frequency Division Duplex(FDD))の少なくとも1つを用いて通信を行ってもよい。
 複数の基地局10は、有線(例えば、Common Public Radio Interface(CPRI)に準拠した光ファイバ、X2インターフェースなど)又は無線(例えば、NR通信)によって接続されてもよい。例えば、基地局11及び12間においてNR通信がバックホールとして利用される場合、上位局に該当する基地局11はIntegrated Access Backhaul(IAB)ドナー、中継局(リレー)に該当する基地局12はIABノードと呼ばれてもよい。
 基地局10は、他の基地局10を介して、又は直接コアネットワーク30に接続されてもよい。コアネットワーク30は、例えば、Evolved Packet Core(EPC)、5G Core Network(5GCN)、Next Generation Core(NGC)などの少なくとも1つを含んでもよい。
 コアネットワーク30は、例えば、User Plane Function(UPF)、Access and Mobility management Function(AMF)、Session Management Function(SMF)、Unified Data Management(UDM)、Application Function(AF)、Data Network(DN)、Location Management Function(LMF)、保守運用管理(Operation、Administration and Maintenance(Management)(OAM))などのネットワーク機能(Network Functions(NF))を含んでもよい。なお、1つのネットワークノードによって複数の機能が提供されてもよい。また、DNを介して外部ネットワーク(例えば、インターネット)との通信が行われてもよい。
 ユーザ端末20は、LTE、LTE-A、5Gなどの通信方式の少なくとも1つに対応した端末であってもよい。
 無線通信システム1においては、直交周波数分割多重(Orthogonal Frequency Division Multiplexing(OFDM))ベースの無線アクセス方式が利用されてもよい。例えば、下りリンク(Downlink(DL))及び上りリンク(Uplink(UL))の少なくとも一方において、Cyclic Prefix OFDM(CP-OFDM)、Discrete Fourier Transform Spread OFDM(DFT-s-OFDM)、Orthogonal Frequency Division Multiple Access(OFDMA)、Single Carrier Frequency Division Multiple Access(SC-FDMA)などが利用されてもよい。
 無線アクセス方式は、波形(waveform)と呼ばれてもよい。なお、無線通信システム1においては、UL及びDLの無線アクセス方式には、他の無線アクセス方式(例えば、他のシングルキャリア伝送方式、他のマルチキャリア伝送方式)が用いられてもよい。
 無線通信システム1では、下りリンクチャネルとして、各ユーザ端末20で共有される下り共有チャネル(Physical Downlink Shared Channel(PDSCH))、ブロードキャストチャネル(Physical Broadcast Channel(PBCH))、下り制御チャネル(Physical Downlink Control Channel(PDCCH))などが用いられてもよい。
 また、無線通信システム1では、上りリンクチャネルとして、各ユーザ端末20で共有される上り共有チャネル(Physical Uplink Shared Channel(PUSCH))、上り制御チャネル(Physical Uplink Control Channel(PUCCH))、ランダムアクセスチャネル(Physical Random Access Channel(PRACH))などが用いられてもよい。
 PDSCHによって、ユーザデータ、上位レイヤ制御情報、System Information Block(SIB)などが伝送される。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが伝送されてもよい。また、PBCHによって、Master Information Block(MIB)が伝送されてもよい。
 PDCCHによって、下位レイヤ制御情報が伝送されてもよい。下位レイヤ制御情報は、例えば、PDSCH及びPUSCHの少なくとも一方のスケジューリング情報を含む下り制御情報(Downlink Control Information(DCI))を含んでもよい。
 なお、PDSCHをスケジューリングするDCIは、DLアサインメント、DL DCIなどと呼ばれてもよいし、PUSCHをスケジューリングするDCIは、ULグラント、UL DCIなどと呼ばれてもよい。なお、PDSCHはDLデータで読み替えられてもよいし、PUSCHはULデータで読み替えられてもよい。
 PDCCHの検出には、制御リソースセット(COntrol REsource SET(CORESET))及びサーチスペース(search space)が利用されてもよい。CORESETは、DCIをサーチするリソースに対応する。サーチスペースは、PDCCH候補(PDCCH candidates)のサーチ領域及びサーチ方法に対応する。1つのCORESETは、1つ又は複数のサーチスペースに関連付けられてもよい。UEは、サーチスペース設定に基づいて、あるサーチスペースに関連するCORESETをモニタしてもよい。
 1つのサーチスペースは、1つ又は複数のアグリゲーションレベル(aggregation Level)に該当するPDCCH候補に対応してもよい。1つ又は複数のサーチスペースは、サーチスペースセットと呼ばれてもよい。なお、本開示の「サーチスペース」、「サーチスペースセット」、「サーチスペース設定」、「サーチスペースセット設定」、「CORESET」、「CORESET設定」などは、互いに読み替えられてもよい。
 PUCCHによって、チャネル状態情報(Channel State Information(CSI))、送達確認情報(例えば、Hybrid Automatic Repeat reQuest ACKnowledgement(HARQ-ACK)、ACK/NACKなどと呼ばれてもよい)及びスケジューリングリクエスト(Scheduling Request(SR))の少なくとも1つを含む上り制御情報(Uplink Control Information(UCI))が伝送されてもよい。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが伝送されてもよい。
 なお、本開示において下りリンク、上りリンクなどは「リンク」を付けずに表現されてもよい。また、各種チャネルの先頭に「物理(Physical)」を付けずに表現されてもよい。
 無線通信システム1では、同期信号(Synchronization Signal(SS))、下りリンク参照信号(Downlink Reference Signal(DL-RS))などが伝送されてもよい。無線通信システム1では、DL-RSとして、セル固有参照信号(Cell-specific Reference Signal(CRS))、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、復調用参照信号(DeModulation Reference Signal(DMRS))、位置決定参照信号(Positioning Reference Signal(PRS))、位相トラッキング参照信号(Phase Tracking Reference Signal(PTRS))などが伝送されてもよい。
 同期信号は、例えば、プライマリ同期信号(Primary Synchronization Signal(PSS))及びセカンダリ同期信号(Secondary Synchronization Signal(SSS))の少なくとも1つであってもよい。SS(PSS、SSS)及びPBCH(及びPBCH用のDMRS)を含む信号ブロックは、SS/PBCHブロック、SS Block(SSB)などと呼ばれてもよい。なお、SS、SSBなども、参照信号と呼ばれてもよい。
 また、無線通信システム1では、上りリンク参照信号(Uplink Reference Signal(UL-RS))として、測定用参照信号(Sounding Reference Signal(SRS))、復調用参照信号(DMRS)などが伝送されてもよい。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。
(基地局)
 図33は、一実施形態に係る基地局の構成の一例を示す図である。基地局10は、制御部110、送受信部120、送受信アンテナ130及び伝送路インターフェース(transmission line interface)140を備えている。なお、制御部110、送受信部120及び送受信アンテナ130及び伝送路インターフェース140は、それぞれ1つ以上が備えられてもよい。
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、基地局10は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。
 制御部110は、基地局10全体の制御を実施する。制御部110は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。
 制御部110は、信号の生成、スケジューリング(例えば、リソース割り当て、マッピング)などを制御してもよい。制御部110は、送受信部120、送受信アンテナ130及び伝送路インターフェース140を用いた送受信、測定などを制御してもよい。制御部110は、信号として送信するデータ、制御情報、系列(sequence)などを生成し、送受信部120に転送してもよい。制御部110は、通信チャネルの呼処理(設定、解放など)、基地局10の状態管理、無線リソースの管理などを行ってもよい。
 送受信部120は、ベースバンド(baseband)部121、Radio Frequency(RF)部122、測定部123を含んでもよい。ベースバンド部121は、送信処理部1211及び受信処理部1212を含んでもよい。送受信部120は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ(phase shifter)、測定回路、送受信回路などから構成することができる。
 送受信部120は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部1211、RF部122から構成されてもよい。当該受信部は、受信処理部1212、RF部122、測定部123から構成されてもよい。
 送受信アンテナ130は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。
 送受信部120は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを送信してもよい。送受信部120は、上述の上りリンクチャネル、上りリンク参照信号などを受信してもよい。
 送受信部120は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。
 送受信部120(送信処理部1211)は、例えば制御部110から取得したデータ、制御情報などに対して、Packet Data Convergence Protocol(PDCP)レイヤの処理、Radio Link Control(RLC)レイヤの処理(例えば、RLC再送制御)、Medium Access Control(MAC)レイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。
 送受信部120(送信処理部1211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、離散フーリエ変換(Discrete Fourier Transform(DFT))処理(必要に応じて)、逆高速フーリエ変換(Inverse Fast Fourier Transform(IFFT))処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。
 送受信部120(RF部122)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ130を介して送信してもよい。
 一方、送受信部120(RF部122)は、送受信アンテナ130によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。
 送受信部120(受信処理部1212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、高速フーリエ変換(Fast Fourier Transform(FFT))処理、逆離散フーリエ変換(Inverse Discrete Fourier Transform(IDFT))処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。
 送受信部120(測定部123)は、受信した信号に関する測定を実施してもよい。例えば、測定部123は、受信した信号に基づいて、Radio Resource Management(RRM)測定、Channel State Information(CSI)測定などを行ってもよい。測定部123は、受信電力(例えば、Reference Signal Received Power(RSRP))、受信品質(例えば、Reference Signal Received Quality(RSRQ)、Signal to Interference plus Noise Ratio(SINR)、Signal to Noise Ratio(SNR))、信号強度(例えば、Received Signal Strength Indicator(RSSI))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部110に出力されてもよい。
 伝送路インターフェース140は、コアネットワーク30に含まれる装置(例えば、NFを提供するネットワークノード)、他の基地局10などとの間で信号を送受信(バックホールシグナリング)し、ユーザ端末20のためのユーザデータ(ユーザプレーンデータ)、制御プレーンデータなどを取得、伝送などしてもよい。
 なお、本開示における基地局10の送信部及び受信部は、送受信部120、送受信アンテナ130及び伝送路インターフェース140の少なくとも1つによって構成されてもよい。
 なお、送受信部120は、チャネル状態情報(Channel State Information(CSI))予測の指示に関する情報を、ユーザ端末20に送信してもよい。送受信部120は、前記情報に基づいて前記ユーザ端末20において予測されるCSIを受信してもよい。
 また、送受信部120は、過去のチャネル状態情報(Channel State Information(CSI))を測定するためのCSIリソースに関する情報を、ユーザ端末20に送信してもよい。送受信部120は、前記CSIリソースの測定結果に基づいて前記ユーザ端末20において予測されるCSIを受信してもよい。
 また、送受信部120は、未来のチャネル状態情報(Channel State Information(CSI))を予測するためのCSIリソースに関する情報を、ユーザ端末20に送信してもよい。送受信部120は、前記CSIリソースについて前記ユーザ端末20において予測されるCSIを受信してもよい。
(ユーザ端末)
 図34は、一実施形態に係るユーザ端末の構成の一例を示す図である。ユーザ端末20は、制御部210、送受信部220及び送受信アンテナ230を備えている。なお、制御部210、送受信部220及び送受信アンテナ230は、それぞれ1つ以上が備えられてもよい。
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。
 制御部210は、ユーザ端末20全体の制御を実施する。制御部210は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。
 制御部210は、信号の生成、マッピングなどを制御してもよい。制御部210は、送受信部220及び送受信アンテナ230を用いた送受信、測定などを制御してもよい。制御部210は、信号として送信するデータ、制御情報、系列などを生成し、送受信部220に転送してもよい。
 送受信部220は、ベースバンド部221、RF部222、測定部223を含んでもよい。ベースバンド部221は、送信処理部2211、受信処理部2212を含んでもよい。送受信部220は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ、測定回路、送受信回路などから構成することができる。
 送受信部220は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部2211、RF部222から構成されてもよい。当該受信部は、受信処理部2212、RF部222、測定部223から構成されてもよい。
 送受信アンテナ230は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。
 送受信部220は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを受信してもよい。送受信部220は、上述の上りリンクチャネル、上りリンク参照信号などを送信してもよい。
 送受信部220は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。
 送受信部220(送信処理部2211)は、例えば制御部210から取得したデータ、制御情報などに対して、PDCPレイヤの処理、RLCレイヤの処理(例えば、RLC再送制御)、MACレイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。
 送受信部220(送信処理部2211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、DFT処理(必要に応じて)、IFFT処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。
 なお、DFT処理を適用するか否かは、トランスフォームプリコーディングの設定に基づいてもよい。送受信部220(送信処理部2211)は、あるチャネル(例えば、PUSCH)について、トランスフォームプリコーディングが有効(enabled)である場合、当該チャネルをDFT-s-OFDM波形を用いて送信するために上記送信処理としてDFT処理を行ってもよいし、そうでない場合、上記送信処理としてDFT処理を行わなくてもよい。
 送受信部220(RF部222)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ230を介して送信してもよい。
 一方、送受信部220(RF部222)は、送受信アンテナ230によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。
 送受信部220(受信処理部2212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、FFT処理、IDFT処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。
 送受信部220(測定部223)は、受信した信号に関する測定を実施してもよい。例えば、測定部223は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部223は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部210に出力されてもよい。
 なお、本開示におけるユーザ端末20の送信部及び受信部は、送受信部220及び送受信アンテナ230の少なくとも1つによって構成されてもよい。
 なお、送受信部220は、チャネル状態情報(Channel State Information(CSI))予測の指示に関する情報を受信してもよい。制御部210は、前記情報に基づいてCSI予測を実施してもよい。
 制御部210は、CSI報告設定のリスト内の特定のエントリ又は特定の範囲のエントリに含まれるCSI報告設定が、前記情報に関連付けられると判断し、当該CSI報告設定に基づいて前記CSI予測を実施してもよい。
 前記情報は、非周期的CSI報告のためのMedium Access Control制御要素(MAC Control Element(CE))又はセミパーシステントCSI報告のためのMAC CEに含まれるフィールドであってもよい。
 前記情報は、CSI報告をアクティベート又はトリガするための下りリンク制御情報に付加されている巡回冗長検査(Cyclic Redundancy Check(CRC))のスクランブルに用いられる無線ネットワーク一時識別子(SP-CSI-Radio Network Temporary Identifier(RNTI))であってもよい。
 また、送受信部220は、過去のチャネル状態情報(Channel State Information(CSI))を測定するためのCSIリソースに関する情報を受信してもよい。制御部210は、前記CSIリソースの測定結果に基づいてCSI予測を実施してもよい。
 前記情報は、周期的又はセミパーシステントなCSIリソースに関する前記情報として、時間周期に関する情報、CSIリソースの数に関する情報、ビットマップを含んでもよい。制御部210は、前記時間周期で存在する前記数のCSIリソースのうち、前記ビットマップによって予測に用いることが指定される位置のCSIリソースの測定結果に基づいて前記CSI予測を実施してもよい。
 前記情報は、非周期的なCSIリソースに関する前記情報として、時間周期に関する情報、オフセットに関する情報を含んでもよい。制御部210は、前記非周期的なCSIリソースの測定をトリガする下りリンク制御情報から前記オフセット後から開始する、前記時間周期で存在する複数のCSIリソースの測定結果に基づいて前記CSI予測を実施してもよい。
 また、送受信部220は、未来のチャネル状態情報(Channel State Information(CSI))を予測するためのCSIリソースに関する情報を受信してもよい。制御部210は、前記CSIリソースについてCSI予測を実施してもよい。
 前記情報は、周期的又はセミパーシステントなCSIリソースに関する前記情報として、時間周期に関する情報、CSIリソースの数に関する情報、ビットマップを含んでもよい。制御部210は、前記時間周期で存在する前記数のCSIリソースのうち、前記ビットマップによって予測対象として指定される位置のCSIリソースについて前記CSI予測を実施してもよい。
 前記情報は、前記情報として、オフセットに関する情報、時間周期に関する情報、CSIリソースの数に関する情報、ビットマップを含んでもよい。制御部210は、前記制御部は、特定のタイミングから上記オフセット経過後を基準として前記時間周期で存在する前記数のCSIリソースがあると想定し、前記数のCSIリソースのうち、前記ビットマップによって予測対象として指定される位置のCSIリソースについて前記CSI予測を実施してもよい。
(ハードウェア構成)
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
 ここで、機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、みなし、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)、送信機(transmitter)などと呼称されてもよい。いずれも、上述したとおり、実現方法は特に限定されない。
 例えば、本開示の一実施形態における基地局、ユーザ端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図35は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
 なお、本開示において、装置、回路、デバイス、部(section)、ユニットなどの文言は、互いに読み替えることができる。基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、2以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。
 基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(Central Processing Unit(CPU))によって構成されてもよい。例えば、上述の制御部110(210)、送受信部120(220)などの少なくとも一部は、プロセッサ1001によって実現されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、制御部110(210)は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically EPROM(EEPROM)、Random Access Memory(RAM)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(Compact Disc ROM(CD-ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(Frequency Division Duplex(FDD))及び時分割複信(Time Division Duplex(TDD))の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信部120(220)、送受信アンテナ130(230)などは、通信装置1004によって実現されてもよい。送受信部120(220)は、送信部120a(220a)と受信部120b(220b)とで、物理的に又は論理的に分離された実装がなされてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、Light Emitting Diode(LED)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
 また、基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor(DSP))、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
(変形例)
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル、シンボル及び信号(シグナル又はシグナリング)は、互いに読み替えられてもよい。また、信号はメッセージであってもよい。参照信号(reference signal)は、RSと略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(Component Carrier(CC))は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
 無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
 ここで、ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing(SCS))、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval(TTI))、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。
 スロットは、時間領域において1つ又は複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM)シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプBと呼ばれてもよい。
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。なお、本開示におけるフレーム、サブフレーム、スロット、ミニスロット、シンボルなどの時間単位は、互いに読み替えられてもよい。
 例えば、1サブフレームはTTIと呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
 1msの時間長を有するTTIは、通常TTI(3GPP Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
 リソースブロック(Resource Block(RB))は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。
 また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。
 なお、1つ又は複数のRBは、物理リソースブロック(Physical RB(PRB))、サブキャリアグループ(Sub-Carrier Group(SCG))、リソースエレメントグループ(Resource Element Group(REG))、PRBペア、RBペアなどと呼ばれてもよい。
 また、リソースブロックは、1つ又は複数のリソースエレメント(Resource Element(RE))によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
 帯域幅部分(Bandwidth Part(BWP))(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。
 BWPには、UL BWP(UL用のBWP)と、DL BWP(DL用のBWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。
 なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix(CP))長などの構成は、様々に変更することができる。
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。
 本開示においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式などは、本開示において明示的に開示したものと異なってもよい。様々なチャネル(PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 また、情報、信号などは、上位レイヤから下位レイヤ及び下位レイヤから上位レイヤの少なくとも一方へ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。
 入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。
 情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、本開示における情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(Downlink Control Information(DCI))、上り制御情報(Uplink Control Information(UCI)))、上位レイヤシグナリング(例えば、Radio Resource Control(RRC)シグナリング、ブロードキャスト情報(マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))など)、Medium Access Control(MAC)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。
 なお、物理レイヤシグナリングは、Layer 1/Layer 2(L1/L2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC Control Element(CE))を用いて通知されてもよい。
 また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line(DSL))など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用され得る。「ネットワーク」は、ネットワークに含まれる装置(例えば、基地局)のことを意味してもよい。
 本開示において、「プリコーディング」、「プリコーダ」、「ウェイト(プリコーディングウェイト)」、「擬似コロケーション(Quasi-Co-Location(QCL))」、「Transmission Configuration Indication state(TCI状態)」、「空間関係(spatial relation)」、「空間ドメインフィルタ(spatial domain filter)」、「送信電力」、「位相回転」、「アンテナポート」、「アンテナポートグル-プ」、「レイヤ」、「レイヤ数」、「ランク」、「リソース」、「リソースセット」、「リソースグループ」、「ビーム」、「ビーム幅」、「ビーム角度」、「アンテナ」、「アンテナ素子」、「パネル」などの用語は、互換的に使用され得る。
 本開示においては、「基地局(Base Station(BS))」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNB(eNodeB)」、「gNB(gNodeB)」、「アクセスポイント(access point)」、「送信ポイント(Transmission Point(TP))」、「受信ポイント(Reception Point(RP))」、「送受信ポイント(Transmission/Reception Point(TRP))」、「パネル」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head(RRH)))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。
 本開示において、基地局が端末に情報を送信することは、当該基地局が当該端末に対して、当該情報に基づく制御/動作を指示することと、互いに読み替えられてもよい。
 本開示においては、「移動局(Mobile Station(MS))」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment(UE))」、「端末」などの用語は、互換的に使用され得る。
 移動局は、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、無線通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体(moving object)に搭載されたデバイス、移動体自体などであってもよい。
 当該移動体は、移動可能な物体をいい、移動速度は任意であり、移動体が停止している場合も当然含む。当該移動体は、例えば、車両、輸送車両、自動車、自動二輪車、自転車、コネクテッドカー、ショベルカー、ブルドーザー、ホイールローダー、ダンプトラック、フォークリフト、列車、バス、リヤカー、人力車、船舶(ship and other watercraft)、飛行機、ロケット、人工衛星、ドローン、マルチコプター、クアッドコプター、気球及びこれらに搭載される物を含み、またこれらに限られない。また、当該移動体は、運行指令に基づいて自律走行する移動体であってもよい。
 当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。
 図36は、一実施形態に係る車両の一例を示す図である。車両40は、駆動部41、操舵部42、アクセルペダル43、ブレーキペダル44、シフトレバー45、左右の前輪46、左右の後輪47、車軸48、電子制御部49、各種センサ(電流センサ50、回転数センサ51、空気圧センサ52、車速センサ53、加速度センサ54、アクセルペダルセンサ55、ブレーキペダルセンサ56、シフトレバーセンサ57、及び物体検知センサ58を含む)、情報サービス部59と通信モジュール60を備える。
 駆動部41は、例えば、エンジン、モータ、エンジンとモータのハイブリッドの少なくとも1つで構成される。操舵部42は、少なくともステアリングホイール(ハンドルとも呼ぶ)を含み、ユーザによって操作されるステアリングホイールの操作に基づいて前輪46及び後輪47の少なくとも一方を操舵するように構成される。
 電子制御部49は、マイクロプロセッサ61、メモリ(ROM、RAM)62、通信ポート(例えば、入出力(Input/Output(IO))ポート)63で構成される。電子制御部49には、車両に備えられた各種センサ50-58からの信号が入力される。電子制御部49は、Electronic Control Unit(ECU)と呼ばれてもよい。
 各種センサ50-58からの信号としては、モータの電流をセンシングする電流センサ50からの電流信号、回転数センサ51によって取得された前輪46/後輪47の回転数信号、空気圧センサ52によって取得された前輪46/後輪47の空気圧信号、車速センサ53によって取得された車速信号、加速度センサ54によって取得された加速度信号、アクセルペダルセンサ55によって取得されたアクセルペダル43の踏み込み量信号、ブレーキペダルセンサ56によって取得されたブレーキペダル44の踏み込み量信号、シフトレバーセンサ57によって取得されたシフトレバー45の操作信号、物体検知センサ58によって取得された障害物、車両、歩行者などを検出するための検出信号などがある。
 情報サービス部59は、カーナビゲーションシステム、オーディオシステム、スピーカー、ディスプレイ、テレビ、ラジオ、といった、運転情報、交通情報、エンターテイメント情報などの各種情報を提供(出力)するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。情報サービス部59は、外部装置から通信モジュール60などを介して取得した情報を利用して、車両40の乗員に各種情報/サービス(例えば、マルチメディア情報/マルチメディアサービス)を提供する。
 情報サービス部59は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサ、タッチパネルなど)を含んでもよいし、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプ、タッチパネルなど)を含んでもよい。
 運転支援システム部64は、ミリ波レーダ、Light Detection and Ranging(LiDAR)、カメラ、測位ロケータ(例えば、Global Navigation Satellite System(GNSS)など)、地図情報(例えば、高精細(High Definition(HD))マップ、自動運転車(Autonomous Vehicle(AV))マップなど)、ジャイロシステム(例えば、慣性計測装置(Inertial Measurement Unit(IMU))、慣性航法装置(Inertial Navigation System(INS))など)、人工知能(Artificial Intelligence(AI))チップ、AIプロセッサといった、事故を未然に防止したりドライバの運転負荷を軽減したりするための機能を提供するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。また、運転支援システム部64は、通信モジュール60を介して各種情報を送受信し、運転支援機能又は自動運転機能を実現する。
 通信モジュール60は、通信ポート63を介して、マイクロプロセッサ61及び車両40の構成要素と通信することができる。例えば、通信モジュール60は通信ポート63を介して、車両40に備えられた駆動部41、操舵部42、アクセルペダル43、ブレーキペダル44、シフトレバー45、左右の前輪46、左右の後輪47、車軸48、電子制御部49内のマイクロプロセッサ61及びメモリ(ROM、RAM)62、各種センサ50-58との間でデータ(情報)を送受信する。
 通信モジュール60は、電子制御部49のマイクロプロセッサ61によって制御可能であり、外部装置と通信を行うことが可能な通信デバイスである。例えば、外部装置との間で無線通信を介して各種情報の送受信を行う。通信モジュール60は、電子制御部49の内部と外部のどちらにあってもよい。外部装置は、例えば、上述の基地局10、ユーザ端末20などであってもよい。また、通信モジュール60は、例えば、上述の基地局10及びユーザ端末20の少なくとも1つであってもよい(基地局10及びユーザ端末20の少なくとも1つとして機能してもよい)。
 通信モジュール60は、電子制御部49に入力された上述の各種センサ50-58からの信号、当該信号に基づいて得られる情報、及び情報サービス部59を介して得られる外部(ユーザ)からの入力に基づく情報、の少なくとも1つを、無線通信を介して外部装置へ送信してもよい。電子制御部49、各種センサ50-58、情報サービス部59などは、入力を受け付ける入力部と呼ばれてもよい。例えば、通信モジュール60によって送信されるPUSCHは、上記入力に基づく情報を含んでもよい。
 通信モジュール60は、外部装置から送信されてきた種々の情報(交通情報、信号情報、車間情報など)を受信し、車両に備えられた情報サービス部59へ表示する。情報サービス部59は、情報を出力する(例えば、通信モジュール60によって受信されるPDSCH(又は当該PDSCHから復号されるデータ/情報)に基づいてディスプレイ、スピーカーなどの機器に情報を出力する)出力部と呼ばれてもよい。
 また、通信モジュール60は、外部装置から受信した種々の情報をマイクロプロセッサ61によって利用可能なメモリ62へ記憶する。メモリ62に記憶された情報に基づいて、マイクロプロセッサ61が車両40に備えられた駆動部41、操舵部42、アクセルペダル43、ブレーキペダル44、シフトレバー45、左右の前輪46、左右の後輪47、車軸48、各種センサ50-58などの制御を行ってもよい。
 また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上りリンク(uplink)」、「下りリンク(downlink)」などの文言は、端末間通信に対応する文言(例えば、「サイドリンク(sidelink)」)で読み替えられてもよい。例えば、上りリンクチャネル、下りリンクチャネルなどは、サイドリンクチャネルで読み替えられてもよい。
 同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を基地局10が有する構成としてもよい。
 本開示において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、Mobility Management Entity(MME)、Serving-Gateway(S-GW)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、LTE-Beyond(LTE-B)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、6th generation mobile communication system(6G)、xth generation mobile communication system(xG(xは、例えば整数、小数))、Future Radio Access(FRA)、New-Radio Access Technology(RAT)、New Radio(NR)、New radio access(NX)、Future generation radio access(FX)、Global System for Mobile communications(GSM(登録商標))、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム、これらに基づいて拡張、修正、作成又は規定された次世代システムなどに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE又はLTE-Aと、5Gとの組み合わせなど)適用されてもよい。
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
 本開示において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
 本開示に記載の「最大送信電力」は送信電力の最大値を意味してもよいし、公称最大送信電力(the nominal UE maximum transmit power)を意味してもよいし、定格最大送信電力(the rated UE maximum transmit power)を意味してもよい。
 本開示において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。
 本開示において、2つの要素が接続される場合、1つ以上の電線、ケーブル、プリント電気接続などを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域、光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
 本開示において、「含む(include)」、「含んでいる(including)」及びこれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
 本開示において、例えば、英語でのa, an及びtheのように、翻訳によって冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
 本開示において、「以下」、「未満」、「以上」、「より多い」、「と等しい」などは、互いに読み替えられてもよい。また、本開示において、「良い」、「悪い」、「大きい」、「小さい」、「高い」、「低い」、「早い」、「遅い」などを意味する文言は、互いに読み替えられてもよい(原級、比較級、最上級を限らず)。また、本開示において、「良い」、「悪い」、「大きい」、「小さい」、「高い」、「低い」、「早い」、「遅い」などを意味する文言は、「i番目に」を付けた表現として互いに読み替えられてもよい(原級、比較級、最上級を限らず)(例えば、「最高」は「i番目に最高」と互いに読み替えられてもよい)。
 本開示において、「の(of)」、「のための(for)」、「に関する(regarding)」、「に関係する(related to)」、「に関連付けられる(associated with)」などは、互いに読み替えられてもよい。
 以上、本開示に係る発明について詳細に説明したが、当業者にとっては、本開示に係る発明が本開示中に説明した実施形態に限定されないということは明らかである。本開示に係る発明は、請求の範囲の記載に基づいて定まる発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とし、本開示に係る発明に対して何ら制限的な意味をもたらさない。

Claims (6)

  1.  チャネル状態情報(Channel State Information(CSI))予測の指示に関する情報を受信する受信部と、
     前記情報に基づいてCSI予測を実施する制御部と、を有する端末。
  2.  前記制御部は、CSI報告設定のリスト内の特定のエントリ又は特定の範囲のエントリに含まれるCSI報告設定が、前記情報に関連付けられると判断し、当該CSI報告設定に基づいて前記CSI予測を実施する請求項1に記載の端末。
  3.  前記情報は、非周期的CSI報告のためのMedium Access Control制御要素(MAC Control Element(CE))又はセミパーシステントCSI報告のためのMAC CEに含まれるフィールドである請求項1に記載の端末。
  4.  前記情報は、CSI報告をアクティベート又はトリガするための下りリンク制御情報に付加されている巡回冗長検査(Cyclic Redundancy Check(CRC))のスクランブルに用いられる無線ネットワーク一時識別子(SP-CSI-Radio Network Temporary Identifier(RNTI))である請求項1に記載の端末。
  5.  チャネル状態情報(Channel State Information(CSI))予測の指示に関する情報を受信するステップと、
     前記情報に基づいてCSI予測を実施するステップと、を有する端末の無線通信方法。
  6.  チャネル状態情報(Channel State Information(CSI))予測の指示に関する情報を、端末に送信する送信部と、
     前記情報に基づいて前記端末において予測されるCSIを受信する受信部と、を有する基地局。
PCT/JP2022/037516 2022-10-06 2022-10-06 端末、無線通信方法及び基地局 WO2024075261A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/037516 WO2024075261A1 (ja) 2022-10-06 2022-10-06 端末、無線通信方法及び基地局

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/037516 WO2024075261A1 (ja) 2022-10-06 2022-10-06 端末、無線通信方法及び基地局

Publications (1)

Publication Number Publication Date
WO2024075261A1 true WO2024075261A1 (ja) 2024-04-11

Family

ID=90607967

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/037516 WO2024075261A1 (ja) 2022-10-06 2022-10-06 端末、無線通信方法及び基地局

Country Status (1)

Country Link
WO (1) WO2024075261A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200259575A1 (en) * 2019-02-08 2020-08-13 Qualcomm Incorporated Proactive beam management
US20210058125A1 (en) * 2019-08-23 2021-02-25 Qualcomm Incorporated Extrapolated csi report based on a multi-symbol reference signal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200259575A1 (en) * 2019-02-08 2020-08-13 Qualcomm Incorporated Proactive beam management
US20210058125A1 (en) * 2019-08-23 2021-02-25 Qualcomm Incorporated Extrapolated csi report based on a multi-symbol reference signal

Similar Documents

Publication Publication Date Title
WO2024075261A1 (ja) 端末、無線通信方法及び基地局
WO2024075262A1 (ja) 端末、無線通信方法及び基地局
WO2024075263A1 (ja) 端末、無線通信方法及び基地局
WO2024100725A1 (ja) 端末、無線通信方法及び基地局
WO2024201928A1 (ja) 端末、無線通信方法及び基地局
WO2024201942A1 (ja) 端末、無線通信方法及び基地局
WO2024171465A1 (ja) 端末、無線通信方法及び基地局
WO2024150432A1 (ja) 端末、無線通信方法及び基地局
WO2024150433A1 (ja) 端末、無線通信方法及び基地局
WO2024150414A1 (ja) 端末、無線通信方法及び基地局
WO2024004219A1 (ja) 端末、無線通信方法及び基地局
WO2024201961A1 (ja) 端末、無線通信方法及び基地局
WO2024150439A1 (ja) 端末、無線通信方法及び基地局
WO2024201960A1 (ja) 端末、無線通信方法及び基地局
WO2024150438A1 (ja) 端末、無線通信方法及び基地局
WO2024004220A1 (ja) 端末、無線通信方法及び基地局
WO2024080023A1 (ja) 端末、無線通信方法及び基地局
WO2024106379A1 (ja) 端末、無線通信方法及び基地局
WO2024106380A1 (ja) 端末、無線通信方法及び基地局
WO2024004189A1 (ja) 端末、無線通信方法及び基地局
WO2024013852A1 (ja) 端末、無線通信方法及び基地局
WO2024013851A1 (ja) 端末、無線通信方法及び基地局
WO2024004186A1 (ja) 端末、無線通信方法及び基地局
WO2024004187A1 (ja) 端末、無線通信方法及び基地局
WO2024171392A1 (ja) 端末、無線通信方法及び基地局

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22961447

Country of ref document: EP

Kind code of ref document: A1