WO2024075175A1 - 受電装置及び給電装置 - Google Patents

受電装置及び給電装置 Download PDF

Info

Publication number
WO2024075175A1
WO2024075175A1 PCT/JP2022/037041 JP2022037041W WO2024075175A1 WO 2024075175 A1 WO2024075175 A1 WO 2024075175A1 JP 2022037041 W JP2022037041 W JP 2022037041W WO 2024075175 A1 WO2024075175 A1 WO 2024075175A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
electric circuit
coil
circuit
secondary coil
Prior art date
Application number
PCT/JP2022/037041
Other languages
English (en)
French (fr)
Inventor
裕翔 榊
英之 中溝
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/037041 priority Critical patent/WO2024075175A1/ja
Publication of WO2024075175A1 publication Critical patent/WO2024075175A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Definitions

  • This disclosure relates to a power receiving device and a power supply device.
  • Patent Document 1 discloses a power supply device that includes a power receiving device having, in addition to a secondary coil, a capacitor (hereinafter referred to as a "first capacitor”), a switch, a capacitor (hereinafter referred to as a "second capacitor”), and a rectifier.
  • One end of the first capacitor is connected to one end of the secondary coil, and the other end of the first capacitor is connected to one end of the switch and the first input terminal of the rectifier.
  • One end of the switch is connected to the other end of the first capacitor and the first input terminal of the rectifier.
  • One end of the second capacitor is connected to the other end of the switch, and the other end of the second capacitor is connected to the other end of the secondary coil and the second input terminal of the rectifier.
  • the switch is in a closed state, the power with constant voltage characteristics is further converted to power with constant current characteristics by the secondary coil, the first capacitor, and the second capacitor. Therefore, if the switch is in a closed state, the power with constant current characteristics is supplied to the rectifier. On the other hand, if the switch is in an open state, the power with constant voltage characteristics is supplied to the rectifier as is.
  • the power receiving device disclosed in Patent Document 1 when the power source of the power transmitting device is a power source that supplies power with constant voltage characteristics, electromagnetic induction occurs between the primary coil and the secondary coil, and the power with constant voltage characteristics is converted into power with constant current characteristics. Even when the open/close state of the switch is changed, the power supplied to the rectifier is power with constant current characteristics, which is the converted power, and there is an issue that the power receiving device cannot supply power with constant voltage characteristics to the rectifier.
  • the present disclosure has been made to solve the above problems, and aims to obtain a power receiving device that can selectively output either power with constant voltage characteristics or power with constant current characteristics as power to be supplied to an external load, regardless of whether the power source possessed by the power transmitting device is a power source that supplies power with constant voltage characteristics or a power source that supplies power with constant current characteristics.
  • the power receiving device includes a secondary coil in which electromagnetic induction occurs between the secondary coil and a primary coil to which power output from a power source is supplied, a first electric circuit having one end connected to one end of the secondary coil, a second electric circuit having one end connected to the other end of the first electric circuit, a third electric circuit, and a fourth electric circuit.
  • the power receiving device also includes a switching circuit that connects either one of the third electric circuit and the fourth electric circuit between the other end of the first electric circuit and the other end of the secondary coil, or that disconnects each of the third electric circuit and the fourth electric circuit from between the other end of the first electric circuit and the other end of the secondary coil.
  • the secondary coil, the first electric circuit, and the second electric circuit resonate, when the fourth electric circuit is connected between the other end of the first electric circuit and the other end of the secondary coil, the second electric circuit and the fourth electric circuit resonate, and when the third electric circuit is connected between the other end of the first electric circuit and the other end of the secondary coil, the secondary coil, the first electric circuit, and the third electric circuit resonate.
  • the power source possessed by the power transmission device is a power source that supplies power with constant voltage characteristics or a power source that supplies power with constant current characteristics, it is possible to selectively output either power with constant voltage characteristics or power with constant current characteristics as power to be supplied to an external load.
  • FIG. 1 is a configuration diagram showing a power supply device (part 1) according to a first embodiment
  • FIG. 2 is a configuration diagram showing a power supply device (part 2) according to the first embodiment
  • 10 is an explanatory diagram showing a state in which electromagnetic induction occurs between the primary coil 13 and the secondary coil 21 when the switch 26a is in an open state and the switch 26b is in a closed state.
  • FIG. 10 is an explanatory diagram showing a state in which electromagnetic induction occurs between a primary coil 13 and a secondary coil 21 when a capacitor 12 and a primary coil 13 are in series resonance.
  • FIG. 10 is an explanatory diagram showing a state in which electromagnetic induction occurs between a primary coil 13 and a secondary coil 21 when a switch 26a and a switch 26b are both in an open state.
  • FIG. This is an explanatory diagram showing a state in which electromagnetic induction occurs between the primary coil 13 and the secondary coil 21 when the capacitor 12 and the primary coil 13 are in series resonance and when the secondary coil 21, the first capacitor 22a, and the first coil 23a are in series resonance.
  • 10 is an explanatory diagram showing a state in which electromagnetic induction occurs between a primary coil 13 and a secondary coil 21 when a switch 26a and a switch 26b are both in an open state.
  • FIG. This is an explanatory diagram showing a state in which electromagnetic induction occurs between the primary coil 13 and the secondary coil 21 when the capacitor 12 and the primary coil 13 are in series resonance and when the secondary coil 21, the first capacitor 22a, and the first coil 23a are in series resonance.
  • FIG. 10 is an explanatory diagram showing a state in which electromagnetic induction occurs between a primary coil 13 and a secondary coil 21 when a switch 26a is in a closed state and a switch 26b is in an open state.
  • FIG. 10 is an explanatory diagram showing a state in which electromagnetic induction occurs between a primary coil 13 and a secondary coil 21 when a capacitor 12 and a primary coil 13 are in series resonance.
  • FIG. 2 is an explanatory diagram showing the relationship between the open/closed states of a switch 26a and a switch 26b and the characteristics (CV or CC) of the power output from a power receiving device 2 to a load 3.
  • FIG. FIG. 11 is a configuration diagram showing another power supply device (part 1) according to the first embodiment.
  • FIG. 11 is an explanatory diagram showing a state in which the number of gyrators included in the power supply device is odd; FIG. 11 is an explanatory diagram showing a state in which the number of gyrators included in the power supply device is an even number.
  • FIG. FIG. 11 is a configuration diagram showing another power supply device (part 2) according to the first embodiment. 11 is an explanatory diagram showing a state in which the number of gyrators included in the power supply device is odd; FIG. 11 is an explanatory diagram showing a state in which the number of gyrators included in the power supply device is an even number.
  • FIG. FIG. 11 is a configuration diagram showing a power supply device (part 1) according to a second embodiment.
  • FIG. 11 is a configuration diagram showing a power supply device (part 2) according to the second embodiment.
  • 1 is an explanatory diagram showing a power supply device when power from a CV is supplied to a load 3.
  • FIG. 1 is an explanatory diagram showing a power supply device when CC power is supplied to a load 3.
  • FIG. 1 is an explanatory diagram showing a power supply device when power from a CV is supplied to a load 3.
  • FIG. 1 is an explanatory diagram showing a power supply device when CC power is supplied to a load 3.
  • FIG. 1 is an explanatory diagram showing a power supply device when power from a CV is supplied to a load 3.
  • FIG. 1 is an explanatory diagram showing a power supply device when CC power is supplied to a load 3.
  • FIG. 1 is an explanatory diagram
  • FIG. 1 is a configuration diagram showing a power supply device (part 1) according to a first embodiment.
  • the power supply device shown in FIG. 1 includes a power transmitting device 1 and a power receiving device 2 having a power source 11a that supplies power with constant voltage characteristics (hereinafter referred to as "CV power").
  • the power transmitting device 1 transmits electric power to the power receiving device 2 in a contactless manner.
  • the power receiving device 2 receives power from the power transmitting device 1 in a wireless manner, and supplies the received power to a load 3 .
  • the load 3 receives power from the power receiving device 2 .
  • the power transmitting device 1 includes a power source 11 a, a capacitor 12 and a primary coil 13 .
  • the power supply 11a is a power supply that supplies power to the CV.
  • One end of the capacitor 12 is connected to one end of the power source 11a.
  • the other end of the capacitor 12 is connected to one end of the primary coil 13 .
  • the capacitance of capacitor 12 is C1 .
  • One end of the primary coil 13 is connected to the other end of the capacitor 12 .
  • the other end of the primary coil 13 is connected to the other end of the power source 11a.
  • the inductance of the primary coil 13 is L1 .
  • the capacitor 12 and the primary coil 13 resonate in series.
  • the power receiving device 2 includes a secondary coil 21 , a first electric circuit 22 , a second electric circuit 23 , a third electric circuit 24 , a fourth electric circuit 25 , a switching circuit 26 , and a rectifier circuit 27 . Electromagnetic induction occurs between the secondary coil 21 and the primary coil 13 to which power output from the power source 11a is supplied.
  • the inductance of the secondary coil 21 is L2 .
  • the first electric circuit 22 is a circuit having a first complex impedance Z1 and includes a first capacitor 22a. One end of the first capacitor 22 a is connected to one end of the secondary coil 21 . The other end of the first capacitor 22a is connected to one end of a first coil 23a, one end of a switch 26a, and one end of a switch 26b, which will be described later.
  • the capacitance of the first capacitor 22a is C2 .
  • the first electric circuit 22 includes a first capacitor 22a
  • the first complex impedance Z1 is determined by the capacitance C2 of the first capacitor 22a.
  • the first electric circuit 22 may include, for example, a coil in addition to the first capacitor 22a, and the first complex impedance Z1 may be determined by the capacitance C2 of the first capacitor 22a and the inductance of the coil.
  • the second electric circuit 23 is a circuit having a second complex impedance Z2 , and includes a first coil 23a.
  • One end of the first coil 23a is connected to the other end of the first capacitor 22a, one end of the switch 26a, and one end of the switch 26b.
  • the other end of the first coil 23 a is connected to a first input terminal 27 a of the rectifier circuit 27 .
  • the inductance of the first coil 23a is L3 .
  • the second electric circuit 23 includes a first coil 23a
  • the second complex impedance Z2 is determined by the inductance L3 of the first coil 23a.
  • the second electric circuit 23 may include, for example, a capacitor in addition to the first coil 23a, and the second complex impedance Z2 may be determined by the inductance L3 of the first coil 23a and the capacitance of the capacitor.
  • the third electric circuit 24 is a circuit having a third complex impedance Z3 , and includes a second coil 24a. One end of the second coil 24a is connected to the other end of the switch 26a. The other end of the second coil 24 a is connected to the other end of the secondary coil 21 , the other end of a second capacitor 25 a (described later), and a second input terminal 27 b of the rectifier circuit 27 .
  • the inductance of the second coil 24a is L4 .
  • the third electric circuit 24 includes the second coil 24a, and the third complex impedance Z3 is determined by the inductance L4 of the second coil 24a.
  • the third electric circuit 24 may include, for example, a capacitor in addition to the second coil 24a, and the third complex impedance Z3 may be determined by the inductance L4 of the second coil 24a and the capacitance of the capacitor.
  • the fourth electric circuit 25 is a circuit having a fourth complex impedance Z4 , and includes a second capacitor 25a. One end of the second capacitor 25a is connected to the other end of the switch 26b. The other end of the second capacitor 25 a is connected to the other end of the secondary coil 21 , the other end of the second coil 24 a , and the second input terminal 27 b of the rectifier circuit 27 .
  • the capacitance of the second capacitor 25a is C3 .
  • the fourth electric circuit 25 includes the second capacitor 25a
  • the fourth complex impedance Z4 is determined by the capacitance C3 of the second capacitor 25a.
  • the fourth electric circuit 25 may include, for example, a coil in addition to the second capacitor 25a, and the fourth complex impedance Z4 may be determined by the capacitance C3 of the second capacitor 25a and the inductance of the coil.
  • the secondary coil 21, the first electric circuit 22, and the second electric circuit 23 resonate.
  • the inductance L2 of the secondary coil 21, the capacitance C2 of the first capacitor 22a, and the inductance L3 of the first coil 23a are set so that the secondary coil 21, the first electric circuit 22 , and the second electric circuit 23 resonate at the power transmission frequency f1.
  • the fourth electric circuit 25 is connected between the other end of the first electric circuit 22 and the other end of the secondary coil 21, the second electric circuit 23 and the fourth electric circuit 25 resonate.
  • the inductance L3 of the first coil 23a and the capacitance C3 of the second capacitor 25a are set so that the second electric circuit 23 and the fourth electric circuit 25 resonate at the power transmission frequency f1. Furthermore, at the power transmission frequency f1 , when the third electric circuit 24 is connected between the other end of the first electric circuit 22 and the other end of the secondary coil 21, the secondary coil 21, the first electric circuit 22, and the third electric circuit 24 resonate with each other.
  • the inductance L2 of the secondary coil 21, the capacitance C2 of the first capacitor 22a, and the inductance L4 of the second coil 24a are set so that the secondary coil 21, the first electric circuit 22, and the third electric circuit 24 resonate with each other at the power transmission frequency f1 .
  • the switching circuit 26 includes a switch 26a and a switch 26b.
  • One end of the switch 26a is connected to the other end of the first capacitor 22a, one end of the first coil 23a, and one end of the switch 26b.
  • the other end of the switch 26a is connected to one end of the second coil 24a.
  • One end of the switch 26b is connected to the other end of the first capacitor 22a, one end of the first coil 23a, and one end of the switch 26a.
  • the other end of the switch 26b is connected to one end of the second capacitor 25a.
  • the switching circuit 26 operates to connect either the third electrical circuit 24 or the fourth electrical circuit 25 between the other end of the first electrical circuit 22 and the other end of the secondary coil 21, or to disconnect each of the third electrical circuit 24 and the fourth electrical circuit 25 from between the other end of the first electrical circuit 22 and the other end of the secondary coil 21.
  • the power source 11a is a power source that supplies CV power.
  • the switching circuit 26 closes the switch 26b to connect the second capacitor 25a between the other end of the first capacitor 22a and the other end of the secondary coil 21.
  • the switching circuit 26 also opens the switch 26a to disconnect the second coil 24a from between the other end of the first capacitor 22a and the other end of the secondary coil 21.
  • CC power constant current characteristic power
  • a first input terminal 27a of the rectifier circuit 27 is connected to the other end of the first coil 23a.
  • a second input terminal 27b of the rectifier circuit 27 is connected to the other end of the secondary coil 21, the other end of the second coil 24a, and the other end of the second capacitor 25a.
  • the first output terminal 27 c and the second output terminal 27 d of the rectifier circuit 27 are each connected to the load 3 .
  • the rectifier circuit 27 rectifies the AC power applied from the first input terminal 27 a and the second input terminal 27 b , and supplies the rectified power to the load 3 .
  • FIG. 2 is a configuration diagram showing a power supply device (part 2) according to the first embodiment.
  • the power supply device shown in FIG. 2 includes a power transmitting device 1 and a power receiving device 2 having a power source 11b that supplies CC power.
  • the power supply 11b is a power supply that supplies power to the CC.
  • the only difference between the power supply device shown in FIG. 2 and the power supply device shown in FIG. 1 is that the power supply 11b is a power supply that supplies CC power, whereas the power supply 11a is a power supply that supplies CV power. That is, the power receiving device 2 of the power supply device shown in FIG. 1 and the power receiving device 2 of the power supply device shown in FIG. 2 have the same configuration.
  • FIG. 3 is an explanatory diagram showing a state in which electromagnetic induction occurs between the primary coil 13 and the secondary coil 21 when the switch 26a is in an open state and the switch 26b is in a closed state.
  • CV power is output from the power source 11a of the power transmitting device 1
  • the capacitor 12 and the primary coil 13 resonate in series at the power transmission frequency f1 , as shown in FIG.
  • electromagnetic induction occurs between the primary coil 13 and the secondary coil 21 .
  • Lm is the mutual inductance between the primary coil 13 and the secondary coil 21 as shown in the following formula (1):
  • the rectifier circuit 27 is omitted.
  • Equation (1) k is a coupling coefficient.
  • FIG. 4 is an explanatory diagram showing a state in which electromagnetic induction occurs between the primary coil 13 and the secondary coil 21 when the capacitor 12 and the primary coil 13 are in series resonance.
  • the rectifier circuit 27 is omitted.
  • Electromagnetic induction occurs between the primary coil 13 and the secondary coil 21, forming a gyrator 31 as shown in Figures 3 and 4.
  • the gyrator 31 is a circuit that inverts impedance.
  • the transfer function of the gyrator 31 is expressed as the following equation (2).
  • V1 is the voltage applied to the gyrator 31, and I1 is the current flowing from the power supply 11a to the gyrator 31.
  • V Lm is the output voltage of the gyrator 31
  • I Lm is the current output from the gyrator 31 .
  • the impedance of the CV power output from the power source 11a is inverted by passing through the gyrator 31.
  • the CV power output from the power source 11a is converted to CC power. Therefore, the power output from the gyrator 31 becomes CC power.
  • the CC power output from the gyrator 31 is applied to the gyrator 32 .
  • the transfer function of the gyrator 32 is expressed as the following equation (3).
  • V2 is the output voltage of the gyrator 32
  • I2 is the current output from the gyrator 32
  • ⁇ 0 is the angular frequency
  • equation (3) can be expressed as the following equation (6). Therefore, the gyrator 32 can be regarded as a circuit that inverts impedance.
  • the impedance of the CC power output from the gyrator 31 is inverted by passing through the gyrator 32.
  • the CC power output from the gyrator 31 is converted to CV power, and the power output from the gyrator 32 to the rectifier circuit 27 becomes CV power.
  • the rectifier circuit 27 rectifies the CV power output from the gyrator 32 and supplies the rectified CV power to the load 3 .
  • FIG. 5 is an explanatory diagram showing a state in which electromagnetic induction occurs between the primary coil 13 and the secondary coil 21 when the switch 26a and the switch 26b are both open.
  • the rectifier circuit 27 is omitted.
  • Fig. 5 can be expressed as shown in Fig. 6.
  • 6 is an explanatory diagram showing a state in which electromagnetic induction occurs between the primary coil 13 and the secondary coil 21 when the capacitor 12 and the primary coil 13 are in series resonance and the secondary coil 21, the first capacitor 22a, and the first coil 23a are in series resonance.
  • the rectifier circuit 27 is omitted. Electromagnetic induction occurs between the primary coil 13 and the secondary coil 21, forming a gyrator 31 as shown in Fig. 5 and Fig. 6.
  • the transfer function of the gyrator 31 is expressed by the following equation (7).
  • the impedance of the CV power output from the power source 11a is inverted by passing through the gyrator 31. As a result, the CV power output from the power source 11a is converted to CC power. Therefore, the power output from the gyrator 31 becomes CC power.
  • the CC power output from the gyrator 31 is applied to the rectifier circuit 27 .
  • the rectifier circuit 27 rectifies the CC power output from the gyrator 32 and supplies the rectified CC power to the load 3 .
  • Fig. 7 is an explanatory diagram showing a state in which electromagnetic induction occurs between the primary coil 13 and the secondary coil 21 when the switch 26a and the switch 26b are both open.
  • the rectifier circuit 27 is omitted.
  • Fig. 7 can be expressed as shown in Fig. 8.
  • 8 is an explanatory diagram showing a state in which electromagnetic induction occurs between the primary coil 13 and the secondary coil 21 when the capacitor 12 and the primary coil 13 are in series resonance and the secondary coil 21, the first capacitor 22a, and the first coil 23a are in series resonance.
  • the rectifier circuit 27 is omitted.
  • Electromagnetic induction occurs between the primary coil 13 and the secondary coil 21, forming a gyrator 31 as shown in Fig. 7 and Fig. 8.
  • the transfer function of the gyrator 31 is expressed by the following equation (8).
  • the impedance of the CC power output from the power supply 11b is inverted by passing through the gyrator 31. As a result, the CC power output from the power supply 11b is converted to CV power. Therefore, the power output from the gyrator 31 becomes CV power.
  • the CV power output from the gyrator 31 is applied to the rectifier circuit 27 .
  • the rectifier circuit 27 rectifies the CV power output from the gyrator 32 and supplies the rectified CV power to the load 3 .
  • a control circuit (not shown) controls the switch 26a to a closed state and the switch 26b to an open state.
  • Fig. 9 is an explanatory diagram showing a state in which electromagnetic induction occurs between the primary coil 13 and the secondary coil 21 when the switch 26a is in a closed state and the switch 26b is in an open state.
  • the rectifier circuit 27 is omitted.
  • FIG. 10 is an explanatory diagram showing a state in which electromagnetic induction occurs between the primary coil 13 and the secondary coil 21 when the capacitor 12 and the primary coil 13 are in series resonance.
  • the rectifier circuit 27 is omitted.
  • Electromagnetic induction occurs between the primary coil 13 and the secondary coil 21, forming a gyrator 31 as shown in FIGS.
  • the transfer function of the gyrator 31 is expressed as in the following equation (9).
  • the impedance of the CC power output from the power supply 11b is inverted by passing through the gyrator 31.
  • the CC power output from the power supply 11b is converted to CV power. Therefore, the power output from the gyrator 31 becomes CV power.
  • the CV power output from the gyrator 31 is applied to the gyrator 33 .
  • the transfer function of the gyrator 33 is expressed as the following equation (10).
  • equation (10) can be expressed as the following equation (13). Therefore, the gyrator 33 can be regarded as a circuit that inverts impedance.
  • the impedance of the CV power output from the gyrator 31 is inverted by passing through the gyrator 33.
  • the CV power output from the gyrator 31 is converted to CC power, and the power output from the gyrator 33 to the rectifier circuit 27 becomes CC power.
  • the rectifier circuit 27 rectifies the CC power output from the gyrator 33 and supplies the rectified CC power to the load 3 .
  • FIG. 11 is an explanatory diagram showing the relationship between the open/closed states of the switches 26a and 26b and the characteristics (CV or CC) of the power output from the power receiving device 2 to the load 3.
  • ON indicates that the switch is in a closed state
  • OFF indicates that the switch is in an open state. From Figure 11, it can be seen that when the power transmission device 1 has a power source 11a that supplies CV power, if the switch 26a is OFF and the switch 26b is ON, the characteristics of the power output from the power receiving device 2 to the load 3 are CV.
  • the power transmission device 1 has a power supply 11a that supplies CV power
  • the switches 26a and 26b are both OFF
  • the characteristics of the power output from the power receiving device 2 to the load 3 are CC.
  • the power transmitting device 1 has the power supply 11b that supplies CC power
  • the switch 26a and the switch 26b are both OFF
  • the characteristics of the power output from the power receiving device 2 to the load 3 are CV.
  • the power transmission device 1 has a power source 11b that supplies CC power
  • the switch 26a is ON and the switch 26b is OFF, it can be seen that the characteristics of the power output from the power receiving device 2 to the load 3 are CC.
  • the power receiving device 2 is configured to include a secondary coil 21 in which electromagnetic induction occurs between the secondary coil 21 and the primary coil 13 to which power output from the power source 11a (or power source 11b) is supplied, a first electric circuit 22 having one end connected to one end of the secondary coil 21, a second electric circuit 23 having one end connected to the other end of the first electric circuit 22, a third electric circuit 24, and a fourth electric circuit 25.
  • the power receiving device 2 also includes a switching circuit 26 that connects either one of the third electric circuit 24 and the fourth electric circuit 25 between the other end of the first electric circuit 22 and the other end of the secondary coil 21, or that disconnects each of the third electric circuit 24 and the fourth electric circuit 25 from between the other end of the first electric circuit 22 and the other end of the secondary coil 21.
  • the power receiving device 2 can selectively output either the power with constant voltage characteristics or the power with constant current characteristics as the power to be supplied to the external load, regardless of whether the power source possessed by the power transmitting device 1 is the power source 11a that supplies power with constant voltage characteristics or the power source 11b that supplies power with constant current characteristics.
  • the power supply device shown in FIG. 1 includes one gyrator 31 or two gyrators 31 and 32 .
  • the power supply device shown in FIG. 2 includes one gyrator 31 or two gyrators 31 and 33 .
  • the number of gyrators included in the power supply device is not limited to one or two.
  • the power source possessed by the power transmission device 1 is a power source 11a that supplies CV power
  • the power output from the power receiving device 2 to the load 3 is CC power
  • the power output from the power receiving device 2 to the load 3 is CV power. Therefore, when the power source included in the power transmission device 1 is a power source 11a that supplies CV power, the power supply device may be configured as shown in FIG. 12, for example.
  • FIG. 12 is a configuration diagram showing another power supply device (part 1) according to the first embodiment.
  • the number of gyrators provided in the power supply device is an odd number, that is, three, as shown in FIG. 13, and therefore the power output from the power receiving device 2 to the load 3 becomes CC power.
  • switch 26a is in the open state
  • switch 26b is in the closed state
  • switches 26a' and 26b' are in the open state
  • the number of gyrators provided in the power supply device is an even number, that is, two, and the power output from the power receiving device 2 to the load 3 becomes CV power.
  • FIG. 12 is a configuration diagram showing another power supply device (part 1) according to the first embodiment.
  • FIG. 13 is an explanatory diagram showing a state in which the number of gyrators provided in the power supply device is an odd number
  • FIG. 14 is an explanatory diagram showing a state in which the number of gyrators provided in the power supply device is an even number.
  • FIG. 15 is a configuration diagram showing another power supply device (part 2) according to the first embodiment.
  • switches 26a and 26a' are in a closed state and switches 26b and 26b' are in an open state, then as shown in FIG. 16, the number of gyrators provided in the power supply device is an odd number, that is, three, and therefore the power output from the power receiving device 2 to the load 3 is CV power.
  • switch 26a is in a closed state
  • switch 26b is in an open state
  • switches 26a' and 26b' are in an open state, then as shown in FIG.
  • the number of gyrators provided in the power supply device is an even number, that is, two, and the power output from the power receiving device 2 to the load 3 becomes CC power.
  • FIG. 16 is an explanatory diagram showing a state in which the number of gyrators provided in the power supply device is an odd number
  • FIG. 17 is an explanatory diagram showing a state in which the number of gyrators provided in the power supply device is an even number.
  • Embodiment 2 a power receiving device 2 will be described in which a first electric circuit 41 is a circuit capable of varying a first complex impedance Z1 and a second electric circuit 42 is a circuit capable of varying a second complex impedance Z2 .
  • Fig. 18 is a configuration diagram showing a power supply device (part 1) according to embodiment 2.
  • the power supply device shown in FIG. 18 includes a power transmitting device 1 and a power receiving device 2 having a power source 11a that supplies CV power.
  • the first electric circuit 41 is a circuit having a first complex impedance Z1 , and the first complex impedance Z1 is variable.
  • the first electric circuit 41 includes a switch 41a, a first capacitor 41b, a switch 41c, a coil 41d, and a first capacitor 41e.
  • the first complex impedance Z1 changes as the open/closed states of the switches 41a and 41c change.
  • One end of the switch 41a is connected to one end of the secondary coil 21 and one end of the switch 41c.
  • the other end of the switch 41a is connected to one end of a first capacitor 41b.
  • One end of the first capacitor 41b is connected to the other end of the switch 41a.
  • the other end of the first capacitor 41b is connected to one end of the switch 42a, one end of the switch 42c, one end of the switch 26a, one end of the switch 26b, and the other end of the first capacitor 41e.
  • the capacitance of the first capacitor 41b is C11 .
  • One end of the switch 41c is connected to one end of the secondary coil 21 and one end of the switch 41a.
  • the other end of the switch 41c is connected to one end of the coil 41d.
  • One end of the coil 41d is connected to the other end of the switch 41c.
  • the other end of the coil 41d is connected to one end of a first capacitor 41e.
  • the inductance of the coil 41d is L11 .
  • One end of the first capacitor 41e is connected to the other end of the coil 41d.
  • the other end of the first capacitor 41e is connected to one end of the switch 42a, one end of the switch 42c, one end of the switch 26a, one end of the switch 26b, and the other end of the first capacitor 41b.
  • the capacitance of the first capacitor 41e is C12 .
  • the second electric circuit 42 is a circuit having a second complex impedance Z2 , and the second complex impedance Z2 is variable.
  • the second electric circuit 42 includes a switch 42a, a first coil 42b, a switch 42c, a first coil 42d, and a capacitor 42e.
  • the second complex impedance Z2 changes as the open/closed states of the switches 42a and 42c change.
  • One end of the switch 42a is connected to the other end of the first capacitor 41b, the other end of the first capacitor 41e, one end of the switch 26a, one end of the switch 26b, and one end of the switch 42c.
  • the other end of the switch 42a is connected to one end of a first coil 42b.
  • One end of the first coil 42b is connected to the other end of the switch 42a.
  • the other end of the first coil 42b is connected to the first input terminal 27a of the rectifier circuit 27 and the other end of the capacitor 42e.
  • the inductance of the first coil 42b is L12 .
  • One end of the switch 42c is connected to the other end of the first capacitor 41b, the other end of the first capacitor 41e, one end of the switch 26a, one end of the switch 26b, and one end of the switch 42a.
  • the other end of the switch 42c is connected to one end of a first coil 42d.
  • One end of the first coil 42d is connected to the other end of the switch 42c.
  • the other end of the first coil 42d is connected to one end of a capacitor 42e.
  • the inductance of the first coil 42d is L13 .
  • One end of the capacitor 42e is connected to the other end of the first coil 42d.
  • the other end of the capacitor 42e is connected to the first input terminal 27a of the rectifier circuit 27 and the other end of the first coil 42b.
  • Capacitor 42e has a capacitance of C13 .
  • FIG. 19 is a configuration diagram showing a power supply device (part 2) according to the second embodiment.
  • the power supply device shown in FIG. 19 includes a power transmitting device 1 and a power receiving device 2 having a power source 11b that supplies CC power.
  • the only difference between the power supply device shown in FIG. 19 and the power supply device shown in FIG. 18 is that the power supply 11b is a power supply that supplies CC power, whereas the power supply 11a is a power supply that supplies CV power. That is, the power receiving device 2 of the power feeding device shown in FIG. 18 and the power receiving device 2 of the power feeding device shown in FIG. 19 have the same configuration.
  • FIG. 18 is an explanatory diagram showing a power supply device when CV power is supplied to a load 3.
  • the capacitor 12 and the primary coil 13 resonate in series at the power transmission frequency f1 , and electromagnetic induction occurs between the primary coil 13 and the secondary coil 21. Electromagnetic induction occurs between the primary coil 13 and the secondary coil 21, so that a gyrator 31 is formed in the power supply device shown in FIG. 18, similarly to the power supply device shown in FIG.
  • the impedance of the CV power output from the power source 11a is inverted by passing through the gyrator 31. As a result, the CV power output from the power source 11a is converted to CC power. Therefore, the power output from the gyrator 31 becomes CC power.
  • the secondary coil 21, the coil 41d, the first capacitor 41e and the first coil 42b resonate, and the first coil 42b and the second capacitor 25a resonate.
  • a gyrator 32 is formed by resonance between the secondary coil 21, the coil 41d, the first capacitor 41e, the first coil 42b, and the second capacitor 25a.
  • the transfer function of the gyrator 32 is expressed as the following equation (14).
  • equation (14) can be expressed as the following equation (17). Therefore, the gyrator 34 can be regarded as a circuit that inverts impedance.
  • the impedance of the CC power output from the gyrator 31 is inverted as it passes through the gyrator 32.
  • the CC power output from the gyrator 32 is converted to CV power, and the power output from the gyrator 32 to the rectifier circuit 27 becomes CV power.
  • FIG. 21 is an explanatory diagram showing a power supply device when CC power is supplied to a load 3. As shown in FIG.
  • the capacitor 12 and the primary coil 13 resonate in series at the power transmission frequency f1 , and electromagnetic induction occurs between the primary coil 13 and the secondary coil 21. Electromagnetic induction occurs between the primary coil 13 and the secondary coil 21, so that a gyrator 31 is formed in the power supply device shown in FIG. 18, similarly to the power supply device shown in FIG.
  • the impedance of the CV power output from the power source 11a is inverted by passing through the gyrator 31. As a result, the CV power output from the power source 11a is converted to CC power. Therefore, the power output from the gyrator 31 becomes CC power.
  • the secondary coil 21, the first capacitor 41b, and the first coil 42b resonate in series.
  • the secondary coil 21, the first capacitor 41b, and the first coil 42b can be ignored in the power receiving device 2.
  • the power output from the gyrator 31 to the rectifier circuit 27 becomes CC power.
  • FIG. 19 is an explanatory diagram showing a power supply device when CV power is supplied to a load 3.
  • the capacitor 12 and the primary coil 13 resonate in series at the power transmission frequency f1 , and electromagnetic induction occurs between the primary coil 13 and the secondary coil 21. Electromagnetic induction occurs between the primary coil 13 and the secondary coil 21, so that a gyrator 31 is formed in the power supply device shown in FIG. 19, similarly to the power supply device shown in FIG.
  • the impedance of the CC power output from the power supply 11b is inverted by passing through the gyrator 31. As a result, the CC power output from the power supply 11b is converted to CV power. Therefore, the power output from the gyrator 31 becomes CV power.
  • the secondary coil 21, the first capacitor 41b, and the first coil 42b resonate in series.
  • the secondary coil 21, the first capacitor 41b, and the first coil 42b can be ignored in the power receiving device 2.
  • the power output from the gyrator 31 to the rectifier circuit 27 becomes CV power.
  • FIG. 23 is an explanatory diagram showing a power supply device when CC power is supplied to a load 3. As shown in FIG.
  • the capacitor 12 and the primary coil 13 resonate in series at the power transmission frequency f1 , and electromagnetic induction occurs between the primary coil 13 and the secondary coil 21. Electromagnetic induction occurs between the primary coil 13 and the secondary coil 21, so that a gyrator 31 is formed in the power supply device shown in FIG. 19, similarly to the power supply device shown in FIG.
  • the impedance of the CC power output from the power supply 11b is inverted by passing through the gyrator 31. As a result, the CC power output from the power supply 11b is converted to CV power. Therefore, the power output from the gyrator 31 becomes CV power.
  • the secondary coil 21, the first capacitor 41b, the first coil 42d, and the capacitor 42e resonate, and the secondary coil 21, the first capacitor 41b, and the second coil 24a resonate.
  • a gyrator 33 is formed by resonance between the secondary coil 21, the coil 41d, the first coil 42d, the capacitor 42e, and the second coil 24a.
  • the transfer function of the gyrator 33 is expressed as in the following equation (18).
  • equation (18) can be expressed as the following equation (21). Therefore, the gyrator 33 can be regarded as a circuit that inverts impedance.
  • the impedance of the CV power output from the gyrator 31 is inverted by passing through the gyrator 33. As a result, the CV power output from the gyrator 31 is converted to CC power, and the power output from the gyrator 33 to the rectifier circuit 27 becomes CC power.
  • the power receiving device 2 shown in each of FIG. 18 and FIG. 19 is configured so that the first electric circuit 41 is a circuit having a first complex impedance and is capable of varying the first complex impedance, and the second electric circuit 42 is a circuit having a second complex impedance and is capable of varying the second complex impedance. Therefore, the power receiving device 2 shown in each of FIG. 18 and FIG. 19 can selectively output either power with constant voltage characteristics or power with constant current characteristics as power to be supplied to the external load 3, similar to the power receiving device 2 shown in each of FIG. 1 and FIG.
  • the power receiving device 2 shown in each of FIG. 18 and FIG. 19 can improve the resonance accuracy more than the power receiving device 2 shown in each of FIG. 1 and FIG. 2.
  • Embodiment 3 a power supply device including a voltage monitoring circuit 51 and a control circuit 52 will be described.
  • Fig. 24 is a configuration diagram showing a power supply device according to embodiment 3.
  • the power source 11 is a power source 11a that supplies power to the CV, or a power source 11b that supplies power to the CC.
  • the voltage monitoring circuit 51 monitors the voltage applied to the battery 50 from the rectifier circuit 27 , and outputs the monitored voltage to the control circuit 52 .
  • the control circuit 52 controls the switching circuit 26 based on the voltage monitored by the voltage monitoring circuit 51 . Specifically, if the voltage monitored by the voltage monitoring circuit 51 is less than the threshold value, the control circuit 52 controls the switching circuit 26 so that CC power is output from the power receiving device 2 to the rectifier circuit 27 . If the voltage monitored by the voltage monitoring circuit 51 is equal to or higher than a threshold value, the control circuit 52 controls the switching circuit 26 so that CV power is output from the power receiving device 2 to the rectifier circuit 27 .
  • the power supply device shown in FIG. 24 shows an example in which the voltage monitoring circuit 51 and the control circuit 52 are applied to the power supply device diagram shown in FIG. 1 or the power supply device shown in FIG. 2.
  • the voltage monitoring circuit 51 and the control circuit 52 may be applied to, for example, the power supply device diagram shown in FIG. 18 or the power supply device shown in FIG. 19.
  • FIG. 25 is an explanatory diagram showing an example of control of power characteristics by the control circuit 52.
  • the horizontal axis represents time
  • the vertical axis represents the voltage applied from the rectifier circuit 27 to the battery 50.
  • Th represents a threshold value.
  • the voltage monitoring circuit 51 monitors the voltage V applied to the battery 50 from the rectifier circuit 27 , and outputs the monitored result of the voltage V to the control circuit 52 .
  • the control circuit 52 obtains the monitoring result of the voltage V from the voltage monitoring circuit 51 .
  • the control circuit 52 controls the switching circuit 26 based on the voltage P monitored by the voltage monitoring circuit 51 .
  • the control circuit 52 controls the switching circuit 26 so that CC power is output from the power receiving device 2 to the rectifier circuit 27 .
  • the control circuit 52 controls the switching circuit 26 so that CC power is output from the power receiving device 2 to the rectifier circuit 27 from time t 0 until immediately before time t 1 .
  • the power source 11 is the power source 11a that supplies power to the CV
  • the control circuit 52 controls each of the switches 26a and 26b so that each of the switches 26a and 26b is in an open state.
  • the control circuit 52 controls the switches 26a and 26b so that the switch 26a is in a closed state and the switch 26b is in an open state.
  • the control circuit 52 controls the switching circuit 26 so that the CV power is output from the power receiving device 2 to the rectifier circuit 27 .
  • the control circuit 52 controls the switching circuit 26 so that CV power is output from the power receiving device 2 to the rectifier circuit 27 .
  • the power source 11 is the power source 11a that supplies CV power
  • the control circuit 52 controls each of the switches 26a and 26b so that the switch 26a is in an open state and the switch 26b is in a closed state.
  • the control circuit 52 controls each of the switches 26a and 26b so that each of the switches 26a and 26b is in an open state.
  • the load 3 is a battery 50.
  • the load 3 may be, for example, a motor or an air conditioner.
  • the control circuit 52 can switch the characteristics of the power output from the power receiving device 2 to the rectifier circuit 27 depending on the application of the load 3 .
  • the power supply device is configured to include a voltage monitoring circuit 51 that monitors the voltage applied from the rectifier circuit 27 to the load 3, and a control circuit 52 that controls the switching circuit 26 based on the voltage monitored by the voltage monitoring circuit 51. Therefore, the power supply device can selectively output either power with constant voltage characteristics or power with constant current characteristics as power to be supplied to the external load 3, regardless of whether the power source possessed by the power transmitting device 1 is power source 11a that supplies power with constant voltage characteristics or power source 11b that supplies power with constant current characteristics. In addition, the power supply device can switch the characteristics of the power output from the power receiving device 2 to the rectifier circuit 27 depending on the application of the load 3.
  • the power supply device shown in FIG. 24 includes both a voltage monitoring circuit 51 and a control circuit 52.
  • the power supply device may include a control circuit 52 without including a voltage monitoring circuit 51.
  • the control circuit 52 may control the switching circuit 26 in accordance with, for example, an external control signal.
  • the control signal may be, for example, a signal that instructs the output of power with constant voltage characteristics, or a signal that instructs the output of power with constant current characteristics.
  • this disclosure allows for free combinations of each embodiment, modifications to any of the components of each embodiment, or the omission of any of the components of each embodiment.
  • This disclosure is suitable for power receiving devices and power supply devices.

Abstract

電源(11a)(または電源11b)から出力された電力が供給される1次側コイル(13)との間で電磁誘導が生じる2次側コイル(21)と、2次側コイル(21)の一端と一端が接続されている第1の電気回路(22)と、第1の電気回路(22)の他端と一端が接続されている第2の電気回路(23)と、第3の電気回路(24)と、第4の電気回路(25)とを備えるように、受電装置(2)を構成した。また、受電装置(2)は、第3の電気回路(24)及び第4の電気回路(25)のうちのいずれか一方の電気回路を第1の電気回路(22)の他端と2次側コイル(21)の他端との間に接続し、又は、第3の電気回路(24)及び第4の電気回路(25)のそれぞれを第1の電気回路(22)の他端と2次側コイル(21)の他端との間から切り離す切替回路(26)を備えている。受電装置(2)は、電力の送信周波数において、2次側コイル(21)と第1の電気回路(22)と第2の電気回路(23)とが共振し、第4の電気回路(25)が第1の電気回路(22)の他端と2次側コイル(21)の他端との間に接続されているとき、第2の電気回路(23)と第4の電気回路(25)とが共振し、第3の電気回路(24)が第1の電気回路(22)の他端と2次側コイル(21)の他端との間に接続されているとき、2次側コイル(21)と第1の電気回路(22)と第3の電気回路(24)とが共振するものである。

Description

受電装置及び給電装置
 本開示は、受電装置及び給電装置に関するものである。
 送電装置と受電装置とを備え、送電装置が有する1次側コイルと受電装置が有する2次側コイルとが電磁誘導を生じることで、送電装置から受電装置に非接触で電力が伝送される給電装置がある。
 そのような給電装置として、例えば、特許文献1には、2次側コイルのほかに、コンデンサ(以下「第1のコンデンサ」という)と、スイッチと、コンデンサ(以下「第2のコンデンサ」という)と、整流部とを有する受電装置を備えた給電装置が開示されている。
 第1のコンデンサの一端は、2次側コイルの一端と接続され、第1のコンデンサの他端は、スイッチの一端及び整流部の第1の入力端子のそれぞれと接続されている。スイッチの一端は、第1のコンデンサの他端及び整流部の第1の入力端子のそれぞれと接続されている。第2のコンデンサの一端は、スイッチの他端と接続され、第2のコンデンサの他端は、2次側コイルの他端及び整流部の第2の入力端子のそれぞれと接続されている。
 送電装置の電源から、定電流特性の電力が1次側コイルに供給されたとき、1次側コイルと2次側コイルとの間で電磁誘導が生じることで、定電流特性の電力が定電圧特性の電力に変換される。このとき、スイッチが閉状態であれば、2次側コイルと第1のコンデンサと第2のコンデンサとによって、さらに、定電圧特性の電力が定電流特性の電力に変換される。このため、スイッチが閉状態であれば、定電流特性の電力が整流部に供給される。一方、スイッチが開状態であれば、定電圧特性の電力がそのまま整流部に供給される。
特開2010-233354号公報
 特許文献1に開示されている受電装置では、送電装置が有する電源が、定電圧特性の電力を供給する電源である場合、1次側コイルと2次側コイルとの間で電磁誘導が生じることで、定電圧特性の電力が定電流特性の電力に変換される。スイッチの開閉状態が切り替えられても、整流部に供給される電力は、変換後の電力である定電流特性の電力であり、当該受電装置は、定電圧特性の電力を整流部に供給することができないという課題があった。
 本開示は、上記のような課題を解決するためになされたもので、送電装置が有する電源が、定電圧特性の電力を供給する電源であるのか、定電流特性の電力を供給する電源であるのかにかかわらず、外部の負荷に供給する電力として、定電圧特性の電力、又は、定電流特性の電力のいずれかを選択的に出力することができる受電装置を得ることを目的とする。
 本開示に係る受電装置は、電源から出力された電力が供給される1次側コイルとの間で電磁誘導が生じる2次側コイルと、2次側コイルの一端と一端が接続されている第1の電気回路と、第1の電気回路の他端と一端が接続されている第2の電気回路と、第3の電気回路と、第4の電気回路とを備えている。また、受電装置は、第3の電気回路及び第4の電気回路のうちのいずれか一方の電気回路を第1の電気回路の他端と2次側コイルの他端との間に接続し、又は、第3の電気回路及び第4の電気回路のそれぞれを第1の電気回路の他端と2次側コイルの他端との間から切り離す切替回路を備えている。受電装置は、電力の送信周波数において、2次側コイルと第1の電気回路と第2の電気回路とが共振し、第4の電気回路が第1の電気回路の他端と2次側コイルの他端との間に接続されているとき、第2の電気回路と第4の電気回路とが共振し、第3の電気回路が第1の電気回路の他端と2次側コイルの他端との間に接続されているとき、2次側コイルと第1の電気回路と第3の電気回路とが共振するものである。
 本開示によれば、送電装置が有する電源が、定電圧特性の電力を供給する電源であるのか、定電流特性の電力を供給する電源であるのかにかかわらず、外部の負荷に供給する電力として、定電圧特性の電力、又は、定電流特性の電力のいずれかを選択的に出力することができる。
実施の形態1に係る給電装置(その1)を示す構成図である。 実施の形態1に係る給電装置(その2)を示す構成図である。 スイッチ26aが開状態で、スイッチ26bが閉状態であるときに、1次側コイル13と2次側コイル21との間で電磁誘導を生じている状態を示す説明図である。 コンデンサ12と1次側コイル13とが直列共振しているときに、1次側コイル13と2次側コイル21との間で電磁誘導を生じている状態を示す説明図である。 スイッチ26a及びスイッチ26bのそれぞれが開状態であるときに、1次側コイル13と2次側コイル21との間で電磁誘導を生じている状態を示す説明図である。 コンデンサ12と1次側コイル13とが直列共振し、かつ、2次側コイル21と第1のコンデンサ22aと第1のコイル23aとが直列共振しているときに、1次側コイル13と2次側コイル21との間で電磁誘導を生じている状態を示す説明図である。 スイッチ26a及びスイッチ26bのそれぞれが開状態であるときに、1次側コイル13と2次側コイル21との間で電磁誘導を生じている状態を示す説明図である。 コンデンサ12と1次側コイル13とが直列共振し、かつ、2次側コイル21と第1のコンデンサ22aと第1のコイル23aとが直列共振しているときに、1次側コイル13と2次側コイル21との間で電磁誘導を生じている状態を示す説明図である。 スイッチ26aが閉状態で、スイッチ26bが開状態であるときに、1次側コイル13と2次側コイル21との間で電磁誘導を生じている状態を示す説明図である。 コンデンサ12と1次側コイル13とが直列共振しているときに、1次側コイル13と2次側コイル21との間で電磁誘導を生じている状態を示す説明図である。 スイッチ26a及びスイッチ26bにおけるそれぞれの開閉状態と、受電装置2から負荷3に出力される電力の特性(CV、又は、CC)との関係を示す説明図である。 実施の形態1に係る他の給電装置(その1)を示す構成図である。 給電装置が備えるジャイレータの個数が奇数である状態を示す説明図である。 給電装置が備えるジャイレータの個数が偶数である状態を示す説明図である。 実施の形態1に係る他の給電装置(その2)を示す構成図である。 給電装置が備えるジャイレータの個数が奇数である状態を示す説明図である。 給電装置が備えるジャイレータの個数が偶数である状態を示す説明図である。 実施の形態2に係る給電装置(その1)を示す構成図である。 実施の形態2に係る給電装置(その2)を示す構成図である。 CVの電力が負荷3に供給される場合の給電装置を示す説明図である。 CCの電力が負荷3に供給される場合の給電装置を示す説明図である。 CVの電力が負荷3に供給される場合の給電装置を示す説明図である。 CCの電力が負荷3に供給される場合の給電装置を示す説明図である。 実施の形態3に係る給電装置を示す構成図である。 制御回路52による電力特性の制御例を示す説明図である。
 以下、本開示をより詳細に説明するために、本開示を実施するための形態について、添付の図面に従って説明する。
実施の形態1.
 図1は、実施の形態1に係る給電装置(その1)を示す構成図である。
 図1に示す給電装置は、定電圧特性の電力(以下「CVの電力」という)を供給する電源11aを有する送電装置1及び受電装置2を備えている。
 送電装置1は、非接触で電力を受電装置2に伝送する。
 受電装置2は、送電装置1から、非接触で電力を受電し、受電した電力を負荷3に供給する。
 負荷3は、受電装置2から、電力の供給を受ける。
 送電装置1は、電源11a、コンデンサ12及び1次側コイル13を備えている。
 電源11aは、CVの電力を供給する電源である。
 コンデンサ12の一端は、電源11aの一端と接続されている。
 コンデンサ12の他端は、1次側コイル13の一端と接続されている。
 コンデンサ12のキャパシタンスは、Cである。
 1次側コイル13の一端は、コンデンサ12の他端と接続されている。
 1次側コイル13の他端は、電源11aの他端と接続されている。
 1次側コイル13のインダクタンスは、Lである。
 電力の送電周波数fにおいて、コンデンサ12と1次側コイル13とは、直列共振する。
 受電装置2は、2次側コイル21、第1の電気回路22、第2の電気回路23、第3の電気回路24、第4の電気回路25、切替回路26及び整流回路27を備えている。
 2次側コイル21は、電源11aから出力された電力が供給される1次側コイル13との間で電磁誘導が生じる。
 2次側コイル21のインダクタンスは、Lである。
 第1の電気回路22は、第1の複素インピーダンスZを有する回路であり、第1のコンデンサ22aを備えている。
 第1のコンデンサ22aの一端は、2次側コイル21の一端と接続されている。
 第1のコンデンサ22aの他端は、後述する第1のコイル23aの一端、スイッチ26aの一端及びスイッチ26bの一端のそれぞれと接続されている。
 第1のコンデンサ22aのキャパシタンスは、Cである。
 図1に示す給電装置では、第1の電気回路22が第1のコンデンサ22aを備えており、第1の複素インピーダンスZが、第1のコンデンサ22aのキャパシタンスCによって決定されている。しかし、これは一例に過ぎず、第1の電気回路22が、例えば、第1のコンデンサ22aのほかに、コイルを備え、第1の複素インピーダンスZが、第1のコンデンサ22aのキャパシタンスCと当該コイルのインダクタンスとによって決定されるものであってもよい。
 第2の電気回路23は、第2の複素インピーダンスZを有する回路であり、第1のコイル23aを備えている。
 第1のコイル23aの一端は、第1のコンデンサ22aの他端、スイッチ26aの一端及びスイッチ26bの一端のそれぞれと接続されている。
 第1のコイル23aの他端は、整流回路27の第1の入力端子27aと接続されている。
 第1のコイル23aのインダクタンスは、Lである。
 図1に示す給電装置では、第2の電気回路23が第1のコイル23aを備えており、第2の複素インピーダンスZが、第1のコイル23aのインダクタンスLによって決定されている。しかし、これは一例に過ぎず、第2の電気回路23が、例えば、第1のコイル23aのほかに、コンデンサを備え、第2の複素インピーダンスZが、第1のコイル23aのインダクタンスLと当該コンデンサのキャパシタンスとによって決定されるものであってもよい。
 第3の電気回路24は、第3の複素インピーダンスZを有する回路であり、第2のコイル24aを備えている。
 第2のコイル24aの一端は、スイッチ26aの他端と接続されている。
 第2のコイル24aの他端は、2次側コイル21の他端、後述する第2のコンデンサ25aの他端及び整流回路27の第2の入力端子27bのそれぞれと接続されている。
 第2のコイル24aのインダクタンスは、Lである。
 図1に示す給電装置では、第3の電気回路24が第2のコイル24aを備えており、第3の複素インピーダンスZが、第2のコイル24aのインダクタンスLによって決定されている。しかし、これは一例に過ぎず、第3の電気回路24が、例えば、第2のコイル24aのほかに、コンデンサを備え、第3の複素インピーダンスZが、第2のコイル24aのインダクタンスLと当該コンデンサのキャパシタンスとによって決定されるものであってもよい。
 第4の電気回路25は、第4の複素インピーダンスZを有する回路であり、第2のコンデンサ25aを備えている。
 第2のコンデンサ25aの一端は、スイッチ26bの他端と接続されている。
 第2のコンデンサ25aの他端は、2次側コイル21の他端、第2のコイル24aの他端及び整流回路27の第2の入力端子27bのそれぞれと接続されている。
 第2のコンデンサ25aのキャパシタンスは、Cである。
 図1に示す給電装置では、第4の電気回路25が第2のコンデンサ25aを備えており、第4の複素インピーダンスZが、第2のコンデンサ25aのキャパシタンスCによって決定されている。しかし、これは一例に過ぎず、第4の電気回路25が、例えば、第2のコンデンサ25aのほかに、コイルを備え、第4の複素インピーダンスZが、第2のコンデンサ25aのキャパシタンスCと当該コイルのインダクタンスとによって決定されるものであってもよい。
 電力の送電周波数fにおいて、2次側コイル21と第1の電気回路22と第2の電気回路23とが共振する。つまり、電力の送電周波数fにおいて、2次側コイル21と第1の電気回路22と第2の電気回路23とが共振するように、2次側コイル21のインダクタンスLと第1のコンデンサ22aのキャパシタンスCと第1のコイル23aのインダクタンスLとが設定されている。
 また、電力の送電周波数fにおいて、第4の電気回路25が第1の電気回路22の他端と2次側コイル21の他端との間に接続されているとき、第2の電気回路23と第4の電気回路25とが共振する。つまり、電力の送電周波数fにおいて、第2の電気回路23と第4の電気回路25とが共振するように、第1のコイル23aのインダクタンスLと第2のコンデンサ25aのキャパシタンスCとが設定されている。
 また、電力の送電周波数fにおいて、第3の電気回路24が第1の電気回路22の他端と2次側コイル21の他端との間に接続されているとき、2次側コイル21と第1の電気回路22と第3の電気回路24とが共振する。つまり、電力の送電周波数fにおいて、2次側コイル21と第1の電気回路22と第3の電気回路24とが共振するように、2次側コイル21のインダクタンスLと第1のコンデンサ22aのキャパシタンスCと第2のコイル24aのインダクタンスLとが設定されている。
 図1に示す給電装置での共振は、電力の送電周波数fにおいて、コイルとコンデンサとの合成インピーダンスの虚部が概ね0であることを意味する。概ね0とは、厳密に0であるものに限るものではなく、実用上問題のない範囲で、合成インピーダンスの虚部が0に近いものを含む概念である。
 切替回路26は、スイッチ26a及びスイッチ26bを備えている。
 スイッチ26aの一端は、第1のコンデンサ22aの他端、第1のコイル23aの一端及びスイッチ26bの一端のそれぞれと接続されている。
 スイッチ26aの他端は、第2のコイル24aの一端と接続されている。
 スイッチ26bの一端は、第1のコンデンサ22aの他端、第1のコイル23aの一端及びスイッチ26aの一端のそれぞれと接続されている。
 スイッチ26bの他端は、第2のコンデンサ25aの一端と接続されている。
 切替回路26は、第3の電気回路24及び第4の電気回路25のうちのいずれか一方の電気回路を第1の電気回路22の他端と2次側コイル21の他端との間に接続し、又は、第3の電気回路24及び第4の電気回路25のそれぞれを第1の電気回路22の他端と2次側コイル21の他端との間から切り離すように動作をする。
 図1に示す給電装置では、電源11aがCVの電力を供給する電源である。このため、具体的には、切替回路26は、受電装置2からCVの電力を負荷3に供給させる場合、スイッチ26bを閉状態にして、第2のコンデンサ25aを第1のコンデンサ22aの他端と2次側コイル21の他端との間に接続する。また、切替回路26は、スイッチ26aを開状態にして、第2のコイル24aを第1のコンデンサ22aの他端と2次側コイル21の他端との間から切り離すように動作する。
 切替回路26は、受電装置2から定電流特性の電力(以下「CCの電力」という)を負荷3に供給させる場合、スイッチ26a,26bを開状態にして、第2のコイル24a及び第2のコンデンサ25aのそれぞれを第1のコンデンサ22aの他端と2次側コイル21の他端との間から切り離すように動作する。
 整流回路27の第1の入力端子27aは、第1のコイル23aの他端と接続されている。
 整流回路27の第2の入力端子27bは、2次側コイル21の他端、第2のコイル24aの他端及び第2のコンデンサ25aの他端のそれぞれと接続されている。
 整流回路27の第1の出力端子27c及び第2の出力端子27dのそれぞれは、負荷3と接続されている。
 整流回路27は、第1の入力端子27aと第2の入力端子27bとから与えられた交流の電力を整流し、整流後の電力を負荷3に供給する。
 図2は、実施の形態1に係る給電装置(その2)を示す構成図である。
 図2に示す給電装置は、CCの電力を供給する電源11bを有する送電装置1及び受電装置2を備えている。
 電源11bは、CCの電力を供給する電源である。
 図2に示す給電装置では、電源11bが、CCの電力を供給する電源であるのに対し、図1に示す給電装置では、電源11aが、CVの電力を供給する電源である点でのみ相違している。
 つまり、図1に示す給電装置の受電装置2と、図2に示す給電装置の受電装置2とは、同一構成である。
 次に、図1に示す給電装置の動作について説明する。
 最初に、CVの電力が負荷3に供給される場合の動作について説明する。
 CVの電力が負荷3に供給される場合、図示せぬ制御回路によって、スイッチ26aが開状態に制御され、スイッチ26bが閉状態に制御される。
 図3は、スイッチ26aが開状態で、スイッチ26bが閉状態であるときに、1次側コイル13と2次側コイル21との間で電磁誘導を生じている状態を示す説明図である。
 送電装置1の電源11aからCVの電力が出力されると、電力の送電周波数fにおいて、コンデンサ12と1次側コイル13とが、図3に示すように、直列共振する。
 このとき、1次側コイル13と2次側コイル21との間で電磁誘導が生じる。
 図3において、Lは、以下の式(1)に示すように、1次側コイル13と2次側コイル21との相互インダクタンスである。図3では、整流回路27の記載が省略されている。

Figure JPOXMLDOC01-appb-I000001
 式(1)において、kは、結合係数である。
 コンデンサ12と1次側コイル13とが直列共振している状態では、送電装置1において、コンデンサ12と1次側コイル13とを無視することができるため、図3は、図4のように表すことができる。
 図4は、コンデンサ12と1次側コイル13とが直列共振しているときに、1次側コイル13と2次側コイル21との間で電磁誘導を生じている状態を示す説明図である。図4では、整流回路27の記載が省略されている。
 1次側コイル13と2次側コイル21との間で電磁誘導が生じることで、図3及び図4に示すように、ジャイレータ31が形成される。ジャイレータ31は、インピーダンスを反転させる回路である。
 ジャイレータ31の伝達関数は、以下の式(2)のように表される。

Figure JPOXMLDOC01-appb-I000002
 式(2)において、Vは、ジャイレータ31に印加される電圧、Iは、電源11aからジャイレータ31に流れる電流である。
 VLmは、ジャイレータ31の出力電圧、ILmは、ジャイレータ31から出力される電流である。
 電源11aから出力されたCVの電力は、ジャイレータ31を通過することで、インピーダンスが反転される。その結果、電源11aから出力されたCVの電力は、CCの電力に変換される。したがって、ジャイレータ31から出力された電力は、CCの電力になる。
 ジャイレータ31から出力されたCCの電力は、ジャイレータ32に印加される。
 ジャイレータ32の伝達関数は、以下の式(3)のように表される。

Figure JPOXMLDOC01-appb-I000003
 式(3)において、Vは、ジャイレータ32の出力電圧、Iは、ジャイレータ32から出力される電流、ωは、角周波数である。
 以下の式(5)が成立する条件の下では、式(3)は、以下の式(6)のように表すことができる。したがって、ジャイレータ32は、インピーダンスを反転させる回路とみなすことができる。

Figure JPOXMLDOC01-appb-I000004
 ジャイレータ31から出力されたCCの電力は、ジャイレータ32を通過することで、インピーダンスが反転される。その結果、ジャイレータ31から出力されたCCの電力は、CVの電力に変換され、ジャイレータ32から整流回路27に出力された電力は、CVの電力になる。
 整流回路27は、ジャイレータ32から出力されたCVの電力を整流し、整流後のCVの電力を負荷3に供給する。
 次に、CCの電力が負荷3に供給される場合の動作について説明する。
 CCの電力が負荷3に供給される場合、図示せぬ制御回路によって、スイッチ26a及びスイッチ26bのそれぞれが開状態に制御される。
 図5は、スイッチ26a及びスイッチ26bのそれぞれが開状態であるときに、1次側コイル13と2次側コイル21との間で電磁誘導を生じている状態を示す説明図である。図5では、整流回路27の記載が省略されている。
 送電装置1の電源11aからCVの電力が出力されると、電力の送電周波数fにおいて、コンデンサ12と1次側コイル13とが、図5に示すように、直列共振する。
 このとき、1次側コイル13と2次側コイル21との間で電磁誘導が生じ、送電周波数fにおいて、2次側コイル21と第1のコンデンサ22aと第1のコイル23aとが、図5に示すように、直列共振する。
 コンデンサ12と1次側コイル13とが直列共振している状態では、送電装置1において、コンデンサ12と1次側コイル13とを無視することができる。また、2次側コイル21と第1のコンデンサ22aと第1のコイル23aとが直列共振している状態では、受電装置2において、2次側コイル21と第1のコンデンサ22aと第1のコイル23aとを無視することができる。このため、図5は、図6のように表すことができる。
 図6は、コンデンサ12と1次側コイル13とが直列共振し、かつ、2次側コイル21と第1のコンデンサ22aと第1のコイル23aとが直列共振しているときに、1次側コイル13と2次側コイル21との間で電磁誘導を生じている状態を示す説明図である。図6では、整流回路27の記載が省略されている。
 1次側コイル13と2次側コイル21との間で電磁誘導が生じることで、図5及び図6に示すように、ジャイレータ31が形成される。ジャイレータ31の伝達関数は、以下の式(7)のように表される。

Figure JPOXMLDOC01-appb-I000005
 電源11aから出力されたCVの電力は、ジャイレータ31を通過することで、インピーダンスが反転される。その結果、電源11aから出力されたCVの電力は、CCの電力に変換される。したがって、ジャイレータ31から出力された電力は、CCの電力になる。
 ジャイレータ31から出力されたCCの電力は、整流回路27に印加される。
 整流回路27は、ジャイレータ32から出力されたCCの電力を整流し、整流後のCCの電力を負荷3に供給する。
 次に、図2に示す給電装置の動作について説明する。
 最初に、CVの電力が負荷3に供給される場合の動作について説明する。
 CVの電力が負荷3に供給される場合、図示せぬ制御回路によって、スイッチ26a及びスイッチ26bのそれぞれが開状態に制御される。
 図7は、スイッチ26a及びスイッチ26bのそれぞれが開状態であるときに、1次側コイル13と2次側コイル21との間で電磁誘導を生じている状態を示す説明図である。図7では、整流回路27の記載が省略されている。
 送電装置1の電源11bからCCの電力が出力されると、電力の送電周波数fにおいて、コンデンサ12と1次側コイル13とが、図7に示すように、直列共振する。
 このとき、1次側コイル13と2次側コイル21との間で電磁誘導が生じ、送電周波数fにおいて、2次側コイル21と第1のコンデンサ22aと第1のコイル23aとが、図7に示すように、直列共振する。
 コンデンサ12と1次側コイル13とが直列共振している状態では、送電装置1において、コンデンサ12と1次側コイル13とを無視することができる。また、2次側コイル21と第1のコンデンサ22aと第1のコイル23aとが直列共振している状態では、受電装置2において、2次側コイル21と第1のコンデンサ22aと第1のコイル23aとを無視することができる。このため、図7は、図8のように表すことができる。
 図8は、コンデンサ12と1次側コイル13とが直列共振し、かつ、2次側コイル21と第1のコンデンサ22aと第1のコイル23aとが直列共振しているときに、1次側コイル13と2次側コイル21との間で電磁誘導を生じている状態を示す説明図である。図8では、整流回路27の記載が省略されている。
 1次側コイル13と2次側コイル21との間で電磁誘導が生じることで、図7及び図8に示すように、ジャイレータ31が形成される。ジャイレータ31の伝達関数は、以下の式(8)のように表される。

Figure JPOXMLDOC01-appb-I000006
 電源11bから出力されたCCの電力は、ジャイレータ31を通過することで、インピーダンスが反転される。その結果、電源11bから出力されたCCの電力は、CVの電力に変換される。したがって、ジャイレータ31から出力された電力は、CVの電力になる。
 ジャイレータ31から出力されたCVの電力は、整流回路27に印加される。
 整流回路27は、ジャイレータ32から出力されたCVの電力を整流し、整流後のCVの電力を負荷3に供給する。
 次に、CCの電力が負荷3に供給される場合の動作について説明する。
 CCの電力が負荷3に供給される場合、図示せぬ制御回路によって、スイッチ26aが閉状態に制御され、スイッチ26bが開状態に制御される。
 図9は、スイッチ26aが閉状態で、スイッチ26bが開状態であるときに、1次側コイル13と2次側コイル21との間で電磁誘導を生じている状態を示す説明図である。図9では、整流回路27の記載が省略されている。
 送電装置1の電源11aからCCの電力が出力されると、電力の送電周波数fにおいて、コンデンサ12と1次側コイル13とが、図9に示すように、直列共振する。
 このとき、1次側コイル13と2次側コイル21との間で電磁誘導が生じる。
 コンデンサ12と1次側コイル13とが直列共振している状態では、送電装置1において、コンデンサ12と1次側コイル13とを無視することができるため、図9は、図10のように表すことができる。
 図10は、コンデンサ12と1次側コイル13とが直列共振しているときに、1次側コイル13と2次側コイル21との間で電磁誘導を生じている状態を示す説明図である。図10では、整流回路27の記載が省略されている。
 1次側コイル13と2次側コイル21との間で電磁誘導が生じることで、図9及び図10に示すように、ジャイレータ31が形成される。
 ジャイレータ31の伝達関数は、以下の式(9)のように表される。

Figure JPOXMLDOC01-appb-I000007
 電源11bから出力されたCCの電力は、ジャイレータ31を通過することで、インピーダンスが反転される。その結果、電源11bから出力されたCCの電力は、CVの電力に変換される。したがって、ジャイレータ31から出力された電力は、CVの電力になる。
 ジャイレータ31から出力されたCVの電力は、ジャイレータ33に印加される。
 ジャイレータ33の伝達関数は、以下の式(10)のように表される。

Figure JPOXMLDOC01-appb-I000008
 以下の式(12)が成立する条件の下では、式(10)は、以下の式(13)のように表すことができる。したがって、ジャイレータ33は、インピーダンスを反転させる回路とみなすことができる。

Figure JPOXMLDOC01-appb-I000009
 ジャイレータ31から出力されたCVの電力は、ジャイレータ33を通過することで、インピーダンスが反転される。その結果、ジャイレータ31から出力されたCVの電力は、CCの電力に変換され、ジャイレータ33から整流回路27に出力された電力は、CCの電力になる。
 整流回路27は、ジャイレータ33から出力されたCCの電力を整流し、整流後のCCの電力を負荷3に供給する。
 図11は、スイッチ26a及びスイッチ26bにおけるそれぞれの開閉状態と、受電装置2から負荷3に出力される電力の特性(CV、又は、CC)との関係を示す説明図である。
 図11において、ONは、スイッチが閉状態であることを示し、OFFは、スイッチが開状態であることを示している。
 図11より、送電装置1が、CVの電力を供給する電源11aを有する場合、スイッチ26aがOFFで、スイッチ26bがONであれば、受電装置2から負荷3に出力される電力の特性は、CVであることがわかる。
 また、送電装置1が、CVの電力を供給する電源11aを有する場合、スイッチ26a及びスイッチ26bのそれぞれがOFFであれば、受電装置2から負荷3に出力される電力の特性は、CCであることがわかる。
 送電装置1が、CCの電力を供給する電源11bを有する場合、スイッチ26a及びスイッチ26bのそれぞれがOFFであれば、受電装置2から負荷3に出力される電力の特性は、CVであることがわかる。
 また、送電装置1が、CCの電力を供給する電源11bを有する場合、スイッチ26aがONで、スイッチ26bがOFFであれば、受電装置2から負荷3に出力される電力の特性は、CCであることがわかる。
 以上の実施の形態1では、電源11a(または電源11b)から出力された電力が供給される1次側コイル13との間で電磁誘導が生じる2次側コイル21と、2次側コイル21の一端と一端が接続されている第1の電気回路22と、第1の電気回路22の他端と一端が接続されている第2の電気回路23と、第3の電気回路24と、第4の電気回路25とを備えるように、受電装置2を構成した。また、受電装置2は、第3の電気回路24及び第4の電気回路25のうちのいずれか一方の電気回路を第1の電気回路22の他端と2次側コイル21の他端との間に接続し、又は、第3の電気回路24及び第4の電気回路25のそれぞれを第1の電気回路22の他端と2次側コイル21の他端との間から切り離す切替回路26を備えている。受電装置2は、電力の送信周波数において、2次側コイル21と第1の電気回路22と第2の電気回路23とが共振し、第4の電気回路25が第1の電気回路22の他端と2次側コイル21の他端との間に接続されているとき、第2の電気回路23と第4の電気回路25とが共振し、第3の電気回路24が第1の電気回路22の他端と2次側コイル21の他端との間に接続されているとき、2次側コイル21と第1の電気回路22と第3の電気回路24とが共振するものである。したがって、受電装置2は、送電装置1が有する電源が、定電圧特性の電力を供給する電源11aであるのか、定電流特性の電力を供給する電源11bであるのかにかかわらず、外部の負荷に供給する電力として、定電圧特性の電力、又は、定電流特性の電力のいずれかを選択的に出力することができる。
 図1に示す給電装置は、1つのジャイレータ31、又は、2つのジャイレータ31,32を備えている。
 また、図2に示す給電装置は、1つのジャイレータ31、又は、2つのジャイレータ31,33を備えている。
 しかしながら、給電装置が備えるジャイレータの個数は、1つ、又は、2つに限るものではない。
 送電装置1が有する電源が、CVの電力を供給する電源11aである場合、給電装置が備えるジャイレータの個数が奇数であれば、受電装置2から負荷3に出力される電力がCCの電力となり、給電装置が備えるジャイレータの個数が偶数であれば、受電装置2から負荷3に出力される電力がCVの電力となる。
 したがって、送電装置1が有する電源が、CVの電力を供給する電源11aである場合、給電装置は、例えば、図12のように構成されていてもよい。
 図12は、実施の形態1に係る他の給電装置(その1)を示す構成図である。
 図12において、スイッチ26a,26a’が開状態で、スイッチ26b,26b’が閉状態であれば、図13に示すように、給電装置が備えるジャイレータの個数が奇数である3つとなるため、受電装置2から負荷3に出力される電力がCCの電力となる。
 また、スイッチ26aが開状態、スイッチ26bが閉状態、スイッチ26a’26b’が開状態であれば、図14に示すように、給電装置が備えるジャイレータの個数が偶数である2つとなるため、受電装置2から負荷3に出力される電力がCVの電力となる。
 図13は、給電装置が備えるジャイレータの個数が奇数である状態を示す説明図であり、図14は、給電装置が備えるジャイレータの個数が偶数である状態を示す説明図である。
 送電装置1が有する電源が、CCの電力を供給する電源11bである場合、給電装置は、例えば、図15のように構成されていてもよい。
 図15は、実施の形態1に係る他の給電装置(その2)を示す構成図である。
 図15において、スイッチ26a,26a’が閉状態で、スイッチ26b,26b’が開状態であれば、図16に示すように、給電装置が備えるジャイレータの個数が奇数である3つとなるため、受電装置2から負荷3に出力される電力がCVの電力となる。
 また、スイッチ26aが閉状態、スイッチ26bが開状態で、スイッチ26a’26b’が開状態であれば、図17に示すように、給電装置が備えるジャイレータの個数が偶数である2つとなるため、受電装置2から負荷3に出力される電力がCCの電力となる。
 図16は、給電装置が備えるジャイレータの個数が奇数である状態を示す説明図であり、図17は、給電装置が備えるジャイレータの個数が偶数である状態を示す説明図である。
実施の形態2.
 実施の形態2では、第1の電気回路41が、第1の複素インピーダンスZの可変が可能な回路であり、第2の電気回路42が、第2の複素インピーダンスZの可変が可能な回路である受電装置2について説明する。
 図18は、実施の形態2に係る給電装置(その1)を示す構成図である。図18において、図1と同一符号は同一又は相当部分を示すので説明を省略する。
 図18に示す給電装置は、CVの電力を供給する電源11aを有する送電装置1及び受電装置2を備えている。
 第1の電気回路41は、第1の複素インピーダンスZを有する回路であって、第1の複素インピーダンスZの可変が可能な回路である。
 第1の電気回路41は、スイッチ41a、第1のコンデンサ41b、スイッチ41c、コイル41d及び第1のコンデンサ41eを備えている。
 スイッチ41a及びスイッチ41cにおけるそれぞれの開閉状態が変化することで、第1の複素インピーダンスZが変化する。
 スイッチ41aの一端は、2次側コイル21の一端及びスイッチ41cの一端のそれぞれと接続されている。
 スイッチ41aの他端は、第1のコンデンサ41bの一端と接続されている。
 第1のコンデンサ41bの一端は、スイッチ41aの他端と接続されている。
 第1のコンデンサ41bの他端は、スイッチ42aの一端、スイッチ42cの一端、スイッチ26aの一端、スイッチ26bの一端及び第1のコンデンサ41eの他端のそれぞれと接続されている。
 第1のコンデンサ41bのキャパシタンスは、C11である。
 スイッチ41cの一端は、2次側コイル21の一端及びスイッチ41aの一端のそれぞれと接続されている。
 スイッチ41cの他端は、コイル41dの一端と接続されている。
 コイル41dの一端は、スイッチ41cの他端と接続されている。
 コイル41dの他端は、第1のコンデンサ41eの一端と接続されている。
 コイル41dのインダクタンスは、L11である。
 第1のコンデンサ41eの一端は、コイル41dの他端と接続されている。
 第1のコンデンサ41eの他端は、スイッチ42aの一端、スイッチ42cの一端、スイッチ26aの一端、スイッチ26bの一端及び第1のコンデンサ41bの他端のそれぞれと接続されている。
 第1のコンデンサ41eのキャパシタンスは、C12である。
 第2の電気回路42は、第2の複素インピーダンスZを有する回路であって、第2の複素インピーダンスZの可変が可能な回路である。
 第2の電気回路42は、スイッチ42a、第1のコイル42b、スイッチ42c、第1のコイル42d及びコンデンサ42eを備えている。
 スイッチ42a及びスイッチ42cにおけるそれぞれの開閉状態が変化することで、第2の複素インピーダンスZが変化する。
 スイッチ42aの一端は、第1のコンデンサ41bの他端、第1のコンデンサ41eの他端、スイッチ26aの一端、スイッチ26bの一端及びスイッチ42cの一端のそれぞれと接続されている。
 スイッチ42aの他端は、第1のコイル42bの一端と接続されている。
 第1のコイル42bの一端は、スイッチ42aの他端と接続されている。
 第1のコイル42bの他端は、整流回路27の第1の入力端子27a及びコンデンサ42eの他端のそれぞれと接続されている。
 第1のコイル42bのインダクタンスは、L12である。
 スイッチ42cの一端は、第1のコンデンサ41bの他端、第1のコンデンサ41eの他端、スイッチ26aの一端、スイッチ26bの一端及びスイッチ42aの一端のそれぞれと接続されている。
 スイッチ42cの他端は、第1のコイル42dの一端と接続されている。
 第1のコイル42dの一端は、スイッチ42cの他端と接続されている。
 第1のコイル42dの他端は、コンデンサ42eの一端と接続されている。
 第1のコイル42dのインダクタンスは、L13である。
 コンデンサ42eの一端は、第1のコイル42dの他端と接続されている。
 コンデンサ42eの他端は、整流回路27の第1の入力端子27a及び第1のコイル42bの他端のそれぞれと接続されている。
 コンデンサ42eのキャパシタンスは、C13である。
 図19は、実施の形態2に係る給電装置(その2)を示す構成図である。
 図19に示す給電装置は、CCの電力を供給する電源11bを有する送電装置1及び受電装置2を備えている。
 図19に示す給電装置では、電源11bが、CCの電力を供給する電源であるのに対し、図18に示す給電装置では、電源11aが、CVの電力を供給する電源である点でのみ相違している。
 つまり、図18に示す給電装置の受電装置2と、図19に示す給電装置の受電装置2とは、同一構成である。
 次に、図18に示す給電装置の動作について説明する。
 最初に、CVの電力が負荷3に供給される場合の動作について説明する。
 CVの電力が負荷3に供給される場合、図示せぬ制御回路によって、スイッチ26aが開状態に制御され、スイッチ26bが閉状態に制御される。
 また、図示せぬ制御回路によって、スイッチ41a,42cが開状態に制御され、スイッチ41c,42aが閉状態に制御される。
 制御回路によって、このように制御される場合、図18に示す給電装置は、図20のように表される。
 図20は、CVの電力が負荷3に供給される場合の給電装置を示す説明図である。
 送電装置1の電源11aからCVの電力が出力されると、電力の送電周波数fにおいて、コンデンサ12と1次側コイル13とが直列共振し、1次側コイル13と2次側コイル21との間で電磁誘導が生じる。
 1次側コイル13と2次側コイル21との間で電磁誘導が生じることで、図18に示す給電装置には、図1に示す給電装置と同様に、ジャイレータ31が形成される。
 電源11aから出力されたCVの電力は、ジャイレータ31を通過することで、インピーダンスが反転される。その結果、電源11aから出力されたCVの電力は、CCの電力に変換される。したがって、ジャイレータ31から出力された電力は、CCの電力になる。
 送電周波数fにおいて、2次側コイル21とコイル41dと第1のコンデンサ41eと第1のコイル42bとが共振し、第1のコイル42bと第2のコンデンサ25aとが共振する。
 2次側コイル21とコイル41dと第1のコンデンサ41eと第1のコイル42bと第2のコンデンサ25aとが共振することによって、ジャイレータ32が形成される。
 ジャイレータ32の伝達関数は、以下の式(14)のように表される。

Figure JPOXMLDOC01-appb-I000010
 以下の式(16)が成立する条件の下では、式(14)は、以下の式(17)のように表すことができる。したがって、ジャイレータ34は、インピーダンスを反転させる回路とみなすことができる。

Figure JPOXMLDOC01-appb-I000011
 ジャイレータ31から出力されたCCの電力は、ジャイレータ32を通過することで、インピーダンスが反転される。その結果、ジャイレータ32から出力されたCCの電力は、CVの電力に変換され、ジャイレータ32から整流回路27に出力された電力は、CVの電力になる。
 次に、CCの電力が負荷3に供給される場合の動作について説明する。
 CCの電力が負荷3に供給される場合、図示せぬ制御回路によって、スイッチ26a及びスイッチ26bのそれぞれが開状態に制御される。
 また、図示せぬ制御回路によって、スイッチ41c,42cが開状態に制御され、スイッチ41a,42aが閉状態に制御される。
 制御回路によって、このように制御される場合、図18に示す給電装置は、図21のように表される。
 図21は、CCの電力が負荷3に供給される場合の給電装置を示す説明図である。
 送電装置1の電源11aからCVの電力が出力されると、電力の送電周波数fにおいて、コンデンサ12と1次側コイル13とが直列共振し、1次側コイル13と2次側コイル21との間で電磁誘導が生じる。
 1次側コイル13と2次側コイル21との間で電磁誘導が生じることで、図18に示す給電装置には、図1に示す給電装置と同様に、ジャイレータ31が形成される。
 電源11aから出力されたCVの電力は、ジャイレータ31を通過することで、インピーダンスが反転される。その結果、電源11aから出力されたCVの電力は、CCの電力に変換される。したがって、ジャイレータ31から出力された電力は、CCの電力になる。
 このとき、送電周波数fにおいて、2次側コイル21と第1のコンデンサ41bと第1のコイル42bとが直列共振する。
 2次側コイル21と第1のコンデンサ41bと第1のコイル42bとが直列共振する状態では、受電装置2において、2次側コイル21と第1のコンデンサ41bと第1のコイル42bとを無視することができる。その結果、ジャイレータ31から整流回路27に出力された電力は、CCの電力になる。
 次に、図19に示す給電装置の動作について説明する。
 最初に、CVの電力が負荷3に供給される場合の動作について説明する。
 CVの電力が負荷3に供給される場合、図示せぬ制御回路によって、スイッチ26a及びスイッチ26bのそれぞれが開状態に制御される。
 また、図示せぬ制御回路によって、スイッチ41c,42cが開状態に制御され、スイッチ41a,42aが閉状態に制御される。
 制御回路によって、このように制御される場合、図19に示す給電装置は、図22のように表される。
 図22は、CVの電力が負荷3に供給される場合の給電装置を示す説明図である。
 送電装置1の電源11bからCCの電力が出力されると、電力の送電周波数fにおいて、コンデンサ12と1次側コイル13とが直列共振し、1次側コイル13と2次側コイル21との間で電磁誘導が生じる。
 1次側コイル13と2次側コイル21との間で電磁誘導が生じることで、図19に示す給電装置には、図2に示す給電装置と同様に、ジャイレータ31が形成される。
 電源11bから出力されたCCの電力は、ジャイレータ31を通過することで、インピーダンスが反転される。その結果、電源11bから出力されたCCの電力は、CVの電力に変換される。したがって、ジャイレータ31から出力された電力は、CVの電力になる。
 このとき、送電周波数fにおいて、2次側コイル21と第1のコンデンサ41bと第1のコイル42bとが直列共振する。
 2次側コイル21と第1のコンデンサ41bと第1のコイル42bとが直列共振する状態では、受電装置2において、2次側コイル21と第1のコンデンサ41bと第1のコイル42bとを無視することができる。その結果、ジャイレータ31から整流回路27に出力された電力は、CVの電力になる。
 次に、CCの電力が負荷3に供給される場合の動作について説明する。
 CCの電力が負荷3に供給される場合、図示せぬ制御回路によって、スイッチ26aが閉状態に制御され、スイッチ26bが開状態に制御される。
 また、図示せぬ制御回路によって、スイッチ41c,42aが開状態に制御され、スイッチ41a,42cが閉状態に制御される。
 制御回路によって、このように制御される場合、図19に示す給電装置は、図23のように表される。
 図23は、CCの電力が負荷3に供給される場合の給電装置を示す説明図である。
 送電装置1の電源11bからCCの電力が出力されると、電力の送電周波数fにおいて、コンデンサ12と1次側コイル13とが直列共振し、1次側コイル13と2次側コイル21との間で電磁誘導が生じる。
 1次側コイル13と2次側コイル21との間で電磁誘導が生じることで、図19に示す給電装置には、図2に示す給電装置と同様に、ジャイレータ31が形成される。
 電源11bから出力されたCCの電力は、ジャイレータ31を通過することで、インピーダンスが反転される。その結果、電源11bから出力されたCCの電力は、CVの電力に変換される。したがって、ジャイレータ31から出力された電力は、CVの電力になる。
 送電周波数fにおいて、2次側コイル21と第1のコンデンサ41bと第1のコイル42dとコンデンサ42eとが共振し、2次側コイル21と第1のコンデンサ41bと第2のコイル24aとが共振する。
 2次側コイル21とコイル41dと第1のコイル42dとコンデンサ42eと第2のコイル24aとが共振することによって、ジャイレータ33が形成される。
 ジャイレータ33の伝達関数は、以下の式(18)のように表される。

Figure JPOXMLDOC01-appb-I000012
 以下の式(20)が成立する条件の下では、式(18)は、以下の式(21)のように表すことができる。したがって、ジャイレータ33は、インピーダンスを反転させる回路とみなすことができる。

Figure JPOXMLDOC01-appb-I000013
 ジャイレータ31から出力されたCVの電力は、ジャイレータ33を通過することで、インピーダンスが反転される。その結果、ジャイレータ31から出力されたCVの電力は、CCの電力に変換され、ジャイレータ33から整流回路27に出力された電力は、CCの電力になる。
 以上の実施の形態2では、第1の電気回路41が、第1の複素インピーダンスを有する回路であって、第1の複素インピーダンスの可変が可能な回路であり、第2の電気回路42が、第2の複素インピーダンスを有する回路であって、第2の複素インピーダンスの可変が可能な回路であるように、図18及び図19のそれぞれに示す受電装置2を構成した。したがって、図18及び図19のそれぞれに示す受電装置2は、図1及び図2のそれぞれに示す受電装置2と同様に、送電装置1が有する電源が、定電圧特性の電力を供給する電源11aであるのか、定電流特性の電力を供給する電源11bであるのかにかかわらず、外部の負荷3に供給する電力として、定電圧特性の電力、又は、定電流特性の電力のいずれかを選択的に出力することができる。また、図18及び図19のそれぞれに示す受電装置2は、図1及び図2のそれぞれに示す受電装置2よりも、共振精度を高めることができる。
実施の形態3.
 実施の形態3では、電圧監視回路51及び制御回路52を備える給電装置について説明する。
 図24は、実施の形態3に係る給電装置を示す構成図である。図24において、図1、図2、図18及び図19と同一符号は同一又は相当部分を示すので説明を省略する。
 図24に示す給電装置では、負荷3がバッテリー50である。
 電源11は、CVの電力を供給する電源11a、又は、CCの電力を供給する電源11bである。
 電圧監視回路51は、整流回路27からバッテリー50に印加されている電圧を監視し、電圧の監視結果を制御回路52に出力する。
 制御回路52は、電圧監視回路51により監視された電圧に基づいて、切替回路26を制御する。
 具体的には、制御回路52は、電圧監視回路51により監視された電圧が閾値未満であれば、受電装置2からCCの電力が整流回路27に出力されるように、切替回路26を制御する。
 制御回路52は、電圧監視回路51により監視された電圧が閾値以上であれば、受電装置2からCVの電力が整流回路27に出力されるように、切替回路26を制御する。
 図24に示す給電装置では、電圧監視回路51及び制御回路52が、図1に示す給電装置図、又は、図2に示す給電装置に適用されている例を示している。しかし、これは一例に過ぎず、電圧監視回路51及び制御回路52が、例えば、図18に示す給電装置図、又は、図19に示す給電装置に適用されているものであってもよい。
 次に、図24に示す給電装置の動作について説明する。
 図25は、制御回路52による電力特性の制御例を示す説明図である。
 図25において、横軸は時刻、縦軸は、整流回路27からバッテリー50に印加されている電圧である。Thは、閾値である。
 受電装置2から整流回路27に出力される電力がCCの電力である場合、バッテリー50の急速充電が可能である。しかしながら、バッテリー50の充電量が100%に近い状態のときに、CCの電力でバッテリー50が充電される場合、バッテリー50の過充電を招くおそれがある。
 受電装置2から整流回路27に出力される電力がCVの電力である場合、CCの電力である場合よりも、バッテリー50に対する充電速度が遅くなる。したがって、CVの電力でバッテリー50が充電される場合、CCの電力でバッテリー50が充電される場合よりも、バッテリー50の過充電を招く可能性が低減される。
 電圧監視回路51は、整流回路27からバッテリー50に印加されている電圧Vを監視し、電圧Vの監視結果を制御回路52に出力する。
 制御回路52は、電圧監視回路51から、電圧Vの監視結果を取得する。
 制御回路52は、電圧監視回路51により監視された電圧Pに基づいて、切替回路26を制御する。
 具体的には、制御回路52は、電圧監視回路51により監視された電圧Pが閾値Th未満であれば、受電装置2からCCの電力が整流回路27に出力されるように、切替回路26を制御する。
 図25の例では、時刻tから時刻tに至る直前まで、制御回路52は、受電装置2からCCの電力が整流回路27に出力されるように、切替回路26を制御する。
 電源11が、CVの電力を供給する電源11aであれば、制御回路52は、スイッチ26a及びスイッチ26bのそれぞれが開状態になるように、スイッチ26a及びスイッチ26bのそれぞれを制御する。
 電源11が、CCの電力を供給する電源11bであれば、制御回路52は、スイッチ26aが閉状態で、スイッチ26bが開状態になるように、スイッチ26a及びスイッチ26bのそれぞれを制御する。
 制御回路52は、電圧監視回路51により監視された電圧Pが閾値Th以上であれば、受電装置2からCVの電力が整流回路27に出力されるように、切替回路26を制御する。
 図25の例では、時刻t以降、制御回路52は、受電装置2からCVの電力が整流回路27に出力されるように、切替回路26を制御する。
 電源11が、CVの電力を供給する電源11aであれば、制御回路52は、制御回路52は、スイッチ26aが開状態で、スイッチ26bが閉状態になるように、スイッチ26a及びスイッチ26bのそれぞれを制御する。
 電源11が、CCの電力を供給する電源11bであれば、制御回路52は、スイッチ26a及びスイッチ26bのそれぞれが開状態になるように、スイッチ26a及びスイッチ26bのそれぞれを制御する。
 図24に示す給電装置では、負荷3がバッテリー50である。しかし、これは一例に過ぎず、例えば、負荷3がモータであってもよいし、負荷3が空調機器であってもよい。
 制御回路52は、負荷3の用途に応じて、受電装置2から整流回路27に出力される電力の特性を切り替えることができる。
 以上の実施の形態3では、整流回路27から負荷3に印加されている電圧を監視する電圧監視回路51と、電圧監視回路51により監視された電圧に基づいて、切替回路26を制御する制御回路52と備えるように、給電装置を構成した。したがって、給電装置は、送電装置1が有する電源が、定電圧特性の電力を供給する電源11aであるのか、定電流特性の電力を供給する電源11bであるのかにかかわらず、外部の負荷3に供給する電力として、定電圧特性の電力、又は、定電流特性の電力のいずれかを選択的に出力することができる。また、給電装置は、負荷3の用途に応じて、受電装置2から整流回路27に出力される電力の特性を切り替えることができる。
 図24に示す給電装置は、電圧監視回路51及び制御回路52の双方を備えている。しかし、これは一例に過ぎず、当該給電装置は、電圧監視回路51を備えずに、制御回路52を備えるものであってもよい。この場合、制御回路52は、例えば、外部からの制御信号に従って切替回路26を制御する態様が想定される。制御信号は、例えば、定電圧特性の電力の出力を指示する信号、又は、定電流特性の電力の出力を指示する信号である。
 なお、本開示は、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。
 本開示は、受電装置及び給電装置に適している。
 1 送電装置、2 受電装置、3 負荷、11,11a,11b 電源、12 コイル、13 1次側コイル、21 2次側コイル、22 第1の電気回路、22a 第1のコンデンサ、23 第2の電気回路、23a 第1のコイル、24 第3の電気回路、24a 第2のコイル、25 第4の電気回路、25a 第2のコンデンサ、26 切替回路、26a,26a’ スイッチ、26b,26b’ スイッチ、27 整流回路、27a 第1の入力端子、27b 第2の入力端子、27c 第1の出力端子、27d 第2の出力端子、31,32,33 ジャイレータ、41 第1の電気回路、41a スイッチ、41b 第1のコンデンサ、41c スイッチ、41d コイル、41e 第1のコンデンサ、42 第2の電気回路、42a スイッチ、42b 第1のコイル、42c スイッチ、42d 第1のコイル、42e コンデンサ、50 バッテリー、51 電圧監視回路、52 制御回路。

Claims (14)

  1.  電源から出力された電力が供給される1次側コイルとの間で電磁誘導が生じる2次側コイルと、
     前記2次側コイルの一端と一端が接続されている第1の電気回路と、
     前記第1の電気回路の他端と一端が接続されている第2の電気回路と、
     第3の電気回路と、
     第4の電気回路と、
     前記第3の電気回路及び前記第4の電気回路のうちのいずれか一方の電気回路を前記第1の電気回路の他端と前記2次側コイルの他端との間に接続し、又は、前記第3の電気回路及び前記第4の電気回路のそれぞれを前記第1の電気回路の他端と前記2次側コイルの他端との間から切り離す切替回路とを備え、
     前記電力の送信周波数において、
     前記2次側コイルと前記第1の電気回路と前記第2の電気回路とが共振し、前記第4の電気回路が前記第1の電気回路の他端と前記2次側コイルの他端との間に接続されているとき、前記第2の電気回路と前記第4の電気回路とが共振し、前記第3の電気回路が前記第1の電気回路の他端と前記2次側コイルの他端との間に接続されているとき、前記2次側コイルと前記第1の電気回路と前記第3の電気回路とが共振することを特徴とする受電装置。
  2.  前記第1の電気回路は、第1のコンデンサを有し、
     前記第2の電気回路は、第1のコイルを有し、
     前記第3の電気回路は、第2のコイルを有し、
     前記第4の電気回路は、第2のコンデンサを有し、
     前記電力の送電周波数において、
     前記2次側コイルと前記第1のコンデンサと前記第1のコイルとが共振し、前記第4の電気回路が前記第1の電気回路の他端と前記2次側コイルの他端との間に接続されているとき、前記第1のコイルと前記第2のコンデンサとが共振し、前記第3の電気回路が前記第1の電気回路の他端と前記2次側コイルの他端との間に接続されているとき、前記2次側コイルと前記第1のコンデンサと前記第2のコイルとが共振することを特徴とする請求項1記載の受電装置。
  3.  前記電源が定電圧特性の電力を供給する電源であり、
     前記切替回路は、
     前記受電装置から定電圧特性の電力を負荷に供給させるときには、
     前記第2のコンデンサを前記第1の電気回路の他端と前記2次側コイルの他端との間に接続し、かつ、前記第2のコイルを前記第1の電気回路の他端と前記2次側コイルの他端との間から切り離し、
     前記受電装置から定電流特性の電力を前記負荷に供給させるときには、
     前記第2のコイル及び前記第2のコンデンサのそれぞれを前記第1の電気回路の他端と前記2次側コイルの他端との間から切り離すことを特徴とする請求項2記載の受電装置。
  4.  前記電源が定電流特性の電力を供給する電源であり、
     前記切替回路は、
     前記受電装置から定電流特性の電力を負荷に供給させるときには、
     前記第2のコイルを前記第1の電気回路の他端と前記2次側コイルの他端との間に接続し、かつ、前記第2のコンデンサを前記第1の電気回路の他端と前記2次側コイルの他端との間から切り離し、
     前記受電装置から定電圧特性の電力を前記負荷に供給させるときには、
     前記第2のコイル及び前記第2のコンデンサのそれぞれを前記第1の電気回路の他端と前記2次側コイルの他端との間から切り離すことを特徴とする請求項2記載の受電装置。
  5.  前記第1の電気回路は、
     前記第1の複素インピーダンスを有する回路であって、前記第1の複素インピーダンスの可変が可能な回路であることを特徴とする請求項1記載の受電装置。
  6.  前記第2の電気回路は、
     前記第2の複素インピーダンスを有する回路であって、前記第2の複素インピーダンスの可変が可能な回路であることを特徴とする請求項1記載の受電装置。
  7.  電力を出力する電源と、
     前記電源から出力された電力が供給される1次側コイルとを有する送電装置と、
     前記送電装置から非接触で電力を受電する受電装置とを備え、
     前記受電装置は、
     前記1次側コイルとの間で電磁誘導が生じる2次側コイルと、
     前記2次側コイルの一端と一端が接続されている第1の電気回路と、
     前記第1の電気回路の他端と一端が接続されている第2の電気回路と、
     第3の電気回路と、
     第4の電気回路と、
     前記第3の電気回路及び前記第4の電気回路のうちのいずれか一方の電気回路を前記第1の電気回路の他端と前記2次側コイルの他端との間に接続し、又は、前記第3の電気回路及び前記第4の電気回路のそれぞれを前記第1の電気回路の他端と前記2次側コイルの他端との間から切り離す切替回路とを備え
     前記電力の送信周波数において、
     前記2次側コイルと前記第1の電気回路と前記第2の電気回路とが共振し、前記第4の電気回路が前記第1の電気回路の他端と前記2次側コイルの他端との間に接続されているとき、前記第2の電気回路と前記第4の電気回路とが共振し、前記第3の電気回路が前記第1の電気回路の他端と前記2次側コイルの他端との間に接続されているとき、前記2次側コイルと前記第1の電気回路と前記第3の電気回路とが共振することを特徴とする給電装置。
  8.  前記切替回路を制御する制御回路を備えたことを特徴とする請求項7記載の給電装置。
  9.  前記第1の電気回路は、第1のコンデンサを有し、
     前記第2の電気回路は、第1のコイルを有し、
     前記第3の電気回路は、第2のコイルを有し、
     前記第4の電気回路は、第2のコンデンサを有し、
     前記電力の送電周波数において、
     前記2次側コイルと前記第1のコンデンサと前記第1のコイルとが共振し、前記第4の電気回路が前記第1の電気回路の他端と前記2次側コイルの他端との間に接続されているとき、前記第1のコイルと前記第2のコンデンサとが共振し、前記第3の電気回路が前記第1の電気回路の他端と前記2次側コイルの他端との間に接続されているとき、前記2次側コイルと前記第1のコンデンサと前記第2のコイルとが共振することを特徴とする請求項8記載の給電装置。
  10.  前記電源が定電圧特性の電力を供給する電源であり、
     前記制御回路は、
     前記受電装置から定電圧特性の電力を負荷に供給させるときには、
     前記第2のコンデンサを前記第1の電気回路の他端と前記2次側コイルの他端との間に接続し、かつ、前記第2のコイルを前記第1の電気回路の他端と前記2次側コイルの他端との間から切り離すように、前記切替回路を制御し、
     前記受電装置から定電流特性の電力を前記負荷に供給させるときには、
     前記第2のコイル及び前記第2のコンデンサのそれぞれを前記第1の電気回路の他端と前記2次側コイルの他端との間から切り離すように、前記切替回路を制御することを特徴とする請求項9記載の給電装置。
  11.  前記電源が定電流特性の電力を供給する電源であり、
     前記制御回路は、
     前記受電装置から定電流特性の電力を負荷に供給させるときには、
     前記第2のコイルを前記第1の電気回路の他端と前記2次側コイルの他端との間に接続し、かつ、前記第2のコンデンサを前記第1の電気回路の他端と前記2次側コイルの他端との間から切り離すように、前記切替回路を制御し、
     前記受電装置から定電圧特性の電力を前記負荷に供給させるときには、
     前記第2のコイル及び前記第2のコンデンサのそれぞれを前記第1の電気回路の他端と前記2次側コイルの他端との間から切り離すように、前記切替回路を制御することを特徴とする請求項9記載の給電装置。
  12.  前記第2の電気回路の他端と第1の入力端子が接続され、前記2次側コイルの他端と第2の入力端子が接続されており、前記第1の入力端子と前記第2の入力端子とに与えられた電力を整流し、整流後の電力を負荷に出力する整流回路を備えたことを特徴とする請求項8記載の給電装置。
  13.  前記整流回路から前記負荷に印加されている電圧を監視する電圧監視回路を備え、
     前記制御回路は、
     前記電圧監視回路により監視された電圧に基づいて、前記切替回路を制御することを特徴とする請求項12記載の給電装置。
  14.  前記負荷がバッテリーであり、
     前記制御回路は、
     前記電圧監視回路により監視された電圧が閾値未満であれば、前記受電装置から定電流特性の電力が前記整流回路に出力されるように、前記切替回路を制御し、前記電圧監視回路により監視された電圧が前記閾値以上であれば、前記受電装置から定電圧特性の電力が前記整流回路に出力されるように、前記切替回路を制御することを特徴とする請求項13記載の給電装置。
PCT/JP2022/037041 2022-10-04 2022-10-04 受電装置及び給電装置 WO2024075175A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/037041 WO2024075175A1 (ja) 2022-10-04 2022-10-04 受電装置及び給電装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/037041 WO2024075175A1 (ja) 2022-10-04 2022-10-04 受電装置及び給電装置

Publications (1)

Publication Number Publication Date
WO2024075175A1 true WO2024075175A1 (ja) 2024-04-11

Family

ID=90607723

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/037041 WO2024075175A1 (ja) 2022-10-04 2022-10-04 受電装置及び給電装置

Country Status (1)

Country Link
WO (1) WO2024075175A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010233354A (ja) * 2009-03-27 2010-10-14 Nissan Motor Co Ltd 給電装置
CN106740220A (zh) * 2017-01-05 2017-05-31 西安特锐德智能充电科技有限公司 一种恒流恒压复合拓扑的无线充电电路
CN112366777A (zh) * 2020-11-05 2021-02-12 中国科学院电工研究所 一种基于变次级结构的恒流恒压感应式无线充电系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010233354A (ja) * 2009-03-27 2010-10-14 Nissan Motor Co Ltd 給電装置
CN106740220A (zh) * 2017-01-05 2017-05-31 西安特锐德智能充电科技有限公司 一种恒流恒压复合拓扑的无线充电电路
CN112366777A (zh) * 2020-11-05 2021-02-12 中国科学院电工研究所 一种基于变次级结构的恒流恒压感应式无线充电系统

Similar Documents

Publication Publication Date Title
CN108471173B (zh) 兼具恒压及恒流输出的无线能量传输系统
CN108923509B (zh) 一种无线充电发射电路、无线充电接收电路及方法
US6697272B2 (en) Contactless power transmitting system and contactless charging system
KR102110846B1 (ko) Dc 전압 소스 사이에서의 전력의 무선 전송을 위한 장치 및 방법
CN110266113B (zh) 一种航天器间无线配电系统及控制方法
JP2010239777A (ja) 無線電力装置、無線電力受信方法
CN109474082B (zh) 一种基于变补偿网络结构的双向无线电能传输系统及方法
KR102179796B1 (ko) 정전류(cc)/정전압(cv) 충전을 위한 초고주파 무선 충전기 및 이의 제어방법
JP6590112B2 (ja) 双方向ワイヤレス電力伝送システム
CN212063636U (zh) 一种基于复合lcc补偿的无线电能传输装置
WO2021248953A1 (zh) 一种无线充电的接收端、方法及电子设备
CN110707831A (zh) 一种发送侧切换三线圈恒流恒压感应式无线充电方法及系统
CN109466350A (zh) 一种lcl复合型无线充电装置
Jayathurathnage et al. Revisiting two-port network analysis for wireless power transfer (WPT) systems
CN110474407B (zh) 一种双频控制三线圈感应式无线充电系统及方法
WO2024075175A1 (ja) 受電装置及び給電装置
WO2015083578A1 (ja) 非接触電力伝送装置及び受電機器
CN108512273B (zh) 基于变频移相控制的ss谐振无线电能传输系统参数设计方法
Bozorgi et al. Wireless power transfer coil design for transmitter and receiver LCC compensation based on time-weighted average efficiency
JP2019161937A (ja) 無線電力伝送システム及び送電装置
JP2019161929A (ja) 無線電力伝送システム及び受電装置
Abhyankar et al. Sizing and operation of a wireless power transfer system for bidirectional v2v energy exchange
CN110370957A (zh) 紧凑型无线电池充电器
CN109980757A (zh) 一种基于拓扑切换的恒流恒压无线充电系统
Hashi et al. Basic Study on Transmission Side Impedance Matching in MRC-WPT