WO2024075169A1 - Optical transmitter - Google Patents

Optical transmitter Download PDF

Info

Publication number
WO2024075169A1
WO2024075169A1 PCT/JP2022/037033 JP2022037033W WO2024075169A1 WO 2024075169 A1 WO2024075169 A1 WO 2024075169A1 JP 2022037033 W JP2022037033 W JP 2022037033W WO 2024075169 A1 WO2024075169 A1 WO 2024075169A1
Authority
WO
WIPO (PCT)
Prior art keywords
driver
optical
optical modulator
modulator chip
peltier element
Prior art date
Application number
PCT/JP2022/037033
Other languages
French (fr)
Japanese (ja)
Inventor
常祐 尾崎
義弘 小木曽
光映 石川
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2022/037033 priority Critical patent/WO2024075169A1/en
Publication of WO2024075169A1 publication Critical patent/WO2024075169A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/015Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction
    • G02F1/017Structures with periodic or quasi periodic potential variation, e.g. superlattices, quantum wells

Definitions

  • This disclosure relates to an optical transmitter used in optical communications. More specifically, it relates to an implementation form of an optical transmitter that includes a semiconductor optical modulator and its driver IC.
  • an optical transceiver in which an optical receiver and an optical transmitter are integrated is used.
  • broadband analog components such as radio frequency (RF) electrical circuits are required.
  • RF radio frequency
  • an optical modulator requires a modulation bandwidth of 40 GHz or more.
  • HB-CDM High-Bandwidth Coherent Driver Modulator
  • ICR Integrated Coherent Receiver
  • semiconductor-based optical modulators are attracting attention as an alternative to conventional lithium niobate (LN) optical modulators due to their compact size and low cost.
  • Compound semiconductors such as InP are mainly used for faster modulation operations.
  • Si-based optical devices Furthermore, in systems where compact size and low cost are important, research and development is focused on Si-based optical devices.
  • the semiconductor optical modulators mentioned above have their own advantages and disadvantages specific to each material.
  • temperature control of the optical modulator chip is essential during operation in order to control the band-edge absorption effect.
  • a Si optical modulator has the advantage of not needing temperature control, but has a smaller electro-optic effect than other material systems. This makes it necessary to lengthen the electro-optic interaction length, which can result in increased high-frequency loss as a result of the device length increasing.
  • the operating temperature (case temperature) of an optical transmitter using HB-CDM must be in the range of at least -5°C to 75°C. In order to ensure this operating temperature, it has been common to only mount the optical modulator chip on a Peltier element, taking into account power consumption (Patent Document 1).
  • the present invention provides a new configuration and implementation form of an optical transmitter that suppresses the temperature dependency of an optical transmitter including a driver IC, has excellent high-speed performance, and is capable of stable operation regardless of the environmental temperature.
  • the present disclosure provides an optical transmitter that includes an optical modulator chip, a driver IC for operating the optical modulator chip, a wiring board having a substantially straight high-frequency line and connecting the optical modulator chip and the driver IC, which is mounted face-down by flip-chip mounting, and a Peltier element placed under the optical modulator chip and the driver IC, and the optical modulator chip and the driver IC are temperature controlled by the same Peltier element.
  • FIG. 1 is a cross-sectional side view showing an implementation of an optical transmitter 100 using HB-CDM according to the prior art.
  • FIG. 2 is a side cross-sectional view showing an implementation of an optical transmitter 200 according to the present disclosure.
  • FIG. 2 is a cross-sectional side view showing an implementation of an optical transmitter 300 according to the present disclosure.
  • FIG. 4 is a side cross-sectional view showing an implementation of an optical transmitter 400 according to the present disclosure.
  • FIG. 5 is a cross-sectional side view showing an implementation of an optical transmitter 500 according to the present disclosure.
  • FIG. 6 is a cross-sectional side view showing an implementation of an optical transmitter 600 according to the present disclosure.
  • FIG. 7 is a cross-sectional side view showing an implementation of an optical transmitter 700 according to the present disclosure.
  • 2 is a diagram illustrating an example of the configuration of a Peltier element 205 used in an optical transmitter 200-700 according to the present disclosure.
  • This disclosure presents new configurations for improving the temperature dependency of the high-frequency characteristics of an optical transmitter in an optical transmitter in which an optical modulator and its driver IC are integrally packaged, and implementation forms compatible with each configuration.
  • the configuration for improving the temperature dependency includes a new usage form of a temperature regulator (TEC: ThermoElectric Cooler) in the optical transmitter.
  • TEC ThermoElectric Cooler
  • various implementation forms of the driver IC, optical modulator chip, and spatial optical components compatible with the new usage form of the TEC are also proposed.
  • TECs are also known as thermoelectric coolers, and are known as small cooling devices that use Peltier junctions. TECs are made up of n-type semiconductors, p-type semiconductors, and metals, and when a direct current is passed through both sides of the plate-shaped element, heat absorption occurs on one side and heat dissipation occurs on the other. Reversing the direction of the current switches between heat absorption and dissipation, allowing for localized and precise temperature control of ICs and electronic components.
  • the temperature regulator will be referred to as a TEC and will be described as a Peltier element. It is not limited to Peltier elements, as long as it is capable of controlling the temperature of driver ICs and optical modulator chips.
  • Figure 1 is a side cross-sectional view showing the mounting form of an optical transmitter using HB-CDM, a conventional technology.
  • the optical transmitter 100 contains a driver IC 102, an optical modulator chip 103, and lenses 112 and 113, which are spatial optical components, inside a package housing 101 made of ceramic or the like. More specifically, the optical modulator chip 103 is mounted on the inside bottom surface of the housing 101 via a subcarrier 104 on a Peltier element 105. The right end of the optical modulator chip 103 in the drawing has an output end surface for modulated light, and lenses 112 and 113 for optically coupling the modulated light to an optical fiber 114 are also mounted on the subcarrier.
  • a driver IC 102 is mounted on a metal block or ceramic material 106 adjacent to the optical modulator chip 103.
  • the package housing 101 has a wiring board base 107 and a package wall 108 as the left wall in the drawing, which, together with the package housing 101, separate the outside from the internal space of the optical transmitter.
  • the optical transmitter 100 can also be constructed so that the entire package is airtight.
  • the modulated electrical signal supplied from an external digital signal processor (DSP) is supplied to the optical modulator chip 103 via the wiring layer 109 and driver IC 102 of the wiring board base 107.
  • the wiring layer 109 and the driver IC 102, and the driver IC 102 and the optical modulator chip 103 are connected by gold wires 110, 111, etc., respectively.
  • the modulated electrical signal includes an I channel and a Q channel for each of the X polarization and the Y polarization.
  • one channel is supplied as an electrical signal in a differential signal format, at least eight signal wirings and a GND wiring are required for one optical modulator, but the modulated signal format is not limited to this.
  • the optical modulator 100 shown in FIG. 1 can be mounted on a common device substrate together with an ICR package in which the receiving side TIA and optical receiver are integrated, and a DSP, to configure an optical transmitting and receiving device.
  • the Peltier element 105 in the optical transmitter. Temperature control is essential for the optical modulator chip 103 fabricated on an InP substrate, and the Peltier element 105 controls the temperature to a predetermined operating temperature. As shown in FIG. 1, the Peltier element 105 has a size that covers at least the entire area of the optical modulator chip 103, and its position may overlap the area of spatial optical components such as lenses.
  • the optical transmitter 100 of the conventional technology it was considered that temperature control of the driver IC 102 was not necessary, and it was fixed in the package by a member 106 such as a metal block or ceramic. If the external temperature (ambient temperature) of the optical transmitter 100 rises, the increased temperature becomes the operating temperature of the driver IC 102.
  • the temperature of the driver IC 102 itself is at least 85°C or higher.
  • the driver IC also consumes a lot of power, and the driver IC itself generates heat. This means that the heat generated by the driver IC will cause the backside temperature of the driver IC to exceed the maximum ambient temperature of 85°C.
  • the driver IC has temperature-dependent amplification characteristics (high frequency characteristics) of high frequency electrical signals, and at high temperatures the high frequency band tends to decrease compared to room temperature. Conversely, at low temperatures the high frequency band tends to increase compared to room temperature. Thus, the high frequency characteristics of the driver IC differ between low and high temperatures.
  • the modulation signal supplied to the driver IC is optimized and compensated in various ways by the DSP at room temperature. However, dynamically updating such compensation in line with temperature fluctuations is a complex process and is not generally implemented. Because operation continues at a constant compensation state at room temperature, the compensation state of the modulation signal deviates from the optimal point when the state changes to a low or high temperature. This causes fluctuations and deterioration in the optical transmission characteristics and waveform quality of the optical transmitter.
  • the IQ modulator of the optical modulator chip 103 is a linear modulator that preserves the amplitude and phase of the electrical signal, and fluctuations in the level and waveform quality of the modulated electrical signal directly affect the quality of the modulated output light. If the external temperature changes while the optical transmitter is in operation, the optical modulator chip itself is maintained at a constant temperature because the temperature is controlled by a Peltier element, but the operating temperature of the driver IC changes. As a result, fluctuations in the level and quality of the HB-CDM modulated light occur, and the transmission characteristics deteriorate and become unstable due to changes in the environmental temperature over time.
  • the deterioration of characteristics due to the environmental temperature on the high frequency side of the electrical signal causes waveform distortion of the modulated signal, degrading the modulation accuracy of the modulated output light from the optical modulator.
  • a floor appears in the BER characteristics, leading to a deterioration in the transmission characteristics of the system.
  • the present invention presents a new configuration and implementation form that improves the temperature dependency of high frequency characteristics and optical transmission characteristics in an optical transmitter in which an optical modulator and its driver IC are packaged together.
  • optical transmitter according to the present disclosure will be described in detail with reference to the drawings.
  • the optical transmitter according to the present disclosure will be described as being in the form of an HB-CDM with a flexible printed circuit board (FPC) interface.
  • FPC flexible printed circuit board
  • FIG. 2 is a side cross-sectional view showing a mounting form of an optical transmitter 200 according to the present disclosure.
  • a driver IC 202 In the optical transmitter 200, a driver IC 202, an optical modulator chip 203, and optical members (lenses 212 and 213, which are spatial optical components, are depicted as an example in FIG. 2) are housed inside a package housing 201. More specifically, the optical modulator chip 203 is mounted on the bottom surface inside the housing 201 via a subcarrier 204 on a Peltier element 205. At the right end of the drawing of the optical modulator chip 203, there is an output end surface of modulated light, and lenses 212 and 213 for optically coupling the modulated light with an optical fiber 214 are also mounted on the subcarrier.
  • the optical transmitter 200 includes a wiring board base 207 and a package wall 208 as the wall surface on the left side of the package housing 201 in the drawing, which, together with the package housing 201, separate the internal space of the optical transmitter from the outside.
  • the wiring board base 207 also has a package terrace, and a wiring layer 209 formed on the upper surface of the package terrace is connected to a flexible printed circuit board (FPC) as a high-frequency interface.
  • FPC flexible printed circuit board
  • the optical transmitter 200 can also be constructed so that the entire package is airtight.
  • the modulated electrical signal supplied from an external digital signal processor (DSP) is supplied to the optical modulator chip 203 via the wiring layer 209 of the wiring board base 207 and the driver IC 202.
  • the wiring layer 209 and the driver IC 202 are connected by gold wire 210.
  • the driver IC 202 and the optical modulator chip 203 are connected by a wiring board 215 having a nearly straight high-frequency line and pillars/bumps 216, 217.
  • the high-frequency line it is permissible for the high-frequency line to have a gentle curvature that does not cause significant deterioration in characteristics.
  • the driver IC 202 is mounted on the subcarrier 204, similar to the optical modulator chip 203 and lenses 212, 213.
  • the subcarrier 204 is installed on the Peltier element 205, in the optical transmitter 200, the temperature control by the Peltier element 205 also extends to the driver IC 202. Therefore, in the optical transmitter 200, the temperature of the driver IC 202 can be managed in the same way as the optical modulator chip 203.
  • the optical modulator chip 203 is an InP modulator
  • the optical modulator chip 203 is often used at around 45 ⁇ 10°C because an excessively low temperature reduces the modulation efficiency (however, depending on the semiconductor device design, there are also modulator chips that are used at temperatures lower than this).
  • the driver IC 202 has better high-frequency band characteristics at lower temperatures. Therefore, the Peltier element 205 needs to be constantly controlled at a temperature within the range of 25-50°C so that the characteristics of the driver IC 202 can be fully brought out without significant deterioration of the characteristics of the optical modulator chip 203.
  • a subcarrier 204 is mounted between the Peltier element 205 and the driver IC 202, the optical modulator chip 203, and the optical members (e.g., lenses 212, 213, etc.).
  • This subcarrier 204 adjusts the height of the driver IC 202 and the optical modulator chip 203, which will be described later, and functions as a substrate for extracting the DC wiring of the driver IC 202 and the optical modulator chip 203.
  • AlN has a linear expansion coefficient close to that of InP applied to the optical modulator chip 203, and can suppress thermal stress generated near the interface with the InP modulator, so it is suitable as a material applied to the subcarrier 204.
  • wiring (not shown) for extracting the DC wiring of the optical modulator chip 203 and positioning markers (not shown) for mounting optical members (e.g., lenses 212, 213, etc.) are formed on the subcarrier 204 by metal patterns.
  • subcarrier 204 is depicted in FIG. 2 as being one layer, it may be multi-layered. In particular, when there are a large number of DC wirings or when it is necessary to change the order of terminals, making it multi-layered allows for a layout that makes full use of multi-layer wiring.
  • the subcarrier 204 and driver IC 202, as well as the subcarrier 204 and optical modulator chip 203, must be mounted with a conductive paste or solder with a thermal conductivity of 30 W/mK or more in order to efficiently dissipate heat in the Peltier element 205. From the perspective of managing the process temperature during mounting, it is desirable to use the same conductive paste or solder for all of them, but these joint fillers do not necessarily need to be the same, and it is also possible to combine those with different fixed temperatures, etc.
  • optical components such as lenses 212 and 213 are mounted on subcarrier 204, similar to driver IC 202 and optical modulator chip 203, in order to prevent variations in adhesive thickness due to temperature changes. With this configuration, it is possible to minimize variations in optical insertion loss due to temperature changes.
  • the wiring board 215 is flip-chip mounted face-down between the driver IC 202 and the optical modulator chip 203, and the driver IC 202 and the wiring layer 209 are connected by gold wires 210.
  • the driver IC 202 and the optical modulator chip 203 are connected via the wiring board 215 and the pillars/bumps 216, 217.
  • the wiring board 215 and the pillars/bumps 216, 217 are formed by face-down flip-chip mounting, and the pillars/bumps 216, 217 can be Au pillars/bumps or Cu pillars/bumps.
  • the heights of the upper surfaces (surfaces on which the pillars/bumps are mounted) of the driver IC 202 and the optical modulator chip 203 are the same, and that the wiring board 215 is mounted so as to have a high degree of parallelism with respect to the driver IC 202 and the optical modulator chip 203. Specifically, if the inclination of the wiring board 215 with respect to the driver IC 202 and the optical modulator chip 203 exceeds ⁇ 3°, a bonding failure such as a gap occurring at the bonding portion may occur.
  • the dimensions of the Au pillar/bump or Cu pillar/bump that are generally used as the pillar/bumps 216 and 217 are often 100 ⁇ m or less in both diameter and height. Therefore, it is desirable to keep the height difference between the top surfaces of the driver IC 202 and the optical modulator chip 203 at least 100 ⁇ m or less (ideally 50 ⁇ m or less).
  • the heights of the top surfaces of the driver IC 202 and the optical modulator chip 203 must be the same (at least, the height difference must be within 100 ⁇ m). From the viewpoint of minimizing the variation in this height difference, it is most desirable to mount the driver IC 202 and the optical modulator chip 203 having the same chip thickness on the same subcarrier 204 as shown in FIG. 2 (for example, the driver IC 202 and the optical modulator chip 203 each have the same thickness of 300 ⁇ m). On the other hand, as shown in FIG.
  • the driver IC 202 and the optical modulator chip 203 have different thicknesses (for example, the driver IC 202 has a thickness of 100 ⁇ m and the optical modulator chip 203 has a thickness of 300 ⁇ m).
  • the driver IC 202 and the optical modulator chip 203 can be mounted on separate members to adjust the height of their respective top surfaces to match (FIG. 3 shows, as an example, a form in which only the driver IC 202 is mounted via a metal block 301 as the member in question).
  • a metal such as CuW or a ceramic with excellent thermal conductivity such as AlN can be used for the driver IC 202, taking into account heat dissipation and GND stability.
  • the driver IC 202 and the optical modulator chip 203 are depicted as being mounted on the same subcarrier 204, but as shown in FIG. 4 and FIG. 5, they may be mounted on the Peltier element 205.
  • the number of parts can be reduced by applying AlN having DC wiring and alignment marks for optical mounting to the upper surface of the Peltier element 205 (the surface on which the driver IC 202 and the optical modulator chip 203 are mounted). This reduction in the number of parts leads to a reduction in thermal resistance, and is therefore preferable from the viewpoint of temperature control.
  • the same effect can be achieved by using a metal block 501 for height adjustment to make the heights of the driver IC 202 and the optical modulator chip 203 the same.
  • the distance between the driver IC 202 and the optical modulator chip 203 be 300 ⁇ m or more.
  • the length of the wiring board 215 be 2 mm or less at the longest.
  • a thermal isolation groove 401 may be formed on at least one of the upper and lower surfaces of the subcarrier 204 between the driver IC 202 and the optical modulator chip 203 ( Figure 6 shows a configuration formed on the upper surface as an example). With this configuration, it is possible to thermally isolate the driver IC 203 and the modulator chip 204.
  • the wiring board 215 is preferably made of AlN due to the difference in linear expansion coefficient with InP, but from the viewpoint of further suppressing heat inflow from the driver IC 202, it is preferable to use a material with low thermal conductivity such as SiO2 or other resin using a dielectric material.
  • the material applied to the wiring board 215 is preferably selected appropriately according to the design, and is not necessarily limited to the above materials. For example, it is possible to obtain the same effect even with ceramics other than AlN, such as alumina.
  • driver IC 202 and the optical modulator chip 203 are depicted as being connected via the wiring board 215, but as shown in FIG. 7, the driver IC 202 and the wiring layer 209 may also be connected by flip-chip mounting using the wiring board 601 and the pillars/bumps 602, 603 instead of the gold wires 210.
  • the height difference between the driver IC 202 and the optical modulator chip 203 and the inclination of the wiring board 215 described above the height difference between the upper surfaces of the driver IC 202 and the wiring layer 209 must be at least 100 ⁇ m or less (ideally 50 ⁇ m or less), and the inclination of the wiring board 601 with respect to the driver IC 202 and the wiring layer 209 must be within ⁇ 3°.
  • the materials of the wiring board 601 and the pillars/bumps 602, 603 may be the same as or different from the wiring board 215 and the pillars/bumps 216, 217, but from the viewpoint of cost, it is preferable to use the same material. In such cases, the input and output pads of the driver IC are the same, and the pad shape and pitch of the connection between the optical modulator chip 203 and the wiring layer 209 are the same, making it possible to use the same wiring board and reduce costs.
  • the driver IC 202 and the optical modulator chip 203 have a differential line configuration.
  • the characteristics of high frequency differential lines are significantly degraded if they have a curvature, it is desirable that the high frequency lines on the wiring board are formed in straight lines. In order to configure them in straight lines, it is desirable that the connection pad pitches of the respective components are the same.
  • the difference in height between the top surfaces of the driver IC 201 and the wiring layer 209 is about 100 ⁇ m.
  • the gold wire 210 is a ball wire, it is preferable to set the height of the top surface of the driver IC 202 lower than the top surface of the wiring layer 209 and to configure the gold wire 210 so that it rises from the driver IC 202 to the wiring layer 209 side, in order to minimize the wire length.
  • the gold wire 210 does not have a loop and is a wire that can connect the driver IC 201 and the wiring layer 209 flat, it is desirable that the heights of the top surfaces of the driver IC 201 and the wiring layer 209 are the same.
  • optical components are assumed to be lens mounted, but this is not limited to this and other mounting methods may be used.
  • optical components include not only lenses 212 and 213 but also components for fixing fibers, etc.
  • (Configuration of Peltier element) 8 is a diagram illustrating the configuration of the Peltier element 205 used in the optical transmitter (optical transmitter 200-700) according to the present disclosure.
  • a difference in the amount of heat generated occurs between the driver IC 202 and the optical modulator chip 203.
  • the driver IC 202 has the highest temperature, followed by the optical modulator chip 203, and then the optical members (for example, lenses 212, 213, etc.).
  • an example of the Peltier element 205 used in the optical transmitter according to the present disclosure is configured so that the element density of the n-type and p-type semiconductors is as follows: area where the driver IC 202 is mounted>area where the optical modulator chip 203 is mounted>area where the optical members are mounted. By configuring in this way, it becomes possible to perform appropriate temperature control (suppression of excessive or insufficient cooling) according to the temperature distribution.
  • the optical transmitter disclosed herein can realize a new configuration and implementation form of an optical transmitter that suppresses the temperature dependency of the optical transmitter including the driver IC, has excellent speed, and can operate stably regardless of the environmental temperature. For this reason, it is expected to be applied to high-speed digital coherent optical transmission systems, etc.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

Provided is a novel configuration and mounting embodiment for an optical transmitter that suppresses the temperature dependency of optical modulation output characteristics and that has excellent high-speed characteristics. This optical transmitter (200) includes: an optical modulator chip (203); a driver IC (202) for actuating the optical modulator chip; a wiring substrate (215) having a substantially linear high-frequency line and connecting the optical modulator chip and the driver IC, the wiring substrate being mounted face-down by flip-chip mounting; and a Peltier element (205) mounted below the optical modulator chip and the driver IC. The optical modulator chip and the driver IC are temperature-controlled by the same Peltier element.

Description

光送信器Optical Transmitter
 本開示は、光通信において利用される光送信器に関する。より詳細には、半導体光変調器およびそのドライバICを含む光送信器の実装形態に関する。 This disclosure relates to an optical transmitter used in optical communications. More specifically, it relates to an implementation form of an optical transmitter that includes a semiconductor optical modulator and its driver IC.
 通信ネットワークの急激なトラフィック増大に応えるため、コヒーレント通信方式とデジタル信号処理技術を組み合わせたデジタルコヒーレント光伝送が光ファイバ通信システムに導入されている。当初の1波長当たり100Gbpsの基幹網伝送技術の確立から始まり、現在ではより高速化された1波長当たり400~600Gbpsの伝送が実用化されている。 In order to respond to the rapid increase in traffic in communication networks, digital coherent optical transmission, which combines coherent communication methods and digital signal processing technology, is being introduced into optical fiber communication systems. Starting with the establishment of backbone network transmission technology of 100 Gbps per wavelength, higher speed transmission of 400 to 600 Gbps per wavelength is now in practical use.
 上述のデジタルコヒーレント光伝送では、光受信器および光送信器を集積化した光送受信装置が利用されている。伝送容量が400Gbpsを超えるシステムの光送受信装置では、高周波(RF)電気回路などのアナログ部品の広帯域化が求められており、例えば光変調器では40GHz以上の変調帯域が必要である。広帯域化につながる高周波損失の低減や装置の小型化のため、例えば送信側ではRFドライバICおよび光変調器が一体パッケージに実装された形態が注目されている。この光送信器の実装形態は,High-Bandwidth Coherent Driver Modulator (HB-CDM:高速ドライバ集積光変調器)という名前でOIF(The Optical Internetworking Forum)で標準化もされている(非特許文献1)。光送受信装置の受信側でも、トランスインピーダンスアンプ(TIA)および光受光器が一体パッケージに実装され、ICR(Integrated Coherent Receiver)とも呼ばれている。 In the digital coherent optical transmission described above, an optical transceiver in which an optical receiver and an optical transmitter are integrated is used. In optical transceivers for systems with a transmission capacity of over 400 Gbps, broadband analog components such as radio frequency (RF) electrical circuits are required. For example, an optical modulator requires a modulation bandwidth of 40 GHz or more. To reduce high frequency loss and miniaturize the device, which leads to broadband, a form in which an RF driver IC and an optical modulator are mounted in an integrated package on the transmitting side is attracting attention. This implementation form of an optical transmitter has also been standardized by the Optical Internetworking Forum (OIF) under the name High-Bandwidth Coherent Driver Modulator (HB-CDM: high-speed driver integrated optical modulator) (Non-Patent Document 1). On the receiving side of the optical transceiver, a transimpedance amplifier (TIA) and an optical receiver are also mounted in an integrated package, which is also called an Integrated Coherent Receiver (ICR).
 光送受信デバイスの材料に目を転じると、小型・低コスト化の観点で、従来のニオブ酸リチウム(LN)光変調器に代わって、半導体ベースの光変調器が注目を集めている。より高速な変調動作向けには、InPに代表される化合物半導体が主に用いられている。また、より小型・低コスト化が重要視されるシステムにおいては、Siベースの光デバイスに研究開発が集中している。 Turning to the materials used in optical transmitting and receiving devices, semiconductor-based optical modulators are attracting attention as an alternative to conventional lithium niobate (LN) optical modulators due to their compact size and low cost. Compound semiconductors such as InP are mainly used for faster modulation operations. Furthermore, in systems where compact size and low cost are important, research and development is focused on Si-based optical devices.
 上述の半導体による光変調器においても材料固有の得失があり、例えばInP光変調器においては、バンド端吸収効果を制御するために、動作時には光変調器チップの温度制御が必須である。一方、Si光変調器は温度制御が不要となるメリットがあるものの、他の材料系と比べて電気光学効果が小さい。このため電気-光相互作用長を長くする必要が生じ、デバイス長が大きくなる結果として高周波損失増大を招くことがある。広帯域化および小型化のための実装技術を含めて、光変調器のさらなる高速化・広帯域化には課題が多い。 Even the semiconductor optical modulators mentioned above have their own advantages and disadvantages specific to each material. For example, in an InP optical modulator, temperature control of the optical modulator chip is essential during operation in order to control the band-edge absorption effect. On the other hand, a Si optical modulator has the advantage of not needing temperature control, but has a smaller electro-optic effect than other material systems. This makes it necessary to lengthen the electro-optic interaction length, which can result in increased high-frequency loss as a result of the device length increasing. There are many challenges to further increase the speed and bandwidth of optical modulators, including implementation technologies for wider bandwidth and miniaturization.
 HB-CDMによる光送信器の動作温度(ケース温度)としては、少なくとも-5℃~75℃の範囲が求められている。このような動作温度を確保するため、消費電力も考慮して光変調器チップのみがペルチェ素子上に実装されているのが一般的であった(特許文献1)。 The operating temperature (case temperature) of an optical transmitter using HB-CDM must be in the range of at least -5°C to 75°C. In order to ensure this operating temperature, it has been common to only mount the optical modulator chip on a Peltier element, taking into account power consumption (Patent Document 1).
 しかしながら、従来技術の光送信器では、高温時におけるドライバICの高周波特性の劣化が問題となっていた。具体的には環境温度が高温状態にある場合に、ドライバICの高周波帯域、ピーキング量やゲインが劣化することが問題となっていた。光送信器が高速化・広帯域化する中で、上述の劣化による信号品質の低下の影響が無視できなくなってきた。そのため、環境温度の変化に関わらず、一定の高周波特性を維持することのできる光送信器が望まれている。 However, with conventional optical transmitters, degradation of the high-frequency characteristics of the driver IC at high temperatures was an issue. Specifically, when the ambient temperature was high, degradation of the driver IC's high-frequency band, peaking amount, and gain was an issue. As optical transmitters become faster and broader in bandwidth, the impact of reduced signal quality due to the above-mentioned degradation can no longer be ignored. For this reason, there is a demand for optical transmitters that can maintain constant high-frequency characteristics regardless of changes in the ambient temperature.
国際公開第2021/171599号International Publication No. 2021/171599
 本発明は、上述の課題に鑑み、ドライバICを含む光送信器の温度依存性を抑え、高速性に優れ、環境温度によらず安定動作が可能な光送信器の新規な構成および実装形態を提供する。 In consideration of the above problems, the present invention provides a new configuration and implementation form of an optical transmitter that suppresses the temperature dependency of an optical transmitter including a driver IC, has excellent high-speed performance, and is capable of stable operation regardless of the environmental temperature.
 上記のような課題に対し、本開示では光送信器であって、光変調器チップと、光変調器チップを動作させるためのドライバICと、略直線の高周波線路を有し、光変調器チップとドライバICを接続する、フリップチップ実装によりフェイスダウン実装された配線基板と、光変調器チップ及びドライバICの下部に載置されるペルチェ素子と、を含み、光変調器チップ及びドライバICは、同一のペルチェ素子によって温度制御される光送信器を提供する。 In response to the above-mentioned problems, the present disclosure provides an optical transmitter that includes an optical modulator chip, a driver IC for operating the optical modulator chip, a wiring board having a substantially straight high-frequency line and connecting the optical modulator chip and the driver IC, which is mounted face-down by flip-chip mounting, and a Peltier element placed under the optical modulator chip and the driver IC, and the optical modulator chip and the driver IC are temperature controlled by the same Peltier element.
従来技術のHB-CDMによる光送信器100の実装形態を示す側断面図である。FIG. 1 is a cross-sectional side view showing an implementation of an optical transmitter 100 using HB-CDM according to the prior art. 本開示による光送信器200の実装形態を示す側断面図である。FIG. 2 is a side cross-sectional view showing an implementation of an optical transmitter 200 according to the present disclosure. 本開示による光送信器300の実装形態を示す側断面図である。FIG. 2 is a cross-sectional side view showing an implementation of an optical transmitter 300 according to the present disclosure. 本開示による光送信器400の実装形態を示す側断面図である。FIG. 4 is a side cross-sectional view showing an implementation of an optical transmitter 400 according to the present disclosure. 本開示による光送信器500の実装形態を示す側断面図である。FIG. 5 is a cross-sectional side view showing an implementation of an optical transmitter 500 according to the present disclosure. 本開示による光送信器600の実装形態を示す側断面図である。FIG. 6 is a cross-sectional side view showing an implementation of an optical transmitter 600 according to the present disclosure. 本開示による光送信器700の実装形態を示す側断面図である。FIG. 7 is a cross-sectional side view showing an implementation of an optical transmitter 700 according to the present disclosure. 本開示による光送信器200-700に用いられるペルチェ素子205の構成を例示する図である。2 is a diagram illustrating an example of the configuration of a Peltier element 205 used in an optical transmitter 200-700 according to the present disclosure.
 以下に、図面を参照しながら本開示の種々の実施形態について詳細に説明する。同一又は類似の参照符号は同一又は類似の要素を示し重複する説明を省略する場合がある。材料及び数値は例示を目的としており本開示の技術的範囲の限定を意図していない。以下の説明は、一例であって本開示の一実施形態の要旨を逸脱しない限り、一部の構成を省略若しくは変形し、又は追加の構成とともに実施することができる。 Various embodiments of the present disclosure will be described in detail below with reference to the drawings. The same or similar reference symbols indicate the same or similar elements, and duplicate descriptions may be omitted. Materials and numerical values are for illustrative purposes and are not intended to limit the technical scope of the present disclosure. The following description is an example, and some configurations may be omitted or modified, or additional configurations may be added, as long as they do not deviate from the gist of an embodiment of the present disclosure.
 本開示は、光変調器とそのドライバICが一体にパッケージ実装された光送信器において、光送信器の高周波特性の温度依存性改善のための新しい構成と、各構成に適合する実装形態を提示する。温度依存性を改善する構成は、光送信器における温度調整器(TEC:ThermoElectric Cooler)の新しい利用形態を含む。さらに、TECの新しい利用形態に適合した、ドライバIC、光変調器チップおよび空間光学部品の様々な実装形態も提案する。 This disclosure presents new configurations for improving the temperature dependency of the high-frequency characteristics of an optical transmitter in an optical transmitter in which an optical modulator and its driver IC are integrally packaged, and implementation forms compatible with each configuration. The configuration for improving the temperature dependency includes a new usage form of a temperature regulator (TEC: ThermoElectric Cooler) in the optical transmitter. In addition, various implementation forms of the driver IC, optical modulator chip, and spatial optical components compatible with the new usage form of the TEC are also proposed.
 TECは熱電クーラーとも呼ばれ、ペルチェ接合による小型冷却デバイスとして知られている。TECは、n型半導体、p型半導体および金属から構成されており、板状に形成された素子の両面に直流電流を流すと、一方の面で吸熱、もう一方の面で放熱が起こる。電流の向きを逆にすれば吸熱と放熱が切り替わるので、ICや電子部品の局所的で正確な温度コントロールが可能である。以下の説明では、簡単のため温度調整器をTECと呼び、ペルチェ素子として説明する。ドライバICや光変調器チップの温度制御が可能なものであれれば、ペルチェ素子によるものに限定されない。  TECs are also known as thermoelectric coolers, and are known as small cooling devices that use Peltier junctions. TECs are made up of n-type semiconductors, p-type semiconductors, and metals, and when a direct current is passed through both sides of the plate-shaped element, heat absorption occurs on one side and heat dissipation occurs on the other. Reversing the direction of the current switches between heat absorption and dissipation, allowing for localized and precise temperature control of ICs and electronic components. For simplicity's sake, in the following explanation, the temperature regulator will be referred to as a TEC and will be described as a Peltier element. It is not limited to Peltier elements, as long as it is capable of controlling the temperature of driver ICs and optical modulator chips.
 以下では、従来技術のHB-CDMの形態による光変調器を例として、光送信器における高周波特性の温度依存性の問題を最初に説明する。その後、本発明の光送信器による、高周波特性の温度依存性を改善する新規な構成について、様々な実装形態とともに説明する。 Below, we will first explain the problem of temperature dependency of high-frequency characteristics in optical transmitters, using an optical modulator in the form of HB-CDM as an example of conventional technology. We will then explain a new configuration for improving the temperature dependency of high-frequency characteristics in the optical transmitter of the present invention, along with various implementation forms.
 図1は、従来技術のHB-CDMによる光送信器の実装形態を示す側断面図である。光送信器100は、HB-CDMの仕様に沿って、セラミックなどによるパッケージ筐体101の内部にドライバIC102、光変調器チップ103、空間光学部品であるレンズ112、113などが収納されている。より具体的には、筐体101の内部の底面には、ペルチェ素子105の上のサブキャリア104を介して光変調器チップ103が搭載されている。光変調器チップ103の図面上で右端には変調光の出射端面があり、変調光を光ファイバ114と光結合するためのレンズ112、113もサブキャリア上に搭載されている。 Figure 1 is a side cross-sectional view showing the mounting form of an optical transmitter using HB-CDM, a conventional technology. In accordance with the specifications of HB-CDM, the optical transmitter 100 contains a driver IC 102, an optical modulator chip 103, and lenses 112 and 113, which are spatial optical components, inside a package housing 101 made of ceramic or the like. More specifically, the optical modulator chip 103 is mounted on the inside bottom surface of the housing 101 via a subcarrier 104 on a Peltier element 105. The right end of the optical modulator chip 103 in the drawing has an output end surface for modulated light, and lenses 112 and 113 for optically coupling the modulated light to an optical fiber 114 are also mounted on the subcarrier.
 光変調器チップ103に隣接して、金属ブロックやセラミック材106上にドライバIC102が搭載されている。さらに、パッケージ筐体101の図面上の左側の壁面として、配線基板ベース107およびパッケージ壁面108を備えており、パッケージ筐体101とともに、外部と光送信器の内部空間を区画する。光送信器100は、パッケージ全体が気密性を確保して構成されることもできる。 A driver IC 102 is mounted on a metal block or ceramic material 106 adjacent to the optical modulator chip 103. In addition, the package housing 101 has a wiring board base 107 and a package wall 108 as the left wall in the drawing, which, together with the package housing 101, separate the outside from the internal space of the optical transmitter. The optical transmitter 100 can also be constructed so that the entire package is airtight.
 外部のデジタル信号プロセッサ(DSP)から供給される変調電気信号は、配線基板ベース107の配線層109、ドライバIC102を経て、光変調器チップ103へ供給される。配線層109およびドライバIC102の間、ドライバIC102および光変調器チップ103の間は、金ワイヤ線110、111等でそれぞれ接続されている。変調電気信号は、偏波多重型IQ光変調方式の場合、X偏波およびY偏波のそれぞれについて、IチャネルおよびQチャネルを含む。1つのチャネルが差動信号形式の電気信号として供給される場合、1つの光変調器に対して少なくとも8本の信号配線、さらにGND配線が必要となるが、変調信号形式はこれに限定されない。図1に示した光変調器100は、特許文献1に示されているように、受信側のTIAおよび光受光器が一体に集積されたICRパッケージやDSPとともに、共通の装置基板に搭載されて、光送受信装置を構成できる。 The modulated electrical signal supplied from an external digital signal processor (DSP) is supplied to the optical modulator chip 103 via the wiring layer 109 and driver IC 102 of the wiring board base 107. The wiring layer 109 and the driver IC 102, and the driver IC 102 and the optical modulator chip 103 are connected by gold wires 110, 111, etc., respectively. In the case of a polarization multiplexed IQ optical modulation method, the modulated electrical signal includes an I channel and a Q channel for each of the X polarization and the Y polarization. When one channel is supplied as an electrical signal in a differential signal format, at least eight signal wirings and a GND wiring are required for one optical modulator, but the modulated signal format is not limited to this. As shown in Patent Document 1, the optical modulator 100 shown in FIG. 1 can be mounted on a common device substrate together with an ICR package in which the receiving side TIA and optical receiver are integrated, and a DSP, to configure an optical transmitting and receiving device.
 ここで再び、光送信器内のペルチェ素子105に着目する。InP基板に作製された光変調器チップ103では温度制御が必須であり、ペルチェ素子105によって所定の動作温度にコントロールされている。図1に示したように、ペルチェ素子105は、少なくとも光変調器チップ103の全体領域をカバーするようなサイズを持ち、その位置がレンズなどの空間光学部品の領域に掛る場合もある。一方で、従来技術の光送信器100では、ドライバIC102の温度制御は必要が無いと考えられており、金属ブロックやセラミックなどの部材106によってパッケージ内に固定されていた。光送信器100の外部温度(環境温度)が上昇すれば、その上昇した温度がドライバIC102の動作温度となる。光送信器を含む光送受信装置が使用される最大環境温度の85℃の状態になれば、ドライバIC102自体の温度も少なくとも85℃以上となっていた。ドライバICも大きな消費電力を持っており、ドライバIC自体が発熱することになる。したがって、ドライバICの発熱の影響により、ドライバICのバックサイド温度は、最大環境温度の85℃を超えることを意味している。 Here, we again focus on the Peltier element 105 in the optical transmitter. Temperature control is essential for the optical modulator chip 103 fabricated on an InP substrate, and the Peltier element 105 controls the temperature to a predetermined operating temperature. As shown in FIG. 1, the Peltier element 105 has a size that covers at least the entire area of the optical modulator chip 103, and its position may overlap the area of spatial optical components such as lenses. On the other hand, in the optical transmitter 100 of the conventional technology, it was considered that temperature control of the driver IC 102 was not necessary, and it was fixed in the package by a member 106 such as a metal block or ceramic. If the external temperature (ambient temperature) of the optical transmitter 100 rises, the increased temperature becomes the operating temperature of the driver IC 102. If the optical transmitting and receiving device including the optical transmitter reaches the maximum ambient temperature of 85°C, the temperature of the driver IC 102 itself is at least 85°C or higher. The driver IC also consumes a lot of power, and the driver IC itself generates heat. This means that the heat generated by the driver IC will cause the backside temperature of the driver IC to exceed the maximum ambient temperature of 85°C.
 ドライバICは、高周波電気信号の増幅特性(高周波特性)に温度依存性を持っており、高温状態では、室温状態と比較して高周波帯域が低下する傾向にある。逆に低温状態では、室温状態と比較して高周波帯域は増大する傾向にある。このように、低温状態と高温状態の間で、ドライバICの高周波特性が異なる。ドライバICに供給される変調信号は、室温状態においてDSPによって様々な最適化や補償が行われている。しかしながら、このような補償を温度変動とともに動的に更新しながら行うのは複雑な処理であり、一般には実施されていない。常温時における一定の補償状態のままで動作を続けるため、低温状態や高温状態に変わった際には、変調信号の補償状態は最適点からずれることになる。このため、光送信器の光伝送特性および波形品質に変動や劣化が生じていた。 The driver IC has temperature-dependent amplification characteristics (high frequency characteristics) of high frequency electrical signals, and at high temperatures the high frequency band tends to decrease compared to room temperature. Conversely, at low temperatures the high frequency band tends to increase compared to room temperature. Thus, the high frequency characteristics of the driver IC differ between low and high temperatures. The modulation signal supplied to the driver IC is optimized and compensated in various ways by the DSP at room temperature. However, dynamically updating such compensation in line with temperature fluctuations is a complex process and is not generally implemented. Because operation continues at a constant compensation state at room temperature, the compensation state of the modulation signal deviates from the optimal point when the state changes to a low or high temperature. This causes fluctuations and deterioration in the optical transmission characteristics and waveform quality of the optical transmitter.
 光変調器チップ103のIQ変調器は電気信号の振幅・位相を保存する線形変調器であり、変調電気信号のレベルや波形品質の変動は、変調出力光の品質に直接的な影響を与える。光送信器の動作中に外部温度が変わると、光変調器チップ自体はペルチェ素子で温度管理されているため一定温度に維持されるが、ドライバICの動作温度は変化してしまう。
結果として、HB-CDMの変調光のレベル変動や品質変動が生じ、環境温度の時間的な変化によって、伝送特性が劣化し、安定しない問題も生じる。
The IQ modulator of the optical modulator chip 103 is a linear modulator that preserves the amplitude and phase of the electrical signal, and fluctuations in the level and waveform quality of the modulated electrical signal directly affect the quality of the modulated output light. If the external temperature changes while the optical transmitter is in operation, the optical modulator chip itself is maintained at a constant temperature because the temperature is controlled by a Peltier element, but the operating temperature of the driver IC changes.
As a result, fluctuations in the level and quality of the HB-CDM modulated light occur, and the transmission characteristics deteriorate and become unstable due to changes in the environmental temperature over time.
 電気信号の高域側での環境温度に起因した特性劣化は、変調信号の波形歪みを生じ、光変調器からの変調出力光の変調精度が劣化する。このような劣化した変調光を受信する光受信器では、BER特性にフロアが生じるなど、システムの伝送特性の低下にも繋がっていた。 The deterioration of characteristics due to the environmental temperature on the high frequency side of the electrical signal causes waveform distortion of the modulated signal, degrading the modulation accuracy of the modulated output light from the optical modulator. In an optical receiver receiving such degraded modulated light, a floor appears in the BER characteristics, leading to a deterioration in the transmission characteristics of the system.
 変調電気信号の広帯域化の要請が進み、40GHz以上の変調帯域が求められる状況の下で、上述のような高温時における、ドライバICの高周波特性が劣化する影響は無視できない。本発明は、光変調器とそのドライバICが一体にパッケージ実装された光送信器において、高周波特性および光伝送特性における温度依存性を改善する新しい構成および実装形態を提示する。 In a situation where there is an increasing demand for wider bandwidth modulated electrical signals and modulation bandwidths of 40 GHz or more are required, the effect of degradation of the high frequency characteristics of the driver IC at high temperatures as described above cannot be ignored. The present invention presents a new configuration and implementation form that improves the temperature dependency of high frequency characteristics and optical transmission characteristics in an optical transmitter in which an optical modulator and its driver IC are packaged together.
 以下に、本開示による光送信器の実施形態について、図面を参照して詳細に説明する。尚、以降の説明では、本開示による光送信器は、フレキシブルプリント基板(FPC)インターフェースのHB-CDMの形態として述べられる。しかしながら、これは例示を目的としており、ドライバICと光変調器チップが集積されている光送信モジュールであれば、同様の効果を奏する。 Below, an embodiment of an optical transmitter according to the present disclosure will be described in detail with reference to the drawings. In the following description, the optical transmitter according to the present disclosure will be described as being in the form of an HB-CDM with a flexible printed circuit board (FPC) interface. However, this is for illustrative purposes only, and the same effect can be achieved with any optical transmission module in which a driver IC and an optical modulator chip are integrated.
(全体構成)
 図2は、本開示による光送信器200の実装形態を示す側断面図である。図2に示される通り、光送信器200では、パッケージ筐体201の内部にドライバIC202、光変調器チップ203及び光学部材(図2では、空間光学部品であるレンズ212、213を例として描写している)などが収納されている。より具体的には、筐体201の内部の底面には、ペルチェ素子205の上のサブキャリア204を介して光変調器チップ203が搭載されている。光変調器チップ203の図面上で右端には、変調光の出射端面があり、変調光を光ファイバ214と光結合するためのレンズ212、213もサブキャリア上に搭載されている。
(overall structure)
2 is a side cross-sectional view showing a mounting form of an optical transmitter 200 according to the present disclosure. As shown in FIG. 2, in the optical transmitter 200, a driver IC 202, an optical modulator chip 203, and optical members ( lenses 212 and 213, which are spatial optical components, are depicted as an example in FIG. 2) are housed inside a package housing 201. More specifically, the optical modulator chip 203 is mounted on the bottom surface inside the housing 201 via a subcarrier 204 on a Peltier element 205. At the right end of the drawing of the optical modulator chip 203, there is an output end surface of modulated light, and lenses 212 and 213 for optically coupling the modulated light with an optical fiber 214 are also mounted on the subcarrier.
 さらに、光送信器200は、パッケージ筐体201の図面上の左側の壁面として、配線基板ベース207及びパッケージ壁面208を含み、パッケージ筐体201とともに、外部と光送信器の内部空間を区画する。また、配線基板ベース207はパッケージテラスを有しており、当該パッケージテラスの上面に形成される配線層209と高周波インターフェースとしてのフレキシブル基板(FPC)が接続される。尚、光送信器200は、パッケージ全体が気密性を確保して構成されることもできる。 Furthermore, the optical transmitter 200 includes a wiring board base 207 and a package wall 208 as the wall surface on the left side of the package housing 201 in the drawing, which, together with the package housing 201, separate the internal space of the optical transmitter from the outside. The wiring board base 207 also has a package terrace, and a wiring layer 209 formed on the upper surface of the package terrace is connected to a flexible printed circuit board (FPC) as a high-frequency interface. The optical transmitter 200 can also be constructed so that the entire package is airtight.
 外部のデジタル信号プロセッサ(DSP)から供給される変調電気信号は、配線基板ベース207の配線層209、ドライバIC202を経て、光変調器チップ203へ供給される。配線層209とドライバIC202との間は、金ワイヤ線210で接続されている。一方、ドライバIC202と光変調器チップ203との間は、略直線の高周波線路を有する配線基板215及びピラー/バンプ216、217及びによって接続されている。但し、PADピッチが異なる場合等を考慮し、当該高周波線路に対しては、顕著な特性劣化が生じない程度の緩やかな曲率を有することは許容される。 The modulated electrical signal supplied from an external digital signal processor (DSP) is supplied to the optical modulator chip 203 via the wiring layer 209 of the wiring board base 207 and the driver IC 202. The wiring layer 209 and the driver IC 202 are connected by gold wire 210. Meanwhile, the driver IC 202 and the optical modulator chip 203 are connected by a wiring board 215 having a nearly straight high-frequency line and pillars/ bumps 216, 217. However, taking into consideration cases where the pad pitch is different, it is permissible for the high-frequency line to have a gentle curvature that does not cause significant deterioration in characteristics.
 本開示による光送信器200と、従来技術による光送信器100との相違点の1つは、ドライバICの実装形態にある。図2に示される通り、本開示による光送信器200では、ドライバIC202が、光変調器チップ203及びレンズ212、213と同様に、サブキャリア204上に実装される。上述の通り、サブキャリア204は、ペルチェ素子205上に設置されているため、光送信器200では、ペルチェ素子205による温度制御が、ドライバIC202にも及ぶ。したがって、光送信器200では、光変調器チップ203と同様に、ドライバIC202も温度が管理できることとなる。 One of the differences between the optical transmitter 200 according to the present disclosure and the optical transmitter 100 according to the conventional technology is in the mounting form of the driver IC. As shown in FIG. 2, in the optical transmitter 200 according to the present disclosure, the driver IC 202 is mounted on the subcarrier 204, similar to the optical modulator chip 203 and lenses 212, 213. As described above, since the subcarrier 204 is installed on the Peltier element 205, in the optical transmitter 200, the temperature control by the Peltier element 205 also extends to the driver IC 202. Therefore, in the optical transmitter 200, the temperature of the driver IC 202 can be managed in the same way as the optical modulator chip 203.
 具体的な温度について考えると、例えば光変調器チップ203がInP変調器である場合、光変調器チップ203は温度が過度に低いと変調効率が低下するため、45±10℃程度で使用されることが多い(ただし、半導体素子設計に依っては、これよりも低い温度で使用される変調器チップも存在する)。一方、ドライバIC202に関しては、低温である方が、高周波帯域特性が良いことが知られている。そのため、光変調器チップ203の顕著な特性の劣化が生じることなく、且つドライバIC202の特性を十分引き出せる温度として、ペルチェ素子205は、25-50℃の範囲における任意の温度にて、一定に制御される必要がある。 Considering specific temperatures, for example, if the optical modulator chip 203 is an InP modulator, the optical modulator chip 203 is often used at around 45±10°C because an excessively low temperature reduces the modulation efficiency (however, depending on the semiconductor device design, there are also modulator chips that are used at temperatures lower than this). On the other hand, it is known that the driver IC 202 has better high-frequency band characteristics at lower temperatures. Therefore, the Peltier element 205 needs to be constantly controlled at a temperature within the range of 25-50°C so that the characteristics of the driver IC 202 can be fully brought out without significant deterioration of the characteristics of the optical modulator chip 203.
 図2では、ペルチェ素子205とドライバIC202、光変調器チップ203及び光学部材(例えば、レンズ212、213等)との間には、サブキャリア204が実装されている。このサブキャリア204は、後述するドライバIC202及び光変調器チップ203の高さ調整を行うとともに、ドライバIC202及び光変調器チップ203のDC配線を取り出すための基板として機能する。サブキャリア204は、例えば、窒化アルミニウム(AlN)のような熱伝導性に優れる材料が用いられることが望ましい。また、AlNは、光変調器チップ203に適用されるInPと線膨張係数の値が近く、InP変調器との界面近傍で発生する熱応力を抑制することができるため、サブキャリア204に適用される材料として好適である。なお、当該サブキャリア204上には、光変調器チップ203のDC配線を取り出すための配線(図示せず)や、光学部材(例えば、レンズ212、213等)を搭載するための位置出しマーカー(図示せず)等がメタルパターンによって形成されている。 In FIG. 2, a subcarrier 204 is mounted between the Peltier element 205 and the driver IC 202, the optical modulator chip 203, and the optical members (e.g., lenses 212, 213, etc.). This subcarrier 204 adjusts the height of the driver IC 202 and the optical modulator chip 203, which will be described later, and functions as a substrate for extracting the DC wiring of the driver IC 202 and the optical modulator chip 203. For the subcarrier 204, it is desirable to use a material with excellent thermal conductivity, such as aluminum nitride (AlN). In addition, AlN has a linear expansion coefficient close to that of InP applied to the optical modulator chip 203, and can suppress thermal stress generated near the interface with the InP modulator, so it is suitable as a material applied to the subcarrier 204. In addition, wiring (not shown) for extracting the DC wiring of the optical modulator chip 203 and positioning markers (not shown) for mounting optical members (e.g., lenses 212, 213, etc.) are formed on the subcarrier 204 by metal patterns.
 また、上記と同様の理由から、ペルチェ素子205の上面部分(サブキャリア204に接する部分)もAlNが適用されることが望ましい。 Furthermore, for the same reasons as above, it is desirable to use AlN for the upper surface portion of the Peltier element 205 (the portion in contact with the subcarrier 204).
 なお、サブキャリア204は、図2では1層であるものとして描写されているが、多層であってもよい。とりわけ、DC配線数が多い場合、又は端子の順番入れ替え等を行う必要がある場合には、多層とすることで多層配線を駆使したレイアウトを行うことが可能となる。 Note that although subcarrier 204 is depicted in FIG. 2 as being one layer, it may be multi-layered. In particular, when there are a large number of DC wirings or when it is necessary to change the order of terminals, making it multi-layered allows for a layout that makes full use of multi-layer wiring.
 サブキャリア204とドライバIC202、並びにサブキャリア204と光変調器チップ203とは、ペルチェ素子205における熱引きを効率的にするために、熱伝導率が30W/m K以上の導電性ペースト又ははんだで実装される必要がある。実装時におけるプロセス温度等の管理の観点では、全て同一の導電性ペースト又ははんだを用いることが望ましいが、必ずしもこれらの接合フィラーは同一である必要はなく、固定温度等が異なるものを組み合わせて使用することも可能である。 The subcarrier 204 and driver IC 202, as well as the subcarrier 204 and optical modulator chip 203, must be mounted with a conductive paste or solder with a thermal conductivity of 30 W/mK or more in order to efficiently dissipate heat in the Peltier element 205. From the perspective of managing the process temperature during mounting, it is desirable to use the same conductive paste or solder for all of them, but these joint fillers do not necessarily need to be the same, and it is also possible to combine those with different fixed temperatures, etc.
 また、レンズ212,213等の光学部材は、温度変化による接着剤の厚み変動等を生じさせないために、ドライバIC202及び光変調器チップ203と同様に、サブキャリア204上に実装されることが望ましい。このような構成とすることにより、温度変化による光挿入損失の変動等を最小化することが可能である。 In addition, it is desirable that optical components such as lenses 212 and 213 are mounted on subcarrier 204, similar to driver IC 202 and optical modulator chip 203, in order to prevent variations in adhesive thickness due to temperature changes. With this configuration, it is possible to minimize variations in optical insertion loss due to temperature changes.
(高周波実装に寄与する部分の構成)
 次いで、高周波実装に寄与する部分の構成について述べる。ドライバIC202-光変調器チップ203間の接続部のインダクタンスが増加すると、LC共振により、高周波特性におけるロールオフが低域側にシフトする。そのため、広帯域なHB-CDMを実現するためには、ドライバIC202-光変調器チップ203間のインダクタンスを低くすることが望ましい。そこで、本開示による光送信器200では、ドライバIC202-光変調器チップ203間は配線基板215をフェイスダウンでフリップチップ実装し、ドライバIC202-配線層209は金ワイヤ線210にて接続するような構成としている。
(Configuration of parts contributing to high frequency implementation)
Next, the configuration of the part that contributes to high frequency mounting will be described. When the inductance of the connection between the driver IC 202 and the optical modulator chip 203 increases, the roll-off in the high frequency characteristics shifts to the low frequency side due to LC resonance. Therefore, in order to realize a wideband HB-CDM, it is desirable to lower the inductance between the driver IC 202 and the optical modulator chip 203. Therefore, in the optical transmitter 200 according to the present disclosure, the wiring board 215 is flip-chip mounted face-down between the driver IC 202 and the optical modulator chip 203, and the driver IC 202 and the wiring layer 209 are connected by gold wires 210.
 ドライバIC202-光変調器チップ203間は、配線基板215及びピラー/バンプ216、217を介して接続される。当該配線基板215及びピラー/バンプ216、217は、フェイスダウンでのフリップチップ実装により形成され、ピラー/バンプ216、217は、Auピラー/バンプやCuピラー/バンプであり得る。このような構成を有するドライバIC202-光変調器チップ203間の接続部に対して安定した実装をするためには、ドライバIC202と光変調器チップ203の各々の上面(ピラー/バンプが実装される面)の高さが一致し、配線基板215が、ドライバIC202及び光変調器チップ203に対して、高い平行度を有するように実装されていることが望ましい。具体的には、ドライバIC202及び光変調器チップ203に対する配線基板215の傾きが±3°を超えると、当該接合部に空隙が生じる等の接合不良が発生し得る。また、それに伴って、当該接合部に応力集中部が発生し得るため、振動衝撃に対してもろく、接合部の破壊を引き起こす可能性があり、結果として、デバイスの長期信頼性を確保できなくなる。そのため、実装時にはドライバIC202及び光変調器チップ203の主面に対する配線基板215の高さ方向の傾きは±3°以内となるように、且つドライバICと光変調器チップ203の各々の上面の高さが一致するように管理する必要がある。 The driver IC 202 and the optical modulator chip 203 are connected via the wiring board 215 and the pillars/ bumps 216, 217. The wiring board 215 and the pillars/ bumps 216, 217 are formed by face-down flip-chip mounting, and the pillars/ bumps 216, 217 can be Au pillars/bumps or Cu pillars/bumps. In order to stably mount the connection between the driver IC 202 and the optical modulator chip 203 having such a configuration, it is desirable that the heights of the upper surfaces (surfaces on which the pillars/bumps are mounted) of the driver IC 202 and the optical modulator chip 203 are the same, and that the wiring board 215 is mounted so as to have a high degree of parallelism with respect to the driver IC 202 and the optical modulator chip 203. Specifically, if the inclination of the wiring board 215 with respect to the driver IC 202 and the optical modulator chip 203 exceeds ±3°, a bonding failure such as a gap occurring at the bonding portion may occur. In addition, as a result, stress concentration may occur at the joint, making it vulnerable to vibration and shock, which may cause the joint to break, and as a result, it is not possible to ensure the long-term reliability of the device. Therefore, when mounting, it is necessary to ensure that the inclination in the height direction of the wiring board 215 with respect to the main surfaces of the driver IC 202 and the optical modulator chip 203 is within ±3°, and that the height of the top surface of the driver IC and the optical modulator chip 203 is the same.
 ピラー/バンプ216、217として一般的に用いられるAuピラー/バンプ又はCuピラー/バンプの寸法は、直径、高さ共に100μm以下であることが多い。そのため、ドライバIC202と光変調器チップ203の上面の高さ差は少なくとも100μm以下(理想的には50μm以下)に管理されることが望ましい。 The dimensions of the Au pillar/bump or Cu pillar/bump that are generally used as the pillar/bumps 216 and 217 are often 100 μm or less in both diameter and height. Therefore, it is desirable to keep the height difference between the top surfaces of the driver IC 202 and the optical modulator chip 203 at least 100 μm or less (ideally 50 μm or less).
 上述の通り、ドライバIC202及び光変調器チップ203の上面の高さは一致している(少なくとも、高さ差が100μm以内である)必要がある。この高さ差のばらつきを最小限に押さえるという観点では、図2に示されるように、同一のサブキャリア204上に同一のチップ厚さを有するドライバIC202及び光変調器チップ203が実装されることが最も望ましい(例えば、ドライバIC202及び光変調器チップ203の各々の厚さが300μmで一致している場合など)。一方で、図3に示されるように、ドライバIC202及び光変調器チップ203の各々の厚さが異なる場合も想定される(例えば、ドライバIC202の厚さが100μm、光変調器チップ203の各々の厚さが300μmという場合など)。このような場合には、図3に示される通り、ドライバIC202と光変調器チップ203を別部材の上に実装することにより、各々の上面の高さを一致するように調整することができる(図3では、例として、ドライバIC202のみ、当該部材としての金属ブロック301を介して実装される形態を描写している)。ブロック301は、ドライバIC202は放熱性とGNDの安定性を考え、CuW等の金属やAlN等の熱伝導性に優れたセラミックが適用され得る。 As mentioned above, the heights of the top surfaces of the driver IC 202 and the optical modulator chip 203 must be the same (at least, the height difference must be within 100 μm). From the viewpoint of minimizing the variation in this height difference, it is most desirable to mount the driver IC 202 and the optical modulator chip 203 having the same chip thickness on the same subcarrier 204 as shown in FIG. 2 (for example, the driver IC 202 and the optical modulator chip 203 each have the same thickness of 300 μm). On the other hand, as shown in FIG. 3, it is also possible that the driver IC 202 and the optical modulator chip 203 have different thicknesses (for example, the driver IC 202 has a thickness of 100 μm and the optical modulator chip 203 has a thickness of 300 μm). In such a case, as shown in FIG. 3, the driver IC 202 and the optical modulator chip 203 can be mounted on separate members to adjust the height of their respective top surfaces to match (FIG. 3 shows, as an example, a form in which only the driver IC 202 is mounted via a metal block 301 as the member in question). For the block 301, a metal such as CuW or a ceramic with excellent thermal conductivity such as AlN can be used for the driver IC 202, taking into account heat dissipation and GND stability.
 尚、図2では、ドライバIC202及び光変調器チップ203が、同一のサブキャリア204上に実装されるような形態として描写されているが、図4及び図5に示されるように、ペルチェ素子205上に実装されるような形態としてもよい。とりわけ、図4に示されるように、ドライバIC202及び光変調器チップ203の厚さが一致している場合、ペルチェ素子205の上面(ドライバIC202及び光変調器チップ203が実装される面)にDC配線や光学実装用のアライメントマークを有するAlNを適用すれば、部品点数の削減が可能となる。このような部品点数の削減は、熱抵抗の低減につながるため、温度制御の観点から好適である。一方、図5に示されるように、ドライバIC202及び光変調器チップ203の厚さが異なる場合であっても、高さ調整用の金属ブロック501を用いてドライバIC202及び光変調器チップ203の高さを一致させれば、同様の効果を奏する。 In FIG. 2, the driver IC 202 and the optical modulator chip 203 are depicted as being mounted on the same subcarrier 204, but as shown in FIG. 4 and FIG. 5, they may be mounted on the Peltier element 205. In particular, as shown in FIG. 4, when the thicknesses of the driver IC 202 and the optical modulator chip 203 are the same, the number of parts can be reduced by applying AlN having DC wiring and alignment marks for optical mounting to the upper surface of the Peltier element 205 (the surface on which the driver IC 202 and the optical modulator chip 203 are mounted). This reduction in the number of parts leads to a reduction in thermal resistance, and is therefore preferable from the viewpoint of temperature control. On the other hand, as shown in FIG. 5, even if the thicknesses of the driver IC 202 and the optical modulator chip 203 are different, the same effect can be achieved by using a metal block 501 for height adjustment to make the heights of the driver IC 202 and the optical modulator chip 203 the same.
 また、ドライバIC202からの熱流入を考えると、ドライバIC202と光変調器チップ203との間の距離は、300μm以上離れていることが望ましい。一方で、接合強度や高周波特性の劣化という観点を考慮すると、最長でも配線基板215の長さは2mm以下であることが望ましい。 In addition, when considering heat inflow from the driver IC 202, it is desirable that the distance between the driver IC 202 and the optical modulator chip 203 be 300 μm or more. On the other hand, when considering the deterioration of bonding strength and high-frequency characteristics, it is desirable that the length of the wiring board 215 be 2 mm or less at the longest.
 また、図2及び図3に示されるようなサブキャリア204を有する形態の場合、図6に示される光送信器600のように、ドライバIC202と光変調器のチップ203の間であって、サブキャリア204の上面または下面の少なくとも一方に形成された熱分離溝401をさらに含んでもよい(図6では、例として、上面に形成される形態を示している)。このような構成とすることにより、ドライバIC203と変調器チップ204とを熱分離することが可能となる。 Furthermore, in the case of a configuration having a subcarrier 204 as shown in Figures 2 and 3, as in the optical transmitter 600 shown in Figure 6, a thermal isolation groove 401 may be formed on at least one of the upper and lower surfaces of the subcarrier 204 between the driver IC 202 and the optical modulator chip 203 (Figure 6 shows a configuration formed on the upper surface as an example). With this configuration, it is possible to thermally isolate the driver IC 203 and the modulator chip 204.
 配線基板215は、光変調器チップ203がInP変調器である場合、InPとの線膨張係数差からAlNであることが望ましいが、よりドライバIC202からの熱流入を抑えるという観点では、SiO2やその他誘電体材料を用いた樹脂などの熱伝導性が低い材料を用いることが望ましい。このように配線基板215に適用される材料は、設計に応じて適宜選択されることが好ましく、上記の材料に必ずしも限定される必要はない。例えば、AlN以外のアルミナ等のセラミックスであっても同様の効果を得ることは可能である。 When the optical modulator chip 203 is an InP modulator, the wiring board 215 is preferably made of AlN due to the difference in linear expansion coefficient with InP, but from the viewpoint of further suppressing heat inflow from the driver IC 202, it is preferable to use a material with low thermal conductivity such as SiO2 or other resin using a dielectric material. In this way, the material applied to the wiring board 215 is preferably selected appropriately according to the design, and is not necessarily limited to the above materials. For example, it is possible to obtain the same effect even with ceramics other than AlN, such as alumina.
 また、図2-5では、ドライバIC202-光変調器チップ203間のみが配線基板215を介して接続されるように描写されているが、図7に示される通り、ドライバIC202-配線層209間も金ワイヤ線210ではなく、配線基板601及びピラー/バンプ602、603を用いたフリップチップ実装での接続としてもよい。このような場合でも、上述したドライバIC202及び光変調器チップ203の高さ差、並びに配線基板215の傾きと同様の理由から、ドライバIC202と配線層209の各々の上面の高さ差は、少なくとも100μm以下(理想的には50μm以下)であり、配線基板601のドライバIC202及び配線層209に対する傾きは、±3°以内である必要がある。配線基板601及びピラー/バンプ602、603の材料は、配線基板215及びピラー/バンプ216、217同一であってもよく、異なってもよいが、コストの観点から、同じ材料とすることが望ましい。このような場合、ドライバICの入出力PADは同一とし、光変調器チップ203と配線層209の接続部のPAD形状やピッチ等を揃えることで、同一の配線基板を用いてコストの低減が可能である。 In addition, in FIG. 2-5, only the driver IC 202 and the optical modulator chip 203 are depicted as being connected via the wiring board 215, but as shown in FIG. 7, the driver IC 202 and the wiring layer 209 may also be connected by flip-chip mounting using the wiring board 601 and the pillars/ bumps 602, 603 instead of the gold wires 210. Even in such a case, for the same reasons as the height difference between the driver IC 202 and the optical modulator chip 203 and the inclination of the wiring board 215 described above, the height difference between the upper surfaces of the driver IC 202 and the wiring layer 209 must be at least 100 μm or less (ideally 50 μm or less), and the inclination of the wiring board 601 with respect to the driver IC 202 and the wiring layer 209 must be within ±3°. The materials of the wiring board 601 and the pillars/ bumps 602, 603 may be the same as or different from the wiring board 215 and the pillars/ bumps 216, 217, but from the viewpoint of cost, it is preferable to use the same material. In such cases, the input and output pads of the driver IC are the same, and the pad shape and pitch of the connection between the optical modulator chip 203 and the wiring layer 209 are the same, making it possible to use the same wiring board and reduce costs.
 また、高周波特性の観点から考えると、ドライバIC202の特性を最も効率的に活用するためには、ドライバIC202及び光変調器チップ203は、差動線路構成となっていることが望ましい。加えて、高周波差動線路は曲率を有していると大きく特性が劣化するため、配線基板上の高周波線路は直線で形成されていることが望ましい。直線で構成するためには、それぞれの部材の接続用PADピッチは一致していることが望ましい。 Furthermore, from the viewpoint of high frequency characteristics, in order to utilize the characteristics of the driver IC 202 most efficiently, it is desirable that the driver IC 202 and the optical modulator chip 203 have a differential line configuration. In addition, since the characteristics of high frequency differential lines are significantly degraded if they have a curvature, it is desirable that the high frequency lines on the wiring board are formed in straight lines. In order to configure them in straight lines, it is desirable that the connection pad pitches of the respective components are the same.
 尚、図2-5に示されるように、ドライバIC201-配線層209間を金ワイヤ線210で接続する場合は、ドライバIC201と配線層209の上面の高さ差は100μm程度であることが望ましい。金ワイヤ線210がボールワイヤである場合は、ワイヤ長を最小化する観点から、ドライバIC202の上面の高さを配線層209の上面よりも低く設定し、ドライバIC202から配線層209側に金ワイヤ線210を打ち上げるような構成とすることが好適である。一方、金ワイヤ線210がループを有さず、フラットにドライバIC201-配線層209間を接続できるワイヤである場合は、ドライバIC201と配線層209の上面の高さは、一致していることが望ましい。 As shown in FIG. 2-5, when the driver IC 201 and the wiring layer 209 are connected with the gold wire 210, it is desirable that the difference in height between the top surfaces of the driver IC 201 and the wiring layer 209 is about 100 μm. When the gold wire 210 is a ball wire, it is preferable to set the height of the top surface of the driver IC 202 lower than the top surface of the wiring layer 209 and to configure the gold wire 210 so that it rises from the driver IC 202 to the wiring layer 209 side, in order to minimize the wire length. On the other hand, when the gold wire 210 does not have a loop and is a wire that can connect the driver IC 201 and the wiring layer 209 flat, it is desirable that the heights of the top surfaces of the driver IC 201 and the wiring layer 209 are the same.
 また、図2-6では、光学部材はレンズ実装を前提としているが、これに限定はされず、レンズ実装以外が適用されてもよい。また、光学部材には、レンズ212、213以外にも、ファイバ固定用の部材当等も含まれる。 In addition, in FIG. 2-6, the optical components are assumed to be lens mounted, but this is not limited to this and other mounting methods may be used. In addition, optical components include not only lenses 212 and 213 but also components for fixing fibers, etc.
(ペルチェ素子の構成)
 図8は本開示による光送信器(光送信器200-700)に用いられるペルチェ素子205の構成を例示した図である。本開示による光送信器では、ドライバIC202と光変調器チップ203との間で発熱量に差が生じるため、各素子の温度分布を考えると、ドライバIC202が最も温度が高く、次に光変調器チップ203、その次に光学部材(例えば、レンズ212、213等)、の順となる。このように温度分布が生じている状態で、ペルチェ素子205を構成するn型及びp型半導体の素子密度を一定にすると、光学部材が実装されるエリアは過度に冷却される、或いはドライバIC202が実装されるエリアは十分に冷却されないという状態が生じ得る。そのため、上記の温度分布に応じて、ペルチェ素子205を構成するn型及びp型半導体の素子密度が変化した構成であることが望ましい。図8に示される通り、本開示による光送信器に用いられるペルチェ素子205の一例は、n型及びp型半導体の素子密度が、ドライバIC202が実装されるエリア>光変調器チップ203が実装されるエリア>光学部材が実装エリアとなるように構成される。このような構成とすることにより、温度分布に応じた適切な温度制御(過度な冷却や不十分な冷却の抑制)が可能となる。
(Configuration of Peltier element)
8 is a diagram illustrating the configuration of the Peltier element 205 used in the optical transmitter (optical transmitter 200-700) according to the present disclosure. In the optical transmitter according to the present disclosure, a difference in the amount of heat generated occurs between the driver IC 202 and the optical modulator chip 203. Considering the temperature distribution of each element, the driver IC 202 has the highest temperature, followed by the optical modulator chip 203, and then the optical members (for example, lenses 212, 213, etc.). In a state in which a temperature distribution occurs in this way, if the element density of the n-type and p-type semiconductors constituting the Peltier element 205 is constant, a state may occur in which the area in which the optical members are mounted is excessively cooled, or the area in which the driver IC 202 is mounted is not sufficiently cooled. Therefore, it is desirable to have a configuration in which the element density of the n-type and p-type semiconductors constituting the Peltier element 205 is changed according to the above temperature distribution. 8, an example of the Peltier element 205 used in the optical transmitter according to the present disclosure is configured so that the element density of the n-type and p-type semiconductors is as follows: area where the driver IC 202 is mounted>area where the optical modulator chip 203 is mounted>area where the optical members are mounted. By configuring in this way, it becomes possible to perform appropriate temperature control (suppression of excessive or insufficient cooling) according to the temperature distribution.
 以上述べた通り、本開示による光送信器は、ドライバICを含む光送信器の温度依存性を抑え、高速性に優れ、環境温度によらず安定動作が可能な光送信器の新規な構成および実装形態を実現できる。このため、高速なデジタルコヒーレント光伝送システム等への適用が見込まれる。 As described above, the optical transmitter disclosed herein can realize a new configuration and implementation form of an optical transmitter that suppresses the temperature dependency of the optical transmitter including the driver IC, has excellent speed, and can operate stably regardless of the environmental temperature. For this reason, it is expected to be applied to high-speed digital coherent optical transmission systems, etc.

Claims (9)

  1.  光送信器であって、
     光変調器チップと、
     前記光変調器チップを動作させるためのドライバICと、
     略直線の高周波線路を有し、前記光変調器チップと前記ドライバICを接続する、フリップチップ実装によりフェイスダウン実装された配線基板と、
     前記光変調器チップ及び前記ドライバICの下部に載置されるペルチェ素子と、
    を備え、
     前記光変調器チップ及び前記ドライバICは、同一の前記ペルチェ素子によって温度制御される光送信器。
    1. An optical transmitter comprising:
    an optical modulator chip;
    A driver IC for operating the optical modulator chip;
    a wiring board having a substantially straight high-frequency line and connecting the optical modulator chip and the driver IC, the wiring board being mounted face-down by flip-chip mounting;
    a Peltier element placed under the optical modulator chip and the driver IC;
    Equipped with
    An optical transmitter in which the optical modulator chip and the driver IC are temperature-controlled by the same Peltier element.
  2.  前記光変調器チップと前記ドライバICの上面の高さ差が100μm以下であり、
     前記光変調器チップの主面及び前記ドライバICの主面に対する前記配線基板の主面の高さ方向の傾きは、±3°以内である、請求項1に記載の光送信器。
    The height difference between the upper surfaces of the optical modulator chip and the driver IC is 100 μm or less;
    2. The optical transmitter according to claim 1, wherein an inclination in a height direction of the main surface of the wiring board with respect to the main surface of the optical modulator chip and the main surface of the driver IC is within ±3 degrees.
  3.  前記光変調器チップと前記ドライバICとの間の距離が、300μm以上2mm以下である、請求項1又は2に記載の光送信器。 The optical transmitter according to claim 1 or 2, wherein the distance between the optical modulator chip and the driver IC is 300 μm or more and 2 mm or less.
  4.  前記ペルチェ素子の温度が25-50℃の範囲における任意の温度で一定に制御される、請求項1に記載の光送信器。 The optical transmitter of claim 1, in which the temperature of the Peltier element is controlled to a constant temperature within the range of 25-50°C.
  5.  前記ペルチェ素子の上面の材料が窒化アルミニウム(AlN)であり、
     前記光変調器チップがインジウムリン(InP)光変調器チップであり、
     前記ペルチェ素子と、前記光変調器チップ及びドライバICとが、30W/m K以上の熱伝導率を有する導電ペースト又ははんだにより接続される、請求項1に記載の光送信器。
    The material of the upper surface of the Peltier element is aluminum nitride (AlN),
    the optical modulator chip is an indium phosphide (InP) optical modulator chip;
    2. The optical transmitter according to claim 1, wherein the Peltier element, the optical modulator chip and a driver IC are connected to each other by a conductive paste or solder having a thermal conductivity of 30 W/mK or more.
  6.  前記ペルチェ素子によって温度制御される光学部材をさらに備え、
     前記ペルチェ素子を構成するn型及びp型半導体の素子密度が、前記ドライバICが実装されるエリア>前記光変調器チップが実装されるエリア>前記光学部材の実装エリアの順で高く設定される、請求項1に記載の光送信器。
    The Peltier element further includes an optical member whose temperature is controlled by the Peltier element.
    2. The optical transmitter according to claim 1, wherein the element density of the n-type and p-type semiconductors constituting the Peltier element is set in the following order: area where the driver IC is mounted > area where the optical modulator chip is mounted > area where the optical components are mounted.
  7.  前記ペルチェ素子と、前記光変調器チップ及び前記ドライバICとの間に、サブキャリアをさらに備える、請求項1に記載の光送信器。 The optical transmitter of claim 1, further comprising a subcarrier between the Peltier element and the optical modulator chip and the driver IC.
  8.  前記ドライバICと前記光変調器チップの間であって、前記サブキャリアの上面または下面の少なくとも一方に熱分離溝をさらに備える、請求項7に記載の光送信器。 The optical transmitter of claim 7, further comprising a thermal isolation groove on at least one of the upper and lower surfaces of the subcarrier between the driver IC and the optical modulator chip.
  9.  前記光変調器チップ及び前記ドライバICが、HB-CDM形態の筐体内に実装されており、
     前記光変調器チップ及び前記ドライバICは差動線路構成を有する、請求項1に記載の光送信器。
    The optical modulator chip and the driver IC are mounted in a housing of HB-CDM type,
    The optical transmitter of claim 1 , wherein the optical modulator chip and the driver IC have a differential line configuration.
PCT/JP2022/037033 2022-10-03 2022-10-03 Optical transmitter WO2024075169A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/037033 WO2024075169A1 (en) 2022-10-03 2022-10-03 Optical transmitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/037033 WO2024075169A1 (en) 2022-10-03 2022-10-03 Optical transmitter

Publications (1)

Publication Number Publication Date
WO2024075169A1 true WO2024075169A1 (en) 2024-04-11

Family

ID=90607708

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/037033 WO2024075169A1 (en) 2022-10-03 2022-10-03 Optical transmitter

Country Status (1)

Country Link
WO (1) WO2024075169A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003222826A (en) * 2002-01-29 2003-08-08 Hitachi Ltd Optical transmission module
US20170194310A1 (en) * 2016-01-04 2017-07-06 Infinera Corporation Photonic integrated circuit package
JP2017123379A (en) * 2016-01-05 2017-07-13 富士通株式会社 Semiconductor device
JP2018189699A (en) * 2017-04-28 2018-11-29 日本電信電話株式会社 Optical transmitter
JP2021509483A (en) * 2017-12-26 2021-03-25 住友電気工業株式会社 Optical module and how to assemble the optical module
WO2021084602A1 (en) * 2019-10-29 2021-05-06 日本電信電話株式会社 Optical module

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003222826A (en) * 2002-01-29 2003-08-08 Hitachi Ltd Optical transmission module
US20170194310A1 (en) * 2016-01-04 2017-07-06 Infinera Corporation Photonic integrated circuit package
JP2017123379A (en) * 2016-01-05 2017-07-13 富士通株式会社 Semiconductor device
JP2018189699A (en) * 2017-04-28 2018-11-29 日本電信電話株式会社 Optical transmitter
JP2021509483A (en) * 2017-12-26 2021-03-25 住友電気工業株式会社 Optical module and how to assemble the optical module
WO2021084602A1 (en) * 2019-10-29 2021-05-06 日本電信電話株式会社 Optical module

Similar Documents

Publication Publication Date Title
US9882646B2 (en) System and method for reduced power consumption and heat removal in optical and optoelectronic devices and subassemblies
KR100575969B1 (en) To-can type optical module
JP5144628B2 (en) TO-CAN type TOSA module
US20150116809A1 (en) Optical module
JP6770478B2 (en) Optical transmitter
JPH11231173A (en) Optical device capable of fast operation
US10951005B2 (en) Techniques for attachment and alignment of optical components on a thermoelectric cooler (TEC) and an optical subassembly implementing same
US6735353B2 (en) Module for optical transmitter
JP6984801B1 (en) Semiconductor laser light source device
WO2021171599A1 (en) High-speed optical transmission/reception device
JP4718135B2 (en) Optical module
WO2024075169A1 (en) Optical transmitter
WO2024075170A1 (en) Optical transmitter
WO2024075172A1 (en) Optical transmitter
WO2024075166A1 (en) Optical transmitter
WO2024075167A1 (en) Optical transmitter
JP2007036046A (en) Optical transmitting device
WO2024075171A1 (en) Optical transmitter
WO2024075168A1 (en) Optical transmitter
JP2006072171A (en) Optical module
US10928600B2 (en) Transmitter optical subassembly (TOSA) with laser diode driver (LDD) circuitry mounted to feedthrough of TOSA housing
WO2024033980A1 (en) Optical modulation device
US10636954B1 (en) Thermoelectric cooler (TEC) having top and bottom plates with asymmetric thermal conductivity and an optical subassembly implementing the same
US11682878B2 (en) Techniques for thermal management within optical subassembly modules and a heater device for laser diode temperature control
JP5837389B2 (en) Optical communication device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22961215

Country of ref document: EP

Kind code of ref document: A1