WO2024074034A1 - 小区节能状态的控制方法、装置、存储介质及电子装置 - Google Patents

小区节能状态的控制方法、装置、存储介质及电子装置 Download PDF

Info

Publication number
WO2024074034A1
WO2024074034A1 PCT/CN2023/091875 CN2023091875W WO2024074034A1 WO 2024074034 A1 WO2024074034 A1 WO 2024074034A1 CN 2023091875 W CN2023091875 W CN 2023091875W WO 2024074034 A1 WO2024074034 A1 WO 2024074034A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
load
time period
energy
saving
Prior art date
Application number
PCT/CN2023/091875
Other languages
English (en)
French (fr)
Inventor
李光伟
孙伟
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2024074034A1 publication Critical patent/WO2024074034A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the embodiments of the present application relate to the field of communications, and in particular, to a method, device, storage medium and electronic device for controlling the energy-saving state of a cell.
  • the relative relationship between energy-saving cells and basic coverage cells is manually configured and is fixed.
  • the operator's operation and maintenance personnel configure it according to the load law information of the frequency points, setting the cells of the frequency points with relatively hot coverage as energy-saving cells, and setting the cells of the frequency points with relatively wide coverage as basic coverage cells. Then, the energy-saving action can only be performed when the energy-saving cell meets the load conditions for energy saving.
  • the basic coverage cell is always turned on and cannot save energy.
  • the embodiments of the present application provide a method, device, storage medium and electronic device for controlling the energy-saving state of a cell, so as to at least solve the problem of poor energy-saving effect of the cell in the related art.
  • a method for controlling a cell energy-saving state including: determining the sum of the loads of a first cell combination covered by a first frequency point and a second cell combination covered by a second frequency point within a preset time period; when the sum of the above loads is less than the first preset load, determining the load of the first cell in the above-mentioned first cell combination within the above-mentioned preset time period, and the load of the second cell in the above-mentioned second cell combination within the above-mentioned preset time period, wherein the above-mentioned first cell is any cell in the above-mentioned first cell combination, and the above-mentioned second cell is any cell in the above-mentioned second cell combination; based on the load of the first cell in the above-mentioned first cell combination within the above-mentioned preset time period, and the load of the second cell in the above-mentioned second cell combination within the above-mentione
  • a control device for a cell energy-saving state including: a first determination module, configured to determine the sum of the loads of a first cell combination covered by a first frequency point and a second cell combination covered by a second frequency point within a preset time period; a second determination module, configured to determine the load of the first cell in the first cell combination within the preset time period and the load of the second cell in the second cell combination within the preset time period when the sum of the above loads is less than the first preset load, wherein the above first cell is any cell in the above first cell combination, and the above second cell is any cell in the above second cell combination; a first control module, configured to control the energy-saving states of the above first cell and the above second cell based on the load of the first cell in the above first cell combination within the preset time period and the load of the second cell in the above second cell combination within the preset time period.
  • the first control module includes: a first acquisition unit, configured to acquire the load of the first cell in all time periods within the preset time period to obtain multiple first loads; a first determination unit, configured to determine the time period corresponding to the load less than the target energy-saving load among the multiple first loads as the first time period of the first cell.
  • a first control unit configured to migrate the first terminal included in the first cell to the second cell within the first energy-saving time period, so as to control the first cell to be in an energy-saving state within the first energy-saving time period
  • a second determination unit configured to determine a second energy-saving time period of the second cell by using the first energy-saving time period and the load of the second cell within the preset time period
  • a first migration unit configured to migrate the second terminal included in the second cell to the first cell within the second energy-saving time period, so as to control the second cell to be in an energy-saving state within the second energy-saving time period.
  • the above-mentioned second determination unit includes: a first acquisition subunit, configured to obtain the load of the above-mentioned second cell in all time periods within the above-mentioned preset time period to obtain multiple second loads; a first determination subunit, configured to determine the time period corresponding to the load that is smaller than the above-mentioned target energy-saving load among the multiple second loads; and a second determination subunit, configured to determine the time period that does not overlap with the above-mentioned first energy-saving time period among the time periods corresponding to the load that is smaller than the above-mentioned target energy-saving load among the multiple second loads as the above-mentioned second energy-saving time period.
  • a computer-readable storage medium in which a computer program is stored, wherein the computer program is configured to execute the steps of any of the above method embodiments when running.
  • an electronic device including a memory and a processor, wherein the memory stores a computer program, and the processor is configured to run the computer program to execute the steps in any one of the above method embodiments.
  • the present application by determining the sum of the loads of the first cell combination covered by the first frequency point and the second cell combination covered by the second frequency point within a preset time period; when the sum of the above loads is less than the first preset load, determining the load of the first cell in the above first cell combination within the above preset time period, and the load of the second cell in the above second cell combination within the above preset time period, wherein the above first cell is any cell in the above first cell combination, and the above second cell is any cell in the above second cell combination; based on the load of the first cell in the above first cell combination within the above preset time period, and the load of the second cell in the above second cell combination within the above preset time period, the energy-saving state of the above first cell and the above second cell is controlled.
  • the load law of multi-frequency layer or multi-standard overlapping coverage cells can be identified to flexibly adjust the role relationship of different cells, and adjust the energy-saving strategy of multi-frequency layer or multi-standard overlapping coverage cells, thereby achieving the purpose of optimizing the energy-saving effect of the cell. Thereby solving the technical problem of poor energy-saving effect of the cell in the related technology.
  • FIG1 is a hardware structure block diagram of a mobile terminal of a method for controlling a cell energy-saving state according to an embodiment of the present application
  • FIG2 is a flow chart of a method for controlling a cell energy-saving state according to an embodiment of the present application
  • FIG3 is a schematic diagram of a cell energy saving process according to an embodiment of the present application.
  • FIG4 is a schematic diagram of obtaining a cell load rule according to an embodiment of the present application.
  • FIG5 is a schematic diagram of determining a cell combination according to an embodiment of the present application.
  • FIG6 is a structural block diagram of a device for controlling a cell energy-saving state according to an embodiment of the present application.
  • FIG1 is a hardware structure block diagram of a mobile terminal of a method for controlling a cell energy-saving state in an embodiment of the present application.
  • the mobile terminal may include one or more (only one is shown in FIG1 ) processors 102 (the processor 102 may include but is not limited to a processing device such as a microprocessor MCU or a programmable logic device FPGA) and a memory 104 configured to store data, wherein the mobile terminal may also include a transmission device 106 configured to have a communication function and an input-output device 108.
  • processors 102 may include but is not limited to a processing device such as a microprocessor MCU or a programmable logic device FPGA
  • a transmission device 106 configured to have a communication function and an input-output device 108.
  • FIG1 is only for illustration and does not limit the structure of the mobile terminal.
  • the mobile terminal may also include more or fewer components than those shown in FIG1 , or have a configuration different from that shown in FIG1 .
  • the memory 104 may be configured to store computer programs, for example, software programs and modules of application software, such as the computer program corresponding to the control method of the cell energy-saving state in the embodiment of the present application.
  • the processor 102 executes various functional applications and data processing by running the computer program stored in the memory 104, that is, to implement the above method.
  • the memory 104 may include a high-speed random access memory, and may also include a non-volatile memory, such as one or more magnetic storage devices, flash memory, or other non-volatile solid-state memory.
  • the memory 104 may further include a memory remotely arranged relative to the processor 102, and these remote memories may be connected to the mobile terminal via a network. Examples of the above-mentioned network include, but are not limited to, the Internet, an intranet, a local area network, a mobile communication network, and combinations thereof.
  • the transmission device 106 is configured to receive or send data via a network.
  • Specific examples of the above-mentioned network may include a wireless network provided by a communication provider of the mobile terminal.
  • the transmission device 106 includes a network adapter (Network Interface Controller, referred to as NIC), which can be connected to other network devices through a base station so as to communicate with the Internet.
  • the transmission device 106 can be a radio frequency (Radio Frequency, referred to as RF) module, which is configured to communicate with the Internet wirelessly.
  • RF Radio Frequency
  • FIG2 is a flow chart of a method for controlling a cell energy-saving state according to an embodiment of the present application. As shown in FIG2 , the flow chart includes the following steps:
  • Step S202 determining the sum of the loads of a first cell combination covered by a first frequency point and a second cell combination covered by a second frequency point within a preset time period;
  • Step S204 when the sum of the loads is less than the first preset load, determining the load of the first cell in the first cell group within the preset time period and the load of the second cell in the second cell group within the preset time period, wherein the first cell is any cell in the first cell group and the second cell is any cell in the second cell group;
  • Step S206 based on the load of the first cell in the first cell group within a preset time period and the load of the second cell in the second cell group within a preset time period, control the energy saving state of the first cell and the second cell.
  • the execution subject of the above steps may be a terminal, a server, a specific processor provided in the terminal or the server, or a processor or processing device provided relatively independently from the terminal or the server, but is not limited thereto.
  • the above-mentioned control method of the cell energy-saving state may be, but is not limited to, an energy-saving control scenario in which a cell with multiple frequency layers or multiple standards overlapping coverage should be set.
  • the first frequency point and the second frequency point may be two different frequency points in the network.
  • the first frequency point may be a frequency point of a relatively hot spot
  • the second frequency point may be a frequency point of relatively wide coverage.
  • the first cell combination and the second cell combination may be cells that completely cover each other, and the loads of the cells in the first cell combination and the second cell combination are in a high-low complementary pattern.
  • the cell can be used as an energy-saving cell during periods of low load and as a basic coverage cell during periods of high load.
  • An energy-saving cell refers to a cell with a frequency point of relatively hot spot coverage
  • a basic coverage cell refers to a cell with a frequency point of relatively wide coverage.
  • the first preset load may be a load bearing capacity of the first cell combination or the second cell combination.
  • the load capacity is related to the capability of the device and can be configured according to the actual capability of the device.
  • the sum of the loads of the first cell combination covered by the first frequency point and the second cell combination covered by the second frequency point within the preset time period is determined; when the sum of the above loads is less than the first preset load, the load of the first cell in the above first cell combination within the above preset time period and the load of the second cell in the above second cell combination within the above preset time period are determined, wherein the above first cell is any cell in the above first cell combination, and the above second cell is any cell in the above second cell combination; based on the load of the first cell in the above first cell combination within the above preset time period and the load of the second cell in the above second cell combination within the above preset time period, the energy-saving state of the above first cell and the above second cell is controlled.
  • the load law of multi-frequency layer or multi-standard overlapping coverage cells can be identified to flexibly adjust the role relationship of different cells, and adjust the energy-saving strategy of multi-frequency layer or multi-standard overlapping coverage cells, thereby achieving the purpose of optimizing the energy-saving effect of the cell. Thereby solving the technical problem of poor energy-saving effect of the cell in the related technology.
  • determining a first cell combination covered by a first frequency point before a sum of loads of a second cell combination covered by a second frequency point within a preset time period the method further includes:
  • the overlapping coverage can be flexibly set, for example, when M and N are equal, the N cells and the M cells are in a one-to-one relationship, and the N cells and the M cells completely overlap and cover each other.
  • M and N are not equal, the N cells and the M cells can achieve complete mutual coverage as a whole.
  • determining the first cell combination and the second cell combination based on overlapping coverage includes:
  • the preset threshold can be flexibly set, for example, when N cells and M cells can completely overlap each other, the preset threshold is 100%. When N cells and M cells do not completely overlap each other, the preset threshold is about 80%.
  • the load relationship is determined. For example, when N cells and M cells can completely overlap each other, the load tide law between the N cells and the M cells is analyzed, for example, the load time periods show a complementary law. And at any time, the sum of the loads of the N cells and the M cells is less than the load threshold (for example, 100) that the system can bear.
  • the load threshold for example, 100
  • determining the first cell combination and the second cell combination based on the load relationship includes:
  • N cells when the load relationship satisfies the target load relationship, determining N cells as a first cell combination, wherein the target load relationship includes that the load of the N cells in the first time period is less than the target energy-saving load, and the load of the M cells in the first time period is greater than or equal to the target energy-saving load, or, the load of the N cells in the first time period is greater than or equal to the target energy-saving load, and the load of the M cells in the first time period is less than the target energy-saving load, and the first time period is a time period within a preset time period;
  • S2 Determine M cells as a second cell combination.
  • the target load relationship is a load complementary relationship between the first cell combination and the second cell combination, or a substantially complementary relationship.
  • the load of the first cell from 6 to 17 o'clock in a day is greater than the target energy-saving load
  • the load of the second cell combination is greater than the target energy-saving load.
  • the load from 8:00 to 15:00 is less than the target energy-saving load, so 8:00 to 15:00 is the load complementary time period of the first cell and the second cell.
  • controlling the energy saving state of the first cell and the second cell includes:
  • S5. Migrate the second terminal included in the second cell to the first cell during the second energy-saving period, so as to control the second cell to be in an energy-saving state during the second energy-saving period.
  • the preset time period may be 24 hours a day, or 12 hours.
  • the load of the first cell at each hour is obtained to obtain multiple first loads.
  • the time period when the load is less than 15 is determined as the first energy-saving time period of the first cell.
  • determining a second energy-saving time period for the second cell by using the first energy-saving time period and the load of the second cell within a preset time period includes:
  • the load of the second cell at each hour is obtained to obtain multiple second loads.
  • the time period when the load is less than 15 is determined as the second energy-saving time period of the second cell.
  • the first energy-saving time period and the second energy-saving time period may be the same or different.
  • the intersection is determined as a time period of load complementation. For example, the load of the first cell from 6 to 17 o'clock in a day is greater than the target energy-saving load, and the load from 0 to 5 and from 18 to 23 is less than the target energy-saving load.
  • the load of the second cell from 8 to 15 o'clock is less than the target energy-saving load, so 8 to 15 o'clock is a time period that does not overlap with 0 to 5 and 18 to 23, that is, it is determined as the second energy-saving time period.
  • the method before obtaining the load of the first cell in all time periods within a preset time period and obtaining a plurality of first loads, the method further includes:
  • the frequency priority can be modified according to the actual application scenario. For example, referring to the frequency priority planning setting of the operator, the energy-saving priority of the frequency that carries important services is set lower. For each cell with a higher frequency priority, the period of the day when the cell load is lower than the energy-saving load threshold is set as the energy-saving period of the cell, and the other periods are the non-energy-saving periods of the cell. The energy-saving period is removed within the 24-hour period, and in the remaining periods, for each cell with a lower frequency priority, the period when the cell load is lower than the energy-saving load threshold is set as the energy-saving period of the cell, and the other periods are the non-energy-saving periods of the cell. Non-energy-saving period of the area.
  • This embodiment is applied to a wireless access network.
  • the frequency can be 4G or 5G frequency
  • the energy-saving technology or device of this embodiment can be applied.
  • the same-frequency, different-frequency, and different-system measurements can be sent to the UE.
  • This embodiment flexibly adjusts the role relationship between energy-saving cells and basic coverage cells by automatically identifying the load rules of multi-frequency layers or multi-standard overlapping coverage cells, and automatically adjusts the energy-saving strategy of multi-frequency layers or multi-standard overlapping coverage cells, thereby increasing the overall energy-saving time of the network.
  • This embodiment includes: screening out a cell combination of two different frequencies in the network, where the cells of different frequencies in the cell combination can fully cover each other; then analyzing the load pattern of the cells of different frequencies in the cell combination, if the load levels of the cells of different frequencies roughly show a high-low complementary pattern, then the cells can be used as energy-saving cells during periods of low load, and as basic coverage cells during periods of high load.
  • the specific steps include:
  • Step 1 Group all cells of two different frequencies in the network into cell_group according to the coverage relationship, so that in each cell group cell_group, the cell combination set_i of each frequency point can completely overlap the cell combination set_j of another frequency point.
  • Step 2 Analyze the load rules of all cell combinations in each cell_group and find the cell_group that meets the following conditions:
  • the sum of the loads of the cell combination sets of two different frequencies is less than the load carrying capacity of the cell combination set of at least one of the frequencies (the load carrying capacity is generally related to the equipment capacity and can be configured according to the actual equipment capacity), and the load of at least one of the cells is lower than the energy-saving load threshold (related to the overall network load and can be configured according to the operator's energy-saving requirements).
  • the cell_group with load conditions is selected as the flexible energy-saving cell group es_group.
  • Step 3 traverse and process each es_group.
  • the frequency priority can be modified according to the actual application scenario. For example, referring to the frequency priority planning setting of the operator, the energy-saving priority of the frequency carrying important services is set lower).
  • the period of the day when the cell load is lower than the energy-saving load threshold is set as the energy-saving period es_time_i of the cell, and the other periods are the non-energy-saving periods of the cell. Sum up all cell_time_i and record them as cell_time_h. Remove cell_time_h within the 24-hour period. In the remaining period, for each cell with lower frequency priority, the period when the cell load is lower than the energy-saving load threshold is set as the energy-saving period es_time_j of the cell, and the other periods are the non-energy-saving periods of the cell.
  • the cell is used as an energy-saving cell during the energy-saving period and is allowed to enter energy-saving mode; during the non-energy-saving period, it is used as a basic coverage cell and is not allowed to enter energy-saving mode, and can only serve as the basic coverage for other energy-saving cells.
  • the energy-saving period es_time_i of cells with higher frequency priority does not overlap with the energy-saving period es_time_j of cells with lower frequency priority.
  • es_time_i cells with higher priority can save energy
  • es_time_j cells with lower priority can also save energy.
  • the energy-saving roles of cells change, and the overall energy-saving duration of the network increases.
  • FIG. 4 it is a schematic diagram of each module in the wireless base station obtaining the cell load law.
  • the three modules implement the following Function:
  • frequency A there are two frequency cells in the network, frequency A and frequency B, and frequency A has a higher priority than frequency B.
  • the system's load carrying capacity is 100, and the energy-saving threshold is 15.
  • the cell overlap coverage calculation module screens cells of different frequencies in the network, and selects all cell combinations cell_group whose overlapping coverage meets the threshold (configurable).
  • the corresponding relationship between the cells of frequency point A and frequency point B may be one-to-one or N-to-M, that is, a cell of frequency point A and a cell of frequency point B completely overlap each other, or two cells of frequency point A and three cells of frequency point B completely cover each other as a whole.
  • cell_group1 contains two sets, set1 contains cell 1a, and set2 contains cell 1b; cell_group2 contains two sets, set1 contains cells ⁇ 2a, 3a, 4a ⁇ , and set2 contains cells ⁇ 2b, 3b ⁇ .
  • the cell load analysis module analyzes the cell load rules of cell_group1 and cell_group2.
  • the load tidal rules of set1 and set2 in cell_group1 are obvious and roughly complementary. At any time, the sum of the loads of set1 and set2 is less than the system load threshold of 100, as shown in Table 1:
  • the load tidal pattern of set1 and set2 in cell_group2 is obvious and roughly complementary, but the sum of the loads exceeds the system load threshold of 100 or the load of no cell is less than the energy-saving load threshold, as shown in Table 2.
  • the energy-saving period self-configuration module analyzes the load information of all cells in es_group.
  • es_group the load of cell 1a is analyzed, and the periods with a load lower than 15 are selected from all the periods of cell 1a, that is, the two periods of 0-5 and 18-23 are used as the energy-saving periods of cell 1a, and the other periods are non-energy-saving periods.
  • the energy-saving periods of set1 are 0-5 and 18-23.
  • the period with a load lower than 15 in cell 1b is selected, that is, 8-15, as the energy-saving period of cell 1b, and the other periods are non-energy-saving periods.
  • This embodiment increases the energy-saving duration of the period from 8 to 15 in the cell 1b, thereby enhancing the energy-saving effect.
  • the method according to the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course by hardware, but in many cases the former is a better implementation method.
  • the technical solution of the present application, or the part that contributes to the prior art can be embodied in the form of a software product, which is stored in a storage medium (such as ROM/RAM, magnetic disk, optical disk), and includes a number of instructions for a terminal device (which can be a mobile phone, computer, server, or network device, etc.) to execute the methods described in each embodiment of the present application.
  • a storage medium such as ROM/RAM, magnetic disk, optical disk
  • a terminal device which can be a mobile phone, computer, server, or network device, etc.
  • a control device is also provided, which is configured to implement the above-mentioned embodiments and preferred implementation modes, and the descriptions that have been made will not be repeated.
  • the term "module” can implement a combination of software and/or hardware of a predetermined function.
  • the devices described in the following embodiments are preferably implemented in software, the implementation of hardware, or a combination of software and hardware, is also possible and contemplated.
  • FIG6 is a structural block diagram of a device for controlling a cell energy-saving state according to an embodiment of the present application. As shown in FIG6 , the device includes:
  • a first determination module 62 is configured to determine the sum of the loads of a first cell combination covered by a first frequency point and a second cell combination covered by a second frequency point within a preset time period;
  • the second determination module 64 is configured to determine the load of a first cell in the first cell group within a preset time period and the load of a second cell in the second cell group within a preset time period when the sum of the loads is less than a first preset load, wherein the first cell is any cell in the first cell group and the second cell is any cell in the second cell group;
  • the first control module 66 is configured to control the energy-saving state of the first cell and the second cell based on the load of the first cell in the first cell combination within a preset time period and the load of the second cell in the second cell combination within a preset time period.
  • the first control module comprises:
  • a first acquisition unit is configured to acquire the load of the first cell in all time periods within the preset time period to obtain a plurality of first loads
  • a first determining unit is configured to determine a time period corresponding to a load that is smaller than a target energy-saving load among the plurality of first loads as a first energy-saving time period of the first cell;
  • a first control unit is configured to migrate the first terminal included in the first cell to the second cell during the first energy-saving time period, so as to control the first cell to be in an energy-saving state during the first energy-saving time period;
  • a second determining unit is configured to determine a second energy-saving time period of the second cell by using the first energy-saving time period and the load of the second cell within the preset time period;
  • the first migration unit is configured to migrate the second terminal included in the second cell to the first cell during the second energy-saving time period, so as to control the second cell to be in an energy-saving state during the second energy-saving time period.
  • the second determining unit includes:
  • a first acquisition subunit is configured to acquire the load of the second cell in all time periods within the preset time period to obtain a plurality of second loads
  • a first determining subunit is configured to determine a time period corresponding to a load that is smaller than the target energy-saving load among the plurality of second loads;
  • the second determining subunit is configured to determine a time period that does not overlap with the first energy-saving time period among the time periods corresponding to loads smaller than the target energy-saving load among the plurality of second loads as the second energy-saving time period.
  • the above modules can be implemented by software or hardware. For the latter, it can be implemented in the following ways, but not limited to: the above modules are all located in the same processor; or the above modules are located in different processors in any combination.
  • An embodiment of the present application further provides a computer-readable storage medium, in which a computer program is stored, wherein the computer program is configured to execute the steps of any of the above method embodiments when run.
  • the above-mentioned computer-readable storage medium may include, but is not limited to: a USB flash drive, a read-only memory (ROM), a random access memory (RAM), a mobile hard disk, a magnetic disk or an optical disk, and other media that can store computer programs.
  • An embodiment of the present application further provides an electronic device, including a memory and a processor, wherein a computer program is stored in the memory, and the processor is configured to run the computer program to execute the steps in any one of the above method embodiments.
  • the electronic device may further include a transmission device and an input/output device, wherein the transmission device is connected to the processor, and the input/output device is connected to the processor.
  • modules or steps of the present application can be implemented by a general computing device, they can be concentrated on a single computing device, or distributed on a network composed of multiple computing devices, they can be implemented by a program code executable by a computing device, so that they can be stored in a storage device and executed by the computing device, and in some cases, the steps shown or described can be executed in a different order from that herein, or they can be made into individual integrated circuit modules, or multiple modules or steps therein can be made into a single integrated circuit module for implementation.
  • the present application is not limited to any specific combination of hardware and software.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Power Sources (AREA)

Abstract

本申请公开了一种小区节能状态的控制方法、装置、存储介质及电子装置。其中,该方法包括:确定第一频点覆盖的第一小区组合和第二频点覆盖的第二小区组合在预设时间周期内的负荷之和;在负荷之和小于第一预设负荷的情况下,确定第一小区组合中的第一小区在预设时间周期内的负荷,以及第二小区组合中的第二小区在预设时间周期内的负荷,其中,第一小区是第一小区组合中的任一小区,第二小区是第二小区组合中的任一小区;基于第一小区组合中的第一小区在预设时间周期内的负荷,以及第二小区组合中的第二小区在预设时间周期内的负荷,控制第一小区和第二小区的节能状态。本申请解决了相关技术中小区的节能效果不佳的技术问题。

Description

小区节能状态的控制方法、装置、存储介质及电子装置
相关申请的交叉引用
本公开基于2022年10月08日提交的发明名称为“小区节能状态的控制方法、装置、存储介质及电子装置”的中国专利申请CN202211222005.X,并且要求该专利申请的优先权,通过引用将其所公开的内容全部并入本公开。
技术领域
本申请实施例涉及通信领域,具体而言,涉及一种小区节能状态的控制方法、装置、存储介质及电子装置。
背景技术
现有的小区节能方案中,节能小区与基础覆盖小区的相对关系是人工配置,且是固定不变的。一般由运营商的运维人员根据频点的负荷规律信息做配置,将相对热点覆盖的频点的小区设置为节能小区,相对广覆盖的频点的小区设置为基础覆盖小区。那么只有节能小区再满足节能的负荷条件时才能够执行节能动作,基础覆盖小区一直开启,无法节能。
发明内容
本申请实施例提供了一种小区节能状态的控制方法、装置、存储介质及电子装置,以至少解决相关技术中小区的节能效果不佳的问题。
根据本申请的一个实施例,提供了一种小区节能状态的控制方法,包括:确定第一频点覆盖的第一小区组合和第二频点覆盖的第二小区组合在预设时间周期内的负荷之和;在上述负荷之和小于第一预设负荷的情况下,确定上述第一小区组合中的第一小区在上述预设时间周期内的负荷,以及上述第二小区组合中的第二小区在上述预设时间周期内的负荷,其中,上述第一小区是上述第一小区组合中的任一小区,上述第二小区是上述第二小区组合中的任一小区;基于上述第一小区组合中的第一小区在上述预设时间周期内的负荷,以及上述第二小区组合中的第二小区在上述预设时间周期内的负荷,控制上述第一小区和上述第二小区的节能状态。
根据本申请的又一个实施例,还提供了一种小区节能状态的控制装置,包括:第一确定模块,设置为确定第一频点覆盖的第一小区组合和第二频点覆盖的第二小区组合在预设时间周期内的负荷之和;第二确定模块,设置为在上述负荷之和小于第一预设负荷的情况下,确定上述第一小区组合中的第一小区在上述预设时间周期内的负荷,以及上述第二小区组合中的第二小区在上述预设时间周期内的负荷,其中,上述第一小区是上述第一小区组合中的任一小区,上述第二小区是上述第二小区组合中的任一小区;第一控制模块,设置为基于上述第一小区组合中的第一小区在上述预设时间周期内的负荷,以及上述第二小区组合中的第二小区在上述预设时间周期内的负荷,控制上述第一小区和上述第二小区的节能状态。
在一个示例性实施例中,上述第一控制模块,包括:第一获取单元,设置为获取上述第一小区在上述预设时间周期内所有时间段的负荷,得到多个第一负荷;第一确定单元,设置为将多个上述第一负荷中小于目标节能负荷的负荷对应的时间段,确定为上述第一小区的第 一节能时间段;第一控制单元,设置为在上述第一节能时间段内,将上述第一小区中包括的第一终端迁移至上述第二小区,以控制上述第一小区在上述第一节能时间段内处于节能状态;第二确定单元,设置为利用上述第一节能时间段、上述第二小区在上述预设时间周期内的负荷,确定上述第二小区的第二节能时间段;第一迁移单元,设置为在上述第二节能时间段内,将上述第二小区中包括的第二终端迁移至上述第一小区,以控制上述第二小区在上述第二节能时间段内处于节能状态。
在一个示例性实施例中,上述第二确定单元,包括:第一获取子单元,设置为获取上述第二小区在上述预设时间周期内所有时间段的负荷,得到多个第二负荷;第一确定子单元,设置为确定多个上述第二负荷中小于上述目标节能负荷的负荷对应的时间段;第二确定子单元,设置为将多个上述第二负荷中小于上述目标节能负荷的负荷对应的时间段中未与上述第一节能时间段重叠的时间段,确定为上述第二节能时间段。
根据本申请的又一个实施例,还提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机程序,其中,所述计算机程序被设置为运行时执行上述任一项方法实施例中的步骤。
根据本申请的又一个实施例,还提供了一种电子装置,包括存储器和处理器,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行上述任一项方法实施例中的步骤。
通过本申请,通过确定第一频点覆盖的第一小区组合和第二频点覆盖的第二小区组合在预设时间周期内的负荷之和;在上述负荷之和小于第一预设负荷的情况下,确定上述第一小区组合中的第一小区在上述预设时间周期内的负荷,以及上述第二小区组合中的第二小区在上述预设时间周期内的负荷,其中,上述第一小区是上述第一小区组合中的任一小区,上述第二小区是上述第二小区组合中的任一小区;基于上述第一小区组合中的第一小区在上述预设时间周期内的负荷,以及上述第二小区组合中的第二小区在上述预设时间周期内的负荷,控制上述第一小区和上述第二小区的节能状态。由于在上述方法中,可以识别多频层或多制式重叠覆盖小区的负荷规律来灵活调整不同小区的角色关系,并调整多频层或多制式重叠覆盖小区的节能策略,进而达到优化小区节能效果的目的。从而解决了相关技术中小区的节能效果不佳的技术问题。
附图说明
图1是本申请实施例的一种小区节能状态的控制方法的移动终端的硬件结构框图;
图2是根据本申请实施例的小区节能状态的控制方法的流程图;
图3是根据本申请实施例的小区节能过程的示意图;
图4是根据本申请实施例的获取小区负荷规律的示意图;
图5是根据本申请实施例的确定小区组合的示意图;
图6是根据本申请实施例的小区节能状态的控制装置的结构框图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本申请的实施例。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是设置为区别类似的对象,而不必设置为描述特定的顺序或先后次序。
本申请实施例中所提供的方法实施例可以在移动终端、计算机终端或者类似的运算装置中执行。以运行在移动终端上为例,图1是本申请实施例的一种小区节能状态的控制方法的移动终端的硬件结构框图。如图1所示,移动终端可以包括一个或多个(图1中仅示出一个)处理器102(处理器102可以包括但不限于微处理器MCU或可编程逻辑器件FPGA等的处理装置)和设置为存储数据的存储器104,其中,上述移动终端还可以包括设置为通信功能的传输设备106以及输入输出设备108。本领域普通技术人员可以理解,图1所示的结构仅为示意,其并不对上述移动终端的结构造成限定。例如,移动终端还可包括比图1中所示更多或者更少的组件,或者具有与图1所示不同的配置。
存储器104可设置为存储计算机程序,例如,应用软件的软件程序以及模块,如本申请实施例中的小区节能状态的控制方法对应的计算机程序,处理器102通过运行存储在存储器104内的计算机程序,从而执行各种功能应用以及数据处理,即实现上述的方法。存储器104可包括高速随机存储器,还可包括非易失性存储器,如一个或者多个磁性存储装置、闪存、或者其他非易失性固态存储器。在一些实例中,存储器104可进一步包括相对于处理器102远程设置的存储器,这些远程存储器可以通过网络连接至移动终端。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
传输装置106设置为经由一个网络接收或者发送数据。上述的网络具体实例可包括移动终端的通信供应商提供的无线网络。在一个实例中,传输装置106包括一个网络适配器(Network Interface Controller,简称为NIC),其可通过基站与其他网络设备相连从而可与互联网进行通讯。在一个实例中,传输装置106可以为射频(Radio Frequency,简称为RF)模块,其设置为通过无线方式与互联网进行通讯。
在本实施例中提供了一种小区节能状态的控制方法,图2是根据本申请实施例的小区节能状态的控制方法的流程图,如图2所示,该流程包括如下步骤:
步骤S202,确定第一频点覆盖的第一小区组合和第二频点覆盖的第二小区组合在预设时间周期内的负荷之和;
步骤S204,在负荷之和小于第一预设负荷的情况下,确定第一小区组合中的第一小区在预设时间周期内的负荷,以及第二小区组合中的第二小区在预设时间周期内的负荷,其中,第一小区是第一小区组合中的任一小区,第二小区是第二小区组合中的任一小区;
步骤S206,基于第一小区组合中的第一小区在预设时间周期内的负荷,以及第二小区组合中的第二小区在预设时间周期内的负荷,控制第一小区和第二小区的节能状态。
其中,上述步骤的执行主体可以为终端、服务器、终端或服务器中设置的具体处理器,或者与终端或者服务器相对独立设置的处理器或者处理设备等,但不限于此。
可选地,上述小区节能状态的控制方法可以但不限于应设置为多频层或多制式重叠覆盖小区的节能控制场景中。
可选地,上述第一频点和第二频点可以是网络中不同的两个频点。例如,第一频点可以是相对热点的频点,第二频点可以是相对广覆盖的频点。第一小区组合和第二小区组合可以相互完全覆盖的小区,并且,第一小区组合和第二小区组合中的小区的负荷呈高低互补的规律。可以将小区在负荷较低的时段充当节能小区,在负荷较高的时段充当基础覆盖小区。节能小区是指相对热点覆盖的频点的小区;基础覆盖小区是指相对广覆盖的频点的小区。
可选地,第一预设负荷可以是第一小区组合或者第二小区组合的负荷承载能力。负荷承 载能力与设备的能力相关,可根据实际设备的能力进行配置。
通过上述步骤,通过确定第一频点覆盖的第一小区组合和第二频点覆盖的第二小区组合在预设时间周期内的负荷之和;在上述负荷之和小于第一预设负荷的情况下,确定上述第一小区组合中的第一小区在上述预设时间周期内的负荷,以及上述第二小区组合中的第二小区在上述预设时间周期内的负荷,其中,上述第一小区是上述第一小区组合中的任一小区,上述第二小区是上述第二小区组合中的任一小区;基于上述第一小区组合中的第一小区在上述预设时间周期内的负荷,以及上述第二小区组合中的第二小区在上述预设时间周期内的负荷,控制上述第一小区和上述第二小区的节能状态。由于在上述方法中,可以识别多频层或多制式重叠覆盖小区的负荷规律来灵活调整不同小区的角色关系,并调整多频层或多制式重叠覆盖小区的节能策略,进而达到优化小区节能效果的目的。从而解决了相关技术中小区的节能效果不佳的技术问题。
在一个示例性实施例中,确定第一频点覆盖的第一小区组合和第二频点覆盖的第二小区组合在预设时间周期内的负荷之和之前,方法还包括:
S1,确定第一频点覆盖的N个小区和第二频点覆盖的M个小区,其中,M和N均是大于或等于1的自然数;
S2,确定N个小区与M个小区的重叠覆盖度;
S3,基于重叠覆盖度确定第一小区组合和第二小区组合。
可选地,重叠覆盖度可以进行灵活设置,例如,在M个N相等的情况下,N个小区和M个小区是一对一的关系,N个小区和M个小区完全相互重叠覆盖。或者,在M个N不相等的情况下,N个小区和M个小区整体上实现相互完全覆盖即可。
在一个示例性实施例中,基于重叠覆盖度确定第一小区组合和第二小区组合,包括:
S1,在重叠覆盖度大于预设阈值的情况下,确定N个小区和M个小区之间的负荷关系;
S2,基于负荷关系确定第一小区组合和第二小区组合。
可选地,预设阈值可以灵活设置,例如,N个小区和M个小区可以完全相互重叠覆盖,预设阈值是百分之百。N个小区和M个小区不是完全相互重叠覆盖的情况下,预设阈值是百分之八十左右。
可选地,在满足重叠覆盖度大于预设阈值的情况下,进行负荷关系的确定。例如,在N个小区和M个小区可以完全相互重叠覆盖的情况下,分析个小区和M个小区之间的负荷潮汐规律,例如,负荷时间段呈现互补的规律。并且在任意时刻,N个小区和M个小区的负荷之和小于系统可承载负荷门限(例如,100)。
在一个示例性实施例中,基于负荷关系确定第一小区组合和第二小区组合,包括:
S1,在负荷关系满足目标负荷关系的情况下,将N个小区确定为第一小区组合,其中,目标负荷关系包括N个小区在第一时间段的负荷小于目标节能负荷,M个小区在第一时间段的负荷大于或等于目标节能负荷,或者,N个小区在第一时间段的负荷大于或等于目标节能负荷,M个小区在第一时间段的负荷小于目标节能负荷,第一时间段是预设时间周期内的时间段;
S2,将M个小区确定为第二小区组合。
可选地,目标负荷关系是第一小区组合和第二小区组合之间负荷互补的关系,也可以是大致成互补的关系。例如,第一小区在一天中的6-17点的负荷大于目标节能负荷,第二小区 在8-15点的负荷小于目标节能负荷,则8-15点是第一小区和第二小区的负荷互补时间段。
在一个示例性实施例中,基于第一小区组合中的第一小区在预设时间周期内的负荷,以及第二小区组合中的第二小区在预设时间周期内的负荷,控制第一小区和第二小区的节能状态,包括:
S1,获取第一小区在预设时间周期内所有时间段的负荷,得到多个第一负荷;
S2,将多个第一负荷中小于目标节能负荷的负荷对应的时间段,确定为第一小区的第一节能时间段;
S3,在第一节能时间段内,将第一小区中包括的第一终端迁移至第二小区,以控制第一小区在第一节能时间段内处于节能状态;
S4,利用第一节能时间段、第二小区在预设时间周期内的负荷,确定第二小区的第二节能时间段;
S5,在第二节能时间段内,将第二小区中包括的第二终端迁移至第一小区,以控制第二小区在第二节能时间段内处于节能状态。
可选地,预设时间周期可以是一天24小时,或者12小时。例如。在一天24小时的时间周期内,获取第一小区在每个整点的负荷,得到多个第一负荷。将负荷小于15的时间段,确定为第一小区的第一节能时间段。
在一个示例性实施例中,利用第一节能时间段、第二小区在预设时间周期内的负荷,确定第二小区的第二节能时间段,包括:
S1,获取第二小区在预设时间周期内所有时间段的负荷,得到多个第二负荷;
S2,确定多个第二负荷中小于目标节能负荷的负荷对应的时间段;
S3,将多个第二负荷中小于目标节能负荷的负荷对应的时间段中未与第一节能时间段重叠的时间段,确定为第二节能时间段。
可选地,例如,在一天24小时的时间周期内,获取第二小区在每个整点的负荷,得到多个第二负荷。负荷小于15的时间段,确定为第二小区的第二节能时间段。
第一节能时间段和第二节能时间段可以相同,也可以不相同。将交集确定为负荷互补的时间段。例如,第一小区在一天中的6-17点的负荷大于目标节能负荷,在0-5、18-23的负荷小于目标节能负荷。
第二小区在8-15点的负荷小于目标节能负荷,则8-15点是与0-5、18-23不重合的时间段,即确定为第二节能时间段。
在一个示例性实施例中,获取第一小区在预设时间周期内所有时间段的负荷,得到多个第一负荷之前,方法还包括:
S1,确定第一频点的优先级和第二频点的优先级;
S2,在第一频点的优先级大于第二频点的优先级的情况下,获取第一小区在预设时间周期内所有时间段的负荷,得到多个第一负荷。
可选地,频点优先级可以根据实际应用场景修改。例如,参照运营商的频点优先级规划设置,承载重要业务的频点节能优先级设置的更低。针对频点优先级较高的每个小区,将一天中小区负荷低于节能负荷门限的时段设置为该小区的可节能时段,其他时段为该小区的非节能时段。在24小时的时段内去除可节能时段,在剩余的时段中,针对频点优先级较低的每个小区,将小区负荷低于节能负荷门限的时段设置为该小区的可节能时段,其他时段为该小 区的非节能时段。
下面结合具体实施例对本申请进行说明:
本实施例应用与无线接入网,当网络中存在多频点覆盖(大于等于2层,频点可以是4G或5G频点)时,可应用本实施例的节能技术或装置。在接入网的小区中可对UE下发同频、异频、异系统测量。
本实施例通过自动识别多频层或多制式重叠覆盖小区的负荷规律来灵活调整节能小区与基础覆盖小区的角色关系,并自动调整多频层或多制式重叠覆盖小区的节能策略,进而增加网络整体节能时间。
本实施例包括:筛选出网络中不同的两个频点的小区组合,小区组合内的不同频点的小区能够相互完全覆盖;再分析小区组合中不同频点的小区负荷规律,如果不同频点的小区负荷高低水平大致呈现高低互补的规律,则可以将小区在负荷较低的时段充当节能小区,在负荷较高的时段充当基础覆盖小区。
具体包括以下步骤:
步骤1、将网络中的两个不同频点的所有小区按照覆盖关系分组cell_group,使得每个小区分组cell_group中,每个频点的小区组合set_i能够完全重叠覆盖另一个频点的小区组合set_j。
步骤2、分析每个cell_group中所有小区组合set的负荷规律,找出满足下面条件的cell_group:
1)cell_group中的每个频点的小区组合set中,小区之间的负荷相关度高(现有的技术方法可以解决,例如计算小区间负荷的皮尔逊系数,系数高则认为相关度高);
2)至少在一个负荷评估的时间周期内,两个不同频点的小区组合set的负荷之和小于其中至少一个频点的小区组合set的负荷承载能力(负荷承载一般与设备能力相关,可根据实际设备能力配置),并且其中至少一个小区的负荷低于节能负荷门限(与网络整体负荷相关,可根据运营商的节能效果要求配置)。
筛选出负荷条件的cell_group作为灵活打底节能小区组es_group。
步骤3、如图3所示,遍历处理每个es_group。针对每个es_group,按照频点优先级(根据实际应用场景下,频点优先级可以修改。例如,参照运营商的频点优先级规划设置,承载重要业务的频点节能优先级设置的更低)顺序处理,针对频点优先级较高的每个小区,将一天中小区负荷低于节能负荷门限的时段设置为该小区的可节能时段es_time_i,其他时段为该小区的非节能时段。汇总所有cell_time_i,记为cell_time_h。在24小时的时段内去除cell_time_h,在剩余的时段中,针对频点优先级较低的每个小区,将小区负荷低于节能负荷门限的时段设置为该小区的可节能时段es_time_j,其他时段为该小区的非节能时段。
小区在节能时段中作为节能小区,允许进入节能;在非节能时段中作为基础覆盖小区,不允许进入节能,只能作为其他节能小区的基础覆盖。
频点优先级较高的小区节能时段es_time_i和频点优先级较低的小区es_time_j没有交叠。在es_time_i内,高优先级小区可节能,在es_time_j内,低优先级小区也可节能。不同的时段内,小区的节能角色转变,网络总体的节能时长增多。
如图4所示,是在无线基站中各个模块获取小区负荷规律的示意图,三个模块实现以下 功能:
1)基于小区覆盖关系对小区进行分组;
2)小区负荷规律分析;
3)节能时段自配置。
例如,网络中存在两层频点的小区,频点A和频点B,频点A优先级高于频点B。系统的负荷承载能力为100,节能门限为15。
1)小区重叠覆盖度计算模块对网络中不同频点的小区做筛选,筛选出相互重叠覆盖度满足门限(可配置)的所有小区组合cell_group。小区组合中,频点A和频点B的小区对应关系可能是一对一或者N对M,即频点A的一个小区和频点B的一个小区完全相互重叠覆盖,或者频点A的两个小区和频点B的三个小区整体上相互完全覆盖。如图5所示,找出两组cell_group1和cell_group2,cell_group1包含两个set,set1包含小区1a,set2包含小区1b;cell_group2包含两个set,set1包含小区{2a,3a,4a},set2包含小区{2b,3b}。
2)小区负荷分析模块分析cell_group1和cell_group2的小区负荷规律,cell_group1中set1和set2的负荷潮汐规律明显,且大致呈现互补的规律。且在任意时刻,set1和set2的负荷之和小于系统可承载负荷门限100,如表1所示:
表1:
cell_group2中set1和set2的负荷潮汐规律明显,且大致呈现互补的规律,但负荷之和超过系统可承载负荷门限100或者没有小区的负荷小于节能负荷门限,如表2所示。

只有cell_group1符合负荷条件,称为es_group可继续执行步骤3)。
3)节能时段自配置模块分析es_group中所有小区的负荷信息。es_group中,分析小区1a的负荷,将小区1a的所有时段中,负荷低于15的时段筛选出来,即0-5,18-23两个时段作为小区1a的节能时段,其他时段为非节能时段。汇总后set1的节能时段为0-5,18-23两个时段,取反后在6-17的时段中,将小区1b在该时段内负荷低于15的时段筛选出来,即8-15,作为小区1b的节能时段,其他时段为非节能时段。
本实施例增加了小区1b的8-15时段的节能时长,增强了节能效果。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本申请各个实施例所述的方法。
在本实施例中还提供了一种控制装置,该装置设置为实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图6是根据本申请实施例的小区节能状态的控制装置的结构框图,如图6所示,该装置包括:
第一确定模块62,设置为确定第一频点覆盖的第一小区组合和第二频点覆盖的第二小区组合在预设时间周期内的负荷之和;
第二确定模块64,设置为在负荷之和小于第一预设负荷的情况下,确定第一小区组合中的第一小区在预设时间周期内的负荷,以及第二小区组合中的第二小区在预设时间周期内的负荷,其中,第一小区是第一小区组合中的任一小区,第二小区是第二小区组合中的任一小区;
第一控制模块66,设置为基于第一小区组合中的第一小区在预设时间周期内的负荷,以及第二小区组合中的第二小区在预设时间周期内的负荷,控制第一小区和第二小区的节能状态。
在一个示例性实施例中,上述第一控制模块,包括:
第一获取单元,设置为获取上述第一小区在上述预设时间周期内所有时间段的负荷,得到多个第一负荷;
第一确定单元,设置为将多个上述第一负荷中小于目标节能负荷的负荷对应的时间段,确定为上述第一小区的第一节能时间段;
第一控制单元,设置为在上述第一节能时间段内,将上述第一小区中包括的第一终端迁移至上述第二小区,以控制上述第一小区在上述第一节能时间段内处于节能状态;
第二确定单元,设置为利用上述第一节能时间段、上述第二小区在上述预设时间周期内的负荷,确定上述第二小区的第二节能时间段;
第一迁移单元,设置为在上述第二节能时间段内,将上述第二小区中包括的第二终端迁移至上述第一小区,以控制上述第二小区在上述第二节能时间段内处于节能状态。
在一个示例性实施例中,上述第二确定单元,包括:
第一获取子单元,设置为获取上述第二小区在上述预设时间周期内所有时间段的负荷,得到多个第二负荷;
第一确定子单元,设置为确定多个上述第二负荷中小于上述目标节能负荷的负荷对应的时间段;
第二确定子单元,设置为将多个上述第二负荷中小于上述目标节能负荷的负荷对应的时间段中未与上述第一节能时间段重叠的时间段,确定为上述第二节能时间段。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述各个模块以任意组合的形式分别位于不同的处理器中。
本申请的实施例还提供了一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序,其中,该计算机程序被设置为运行时执行上述任一项方法实施例中的步骤。
在一个示例性实施例中,上述计算机可读存储介质可以包括但不限于:U盘、只读存储器(Read-Only Memory,简称为ROM)、随机存取存储器(Random Access Memory,简称为RAM)、移动硬盘、磁碟或者光盘等各种可以存储计算机程序的介质。
本申请的实施例还提供了一种电子装置,包括存储器和处理器,该存储器中存储有计算机程序,该处理器被设置为运行计算机程序以执行上述任一项方法实施例中的步骤。
在一个示例性实施例中,上述电子装置还可以包括传输设备以及输入输出设备,其中,该传输设备和上述处理器连接,该输入输出设备和上述处理器连接。
本实施例中的具体示例可以参考上述实施例及示例性实施方式中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本申请的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本申请不限制于任何特定的硬件和软件结合。
以上所述仅为本申请的优选实施例而已,并不设置为限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (6)

  1. 一种小区节能状态的控制方法,包括:
    确定第一频点覆盖的第一小区组合和第二频点覆盖的第二小区组合在预设时间周期内的负荷之和;
    在所述负荷之和小于第一预设负荷的情况下,确定所述第一小区组合中的第一小区在所述预设时间周期内的负荷,以及所述第二小区组合中的第二小区在所述预设时间周期内的负荷,其中,所述第一小区是所述第一小区组合中的任一小区,所述第二小区是所述第二小区组合中的任一小区;
    基于所述第一小区组合中的第一小区在所述预设时间周期内的负荷,以及所述第二小区组合中的第二小区在所述预设时间周期内的负荷,控制所述第一小区和所述第二小区的节能状态。
  2. 根据权利要求1所述的方法,其中,基于所述第一小区组合中的第一小区在所述预设时间周期内的负荷,以及所述第二小区组合中的第二小区在所述预设时间周期内的负荷,控制所述第一小区和所述第二小区的节能状态,包括:
    获取所述第一小区在所述预设时间周期内所有时间段的负荷,得到多个第一负荷;
    将多个所述第一负荷中小于目标节能负荷的负荷对应的时间段,确定为所述第一小区的第一节能时间段;
    在所述第一节能时间段内,将所述第一小区中包括的第一终端迁移至所述第二小区,以控制所述第一小区在所述第一节能时间段内处于节能状态;
    利用所述第一节能时间段、所述第二小区在所述预设时间周期内的负荷,确定所述第二小区的第二节能时间段;
    在所述第二节能时间段内,将所述第二小区中包括的第二终端迁移至所述第一小区,以控制所述第二小区在所述第二节能时间段内处于节能状态。
  3. 根据权利要求2所述的方法,其中,利用所述第一节能时间段、所述第二小区在所述预设时间周期内的负荷,确定所述第二小区的第二节能时间段,包括:
    获取所述第二小区在所述预设时间周期内所有时间段的负荷,得到多个第二负荷;
    确定多个所述第二负荷中小于所述目标节能负荷的负荷对应的时间段;
    将多个所述第二负荷中小于所述目标节能负荷的负荷对应的时间段中未与所述第一节能时间段重叠的时间段,确定为所述第二节能时间段。
  4. 一种小区节能状态的控制装置,包括:
    第一确定模块,设置为确定第一频点覆盖的第一小区组合和第二频点覆盖的第二小区组合在预设时间周期内的负荷之和;
    第二确定模块,设置为在所述负荷之和小于第一预设负荷的情况下,确定所述第一小区 组合中的第一小区在所述预设时间周期内的负荷,以及所述第二小区组合中的第二小区在所述预设时间周期内的负荷,其中,所述第一小区是所述第一小区组合中的任一小区,所述第二小区是所述第二小区组合中的任一小区;
    第一控制模块,设置为基于所述第一小区组合中的第一小区在所述预设时间周期内的负荷,以及所述第二小区组合中的第二小区在所述预设时间周期内的负荷,控制所述第一小区和所述第二小区的节能状态。
  5. 一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机程序,其中,所述计算机程序被处理器执行时实现所述权利要求1至3任一项中所述的方法。
  6. 一种电子装置,包括存储器和处理器,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行所述权利要求1至3任一项中所述的方法。
PCT/CN2023/091875 2022-10-08 2023-04-28 小区节能状态的控制方法、装置、存储介质及电子装置 WO2024074034A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211222005.X 2022-10-08
CN202211222005.XA CN117896807A (zh) 2022-10-08 2022-10-08 小区节能状态的控制方法、装置、存储介质及电子装置

Publications (1)

Publication Number Publication Date
WO2024074034A1 true WO2024074034A1 (zh) 2024-04-11

Family

ID=90607423

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/091875 WO2024074034A1 (zh) 2022-10-08 2023-04-28 小区节能状态的控制方法、装置、存储介质及电子装置

Country Status (2)

Country Link
CN (1) CN117896807A (zh)
WO (1) WO2024074034A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102083145A (zh) * 2010-04-29 2011-06-01 大唐移动通信设备有限公司 一种节能方法及设备
US20130250908A1 (en) * 2012-03-23 2013-09-26 Nokia Siemens Networks Oy Base station power savings and control thereof
CN108990073A (zh) * 2017-06-02 2018-12-11 中兴通讯股份有限公司 无线小区的覆盖控制方法、装置及基站
CN112911691A (zh) * 2021-02-24 2021-06-04 中国联合网络通信集团有限公司 一种小区节能方法、设备及存储介质
CN113973339A (zh) * 2020-07-10 2022-01-25 中国移动通信集团重庆有限公司 4g小区和5g小区的负荷协同方法、设备及计算机存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102083145A (zh) * 2010-04-29 2011-06-01 大唐移动通信设备有限公司 一种节能方法及设备
US20130250908A1 (en) * 2012-03-23 2013-09-26 Nokia Siemens Networks Oy Base station power savings and control thereof
CN108990073A (zh) * 2017-06-02 2018-12-11 中兴通讯股份有限公司 无线小区的覆盖控制方法、装置及基站
CN113973339A (zh) * 2020-07-10 2022-01-25 中国移动通信集团重庆有限公司 4g小区和5g小区的负荷协同方法、设备及计算机存储介质
CN112911691A (zh) * 2021-02-24 2021-06-04 中国联合网络通信集团有限公司 一种小区节能方法、设备及存储介质

Also Published As

Publication number Publication date
CN117896807A (zh) 2024-04-16

Similar Documents

Publication Publication Date Title
CN103686767B (zh) 一种基于lte网络的天线下倾角调整方法及装置
CN106900011A (zh) 一种基于mec的蜂窝基站间任务卸载方法
CN108632365A (zh) 服务资源调整方法、相关装置和设备
US20070002759A1 (en) Dynamic methods for improving a wireless network
CN109302719A (zh) 一种lte小区容量预测分析方法及装置
CN106412917A (zh) 一种网络扩容方法及装置
WO2016078268A1 (zh) 节能方法及装置
US11510124B2 (en) Cross-optimization in mobile networks
CN114786268A (zh) 数据传输带宽调整方法、装置、电子设备及存储介质
CN112020098A (zh) 负荷均衡方法、装置、计算设备及计算机存储介质
EP3952420B1 (en) Fingerprint library creation and application methods and apparatuses, centralized processing device and base station
CN115543577A (zh) 基于协变量的Kubernetes资源调度优化方法、存储介质及设备
CN105471107B (zh) 一种电网电能量计量系统的分时任务采集方法
CN107506233A (zh) 一种虚拟资源调度方法、装置及服务器
CN106714189A (zh) 一种小区过覆盖的分析方法及装置
WO2024074034A1 (zh) 小区节能状态的控制方法、装置、存储介质及电子装置
CN105530650A (zh) 一种网络资源规划的方法及装置
CN112020075B (zh) 基于业务量预测的通信保障方法、装置、计算设备
CN116938953A (zh) 基于区块链的数据处理方法、装置、电子设备及存储介质
CN105302628B (zh) 一种虚拟机在基站资源池中的迁移方法及装置
WO2016188361A1 (zh) 参数优化的方法及装置
CN107589981A (zh) 一种动态电源管理与动态资源调度方法及装置
CN112203287B (zh) 小区容量调整方法、装置、设备和存储介质
CN112954808A (zh) 载波资源调整方法、装置、存储介质和计算机设备
CN114071662A (zh) 基站及其节能控制方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23874229

Country of ref document: EP

Kind code of ref document: A1