WO2024072019A1 - 발전량의 증대를 위한 오토인코더 기반 딥러닝 신경망 모델을 이용한 하이브리드 병렬형 전력변환시스템의 이상징후 감지 방법 - Google Patents

발전량의 증대를 위한 오토인코더 기반 딥러닝 신경망 모델을 이용한 하이브리드 병렬형 전력변환시스템의 이상징후 감지 방법 Download PDF

Info

Publication number
WO2024072019A1
WO2024072019A1 PCT/KR2023/014866 KR2023014866W WO2024072019A1 WO 2024072019 A1 WO2024072019 A1 WO 2024072019A1 KR 2023014866 W KR2023014866 W KR 2023014866W WO 2024072019 A1 WO2024072019 A1 WO 2024072019A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
input
mosfet
conversion system
value
Prior art date
Application number
PCT/KR2023/014866
Other languages
English (en)
French (fr)
Inventor
김동완
Original Assignee
김동완
부산항만공사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김동완, 부산항만공사 filed Critical 김동완
Publication of WO2024072019A1 publication Critical patent/WO2024072019A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/18Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing electrical output from mechanical input, e.g. generators

Definitions

  • the content disclosed in this specification relates to a piezoelectric energy harvesting power conversion system or a fault diagnosis method used therein. More specifically, when performing such power conversion, the power conversion operation of the power converter is controlled differently depending on the bus bar (grid power), so that power can be converted to suit each bus bar.
  • Document 1 is an energy harvesting piezoelectric generator that boosts power by a piezoelectric element and minimizes boost loss.
  • the voltage required for charging the secondary battery is boosted using a switching method in which the voltage charged in the condenser is moved to another condenser and stacked, thereby minimizing boost loss.
  • the disclosed content seeks to provide a hybrid parallel power conversion structure that minimizes the loss of generated power and provides boost conversion that can efficiently store the generated power since the generation of power by the above-described piezoelectric element is minimal.
  • a power conversion method that maximizes the power generated and minimizes the conversion loss of the generated power and allows it to be efficiently used for storage and load.
  • the abnormality detection method of a hybrid parallel power conversion system using an autoencoder-based deep learning neural network model to increase power generation is,
  • the hybrid parallel power conversion structure used for this detection is as follows.
  • the overall configuration largely consists of a solar panel (PV Panel) and a piezoelectric energy harvesting module as input power, the output terminal is connected to a battery, and finally the battery and DC-AC converter are connected to grid power. It is connected.
  • PV Panel solar panel
  • DC-AC converter DC-AC converter
  • the power conversion device is made of a DC-DC converter and includes battery charging and discharging control functions.
  • the power converter is composed of several types of connection and is made by considering the pros and cons of each configuration.
  • this converter takes into account the advantages and disadvantages of each of the above-mentioned configurations, and instead of having a separate battery charging circuit, it is configured with each converter for each individual input, so that the most suitable control method for each input power source is determined. It is a structure that is created.
  • this booster-type DC-DC converter circuit can be applied as a general power conversion circuit to implement a high DC link voltage considering the output of a solar inverter from a low DC input power source.
  • ESS Electronicgy Storage System
  • a battery which is an energy storage device, and in the case of a piezoelectric harvesting module, the generated power is very low, so it is very difficult to directly charge a high capacity battery. Therefore, considering the power of a typical home solar panel, it is difficult to output a high DC link voltage directly from the power source, and a circuit must be created centered around a battery.
  • an ESS (battery) linked power conversion device two hybrid parallel power converters with solar and piezoelectric harvesting modules as input is provided first. Additionally, each converter is configured to perform maximum power point tracking (MPPT) according to the power source (solar and piezoelectric harvesting module) connected to the input terminal. Additionally, a battery is connected in parallel to the output terminal to control the output voltage and current according to the state of the battery.
  • MPPT maximum power point tracking
  • a current path separate from the inside of the battery is used, and for this purpose, two power converters are cross-wired to share the battery charging current, thereby controlling the output voltage and limiting the maximum charging current of the battery.
  • the power control method according to one embodiment is different from the existing power control method.
  • each individual power source is different, its characteristics are different, and depending on the charging state of the battery and the load power state, Allows for different control.
  • boost mode when the input voltage is higher than the output voltage, buck mode is used, and when the input voltage is low, boost mode is used. Operates in (boost) mode.
  • MPPT control when the battery is in a discharged state, MPPT control is performed to control the maximum point of each input power, and when the battery is in a charged state, the constant current control mode and constant voltage control mode are applied according to the voltage state of the battery. That is, the control mode is constantly varied and controlled according to the input state of the power source, the state of the battery, and the state of the load current, thereby enabling appropriate power control to the above-described converter.
  • the output state of this hybrid parallel power conversion structure is customized to be diagnosed using an autoencoder-based learning model to determine whether there is an abnormality.
  • a boost conversion system is provided that can minimize the loss of generated power and efficiently store the generated power.
  • Figure 1 is a diagram showing the overall power conversion structure applied to the abnormality detection method of a hybrid parallel power conversion system using an autoencoder-based deep learning neural network model to increase power generation according to an embodiment.
  • Figure 2 is a diagram conceptually illustrating a power converter applied to an abnormality detection method of a hybrid parallel power conversion system using an autoencoder-based deep learning neural network model to increase power generation according to an embodiment.
  • Figure 3 is a diagram illustrating the buck-boost operation of a power converter applied to an abnormality detection method of a hybrid parallel power conversion system using an autoencoder-based deep learning neural network model to increase power generation according to an embodiment.
  • Figure 4 is a diagram showing the configuration of an additional DC-AC converter of a power converter applied to an abnormality detection method of a hybrid parallel power conversion system using an autoencoder-based deep learning neural network model to increase power generation according to an embodiment.
  • Figure 5 is a diagram showing the configuration of an abnormality detection method of a hybrid parallel power conversion system using an autoencoder-based deep learning neural network model to increase power generation according to an embodiment.
  • Figure 6 is a diagram illustrating the operation of generating reference information applied to the abnormality detection method of a hybrid parallel power conversion system using an autoencoder-based deep learning neural network model to increase power generation according to an embodiment.
  • Figure 7 is a diagram showing a fault detection procedure applied to the abnormality detection method of a hybrid parallel power conversion system using an autoencoder-based deep learning neural network model to increase power generation according to an embodiment.
  • Figures 8 and 9 show the voltage-current of solar panels and piezoelectric harvesting modules applied to the abnormality detection method of a hybrid parallel power conversion system using an autoencoder-based deep learning neural network model to increase power generation according to an embodiment. Drawing to explain characteristics (curves)
  • Figures 10 and 11 are diagrams illustrating power control according to battery status applied to an anomaly detection system using an autoencoder-based deep learning neural network model for hybrid parallel power conversion according to an embodiment.
  • Figure 12 is a control method of a battery control device using a piezoelectric harvesting module and solar energy applied to an abnormality detection method of a hybrid parallel power conversion system using an autoencoder-based deep learning neural network model to increase power generation according to an embodiment.
  • Figures 13 and 14 are overall control block diagrams of the power conversion structure applied to the abnormality detection method of a hybrid parallel power conversion system using an autoencoder-based deep learning neural network model to increase power generation according to an embodiment.
  • Figure 15 is a flow chart sequentially showing the operation of an abnormality detection method of a hybrid parallel power conversion system using an autoencoder-based deep learning neural network model to increase power generation according to an embodiment.
  • Figure 16 is a diagram illustrating a bidirectional buck-boost converter of a power converter applied to an abnormality detection method of a hybrid parallel power conversion system using an autoencoder-based deep learning neural network model to increase power generation according to an embodiment.
  • Figure 1 is a diagram illustrating the overall power conversion structure applied to the abnormality detection method of a hybrid parallel power conversion system using an autoencoder-based deep learning neural network model to increase power generation according to an embodiment.
  • the power conversion structure largely consists of a solar panel (PV Panel) and a piezoelectric energy harvesting module as input power, the output terminal is connected to a battery, and finally the battery and The DC-AC converter is connected and connected to grid power.
  • PV Panel solar panel
  • the DC-AC converter is connected and connected to grid power.
  • the power conversion device is made of a DC-DC converter and includes battery charging and discharging control functions.
  • the power converter is constructed by connecting several methods and considering the pros and cons of each configuration.
  • each individual input is configured with a separate converter, and a control method most suitable for each input power source is created.
  • the booster-type DC-DC converter circuit can be applied as a general power conversion circuit to implement a high DC link voltage considering the output of a solar inverter from a low DC input power source.
  • ESS Electronicgy Storage System
  • it in order to apply an ESS (Energy Storage System), it must be configured with a battery, which is an energy storage device, and in the case of a piezoelectric harvesting module, the generated power is very low, so it is very difficult to directly charge a high capacity battery. Therefore, considering the power of a typical home solar panel, it is difficult to output a high DC link voltage directly from the power source, and a circuit must be created centered around a battery.
  • an ESS (battery) linked power conversion device two hybrid parallel power converters with solar and piezoelectric harvesting modules as input is provided first. Additionally, each converter is configured to perform maximum power point tracking (MPPT) according to the power source (solar and piezoelectric harvesting module) connected to the input terminal. Additionally, a battery is connected in parallel to the output terminal to control the output voltage and current according to the state of the battery.
  • MPPT maximum power point tracking
  • each converter is the same, but the program implements hardware and firmware that identifies and controls the power source so that each individual converter can be implemented with a different control method depending on the power source of the input terminal. Then, configure RS-485 communication to monitor input power and output power in the monitoring system.
  • various types of converters can be applied to solar and piezoelectric harvesting modules, but not only does the input voltage range vary widely, but the output voltage is sometimes higher than the input voltage, so a simple buck converter is used. cannot perform the battery charging function. Therefore, it has a buck-boost converter structure that allows stable output control even over a wide range of input voltages. And, in connection with this, the control method is operated by dividing into MPPT control and battery charging control mode according to the battery charging state.
  • a current path separate from the inside of the battery is used, and for this purpose, two power converters are cross-wired to share the battery charging current, thereby controlling the output voltage to jointly limit the maximum charging current of the battery.
  • each individual power source is different, its characteristics are different, and there is a difficulty in controlling it differently depending on the state of charge of the battery and the load power state.
  • voltage and current characteristics for performing maximum power tracking control can be determined from each characteristic curve of the piezoelectric energy harvesting module and the solar panel module.
  • the output current can be maintained up to the highest point of voltage in each voltage-current characteristic curve, but a general control method is to maintain the maximum power point by reducing the size of the output current at the point where the voltage decreases. To achieve this, changes in input voltage and input power are instantaneously determined and the maximum value of the output current is changed.
  • This control method is very suitable when a battery is not applied, but when a battery is applied, different control methods are implemented depending on the battery status of the ESS. Since the voltage of the battery changes significantly depending on the state of charge and discharge, the state of the battery can be observed, and constant current control (fast charging) and constant voltage control can be performed by considering the voltage of the battery. Specifically, in discharge mode, continuous power supply is possible as long as the maximum discharge point does not occur, but in charge mode, it is necessary to limit the application of overvoltage to the battery for charging.
  • Figure 2 is a diagram to conceptually explain a power converter applied to an abnormality detection method of a hybrid parallel power conversion system using an autoencoder-based deep learning neural network model to increase power generation according to an embodiment.
  • the power converter has a buck-boost converter structure composed of a piezoelectric energy harvesting module and a solar power input individually. That is, first, instead of having a separate battery charging circuit, a converter is configured for each individual input. Additionally, it has a buck-boost structure that allows stable output control even over a wide range of input voltages.
  • the output is connected to a battery in parallel so that the generated energy can be charged and used.
  • a current path separate from the inside of the battery is used, and for this purpose, two power converters are cross-wired to share the battery charging current, thereby controlling the output voltage and limiting the maximum charging current of the battery.
  • this configuration largely includes a first buck-boost converter 101, a second buck-boost converter 102, and a battery 103. Additionally, it includes a DC-AC converter, which will be described with reference to FIG. 4.
  • the first buck-boost converter 101 is connected to the first DC power module, that is, the piezoelectric energy harvesting module, compares the input voltage and the output voltage, and boosts the voltage in boost mode when the input voltage is lower than the output voltage. And, when it is high, it is converted into a power supply for charging control by reducing the pressure in buck mode. Additionally, the first DC power module is a piezoelectric energy harvesting module whose generated power is lower than the set power by a threshold value, and is used in this type of module.
  • the second buck-boost converter 102 is connected to a second DC power module different from the module, that is, to a solar panel module, and similarly compares the input voltage and output voltage and operates in boost mode when the input voltage is lower than the output voltage. Steps up as . And when it is high, it is converted into a power supply for charging control by reducing the pressure in buck mode.
  • the second DC power module is a type of solar panel module that outputs a DC link voltage that is higher than the set link voltage by a threshold value.
  • the battery (!03) is connected in parallel to the output terminals of the first buck-boost converter and the second buck-boost converter, and controls the output voltage and current by each charging control power source according to the internal state of the battery device. Let's do it.
  • first buck-boost converter 101 and the second buck-boost converter 102 are as follows according to one embodiment (unidirectional type).
  • first MOSFET a first MOSFET
  • first diode an inductor
  • second diode a second MOSFET
  • capacitor a capacitor
  • the first MOSFET has a source terminal connected to the input terminal of the corresponding DC power module, and alternately turns on and off in the buck mode.
  • the first diode has a cathode terminal connected to the drain terminal of the first MOSFET, so that it turns off in conjunction with the first MOSFET and turns on in conjunction with the first MOSFET in the off state.
  • One end of the inductor is connected to the drain terminal of the first MOSFET.
  • the anode terminal of the second diode is connected to the other end of the inductor.
  • the second MOSFET has a source terminal connected to the other end of the inductor and a drain terminal connected to the anode terminal of the diode, so that in the boost mode, on and off are alternately linked to the off and on of the first diode. It is repetition.
  • the capacitor is connected to the cathode terminal of the second diode and the bus side.
  • one embodiment represents a buck-boost converter structure that is individually composed of a piezoelectric energy harvesting module and a solar power input. Then, the output is connected to the battery 103 in parallel to charge and use the generated energy.
  • a current path separate from the inside of the battery 103 is used, and for this purpose, the two power converters 101 and 102 are cross-wired to share the charging current of the battery 103, resulting in output
  • the voltage is controlled to limit the maximum charging current of the battery 103.
  • a current path separate from the inside of the battery 103 is used. However, it does not detect the load current, so the load current ( ) cannot be shared, but the battery 103 charge/discharge current ( ) follows the proposed current path, and can be measured in each power converter (101, 102).
  • two power converters (101, 102) must be cross-wired, as shown in the drawing.
  • the terminals S(-) and V(-) can be connected, that is, the output voltage of the battery 103 and the output voltage of the converter (101, 102) can be connected. . detected
  • Each power converter (101, 102) controls the output voltage and jointly limits the maximum charging current of the battery (103).
  • Figure 3 is a diagram for explaining the buck-boost operation of a power converter applied to an abnormality detection method of a hybrid parallel power conversion system using an autoencoder-based deep learning neural network model to increase power generation according to an embodiment.
  • the buck-boost operation operates in a boost mode to boost the voltage when the input voltage of each converter is lower than the output voltage. And, if the input voltage is higher than the output voltage, it operates in buck mode to reduce the voltage and control it to a voltage and current suitable for battery charging control.
  • the first MOSFET is alternately turned on and off
  • the second MOSFET is alternately turned on and off, thereby performing a buck-boost operation.
  • Figure 4 is a diagram illustrating the DC-AC converter of a power converter applied to an abnormality detection method of a hybrid parallel power conversion system using an autoencoder-based deep learning neural network model to increase power generation according to an embodiment.
  • the DC-AC converter As shown in Figure 4, the DC-AC converter according to one embodiment is responsible for battery charging and load sharing functions, but since the output power of the power converter is DC power, it cannot be connected to a system using AC power. . Therefore, a DC-AC converter structure is needed.
  • These converters are maximum power converters for grid connection, and convert the power generated from solar and piezoelectric energy harvesting modules into DC-DC power through an improved maximum power converter, and then connect to the grid through a DC-AC converter. It is done.
  • the circuit of this DC-AC converter uses, for example, the TMS320F28065 controller, and the intelligent power module (IPM) element is PM75B6L1C060, which includes a full bridge switching circuit and 2-channel brake at the same time. It is a device that also includes a circuit.
  • the output and input sides of the DC-AC converter detect current through a current sensor, and the voltage of the output power is measured through a measuring transformer.
  • Figure 5 is a diagram illustrating the configuration of a method for detecting abnormalities in a hybrid parallel power conversion system using an autoencoder-based deep learning neural network model to increase power generation according to an embodiment.
  • the structure diagnoses failures from signals from each sensor through a neural network learned using measured information and simulation information.
  • sensor information including pressure, temperature, voltage, current, and power for each multiple different set points in a specific hybrid parallel power conversion system is simulated with an experimental (case or actual) module. Collect multiple items through the dragon's virtual module.
  • a learning pattern is constructed by configuring an input/output information pair using the output value information for the input information up to the second stage by the simulation module.
  • fault diagnosis is performed by diagnosing the output state of the hybrid parallel power conversion system from a learning model based on a set auto encoder and determining whether there is an abnormality.
  • the learning model based on the autoencoder set above is as follows.
  • characteristic values of information including pressure, temperature, voltage, current, and power for each different point are learned and stored.
  • the input signal is restored using the feature value.
  • the difference between the restored value and the input value is compared with the range of the set boundary value.
  • the range of the set boundary value is obtained as follows.
  • the deep learning-based autoencoder which is mainly used as an anomaly detection model, is basically a method of recognizing errors that occur in abnormal information through learning about normal information, and by combining it with other deep learning models. I tend to apply it to various fields. It is an artificial neural network structure that aims to reproduce input as output as is, and is used for abnormality diagnosis such as fault detection through reconstruction error comparing input and output. It is a basic autoencoder structure that consists of an input layer, a hidden layer, and an output layer. The characteristic information of the input information is compressed and extracted by the bottleneck of the hidden layer to form latent information, and the latent information is a structure that restores the signal through the output layer. .
  • the output state of the piezoelectric energy harvesting system that is, the hybrid parallel power conversion structure, can be diagnosed to determine whether there is an abnormality.
  • this learning normalizes the given learning information and then trains an auto-encode neural network, and through this, when a new input is received, the output is compared with the input to determine how much it differs from the learned information. Through this, in cases where information is different from previously provided information, errors are reviewed to determine whether there is an abnormality. Additionally, the method for diagnosing abnormalities is the same as using the error values described above.
  • this autoencoder neural network consists of three layers: an input layer, an intermediate layer, and an output layer. Learning for each part is done in two ways, forward and backward, by input propagation and error propagation. By repeating this propagation, actual characteristics can be found and learning errors can be reduced.
  • Figure 6 is a diagram for explaining the operation of generating reference information applied to the abnormality detection method of a hybrid parallel power conversion system using an autoencoder-based deep learning neural network model to increase power generation according to an embodiment.
  • the basic information first looks at the information structure.
  • input and output information In order to learn a neural network, input and output information must be provided. In autoencoder-based learning, input and output are the same, so only input information from the sensor is required.
  • training a deep learning neural network in order to improve performance, as much information as possible must be provided along with representative information.
  • a demonstration system for the piezoelectric energy harvesting system since a demonstration system for the piezoelectric energy harvesting system has not yet been implemented, a similar simulation model is built to replace it and information is acquired through it. Information is acquired by performing simulations on representative cases, used for learning, and additionally learned in the future when actual information is obtained.
  • a simulation model of a piezoelectric system is constructed through Matlab Simulink, and the value of each sensor for external input is obtained and utilized.
  • the output value of each sensor for each input information is measured through a simulation model. For example, it indicates the output current and output voltage against external pressure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • Biomedical Technology (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Dc-Dc Converters (AREA)

Abstract

실시예는 하이브리드 병렬형 전력변환용의 오토인코더 기반 딥러닝 신경망 모델을 이용한 이상징후 감지 시스템에 관한 것으로, 이러한 변환기는 별도의 배터리 충전회로가 없는 대신에 각 개별 입력에 컨버터를 구성하고, 오토인코더 기반의 학습 모델로 고장 진단한다. 따라서, 실시예는 압전소자에 의한 전력을 효율적으로 저장하고. 이상징후를 감지한다.

Description

발전량의 증대를 위한 오토인코더 기반 딥러닝 신경망 모델을 이용한 하이브리드 병렬형 전력변환시스템의 이상징후 감지 방법
본 명세서에 개시된 내용은 압전에너지 하베스팅의 전력변환 시스템 또는, 그에 사용하는 고장진단 방법에 관한 것이다. 보다 상세하게는, 이러한 전력변환을 할 경우, 해당 전력변환기의 전력변환 동작을 모선(grid power)에 따라 상이하게 제어함으로써, 모선별로 각기 맞추어서 전력을 변환할 수 있도록 하는 것이다.
본 명세서에서 달리 표시되지 않는 한, 이 섹션에 설명되는 내용들은 이 출원의 청구항들에 대한 종래 기술이 아니며, 이 섹션에 포함된다고 하여 종래 기술이라고 인정되는 것은 아니다.
일반적으로, 친환경 녹색항만의 추진에 항만톨게이트용 스마트 압전에너지 시스템의 적용이 필요하다.
구체적으로는, 항만에서 사용하는 전력에 의한 이산화탄소 저감을 위해 환경친화적이고, 기존 에너지 생산체계의 한계로 인해 중소형 에너지자립 및 근접지원형 친환경 발전과 같은 에너지 생산의 친환경ㅇ사회수용성 요구가 증가하는 실정이다.
그래서, 이러한 기존 신재생에너지의 한계를 극복하기 위하여 시간적ㅇ공간적 제약 및 민원 발생의 여지가 적은 압전발전이 있을 수 있을 것이다.
그런데, 이러한 압전소자에 의한 전력의 발생은 대체적으로 미미하고, 발생한 전력의 전력변환손실도 어느 정도 고려해야 할 것이기도 하다.
그래서, 이렇게 발전량이 적으므로 전력분야(소재분야와 시공분야 포함) 등의 협업을 통한 완성이 필요하다. 그리고, 발전량의 증대를 위한 손실을 최소화하는 최대전력변환방식도 있어야 할 것이기도 하다.
부가하면, 이러한 배경의 선행기술은 아래의 문헌이 나오는 정도이다.
(특허문헌 0001) KR101794615 B1
참고적으로, 이러한 문헌 1은 에너지 하베스팅 압전발전기에 있어서, 압전소자에 의한 전력을 승압하고, 승압 손실을 최소로 하는 것이다.
이를 위해, 이차전지 충전에 필요한 전압까지 승압시키는데 콘덴서에 충전된 전압을 다른 콘덴서로 이동하고 적층하는 스위칭 방식으로 승압함으로써 승압 손실을 최소로 하도록 한다.
개시된 내용은, 전술한 압전소자에 의한 전력의 발생이 미미하므로 발생전력의 손실을 최소화하고, 발생전력을 효율적으로 저장할 수 있는 승압컨버팅을 제공하는 하이브리드 병렬형 전력변환 구조를 제공하고자 한다.
그리고, 이러한 경우에 이렇게 발생하는 전력을 최대화하고, 발생한 전력의 변환손실을 최소화하는 전력변환방식과 이를 효율적으로 저장 및 부하에 사용할 수 있도록 한다.
특히, 이러한 구조의 고장을 분석 진단하는 오토인코더 기반 딥러닝 신경망 모델을 이용한 이상징후 감지 방법을 제공하고자 한다.
실시예에 따른 발전량의 증대를 위한 오토인코더 기반 딥러닝 신경망 모델을 이용한 하이브리드 병렬형 전력변환시스템의 이상징후 감지 방법은,
먼저, 이러한 감지에 사용하는 하이브리드 병렬형 전력변환 구조는 아래와 같다.
*전체적인 구성은 크게, 입력 전원으로 태양광 패널(PV Panel)과 압전에너지 하베스팅 모듈로 구성되며, 출력단은 배터리가 연결되고, 최종적으로 배터리와 DC-AC 컨버터가 연결되어 모선(grid power)으로 연결되는 것이다.
이를 위해서, 전력변환 장치는 DC-DC 컨버터로 만들며, 배터리 충전 및 방전 제어 기능을 포함하도록 한다. 이러한 상태에서, 전력변환기는 몇 가지 방식의 연계로 구성하고, 각 구성에 따른 장단점을 고려하여 만든 것이다.
다음, 이러한 변환기의 구성은 전술한 각 구성에 따른 장점과 단점을 고려하여, 별도의 배터리 충전회로가 없는 대신에, 각 개별 입력에 각각의 컨버터로 구성하여, 각 입력 전원에 가장 적합한 제어 방식이 만들어지는 구조이다.
먼저, 이러한 부스터형 DC-DC 컨버터 회로는 낮은 직류 입력단 전력원으로부터 태양광 인버터의 출력을 감안한 높은 직류 링크단 전압을 구현하기 위한 일반적인 전력변환 회로로 적용될 수 있다. 하지만, ESS(Energy Storage System)를 적용하기 위해서는 에너지 저장장치인 배터리를 적용하여 구성하여야 하고, 압전 하베스팅 모듈의 경우, 발전 전력이 매우 낮아서 직접적으로 높은 용량의 배터리를 충전하기 매우 어렵다. 따라서, 일반적인 가정용 태양광 패널 기준의 전력을 고려하면, 높은 직류단 링크 전압을 바로 전력원에서 출력하는 것은 어려우며, 배터리를 중심으로 회로를 만들어야 한다.
그래서, 태양광 및 압전 하베스팅 모듈을 입력으로 하는 ESS(배터리) 연계형 전력변환 장치를(두 개의 하이브리드 병렬 전력변환기) 우선적으로 제공한다. 그리고, 각 컨버터는 입력단에 연결된 전력원(태양광 및 압전 하베스팅 모듈)에 따라, 최대 전력추종제어(MPPT, Maximum Power Point Tracking)를 수행할 수 있도록 구성한다. 또한, 출력단에 병렬로 배터리가 연결되어 출력 전압 및 전류를 배터리의 상태에 따라 제어하도록 한다.
특히, 다양한 형태의 컨버터가 태양광 및 압전 하베스팅 모듈에 적용될 수 있지만, 입력 전압의 범위가 매우 광범위하게 변동할 뿐만 아니라, 출력전압이 입력전압 보다 높은 경우가 있으므로, 단순한 벅(Buck) 컨버터로는 배터리 충전 기능을 수행할 수 없다. 따라서, 광범위한 입력전압의 범위에 대해서도 안정적인 출력 제어가 가능한 벅-부스트(buck-boost) 컨버터 구조를 가진다.
또한, 배터리 충전 제어를 위해 배터리 내부와 별도의 전류 경로를 사용하고, 이를 위해 두 개의 전력변환기를 교차 배선하여 배터리 충전 전류를 공유함으로써, 출력 전압을 제어하여 배터리의 최대 충전 전류를 함께 제한한다.
이러한 상태에서, 일실시예에 따른 전력제어 방식은 기존의 전력제어 방식과 달리, 제안된 전력변환 회로에서는 각 개별 전력원이 상이하고, 그 특성도 다르며, 배터리의 충전 상태와 부하 전력 상태에 따라서 다르게 제어할 수 있도록 한다.
구체적으로는, 전술한 입력 전력원의 즉, 컨버터에 연결된 전력원의 입력전압과 출력전압의 상호 관계에 따라 입력 전압이 출력전압보다 높은 경우에는 벅(buck) 모드로 입력 전압이 낮은 경우에는 부스트(boost) 모드로 동작한다. 그리고, 배터리가 방전상태에서는 각 입력 전력의 최대 점을 제어하는 MPPT 제어를 수행하고, 배터리가 충전 상태에서는 배터리의 전압 상태에서 따라서 정전류 제어 모드와 정전압 제어 모드를 적용한다. 즉, 전력원의 입력 상태와 배터리의 상태 및 부하 전류의 상태에 따라서 제어 모드를 상시적으로 변동하면서 제어함으로써, 전술한 변환기에 적절한 전력제어를 할 수 있도록 한다.
특히, 일실시예에 따라 오토인코더 기반의 학습 모델에 의해 이러한 하이브리드 병렬형 전력변환구조의 출력상태를 맞춤 진단하여 이상 유무를 판단하는 것을 특징으로 한다.
실시예들에 의하면, 압전소자에 의한 전력의 발생이 미미하므로 발생전력의 손실을 최소화하고, 발생전력을 효율적으로 저장할 수 있는 승압컨버팅 시스템을 제공한다.
그리고, 이렇게 발생하는 전력을 최대화하고, 발생한 전력의 변환손실을 최소화하는 전력변환방식과 이를 효율적으로 저장 및 부하에 사용한다.
특히, 이러한 구조의 고장을 분석 진단하는 오토인코더 기반 딥러닝 신경망 모델을 이용한 이상징후 감지 구조를 제공한다.
도 1은 일실시예에 따른 발전량의 증대를 위한 오토인코더 기반 딥러닝 신경망 모델을 이용한 하이브리드 병렬형 전력변환시스템의 이상징후 감지 방법에 적용한 전력변환구조를 전체적으로 도시한 도면
도 2는 일실시예에 따른 발전량의 증대를 위한 오토인코더 기반 딥러닝 신경망 모델을 이용한 하이브리드 병렬형 전력변환시스템의 이상징후 감지 방법에 적용한 전력변환기를 개념적으로 설명하기 위한 도면
도 3은 일실시예에 따른 발전량의 증대를 위한 오토인코더 기반 딥러닝 신경망 모델을 이용한 하이브리드 병렬형 전력변환시스템의 이상징후 감지 방법에 적용한 전력변환기의 벅-부스트 동작을 설명하기 위한 도면
도 4는 일실시예에 따른 발전량의 증대를 위한 오토인코더 기반 딥러닝 신경망 모델을 이용한 하이브리드 병렬형 전력변환시스템의 이상징후 감지 방법에 적용한 전력변환기의 추가적인 DC-AC 컨버터의 구성을 도시한 도면
도 5는 일실시예에 따른 발전량의 증대를 위한 오토인코더 기반 딥러닝 신경망 모델을 이용한 하이브리드 병렬형 전력변환시스템의 이상징후 감지 방법의 구성을 도시한 도면
도 6은 일실시예에 따른 발전량의 증대를 위한 오토인코더 기반 딥러닝 신경망 모델을 이용한 하이브리드 병렬형 전력변환시스템의 이상징후 감지 방법에 적용한 기준 정보 생성동작을 설명하기 위한 도면
도 7은 일실시예에 따른 발전량의 증대를 위한 오토인코더 기반 딥러닝 신경망 모델을 이용한 하이브리드 병렬형 전력변환시스템의 이상징후 감지 방법에 적용한 고장 검출 절차를 나타낸 도면
도 8과 도 9는 일실시예에 따른 발전량의 증대를 위한 오토인코더 기반 딥러닝 신경망 모델을 이용한 하이브리드 병렬형 전력변환시스템의 이상징후 감지 방법에 적용한 태양광 패널과 압전 하베스팅 모듈의 전압-전류 특성(곡선)을 설명하기 위한 도면
도 10과 도 11은 일실시예에 따른 하이브리드 병렬형 전력변환용의 오토인코더 기반 딥러닝 신경망 모델을 이용한 이상징후 감지 시스템에 적용한 배터리 상태에 따른 전력제어를 설명하기 위한 도면
도 12는 일실시예에 따른 발전량의 증대를 위한 오토인코더 기반 딥러닝 신경망 모델을 이용한 하이브리드 병렬형 전력변환시스템의 이상징후 감지 방법에 적용한 압전 하베스팅 모듈 및 태양광을 적용한 배터리 제어 장치의 제어 방식을 설명하기 위한 도면
도 13과 도 14는 일실시예에 따른 발전량의 증대를 위한 오토인코더 기반 딥러닝 신경망 모델을 이용한 하이브리드 병렬형 전력변환시스템의 이상징후 감지 방법에 적용한 전력변환구조의 전체 제어 블록도
도 15는 일실시예에 따른 발전량의 증대를 위한 오토인코더 기반 딥러닝 신경망 모델을 이용한 하이브리드 병렬형 전력변환시스템의 이상징후 감지 방법의 동작을 순서대로 도시한 플로우 차트
도 16은 일실시예에 따른 발전량의 증대를 위한 오토인코더 기반 딥러닝 신경망 모델을 이용한 하이브리드 병렬형 전력변환시스템의 이상징후 감지 방법에 적용한 전력변환기의 양방향 벅-부스트 컨버터를 설명하기 위한 도면
도 1은 일실시예에 따른 발전량의 증대를 위한 오토인코더 기반 딥러닝 신경망 모델을 이용한 하이브리드 병렬형 전력변환시스템의 이상징후 감지 방법에 적용한 전력변환구조를 전체적으로 도시한 도면이다.
도 1에 도시된 바와 같이, 일실시예에 따른 전력변환구조는 크게, 입력 전원으로 태양광 패널(PV Panel)과 압전에너지 하베스팅 모듈로 구성되며, 출력단은 배터리가 연결되고, 최종적으로 배터리와 DC-AC 컨버터가 연결되어 모선(grid power)으로 연결되는 것이다.
이를 위해서, 전력변환 장치는 DC-DC 컨버터로 만들며, 배터리 충전 및 방전 제어 기능을 포함하도록 한다. 이러한 상태에서, 전력변환기는 몇 가지 방식의 연계로 구성하고, 각 구성에 따른 장단점을 고려하여 만든다.
구체적으로는, 각 구성에 따른 장점과 단점을 고려하여, 별도의 배터리 충전회로가 없는 대신에, 각 개별 입력에 각각의 컨버터로 구성하여, 각 입력 전원에 가장 적합한 제어 방식이 만들어지는 구조이다.
보다 상세하게는, 부스터형 DC-DC 컨버터 회로는 낮은 직류 입력단 전력원으로부터 태양광 인버터의 출력을 감안한 높은 직류 링크단 전압을 구현하기 위한 일반적인 전력변환 회로로 적용될 수 있다. 하지만, ESS(Energy Storage System)를 적용하기 위해서는 에너지 저장장치인 배터리를 적용하여 구성하여야 하고, 압전 하베스팅 모듈의 경우, 발전 전력이 매우 낮아서 직접적으로 높은 용량의 배터리를 충전하기 매우 어렵다. 따라서, 일반적인 가정용 태양광 패널 기준의 전력을 고려하면, 높은 직류단 링크 전압을 바로 전력원에서 출력하는 것은 어려우며, 배터리를 중심으로 회로를 만들어야 한다.
그래서, 태양광 및 압전 하베스팅 모듈을 입력으로 하는 ESS(배터리) 연계형 전력변환 장치를(두 개의 하이브리드 병렬 전력변환기) 우선적으로 제공한다. 그리고, 각 컨버터는 입력단에 연결된 전력원(태양광 및 압전 하베스팅 모듈)에 따라, 최대 전력추종제어(MPPT, Maximum Power Point Tracking)를 수행할 수 있도록 구성한다. 또한, 출력단에 병렬로 배터리가 연결되어 출력 전압 및 전류를 배터리의 상태에 따라 제어하도록 한다.
이를 위하여 각 컨버터의 구조는 동일하게 구성하되, 입력단의 전력원에 따라서 각 개별 컨버터가 서로 다른 제어 방식으로 구현될 수 있도록 프로그램에서 전력원을 식별하여 제어하는 하드웨어 및 펌웨어를 구현한다. 그리고, 모니터링 시스템에서 입력전력 및 출력전력을 모니터링 하도록 RS-485 통신을 구성한다.
특히, 다양한 형태의 컨버터가 태양광 및 압전 하베스팅 모듈에 적용될 수 있지만, 입력 전압의 범위가 매우 광범위하게 변동할 뿐만 아니라, 출력전압이 입력전압 보다 높은 경우가 있으므로, 단순한 벅(Buck) 컨버터로는 배터리 충전 기능을 수행할 수 없다. 따라서, 광범위한 입력전압의 범위에 대해서도 안정적인 출력 제어가 가능한 벅-부스트(buck-boost) 컨버터 구조를 가진다. 그리고, 이에 연계하여 제어 방식을 배터리 충전 상태에 따라서 MPPT 제어 및 배터리 충전 제어 모드를 구분하여 동작하도록 한다.
아울러, 배터리 충전 제어를 위해 배터리 내부와 별도의 전류 경로를 사용하고, 이를 위해 두 개의 전력변환기를 교차 배선하여 배터리 충전 전류를 공유함으로써, 출력 전압을 제어하여 배터리의 최대 충전 전류를 함께 제한하도록 한다.
부가적으로, 기존의 전력제어 방식과 달리, 제안된 전력변환 회로에서는 각 개별 전력원이 상이하고, 그 특성도 다르며, 배터리의 충전 상태와 부하 전력 상태에 따라서 다르게 제어해야 하는 어려움이 있다.
이를 위해, 압전에너지 하베스팅 모듈과 태양광 패널 모듈의 각 특성곡선으로부터 최대 전력 추종 제어를 수행하기 위한 전압과 전류 특성이 결정될 수 있다. 각 전압-전류 특성곡선에서 전압의 최고점까지는 출력전류를 유지할 수 있지만, 전압이 감소하는 지점에서는 출력전류의 크기를 감소시켜 최대 전력점을 유지하는 제어 방식이 일반적이다. 이를 위해서 입력 전압 및 입력 전력의 변화를 순시적으로 판단하여 출력전류의 최대값을 변경한다.
이러한 제어 방식은 배터리를 적용하지 않는 경우에는 매우 적합하지만, 배터리를 적용하는 경우에는 ESS의 배터리 상태에 따라서 서로 다른 제어 방식이 구현되도록 한다. 충전상태와 방전상태에 따라서 배터리의 전압 변동이 크게 발생하게 되므로, 배터리의 상태를 관측할 수 있으며, 배터리의 전압을 고려하여 정전류 제어(급속충전) 및 정전압 제어를 수행할 수 있다. 구체적으로는, 방전모드에서는 최대 방전점이 발생하지 않는 범위에서 지속적인 전력 공급이 가능하지만, 충전모드에서는 배터리에 충전을 위한 과전압이 인가되지 않도록 제한하는 것이 필요하다.
도 2는 일실시예에 따른 발전량의 증대를 위한 오토인코더 기반 딥러닝 신경망 모델을 이용한 하이브리드 병렬형 전력변환시스템의 이상징후 감지 방법에 적용한 전력변환기를 개념적으로 설명하기 위한 도면이다.
도 2에 도시된 바와 같이, 일실시예에 따른 전력변환기는 압전에너지 하베스팅 모듈과 태양광 입력에 각 개별로 구성된 벅-부스트(buck-boost) 컨버터구조를 나타낸다. 즉, 먼저 별도의 배터리 충전회로가 없는 대신에, 각 개별 입력에 컨버터를 구성한다. 그리고, 광범위한 입력전압의 범위에 대해서도 안정적인 출력 제어가 가능한 벅-부스트 구조를 가진다.
이에 더하여, 출력은 병렬로 배터리에 연결하여 발전된 에너지를 충전하여 사용할 수 있도록 한다. 특히, 배터리 충전 제어를 위해 배터리 내부와 별도의 전류 경로를 사용하고, 이를 위해 두 개의 전력변환기를 교차 배선하여 배터리 충전 전류를 공유함으로써, 출력 전압을 제어하여 배터리의 최대 충전 전류를 함께 제한한다.
구체적으로는, 이러한 구성은 크게, 제 1 벅-부스트 컨버터(101)와 제 2 벅-부스트 컨버터(102) 및 배터리(103)를 포함한다. 추가적으로, DC-AC 컨버터를 포함하며, 이에 대해서는 도 4를 참조하여 설명한다.
상기 제 1 벅-부스트 컨버터(101)는 제 1 직류전원 모듈에 즉, 압전에너지 하베스팅 모듈에 연결되어, 입력전압과 출력전압을 비교하여 입력전압이 출력전압보다 낮은 경우 부스트 모드로서 승압한다. 그리고, 높은 경우에는 벅 모드로서 감압함으로써, 충전 제어용 전원으로 변환하는 것이다. 부가적으로, 상기 제 1 직류전원 모듈은 발전 전력이 설정 전력보다 임계값만큼 이하로 낮은 압전에너지 하베스팅 모듈이고, 이러한 유형인 경우에 사용한다.
상기 제 2 벅-부스트 컨버터(102)는 상기 모듈과 상이한 제 2 직류전원 모듈에 즉, 태양광 패널 모듈에 연결되어, 마찬가지로 입력전압과 출력전압을 비교하여 입력전압이 출력전압보다 낮은 경우 부스트 모드로서 승압한다. 그리고, 높은 경우에는 벅 모드로서 감압함으로써, 충전 제어용 전원으로 변환한다. 마찬가지로는, 상기 제 2 직류전원 모듈은 설정 링크 전압보다 임계값만큼 높은 직류단 링크 전압을 출력하는 태양광 패널 모듈 등의 유형이다.
상기 배터리(!03)는 상기 제 1 벅-부스트 컨버터와 상기 제 2 벅-부스트 컨버터의 출력단에 각기 병렬로 연결되어, 각 충전 제어용 전원에 의한 출력 전압 및 전류를 배터리장치의 내부 상태에 따라 제어하도록 한다.
한편, 상기 제 1 벅-부스트 컨버터(101)와 상기 제 2 벅-부스트 컨버터(102)는 일실시예에 따라 각기 아래와 같다(단방향 방식).
즉, 크게는 제 1 MOSFET와 제 1 다이오드, 인덕터, 제 2 다이오드, 제 2 MOSFET 및 커패시터를 포함한다.
상기 제 1 MOSFET는 해당 직류전원 모듈의 입력단에 소스 단자가 연결되어, 상기 벅 모드일 경우에 온과 오프를 교대로 반복하는 것이다.
상기 제 1 다이오드는 기 제 1 MOSFET의 드레인 단자에 캐소드 단자가 연결되어, 상기 제 1 MOSFET가 온일 경우에 연동하여 오프하고 상기 제 1 MOSFET가 오프일 경우에 연동하여 온한다.
상기 인덕터는 상기 제 1 MOSFET의 드레인 단자에 일단이 연결된다.
상기 제 2 다이오드는 상기 인덕터의 타단에 애노드 단자가 연결된다.
상기 제 2 MOSFET는 상기 인덕터의 타단에 소스 단자가 연결되고 상기 다이오드의 애노드 단자에 드레인 단자가 연결되어, 상기 부스트 모드일 경우에 온과 오프를 상기 제 1 다이오드의 오프와 온에 연동하여 교대로 반복하는 것이다.
상기 커패시터는 상기 제 2 다이오드의 캐소드 단자와 모선 측에 연결된다.
그래서, 일실시예는 압전에너지 하베스팅 모듈과 태양광 입력에 각 개별로 구성된 벅-부스트 컨버터구조를 나타낸다. 그리고, 출력은 병렬로 배터리(103)에 연결하여 발전된 에너지를 충전하여 사용한다.
한편, 배터리(103) 충전 제어를 위해 배터리(103) 내부와 별도의 전류 경로를 사용하고, 이를 위해 두 개의 전력변환기(101, 102)를 교차 배선하여 배터리(103) 충전 전류를 공유함으로써, 출력 전압을 제어하여 배터리(103)의 최대 충전 전류를 함께 제한한다.
보다 상세하게는, 배터리(103) 단독 운전이 아닌 계통 연계 운전일 때, 배터리(103)의 단독 전류의 측정이 불가능하여, 배터리(103)를 이용한 에너지 저장이 안되고, 병렬 부하 공유만 수행이 가능하기에 이를 반영하여 아래와 같이 만든다.
구체적으로, 배터리(103) 충전 제어를 위해 배터리(103) 내부와 별도의 전류 경로를 사용한다. 단, 부하 전류를 감지하지 않아, 부하 전류(
Figure PCTKR2023014866-appb-img-000001
)을 공유할 수 없지만, 배터리(103) 충ㅇ방전 전류(
Figure PCTKR2023014866-appb-img-000002
)은 제안된 전류 경로를 따르며, 각각의 전력변환기(101, 102)에서 이를 측정이 가능하다. 배터리(!03) 충전 전류를 공유하려면, 도면과 같이, 두 개의 전력변환기(101, 102)를 교차 배선해야 한다. 또한, 전력변환기(101, 102) 단일로 사용할 때는 단자 S(-)와 V(-)를 연결하여 즉, 배터리(103) 출력전압과 변환기(101, 102)의 출력전압을 연결하여 사용할 수 있다. 감지된
Figure PCTKR2023014866-appb-img-000003
으로 각 전력변환기(101, 102)는 출력 전압을 제어하여, 배터리(103)의 최대 충전 전류를 함께 제한한다.
도 3은 일실시예에 따른 발전량의 증대를 위한 오토인코더 기반 딥러닝 신경망 모델을 이용한 하이브리드 병렬형 전력변환시스템의 이상징후 감지 방법에 적용한 전력변환기의 벅-부스트 동작을 설명하기 위한 도면이다.
도 3에 도시된 바와 같이, 일실시예에 따른 벅-부스트 동작은 각 변환기의 입력 전압이 출력전압보다 낮으면 부스트 모드로 동작하여 전압을 승압시키는 것이다. 그리고, 입력 전압이 출력전압보다 높은면 벅 모드로 동작하여 전압을 감압시켜서 배터리 충전 제어에 적합한 전압 및 전류로 제어한다.
구체적으로는, 벅 모드일 경우는 제 1 MOSFET를 온과 오프를 교대로 반복하며, 부스트 모드일 경우에는 제 2 MOSFET를 온과 오프를 교대로 반복함으로써, 벅-부스트 동작을 수행한다.
도 4는 일실시예에 따른 발전량의 증대를 위한 오토인코더 기반 딥러닝 신경망 모델을 이용한 하이브리드 병렬형 전력변환시스템의 이상징후 감지 방법에 적용한 전력변환기의 DC-AC 컨버터를 설명하기 위한 도면이다.
도 4에 도시된 바와 같이, 일실시예에 따른 DC-AC 컨버터는 먼저, 배터리충전 및 부하 공유 기능을 담당하지만, 전력변환기의 출력 전원은 DC전원이므로 AC전원을 사용하는 계통에 연계가 불가능하다. 따라서, DC-AC 컨버터 구조가 필요하다.
이러한 컨버터는 계통 연계를 위한 최대 전력변환기이며, 태양광 그리고 압전에너지 하베스팅 모듈에서 생성되는 전원을 개선된 최대 전력변환기를 통해 DC-DC 전력변환을 한 후, DC-AC 컨버터를 통해 계통 연계를 하는 것이다.
구체적으로는, 이 DC-AC컨버터의 회로는 제어기가 예를 들어, TMS320F28065를 사용하며, 지능형 전력 모듈(IPM)소자는 PM75B6L1C060으로, 풀 브릿지 스위칭 회로를 포함하며, 동시에 2채널 브레이크(2ch Brake) 회로도 포함하는 소자인 것이다. 그리고, DC-AC 컨버터의 출력과 입력측은 전류 센서를 통해 전류 감지를 하며, 출력 전원의 전압은 계측용 트랜스포머를 통해 측정하도록 한다.
도 5는 일실시예에 따른 발전량의 증대를 위한 오토인코더 기반 딥러닝 신경망 모델을 이용한 하이브리드 병렬형 전력변환시스템의 이상징후 감지 방법의 구성을 도시한 도면이다.
도 5에 도시된 바와 같이, 일실시예에 따른 구조는 측정된 정보와 시뮬레이션 정보를 이용하여 학습한 신경망을 통해 각 센서의 신호로부터 고장진단을 한다.
구체적으로는, 전술한 전력변환을 할 경우, 특정한 하이브리드 병렬형 전력변환시스템에서 다수의 상이한 설정 지점별로 각기 압력과 온도, 전압, 전류, 전력을 포함한 센서 정보를 실험(사례 또는 실제) 모듈과 시뮬레이션용의 가상 모듈을 통해 다수개 수집한다.
그리고 나서, 상기 센서 정보로부터의 각 입력에 대해 시뮬레이션 모듈에 의한 2단계 이전 시점까지의 입력 정보에 대한 출력값 정보를 이용하여 입출력 정보 쌍을 구성함으로써, 학습 패턴을 구성한다.
그래서, 상기 입출력 정보 쌍을 구성한 경우, 설정 오토 인코더 기반의 학습 모델로부터 상기 하이브리드 병렬형 전력변환시스템의 출력상태를 진단하여 이상 유무를 판단함으로써, 고장진단을 수행한다.
이러한 경우, 상기 설정 오토 인코더 기반의 학습 모델은 아래와 같다.
즉, 먼저 상기 입출력 정보 쌍을 이용하여 상이한 지점별로의 압력과 온도, 전압, 전류, 전력을 포함한 정보의 특징값을 학습해서 저장한다.
그리고, 상기 센서 정보를 통해 새로운 입력이 주어진 경우에 상기 특징값으로 입력 신호를 복원한다.
다음, 상기 복원을 한 값과 입력값의 차이값을 설정 경계값의 범위와 비교한다.
상기 비교 결과, 상기 차이값이 경계값의 범위보다 초과하지 않은 경우에 정상상태로 판별하고, 상기 차이값이 경계값의 범위보다 초과한 경우에 이상 진단으로 판별한다.
이러한 경우, 상기 설정 경계값의 범위는 아래와 같이 획득한다.
즉, 아래의 식에 따라 오차 설정값(Q)을 이용하여 누적분포를 통해 구한다.
Figure PCTKR2023014866-appb-img-000004
(여기에서, Q는 실제 정보와 추정값과의 차이(SPE)를 제곱한 값)
부가적으로는, 이러한 이상징후 감지 모델로 주로 활용되는 딥러닝 기반의 오토인코더는 기본적으로 정상 정보에 대한 학습을 통해 비정상 정보에 대해 발생하는 오차를 인지하는 방법으로 다른 딥러닝 모델과 결합에 의해 다양한 분야에 적용하는 편이다. 입력을 그대로 출력으로 재생하는 목적을 가지고 있는 인공신경망 구조로서 입력과 출력을 비교한 재구성 오차를 통해 고장 검출 등 이상 진단에 활용한다. 기본적인 오토인코더 구조로서 입력층과 은닉층, 출력층으로 구성되며, 은닉층의 병목현상에 의해 입력정보의 특징적 정보를 압축 및 추출하여 잠재 정보를 구성하며, 잠재정보는 다시 출력층을 통해 신호를 복원하는 구조이다.
그래서, 이러한 오토인코더 기반의 딥러닝 신경망을 이용하여 압전에너지 하베스팅 시스템의 즉, 하이브리드 병렬형 전력변환구조의 출력상태를 진단하여 이상 유무를 판단할 수 있도록 한다.
또한, 이러한 학습은 주어진 학습 정보를 정규화한 후에 오토인코드 신경망을 학습시키고 이를 통해 새로운 입력이 들어왔을 때의 출력을 입력과의 차이를 비교함으로써 학습된 정보와 얼마나 차이가 나는지를 판별하게 된다. 이를 통해 이전에 나왔던 정보와는 상이한 경우에 오차를 검토하여 이상 여부를 판단한다. 추가적으로 이에 따른 이상 진단방식은 전술한 오차값을 이용한 바와 같다.
그리고, 이러한 오토인코더 신경망은 입력층, 중간층, 출력층 3가지로 이루어진다. 각 부분별 학습은 입력 전파와 오차 전파에 의해 forward, backward 2가지의 방법으로 이루어진다. 이러한 전파를 반복함으로써 실질적인 특성을 찾아내고 학습 오차를 줄여갈 수 있다.
도 6은 일실시예에 따른 발전량의 증대를 위한 오토인코더 기반 딥러닝 신경망 모델을 이용한 하이브리드 병렬형 전력변환시스템의 이상징후 감지 방법에 적용한 기준 정보 생성동작을 설명하기 위한 도면이다.
도 6에 도시된 바와 같이, 일실시예에 따른 기본 정보는 먼저, 정보 구성을 살펴보면, 신경망 학습을 위해서는 입ㅇ출력 정보가 주어져야 한다. 오토인코더 기반의 학습에서는 입력과 출력이 같으므로 센서로부터 입력 정보만 주면 된다. 딥러닝 신경망 학습 시에는 성능을 높이기 위해서는 대표성을 갖는 정보와 함께 가능한 많은 정보가 주어져야 한다. 그러나 압전에너지 하베스팅 시스템의 실증 시스템이 아직 구현되지 않아 이를 대체할 수 있도록 유사한 시뮬레이션 모델을 구축하여 이를 통해 정보를 취득하도록 한다. 대표성을 갖는 사례에 대해 시뮬레이션 수행하여 정보를 취득하며 이를 통해 학습에 활용하고, 향후 실제 정보가 확보될 경우 추가로 학습한다.
예를 들어, 압전 시스템의 시뮬레이션 모델은 매트랩 Simulink를 통해 구성하고, 외부 입력에 대한 각 센서의 값을 얻고, 이를 이용하여 활용한다.
이러한 상태에서, 시뮬레이션 모델을 통해 각 입력받은 정보에 대한 센서별 출력값을 측정한다. 예를 들어, 외부 압력에 대해 출력전류와 출력단 전압을 나타낸다.
다음, 시뮬레이션을 통한 정보를 이용하여 딥러닝 신경망의 적용을 위한 자료를 구성해야 한다. 오토인코더 학습을 위한 입출력 정보의 구성을 하는 방법으로는, 센서 출력값은 시간에 대해 연속적인 특성을 보이므로 각 입력에 대해 2단계 이전 시점까지의 정보를 이용하여 입출력 정보 쌍을 구성하도록 한다. 아래의 표는 각 정보의 구성을 세부적으로 나타낸 것이다. 구성된 정보 쌍을 이용하여 오토인코더 신경망의 입력과 출력으로 사용하여 주어진 정보의 특징값을 학습하게 된다. 학습된 신경망은 새로운 입력에 대한 출력값을 생성하므로 이를 이용하여 각 센서의 이상 유무를 판단한다.
101 : 제 1 벅-부스트 컨버터
102 : 제 2 벅-부스트 컨버터
103 : 배터리

Claims (4)

  1. 직류전원 모듈의 입력 전원을 모선의 구동 전원으로 전력변환을 할 경우, 하이브리드 병렬형 전력변환시스템에 연결된 등록 관리 정보처리장치의 제어부에서 전력변환하여 나온 전원을 감지하여 이상징후를 감지하고,
    제 1 직류전원 모듈과 연결된 제 1 벅-부스트 컨버터와, 제 2 직류전원 모듈에 연결된 제 2 벅-부스트 컨버터, 상기 제 1, 2 벅-부스트 컨버터의 출력단에 각기 병렬로 연결된 배터리를 포함하고,
    상기 제 1, 2 벅-부스트 컨버터는,
    각기 입력단에 소스 단자가 연결되어, 벅 모드일 경우에 온과 오프를 교대로 반복하는 제 1 MOSFET와, 상기 제 1 MOSFET의 드레인 단자에 캐소드 단자가 연결되어, 상기 제 1 MOSFET가 온, 오프일 경우에 연동하여 오프, 온하는 제 1 다이오드, 상기 제 1 MOSFET의 드레인 단자에 일단이 연결된 인덕터, 상기 인덕터의 타단에 애노드 단자가 연결된 제 2 다이오드, 상기 인덕터의 타단에 소스 단자가 연결되고 상기 다이오드의 애노드 단자에 드레인 단자가 연결되어, 부스트 모드일 경우에 온과 오프를 상기 제 1 다이오드의 오프와 온에 연동하여 교대로 반복하는 제 2 MOSFET, 상기 제 2 다이오드의 캐소드 단자와 모선 측에 연결된 커패시터;
    를 포함하는 하이브리드 병렬형 전력변환시스템의 이상징후 감지 방법에 있어서,
    상기 고장 진단을 할 경우, 상기 하이브리드 병렬형 전력변환시스템에서 다수의 상이한 설정 지점별로 각기 압력과 온도, 전압, 전류, 전력을 포함한 센서 정보를 실험 모듈과 시뮬레이션용의 가상 모듈을 통해 다수개 수집하는 제 1 단계;
    상기 센서 정보로부터의 각 입력에 대해 시뮬레이션 모듈에 의한 2단계 이전 시점까지의 입력 정보에 대한 출력값 정보를 이용하여 입출력 정보 쌍을 구성함으로써, 학습 패턴을 구성하는 제 2 단계; 및
    상기 입출력 정보 쌍을 구성한 경우, 설정 오토 인코더 기반의 학습 모델로부터 상기 하이브리드 병렬형 전력변환시스템의 출력상태를 진단하여 이상 유무를 판단함으로써, 고장진단을 수행하는 제 3 단계; 를 포함하고,
    상기 제 3 단계에서, 상기 설정 오토 인코더 기반의 학습 모델은,
    상기 입출력 정보 쌍을 이용하여 상이한 지점별로의 압력과 온도, 전압, 전류, 전력을 포함한 정보의 특징값을 학습해서 저장하는 제 1 과정;
    상기 센서 정보를 통해 새로운 입력이 주어진 경우에 상기 특징값으로 입력 신호를 복원하는 제 2 과정;
    상기 복원을 한 값과 입력값의 차이값을 설정 경계값의 범위와 비교하는 제 3 과정; 및
    상기 비교 결과, 상기 차이값이 경계값의 범위보다 초과하지 않은 경우에 정상상태로 판별하고, 상기 차이값이 경계값의 범위보다 초과한 경우에 이상 진단으로 판별하는 제 4 과정; 을 포함하고,
    상기 제 3 과정에서, 상기 설정 경계값의 범위는,
    아래의 식에 따라 오차 설정값(Q)을 이용하여 누적분포를 통해 구하고,
    Figure PCTKR2023014866-appb-img-000005
    (여기에서, Q는 실제 정보와 추정값과의 차이(SPE)를 제곱한 값)
    인 것; 을 특징으로 하는 발전량의 증대를 위한 오토인코더 기반 딥러닝 신경망 모델을 이용한 하이브리드 병렬형 전력변환시스템의 이상징후 감지 방법.
  2. 직류전원 모듈의 입력 전원을 모선의 구동 전원으로 전력변환을 할 경우, 하이브리드 병렬형 전력변환시스템에 연결된 등록 관리 정보처리장치의 제어부에서 전력변환하여 나온 전원을 감지하여 이상징후를 감지하고,
    제 1 직류전원 모듈과 연결된 제 1 벅-부스트 컨버터, 제 2 직류전원 모듈에 연결된 제 2 벅-부스트 컨버터, 상기 제 1, 2 벅-부스트 컨버터의 출력단에 각기 병렬로 연결된 배터리를 포함하고,
    상기 제 1, 2 벅-부스트 컨버터는,
    각기 입력단에 소스 단자가 연결되어, 벅 모드일 경우에 온과 오프를 교대로 반복하는 제 1 MOSFET, 상기 제 1 MOSFET의 드레인 단자에 소스 단자가 연결되어, 상기 제 1 MOSFET가 온, 오프일 경우에 연동하여 오프, 온하는 제 2 MOSFET, 상기 제 1 MOSFET의 드레인 단자에 일단이 연결된 인덕터, 상기 인덕터의 타단에 드레인 단자가 연결된 제 3 MOSFET, 상기 인덕터의 타단에 소스 단자가 연결되고 상기 제 2 MOSFET의 드레인 단자에 드레인 단자가 연결되어, 부스트 모드일 경우에 온과 오프를 상기 제 2 MOSFET의 오프와 온에 연동하여 교대로 반복하는 제 4 MOSFET 및, 상기 제 3 MOSFET의 소스 단자와 모선 측에 연결된 커패시터;
    를 포함하는 하이브리드 병렬형 전력변환시스템의 이상징후 감지 방법에 있어서,
    상기 고장 진단을 할 경우, 상기 하이브리드 병렬형 전력변환시스템에서 다수의 상이한 설정 지점별로 각기 압력과 온도, 전압, 전류, 전력을 포함한 센서 정보를 실험(사례 또는 실제) 모듈과 시뮬레이션용의 가상 모듈을 통해 다수개 수집하는 제 1 단계;
    상기 센서 정보로부터의 각 입력에 대해 시뮬레이션 모듈에 의한 2단계 이전 시점까지의 입력 정보에 대한 출력값 정보를 이용하여 입출력 정보 쌍을 구성함으로써, 학습 패턴을 구성하는 제 2 단계; 및
    상기 입출력 정보 쌍을 구성한 경우, 설정 오토 인코더 기반의 학습 모델로부터 상기 하이브리드 병렬형 전력변환시스템의 출력상태를 진단하여 이상 유무를 판단함으로써, 고장진단을 수행하는 제 3 단계; 를 포함하고,
    상기 제 3 단계에서, 상기 설정 오토 인코더 기반의 학습 모델은,
    상기 입출력 정보 쌍을 이용하여 상이한 지점별로의 압력과 온도, 전압, 전류, 전력을 포함한 정보의 특징값을 학습해서 저장하는 제 1 과정;
    상기 센서 정보를 통해 새로운 입력이 주어진 경우에 상기 특징값으로 입력 신호를 복원하는 제 2 과정;
    상기 복원을 한 값과 입력값의 차이값을 설정 경계값의 범위와 비교하는 제 3 과정; 및
    상기 비교 결과, 상기 차이값이 경계값의 범위보다 초과하지 않은 경우에 정상상태로 판별하고, 상기 차이값이 경계값의 범위보다 초과한 경우에 이상 진단으로 판별하는 제 4 과정; 을 포함하고,
    상기 제 3 과정에서, 상기 설정 경계값의 범위는,
    아래의 식에 따라 오차 설정값(Q)을 이용하여 누적분포를 통해 구하고,
    Figure PCTKR2023014866-appb-img-000006
    (여기에서, Q는 실제 정보와 추정값과의 차이(SPE)를 제곱한 값)
    인 것; 을 특징으로 하는 발전량의 증대를 위한 오토인코더 기반 딥러닝 신경망 모델을 이용한 하이브리드 병렬형 전력변환시스템의 이상징후 감지 방법.
  3. 청구항 1 또는 청구항 2에 있어서,
    상기 하이브리드 병렬형 전력변환시스템은,
    상기 배터리에 의해 충전 직류전원을 발생한 경우, 상기 배터리로부터의 충전 직류전원을 교류 계통의 부하 구동전원에 따라 상이하게 교류전원으로 변환함으로써, 교류 계통과 연계하는 DC-AC 컨버터; 를 더 포함하고,
    상기 DC-AC 컨버터는,
    상기 배터리에 연결되어, 상기 제 1, 2 직류전원 컨버터에 의한 배터리의 충전 직류전원을 풀 브릿지 스위칭 회로를 통해 교류로 변환하고, 출력과 입력측은 전류 센서로 전류 감지를 하며, 출력 전원의 전압은 계측용 트랜스포머를 통해 측정하는 것; 을 특징으로 하는 발전량의 증대를 위한 오토인코더 기반 딥러닝 신경망 모델을 이용한 하이브리드 병렬형 전력변환시스템의 이상징후 감지 방법.
  4. 청구항 3에 있어서,
    상기 제 1 직류전원 모듈은,
    발전 전력이 설정 전력보다 임계값만큼 이하로 낮은 압전에너지 하베스팅 모듈이고,
    상기 제 2 직류전원 모듈은,
    설정 링크 전압보다 임계값만큼 높은 직류단 링크 전압을 출력하는 태양광 패널 모듈인 것; 을 특징으로 하는 발전량의 증대를 위한 오토인코더 기반 딥러닝 신경망 모델을 이용한 하이브리드 병렬형 전력변환시스템의 이상징후 감지 방법.
PCT/KR2023/014866 2022-09-29 2023-09-26 발전량의 증대를 위한 오토인코더 기반 딥러닝 신경망 모델을 이용한 하이브리드 병렬형 전력변환시스템의 이상징후 감지 방법 WO2024072019A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220123921A KR102650607B1 (ko) 2022-09-29 2022-09-29 발전량의 증대를 위한 오토인코더 기반 딥러닝 신경망 모델을 이용한 하이브리드 병렬형 전력변환시스템의 이상징후 감지 방법
KR10-2022-0123921 2022-09-29

Publications (1)

Publication Number Publication Date
WO2024072019A1 true WO2024072019A1 (ko) 2024-04-04

Family

ID=90472791

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/014866 WO2024072019A1 (ko) 2022-09-29 2023-09-26 발전량의 증대를 위한 오토인코더 기반 딥러닝 신경망 모델을 이용한 하이브리드 병렬형 전력변환시스템의 이상징후 감지 방법

Country Status (2)

Country Link
KR (1) KR102650607B1 (ko)
WO (1) WO2024072019A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180057920A (ko) * 2016-11-23 2018-05-31 목포대학교산학협력단 태양광 발전효율을 감시 및 분석하는 시스템
US20210135625A1 (en) * 2018-05-09 2021-05-06 Beijing Institute Of Technology Photovoltaic array fault diagnosis method based on composite information
KR20210093687A (ko) * 2020-01-20 2021-07-28 경성대학교 산학협력단 신재생 에너지원의 전력 제어 회로 및 이를 이용한 전력 제어 방법
KR20210106136A (ko) * 2020-02-20 2021-08-30 김동완 스마트 압전에너지 하베스팅 시스템
WO2022096571A1 (en) * 2020-11-04 2022-05-12 Lannesolaire Sarl Solar energy facility monitoring

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180284735A1 (en) * 2016-05-09 2018-10-04 StrongForce IoT Portfolio 2016, LLC Methods and systems for industrial internet of things data collection in a network sensitive upstream oil and gas environment
KR102292748B1 (ko) * 2019-08-01 2021-08-23 주식회사 현태 태양광 발전 및 제어 시스템, 그리고 태양광 발전 및 제어 시스템의 운영 방법
US11545931B2 (en) * 2019-11-10 2023-01-03 Maxout Renewables, Inc. Optimizing hybrid inverter system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180057920A (ko) * 2016-11-23 2018-05-31 목포대학교산학협력단 태양광 발전효율을 감시 및 분석하는 시스템
US20210135625A1 (en) * 2018-05-09 2021-05-06 Beijing Institute Of Technology Photovoltaic array fault diagnosis method based on composite information
KR20210093687A (ko) * 2020-01-20 2021-07-28 경성대학교 산학협력단 신재생 에너지원의 전력 제어 회로 및 이를 이용한 전력 제어 방법
KR20210106136A (ko) * 2020-02-20 2021-08-30 김동완 스마트 압전에너지 하베스팅 시스템
WO2022096571A1 (en) * 2020-11-04 2022-05-12 Lannesolaire Sarl Solar energy facility monitoring

Also Published As

Publication number Publication date
KR102650607B1 (ko) 2024-03-26

Similar Documents

Publication Publication Date Title
CN101253665B (zh) 用于确定至少两个电装置的连接类型的方法和包含多个电装置的系统
CN106953525B (zh) 阻抗型多模块串联式光伏直流升压变换器
WO2022145907A1 (ko) 스트링 단위로 균등 전압을 추종하는 스트링 옵티마, 및 이를 적용한 태양광 발전 시스템
KR101256077B1 (ko) 전력 제어 시스템 및 전력 제어 방법
WO2021002539A1 (ko) 머신러닝 기반의 mppt 동작전압 최적화를 위한 태양광 모듈 직병렬 변환시스템
WO2010147420A2 (ko) 직교 섭동 신호를 사용하는 최대 전력 추종기 및 그것의 최대 전력 추종 제어 방법
CN108777479B (zh) 直流母线微电网系统
WO2022114624A1 (ko) 태양광 발전 시스템
CN111884197A (zh) 一种智能直流配电系统
WO2024072019A1 (ko) 발전량의 증대를 위한 오토인코더 기반 딥러닝 신경망 모델을 이용한 하이브리드 병렬형 전력변환시스템의 이상징후 감지 방법
CN105652116B (zh) 一种基于dc/dc变换器的背靠背试验电路
CN211905521U (zh) 绝缘阻抗检测电路及其应用装置
CN112671016B (zh) 一种基于模块化的移动储能系统
CN113544952B (zh) 一种电源系统
EP4138251A1 (en) Power supply system
WO2024072014A1 (ko) 발전량의 증대를 위한 하이브리드 병렬형 전력변환기의 전력제어 방법
CN114552639B (zh) 一种低碳排配电台区的碳足迹监测方法
WO2024072012A1 (ko) 발전량의 증대를 위한 하이브리드 병렬형 전력변환기
WO2024072016A1 (ko) 발전량의 증대를 위한 하이브리드 병렬형 전력변환 시스템
CN203707806U (zh) 一种故障可追溯性风光互补电源
CN113629693B (zh) 一种储能电池直流直接接入系统
CN107994798A (zh) 一种含在线故障诊断的双向双buck逆变器及其工作方法
CN110400988A (zh) 实现串联化成的电路
CN111262323A (zh) 一种基于协同控制的可重构超级电容充电方法及装置
CN116960922B (zh) 一种无源均流供电电路、检测系统及检测方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23873131

Country of ref document: EP

Kind code of ref document: A1