WO2024071874A1 - Power generation system using fluid circulation - Google Patents

Power generation system using fluid circulation Download PDF

Info

Publication number
WO2024071874A1
WO2024071874A1 PCT/KR2023/014588 KR2023014588W WO2024071874A1 WO 2024071874 A1 WO2024071874 A1 WO 2024071874A1 KR 2023014588 W KR2023014588 W KR 2023014588W WO 2024071874 A1 WO2024071874 A1 WO 2024071874A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
discharge pipe
power generation
water tank
pump
Prior art date
Application number
PCT/KR2023/014588
Other languages
French (fr)
Korean (ko)
Inventor
정삼면
Original Assignee
정삼면
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 정삼면 filed Critical 정삼면
Publication of WO2024071874A1 publication Critical patent/WO2024071874A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B17/00Other machines or engines
    • F03B17/005Installations wherein the liquid circulates in a closed loop ; Alleged perpetua mobilia of this or similar kind
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B1/00Engines of impulse type, i.e. turbines with jets of high-velocity liquid impinging on blades or like rotors, e.g. Pelton wheels; Parts or details peculiar thereto
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B11/00Parts or details not provided for in, or of interest apart from, the preceding groups, e.g. wear-protection couplings, between turbine and generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B7/00Water wheels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2220/00Application
    • F05B2220/20Application within closed fluid conduits, e.g. pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2220/00Application
    • F05B2220/30Application in turbines
    • F05B2220/32Application in turbines in water turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2220/00Application
    • F05B2220/70Application in combination with
    • F05B2220/706Application in combination with an electrical generator
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids

Definitions

  • the present invention relates to a power generation system using fluid circulation, and more specifically, by pumping fluid (water) stored in a water tank to a certain height and producing electrical energy using the height energy generated by dropping the pumped fluid, This relates to a power generation system using fluid circulation that can reuse fluid.
  • small hydro power not only allows the production of electricity using domestic renewable energy resources, but also promotes regional development through the development of clean energy sources, and is known to have a significant economic ripple effect.
  • small hydro power is a classic technology, it is a technology that can be established purely as a domestic technology that combines IT technology and eco-friendly technology, and the planning, design, and construction period is relatively quick.
  • Hydroelectric energy has played an important role as an energy source, although it accounts for only 14% of electricity production and 84% of the capacity of each power generation facility in Korea's energy policy reality.
  • hydroelectric energy has the advantage of excellent supply stability and long-term stable and cheap power generation prices, so it is worth continuously developing as an alternative energy to oil with high technological proficiency.
  • hydropower is renewable and purely domestic energy, and it contributes to energy stability and the prevention of global warming as clean energy that does not emit carbon dioxide (CO2), so the need for development is increasing.
  • hydroelectric power generation As a form of hydroelectric power generation, there is pumped hydro power generation that pumps water from the lower reservoir to the upper reservoir by operating a pump at night or when power is abundant, and then discharges the water to generate electricity when power is needed.
  • the technology includes a storage tank in which liquid is stored; A pump that supplies the liquid stored in the storage tank to the point of use; A main line connecting the storage tank and the pump, as well as connecting the pump and the point of use; branch lines branching off from the main line; And one side is coupled to a storage tank, the other side is connected to a branch line, and includes a generator that generates power by liquid supplied through the branch line.
  • the liquid that passes through the generator is supplied to the storage tank, and the pump operates at all times. It is characterized as a pump that recirculates the minimum flow rate to prevent overload due to the pump's flow not flowing.
  • Patent Registration No. 10-2125054 discloses a data center power and cooling water supply system using a tidal/pumped storage power generation system.
  • the technology includes a tidal power generation unit that is driven by tidal power to generate electrical energy; A pump for pumping sea water upward using electrical energy generated by the tidal current power generation unit; a storage unit where seawater transported by the water pump is stored; A small hydro power generation unit that generates electrical energy by seawater falling from the storage unit; It includes an integrated control unit that controls the tidal power generation unit, the pump, and the small hydro power generation unit, wherein the integrated control unit supplies power generated by the tidal power generation unit or power generated by the small hydro power generation unit to the data center. It is composed.
  • the height and capacity that can be pumped vary depending on the performance of the pump that pumps the fluid. Accordingly, as the capacity of the pump increases, more power is consumed, which reduces the efficiency of the cyclic power generation system.
  • the present invention was created to solve the above problems, and the problem to be solved by the present invention is to reduce the load on the pump and provide a power generation system using fluid circulation that can easily pump water even when a low-capacity pump is applied. It is to provide.
  • the aim is to provide a power generation system using fluid circulation that can produce and supply surplus electric energy while driving the pump through hydroelectric power generation by applying a low-capacity pump.
  • the power generation system using fluid circulation according to the present invention to solve the above problems includes a water tank in which fluid is stored; A water pump that pumps the fluid stored in the water tank; a suction pipe disposed between the pump and the water tank and sucking and transferring the fluid in the water tank by driving the pump; A discharge pipe including a discharge pipe that causes the fluid discharged from the pump to rise to a certain height and a discharge pipe that extends from the discharge pipe and guides the fluid to the water tank; It includes a power generation device installed in the discharge pipe to produce electrical energy using the height energy of the discharged fluid.
  • it may further include a rainwater storage tank that stores rainwater and includes a rainwater supply pipe that supplies the stored rainwater to the discharge pipe, and the fluid stored in the rainwater storage tank compensates for the loss of fluid in the tank. , characterized in that it is supplied to the discharge pipe.
  • the water tank may be equipped with a multi-stage baffle that partitions a suction part where the suction pipe is immersed in the fluid and a drop part where the fluid discharged from the discharge pipe falls.
  • a screen that filters foreign substances contained in the fluid may be installed on the multi-stage baffle.
  • the power generation device is a first generator that produces electrical energy using a propeller water wheel installed inside the discharge pipe and a Pelton water turbine installed at the end of the discharge pipe. It includes a second generator that produces.
  • the siphon principle is applied by the flow of fluid that is guided downward and passes through the discharge pipe, thereby reducing the burden on the pump, and as the burden on the pump is reduced, the power applied to the pump is reduced.
  • the power produced by the power generation device installed in the discharge pipe can produce surplus power excluding the power required to drive the pump.
  • the power generation system using fluid circulation according to the present invention can be applied not only to pico hydropower (5KW or less) but also to mini hydropower (100KW to 1,000KW), even in areas that are underserved by KEPCO. There are advantages that can be utilized.
  • FIG. 1 is a schematic diagram of a power generation system using fluid circulation according to the present invention
  • Figure 2 is a configuration diagram of a power generation system using fluid circulation according to the present invention.
  • Figure 3 is a configuration diagram of a first generator applied to the power generation system using fluid circulation according to the present invention
  • Figure 4 is a configuration diagram of a second generator applied to the power generation system using fluid circulation according to the present invention.
  • the present invention relates to a power generation system using fluid circulation, and more specifically, by pumping fluid (water) stored in a water tank to a certain height and producing electrical energy using the height energy generated by dropping the pumped fluid, This relates to a power generation system using fluid circulation that can reuse fluid.
  • FIG. 1 is a schematic diagram of a power generation system using fluid circulation according to the present invention.
  • the configuration of the power generation system using fluid circulation largely includes a water tank 10, a water pump 20, a suction pipe 30, a discharge pipe 40, and a power generation device 50. It consists of:
  • the water tank 10 has a predetermined shape, and fluid is stored therein.
  • the top of the water tank 10 is shown as open, but it can be closed with a cover to prevent foreign substances from entering and to prevent safety accidents such as drowning.
  • the water pump 20 performs the function of pumping fluid (or water, hereinafter referred to as 'fluid') stored in the water tank 10 using electrical energy, and may be configured as a general pump.
  • the suction pipe 30 is disposed between the water tank 10 and the water pump 20, so that one side is immersed in the fluid stored in the water tank 10, and the other side is connected to the suction part of the water pump 20. do.
  • the discharge pipe 40 includes an upper discharge pipe 41 and a lower discharge pipe 42.
  • the discharge pipe 41 raises the fluid discharged from the discharge part of the pump 20 to a certain height, and the discharge pipe 42 extends to the discharge pipe 41 and transfers the fluid to the discharge pipe 41.
  • the fluid is guided into the water tank (10).
  • the power generation device 50 is installed on the flow path of the discharge pipe 42 and produces electrical energy by using the height energy of the fluid falling through the discharge pipe 42.
  • the fluid stored in the water tank 10 is sucked into the suction pipe 30 by the pump 20 and rises to a certain height through the discharge pipe 40.
  • the raised fluid falls through the discharge pipe 40 disposed downward, it drives the power generation device 50 installed in the discharge pipe 40, and electric energy is produced by driving the power generation device 50.
  • the fluid used to drive the power generation device 50 flows into the water tank 10.
  • the electrical energy produced by the power generation device 50 is used to drive the pump 20, and the surplus electrical energy (power) is transmitted to the outside to supply power.
  • the electrical energy required for the initial operation of the water pump 20 uses renewable energy such as wind power or solar power, electrical energy previously stored in a battery, or electricity produced by a power generation device using fossil fuel. Energy can be used.
  • the pump 20 When the pump 20 is driven in a state where there is no fluid in the suction pipe 30 and the discharge pipe 40, the pump 20 uses a relatively large amount of electrical energy to suck and pump the fluid in the water tank 10. It is consumed.
  • the pumping device 20 must bear the burden from the height of the fluid stored in the water tank 10 to the first height h1 of the suction pipe 30 and the discharge pipe 41. Thereafter, when the pumped fluid is transferred to the discharge pipe 42 and discharged through the discharge pipe 42, the fluid discharged from the pump 20 due to the siphon principle caused by the fluid falling into the discharge pipe 42. attracts fluid. In this state, the pumping height that the pump 20 must bear is a third height (h2) subtracted from the first height (h1) by the second height (h2) corresponding to the installation height (length) of the discharge pipe 42. You only need to pay h3).
  • the pumping height that the pump 20 must bear is the third It can be relatively higher than the height (h3).
  • Figure 2 is a configuration diagram of a power generation system using fluid circulation according to the present invention.
  • the power generation system using fluid circulation includes a water tank 10, a water pump 20, a suction pipe 30, a discharge pipe 40, a power generation device 50, and a rainwater storage tank ( 60).
  • the fluid discharged from the discharge pipe 42 of the discharge pipe 40 may fall into the water tank 10 and generate air (bubbles) inside the fluid.
  • air bubbles
  • the pumping capacity of the pump 20 is reduced.
  • the water tank 10 has a multi-stage baffle 11 that divides the suction part 10a, where the suction pipe 30 is immersed in the fluid, and the falling part 10b, where the fluid discharged from the discharge pipe 42 falls. Can be installed.
  • the multi-stage baffle 11 stabilizes the flow of fluid dropped in the dropping portion 10b and prevents air bubbles from entering the suction pipe 30, and is relatively higher than the height of the fluid stored in the water tank 10.
  • the first baffle 11a is formed high and exposed to the upper part of the fluid and has an opening through which the fluid moves at the lower part, and is formed relatively lower than the height of the fluid stored in the water tank 10, so that the upper part is immersed in the fluid and the upper part is immersed in the fluid. It is configured to include a second baffle (11b) through which fluid moves to the side.
  • Fluid containing foreign substances reduces the pumping ability of the pump (20).
  • a screen 12 is installed at the opening of the multi-stage baffle 11 to filter foreign substances contained in the fluid.
  • the screen 12 may be installed in the opening of the first baffle 11a or on the upper part of the second baffle 11b, and may be installed between the opening of the first baffle 11a and the second baffle 11b. ) can be installed on both sides.
  • the discharge pipe 40 extends to the discharge pipe 41, which causes the fluid discharged from the pump 20 to rise to a certain height, and the discharge pipe 41 extends to lead the fluid to the water tank 10 ( 42), but may further include a horizontal flow pipe 43 connecting the discharge pipe 41 and the discharge lower pipe 42.
  • the power generation device 50 is a first generator 51 that produces electric energy using height energy generated by the transfer of fluid falling into the discharge pipe 42 and discharges electricity from the end of the discharge pipe 42. It may be configured to include a second generator 52 that produces electrical energy by using the falling fluid.
  • Figure 3 is a schematic configuration diagram of a first generator applied to the power generation system using fluid circulation according to the present invention.
  • the first generator 51 includes a propeller water turbine 51a installed inside the discharge pipe 42 and a shaft 51b that transmits the rotation of the propeller water turbine 51a. and a power generation module (51c) that produces electrical energy using the rotation of the shaft (51b).
  • the discharge pipe 42 is configured to be bent at a predetermined angle.
  • the shaft 51b is installed through the bent portion of the discharge pipe 42 and is rotatable, but is sealed to prevent water leakage.
  • the first generator 51 causes the fluid falling through the discharge pipe 42 to rotate the propeller wheel 51a, and produces electric energy using the propeller wheel 51a. do.
  • Figure 4 is a schematic diagram of the second generator applied to the power generation system using fluid circulation according to the present invention.
  • the second generator 52 produces electrical energy using a Pelton water turbine 52a installed at the end of the discharge pipe 42.
  • the power required during initial operation of the water pump 20 can be reduced.
  • the power generation system of the present invention can minimize fluid loss by circulating the fluid in the water tank 10, but the fluid stored in the water tank 10 may be reduced due to evaporation of the fluid.
  • fluid in order to reduce the power required during the initial operation of the water pump 20 and maintain a constant level of fluid stored in the water tank 10 or compensate for loss, fluid must be supplied.
  • rainwater can be used to fill the discharge pipe 42 with fluid or to replenish lost fluid.
  • the rainwater storage tank 60 is used to store rainwater and supply fluid into the tank 10 or the discharge pipe 42 as needed.
  • the rainwater storage tank 60 has a rainwater supply pipe 61 for supplying the stored rainwater fluid to the discharge pipe 42, and is branched from the rainwater supply pipe 61 to supply rainwater to the tank 10.
  • a fluid replenishment flow pipe (62) is further installed to control the flow path of the rainwater supply pipe (61).
  • the discharge pipe 42 when filling the discharge pipe 42 with fluid during the initial (first) operation of the pump 20, the discharge pipe 42 is installed to prevent the fluid supplied from the rainwater storage tank 60 from being discharged.
  • a fluid discharge control valve (42a) is installed to control the discharge of fluid, and the fluid supplied from the rainwater supply pipe (61) is installed in the horizontal flow pipe (43) between the discharge pipe (41) and the discharge lower pipe (42).
  • An air discharge valve (43a) is installed to discharge the internal air.
  • the supplementary fluid control valve (60a) when the supplementary fluid control valve (60a) is opened while the fluid discharge control valve (42a) is closed and the air discharge valve (43a) is open, the fluid stored in the rainwater storage tank (60) is discharged. It flows into the upper pipe 41 and the discharge pipe 42.
  • the air discharge valve 43a When the discharge pipe 41 and the discharge pipe 42 are filled with fluid, the air discharge valve 43a is closed, the fluid discharge control valve 42a is opened, and the pump 20 is driven. , the power required for initial operation of the pump 20 can be reduced.
  • the fluid stored in the rainwater storage tank 60 is supplied to the water tank 10 through the fluid supplementary flow pipe 62. It is composed.
  • the fluid replenishment flow pipe 62 may be configured with a control valve (not shown in the drawing) that regulates the flow path, and the control valve includes a water level sensor (not shown in the drawing) that detects the fluid level in the water tank 10. It can be configured to be driven in conjunction.
  • the siphon principle is applied by the flow of fluid that is guided downward and passes through the discharge pipe, thereby reducing the burden on the pump, and as the burden on the pump is reduced, the power applied to the pump is reduced.
  • the power produced by the power generation device installed in the discharge pipe can produce surplus power excluding the power required to drive the pump.
  • the power generation system using fluid circulation according to the present invention can be applied not only to pico hydropower (5KW or less) but also to mini hydropower (100KW to 1,000KW), even in areas that are underserved by KEPCO. There are advantages that can be utilized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

The present invention relates to a power generation system using fluid circulation and, more particularly, to a power generation system using fluid circulation capable of recycling the fluid, by pumping fluid (water) stored in a water tank to a certain height and dropping the pumped fluid to generate electrical energy by means of height energy. The power generation system using fluid circulation, according to the present invention for solving the problem, comprises: a water tank for storing fluid; a water pump for pumping the fluid stored in the water tank; and a suction pipe disposed between the water pump and the water tank and is driven by the water pump to draw in the fluid in the water tank and transport same; a discharge pipe comprising an upward discharge pipe through which the fluid discharged from the water pump rises to a certain height, and a downward discharge pipe extending from the upward discharge pipe to guide the fluid into the water tank; and a generator installed in the downward discharge pipe to generate electrical energy by means of the height energy of the fluid being discharged.

Description

유체순환을 이용한 발전 시스템Power generation system using fluid circulation
본 발명은 유체순환을 이용한 발전 시스템에 관한 것으로서, 더욱 상세하게는 수조에 저장된 유체(물)를 일정 높이로 양수하고, 양수된 유체를 낙하시켜 발생되는 높이 에너지를 이용하여 전기에너지를 생산함으로써, 유체를 재사용할 수 있는 유체순환을 이용한 발전 시스템에 관한 것이다.The present invention relates to a power generation system using fluid circulation, and more specifically, by pumping fluid (water) stored in a water tank to a certain height and producing electrical energy using the height energy generated by dropping the pumped fluid, This relates to a power generation system using fluid circulation that can reuse fluid.
소수력발전의 이용은 국내 재생에너지 자원을 활용하여 전력을 생산할 수 있을 뿐만 아니라 청정에너지원의 개발을 통하여 지역개발을 촉진하고, 이로 인한 경제적 파급효과도 매우 큰 것으로 알려져 있다. 소수력발전은 고전적인 기술임에도 IT기술과 친환경 기술을 접목한 순수 국내기술로도 확립할 수 있는 기술이며, 계획, 설계 및 건설기간이 빠른 편이다.The use of small hydropower not only allows the production of electricity using domestic renewable energy resources, but also promotes regional development through the development of clean energy sources, and is known to have a significant economic ripple effect. Although small hydro power is a classic technology, it is a technology that can be established purely as a domestic technology that combines IT technology and eco-friendly technology, and the planning, design, and construction period is relatively quick.
수력에너지는 우리나라의 에너지 정책 현실에서 전력생산량의 14%, 발전설비 구성별 용량의 84%에 불과하지만 에너지원으로서 중요한 역할을 해왔다.Hydroelectric energy has played an important role as an energy source, although it accounts for only 14% of electricity production and 84% of the capacity of each power generation facility in Korea's energy policy reality.
우선 공급 안정성이 매우 우수하며, 발전가격이 장기적으로 안정적이며 싸다는 장점을 가지고 있는 수력에너지는 기술 숙련도가 높은 석유의 대체에너지로서 지속적으로 개발할 가치가 있다. 또한, 수력은 재생 가능하며 순국산 에너지이고, 에너지 안정성에 기여함과 동시에 이산화탄소(CO2)를 배출하지 않는 깨끗한 에너지로 지구온난화 방지에 공헌하고 있어 개발의 필요성이 점점 높아지고 있다.First of all, hydroelectric energy has the advantage of excellent supply stability and long-term stable and cheap power generation prices, so it is worth continuously developing as an alternative energy to oil with high technological proficiency. In addition, hydropower is renewable and purely domestic energy, and it contributes to energy stability and the prevention of global warming as clean energy that does not emit carbon dioxide (CO2), so the need for development is increasing.
수력발전의 한 형태로서, 야간이나 전력이 풍부할 때 펌프를 가동해 아래쪽 저수지의 물을 위쪽 저수지로 퍼 올렸다가 전력이 필요할 때 방수하여 발전하는 양수발전이 있다.As a form of hydroelectric power generation, there is pumped hydro power generation that pumps water from the lower reservoir to the upper reservoir by operating a pump at night or when power is abundant, and then discharges the water to generate electricity when power is needed.
양수발전에 대한 기술 중의 하나로서, 등록특허공보 제10-1933012호에 소수력 발전 시스템이 개시되었다.As one of the technologies for pumped storage power generation, a small hydro power generation system was disclosed in Registration Patent Publication No. 10-1933012.
상기 기술은 액체가 저장되는 저장 탱크; 저장 탱크에 저장된 액체를 사용처로 공급하는 펌프; 저장 탱크와 펌프를 연결함과 아울러 펌프와 사용처를 연결하는 메인라인; 메인 라인에서 분기되는 분기 라인; 및 일측부는 저장 탱크에 결합 되고 타측부는 분기 라인과 연결 되며 분기 라인을 통해 공급되는 액체에 의해 발전되는 발전기를 포함하고, 발전기를 통과한 액체는 저장 탱크로 공급되고, 펌프는 상시 운전을 하되 펌프의 유량이 흐르지 않음에 의한 과부하를 방지하기 위해 최소 유량을 재순환하는 펌프인 것을 특징으로 한다.The technology includes a storage tank in which liquid is stored; A pump that supplies the liquid stored in the storage tank to the point of use; A main line connecting the storage tank and the pump, as well as connecting the pump and the point of use; branch lines branching off from the main line; And one side is coupled to a storage tank, the other side is connected to a branch line, and includes a generator that generates power by liquid supplied through the branch line. The liquid that passes through the generator is supplied to the storage tank, and the pump operates at all times. It is characterized as a pump that recirculates the minimum flow rate to prevent overload due to the pump's flow not flowing.
또한, 등록특허공보 제10-2125054호에 조류/양수 발전 시스템을 이용한 데이터 센터의 전력 및 냉각수 공급 시스템이 개시되었다.In addition, Patent Registration No. 10-2125054 discloses a data center power and cooling water supply system using a tidal/pumped storage power generation system.
상기 기술은 조류력에 의해 구동되어 전기 에너지를 발생시키는 조류 발전부; 상기 조류 발전부에 의해 발생된 전기 에너지를 이용하여 해수를 상부로 끌어올리는 양수용 펌프; 상기 양수용 펌프에 의해 이송된 해수가 저장되는 저장부; 상기 저장부에서 낙하되는 해수에 의해 전기 에너지를 발생시키는 소수력 발전부; 상기 조류 발전부와 상기 양수용 펌프 및 상기 소수력 발전부를 제어하는 통합 제어부;를 포함하며, 상기 통합 제어부는, 상기 조류발전부에서 발생된 전력 또는 상기 소수력 발전부에서 발생된 전력을 데이터 센터로 공급하도록 구성된다.The technology includes a tidal power generation unit that is driven by tidal power to generate electrical energy; A pump for pumping sea water upward using electrical energy generated by the tidal current power generation unit; a storage unit where seawater transported by the water pump is stored; A small hydro power generation unit that generates electrical energy by seawater falling from the storage unit; It includes an integrated control unit that controls the tidal power generation unit, the pump, and the small hydro power generation unit, wherein the integrated control unit supplies power generated by the tidal power generation unit or power generated by the small hydro power generation unit to the data center. It is composed.
그러나 상기의 기술들의 경우 유체를 펌핑하는 펌프의 성능에 따라 양수할 수 있는 높이와 용량이 달라진다. 이에, 펌프의 용량이 증가할수록 많은 전력을 소모하게 되어 순환식 발전 시스템의 효율을 저하시키는 문제점이 있다.However, in the case of the above technologies, the height and capacity that can be pumped vary depending on the performance of the pump that pumps the fluid. Accordingly, as the capacity of the pump increases, more power is consumed, which reduces the efficiency of the cyclic power generation system.
본 발명은 상기의 문제점을 해결하고자 안출된 것으로서, 본 발명에서 해결하고자 하는 과제는 양수펌프의 부하를 저감시켜 저용량의 양수펌프를 적용하여도 양수가 수월하게 이루어질 수 있는 유체순환을 이용한 발전 시스템을 제공하는 데 있다.The present invention was created to solve the above problems, and the problem to be solved by the present invention is to reduce the load on the pump and provide a power generation system using fluid circulation that can easily pump water even when a low-capacity pump is applied. It is to provide.
또한, 저용량의 양수펌프의 적용으로 수력발전을 통해 양수펌프의 구동시키면서 잉여 전기에너지를 생산하여 공급할 수 있는 유체순환을 이용한 발전 시스템을 제공하는 데 있다.In addition, the aim is to provide a power generation system using fluid circulation that can produce and supply surplus electric energy while driving the pump through hydroelectric power generation by applying a low-capacity pump.
상기의 과제를 해결하기 위한 본 발명에 따른 유체순환을 이용한 발전 시스템은 유체가 저장되는 수조; 상기 수조에 저장된 유체를 펌핑하는 양수펌프; 상기 양수펌프와 상기 수조 사이에 배치되어 상기 양수펌프의 구동에 의해 상기 수조의 유체를 흡인하여 이송되는 흡입관; 상기 양수펌프에서 배출되는 유체가 일정 높이로 상승시키는 배출상관과 상기 배출상관에 연장되어 상기 수조로 유체를 유도하는 배출하관을 포함하는 배출관; 상기 배출하관에 설치되어 배출되는 유체의 높이 에너지를 이용하여 전기에너지를 생산하는 발전장치를 포함한다.The power generation system using fluid circulation according to the present invention to solve the above problems includes a water tank in which fluid is stored; A water pump that pumps the fluid stored in the water tank; a suction pipe disposed between the pump and the water tank and sucking and transferring the fluid in the water tank by driving the pump; A discharge pipe including a discharge pipe that causes the fluid discharged from the pump to rise to a certain height and a discharge pipe that extends from the discharge pipe and guides the fluid to the water tank; It includes a power generation device installed in the discharge pipe to produce electrical energy using the height energy of the discharged fluid.
여기서, 빗물이 저장되고, 저장된 빗물을 상기 배출하관으로 공급하는 빗물공급관이 포함되는 빗물저장수조를 더 포함하여 구성될 수 있고, 상기 빗물저장수조에 저장된 유체는 상기 수조의 유체의 손실을 보전하거나, 상기 배출하관에 공급하는 것을 특징으로 한다.Here, it may further include a rainwater storage tank that stores rainwater and includes a rainwater supply pipe that supplies the stored rainwater to the discharge pipe, and the fluid stored in the rainwater storage tank compensates for the loss of fluid in the tank. , characterized in that it is supplied to the discharge pipe.
또한, 상기 수조는 상기 흡입관이 유체에 잠기는 흡인부와 상기 배출하관에서 배출되는 유체가 낙하되는 낙하부를 구획하는 다단 배플이 설치될 수 있다.In addition, the water tank may be equipped with a multi-stage baffle that partitions a suction part where the suction pipe is immersed in the fluid and a drop part where the fluid discharged from the discharge pipe falls.
이때, 상기 다단 배플에는 유체에 포함된 이물질을 필터링하는 스크린이 설치될 수 있다.At this time, a screen that filters foreign substances contained in the fluid may be installed on the multi-stage baffle.
또한, 상기 발전장치는 상기 배출하관의 내부에 설치되는 프로펠러(propeller)수차를 이용하여 전기에너지를 생산하는 제1 발전기 및 상기 배출하관의 끝 단부에 설치되는 펠턴(pelton)수차를 이용하여 전기에너지를 생산하는 제2 발전기를 포함한다.In addition, the power generation device is a first generator that produces electrical energy using a propeller water wheel installed inside the discharge pipe and a Pelton water turbine installed at the end of the discharge pipe. It includes a second generator that produces.
본 발명에 의하면, 하측으로 유도되어 배출하관으로 통과하는 유체의 흐름에 의해 사이펀의 원리가 적용되어 양수펌프의 부담이 감소되게 되고, 양수펌프의 부담이 감소됨에 따라 양수펌프에 인가되는 전력이 감소되게 되어, 배출하관에 설치된 발전장치에서 생산된 전력이 양수펌프를 구동하는 데 소요되는 전력을 제외하고도 잉여 전력을 생산할 수 있는 장점이 있다.According to the present invention, the siphon principle is applied by the flow of fluid that is guided downward and passes through the discharge pipe, thereby reducing the burden on the pump, and as the burden on the pump is reduced, the power applied to the pump is reduced. As a result, there is an advantage that the power produced by the power generation device installed in the discharge pipe can produce surplus power excluding the power required to drive the pump.
또한, 본 발명에 따른 유체순환을 이용한 발전 시스템은 피코수력(pico hydropower)(5KW 이하) 뿐만 아니라 미니수력(mini hydropower)(100KW ~ 1,000KW)에 적용할 수 있어, 한전으로부터 공급이 소외된 지역에서도 활용할 수 있는 장점이 있다.In addition, the power generation system using fluid circulation according to the present invention can be applied not only to pico hydropower (5KW or less) but also to mini hydropower (100KW to 1,000KW), even in areas that are underserved by KEPCO. There are advantages that can be utilized.
이에 더하여, 유체의 재순환을 통해 유체의 손실이 감소되기 때문에 운영에 따른 비용을 최소화할 수 있으므로, 저비용으로 전력을 생산할 수 있는 장점이 있다.In addition, since fluid loss is reduced through fluid recirculation, operating costs can be minimized, which has the advantage of producing power at low cost.
도 1은 본 발명에 따른 유체순환을 이용한 발전 시스템의 개략적인 구성도,1 is a schematic diagram of a power generation system using fluid circulation according to the present invention;
도 2는 본 발명에 따른 유체순환을 이용한 발전 시스템의 구성도,Figure 2 is a configuration diagram of a power generation system using fluid circulation according to the present invention;
도 3은 본 발명에 따른 유체순환을 이용한 발전 시스템에 적용된 제1 발전기의 구성도,Figure 3 is a configuration diagram of a first generator applied to the power generation system using fluid circulation according to the present invention;
도 4는 본 발명에 따른 유체순환을 이용한 발전 시스템에 적용된 제2 발전기의 구성도이다.Figure 4 is a configuration diagram of a second generator applied to the power generation system using fluid circulation according to the present invention.
본 발명은 유체순환을 이용한 발전 시스템에 관한 것으로서, 더욱 상세하게는 수조에 저장된 유체(물)를 일정 높이로 양수하고, 양수된 유체를 낙하시켜 발생되는 높이 에너지를 이용하여 전기에너지를 생산함으로써, 유체를 재사용할 수 있는 유체순환을 이용한 발전 시스템에 관한 것이다.The present invention relates to a power generation system using fluid circulation, and more specifically, by pumping fluid (water) stored in a water tank to a certain height and producing electrical energy using the height energy generated by dropping the pumped fluid, This relates to a power generation system using fluid circulation that can reuse fluid.
도 1은 본 발명에 따른 유체순환을 이용한 발전 시스템의 개략적인 구성도이다.1 is a schematic diagram of a power generation system using fluid circulation according to the present invention.
첨부된 도 1을 참조하면, 본 발명에 따른 유체순환을 이용한 발전 시스템의 구성은 크게, 수조(10), 양수펌프(20), 흡입관(30), 배출관(40) 및 발전장치(50)를 포함하여 구성된다.Referring to the attached FIG. 1, the configuration of the power generation system using fluid circulation according to the present invention largely includes a water tank 10, a water pump 20, a suction pipe 30, a discharge pipe 40, and a power generation device 50. It consists of:
수조(10)는 소정의 형상으로 이루어지고, 그 내부에는 유체가 저장된다.The water tank 10 has a predetermined shape, and fluid is stored therein.
도 1에는 상기 수조(10)의 상부가 개방된 것으로 도시하였으나, 이물질 등의 유입을 방지하고 익사 등의 안전사고를 방지하기 위해 덮개로 밀폐될 수 있다.In Figure 1, the top of the water tank 10 is shown as open, but it can be closed with a cover to prevent foreign substances from entering and to prevent safety accidents such as drowning.
양수펌프(20)는 전기에너지를 이용하여 상기 수조(10)에 저장된 유체(또는 물, 이하 '유체'라 한다)를 펌핑하는 기능을 수행하는 것으로서, 일반적인 펌프로 구성될 수 있다.The water pump 20 performs the function of pumping fluid (or water, hereinafter referred to as 'fluid') stored in the water tank 10 using electrical energy, and may be configured as a general pump.
흡입관(30)은 상기 수조(10)와 상기 양수펌프(20) 사이에 배치되어, 일측은 상기 수조(10)에 저장된 유체에 잠기게 되고, 타측은 상기 양수펌프(20)의 흡인부에 연결된다.The suction pipe 30 is disposed between the water tank 10 and the water pump 20, so that one side is immersed in the fluid stored in the water tank 10, and the other side is connected to the suction part of the water pump 20. do.
배출관(40)은 배출상관(41)과 배출하관(42)을 포함한다.The discharge pipe 40 includes an upper discharge pipe 41 and a lower discharge pipe 42.
배출상관(41)은 상기 양수펌프(20)의 배출부에서 배출되는 유체를 일정 높이로 상승시키고, 배출하관(42)은 상기 배출상관(41)에 연장되어 상기 배출상관(41)으로 이송된 유체를 상기 수조(10)로 유도한다.The discharge pipe 41 raises the fluid discharged from the discharge part of the pump 20 to a certain height, and the discharge pipe 42 extends to the discharge pipe 41 and transfers the fluid to the discharge pipe 41. The fluid is guided into the water tank (10).
발전장치(50)는 상기 배출하관(42)의 유로상에 설치되어, 상기 배출하관(42)을 통해 낙하되는 유체의 높이 에너지를 이용하여 전기에너지를 생산하게 된다.The power generation device 50 is installed on the flow path of the discharge pipe 42 and produces electrical energy by using the height energy of the fluid falling through the discharge pipe 42.
부연하면, 수조(10)에 저장된 유체는 양수펌프(20)에 의해 흡입관(30)으로 흡인되고 배출관(40)을 통해 일정 높이로 상승한다. 상승된 유체를 하향으로 배치된 배출관(40)을 통해 낙하하면서 배출관(40)에 설치된 발전장치(50)를 구동시키고, 발전장치(50)의 구동에 의해 전기에너지가 생산되게 된다.To elaborate, the fluid stored in the water tank 10 is sucked into the suction pipe 30 by the pump 20 and rises to a certain height through the discharge pipe 40. As the raised fluid falls through the discharge pipe 40 disposed downward, it drives the power generation device 50 installed in the discharge pipe 40, and electric energy is produced by driving the power generation device 50.
또한, 상기 발전장치(50)의 구동에 사용된 유체를 상기 수조(10)로 유입되게 된다.Additionally, the fluid used to drive the power generation device 50 flows into the water tank 10.
상기 발전장치(50)에서 생산된 전기에너지는 양수펌프(20)를 구동하는 데 소요되고 잉여 전기에너지(전력)는 외부로 전송되어 전력을 공급하게 된다.The electrical energy produced by the power generation device 50 is used to drive the pump 20, and the surplus electrical energy (power) is transmitted to the outside to supply power.
상기의 구성에서, 양수펌프(20)의 초기 구동에 필요한 전기에너지는 풍력발전 또는 태양광발전 등의 신재생에너지 또는 미리 배터리에 저장된 전기에너지를 이용하거나, 화석연료를 이용한 발전장치에서 생산된 전기에너지가 이용될 수 있다.In the above configuration, the electrical energy required for the initial operation of the water pump 20 uses renewable energy such as wind power or solar power, electrical energy previously stored in a battery, or electricity produced by a power generation device using fossil fuel. Energy can be used.
상기 흡입관(30) 및 배출관(40)에 유체가 없는 상태에서 양수펌프(20)를 구동하게 되면, 상기 양수펌프(20)는 수조(10)의 유체를 흡인하여 펌핑하기 위해 비교적 많은 전기에너지를 소모하게 된다.When the pump 20 is driven in a state where there is no fluid in the suction pipe 30 and the discharge pipe 40, the pump 20 uses a relatively large amount of electrical energy to suck and pump the fluid in the water tank 10. It is consumed.
그러나 상기 양수펌프(20)의 구동에 의해 배출되는 유체가 배출상관(41)을 거쳐 배출하관(42)으로 이송되게 되면, 배출하관(42)에 유도된 유체는 중력에 의해 낙하하게 되고, 유체의 낙하에 의한 진공력이 발생하여 상기 양수펌프(20)에서 배출되는 유체를 끌어 당기는 효과가 발생되게 된다. 즉, 사이펀의 원리에 따라 배출하관(42)에서 낙하되는 유체가 흡입관(41) 및 배출상관(41)의 유체를 끌어당기는 효과가 발생되게 된다.However, when the fluid discharged by driving the pump 20 is transferred to the discharge pipe 42 through the discharge pipe 41, the fluid induced in the discharge pipe 42 falls by gravity, and the fluid A vacuum force is generated due to the drop, resulting in the effect of pulling the fluid discharged from the water pump 20. That is, according to the principle of the siphon, the fluid falling from the discharge pipe 42 has the effect of attracting the fluid in the suction pipe 41 and the discharge pipe 41.
상세하게, 초기 구동시에 양수장치(20)는 수조(10)에 저장된 유체의 높이부터 흡입관(30) 및 배출상관(41)의 제1 높이(h1)까지 부담해야 한다. 이후, 양수된 유체가 배출하관(42)으로 이송되어 상기 배출하관(42)을 통해 배출되게 되면, 배출하관(42)으로 낙하되는 유체에 의한 사이펀 원리로 인하여 상기 양수펌프(20)에서 배출되는 유체를 끌어 당기게 된다. 이 상태에서 상기 양수펌프(20)가 부담해야 하는 양수 높이는 제1 높이(h1)에서 상기 배출하관(42)의 설치 높이(길이)에 대응하는 제2 높이(h2)를 감산한 제3 높이(h3)만을 부담하면 된다.In detail, during initial operation, the pumping device 20 must bear the burden from the height of the fluid stored in the water tank 10 to the first height h1 of the suction pipe 30 and the discharge pipe 41. Thereafter, when the pumped fluid is transferred to the discharge pipe 42 and discharged through the discharge pipe 42, the fluid discharged from the pump 20 due to the siphon principle caused by the fluid falling into the discharge pipe 42. attracts fluid. In this state, the pumping height that the pump 20 must bear is a third height (h2) subtracted from the first height (h1) by the second height (h2) corresponding to the installation height (length) of the discharge pipe 42. You only need to pay h3).
그러나 양수펌프(20)의 구동에 따른 손실, 흡입관(30) 및 배출관(40)을 통과하면서 유체와 관 내부 사이의 마찰 등을 고려하면, 상기 양수펌프(20)가 부담해야 하는 양수높이는 제3 높이(h3)보다는 상대적으로 높아질 수 있다.However, considering the loss caused by the operation of the pump 20 and the friction between the fluid and the inside of the pipe while passing through the suction pipe 30 and the discharge pipe 40, the pumping height that the pump 20 must bear is the third It can be relatively higher than the height (h3).
그렇다 하더라도, 배출하관(42)으로 낙하되는 유체에 의해 사이펀의 원리가 작동되게 되면, 상기 양수펌프(20)가 부담하는 양수높이는 제1 높이(h1)보다 상대적으로 낮아지게 되고, 그에 대응하는 상기 양수펌프(20)의 부담은 감소되게 된다.Even so, when the siphon principle is activated by the fluid falling into the discharge pipe 42, the pumping height borne by the pump 20 becomes relatively lower than the first height h1, and the corresponding The burden on the water pump 20 is reduced.
도 2는 본 발명에 따른 유체순환을 이용한 발전 시스템의 구성도이다.Figure 2 is a configuration diagram of a power generation system using fluid circulation according to the present invention.
첨부된 도 2를 참조하면, 본 발명에 따른 유체순환을 이용한 발전 시스템은 수조(10), 양수펌프(20), 흡입관(30), 배출관(40), 발전장치(50) 및 빗물저장수조(60)를 포함하여 구성된다.Referring to the attached FIG. 2, the power generation system using fluid circulation according to the present invention includes a water tank 10, a water pump 20, a suction pipe 30, a discharge pipe 40, a power generation device 50, and a rainwater storage tank ( 60).
상기 각각의 구성에 대해 설명하되, 도 1의 설명과 중복된 부분에 대한 설명은 생략한다.Each of the above components will be described, but descriptions of parts that overlap with the description of FIG. 1 will be omitted.
상기 배출관(40)의 배출하관(42)에서 배출된 유체는 수조(10)에 낙하되면서 유체 내부에 공기(기포)를 발생시킬 수 있다. 유체 내부에 발생된 기포가 흡입관(30)으로 유입되게 되면, 양수펌프(20)의 양수 능력이 감소되게 된다.The fluid discharged from the discharge pipe 42 of the discharge pipe 40 may fall into the water tank 10 and generate air (bubbles) inside the fluid. When bubbles generated inside the fluid flow into the suction pipe 30, the pumping capacity of the pump 20 is reduced.
이에, 상기 수조(10)에는 상기 흡입관(30)이 유체에 잠기는 흡인부(10a)와 상기 배출하관(42)에서 배출되는 유체가 낙하되는 낙하부(10b)를 구획하는 다단 배플(11)이 설치될 수 있다.Accordingly, the water tank 10 has a multi-stage baffle 11 that divides the suction part 10a, where the suction pipe 30 is immersed in the fluid, and the falling part 10b, where the fluid discharged from the discharge pipe 42 falls. Can be installed.
상기 다단 배플(11)은 낙하부(10b)에 낙하된 유체의 흐름을 안정화시키고, 기포가 상기 흡입관(30)에 유입되는 것을 방지하는 것으로서, 상기 수조(10)에 저장된 유체의 높이보다 상대적으로 높게 형성되어 상기 유체의 상부로 노출되고 하부에 유체가 이동되는 개구부를 갖는 제1 배플(11a)과 상기 수조(10)에 저장된 유체의 높이보다 상대적으로 낮게 형성되어 그 상부가 상기 유체에 잠겨서 상부측으로 유체가 이동되는 제2 배플(11b)을 포함하여 구성된다.The multi-stage baffle 11 stabilizes the flow of fluid dropped in the dropping portion 10b and prevents air bubbles from entering the suction pipe 30, and is relatively higher than the height of the fluid stored in the water tank 10. The first baffle 11a is formed high and exposed to the upper part of the fluid and has an opening through which the fluid moves at the lower part, and is formed relatively lower than the height of the fluid stored in the water tank 10, so that the upper part is immersed in the fluid and the upper part is immersed in the fluid. It is configured to include a second baffle (11b) through which fluid moves to the side.
이에 더하여, 상기 수조(10)로 다양한 이물질이 유입될 수 있다.In addition, various foreign substances may flow into the water tank 10.
이물질이 포함된 유체는 양수펌프(20)의 양수 능력을 저하시키게 된다.Fluid containing foreign substances reduces the pumping ability of the pump (20).
따라서, 상기 유체에 포함된 이물질을 필터링하기 위해 상기 다단 배플(11)의 개구부에는 유체에 포함된 이물질을 필터링하는 스크린(12)이 설치되게 된다.Accordingly, in order to filter out foreign substances contained in the fluid, a screen 12 is installed at the opening of the multi-stage baffle 11 to filter foreign substances contained in the fluid.
즉, 상기 스크린(12)은 제1 배플(11a)의 개구부에 설치되거나, 상기 제2 배플(11b)의 상부에 설치될 수 있으며, 제1 배플(11a)의 개구부와 상기 제2 배플(11b)의 상부 모두에 설치될 수 있다.That is, the screen 12 may be installed in the opening of the first baffle 11a or on the upper part of the second baffle 11b, and may be installed between the opening of the first baffle 11a and the second baffle 11b. ) can be installed on both sides.
상기 배출관(40)은 상기 양수펌프(20)에서 배출되는 유체가 일정 높이로 상승시키는 배출상관(41) 및 상기 배출상관(41)에 연장되어 상기 수조(10)로 유체를 유도하는 배출하관(42)을 포함하되, 상기 배출상관(41)과 상기 배출하관(42) 사이를 연결하는 수평유로관(43)이 더 포함될 수 있다.The discharge pipe 40 extends to the discharge pipe 41, which causes the fluid discharged from the pump 20 to rise to a certain height, and the discharge pipe 41 extends to lead the fluid to the water tank 10 ( 42), but may further include a horizontal flow pipe 43 connecting the discharge pipe 41 and the discharge lower pipe 42.
발전장치(50)는 상기 배출하관(42)으로 낙하되는 유체의 이송에 의해 발생되는 높이 에너지를 이용하여 전기에너지를 생산하는 제1 발전기(51)와 상기 배출하관(42)의 끝 단부에서 배출되는 유체의 낙하를 이용하여 전기에너지를 생산하는 제2 발전기(52)를 포함하여 구성될 수 있다.The power generation device 50 is a first generator 51 that produces electric energy using height energy generated by the transfer of fluid falling into the discharge pipe 42 and discharges electricity from the end of the discharge pipe 42. It may be configured to include a second generator 52 that produces electrical energy by using the falling fluid.
도 3은 본 발명에 따른 유체순환을 이용한 발전 시스템에 적용된 제1 발전기의 개략적인 구성도이다.Figure 3 is a schematic configuration diagram of a first generator applied to the power generation system using fluid circulation according to the present invention.
첨부된 도 3을 참조하면, 상기 제1 발전기(51)는 배출하관(42)의 내부에 설치되는 프로펠러(propeller)수차(51a)와 상기 프로펠러수차(51a)의 회전을 전달하는 샤프트(51b) 및 상기 샤프트(51b)의 회전을 이용하여 전기에너지를 생산하는 발전모듈(51c)를 포함하여 구성된다.Referring to the attached FIG. 3, the first generator 51 includes a propeller water turbine 51a installed inside the discharge pipe 42 and a shaft 51b that transmits the rotation of the propeller water turbine 51a. and a power generation module (51c) that produces electrical energy using the rotation of the shaft (51b).
상기의 구성에서, 상기 배출하관(42)은 소정의 각도로 꺾인 형태로 구성되게 된다.In the above configuration, the discharge pipe 42 is configured to be bent at a predetermined angle.
또한, 샤프트(51b)는 상기 배출하관(42)의 꺾인 부분을 관통하여 설치되고고, 회전가능하도록 구성되되 누수가 발생되지 않도록 밀폐처리되게 된다.In addition, the shaft 51b is installed through the bent portion of the discharge pipe 42 and is rotatable, but is sealed to prevent water leakage.
상기의 구성에 따르면, 상기 제1 발전기(51)는 상기 배출하관(42)을 통해 낙하되는 유체는 프로펠러수차(51a)를 회전시키게 되고, 상기 프로펠러수차(51a)를 이용하여 전기에너지를 생산하게 된다.According to the above configuration, the first generator 51 causes the fluid falling through the discharge pipe 42 to rotate the propeller wheel 51a, and produces electric energy using the propeller wheel 51a. do.
도 4는 본 발명에 따른 유체순환을 이용한 발전 시스템에 적용된 제2 발전기의 대략적인 구성도이다.Figure 4 is a schematic diagram of the second generator applied to the power generation system using fluid circulation according to the present invention.
첨부된 도 4를 참조하면, 상기 제2 발전기(52)는 배출하관(42)의 끝 단부에 설치되는 펠턴(pelton)수차(52a)를 이용하여 전기에너지를 생산하게 된다.Referring to the attached FIG. 4, the second generator 52 produces electrical energy using a Pelton water turbine 52a installed at the end of the discharge pipe 42.
한편, 상기 배출하관(42)에 유체가 충전되어 있으면, 상기 양수펌프(20)의 초기 구동시에 소요되는 전력을 줄일 수 있다.Meanwhile, if the discharge pipe 42 is filled with fluid, the power required during initial operation of the water pump 20 can be reduced.
아울러, 본 발명의 발전 시스템은 상기 수조(10)의 유체를 순환시켜 유체의손실이 최소화될 수 있으나, 유체의 증발 등에 의해 수조(10)에 저장된 유체가 감소될 수 있다.In addition, the power generation system of the present invention can minimize fluid loss by circulating the fluid in the water tank 10, but the fluid stored in the water tank 10 may be reduced due to evaporation of the fluid.
이에, 상기 양수펌프(20)의 초기 구동시에 소요되는 전력을 줄이고, 상기 수조(10)의 유체가 저장되는 수위를 일정하게 유지 또는 손실을 보전하기 위해서, 유체는 공급어야 한다.Accordingly, in order to reduce the power required during the initial operation of the water pump 20 and maintain a constant level of fluid stored in the water tank 10 or compensate for loss, fluid must be supplied.
본 발명에서는 상기 배출하관(42)에 유체를 충전하거나 손실되는 유체를 보충하기 위해 빗물이 사용될 수 있다.In the present invention, rainwater can be used to fill the discharge pipe 42 with fluid or to replenish lost fluid.
빗물저장수조(60)는 우수를 저장하고, 필요에 따라 상기 수조(10) 또는 상기 배출하관(42) 내부에 유체를 공급하기 위한 것이다.The rainwater storage tank 60 is used to store rainwater and supply fluid into the tank 10 or the discharge pipe 42 as needed.
이때, 상기 빗물저장수조(60)는 저장된 빗물인 유체를 상기 배출하관(42)에 공급하기 위한 빗물공급관(61), 상기 빗물공급관(61)에서 분기되어 상기 수조(10)로 빗물을 공급하는 유체보충유로관(62)을 포함한다. 또한, 상기 빗물공급관(61)의 유로를 단속하는 보충유체제어밸브(60a)가 더 설치된다.At this time, the rainwater storage tank 60 has a rainwater supply pipe 61 for supplying the stored rainwater fluid to the discharge pipe 42, and is branched from the rainwater supply pipe 61 to supply rainwater to the tank 10. Includes a fluid replenishment flow pipe (62). In addition, a supplementary fluid control valve (60a) is further installed to control the flow path of the rainwater supply pipe (61).
상기에서, 양수펌프(20)의 초기(최초) 구동시에 상기 배출하관(42)에 유체를 충전하는 경우, 상기 빗물저장수조(60)에서 공급되는 유체가 배출되지 못하도록 상기 배출하관(42)에는 유체의 배출을 단속하는 유체배출제어밸브(42a)가 설치되고, 상기 배출상관(41)과 상기 배출하관(42) 사이의 수평유로관(43)에는 상기 빗물공급관(61)으로부터 공급되는 유체에 의해 내부 공기를 배출시키기 위한 에어배출밸브(43a)가 설치되게 된다.In the above, when filling the discharge pipe 42 with fluid during the initial (first) operation of the pump 20, the discharge pipe 42 is installed to prevent the fluid supplied from the rainwater storage tank 60 from being discharged. A fluid discharge control valve (42a) is installed to control the discharge of fluid, and the fluid supplied from the rainwater supply pipe (61) is installed in the horizontal flow pipe (43) between the discharge pipe (41) and the discharge lower pipe (42). An air discharge valve (43a) is installed to discharge the internal air.
이에, 상기 유체배출제어밸브(42a)가 닫힌 상태와 상기 에어배출밸브(43a)가 열림 상태에서 상기 보충유체제어밸브(60a)가 개방되게 되면, 상기 빗물저장수조(60)에 저장된 유체가 배출상관(41) 및 배출하관(42)에 유입되게 된다.Accordingly, when the supplementary fluid control valve (60a) is opened while the fluid discharge control valve (42a) is closed and the air discharge valve (43a) is open, the fluid stored in the rainwater storage tank (60) is discharged. It flows into the upper pipe 41 and the discharge pipe 42.
상기 배출상관(41) 및 배출하관(42)에 유체가 충전된 상태에서, 상기 에어배출밸브(43a)를 닫고 상기 유체배출제어밸브(42a)를 개방하면서 상기 양수펌프(20)를 구동하게 되면, 상기 양수펌프(20)의 초기 구동에 소요되는 전력을 줄일 수 있다.When the discharge pipe 41 and the discharge pipe 42 are filled with fluid, the air discharge valve 43a is closed, the fluid discharge control valve 42a is opened, and the pump 20 is driven. , the power required for initial operation of the pump 20 can be reduced.
아울러, 상기 수조(10)의 유체가 저장되는 수위를 일정하게 유지하거나 손실을 보전하기 위해서 상기 빗물저장수조(60)에 저장된 유체는 유체보충유로관(62)을 통해 수조(10)로 공급되도록 구성된다.In addition, in order to maintain the water level at which the fluid in the water tank 10 is stored constant or to compensate for loss, the fluid stored in the rainwater storage tank 60 is supplied to the water tank 10 through the fluid supplementary flow pipe 62. It is composed.
이때, 상기 유체보충유로관(62)에는 유로를 단속하는 제어밸브(도면에 미표시)가 구성될 수 있고, 상기 제어밸브는 수조(10)의 유체 수위를 검출하는 수위센서(도면에 미표시)와 연계하여 구동되게 구성될 수 있다.At this time, the fluid replenishment flow pipe 62 may be configured with a control valve (not shown in the drawing) that regulates the flow path, and the control valve includes a water level sensor (not shown in the drawing) that detects the fluid level in the water tank 10. It can be configured to be driven in conjunction.
본 발명에 의하면, 하측으로 유도되어 배출하관으로 통과하는 유체의 흐름에 의해 사이펀의 원리가 적용되어 양수펌프의 부담이 감소되게 되고, 양수펌프의 부담이 감소됨에 따라 양수펌프에 인가되는 전력이 감소되게 되어, 배출하관에 설치된 발전장치에서 생산된 전력이 양수펌프를 구동하는 데 소요되는 전력을 제외하고도 잉여 전력을 생산할 수 있는 장점이 있다.According to the present invention, the siphon principle is applied by the flow of fluid that is guided downward and passes through the discharge pipe, thereby reducing the burden on the pump, and as the burden on the pump is reduced, the power applied to the pump is reduced. As a result, there is an advantage that the power produced by the power generation device installed in the discharge pipe can produce surplus power excluding the power required to drive the pump.
또한, 본 발명에 따른 유체순환을 이용한 발전 시스템은 피코수력(pico hydropower)(5KW 이하) 뿐만 아니라 미니수력 (mini hydropower)(100KW ~ 1,000KW)에 적용할 수 있어, 한전으로부터 공급이 소외된 지역에서도 활용할 수 있는 장점이 있다.In addition, the power generation system using fluid circulation according to the present invention can be applied not only to pico hydropower (5KW or less) but also to mini hydropower (100KW to 1,000KW), even in areas that are underserved by KEPCO. There are advantages that can be utilized.
이에 더하여, 유체의 재순환을 통해 유체의 손실이 감소되기 때문에 운영에 따른 비용을 최소화할 수 있으므로, 저비용으로 전력을 생산할 수 있는 장점이 있다.In addition, since fluid loss is reduced through fluid recirculation, operating costs can be minimized, which has the advantage of producing power at low cost.

Claims (5)

  1. 유체가 저장되는 수조(10);A water tank (10) in which fluid is stored;
    상기 수조(10)에 저장된 유체를 펌핑하는 양수펌프(20);A water pump (20) that pumps the fluid stored in the water tank (10);
    상기 양수펌프(20)와 상기 수조(10) 사이에 배치되어 상기 양수펌프(20)의 구동에 의해 상기 수조(10)의 유체를 흡인하여 이송되는 흡입관(30);A suction pipe 30 disposed between the pump 20 and the water tank 10 and sucking and transferring the fluid in the water tank 10 by driving the pump 20;
    상기 양수펌프(20)에서 배출되는 유체가 일정 높이로 상승시키는 배출상관(41)과 상기 배출상관(41)에 연장되어 상기 수조(10)로 유체를 유도하는 배출하관(42)을 포함하는 배출관(40); 및A discharge pipe including a discharge pipe 41 through which the fluid discharged from the pump 20 rises to a certain height, and a discharge pipe 42 extending from the discharge pipe 41 to guide the fluid into the water tank 10. (40); and
    상기 배출하관(42)의 유로상에 설치되어 배출되는 유체의 높이 에너지를 이용하여 전기에너지를 생산하는 발전장치(50);A power generation device (50) installed on the flow path of the discharge pipe (42) to produce electrical energy using the height energy of the discharged fluid;
    를 포함하는 것을 특징으로 하는 유체순환을 이용한 발전 시스템.A power generation system using fluid circulation, characterized in that it includes.
  2. 청구항 1에 있어서,In claim 1,
    빗물이 저장되고, 저장된 빗물을 상기 배출하관(42)으로 공급하는 빗물공급관(61)이 포함되는 빗물저장수조(60);A rainwater storage tank (60) that stores rainwater and includes a rainwater supply pipe (61) that supplies the stored rainwater to the discharge pipe (42);
    를 더 포함하여 구성되고,It is composed further including,
    상기 빗물저장수조(60)에 저장된 유체는 상기 수조(10)의 유체의 손실을 보전하거나, 상기 배출하관(42)에 공급하는 것을 특징으로 하는 유체순환을 이용한 발전 시스템.A power generation system using fluid circulation, characterized in that the fluid stored in the rainwater storage tank (60) compensates for fluid loss in the water tank (10) or is supplied to the discharge pipe (42).
  3. 청구항 1에 있어서,In claim 1,
    상기 수조(10)는,The water tank 10 is,
    상기 흡입관(30)이 유체에 잠기는 흡인부(10a)와 상기 배출하관(42)에서 배출되는 유체가 낙하되는 낙하부(10b)를 구획하는 다단 배플(11)이 설치되는 것을 특징으로 하는 유체순환을 이용한 발전 시스템.Fluid circulation, characterized in that a multi-stage baffle (11) is installed to partition the suction part (10a) where the suction pipe (30) is immersed in the fluid and the falling part (10b) where the fluid discharged from the discharge pipe (42) falls. Power generation system using .
  4. 청구항 3에 있어서.In claim 3.
    상기 다단 배플(11)에는 유체에 포함된 이물질을 필터링하는 스크린(12)이 설치되는 것을 특징으로 하는 유체순환을 이용한 발전 시스템.A power generation system using fluid circulation, characterized in that a screen (12) is installed on the multi-stage baffle (11) to filter foreign substances contained in the fluid.
  5. 청구항 1에 있어서,In claim 1,
    상기 발전장치(50)는,The power generation device 50,
    상기 배출하관(42)의 내부에 설치되는 프로펠러(propeller)수차를 이용하여 전기에너지를 생산하는 제1 발전기(51); 및A first generator (51) that produces electrical energy using a propeller water wheel installed inside the discharge pipe (42); and
    상기 배출하관(42)의 끝 단부에 설치되는 펠턴(pelton)수차를 이용하여 전기에너지를 생산하는 제2 발전기(52);A second generator (52) that produces electrical energy using a Pelton water wheel installed at the end of the discharge pipe (42);
    를 포함하는 것을 특징으로 하는 유체순환을 이용한 발전 시스템.A power generation system using fluid circulation, characterized in that it includes.
PCT/KR2023/014588 2022-09-28 2023-09-25 Power generation system using fluid circulation WO2024071874A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0123606 2022-09-28
KR1020220123606A KR20220139837A (en) 2022-09-28 2022-09-28 Power generation system using fluid circulation

Publications (1)

Publication Number Publication Date
WO2024071874A1 true WO2024071874A1 (en) 2024-04-04

Family

ID=83810020

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/014588 WO2024071874A1 (en) 2022-09-28 2023-09-25 Power generation system using fluid circulation

Country Status (2)

Country Link
KR (1) KR20220139837A (en)
WO (1) WO2024071874A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220139837A (en) * 2022-09-28 2022-10-17 정삼면 Power generation system using fluid circulation

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS622302Y2 (en) * 1985-03-18 1987-01-20
KR20000006743A (en) * 1999-10-29 2000-02-07 김대현 Self Electric Product System For Water Pump Style
JP2003056441A (en) * 2001-08-10 2003-02-26 Kankyo Res Kk Rainwater power generation system
JP2006250139A (en) * 2005-03-10 2006-09-21 Nariyoshi Kuramoto Hydraulic power generation unit with power source and water circulation type and air-mixing pumping force increasing function
CN106988954A (en) * 2017-04-10 2017-07-28 华北水利水电大学 Continental rise is dynamic to turn secondary hydroelectric power system
KR20220139837A (en) * 2022-09-28 2022-10-17 정삼면 Power generation system using fluid circulation

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101933012B1 (en) 2017-07-18 2018-12-27 정의석 Small hydro power system
KR102125054B1 (en) 2019-05-21 2020-06-19 필즈엔지니어링 주식회사 Electric power and cooling water supply system of data center using tidal current and pumping-up power generation system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS622302Y2 (en) * 1985-03-18 1987-01-20
KR20000006743A (en) * 1999-10-29 2000-02-07 김대현 Self Electric Product System For Water Pump Style
JP2003056441A (en) * 2001-08-10 2003-02-26 Kankyo Res Kk Rainwater power generation system
JP2006250139A (en) * 2005-03-10 2006-09-21 Nariyoshi Kuramoto Hydraulic power generation unit with power source and water circulation type and air-mixing pumping force increasing function
CN106988954A (en) * 2017-04-10 2017-07-28 华北水利水电大学 Continental rise is dynamic to turn secondary hydroelectric power system
KR20220139837A (en) * 2022-09-28 2022-10-17 정삼면 Power generation system using fluid circulation

Also Published As

Publication number Publication date
KR20220139837A (en) 2022-10-17

Similar Documents

Publication Publication Date Title
WO2024071874A1 (en) Power generation system using fluid circulation
WO2011008644A2 (en) Power generation system
US20090115189A1 (en) Power generation device
WO2018208048A1 (en) Pumped-storage hydroelectricity generator
JP6964915B1 (en) Liquid circulation type power generator
US9127641B2 (en) Sea electricity energy production device to produce renewable electricity
KR20140109216A (en) Repulsion power generation system using aberration
CN201116509Y (en) Hydraulic power generator
WO2017122898A1 (en) Buoyancy-driven power generation apparatus
CN105134474B (en) A kind of hydroenergy storage station
KR102086304B1 (en) Hybrid Water Generator Device and Water Quality Improvement System
CN202325990U (en) Solar water storage generating system
CN220622064U (en) Power generation system
CN1108737A (en) Vacuum-pumping hydraulic generating set
CN214148099U (en) Water replenishing tank and ground source heat pump system composed of same
WO2011122892A2 (en) Power generating apparatus which improves energy efficiency
CN212670508U (en) Water pumping energy storage water level maintaining device
CN218717228U (en) Gravity power generation device
CN209495592U (en) High efficiency smart heat-exchange unit water level control apparatus
CN220415571U (en) Multistage pumped storage power generation system
CN218062521U (en) Modular step combined type circulating water power generation system
JPS62113866A (en) Storage water circulation submersible hydro-electric power station
CN216554190U (en) Culvert type miniature power generation device driven by energy of sewage fluid
JP3233566U (en) Liquid circulation type power generator
CN215213765U (en) Device is collected and utilizes to clean energy who sets up on island reef

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23872991

Country of ref document: EP

Kind code of ref document: A1