WO2024071689A1 - Power control system and method for electric vehicle operating multiple parallel battery banks, and method for charging auxiliary battery - Google Patents

Power control system and method for electric vehicle operating multiple parallel battery banks, and method for charging auxiliary battery Download PDF

Info

Publication number
WO2024071689A1
WO2024071689A1 PCT/KR2023/012457 KR2023012457W WO2024071689A1 WO 2024071689 A1 WO2024071689 A1 WO 2024071689A1 KR 2023012457 W KR2023012457 W KR 2023012457W WO 2024071689 A1 WO2024071689 A1 WO 2024071689A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
battery bank
bank
electric vehicle
power
Prior art date
Application number
PCT/KR2023/012457
Other languages
French (fr)
Korean (ko)
Inventor
노형태
곽인재
김상훈
변세희
이준우
진실로
김대우
Original Assignee
주식회사 현대케피코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 현대케피코 filed Critical 주식회사 현대케피코
Publication of WO2024071689A1 publication Critical patent/WO2024071689A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/80Exchanging energy storage elements, e.g. removable batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/13Maintaining the SoC within a determined range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/16Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to battery ageing, e.g. to the number of charging cycles or the state of health [SoH]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules

Definitions

  • the present invention relates to a power control method for a small electric vehicle, especially an electric three-wheeled vehicle, that operates a swappable multi-battery parallel pack bank, and relates to a power control method for an electric vehicle and a system for performing the same.
  • small electric vehicles such as electric three-wheelers are composed of a controller, motor, inverter, and high-voltage battery, and the driver's driving intention is calculated by the VCU controller and then motor torque is generated through the MCU controller.
  • the existing electric three-wheeled vehicle is the same as the electric two-wheeled vehicle system, but considering the vehicle weight and number of passengers, there is a disadvantage in that the driving distance is shorter compared to the battery capacity of the same class as the two-wheeled vehicle. Accordingly, there have been recent attempts to improve driving range by operating multiple parallel battery packs.
  • multiple parallel battery pack banks (basically 2 battery packs per bank) can be operated, and the remaining driving range can be increased by 1 by swapping the battery pack banks according to the driving situation. It can be increased compared to when using a bank.
  • a typical electric three-wheeled vehicle uses a single source provided by a high-voltage battery pack to supply power for motor control for driving, vehicle electronics, and other sub-devices, so when sub-devices are added after shipment, the fuel cost due to the electrical load significantly increases. It could get worse.
  • the present invention provides a power control system and method for an electric vehicle that can maintain optimal battery status by selecting and swapping the bank to be used according to the performance status of each battery bank in an electric vehicle operating multiple parallel battery banks.
  • a power control system for an electric vehicle operating multiple parallel battery banks includes a first battery bank and a second battery bank that store driving power of the electric vehicle; A motor drive unit that supplies driving power to a driving motor of an electric vehicle; DC electrical equipment unit consisting of direct current driven electrical equipment for operation of electric vehicles; A first DC/DC converter that converts DC power supplied from the first battery bank into DC power suitable for the DC electric unit; a second DC/DC converter that converts DC power supplied from the second battery bank into DC power suitable for the DC electric unit; A first relay for switching the power supply path of the first DC/DC converter and the DC electric unit; A second relay for switching the power supply path of the second DC/DC converter and the DC electric unit; And when the electric vehicle is keyed on, the one with the best state of durability (SOH) among the battery banks mounted on the electric vehicle is designated as the first battery bank to be used for driving motor control, and the next best battery bank is designated as the DC. It may designate the second battery bank to be used for the electrical equipment unit and include
  • the upper control unit applies the first battery bank used for driving motor control to supply current for motor control up to a predetermined reference SOC, and when the reference SOC is reached, the second battery bank and It can operate multiple parallel battery banks performing swaps.
  • the upper control unit may operate multiple parallel battery banks that supply charging current due to regenerative braking to the first battery bank after swapping to use the second battery bank.
  • the upper control unit controls the remaining battery bank to control the driving motor and the It can be designated as a battery bank to be used in DC electrical parts.
  • the upper control unit exhausts the first battery bank through driving first, and then reorganizes the second battery bank. It is possible to operate multiple parallel battery banks performing swap.
  • the power supply path of the DC electric unit may operate multiple parallel battery banks that supply driving power to auxiliary electronic devices of the electric vehicle.
  • the first battery bank and the second battery bank include a plurality of unit battery cells; BMS that controls charging and discharging operation of the unit battery cells; And it may include a high-voltage output stage switch that switches to output the power discharged by the unit battery cells to an external path.
  • a power control method for an electric vehicle operating multiple parallel battery banks includes the steps of checking the state of durability (SOH) among battery banks mounted on the electric vehicle when the electric vehicle is keyed on. ; A bank designation step of designating the one with the best state of durability (SOH) as the first battery bank to be used for driving the traveling motor, and designating the next best battery bank to be used in the DC electric unit as the second battery bank to be used in the DC electric unit; And if the state of charge of the first battery bank is below a reference state while the electric vehicle is operating, it may include performing swapping to the second battery bank.
  • SOH state of durability
  • the bank designation step it is checked whether the deviation of the durability states of the battery banks falls within a predetermined similar range, and if it falls within the similar range, the battery bank with the highest amount of charge is designated as the first battery bank, and then Many battery banks can be designated as the second battery bank.
  • performing the swap includes blocking the power supply path of the first battery bank and supplying power to be used in driving the travel motor and the DC electric unit from the second battery bank; and monitoring the charging state of the second battery bank.
  • the first battery bank may be charged with the regenerative current of the motor of the electric vehicle.
  • the step of performing swap with the first battery bank may be further included.
  • the step of charging the auxiliary battery of the electric vehicle in the VCU sleep state of the electric vehicle may be further included.
  • An auxiliary battery charging method for an electric vehicle operating multiple parallel battery banks includes waking up the electric vehicle from a VCU sleep state to periodically monitor whether the auxiliary battery is charging; Checking the state of durability (SOH) of battery banks mounted on the electric vehicle; Check whether the deviation of the durability states of the battery banks falls within a predetermined similar range. If it falls within a similar range, select the battery bank with the highest charge. If it does not fall within the similar range, select the battery bank with the best durability state. steps; and charging the auxiliary battery with power from a selected battery bank.
  • SOH state of durability
  • the bank to be used is selected and swapped according to the performance state of each battery bank. This has the advantage of maintaining optimal battery condition.
  • a power control system and/or method for an electric vehicle operating multiple parallel battery banks is a method for increasing the remaining driving distance in a relatively lightweight electric vehicle such as an electric three-wheeler, and includes a multiple parallel battery pack bank ( Basically, it is possible to operate 2 battery packs per bank, and by switching the battery pack banks according to the driving situation, there is an advantage of increasing the remaining driving range compared to using 1 bank.
  • the power control system and/or method for an electric vehicle operating multiple parallel battery banks includes a battery pack used only for motor control for driving in a vehicle system operating multiple parallel battery pack banks.
  • the battery bank that supplies power to electrical components such as banks, lamps/electronic water pumps, and auxiliary equipment that drives the in-wheel motor mounted on the front wheel for torque assistance is determined according to the battery performance status and then used through swap. This has the advantage of maintaining optimal battery condition and improving vehicle performance.
  • FIG. 1 is a block diagram illustrating an embodiment of a power control system for an electric vehicle operating multiple parallel battery banks according to the spirit of the present invention.
  • Figure 2 is a conceptual diagram of a power control method for multiple parallel battery banks when the SOH levels of each battery bank fall within a similar range.
  • Figure 3 is a conceptual diagram of a power control method for multiple parallel battery banks when there is a difference in SOH levels of each battery bank.
  • FIG. 4 is a flowchart illustrating an embodiment of a power control method for an electric vehicle operating multiple parallel battery banks according to the spirit of the present invention.
  • Figure 5 is a flow chart illustrating the operating mechanism of each step in Figure 4 in more detail.
  • FIG. 6 is a flowchart showing detailed processes of the step (S600) of performing the failure mode of FIG. 5.
  • FIG. 7 is a flowchart illustrating an embodiment of an auxiliary battery charging method that can be performed in a power control system for an electric vehicle operating the multiple parallel battery banks of FIG. 1.
  • FIG. 7 is a flowchart illustrating an embodiment of an auxiliary battery charging method that can be performed in a power control system for an electric vehicle operating the multiple parallel battery banks of FIG. 1.
  • first and second may be used to describe various components, but the components may not be limited by the terms. Terms are intended only to distinguish one component from another. For example, a first component may be referred to as a second component, and similarly, the second component may be referred to as a first component without departing from the scope of the present invention.
  • the power control system and method for an electric vehicle operating multiple parallel battery banks is particularly useful when applied to an electric three-wheeled vehicle operating a swappable multiple parallel battery pack bank (1 bank is 2).
  • the battery pack status of each bank is checked and the superior battery pack bank is preferentially used for motor control for driving the vehicle, thereby saving energy. Efficiency can be maximized.
  • FIG. 1 is a block diagram illustrating an embodiment of a power control system for an electric vehicle operating multiple parallel battery banks according to the spirit of the present invention.
  • the illustrated power control system for an electric vehicle operating multiple parallel battery banks includes a first battery bank 110 and a second battery bank 120 that store driving power of the electric vehicle; A motor drive unit 160 that supplies driving power to a driving motor of an electric vehicle; A DC electrical unit 180 consisting of direct current driven electrical devices for operating an electric vehicle; A first DC/DC converter 210 that converts DC power supplied from the first battery bank 110 into DC power suitable for the DC electrical unit 180; A second DC/DC converter 220 that converts DC power supplied from the second battery bank 120 into DC power suitable for the DC electrical unit 180; A first relay 230 that switches the power supply path of the first DC/DC converter 210 and the DC electric unit 180; A second relay 240 that switches the power supply path of the second DC/DC converter 220 and the DC electrical unit 180; And when the electric vehicle is keyed on, the one with the best state of durability (SOH) among the battery banks mounted on the electric vehicle is designated as the first battery bank 110 to be used for driving motor control, and the next best battery bank 110 is designated as the first battery bank 110
  • SOH can be applied as the durability state of each battery bank, and a specific example will be provided by applying SOC as the charging state of each battery bank, which will be described later.
  • it may further include a sensor that determines whether the first/second battery banks 110 and 120 are installed and a sensor that determines the driver's (user's) intention to swap the battery banks.
  • the upper control unit 260 may be the highest control unit of an electric vehicle and applies the battery bank used for driving motor control to set a predetermined standard SOC (default, battery manufacturer setting value, driver charging notification setting) It supplies current for motor control up to the applicable value, etc.), and can perform swap with another battery bank at the above standard SOC.
  • a predetermined standard SOC default, battery manufacturer setting value, driver charging notification setting
  • the auxiliary electronic device 190 of the electric vehicle is also shown, and it can be seen that the power supply path of the DC electric unit 180 also supplies driving power to the auxiliary electronic device 190. That is, the DC electrical unit 180 and the auxiliary electronic device 190 can form a single set and receive driving power.
  • the SOH can be calculated by analyzing the charge/discharge current-voltage pattern of each battery bank at a previous point in time according to a predetermined algorithm.
  • Each of the illustrated first battery bank 110 and the second battery bank 120 includes a plurality of unit battery cells; BMS that controls charging and discharging operation of the unit battery cells; And it may include a high-voltage output switch (FET) that switches the power discharged by the unit battery cells to be output to an external path.
  • FET high-voltage output switch
  • the high voltage output of the first and second battery banks 110 and 120 generates output DC inside each battery bank 110 and 120 and While the path is turned on/off using the high-voltage output stage switch (FET) provided in Output DC is generated and the path is turned on/off using separately provided first and second relays 230 and 240.
  • FET high-voltage output stage switch
  • This method has the advantage of being able to provide flexible support. Additionally, the method of allocating a dedicated DC/DC converter to each battery bank has the advantage of improving the speed of the swap operation described above and enhancing stability during swap.
  • the charging paths of the first battery bank 110 and the second battery bank 120 may be provided in parallel separately from the discharging paths so that each bank can perform discharging and charging simultaneously.
  • Figure 2 illustrates the concept of a power control method for multiple parallel battery banks when the SOH levels of each battery bank fall within a similar range.
  • the first 1st/2nd battery bank configuration is a process of checking and selecting the battery pack status for each bank at Key On
  • the 2nd configuration is a battery pack bank swap request process
  • the 3rd configuration is attempting to continue driving when charging is required.
  • the fourth configuration shows the process of using a city bank, and the process of sequentially depleting SOC for each bank.
  • Figure 3 illustrates the concept of a power control method for multiple parallel battery banks when differences exist in the SOH levels of each battery bank.
  • the first 1st/2nd battery bank configuration is a process of checking and selecting the battery pack status for each bank upon key-on
  • the second configuration is a process of requesting a battery pack bank swap
  • the third configuration is attempting to continue driving when charging is required.
  • the fourth configuration shows the process of using a city bank, and the process of sequentially depleting SOC for each bank.
  • the SOH levels of the battery banks are similar as a result of the inspection when turning on the key, so the one with the highest SOC as the charge amount is designated as the first battery bank to supply power for motor control, and the other one is supplied with DC to the second battery bank. Provides power for ledgers and auxiliary electronic devices.
  • the one with the highest SOH is designated as the first battery bank regardless of the amount of charge to supply power for motor control, and the other battery bank is designated as the first battery bank.
  • the second battery bank supplies power for the DC electrical and auxiliary electronic devices.
  • the SOC of the first battery bank may be lower than the SOC of the second battery bank, but it must be sufficiently higher than the standard SOC.
  • charging current due to regenerative braking is supplied to the first battery bank.
  • the charging current due to regenerative braking is configured to only flow into a battery bank with excellent performance.
  • Figure 4 is a flowchart illustrating an embodiment of a power control method for an electric vehicle operating multiple parallel battery banks according to the spirit of the present invention.
  • the power control method for an electric vehicle operating multiple parallel battery banks includes the steps of checking the state of durability (SOH) among battery banks mounted on the electric vehicle when the electric vehicle is keyed on (S100); A bank designation step (S200) in which the one with the best durability (SOH) is designated as the first battery bank to be used for driving the traveling motor, and the next best battery bank is designated as the second battery bank to be used in the DC electric unit; And if the state of charge of the first battery bank is less than the reference state while the electric vehicle is operating (S300), it may include performing a swap with the second battery bank (S400).
  • SOH state of durability
  • the bank designation step (S200) it is checked whether the deviation of the endurance states of the battery banks falls within a predetermined similar range, and if it does not fall within the similar range, the first/second battery banks are in the endurance state according to the SOH as described above. is designated, and if it falls within a similar range, the battery bank with the largest amount of charge is designated as the first battery bank, and the battery bank with the next largest amount of charge is designated as the second battery bank.
  • Figure 5 is a flowchart illustrating the operating mechanism of each step in Figure 4 in more detail.
  • Step (S220) Designating a battery bank with a high SOC (i.e., the highest amount of charge) as the first battery bank, and designating the next largest battery bank as the second battery bank (S260, S270); If the deviation of the SOH does not fall within a similar range, it is subdivided into a step (S230) of designating the one with the high SOH as the first battery bank to be used for driving the traveling motor, and then designating the second battery bank to be used for the DC electric unit.
  • S230 Designating the one with the high SOH as the first battery bank to be used for driving the traveling motor, and then designating the second battery bank to be used for the DC electric unit.
  • Step S300 of FIG. 4 includes, in FIG. 5, using the current of the first/second battery bank while driving (S320); Monitoring whether each of the first and second battery banks has a failure (S340); and performing a failure mode when a failure occurs (S600).
  • step S300 of FIG. 4 is a step (S360) of comparing the SOC of the battery bank used for driving motor control with a predetermined reference SOC (applicable as default, battery manufacturer setting value, driver charging notification setting value, etc.) ), and if it falls below the reference SOC, a step (S410) of first swapping the battery bank used for driving motor control with the second battery bank is performed.
  • a predetermined reference SOC applicable as default, battery manufacturer setting value, driver charging notification setting value, etc.
  • the first swapping step (S410) can be performed in the same manner as the second configuration of FIGS. 2 and 3. That is, the swapped second battery bank is designated and operated as a battery bank to be used for controlling the driving motor and the DC electrical equipment.
  • the step of performing the swap (S400) of FIG. 4 blocks the power supply path of the first battery bank, and transfers power to be used for driving the traveling motor and the DC electrical unit from the second battery bank.
  • the first battery bank may be charged with the regenerative current of the motor of the electric vehicle.
  • a second swapping step (S440) of the battery bank used for controlling the driving motor with the first battery bank may be performed.
  • the second swap (S400) is performed in the same manner as the third configuration in FIGS. 2 and 3. Afterwards, the driver's driving intention is confirmed (S450), and the first battery bank is fully charged from the reference SOC. It is used until discharged (0%) (S460).
  • step S450 the driver is notified that the battery charge is low, and if there is no intention to drive, the driver can end driving or physically replace the battery bank at the driver's option (S455).
  • FIG. 6 is a flowchart showing detailed processes of the step (S600) of performing the failure mode of FIG. 5.
  • the first and second battery banks that supply power to not only electrical components such as lamps/electronic water pumps but also auxiliary equipment that drives the in-wheel motor mounted on the front wheel for torque assistance are determined according to the battery performance status.
  • FIG. 7 is a flowchart illustrating an embodiment of an auxiliary battery charging method that can be performed in a power control system for an electric vehicle operating the multiple parallel battery banks of FIG. 1.
  • the illustrated auxiliary battery charging method may be initiated by checking the voltage while the upper control unit periodically wakes up after sleeping due to reasons such as an operation stoppage.
  • the VCU may be the upper control unit 260 of FIG. 1.
  • the illustrated method of charging an auxiliary battery for an electric vehicle operating multiple parallel battery banks includes waking up the electric vehicle from a VCU sleep state (S710) to periodically monitor whether the auxiliary battery is charging (S720);
  • the method may include selecting a battery bank with the best state of durability (SOH) (S860, S870) and charging the auxiliary battery with the power of the selected battery bank (S855, S880).
  • the present invention can maximize fuel efficiency by checking the battery pack status for each bank in an electric vehicle operating multiple parallel packs and preferentially using the superior battery pack bank for motor control for vehicle driving.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

A power control system for an electric vehicle operating multiple parallel battery banks according to the present invention comprises: first/second battery banks which store driving power of the electric vehicle; a motor drive part which supplies the driving power to a travel motor; DC electric parts composed of direct current-driven electric devices for operating the electric vehicle; a first DC/DC converter which converts DC power supplied from the first battery bank into DC power suitable for the DC electric parts; a second DC/DC converter which converts DC power supplied from the second battery bank into DC power suitable for the DC electric parts; a first relay which switches the power supply paths of the first DC/DC converter and the DC electric parts; a second relay which switches the power supply paths of the second DC/DC converter and the DC electric parts; and an upper control part which, when the electric vehicle is in a key-on state, controls the corresponding power supply paths by designating the least worn down battery bank among the battery banks mounted on the electric vehicle as the first battery bank to be used for controlling the travel motor and the second least worn down battery bank as the second battery bank to be used for the DC electric parts.

Description

다중 병렬 배터리 뱅크를 운용하는 전기 차량를 위한 전력 제어 시스템 및 방법, 보조 배터리 충전 방법Power control system and method for electric vehicles operating multiple parallel battery banks, and auxiliary battery charging method
본 발명은 교환형 다중 배터리 병렬 팩 bank을 운용하는 소형 전기차, 특히, 전기 삼륜차를 위한 전력 제어 방법으로서, 전기 차량를 위한 전력 제어 방법 및 이를 수행하는 시스템에 관한 것이다.The present invention relates to a power control method for a small electric vehicle, especially an electric three-wheeled vehicle, that operates a swappable multi-battery parallel pack bank, and relates to a power control method for an electric vehicle and a system for performing the same.
일반적으로 전기 삼륜차 등과 같은 소형 전기차는 제어기, 모터, 인버터, 고전압 배터리로 구성되어 있으며, 운전자의 주행 의지를 VCU 제어기에서 계산한 후에 MCU 제어기를 통해 모터 토크를 발생시킨다. In general, small electric vehicles such as electric three-wheelers are composed of a controller, motor, inverter, and high-voltage battery, and the driver's driving intention is calculated by the VCU controller and then motor torque is generated through the MCU controller.
기존 전기 삼륜차는 전기 이륜차 시스템과 동일하지만 특성상 차량 무게와 탑승 인원을 고려하면 이륜차와 동급의 배터리 용량 대비 주행가능거리가 짧아지는 단점이 존재한다. 이에 최근에는 다중 병렬 배터리 팩을 운용하여 주행가능거리 향상을 하려는 시도들이 있다. The existing electric three-wheeled vehicle is the same as the electric two-wheeled vehicle system, but considering the vehicle weight and number of passengers, there is a disadvantage in that the driving distance is shorter compared to the battery capacity of the same class as the two-wheeled vehicle. Accordingly, there have been recent attempts to improve driving range by operating multiple parallel battery packs.
전기 삼륜차에서 잔여주행거리를 늘리기 위한 방법으로 다중 병렬 배터리 팩 bank(기본적으로 1bank당 배터리 2팩)를 운용할 수 있으며, 배터리 팩 bank를 주행 상황에 따라 스왑(스위칭) 해줌으로써 잔여 주행거리를 1 bank를 사용할 때보다 늘릴 수 있다. As a way to increase the remaining driving range in an electric three-wheeled vehicle, multiple parallel battery pack banks (basically 2 battery packs per bank) can be operated, and the remaining driving range can be increased by 1 by swapping the battery pack banks according to the driving situation. It can be increased compared to when using a bank.
한편, 일반적인 전기 삼륜차는 고전압 배터리 팩에서 제공하는 단일 공급원으로 주행을 위한 모터 제어와 차량 전장 및 기타 서브 장치들을 위한 전원을 공급하고 있어, 출고후 서브 장치들이 추가되면 전장 부하에 따른 전비가 심각하게 악화될 수 있다. Meanwhile, a typical electric three-wheeled vehicle uses a single source provided by a high-voltage battery pack to supply power for motor control for driving, vehicle electronics, and other sub-devices, so when sub-devices are added after shipment, the fuel cost due to the electrical load significantly increases. It could get worse.
본 발명은 다중 병렬 배터리 뱅크를 운용하는 전기 차량에서 각 배터리 뱅크의 성능 상태에 따라 사용할 뱅크를 선택하고 스왑하는 방식으로 사용함으로써 최적의 배터리 상태를 유지할 수 있는 전기 차량을 위한 전력 제어 시스템 및 방법을 제공하고자 한다.The present invention provides a power control system and method for an electric vehicle that can maintain optimal battery status by selecting and swapping the bank to be used according to the performance status of each battery bank in an electric vehicle operating multiple parallel battery banks. We would like to provide
본 발명의 일 측면에 따른 하는 다중 병렬 배터리 뱅크를 운용하는 전기 차량를 위한 전력 제어 시스템은, 전기 차량의 구동 전력을 저장하는 제1 배터리 뱅크와 제2 배터리 뱅크; 전기 차량의 주행용 모터에 구동 전력을 공급하는 모터 구동부; 전기 차량의 운행을 위한 직류 구동 전장 장치들로 이루어진 DC 전장부; 상기 제1 배터리 뱅크에서 공급받은 DC 전력을 상기 DC 전장부에 맞는 DC 전력으로 변환하는 제1 DC/DC 컨버터; 상기 제2 배터리 뱅크에서 공급받은 DC 전력을 상기 DC 전장부에 맞는 DC 전력으로 변환하는 제2 DC/DC 컨버터; 상기 제1 DC/DC 컨버터와 상기 DC 전장부의 전력 공급 경로를 스위칭하는 제1 릴레이; 상기 제2 DC/DC 컨버터와 상기 DC 전장부의 전력 공급 경로를 스위칭하는 제2 릴레이; 및 상기 전기 차량의 키온(KeyOn)시, 상기 전기 차량에 장착된 배터리 뱅크들 중에서 내구 상태(SOH)가 가장 우수한 것을 주행 모터 제어에 사용할 상기 제1 배터리 뱅크로 지정하고, 다음으로 우수한 것을 상기 DC 전장부에 사용할 상기 제2 배터리 뱅크로 지정하여, 해당 전력 공급 경로를 제어하는 상위 제어 유닛을 포함할 수 있다.A power control system for an electric vehicle operating multiple parallel battery banks according to an aspect of the present invention includes a first battery bank and a second battery bank that store driving power of the electric vehicle; A motor drive unit that supplies driving power to a driving motor of an electric vehicle; DC electrical equipment unit consisting of direct current driven electrical equipment for operation of electric vehicles; A first DC/DC converter that converts DC power supplied from the first battery bank into DC power suitable for the DC electric unit; a second DC/DC converter that converts DC power supplied from the second battery bank into DC power suitable for the DC electric unit; A first relay for switching the power supply path of the first DC/DC converter and the DC electric unit; A second relay for switching the power supply path of the second DC/DC converter and the DC electric unit; And when the electric vehicle is keyed on, the one with the best state of durability (SOH) among the battery banks mounted on the electric vehicle is designated as the first battery bank to be used for driving motor control, and the next best battery bank is designated as the DC. It may designate the second battery bank to be used for the electrical equipment unit and include a higher-level control unit that controls the corresponding power supply path.
여기서, 상기 상위 제어 유닛은, 주행 모터 제어에 사용되는 상기 제1 배터리 뱅크를 적용하여, 소정의 기준 SOC까지 모터 제어를 위한 전류를 공급하고, 상기 기준 SOC에 도달하면, 상기 제2 배터리 뱅크와 스왑을 수행하는 다중 병렬 배터리 뱅크를 운용할 수 있다.Here, the upper control unit applies the first battery bank used for driving motor control to supply current for motor control up to a predetermined reference SOC, and when the reference SOC is reached, the second battery bank and It can operate multiple parallel battery banks performing swaps.
여기서, 상기 상위 제어 유닛은, 상기 제2 배터리 뱅크를 사용하도록 스왑한 후, 회생 제동으로 인한 충전 전류를 상기 제1 배터리 뱅크로 공급하는 다중 병렬 배터리 뱅크를 운용할 수 있다.Here, the upper control unit may operate multiple parallel battery banks that supply charging current due to regenerative braking to the first battery bank after swapping to use the second battery bank.
여기서, 상기 상위 제어 유닛은, 상기 전기 차량의 키온(KeyOn)시, 상기 제1 배터리 뱅크 및 상기 제2 배터리 뱅크 중 하나가 소정의 기준 SOC에 미달하면, 나머지 배터리 뱅크를 상기 주행 모터 제어 및 상기 DC 전장부에 사용할 배터리 뱅크로 지정할 수 있다.Here, when the electric vehicle is keyed on, if one of the first battery bank and the second battery bank falls short of a predetermined standard SOC, the upper control unit controls the remaining battery bank to control the driving motor and the It can be designated as a battery bank to be used in DC electrical parts.
여기서, 상기 상위 제어 유닛은, 주행에 따라 상기 제1 배터리 뱅크가 상기 기준 SOC 미만으로 하락한 경우에 운전자의 계속 주행을 시도하면, 주행으로 상기 제1 배터리 뱅크를 먼저 소진하고, 상기 제2 배터리 뱅크로 스왑을 수행하는 다중 병렬 배터리 뱅크를 운용할 수 있다.Here, when the first battery bank falls below the standard SOC due to driving and the driver attempts to continue driving, the upper control unit exhausts the first battery bank through driving first, and then reorganizes the second battery bank. It is possible to operate multiple parallel battery banks performing swap.
여기서, 상기 DC 전장부의 전력 공급 경로는, 전기 차량의 보조 전자 장치로 구동 전력을 공급하는 다중 병렬 배터리 뱅크를 운용할 수 있다.Here, the power supply path of the DC electric unit may operate multiple parallel battery banks that supply driving power to auxiliary electronic devices of the electric vehicle.
여기서, 상기 제1 배터리 뱅크 및 상기 제2 배터리 뱅크는, 다수개의 단위 배터리 셀들; 상기 단위 배터리 셀들의 충방전 운용을 제어하는 BMS; 및 상기 단위 배터리 셀들이 방전하는 전력을 외부 경로로 출력하는 것을 스위칭하는 고전압 출력단 스위치를 포함할 수 있다.Here, the first battery bank and the second battery bank include a plurality of unit battery cells; BMS that controls charging and discharging operation of the unit battery cells; And it may include a high-voltage output stage switch that switches to output the power discharged by the unit battery cells to an external path.
본 발명의 다른 측면에 따른 다중 병렬 배터리 뱅크를 운용하는 전기 차량를 위한 전력 제어 방법은, 전기 차량의 키온(KeyOn)시, 상기 전기 차량에 장착된 배터리 뱅크들 중에서 내구 상태(SOH)를 확인하는 단계; 내구 상태(SOH)가 가장 우수한 것을 주행 모터 구동에 사용할 제1 배터리 뱅크로 지정하고, 다음으로 우수한 것을 상기 DC 전장부에 사용할 제2 배터리 뱅크로 지정하는 뱅크 지정 단계; 및 상기 전기 차량의 운행 중 상기 제1 배터리 뱅크의 충전 상태가 기준 상태 미만이면, 상기 제2 배터리 뱅크로 스왑을 수행하는 단계를 포함할 수 있다.A power control method for an electric vehicle operating multiple parallel battery banks according to another aspect of the present invention includes the steps of checking the state of durability (SOH) among battery banks mounted on the electric vehicle when the electric vehicle is keyed on. ; A bank designation step of designating the one with the best state of durability (SOH) as the first battery bank to be used for driving the traveling motor, and designating the next best battery bank to be used in the DC electric unit as the second battery bank to be used in the DC electric unit; And if the state of charge of the first battery bank is below a reference state while the electric vehicle is operating, it may include performing swapping to the second battery bank.
여기서, 상기 뱅크 지정 단계에서는, 상기 배터리 뱅크들의 내구 상태들의 편차가 소정의 유사 범위에 속하는지 확인하고, 유사 범위에 속하면, 충전량이 가장 많은 배터리 뱅크를 상기 제1 배터리 뱅크로 지정하고, 다음으로 많은 배터리 뱅크를 상기 제2 배터리 뱅크로 지정할 수 있다.Here, in the bank designation step, it is checked whether the deviation of the durability states of the battery banks falls within a predetermined similar range, and if it falls within the similar range, the battery bank with the highest amount of charge is designated as the first battery bank, and then Many battery banks can be designated as the second battery bank.
여기서, 상기 스왑을 수행하는 단계는, 상기 제1 배터리 뱅크의 전력 공급 경로를 차단하고, 상기 주행 모터 구동 및 상기 DC 전장부에서 사용할 전력을 상기 제2 배터리 뱅크로부터 공급하는 단계; 및 상기 제2 배터리 뱅크의 충전 상태를 모니터링하는 단계를 포함할 수 있다.Here, performing the swap includes blocking the power supply path of the first battery bank and supplying power to be used in driving the travel motor and the DC electric unit from the second battery bank; and monitoring the charging state of the second battery bank.
여기서, 상기 스왑을 수행하는 단계에서는, 상기 전기 차량의 모터의 회생 전류로 상기 제1 배터리 뱅크를 충전할 수 있다.Here, in the step of performing the swap, the first battery bank may be charged with the regenerative current of the motor of the electric vehicle.
여기서, 상기 스왑을 수행하는 단계 이후, 상기 제2 배터리 뱅크의 충전 상태가 기준 상태 미만이면, 상기 제1 배터리 뱅크로 스왑을 수행하는 단계를 더 포함할 수 있다.Here, after performing the swap, if the charge state of the second battery bank is below the reference state, the step of performing swap with the first battery bank may be further included.
여기서, 상기 전기 차량의 VCU 슬립(sleep) 상태에서 상기 전기 차량의 보조 배터리를 충전하는 단계를 더 포함할 수 있다.Here, the step of charging the auxiliary battery of the electric vehicle in the VCU sleep state of the electric vehicle may be further included.
본 발명의 다른 측면에 따른 다중 병렬 배터리 뱅크를 운용하는 전기 차량를 위한 보조 배터리 충전 방법은, 전기 차량의 VCU 슬립(sleep) 상태에서 보조 배터리 충전 여부를 주기적으로 모니터링하기 위해 웨이크업하는 단계; 상기 전기 차량에 장착된 배터리 뱅크들의 내구 상태(SOH)를 확인하는 단계; 상기 배터리 뱅크들의 내구 상태들의 편차가 소정의 유사 범위에 속하는지 확인하고, 유사 범위에 속하면, 충전량이 가장 많은 배터리 뱅크를 선정하고, 유사 범위에 속하지 않으면, 내구 상태가 가장 우수한 배터리 뱅크를 선정하는 단계; 및 선정된 배터리 뱅크의 전력으로 상기 보조 배터리를 충전하는 단계를 포함할 수 있다.An auxiliary battery charging method for an electric vehicle operating multiple parallel battery banks according to another aspect of the present invention includes waking up the electric vehicle from a VCU sleep state to periodically monitor whether the auxiliary battery is charging; Checking the state of durability (SOH) of battery banks mounted on the electric vehicle; Check whether the deviation of the durability states of the battery banks falls within a predetermined similar range. If it falls within a similar range, select the battery bank with the highest charge. If it does not fall within the similar range, select the battery bank with the best durability state. steps; and charging the auxiliary battery with power from a selected battery bank.
상술한 구성의 본 발명의 사상에 따른 다중 병렬 배터리 뱅크를 운용하는 전기 차량을 위한 전력 제어 시스템 및/또는 방법을 실시하면, 각 배터리 뱅크의 성능 상태에 따라 사용할 뱅크를 선택하고 스왑하는 방식으로 사용함으로써 최적의 배터리 상태를 유지할 수 있는 이점이 있다.When the power control system and/or method for an electric vehicle operating multiple parallel battery banks according to the spirit of the present invention of the above-described configuration is implemented, the bank to be used is selected and swapped according to the performance state of each battery bank. This has the advantage of maintaining optimal battery condition.
본 발명의 사상에 따른 다중 병렬 배터리 뱅크를 운용하는 전기 차량을 위한 전력 제어 시스템 및/또는 방법은, 전기 삼륜차 등 비교적 경량의 전기 차량에서 잔여주행거리를 늘리기 위한 방법으로, 다중 병렬 배터리 팩 뱅크(기본적으로 1 뱅크당 배터리 2팩)를 운용할 수 있으며, 배터리 팩 뱅크를 주행 상황에 따라 스위칭 해줌으로써 잔여 주행거리를 1 뱅크를 사용할 때보다 늘릴 수 있는 이점이 있다. A power control system and/or method for an electric vehicle operating multiple parallel battery banks according to the spirit of the present invention is a method for increasing the remaining driving distance in a relatively lightweight electric vehicle such as an electric three-wheeler, and includes a multiple parallel battery pack bank ( Basically, it is possible to operate 2 battery packs per bank, and by switching the battery pack banks according to the driving situation, there is an advantage of increasing the remaining driving range compared to using 1 bank.
추가적으로, 본 발명의 사상에 따른 다중 병렬 배터리 뱅크를 운용하는 전기 차량을 위한 전력 제어 시스템 및/또는 방법은, 다중 병렬 배터리 팩 뱅크를 운용하는 차량 시스템에서 주행을 위한 모터 제어를 위해서만 사용하는 배터리 팩 뱅크와 램프/전자식 워터 펌프 등 전장 부품 및 토크 보조를 위해 앞 바퀴에 장착한 인-휠 모터를 구동하는 부수 장비에게 전력을 공급하는 배터리 뱅크를 배터리 성능 상태에 맞게 결정한 후 스왑을 통한 방식으로 사용함으로써 최적의 배터리 상태를 유지하여 차량 성능을 향상 시킬 수 있는 이점이 있다.Additionally, the power control system and/or method for an electric vehicle operating multiple parallel battery banks according to the spirit of the present invention includes a battery pack used only for motor control for driving in a vehicle system operating multiple parallel battery pack banks. The battery bank that supplies power to electrical components such as banks, lamps/electronic water pumps, and auxiliary equipment that drives the in-wheel motor mounted on the front wheel for torque assistance is determined according to the battery performance status and then used through swap. This has the advantage of maintaining optimal battery condition and improving vehicle performance.
도 1은 본 발명의 사상에 따른 다중 병렬 배터리 뱅크를 운용하는 전기 차량를 위한 전력 제어 시스템의 일 실시예를 도시한 블록도.1 is a block diagram illustrating an embodiment of a power control system for an electric vehicle operating multiple parallel battery banks according to the spirit of the present invention.
도 2는 각 배터리 뱅크들의 SOH 수준들이 유사 범위에 속하는 경우의 다중 병렬 배터리 뱅크에 대한 전력 제어 방법의 개념도. Figure 2 is a conceptual diagram of a power control method for multiple parallel battery banks when the SOH levels of each battery bank fall within a similar range.
도 3은 각 배터리 뱅크들의 SOH 수준들에 차이가 존재하는 경우의 다중 병렬 배터리 뱅크에 대한 전력 제어 방법의 개념도. Figure 3 is a conceptual diagram of a power control method for multiple parallel battery banks when there is a difference in SOH levels of each battery bank.
도 4는 본 발명의 사상에 따른 다중 병렬 배터리 뱅크를 운용하는 전기 차량를 위한 전력 제어 방법의 일 실시예를 도시한 흐름도.4 is a flowchart illustrating an embodiment of a power control method for an electric vehicle operating multiple parallel battery banks according to the spirit of the present invention.
도 5는 도 4의 각 단계들의 작동 메커니즘을 보다 상세히 예시한 흐름도.Figure 5 is a flow chart illustrating the operating mechanism of each step in Figure 4 in more detail.
도 6은 도 5의 고장 모드를 수행하는 단계(S600)의 세부 과정들을 도시한 흐름도.FIG. 6 is a flowchart showing detailed processes of the step (S600) of performing the failure mode of FIG. 5.
도 7은 도 1의 다중 병렬 배터리 뱅크를 운용하는 전기 차량를 위한 력 제어 시스템에서 수행될 수 있는 보조 배터리 충전 방법의 일 실시예를 도시한 흐름도.FIG. 7 is a flowchart illustrating an embodiment of an auxiliary battery charging method that can be performed in a power control system for an electric vehicle operating the multiple parallel battery banks of FIG. 1. FIG.
* 부호의 설명* Explanation of signs
110 : 제1 배터리 뱅크 110: first battery bank
120 : 제2 배터리 뱅크120: second battery bank
160 : 모터 구동부 160: motor driving unit
180 : DC 전장부180: DC electric unit
190 : 보조 전자 장치 190: Auxiliary electronic device
210 : 제1 DC/DC 컨버터 210: 1st DC/DC converter
220 : 제2 DC/DC 컨버터220: 2nd DC/DC converter
230 : 제1 릴레이 230: 1st relay
240 : 제2 릴레이240: 2nd relay
260 : 상위 제어 유닛260: upper control unit
본 발명을 설명함에 있어서 제 1, 제 2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 구성요소들은 용어들에 의해 한정되지 않을 수 있다. 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제 1 구성요소는 제 2 구성요소로 명명될 수 있고, 유사하게 제 2 구성요소도 제 1 구성요소로 명명될 수 있다. In describing the present invention, terms such as first and second may be used to describe various components, but the components may not be limited by the terms. Terms are intended only to distinguish one component from another. For example, a first component may be referred to as a second component, and similarly, the second component may be referred to as a first component without departing from the scope of the present invention.
어떤 구성요소가 다른 구성요소에 연결되어 있다거나 접속되어 있다고 언급되는 경우는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해될 수 있다.When a component is mentioned as being connected or connected to another component, it can be understood that it may be directly connected to or connected to the other component, but other components may exist in between. .
본 명세서에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함할 수 있다. The terms used herein are only used to describe specific embodiments and are not intended to limit the invention. Singular expressions may include plural expressions, unless the context clearly indicates otherwise.
본 명세서에서, 포함하다 또는 구비하다 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것으로서, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해될 수 있다. In this specification, terms such as include or have are intended to designate the presence of features, numbers, steps, operations, components, parts, or combinations thereof described in the specification, including one or more other features or numbers, It can be understood that the existence or addition possibility of steps, operations, components, parts, or combinations thereof is not excluded in advance.
또한, 도면에서의 요소들의 형상 및 크기 등은 보다 명확한 설명을 위해 과장될 수 있다.Additionally, the shapes and sizes of elements in the drawings may be exaggerated for clearer explanation.
본 발명의 사상에 따른 다중 병렬 배터리 뱅크를 운용하는 전기 차량을 위한 전력 제어 시스템 및 방법은, 특히, 교환형 다중 병렬 배터리 팩 bank를 운용하는 전기 삼륜차에 적용할 때 유용하다.(1 bank는 2개 배터피 팩으로 구성되어 있으며, 직렬 연결) 이 경우, 다중 병렬 팩을 운용하는 전기 삼륜차에서 각 bank별 배터리 팩 상태를 확인하고 우수한 배터리 팩 bank를 차량 주행을 위한 모터 제어에 우선적으로 사용하여 전비 효율을 최대한으로 높일 수 있다. The power control system and method for an electric vehicle operating multiple parallel battery banks according to the spirit of the present invention is particularly useful when applied to an electric three-wheeled vehicle operating a swappable multiple parallel battery pack bank (1 bank is 2). In this case, in an electric three-wheeled vehicle operating multiple parallel packs, the battery pack status of each bank is checked and the superior battery pack bank is preferentially used for motor control for driving the vehicle, thereby saving energy. Efficiency can be maximized.
도 1은 본 발명의 사상에 따른 다중 병렬 배터리 뱅크를 운용하는 전기 차량를 위한 전력 제어 시스템의 일 실시예를 도시한 블록도이다.1 is a block diagram illustrating an embodiment of a power control system for an electric vehicle operating multiple parallel battery banks according to the spirit of the present invention.
도시한 다중 병렬 배터리 뱅크를 운용하는 전기 차량를 위한 전력 제어 시스템은, 전기 차량의 구동 전력을 저장하는 제1 배터리 뱅크(110)와 제2 배터리 뱅크(120); 전기 차량의 주행용 모터에 구동 전력을 공급하는 모터 구동부(160); 전기 차량의 운행을 위한 직류 구동 전장 장치들로 이루어진 DC 전장부(180); 상기 제1 배터리 뱅크(110)에서 공급받은 DC 전력을 상기 DC 전장부(180)에 맞는 DC 전력으로 변환하는 제1 DC/DC 컨버터(210); 상기 제2 배터리 뱅크(120)에서 공급받은 DC 전력을 상기 DC 전장부(180)에 맞는 DC 전력으로 변환하는 제2 DC/DC 컨버터(220); 상기 제1 DC/DC 컨버터(210)와 상기 DC 전장부(180)의 전력 공급 경로를 스위칭하는 제1 릴레이(230); 상기 제2 DC/DC 컨버터(220)와 상기 DC 전장부(180)의 전력 공급 경로를 스위칭하는 제2 릴레이(240); 및 상기 전기 차량의 키온(KeyOn)시, 상기 전기 차량에 장착된 배터리 뱅크들 중에서 내구 상태(SOH)가 가장 우수한 것을 주행 모터 제어에 사용할 상기 제1 배터리 뱅크(110)로 지정하고, 다음으로 우수한 것을 상기 DC 전장부에 사용할 상기 제2 배터리 뱅크(120)로 지정하여, 해당 전력 공급 경로를 제어하는 상위 제어 유닛(260)을 포함할 수 있다.The illustrated power control system for an electric vehicle operating multiple parallel battery banks includes a first battery bank 110 and a second battery bank 120 that store driving power of the electric vehicle; A motor drive unit 160 that supplies driving power to a driving motor of an electric vehicle; A DC electrical unit 180 consisting of direct current driven electrical devices for operating an electric vehicle; A first DC/DC converter 210 that converts DC power supplied from the first battery bank 110 into DC power suitable for the DC electrical unit 180; A second DC/DC converter 220 that converts DC power supplied from the second battery bank 120 into DC power suitable for the DC electrical unit 180; A first relay 230 that switches the power supply path of the first DC/DC converter 210 and the DC electric unit 180; A second relay 240 that switches the power supply path of the second DC/DC converter 220 and the DC electrical unit 180; And when the electric vehicle is keyed on, the one with the best state of durability (SOH) among the battery banks mounted on the electric vehicle is designated as the first battery bank 110 to be used for driving motor control, and the next best battery bank 110 is designated as the first battery bank 110 to be used for driving motor control. It may include an upper control unit 260 that controls the power supply path by designating it as the second battery bank 120 to be used for the DC electrical unit.
각 배터리 뱅크의 내구 상태로서 SOH를 적용할 수 있으며, 후술하는 각 배터리 뱅크의 충전 상태로서 SOC를 적용하여 구체적으로 예시하겠다.SOH can be applied as the durability state of each battery bank, and a specific example will be provided by applying SOC as the charging state of each battery bank, which will be described later.
도시하지는 않았지만, 제1/제2 배터리 뱅크(110, 120)의 장착 유무를 판단하는 센서, 운전자(사용자)의 배터리 뱅크 스왑 의지 입력을 판단하는 센서를 더 포함할 수 있다.Although not shown, it may further include a sensor that determines whether the first/ second battery banks 110 and 120 are installed and a sensor that determines the driver's (user's) intention to swap the battery banks.
구현에 따라, 상기 상위 제어 유닛(260)은 전기 차량의 최상위 제어 유닛일 수 있으며, 주행 모터 제어에 사용되는 배터리 뱅크를 적용하여, 소정의 기준 SOC(디폴트, 배터리 제조사 설정값, 운전자 충전 알림 설정값 등 적용 가능)까지 모터 제어를 위한 전류를 공급하고, 상기 기준 SOC에서 다른 배터리 뱅크와 스왑을 수행할 수 있다.Depending on implementation, the upper control unit 260 may be the highest control unit of an electric vehicle and applies the battery bank used for driving motor control to set a predetermined standard SOC (default, battery manufacturer setting value, driver charging notification setting) It supplies current for motor control up to the applicable value, etc.), and can perform swap with another battery bank at the above standard SOC.
도시한 구성에서는, 전기 차량의 보조 전자 장치(190)를 함께 나타내며, 상기 DC 전장부(180)의 전력 공급 경로는, 상기 보조 전자 장치(190)로도 구동 전력을 공급함을 알 수 있다. 즉, 상기 DC 전장부(180)와 상기 보조 전자 장치(190)는 하나의 집합을 이루어 구동 전력을 공급받을 수 있다.In the illustrated configuration, the auxiliary electronic device 190 of the electric vehicle is also shown, and it can be seen that the power supply path of the DC electric unit 180 also supplies driving power to the auxiliary electronic device 190. That is, the DC electrical unit 180 and the auxiliary electronic device 190 can form a single set and receive driving power.
차량의 키온시 각 배터리 뱅크들의 SOH를 확인하는 것은, 다양한 공지 기술을 적용하여 수행할 수 있다. 예컨대, 이전 시점의 각 배터리 뱅크들의 충방전 전류-전압 패턴을 소정의 알고리즘에 따라 분석하여 SOH를 산정할 수 있다. Checking the SOH of each battery bank when turning on the vehicle can be performed by applying various known technologies. For example, the SOH can be calculated by analyzing the charge/discharge current-voltage pattern of each battery bank at a previous point in time according to a predetermined algorithm.
도시한 상기 제1 배터리 뱅크(110) 및 상기 제2 배터리 뱅크(120) 각각은, 다수개의 단위 배터리 셀들; 상기 단위 배터리 셀들의 충방전 운용을 제어하는 BMS; 및 상기 단위 배터리 셀들이 방전하는 전력을 외부 경로로 출력하는 것을 스위칭하는 고전압 출력단 스위치(FET)를 포함할 수 있다.Each of the illustrated first battery bank 110 and the second battery bank 120 includes a plurality of unit battery cells; BMS that controls charging and discharging operation of the unit battery cells; And it may include a high-voltage output switch (FET) that switches the power discharged by the unit battery cells to be output to an external path.
도시한 다중 병렬 배터리 뱅크를 운용하는 전기 차량를 위한 전력 제어 시스템은, 상기 제1/제2 배터리 뱅크(110, 120)의 고전압 출력은 각 배터리 뱅크(110, 120) 내부에서 출력 DC를 생성하고 내부에 구비된 고전압 출력단 스위치(FET)를 이용하여 경로를 on/off시키는 반면, 저전압 출력은 각 배터리 뱅크(110, 120)와 별도로 구비된 제1/제2 DC/DC 컨버터(210, 220)로 출력 DC를 생성하고 별도로 구비된 제1/제2 릴레이(230, 240)를 이용하여 경로를 on/off시킨다.In the power control system for an electric vehicle operating multiple parallel battery banks, the high voltage output of the first and second battery banks 110 and 120 generates output DC inside each battery bank 110 and 120 and While the path is turned on/off using the high-voltage output stage switch (FET) provided in Output DC is generated and the path is turned on/off using separately provided first and second relays 230 and 240.
이는 배터리 뱅크의 모터 구동 경로에 대한 보호를 강화하면서도, 3rd Party에서도 제공할 수 있는 상기 보조 전자 장치(190)의 전력 사양에 대하여, 제1/제2 DC/DC 컨버터(210, 220)를 교체하는 방식으로, 유연하게 지원할 수 있는 이점이 있다. 또한, 각 배터리 뱅크마다 전용 DC/DC 컨버터를 할당하는 방식은, 상술한 스왑 동작의 속도를 향상시키며, 스왑시 안정성을 강화할 수 있는 이점이 있다. This strengthens the protection of the motor drive path of the battery bank, and replaces the first and second DC/ DC converters 210 and 220 for the power specifications of the auxiliary electronic device 190 that can be provided by a 3rd party as well. This method has the advantage of being able to provide flexible support. Additionally, the method of allocating a dedicated DC/DC converter to each battery bank has the advantage of improving the speed of the swap operation described above and enhancing stability during swap.
한편, 상기 제1 배터리 뱅크(110), 상기 제2 배터리 뱅크(120)의 충전 경로는, 각 뱅크가 방전과 충전을 동시에 수행할 수 있도록, 방전 경로와 별도로 병렬적으로 구비할 수 있다. Meanwhile, the charging paths of the first battery bank 110 and the second battery bank 120 may be provided in parallel separately from the discharging paths so that each bank can perform discharging and charging simultaneously.
도 2는 각 배터리 뱅크들의 SOH 수준들이 유사 범위에 속하는 경우의 다중 병렬 배터리 뱅크에 대한 전력 제어 방법의 개념을 도시한다. Figure 2 illustrates the concept of a power control method for multiple parallel battery banks when the SOH levels of each battery bank fall within a similar range.
도 2에서 첫번째 제1/제2 배터리 뱅크 구성은 KeyOn시 bank 별 배터리 팩 상태 확인 후 선택하는 과정을, 2번째 구성은 배터리 팩 bank 스왑 요청 과정을, 3번째 구성은 충전 필요 시점에서 계속 주행 시도시 뱅크 이용 과정을, 4번째 구성은 Bank 별로 순차적으로 SOC를 소진하는 과정을 나타낸 것이다.In Figure 2, the first 1st/2nd battery bank configuration is a process of checking and selecting the battery pack status for each bank at Key On, the 2nd configuration is a battery pack bank swap request process, and the 3rd configuration is attempting to continue driving when charging is required. The fourth configuration shows the process of using a city bank, and the process of sequentially depleting SOC for each bank.
도 3은 각 배터리 뱅크들의 SOH 수준들에 차이가 존재하는 경우의 다중 병렬 배터리 뱅크에 대한 전력 제어 방법의 개념을 도시한다. Figure 3 illustrates the concept of a power control method for multiple parallel battery banks when differences exist in the SOH levels of each battery bank.
도 3에서 첫번째 제1/제2 배터리 뱅크 구성은 KeyOn시 bank 별 배터리 팩 상태 확인 후 선택하는 과정을, 2번째 구성은 배터리 팩 bank 스왑 요청 과정을, 3번째 구성은 충전 필요 시점에서 계속 주행 시도시 뱅크 이용 과정을, 4번째 구성은 Bank 별로 순차적으로 SOC를 소진하는 과정을 나타낸 것이다.In Figure 3, the first 1st/2nd battery bank configuration is a process of checking and selecting the battery pack status for each bank upon key-on, the second configuration is a process of requesting a battery pack bank swap, and the third configuration is attempting to continue driving when charging is required. The fourth configuration shows the process of using a city bank, and the process of sequentially depleting SOC for each bank.
도 2의 경우는 키온시 점검 결과 배터리 뱅크들의 SOH 수준들이 유사하여, 충전량으로서 SOC가 가장 높은 것이 제1 배터리 뱅크로 지정되어 모터 제어를 위한 전력을 공급하며, 다른 것을 제2 배터리 뱅크로 DC 전장부 및 보조 전자 장치를 위한 전력을 공급한다.In the case of Figure 2, the SOH levels of the battery banks are similar as a result of the inspection when turning on the key, so the one with the highest SOC as the charge amount is designated as the first battery bank to supply power for motor control, and the other one is supplied with DC to the second battery bank. Provides power for ledgers and auxiliary electronic devices.
반면, 도 3의 경우는 키온시 점검 결과 배터리 뱅크들의 SOH 수준들에 상당한 차이가 존재하여, 충전량에 무관하게 SOH가 가장 높은 것이 제1 배터리 뱅크로 지정되어 모터 제어를 위한 전력을 공급하며, 다른 것을 제2 배터리 뱅크로 DC 전장부 및 보조 전자 장치를 위한 전력을 공급한다. 이때, 상기 제1 배터리 뱅크의 SOC가 제2 배터리 뱅크의 SOC 보다 낮더라도 무방하나, 기준 SOC 보다는 충분이 높아야 한다.On the other hand, in the case of Figure 3, there is a significant difference in the SOH levels of the battery banks as a result of the inspection when turning on the key, so the one with the highest SOH is designated as the first battery bank regardless of the amount of charge to supply power for motor control, and the other battery bank is designated as the first battery bank. The second battery bank supplies power for the DC electrical and auxiliary electronic devices. At this time, the SOC of the first battery bank may be lower than the SOC of the second battery bank, but it must be sufficiently higher than the standard SOC.
상술한 제1 배터리 뱅크의 지정 과정을 제외하면, 도 2 및 도 3의 후속 과정들은 서로 동일함을 알 수 있다.It can be seen that, except for the designation process of the first battery bank described above, the subsequent processes in FIGS. 2 and 3 are identical to each other.
제1 배터리 뱅크의 지정 후 후속 과정에서, 도 2 및 도 3에서, 상기 제2 배터리 뱅크를 사용하도록 스왑한 후, 회생 제동으로 인한 충전 전류를 상기 제1 배터리 뱅크로 공급함을 알 수 있다. 즉, 회생 제동으로 인한 충전 전류는 우수한 성능의 배터리 뱅크로만 들어가도록 구성한 것이다.In the subsequent process after designation of the first battery bank, it can be seen from FIGS. 2 and 3 that after swapping to use the second battery bank, charging current due to regenerative braking is supplied to the first battery bank. In other words, the charging current due to regenerative braking is configured to only flow into a battery bank with excellent performance.
도 4는 본 발명의 사상에 따른 다중 병렬 배터리 뱅크를 운용하는 전기 차량를 위한 전력 제어 방법의 일 실시예를 도시한 흐름도이다.Figure 4 is a flowchart illustrating an embodiment of a power control method for an electric vehicle operating multiple parallel battery banks according to the spirit of the present invention.
도시한 다중 병렬 배터리 뱅크를 운용하는 전기 차량를 위한 전력 제어 방법은, 전기 차량의 키온(KeyOn)시, 상기 전기 차량에 장착된 배터리 뱅크들 중에서 내구 상태(SOH)를 확인하는 단계(S100); 내구 상태(SOH)가 가장 우수한 것을 주행 모터 구동에 사용할 제1 배터리 뱅크로 지정하고, 다음으로 우수한 것을 상기 DC 전장부에 사용할 제2 배터리 뱅크로 지정하는 뱅크 지정 단계(S200); 및 상기 전기 차량의 운행 중 상기 제1 배터리 뱅크의 충전 상태가 기준 상태 미만이면(S300), 상기 제2 배터리 뱅크로 스왑을 수행하는 단계(S400)를 포함할 수 있다.The power control method for an electric vehicle operating multiple parallel battery banks includes the steps of checking the state of durability (SOH) among battery banks mounted on the electric vehicle when the electric vehicle is keyed on (S100); A bank designation step (S200) in which the one with the best durability (SOH) is designated as the first battery bank to be used for driving the traveling motor, and the next best battery bank is designated as the second battery bank to be used in the DC electric unit; And if the state of charge of the first battery bank is less than the reference state while the electric vehicle is operating (S300), it may include performing a swap with the second battery bank (S400).
상기 뱅크 지정 단계(S200)에서는, 상기 배터리 뱅크들의 내구 상태들의 편차가 소정의 유사 범위에 속하는지 확인하고, 유사 범위에 속하지 않으면, 상술한 대로 내구 상태로서 SOH에 따라 제1/제2 배터리 뱅크를 지정하고, 유사 범위에 속하면, 충전량이 가장 많은 배터리 뱅크를 상기 제1 배터리 뱅크로 지정하고, 다음으로 많은 배터리 뱅크를 상기 제2 배터리 뱅크로 지정한다. In the bank designation step (S200), it is checked whether the deviation of the endurance states of the battery banks falls within a predetermined similar range, and if it does not fall within the similar range, the first/second battery banks are in the endurance state according to the SOH as described above. is designated, and if it falls within a similar range, the battery bank with the largest amount of charge is designated as the first battery bank, and the battery bank with the next largest amount of charge is designated as the second battery bank.
도 5는 도 4의 각 단계들의 작동 메커니즘을 보다 상세히 예시한 흐름도이다. Figure 5 is a flowchart illustrating the operating mechanism of each step in Figure 4 in more detail.
도 4의 S200 단계는, 도 5에서는, 상기 배터리 뱅크들의 SOH들의 편차가 소정의 유사 범위에 속하는지 확인하는 단계(S210), 유사 범위에 속하면, 제1/제2 배터리 뱅크의 SOC들을 비교하는 단계(S220); SOC가 높은(즉, 충전량이 가장 많은) 배터리 뱅크를 상기 제1 배터리 뱅크로 지정하고, 다음으로 많은 배터리 뱅크를 상기 제2 배터리 뱅크로 지정하는 단계(S260, S270); SOH들의 편차가 유사 범위에 속하지 않으면, SOH가 높은 것을 주행 모터 구동에 사용할 제1 배터리 뱅크로 지정하고, 다음 상기 DC 전장부에 사용할 제2 배터리 뱅크로 지정하는 단계(S230)로 세분화되어 있다.In step S200 of FIG. 4, in FIG. 5, it is a step of checking whether the deviation of the SOH of the battery banks falls within a predetermined similar range (S210). If it falls within a similar range, the SOCs of the first and second battery banks are compared. Step (S220); Designating a battery bank with a high SOC (i.e., the highest amount of charge) as the first battery bank, and designating the next largest battery bank as the second battery bank (S260, S270); If the deviation of the SOH does not fall within a similar range, it is subdivided into a step (S230) of designating the one with the high SOH as the first battery bank to be used for driving the traveling motor, and then designating the second battery bank to be used for the DC electric unit.
도 4의 S200 단계는, 도 5에서는, 전기 차량의 키온(KeyOn)시, 상기 제1 배터리 뱅크 및 상기 제2 배터리 뱅크 중 하나가 소정의 기준 SOC에 미달하면, 나머지 배터리 뱅크를 주행 모터 제어 및 DC 전장부에 사용할 배터리 뱅크로 지정하는 단계(S240, S250, S280, S290)를 수행하고 있다.In step S200 of FIG. 4, in FIG. 5, when the electric vehicle is keyed on, if one of the first battery bank and the second battery bank falls short of a predetermined standard SOC, the remaining battery banks are used to control the driving motor and Steps (S240, S250, S280, S290) to designate as a battery bank to be used in DC electrical equipment are being performed.
도 4의 S300 단계는, 도 5에서는, 주행 중 제1/제2 배터리 뱅크의 전류를 사용하는 단계(S320); 제1/제2 배터리 뱅크 각각의 고장 여부를 모니터링하는 단계(S340); 및 고장이 발생되면 고장 모드를 수행하는 단계(S600)를 더 포함할 수 있다.Step S300 of FIG. 4 includes, in FIG. 5, using the current of the first/second battery bank while driving (S320); Monitoring whether each of the first and second battery banks has a failure (S340); and performing a failure mode when a failure occurs (S600).
도 4의 S300 단계는, 도 5의 경우, 주행 모터 제어에 사용되는 배터리 뱅크의 SOC를 소정의 기준 SOC(디폴트, 배터리 제조사 설정값, 운전자 충전 알림 설정값 등 적용 가능)와 비교하는 단계(S360)를 포함하고, 상기 기준 SOC 미만으로 저하되면, 주행 모터 제어에 사용되는 배터리 뱅크를 상기 제2 배터리 뱅크로 1차 스왑하는 단계(S410)가 수행된다. In the case of FIG. 5, step S300 of FIG. 4 is a step (S360) of comparing the SOC of the battery bank used for driving motor control with a predetermined reference SOC (applicable as default, battery manufacturer setting value, driver charging notification setting value, etc.) ), and if it falls below the reference SOC, a step (S410) of first swapping the battery bank used for driving motor control with the second battery bank is performed.
상기 1차 스왑하는 단계(S410)는 도 2 및 도 3의 2번째 구성과 같은 방식으로 수행될 수 있다. 즉, 스왑된 제2 배터리 뱅크를 상기 주행 모터 제어 및 상기 DC 전장부에 사용할 배터리 뱅크로 지정하여 운용한다.The first swapping step (S410) can be performed in the same manner as the second configuration of FIGS. 2 and 3. That is, the swapped second battery bank is designated and operated as a battery bank to be used for controlling the driving motor and the DC electrical equipment.
상술한 관점에서 도 4의 상기 스왑을 수행하는 단계(S400)는, 상기 제1 배터리 뱅크의 전력 공급 경로를 차단하고, 상기 주행 모터 구동 및 상기 DC 전장부에서 사용할 전력을 상기 제2 배터리 뱅크로부터 공급하는 단계(S410); 및 상기 제2 배터리 뱅크의 충전 상태를 모니터링하는 단계(S420)를 포함한다고 볼 수 있다.From the above-described point of view, the step of performing the swap (S400) of FIG. 4 blocks the power supply path of the first battery bank, and transfers power to be used for driving the traveling motor and the DC electrical unit from the second battery bank. Supply step (S410); and monitoring the charging state of the second battery bank (S420).
흐름도로 도시하지는 않았지만, 상기 스왑을 수행하는 단계(S400) 및 그 이후에서는, 상기 전기 차량의 모터의 회생 전류로 상기 제1 배터리 뱅크를 충전할 수 있다.Although not shown in a flow chart, in the swap performing step (S400) and thereafter, the first battery bank may be charged with the regenerative current of the motor of the electric vehicle.
상기 1차 스왑하는 단계(S410) 이후에도, 스왑된 지정으로 제1/제2 배터리 뱅크의 전력을 사용하는 단계(S410); 전력 사용 중인 배터리 뱅크의 SOC를 상기 기준 SOC와 비교하는 단계(S430); 상기 기준 SOC 미만으로 저하되면, 주행 모터 제어에 사용되는 배터리 뱅크를 상기 제1 배터리 뱅크로 2차 스왑하는 단계(S440)가 수행될 수 있다. 상기 2차 스왑(S400)은 이는 도 2 및 도 3의 3번째 구성과 같은 방식으로 수행되는 것이며, 이후, 운전자의 주행 의지를 확인하고(S450), 상기 제1 배터리 뱅크는 상기 기준 SOC부터 풀방전(0%)될 때까지 사용된다(S460). Even after the first swapping step (S410), using the power of the first/second battery bank with the swapped designation (S410); Comparing the SOC of the battery bank in power use with the reference SOC (S430); If the SOC falls below the standard SOC, a second swapping step (S440) of the battery bank used for controlling the driving motor with the first battery bank may be performed. The second swap (S400) is performed in the same manner as the third configuration in FIGS. 2 and 3. Afterwards, the driver's driving intention is confirmed (S450), and the first battery bank is fully charged from the reference SOC. It is used until discharged (0%) (S460).
상기 S450 단계에서는 운전자에게 배터리 충전량 부족 상태임을 통보하고, 주행 의지가 없으면, 이후 운전자의 선택에 따라 주행을 종료하거나 배터리 뱅크를 물리적으로 교환할 수 있다(S455).In step S450, the driver is notified that the battery charge is low, and if there is no intention to drive, the driver can end driving or physically replace the battery bank at the driver's option (S455).
상기 2차 스왑하는 단계(S440) 이후, 2차 스왑되어 주행에 사용중인 상기 제1 배터리 뱅크가 풀방전(0%)되면(S460), 다시 상기 제2 배터리 뱅크로 3차 스왑을 수행하고(S470), 상기 제2 배터리 뱅크는 상기 기준 SOC부터 풀방전(0%)될 때까지 사용된다(S480). After the secondary swapping step (S440), when the first battery bank that has been secondary swapped and is being used for driving is fully discharged (0%) (S460), a third swap is performed again with the second battery bank ( S470), the second battery bank is used from the reference SOC until it is fully discharged (0%) (S480).
도 6은 도 5의 고장 모드를 수행하는 단계(S600)의 세부 과정들을 도시한 흐름도이다.FIG. 6 is a flowchart showing detailed processes of the step (S600) of performing the failure mode of FIG. 5.
도 6에서는 배터리 뱅크별 고장 상태 진단(S610) 수행후, 도 5의 1차 스왑 단계(S410) 이후와 유사하게, 하나의 정상 배터리 뱅크를 주행 모터 제어 및 DC 전장부의 모든 전력 공급에 사용한다(S620). In FIG. 6, after performing the diagnosis of the fault state for each battery bank (S610), similar to after the first swap step (S410) of FIG. 5, one normal battery bank is used to control the driving motor and supply all power to the DC electrical equipment ( S620).
이후 주행 중에, 도 5와 마찬가지로, 상기 정상 배터리 뱅크의 SOC가 기준 SOC에 미달되면(S630), 운전자의 주행의지를 확인하는 일련의 과정들(S650, S655, S680)을 수행하고, 주행 의지에 따라 풀방전(0%)될 때까지 상기 정상 배터리 뱅크를 사용한다(S680). During subsequent driving, as shown in FIG. 5, if the SOC of the normal battery bank falls below the standard SOC (S630), a series of processes (S650, S655, S680) to confirm the driver's driving intention are performed, and the driving intention is confirmed. Accordingly, the normal battery bank is used until it is fully discharged (0%) (S680).
한편, 인-휠 모터가 장착된 전기 차량(전기 삼륜차)의 경우, 기준 SOC에 미달되면(S630), 인휠 모터는 바로 사용을 정지하거나, 운전자의 인-휠 모터 사용 의지를 확인하는 일련의 과정들(S660, S664)을 수행할 수 있다.Meanwhile, in the case of an electric vehicle (electric three-wheeler) equipped with an in-wheel motor, if it falls below the standard SOC (S630), the in-wheel motor is immediately stopped from use, or a series of processes are performed to confirm the driver's intention to use the in-wheel motor. (S660, S664) can be performed.
이 경우, 램프/전자식 워터 펌프 등 전장 부품 뿐만 아니라 토크 보조를 위해 앞 바퀴에 장착한 인-휠 모터를 구동하는 부수 장비에게 전력을 공급하는 제1/제2 배터리 뱅크를 배터리 성능 상태에 맞게 결정한 후 스왑을 통한 방식으로 사용함으로써 최적의 배터리 상태를 유지하여 차량 성능을 향상시킬 수 있다. In this case, the first and second battery banks that supply power to not only electrical components such as lamps/electronic water pumps but also auxiliary equipment that drives the in-wheel motor mounted on the front wheel for torque assistance are determined according to the battery performance status. By using the post-swap method, you can improve vehicle performance by maintaining optimal battery condition.
도 7은 도 1의 다중 병렬 배터리 뱅크를 운용하는 전기 차량를 위한 력 제어 시스템에서 수행될 수 있는 보조 배터리 충전 방법의 일 실시예를 도시한 흐름도이다.FIG. 7 is a flowchart illustrating an embodiment of an auxiliary battery charging method that can be performed in a power control system for an electric vehicle operating the multiple parallel battery banks of FIG. 1.
도시한 보조 배터리 충전 방법은, 운행 정지 등의 사유로 상기 상위 제어 유닛이 Sleep 이후 주기적 wake-up하면서 전압 확인하는 방식에 따라 개시될 수 있다. 도시한 흐름도상에서 VCU는 도 1의 상위 제어 유닛(260)일 수 있다.The illustrated auxiliary battery charging method may be initiated by checking the voltage while the upper control unit periodically wakes up after sleeping due to reasons such as an operation stoppage. In the flowchart shown, the VCU may be the upper control unit 260 of FIG. 1.
도시한 다중 병렬 배터리 뱅크를 운용하는 전기 차량를 위한 보조 배터리 충전 방법은, 전기 차량의 VCU 슬립(sleep) 상태(S710)에서 보조 배터리 충전 여부를 주기적으로 모니터링하기 위해 웨이크업하는 단계(S720);The illustrated method of charging an auxiliary battery for an electric vehicle operating multiple parallel battery banks includes waking up the electric vehicle from a VCU sleep state (S710) to periodically monitor whether the auxiliary battery is charging (S720);
보조 배터리 충전이 필요하면(S730), 상기 전기 차량에 장착된 배터리 뱅크들의 내구 상태(SOH)를 확인하는 단계(S800);If charging of the auxiliary battery is necessary (S730), checking the state of durability (SOH) of the battery banks mounted on the electric vehicle (S800);
상기 배터리 뱅크들의 내구 상태들의 편차가 소정의 동등 범위에 속하는지 확인하고(S830), 동등 범위에 속하면, 충전량(SOC)이 가장 많은 배터리 뱅크를 선정하고(S840, S850), 동등 범위에 속하지 않으면, 내구 상태(SOH)가 가장 우수한 배터리 뱅크를 선정하는 단계(S860, S870; 및 선정된 배터리 뱅크의 전력으로 상기 보조 배터리를 충전하는 단계(S855, S880)를 포함할 수 있다.Check whether the deviation of the durability states of the battery banks falls within a predetermined equal range (S830), and if it falls within the equal range, select the battery bank with the highest amount of charge (SOC) (S840, S850), and if it does not fall within the equal range, select the battery bank with the highest amount of charge (SOC). Otherwise, the method may include selecting a battery bank with the best state of durability (SOH) (S860, S870) and charging the auxiliary battery with the power of the selected battery bank (S855, S880).
또한, 제1 배터리 뱅크 및 상기 제2 배터리 뱅크 모두가 소정의 기준 SOC에 미달하면(S810), 보조 배터리 충전 불가 조건임을 확인하고(S820), 고전압 충전 필요성을 운전자에게 통보할 수 있다(S825).In addition, if both the first battery bank and the second battery bank fall short of the predetermined standard SOC (S810), it is confirmed that the auxiliary battery cannot be charged (S820), and the need for high-voltage charging can be notified to the driver (S825). .
선정된 배터리 뱅크의 전력으로 상기 보조 배터리를 충전하는 단계(S855, S880) 이후, 보조 배터리 충전 완료를 확인하면(S885), 전기 차량의 VCU를 SLEEP 모드로 진입시킨다(S890).After charging the auxiliary battery with the power of the selected battery bank (S855, S880), when completion of charging of the auxiliary battery is confirmed (S885), the VCU of the electric vehicle enters SLEEP mode (S890).
본 발명이 속하는 기술 분야의 당업자는 본 발명이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있으므로, 이상에서 기술한 실시 예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로서 이해해야만 한다. 본 발명의 범위는 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 등가개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.Those skilled in the art to which the present invention pertains should understand that the present invention can be implemented in other specific forms without changing its technical idea or essential features, and that the embodiments described above are illustrative in all respects and not restrictive. Just do it. The scope of the present invention is indicated by the claims described later rather than the detailed description, and all changes or modified forms derived from the meaning and scope of the claims and their equivalent concepts should be construed as being included in the scope of the present invention. .
본 발명은 다중 병렬 팩을 운용하는 전기차에서 각 bank별 배터리 팩 상태를 확인하고 우수한 배터리 팩 bank를 차량 주행을 위한 모터 제어에 우선적으로 사용하여 전비 효율을 최대화할 수 있다.The present invention can maximize fuel efficiency by checking the battery pack status for each bank in an electric vehicle operating multiple parallel packs and preferentially using the superior battery pack bank for motor control for vehicle driving.

Claims (14)

  1. 전기 차량의 구동 전력을 저장하는 제1 배터리 뱅크와 제2 배터리 뱅크; A first battery bank and a second battery bank that store driving power of the electric vehicle;
    전기 차량의 주행용 모터에 구동 전력을 공급하는 모터 구동부; A motor drive unit that supplies driving power to a driving motor of an electric vehicle;
    전기 차량의 운행을 위한 직류 구동 전장 장치들로 이루어진 DC 전장부; DC electrical equipment unit consisting of direct current driven electrical equipment for operation of electric vehicles;
    상기 제1 배터리 뱅크에서 공급받은 DC 전력을 상기 DC 전장부에 맞는 DC 전력으로 변환하는 제1 DC/DC 컨버터; A first DC/DC converter that converts DC power supplied from the first battery bank into DC power suitable for the DC electrical equipment;
    상기 제2 배터리 뱅크에서 공급받은 DC 전력을 상기 DC 전장부에 맞는 DC 전력으로 변환하는 제2 DC/DC 컨버터; a second DC/DC converter that converts DC power supplied from the second battery bank into DC power suitable for the DC electric unit;
    상기 제1 DC/DC 컨버터와 상기 DC 전장부의 전력 공급 경로를 스위칭하는 제1 릴레이;A first relay for switching the power supply path of the first DC/DC converter and the DC electric unit;
    상기 제2 DC/DC 컨버터와 상기 DC 전장부의 전력 공급 경로를 스위칭하는 제2 릴레이; 및A second relay for switching the power supply path of the second DC/DC converter and the DC electric unit; and
    상기 전기 차량의 키온(KeyOn)시, 상기 전기 차량에 장착된 배터리 뱅크들 중에서 내구 상태(SOH)가 가장 우수한 것을 주행 모터 제어에 사용할 상기 제1 배터리 뱅크로 지정하고, 다음으로 우수한 것을 상기 DC 전장부에 사용할 상기 제2 배터리 뱅크로 지정하여, 해당 전력 공급 경로를 제어하는 상위 제어 유닛When the electric vehicle is keyed on, the one with the best state of durability (SOH) among the battery banks mounted on the electric vehicle is designated as the first battery bank to be used for driving motor control, and the next best battery bank is used as the DC power bank. A higher-level control unit that controls the power supply path by designating it as the second battery bank to be used in the ledger.
    을 포함하는 다중 병렬 배터리 뱅크를 운용하는 전기 차량를 위한 전력 제어 시스템.A power control system for an electric vehicle operating multiple parallel battery banks including.
  2. 제1항에 있어서,According to paragraph 1,
    상기 상위 제어 유닛은, The upper control unit is,
    주행 모터 제어에 사용되는 상기 제1 배터리 뱅크를 적용하여, 소정의 기준 SOC까지 모터 제어를 위한 전류를 공급하고, 상기 기준 SOC에 도달하면, 상기 제2 배터리 뱅크와 스왑을 수행하는 다중 병렬 배터리 뱅크를 운용하는 전기 차량를 위한 전력 제어 시스템.A multi-parallel battery bank that applies the first battery bank used for driving motor control to supply current for motor control up to a predetermined reference SOC and performs swap with the second battery bank when the reference SOC is reached. A power control system for electric vehicles that operate.
  3. 제2항에 있어서,According to paragraph 2,
    상기 상위 제어 유닛은, The upper control unit is,
    상기 제2 배터리 뱅크를 사용하도록 스왑한 후, 회생 제동으로 인한 충전 전류를 상기 제1 배터리 뱅크로 공급하는 다중 병렬 배터리 뱅크를 운용하는 전기 차량를 위한 전력 제어 시스템.A power control system for an electric vehicle operating multiple parallel battery banks that supplies charging current from regenerative braking to the first battery bank after swapping the second battery bank for use.
  4. 제2항에 있어서,According to paragraph 2,
    상기 상위 제어 유닛은, The upper control unit is,
    상기 전기 차량의 키온(KeyOn)시, 상기 제1 배터리 뱅크 및 상기 제2 배터리 뱅크 중 하나가 소정의 기준 SOC에 미달하면, 나머지 배터리 뱅크를 상기 주행 모터 제어 및 상기 DC 전장부에 사용할 배터리 뱅크로 지정하는 다중 병렬 배터리 뱅크를 운용하는 전기 차량를 위한 전력 제어 시스템.When the electric vehicle is keyed on, if one of the first battery bank and the second battery bank falls short of a predetermined standard SOC, the remaining battery bank is used as a battery bank to be used for controlling the driving motor and the DC electrical unit. Power control system for electric vehicles operating multiple parallel battery banks that specify
  5. 제2항에 있어서,According to paragraph 2,
    상기 상위 제어 유닛은, The upper control unit is,
    주행에 따라 상기 제1 배터리 뱅크가 상기 기준 SOC 미만으로 하락한 경우에 운전자의 계속 주행을 시도하면, 주행으로 상기 제1 배터리 뱅크를 먼저 소진하고, 상기 제2 배터리 뱅크로 스왑을 수행하는 다중 병렬 배터리 뱅크를 운용하는 전기 차량를 위한 전력 제어 시스템.When the first battery bank drops below the standard SOC during driving and the driver attempts to continue driving, the first battery bank is exhausted first through driving and then swapped to the second battery bank. Power control system for electric vehicles operating banks.
  6. 제1항에 있어서,According to paragraph 1,
    상기 DC 전장부의 전력 공급 경로는, The power supply path of the DC electric unit is,
    전기 차량의 보조 전자 장치로 구동 전력을 공급하는 다중 병렬 배터리 뱅크를 운용하는 전기 차량를 위한 전력 제어 시스템.A power control system for electric vehicles operating multiple parallel battery banks that supply drive power to the electric vehicle's auxiliary electronics.
  7. 제1항에 있어서,According to paragraph 1,
    상기 제1 배터리 뱅크 및 상기 제2 배터리 뱅크는,The first battery bank and the second battery bank,
    다수개의 단위 배터리 셀들;A plurality of unit battery cells;
    상기 단위 배터리 셀들의 충방전 운용을 제어하는 BMS; 및BMS that controls charging and discharging operation of the unit battery cells; and
    상기 단위 배터리 셀들이 방전하는 전력을 외부 경로로 출력하는 것을 스위칭하는 고전압 출력단 스위치A high-voltage output stage switch that switches to output the power discharged by the unit battery cells to an external path.
    를 포함하는 다중 병렬 배터리 뱅크를 운용하는 전기 차량를 위한 전력 제어 시스템.A power control system for an electric vehicle operating multiple parallel battery banks including.
  8. 전기 차량의 키온(KeyOn)시, 상기 전기 차량에 장착된 배터리 뱅크들 중에서 내구 상태(SOH)를 확인하는 단계;Checking the state of durability (SOH) among battery banks mounted on the electric vehicle when the electric vehicle is keyed on;
    내구 상태(SOH)가 가장 우수한 것을 주행 모터 구동에 사용할 제1 배터리 뱅크로 지정하고, 다음으로 우수한 것을 DC 전장부에 사용할 제2 배터리 뱅크로 지정하는 뱅크 지정 단계; 및A bank designation step in which the one with the best state of durability (SOH) is designated as the first battery bank to be used for driving the traveling motor, and the next best battery bank is designated as the second battery bank to be used in the DC electric unit; and
    상기 전기 차량의 운행 중 상기 제1 배터리 뱅크의 충전 상태가 기준 상태 미만이면, 상기 제2 배터리 뱅크로 스왑을 수행하는 단계If the state of charge of the first battery bank is below the reference state while the electric vehicle is operating, performing swap to the second battery bank.
    를 포함하는 다중 병렬 배터리 뱅크를 운용하는 전기 차량를 위한 전력 제어 방법.Power control method for an electric vehicle operating multiple parallel battery banks including.
  9. 제8항에 있어서,According to clause 8,
    상기 뱅크 지정 단계에서는,In the bank designation step,
    상기 배터리 뱅크들의 내구 상태들의 편차가 소정의 유사 범위에 속하는지 확인하고, 유사 범위에 속하면, 충전량이 가장 많은 배터리 뱅크를 상기 제1 배터리 뱅크로 지정하고, 다음으로 많은 배터리 뱅크를 상기 제2 배터리 뱅크로 지정하는 다중 병렬 배터리 뱅크를 운용하는 전기 차량를 위한 전력 제어 방법.Check whether the deviation of the durability states of the battery banks falls within a predetermined similar range, and if it falls within the similar range, designate the battery bank with the largest amount of charge as the first battery bank, and designate the battery bank with the largest amount of charge as the second battery bank. Power control method for electric vehicles operating multiple parallel battery banks, designated as battery banks.
  10. 제8항에 있어서,According to clause 8,
    상기 스왑을 수행하는 단계는,The steps for performing the swap are:
    상기 제1 배터리 뱅크의 전력 공급 경로를 차단하고, 상기 주행 모터 구동 및 상기 DC 전장부에서 사용할 전력을 상기 제2 배터리 뱅크로부터 공급하는 단계; 및blocking the power supply path of the first battery bank, and supplying power to be used in driving the travel motor and the DC electric unit from the second battery bank; and
    상기 제2 배터리 뱅크의 충전 상태를 모니터링하는 단계Monitoring the state of charge of the second battery bank
    를 포함하는 다중 병렬 배터리 뱅크를 운용하는 전기 차량를 위한 전력 제어 방법.Power control method for an electric vehicle operating multiple parallel battery banks including.
  11. 제10항에 있어서,According to clause 10,
    상기 스왑을 수행하는 단계에서는,In the step of performing the swap,
    상기 전기 차량의 모터의 회생 전류로 상기 제1 배터리 뱅크를 충전하는 다중 병렬 배터리 뱅크를 운용하는 전기 차량를 위한 전력 제어 방법.A power control method for an electric vehicle operating multiple parallel battery banks that charges the first battery bank with regenerative current from a motor of the electric vehicle.
  12. 제10항에 있어서,According to clause 10,
    상기 스왑을 수행하는 단계 이후, After performing the swap,
    상기 제2 배터리 뱅크의 충전 상태가 기준 상태 미만이면, 상기 제1 배터리 뱅크로 스왑을 수행하는 단계If the state of charge of the second battery bank is below the reference state, performing swap with the first battery bank.
    를 더 포함하는 다중 병렬 배터리 뱅크를 운용하는 전기 차량를 위한 전력 제어 방법.A power control method for an electric vehicle operating multiple parallel battery banks, further comprising:
  13. 제8항에 있어서,According to clause 8,
    상기 전기 차량의 VCU 슬립(sleep) 상태에서 상기 전기 차량의 보조 배터리를 충전하는 단계Charging the auxiliary battery of the electric vehicle in a VCU sleep state of the electric vehicle
    를 더 포함하는 다중 병렬 배터리 뱅크를 운용하는 전기 차량를 위한 전력 제어 방법.A power control method for an electric vehicle operating multiple parallel battery banks, further comprising:
  14. 전기 차량의 VCU 슬립(sleep) 상태에서 보조 배터리 충전 여부를 주기적으로 모니터링하기 위해 웨이크업하는 단계;Waking up the VCU of the electric vehicle from a sleep state to periodically monitor whether the auxiliary battery is charging;
    상기 전기 차량에 장착된 배터리 뱅크들의 내구 상태(SOH)를 확인하는 단계;Checking the state of durability (SOH) of battery banks mounted on the electric vehicle;
    상기 배터리 뱅크들의 내구 상태들의 편차가 소정의 유사 범위에 속하는지 확인하고, 유사 범위에 속하면, 충전량이 가장 많은 배터리 뱅크를 선정하고, 유사 범위에 속하지 않으면, 내구 상태가 가장 우수한 배터리 뱅크를 선정하는 단계; 및Check whether the deviation of the durability states of the battery banks falls within a predetermined similar range. If it falls within a similar range, select the battery bank with the highest charge. If it does not fall within the similar range, select the battery bank with the best durability state. steps; and
    선정된 배터리 뱅크의 전력으로 상기 보조 배터리를 충전하는 단계 Charging the auxiliary battery with power from the selected battery bank.
    를 포함하는 다중 병렬 배터리 뱅크를 운용하는 전기 차량를 위한 보조 배터리 충전 방법.A method of charging an auxiliary battery for an electric vehicle operating multiple parallel battery banks including.
PCT/KR2023/012457 2022-09-28 2023-08-23 Power control system and method for electric vehicle operating multiple parallel battery banks, and method for charging auxiliary battery WO2024071689A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220123205A KR20240044014A (en) 2022-09-28 2022-09-28 Power Control system and Method for Electric Vehicle Operating Multiple Parallel Battery Banks, Auxiliary Battery Charging Method
KR10-2022-0123205 2022-09-28

Publications (1)

Publication Number Publication Date
WO2024071689A1 true WO2024071689A1 (en) 2024-04-04

Family

ID=90478452

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/012457 WO2024071689A1 (en) 2022-09-28 2023-08-23 Power control system and method for electric vehicle operating multiple parallel battery banks, and method for charging auxiliary battery

Country Status (2)

Country Link
KR (1) KR20240044014A (en)
WO (1) WO2024071689A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016031879A (en) * 2014-07-30 2016-03-07 三菱自動車工業株式会社 Vehicle battery controller
KR20160094228A (en) * 2015-01-30 2016-08-09 삼성에스디아이 주식회사 Battery system and energy storage system including the same
KR20180057191A (en) * 2016-11-22 2018-05-30 쌍용자동차 주식회사 Discharge preventing device and method of auxiliary battery
KR20210029424A (en) * 2019-09-06 2021-03-16 현대오트론 주식회사 System for controlling distribution of vehicle multi power source and method thereof
JP2021158709A (en) * 2020-03-25 2021-10-07 トヨタ自動車株式会社 Battery system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110843530B (en) 2019-10-23 2021-05-04 江苏聚磁电驱动科技有限公司 Multi-module intelligent driving system of large and medium power electric vehicle and large and medium power electric vehicle thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016031879A (en) * 2014-07-30 2016-03-07 三菱自動車工業株式会社 Vehicle battery controller
KR20160094228A (en) * 2015-01-30 2016-08-09 삼성에스디아이 주식회사 Battery system and energy storage system including the same
KR20180057191A (en) * 2016-11-22 2018-05-30 쌍용자동차 주식회사 Discharge preventing device and method of auxiliary battery
KR20210029424A (en) * 2019-09-06 2021-03-16 현대오트론 주식회사 System for controlling distribution of vehicle multi power source and method thereof
JP2021158709A (en) * 2020-03-25 2021-10-07 トヨタ自動車株式会社 Battery system

Also Published As

Publication number Publication date
KR20240044014A (en) 2024-04-04

Similar Documents

Publication Publication Date Title
WO2011105794A2 (en) Hybrid cell system provided with a serial switching circuit
WO2015016600A1 (en) Apparatus and method for controlling battery
WO2012018205A2 (en) Electric vehicle and charging control method for auxiliary battery thereof
WO2012018204A2 (en) Electric vehicle and charging control method for battery thereof
WO2013125850A1 (en) System and method for allocating identifier to multi-bms
WO2012018206A2 (en) Battery management apparatus for an electric vehicle, and method for managing same
WO2011083993A2 (en) Battery control device and method
EP2715861A2 (en) Secondary battery management system and method for exchanging battery cell information
WO2014030839A1 (en) Relay control system and method for controlling same
WO2011102576A1 (en) Abnormality diagnosis device and method of cell balancing circuit
WO2010087608A2 (en) Charge equalization apparatus and method for series-connected battery string
WO2011108788A1 (en) Abnormality diagnostic device and method of cell balancing circuits
WO2013119070A1 (en) Cell balancing circuit apparatus of battery management system using two-way dc-dc converter
WO2010024653A2 (en) Apparatus and method for controlling a switch unit between battery pack and a load, and battery pack and battery management apparatus including the apparatus
WO2017014487A1 (en) Battery stack balancing apparatus
WO2010062141A2 (en) Apparatus and method for monitoring cell voltage of battery pack
WO2021080247A1 (en) Apparatus and method for controlling turn-on operation of switch units included in parallel multi-battery pack
WO2023153651A1 (en) Battery charge/discharge device
WO2015056999A1 (en) Communication system having synchronized units and synchronization method for units
WO2022065634A1 (en) Electric vehicle charging method for preventing inrush current and device therefor
WO2024071689A1 (en) Power control system and method for electric vehicle operating multiple parallel battery banks, and method for charging auxiliary battery
WO2020004820A1 (en) Circulation charging system for electric vehicle
WO2018110734A1 (en) Electric vehicle battery charging system and method using multi-layer division scheme
WO2014084631A1 (en) Cell balancing device of battery module and method therefor
WO2021033956A1 (en) Battery system and operating method thereof