WO2024071491A1 - Microorganism having mycosporine-like amino acid producing ability, and method for producing mycosporine-like amino acids using same - Google Patents

Microorganism having mycosporine-like amino acid producing ability, and method for producing mycosporine-like amino acids using same Download PDF

Info

Publication number
WO2024071491A1
WO2024071491A1 PCT/KR2022/014844 KR2022014844W WO2024071491A1 WO 2024071491 A1 WO2024071491 A1 WO 2024071491A1 KR 2022014844 W KR2022014844 W KR 2022014844W WO 2024071491 A1 WO2024071491 A1 WO 2024071491A1
Authority
WO
WIPO (PCT)
Prior art keywords
mycosporine
microorganism
amino acids
amino acid
gene
Prior art date
Application number
PCT/KR2022/014844
Other languages
French (fr)
Korean (ko)
Inventor
배상정
한지숙
최원우
Original Assignee
큐티스바이오 주식회사
서울대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 큐티스바이오 주식회사, 서울대학교산학협력단 filed Critical 큐티스바이오 주식회사
Publication of WO2024071491A1 publication Critical patent/WO2024071491A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds

Definitions

  • the present invention relates to a microorganism having the ability to produce mycosporine-like amino acids and a method for producing mycosporine-like amino acids using the same.
  • UV blocking materials are used to protect the skin from UV rays.
  • oxybenzone, zinc oxide (ZnO), and titanium dioxide (TiO2) are UV blocking substances that are widely used as cosmetic additives, but due to their negative effects such as causing dermatitis or environmental pollution problems, safer bio-based UV rays are used. Development of barrier materials is required.
  • Mycosporine-like amino acids are natural UV-blocking materials produced by marine microorganisms or algae exposed to strong light.
  • 4-Deoxygadusol (4-DG) is a common precursor of MAA, and single and double substitution of amino acids has aminocyclohexenone and aminocycloheximine structures, respectively. Additionally, there are more than 30 different mycosporin-like amino acids depending on the type of amino acid combined and additional modifications.
  • These different types of MAAs can have different absorption spectra including both UV-A (315-400 nm) and UV-B (310-360 nm).
  • Mycosporine-like amino acids are naturally produced in microorganisms such as microalgae, but the amount is extremely small and the conditions for culturing and extraction/purification are complicated, making mass production difficult. Therefore, there is a need to develop new microorganisms with excellent production efficiency of mycosporin-like amino acids.
  • the present invention provides a microorganism that produces a mycosporine-like amino acid in which the activity of 3-deoxy-7-phosphoheptulonate synthase is inactivated compared to unmodified microorganisms.
  • the present invention includes culturing the microorganism;
  • the present invention seeks to provide a method for producing mycosporine-like amino acids, comprising the step of recovering mycosporine-like amino acids from the cultured microorganism or medium.
  • the present invention seeks to provide a composition for producing mycosporin-like amino acids, comprising the above microorganisms.
  • One aspect of the present invention is a microorganism that produces a mycosporin-like amino acid in which the activity of 3-deoxy-7-phosphoheptulonate synthase is inactivated compared to unmodified microorganisms. provides.
  • 3-deoxy-7-phosphoheptulonate synthase refers to phosphoenolpyruvate (PEP) and D-erythrose 4-phosphate (E4P). It is an enzyme involved in converting 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP).
  • the shikimate pathway a sub-pathway of the pentose phosphate pathway, is used.
  • the first step of the shikimate pathway is the conversion of phosphoenolpyruvate (PEP) and D-erythrose 4-phosphate (E4P) to 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP).
  • 3-deoxy-7-phosphoheptulonate synthase (DAHPS) an enzyme involved in this process, was inactivated.
  • the term "inactivation” refers to a case where the activity of the enzyme protein of the original microorganism is weakened compared to the intrinsic activity or activity before modification; When the protein is not expressed at all; Or, even if expressed, it means that there is no activity.
  • the inactivation occurs when the activity of the enzyme itself is weakened or eliminated compared to the activity of the enzyme originally possessed by the microorganism due to mutation of the polynucleotide encoding the enzyme, etc.; When the overall level of enzyme activity within the cell is lowered or eliminated compared to natural microorganisms due to inhibition of expression or translation of genes encoding enzymes; When part or all of the gene encoding the enzyme is deleted; and combinations thereof, but is not limited thereto.
  • non-modified microorganism refers to a change in the characteristics of a microorganism due to a genetic mutation in a specific protein of the microorganism being compared due to natural or artificial factors, the activity of a specific protein originally possessed by the parent strain before the change in the characteristics. refers to the microorganisms it contains.
  • unmodified microorganism may be used interchangeably with “microorganism with intrinsic activity” in which no genetic mutation has occurred.
  • Inactivation of the enzyme activity can be achieved by applying various methods well known in the art.
  • Examples of the method include: 1) a method of deleting all or part of the gene on the chromosome encoding the enzyme; 2) Modification of the expression control sequence to reduce the expression of the gene on the chromosome encoding the protein, 3) Modification of the gene sequence on the chromosome encoding the protein to eliminate or weaken the activity of the protein, 4) Modification of the gene sequence encoding the protein Introduction of antisense oligonucleotides (eg, antisense RNA) that bind complementary to the transcript of a gene on a chromosome; 5) A secondary structure is formed by adding a sequence complementary to the Shine-Dalgarno sequence in front of the Shine-Dalgarno sequence of the gene on the chromosome encoding the protein, making attachment of ribosomes impossible.
  • antisense oligonucleotides eg, antisense RNA
  • the method of deleting part or all of the gene on the chromosome encoding the enzyme involves replacing the polynucleotide encoding the endogenous target protein in the chromosome with a polynucleotide or marker gene in which a portion of the nucleotide sequence has been deleted through a vector for insertion into the chromosome into a microorganism. It can be done by doing.
  • a method for deleting part or all of a polynucleotide a method for deleting a polynucleotide by homologous recombination may be used, but is not limited thereto.
  • the method of modifying the expression control sequence is carried out by inducing mutations in the expression control sequence by deletion, insertion, non-conservative or conservative substitution of the nucleic acid sequence, or a combination thereof to further weaken the activity of the expression control sequence. This can be accomplished by replacing the nucleic acid sequence with an active nucleic acid sequence.
  • the expression control sequence includes, but is not limited to, a promoter, an operator sequence, a sequence encoding a ribosome binding site, and a sequence that regulates the termination of transcription and translation.
  • the method of modifying the gene sequence on the chromosome is carried out by inducing a mutation in the gene sequence by deletion, insertion, non-conservative or conservative substitution, or a combination thereof to further weaken the activity of the enzyme, or to have a weaker activity. This can be done by replacing with an improved gene sequence or a gene sequence modified to be inactive, but is not limited to this.
  • polynucleotide may be described as a gene if it is a collection of polynucleotides capable of functioning.
  • polynucleotide and gene may be used interchangeably, and polynucleotide sequence and nucleotide sequence may be used interchangeably.
  • “some” may vary depending on the type of polynucleotide, but may be specifically 1 to 300, more specifically 1 to 100, and even more specifically 1 to 50, but is not particularly limited thereto. no.
  • the microorganism of the present invention can produce mycosporine-like amino acids.
  • mycosporine-like amino acids refers to cyclic compounds that absorb ultraviolet rays.
  • the mycosporine-like amino acid is not limited as long as it can absorb ultraviolet rays, but specifically includes compounds having a central ring of cyclohexanone or cyclohexenimine; Alternatively, it may be a compound in which various substances such as amino acids are bound to the central ring.
  • mycosporine-like amino acids may be used interchangeably with MAAs and MAAs.
  • the term “microorganism producing mycosporine-like amino acid” may refer to a microorganism containing a gene for an enzyme involved in the biosynthesis of a mycosporine-like amino acid or a cluster of such genes.
  • the term “mycosporine-like amino acid biosynthesis gene” refers to a gene encoding an enzyme involved in the biosynthesis of mycosporine-like amino acid, and also includes clusters of the above genes.
  • the mycosporine-like amino acid biosynthetic gene includes both exogenous and/or endogenous genes of the microorganism, as long as the microorganism containing it can produce mycosporine-like amino acid.
  • the foreign gene may be homologous and/or heterologous.
  • the mycosporine-like amino acid biosynthesis genes are not limited to the microbial species from which the genes are derived, as long as the microorganism containing them can produce enzymes involved in mycosporine-like amino acid biosynthesis and consequently produce mycosporine-like amino acids.
  • cyanobacteria Anabaena variabilis Nostoc punctiforme , Nodularia spumigena , Cyanothes genus PCC 7424 ( Cyanothecesp . PCC 7424), Lyngbyasp . PCC 8106), Microcystis aeruginosa , Microcoleus chthonoplastes , Cyanothes ATCC 51142 ( Cyanothecesp .
  • Aspergillus clavatus Nectriahaematococca , Aspergillus nidulans, Gibberellazeae , Verticillium albo-atrum , Botrioti Botryotinia fuckeliana , Phaeosphaerianodorum , or Nematostellavectensis , Heterocapsa triquetra, Oxyrrhis marina, Calo It may be Karlodinium micrum, Actinosynnemamirum , etc., but is not limited thereto.
  • the microorganism may contain mycosporin-like amino acid biosynthetic genes.
  • the mycosporine-like amino acid biosynthetic gene is not limited to the name of the enzyme or the originating microorganism as long as the microorganism can produce mycosporine-like amino acid, but 2-dimethyl 4-deoxygadusol synthetase (2-demethyl 4-deoxygadusol) synthase: DDGS), O-methyltransferase (O-MT), ATP-grasp ligase, and D-alanine D-alanine ligase (D-Ala D-Ala) At least one, specifically, at least 1, at least 2, at least 3, or all enzyme proteins selected from the group consisting of ligase); Alternatively, it may include a gene encoding an enzyme protein with the same and/or similar activity.
  • a microorganism that produces a mycosporine-like amino acid may contain a gene or a cluster of genes for an enzyme that has the activity of attaching additional amino acid residues to the mycosporine-like amino acid.
  • the gene or the cluster of genes is not limited to the name of the enzyme or the microorganism from which it is derived, as long as the microorganism that produces mycosporine-like amino acids can produce mycosporine-like amino acids with two or more amino acid residues attached, but is specifically non-ribosomal.
  • Peptide synthetase non-ribosomal peptide synthetase (NRPS), non-ribosomal peptide synthetase-like enzyme (NRPS-like enzyme) and D-alanine D-alanine ligase (D-Ala D) -Ala ligase: DDL), one or more selected from the group consisting of, specifically, 1 or more, 2 or more, 3 or more, or all enzyme proteins; Alternatively, it may include a gene encoding an enzyme protein with the same and/or similar activity.
  • Some mycosporine-like amino acids contain a second amino acid residue at mycosporine-glycine.
  • One or more enzymes selected from the group consisting of non-ribosomal peptide synthetase, non-ribosomal peptide synthetase-like enzyme and D-alanine D-alanine ligase are capable of attaching a second amino acid residue to mycosporine-glycine.
  • protein inactivation, protein activity enhancement, gene introduction, and/or gene deletion may be performed simultaneously, sequentially, or in reverse order, regardless of the order.
  • the microorganism may be a naturally occurring microorganism that originally possesses the mycosporin-like amino acid biosynthetic gene; and may be microorganisms into which heterologous and/or homologous mycosporin-like amino acid biosynthetic genes have been introduced, but are not limited thereto.
  • microorganism may be a microorganism with enhanced activity of an enzyme encoded by an endogenous and/or introduced gene related to mycosporine-like amino acid biosynthesis, but is not limited thereto.
  • microorganism may specifically be yeast, but is not limited thereto.
  • the yeast includes Saccharomyces , Candida , Debaryomyces , Hansenula , Kluyveromyces , Pichia , and Schizosaccharomyces ( It may be yeast of genera such as Schizosaccharomyces , Yarrowia , Schwanniomyces , Arxula , and Malassezia.
  • the yeast is Saccharomyces cerevisiae , Candida tropicalis, Candida utilis , Candida boidinii, Candida albicans , Cluyvero.
  • Myces lactis Kluyveromyceslactis
  • Pichia pastoris Pichiapastoris
  • Pichiastipitis Schizosaccharomycespombe , Hansenulapolymorpha , Yarrowia lipolytica
  • Schwanniomyces occidentalis Arxula adeninivorans , Malassezai restricta , Malassezai furfur , etc.
  • the microorganism has a mycosporin-like amino acid production ability of about 1% or more, specifically about 1% or more, about 2.5% or more, about 5% or more, about 6% or more, or about 7% compared to the mycosporine-like amino acid production ability of the parent strain or unmodified microorganism before mutation.
  • the recombinant strain with increased production capacity has a mycosporine-like amino acid production capacity of about 1.01 times or more, about 1.02 times or more, about 1.03 times or more, about 1.05 times or more, or about 1.05 times more than the parent strain or unmodified microorganism before mutation.
  • non-modified microorganism does not exclude hosts that contain mutations that may occur naturally in microorganisms, and are either wild-type hosts or natural hosts themselves, or are characterized by genetic mutations caused by natural or artificial factors. It may refer to the host before being changed.
  • the “non-transformed microorganism” refers to “pre-transformed host”, “pre-transformed strain”, “pre-transformed microorganism”, “non-mutated host”, “non-mutated strain”, “non-mutated microorganism”, “non-transformed host”, “ It can be used interchangeably with “unmodified strain” or “reference microorganism.”
  • the microorganism producing mycosporine-like amino acids includes 2-dimethyl 4-deoxygadusol synthase (DDGS), O-methyltransferase (O-MT), ATP-grasp ligase, and D -Alanine may include, but is not limited to, a gene encoding one or more proteins selected from the group consisting of D-alanine ligase.
  • DDGS 2-dimethyl 4-deoxygadusol synthase
  • O-MT O-methyltransferase
  • ATP-grasp ligase ATP-grasp ligase
  • D -Alanine may include, but is not limited to, a gene encoding one or more proteins selected from the group consisting of D-alanine ligase.
  • the 2-dimethyl 4-deoxygadusol synthase is, for example, as shown in Figure 1, 2-dimethyl-4-deoxygadusol (2-demethyl) from sedoheptulose 7-phosphate (S7P) 4-deoxygadusol: DDG) can be synthesized, but is not limited to this.
  • the O-methyltransferase can convert, for example, 2-dimethyl-4-deoxygadusol (DDG) into 4-deoxygadusol (4-DG), but is limited to this. It doesn't work.
  • DDG 2-dimethyl-4-deoxygadusol
  • 4-DG 4-deoxygadusol
  • the ATP-grasp ligase can, for example, catalyze glycine binding (glycylation) to convert 4-deoxygadusol (4-DG) into mycosporine-glycine (MG), but is limited thereto. no.
  • the D-alanine D-alanine ligase is formed by attaching L-serine or L-threonine to mycosporine-glycine (MG) to produce shinorine or Porphyra-334 ( porphyra-334) may be involved in the formation, but is not limited to this.
  • the 2-dimethyl 4-deoxygadusol synthase, O-methyl transferase, ATP-grasp ligase, and D-alanine D-alanine ligase are amino acids of proteins that are active depending on the species or microorganism of the microorganism. Since there may be differences in sequence, it is not limited to its origin or sequence.
  • the microorganism producing mycosporine-like amino acids includes glucose-6-phosphate 1-dehydrogenase and 6-phosphogluconate dehydrogenase.
  • the activity of one or more proteins selected from the group consisting of phosphogluconate dehydrogenase may be enhanced compared to unmodified microorganisms.
  • the glucose-6-phosphate 1-dehydrogenase converts glucose 6-phosphate (G6P), the first step of the pentose phosphate pathway, into 6-phospho-D-glucono-1,5-lactone (6) -phospho-D-glucono-1,5-lactone), but is not limited to this.
  • the 6-phosphogluconate dehydrogenase is an enzyme involved in converting D-gluconate 6-phosphate into D-ribulose 5-phosphate. , but is not limited to this.
  • glucose-6-phosphate 1-dehydrogenase and 6-phosphogluconate dehydrogenase origin I am not limited to rank.
  • the gene encoding glucose 6-phosphate 1-dehydrogenase is ZWF (YALI0E22649), and the gene encoding 6-phosphogluconate dehydrogenase is GND (YALI0B15598p), but these are limited. It doesn't work.
  • the term “enhancement of activity” means that the activity of an enzyme protein is introduced or the activity is improved compared to the intrinsic activity or activity before modification of the microorganism.
  • the “introduction” of the activity means that the activity of a specific protein that the microorganism did not originally possess is naturally or artificially revealed.
  • the activity enhancement can be achieved by introducing exogenous glucose-6-phosphate 1-dehydrogenase and/or 6-phosphogluconate dehydrogenase; or enhancing the activity of endogenous glucose-6-phosphate 1-dehydrogenase and/or 6-phosphogluconate dehydrogenase.
  • the method of enhancing activity herein includes 1) increasing the copy number of polynucleotides encoding the enzymes, 2) modifying the expression control sequence to increase expression of the polynucleotide, and 3) enhancing the activity of the enzymes.
  • this can be done by modifying the polynucleotide sequence on the chromosome, or 4) a combination thereof, but is not limited thereto.
  • Increasing the copy number of the polynucleotide is not particularly limited thereto, but may be performed by being operably linked to a vector or by inserting it into a chromosome in a host cell. Additionally, as an aspect of copy number increase, it can be performed by introducing a foreign polynucleotide showing enzyme activity or a codon-optimized variant polynucleotide of the polynucleotide into the host cell.
  • the foreign polynucleotide can be used without restrictions on its origin or sequence as long as it exhibits the same/similar activity as the enzyme.
  • the introduction can be performed by a person skilled in the art by appropriately selecting a known transformation method, and by expressing the introduced polynucleotide in the host cell, an enzyme can be produced and its activity can be increased.
  • the modification of the expression control sequence to increase the expression of the polynucleotide is not particularly limited, but includes deletion, insertion, non-conservative or conservative substitution of the nucleic acid sequence or these to further enhance the activity of the expression control sequence. It can be performed by inducing a mutation in the sequence through a combination of , or by replacing it with a nucleic acid sequence with stronger activity.
  • the expression control sequence is not particularly limited, but may include a promoter, an operator sequence, a sequence encoding a ribosome binding site, and a sequence that regulates the termination of transcription and translation.
  • a strong heterologous promoter may be connected to the upper part of the polynucleotide expression unit instead of the original promoter, and may be operably linked to the promoter to improve the expression rate of the polynucleotide encoding the enzyme, but is not limited to this. .
  • the modification of the polynucleotide sequence on the chromosome is not particularly limited, but may include deletion, insertion, non-conservative or conservative substitution of the nucleic acid sequence, or a combination thereof to further enhance the activity of the polynucleotide sequence. This can be done by inducing a mutation in the phase, or by replacing it with an improved polynucleotide sequence to have stronger activity.
  • the method of modification by a combination of 1) to 3) includes increasing the copy number of the polynucleotide encoding the enzyme, modifying the expression control sequence to increase its expression, and modifying the polynucleotide sequence on the chromosome. It can be performed by applying one or more of the following methods together: modification and modification of a foreign polynucleotide showing the activity of the enzyme or a codon-optimized variant polynucleotide thereof.
  • one or more genes selected from the group consisting of glucose-6-phosphate 1-dehydrogenase and 6-phosphogluconate dehydrogenase genes may be operably linked to the UAS1B8TEF promoter.
  • the UAS1B8TEF promoter may consist of SEQ ID NO: 18.
  • promoter refers to a nucleic acid sequence that controls the expression of a transcription unit.
  • Promoter region refers to a regulatory region capable of binding RNA polymerase within a cell and initiating transcription of the downstream (3'direction) coding region. Within the promoter region, protein binding regions (consensus sequences) responsible for binding RNA polymerase will be found, such as the putative -35th region and the Pribnow box (-10th region). Additionally, the promoter region may include a transcription initiation site and binding sites for regulatory proteins.
  • protein containing an amino acid sequence may be used interchangeably with the expressions “protein having an amino acid sequence” or “protein consisting of an amino acid sequence.”
  • the enzymes have the same or corresponding biological activity as each enzyme, not only the SEQ ID NOs, but also the amino acid sequences are 80% or more, specifically 90% or more, more specifically 95% or more, and more. More specifically, it may include proteins showing more than 99% homology.
  • the term “homology” refers to the degree of matching with a given amino acid sequence or nucleotide sequence and can be expressed as a percentage.
  • a given amino acid or nucleotide sequence and its homologous sequence that has the same or similar activity is expressed as “% homology”.
  • standard software for calculating parameters such as score, identity and similarity, specifically BLAST 2.0, or hybridization used under defined stringent conditions. It can be confirmed by comparing sequences experimentally, and appropriate hybridization conditions defined are within the scope of the relevant technology and methods well known to those skilled in the art (e.g., J.
  • stringent conditions refers to conditions that enable specific hybridization between polynucleotides. For example, these conditions are specifically described in the literature (e.g., J. Sambrook et al., supra).
  • the term “vector” refers to a DNA preparation containing the base sequence of a polynucleotide encoding the target protein operably linked to a suitable control sequence to enable expression of the target protein in a suitable host.
  • the regulatory sequences may include a promoter capable of initiating transcription, an optional operator sequence to regulate such transcription, a sequence encoding a suitable mRNA ribosome binding site, and sequences that regulate the termination of transcription and translation.
  • the vector After transformation into a suitable host cell, the vector can replicate or function independently of the host genome and can be integrated into the genome itself.
  • the vector used in one embodiment is not particularly limited as long as it can be expressed in a host cell, and any vector known in the art can be used.
  • Examples of commonly used vectors include plasmids, cosmids, viruses, and bacteriophages in a natural or recombinant state.
  • pWE15, M13, MBL3, MBL4, IXII, ASHII, APII, t10, t11, Charon4A, and Charon21A can be used as phage vectors or cosmid vectors
  • pBR, pUC, and pBluescriptII series can be used as plasmid vectors.
  • pGEM-based, pTZ-based, pCL-based, pCRE-based, pYL-based and pET-based, etc. can be used, but are not limited thereto.
  • the term “recombinant vector” refers to a recombinant carrier into which a heterologous DNA fragment is inserted, and generally refers to a double-stranded DNA fragment.
  • heterologous DNA refers to heterologous DNA, which is DNA not naturally found in host cells. Once within a host cell, the recombinant vector can replicate independently of the host chromosomal DNA and several copies of the vector and its inserted (heterologous) DNA can be produced.
  • the gene or the recombinant vector is transformed or transfected into a host cell.
  • exogenous nucleic acids DNA or RNA
  • electrophoresis calcium phosphate precipitation
  • DEAE-dextran transfection lipofection
  • the gene must be operably linked to transcriptional and translational expression control sequences that are functional within the selected expression host.
  • the expression control sequence and the corresponding gene are included in one recombinant vector that also contains a bacterial selection marker and a replication origin. If the host cell is a eukaryotic cell, the recombinant vector must further contain an expression marker useful in the eukaryotic expression host.
  • Host cells transformed by the above-described recombinant vector constitute another aspect of the present invention.
  • transformation means introducing DNA into a host so that the DNA can be replicated as an extrachromosomal factor or by completing chromosomal integration.
  • not all vectors function equally well in expressing the DNA sequence of the present invention.
  • not all hosts perform equally well for the same expression system.
  • a person skilled in the art can make an appropriate selection among various vectors, expression control sequences, and hosts without excessive experimental burden and without departing from the scope of the present invention. For example, when selecting a vector, the host must be considered, because the vector must replicate within it.
  • the copy number of the vector, the ability to control copy number and the expression of other proteins encoded by the vector, such as antibiotic markers, should also be considered.
  • operably linked means that the polynucleotide sequence is functionally linked to a promoter sequence that initiates and mediates transcription of the polynucleotide encoding the target protein of the present application.
  • Operable linkages can be prepared using genetic recombination techniques known in the art, and site-specific DNA cutting and linking can be made using cutting and linking enzymes known in the art, but are not limited thereto.
  • Another aspect of the present invention includes culturing the microorganism; and recovering the mycosporine-like amino acid from the cultured microorganism or medium.
  • microorganism and mycosporin-like amino acid are as described above.
  • the term “culture” means growing the microorganism under appropriately controlled environmental conditions.
  • the culture process can be carried out according to appropriate media and culture conditions known in the art. This culture process can be easily adjusted and used by a person skilled in the art depending on the selected microorganism. Specifically, the culture may be batch, continuous, and/or fed-batch, but is not limited thereto.
  • the term “medium” refers to a material that is mainly mixed with nutrients necessary for cultivating the microorganisms, and supplies nutrients and growth factors, including water, which are essential for survival and development.
  • the medium and other culture conditions used for cultivating the microorganisms can be any medium used for cultivating ordinary microorganisms without particular restrictions, but the microorganisms can be grown with appropriate carbon sources, nitrogen sources, personnel, inorganic compounds, amino acids, and /Or, it can be cultured under aerobic conditions in a normal medium containing vitamins, etc., while controlling temperature, pH, etc.
  • the carbon source includes carbohydrates such as glucose, saccharose, lactose, fructose, sucrose, maltose, etc.; Sugar alcohols such as mannitol, sorbitol, etc., organic acids such as pyruvic acid, lactic acid, citric acid, etc.; Amino acids such as glutamic acid, methionine, lysine, etc. may be included. Additionally, natural organic nutrient sources such as starch hydrolyzate, molasses, blackstrap molasses, rice bran, cassava, bagasse and corn steep liquor can be used, specifically glucose and sterilized pre-treated molasses (i.e. converted to reducing sugars). Carbohydrates such as molasses) can be used, and various other carbon sources in an appropriate amount can be used without limitation. These carbon sources may be used alone or in combination of two or more types, but are not limited thereto.
  • the nitrogen source includes inorganic nitrogen sources such as ammonia, ammonium sulfate, ammonium chloride, ammonium acetate, ammonium phosphate, anmonium carbonate, and ammonium nitrate; Organic nitrogen sources such as amino acids such as glutamic acid, methionine, and glutamine, peptone, NZ-amine, meat extract, yeast extract, malt extract, corn steep liquor, casein hydrolyzate, fish or its decomposition products, defatted soybean cake or its decomposition products, etc. can be used These nitrogen sources may be used individually or in combination of two or more types, but are not limited thereto.
  • inorganic nitrogen sources such as ammonia, ammonium sulfate, ammonium chloride, ammonium acetate, ammonium phosphate, anmonium carbonate, and ammonium nitrate
  • Organic nitrogen sources such as amino acids such as glutamic acid, methionine, and glutamine, peptone, NZ-amine, meat extract, yeast
  • the agent may include monopotassium phosphate, dipotassium phosphate, or a corresponding sodium-containing salt.
  • Inorganic compounds may include sodium chloride, calcium chloride, iron chloride, magnesium sulfate, iron sulfate, manganese sulfate, and calcium carbonate, and may also include amino acids, vitamins, and/or appropriate precursors. These components or precursors can be added to the medium batchwise or continuously. However, it is not limited to this.
  • compounds such as ammonium hydroxide, potassium hydroxide, ammonia, phosphoric acid, sulfuric acid, etc. can be added to the medium in an appropriate manner to adjust the pH of the medium. Additionally, during culturing, foam generation can be suppressed by using an antifoaming agent such as fatty acid polyglycol ester.
  • an antifoaming agent such as fatty acid polyglycol ester.
  • oxygen or oxygen-containing gas can be injected into the medium, or to maintain the anaerobic and microaerobic state, nitrogen, hydrogen, or carbon dioxide gas can be injected without gas injection, and is limited thereto. That is not the case.
  • the culture temperature can be maintained at 20 to 45°C, specifically 25 to 40°C, and culture can be performed for about 10 to 160 hours, but is not limited thereto.
  • Mycosporin-like amino acids produced by the above culture may be secreted into the medium or remain within the cells.
  • the recovery is performed according to the culture method of the microorganism, for example, batch, continuous, or fed-batch culture method.
  • the desired mycosporine-like amino acid may be collected using a suitable method known in the art. For example, centrifugation, filtration, crystallization, treatment with protein precipitants (salting out), extraction, ultrasonic disruption, ultrafiltration, dialysis, molecular sieve chromatography (gel filtration), adsorption chromatography, ion exchange chromatography, affinity.
  • Various chromatography such as chromatography, HPLC, or a combination of these methods can be used, and the desired mycosporine-like amino acid can be recovered from the medium or microorganism using a suitable method known in the art.
  • the production method may additionally include a purification step.
  • the purification can be performed using a suitable method known in the art.
  • the recovery step and the purification step may be performed continuously or discontinuously regardless of the order, or may be performed simultaneously or integrated into one step. , but is not limited to this.
  • Another aspect of the present invention provides a composition for producing a mycosporin-like amino acid, comprising the microorganism.
  • microorganism and mycosporin-like amino acid are as described above.
  • the composition includes (i) a gene that inactivates the activity of 3-deoxy-7-phosphoheptulonate synthase or a recombinant vector containing the same; (ii) one or more selected from the group consisting of 2-dimethyl 4-deoxygadusol synthase, O-methyltransferase, ATP-grasp ligase, and D-alanine D-alanine ligase, or a gene encoding the same; Recombinant vector containing it; (iii) a recombinant vector engineered to delete the 3-deoxy-7-phosphoheptulonate synthase gene or to suppress or reduce the expression of the gene; (iv) at least one selected from the group consisting of glucose-6-phosphate 1-dehydrogenase and 6-phosphogluconate dehydrogenase, a gene encoding the same, or a recombinant vector containing the same; and/or (v) a mutant microorganism comprising (i
  • the production ability of mycosporine-like amino acids is improved when 3-deoxy-7-phosphoheptulonate synthase (DAHPS) involved in the shikimate pathway is inactivated, so the microorganism according to the present invention is It can be usefully used to produce mycosporine-like amino acids.
  • DHPS 3-deoxy-7-phosphoheptulonate synthase
  • Figure 1 is a schematic diagram of the mycosporine-like amino acid production pathway and competition pathway.
  • ZWF and GND green
  • ARO3 and ARO4 red
  • Figure 2 schematically illustrates a method for constructing a plasmid for gene insertion to construct a mycosporine-like amino acid biosynthetic pathway.
  • Figure 3 is a graph showing the growth and mycosporine-like amino acid production of CBEYL002, CBEYL002 aro3 ⁇ , CBEYL002 aro4 ⁇ , and CBEYL002 aro3 ⁇ aro4 ⁇ strains.
  • PO refers to Porphyra-334
  • SH refers to Shinorin.
  • Figure 4 shows CBEYL002 aro3 ⁇ aro4 ⁇ [EV], CBEYL002 aro3 ⁇ aro4 ⁇ [PEXP-ZWF], CBEYL002 aro3 ⁇ aro4 ⁇ [P UAS1B8TEF(136) -ZWF], CBEYL002 aro3 ⁇ aro4 ⁇ [P UAS1B8TEF(136) - GND]
  • PO refers to Porphyra-334
  • SH refers to Shinorin.
  • Example 1 Construction of vector for genomic insertion of mycosporin-like amino acid biosynthetic gene derived from microalgae
  • the yeast Yarrowia lipolytica does not have a mycosporine-like amino acid biosynthetic pathway, so a foreign gene must be introduced to construct a mycosporine-like amino acid biosynthetic pathway (see Figure 1).
  • Mycosporine-like amino acids shinorine and porphyra-334 are synthesized through a four-step enzymatic conversion reaction from sedoheptulose 7-phosphate (S7P), an intermediate in the pentose phosphate pathway. Sedoheptulose 7-phosphate is converted to 2-dimethyl-4-deoxygadusol (DDGS) by 2-demethyl 4-deoxygadusol synthase (DDGS).
  • the genes encoding DDGS (Ava3858), O-MT (Ava3857), and ATP-grasp ligase (Ava3856) were derived from Anabaena variabilis (ATCC 29413) and used after codon optimization, and D-Ala D
  • the gene encoding -Ala ligase (NpF5597) was derived from Nostoc punctiforme (ATCC29133) and was used after codon optimization.
  • UAS1B8TEF (136) promoter a UAS1B8TEF (136) promoter - gene - CYC1 terminator cassette was created.
  • the genome insertion location was selected as one with good gene expression, referring to the literature (Holkenbrink et al, Biotechnol. J. 2018, 13, 1700543).
  • a plasmid was constructed so that the sequence of the genomic insertion site (0.9 to 1.0 kb) was included at both ends of the selection marker (LoxP-URA3-LoxP).
  • the genomic insertion sites are named IntC3, IntD1, and IntE3, and the corresponding sequences can be confirmed in the sequence list.
  • the four gene cassettes were cloned in the order of NPF5597, Ava3856, Ava3857, and Ava3858, and the final gene insertion plasmids were named 'IntC3-NAAA', 'IntD1-NAAA', and 'IntE3-NAAA' ( Figure 2 and Table 1).
  • Example 2 Construction of a strain with an inserted mycosporin-like amino acid biosynthetic gene
  • the IntD1-NAAA plasmid prepared in Example 1 was treated with NdeI restriction enzyme to prepare a cassette for inserting a mycosporine-like amino acid biosynthetic gene.
  • the cassette was transformed into the Polg ku70 ⁇ ura3 ⁇ strain (see Beag et al., Metabolic Engineering of Yarrowia lipolytica for the production of carotenoids, ß-carotene, and crocetin) using the LiAc/SS carrier DNA/PEG method. Selection was performed on SC-Ura plates. The URA3 selection marker was removed using pCRE expressing Cre recombinase. Using the same method, IntC3-NAAA and IntE3-NAAA produced in Example 1 were sequentially inserted and named as 'CBEYL002' strain.
  • Example 3 Construction of a vector capable of inactivating 3-deoxy-7-phosphoheptulonate synthase (DAHP synthase)
  • DAHPS 3-deoxy-7-phosphoheptulonate synthase
  • a stop codon was attempted to be inserted into the target gene using base editing technology based on the CRISPR system (Bae et al., Biotechnol. J. 2020, 15, 1900238).
  • the gRNA sequence was designed as shown in Table 2 so that a stop codon can be inserted into the gene, and the plasmid into which the sequence is inserted was pCRISPRyl-P TEFin -nCas9-pmCDA1-UGI[W] Inverse PCR was performed using the plasmid as a template.
  • target gene gRNA sequence number ARO3 ACCGAAACCGGACCGAGGGAC 26 ARO4 GCTGCGATCCAAGTCCAAGG 27
  • the pCRISPRyl-P TEFin -nCas9-pmCDA1-UGI[ARO3] or pCRISPRyl-P TEFin -nCas9-pmCDA1-UGI[ARO4] plasmid produced in Example 3 was added to the CBEYL002 strain using the LiAc/SS carrier DNA/PEG method. transformed. The obtained transformed yeast strain was inoculated into SC-Leu medium and cultured for about 16 to 18 hours, then appropriately diluted and cultured on a YPD (yeast extract-peptone-dextrose) plate.
  • YPD yeast extract-peptone-dextrose
  • CBEYL002 aro3 ⁇ aro4 ⁇ was created by transforming the CBEYL002 aro4 ⁇ strain with pCRISPRyl-P TEFin -nCas9-pmCDA1-UGI[ARO3]. The produced strains are shown in Table 4.
  • Example 5 ARO3 and ARO4 Evaluation of the ability of inactivated strains to produce mycosporine-like amino acids
  • MAA mycosporine-like amino acids
  • 1 mL of culture medium was centrifuged to obtain the supernatant, which was filtered through a 0.22 ⁇ m filter and subjected to HPLC analysis.
  • the CBEYL002 aro3 ⁇ strain with the ARO3 gene inactivated increased the production of mycosporine-like amino acids by about 38%
  • the CBEYL002 aro4 ⁇ strain with the ARO4 gene inactivated increased mycosporine production.
  • the production of similar amino acids increased by about 88%
  • the CBEYL002 aro3 ⁇ aro4 ⁇ strain, in which both ARO3 and ARO4 genes were inactivated increased mycosporine-like amino acid production by about 74%.
  • genes ARO3 YALI0B20020
  • ARO4 It can be seen that when YALI0C06952) is inactivated, the production of mycosporin-like amino acids increases.
  • Example 6 For strengthening the pentose phosphate pathway GND and ZWF Construction of vector for overexpression of
  • glucose 6-phosphate (G6P) the first step in the pentose phosphate pathway, is converted into 6-phospho-D-glucono-1,5-lactone.
  • the gene ZWF YALI0E22649 encoding the enzyme glucose-6-phosphate 1-dehydrogenase, which is involved in the conversion to Additionally, the enzyme 6-phosphogluconate dehydrogenase (6) is involved in converting D-gluconate 6-phosphate to D-ribulose 5-phosphate.
  • GND YALI0B15598p
  • plasmids that individually expressed these genes were constructed. Fragments of each gene were obtained through PCR from the genomic DNA of CBEYL002, and each gene was expressed under the control of the EXP promoter or the UAS1B8TEF (136) promoter. Insert the promoter-gene-terminator ( PEX20 ) cassette into the pYL-LEU plasmid to produce pYL-LEU, pYL-P EXP -ZWF-LEU, pYL-P EXP -GND-LEU, pYL-P UAS1B8TEF(136) -ZWF-LEU. , or pYL-P UAS1B8TEF(136) -GND-LEU plasmid was constructed. The constructed plasmids are shown in Table 6.
  • the pYL-P UAS1B8TEF(136) -GND-LEU plasmid was transformed using the LiAc/SS carrier DNA/PEG method. Transformed yeast strains are shown in Table 4.
  • the concentration of mycosporine-like amino acids was measured as described in Example 5 and is shown in Figure 4 and Table 7.
  • a strain in which the gene encoding 3-deoxy-7-phosphoheptulonate synthase (DAHPS) involved in the shikimate pathway is inactivated according to the present invention. It can be seen that when GND or ZWF is overexpressed under the control of the UAS1B8TEF (136) promoter, the production of mycosporine-like amino acids is significantly increased. This suggests that the microorganism according to one embodiment of the present invention can be usefully used to produce mycosporine-like amino acids.
  • DHPS 3-deoxy-7-phosphoheptulonate synthase

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Mycology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The present invention relates to a microorganism having a mycosporine-like amino acid producing ability and a method for producing mycosporine-like amino acids using same. According to one aspect of the present invention, when 3-deoxy-7-phosphoheptulonate synthase (DAHPS) involved in the shikimate pathway is inactivated, the mycosporine-like amino acid producing ability is improved, and thus, the microorganism according to the present invention can be effectively used to produce mycosporine-like amino acids.

Description

마이코스포린 유사 아미노산 생산능을 갖는 미생물 및 이를 이용한 마이코스포린 유사 아미노산의 생산 방법Microorganisms capable of producing mycosporine-like amino acids and method for producing mycosporine-like amino acids using the same
본 발명은 마이코스포린 유사 아미노산 생산능을 갖는 미생물 및 이를 이용한 마이코스포린 유사 아미노산의 생산 방법에 관한 것이다.The present invention relates to a microorganism having the ability to produce mycosporine-like amino acids and a method for producing mycosporine-like amino acids using the same.
자외선으로부터 피부를 보호하기 위해 다양한 화학, 물리적 자외선 차단 소재들이 사용되고 있다. 특히, 옥시벤존(oxybenzone), 산화아연(ZnO), 및 이산화타이타늄(TiO2)은 화장품 첨가제로 널리 사용되는 자외선 차단 물질이지만, 피부염을 초래하거나 환경오염 문제 등의 부정적인 효과 때문에 보다 안전한 바이오 기반의 자외선 차단 소재의 개발이 요구된다.A variety of chemical and physical UV blocking materials are used to protect the skin from UV rays. In particular, oxybenzone, zinc oxide (ZnO), and titanium dioxide (TiO2) are UV blocking substances that are widely used as cosmetic additives, but due to their negative effects such as causing dermatitis or environmental pollution problems, safer bio-based UV rays are used. Development of barrier materials is required.
마이코스포린 유사 아미노산 (mycosporine-like amino acids; MAAs)은 강한 빛에 노출되는 해양 미생물 또는 조류 등이 생산하는 천연 자외선 차단 소재이다. 4-데옥시가두솔(4-Deoxygadusol: 4-DG)은 MAA의 일반적인 전구체로 아미노산의 단일 치환 및 이중 치환은 각각 아미노시클로헥세논(aminocyclohexenone)과 아미노클로헥세이민(aminocycloheximine) 구조를 가진다. 또한 결합된 아미노산의 종류와 추가 변형에 따라 30여개 이상의 다양한 마이코스포린 유사 아미노산이 존재한다. 이러한 다양한 종류의 MAA는 UV-A (315~400 nm)와 UV-B (310~360 nm)를 모두 포함하는 서로 다른 흡수 스펙트럼을 가질 수 있다. Mycosporine-like amino acids (MAAs) are natural UV-blocking materials produced by marine microorganisms or algae exposed to strong light. 4-Deoxygadusol (4-DG) is a common precursor of MAA, and single and double substitution of amino acids has aminocyclohexenone and aminocycloheximine structures, respectively. Additionally, there are more than 30 different mycosporin-like amino acids depending on the type of amino acid combined and additional modifications. These different types of MAAs can have different absorption spectra including both UV-A (315-400 nm) and UV-B (310-360 nm).
마이코스포린 유사 아미노산은 미세조류 등의 미생물에서 자연적으로 생산되지만, 그 양이 극소량이며 배양 및 추출/정제하는 조건들이 복잡하여 대량 생산하기 어려운 문제가 있다. 따라서, 마이코스포린 유사 아미노산 생산 효율이 우수한 새로운 미생물의 개발이 필요한 실정이다.Mycosporine-like amino acids are naturally produced in microorganisms such as microalgae, but the amount is extremely small and the conditions for culturing and extraction/purification are complicated, making mass production difficult. Therefore, there is a need to develop new microorganisms with excellent production efficiency of mycosporin-like amino acids.
이에, 본 발명은 3-데옥시-7-포스포헵툴로네이트 합성 효소 (3-deoxy-7-phosphoheptulonate synthase)의 활성이 비변형 미생물에 비해 불활성화된, 마이코스포린 유사 아미노산을 생산하는 미생물을 제공하고자 한다.Accordingly, the present invention provides a microorganism that produces a mycosporine-like amino acid in which the activity of 3-deoxy-7-phosphoheptulonate synthase is inactivated compared to unmodified microorganisms. We would like to provide
또한, 본 발명은 상기 미생물을 배양하는 단계; 및 상기 배양된 미생물 또는 배지로부터 마이코스포린 유사 아미노산을 회수하는 단계를 포함하는, 마이코스포린 유사 아미노산의 생산방법을 제공하고자 한다.In addition, the present invention includes culturing the microorganism; The present invention seeks to provide a method for producing mycosporine-like amino acids, comprising the step of recovering mycosporine-like amino acids from the cultured microorganism or medium.
또한, 본 발명은 상기 미생물을 포함하는, 마이코스포린 유사 아미노산 생산용 조성물을 제공하고자 한다.In addition, the present invention seeks to provide a composition for producing mycosporin-like amino acids, comprising the above microorganisms.
본 발명의 일 양상은 3-데옥시-7-포스포헵툴로네이트 합성 효소 (3-deoxy-7-phosphoheptulonate synthase)의 활성이 비변형 미생물에 비해 불활성화된, 마이코스포린 유사 아미노산을 생산하는 미생물을 제공한다.One aspect of the present invention is a microorganism that produces a mycosporin-like amino acid in which the activity of 3-deoxy-7-phosphoheptulonate synthase is inactivated compared to unmodified microorganisms. provides.
본 명세서에서 용어 "3-데옥시-7-포스포헵툴로네이트 합성 효소"는 포스포에놀피루브산 (phosphoenolpyruvate: PEP)와 D-에리트로스 4-포스페이트 (D-erythrose 4-phosphate: E4P)를 3-데옥시-D-아라비노-헵툴로소네이트 7-포스페이트 (3-deoxy-D-arabino-heptulosonate 7-phosphate: DAHP)로 전환하는데 관여하는 효소이다.As used herein, the term "3-deoxy-7-phosphoheptulonate synthase" refers to phosphoenolpyruvate (PEP) and D-erythrose 4-phosphate (E4P). It is an enzyme involved in converting 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP).
PED + E4P → DAHPPED + E4P → DAHP
마이코스포린 유사 아미노산은 오탄당 인산경로의 중간물인 세도헵툴로스 7-인산 (sedoheptulose 7-phosphate: S7P)로부터 생산되므로(도 1 참조), 본 발명에서는 오탄당 인산경로의 하위 경로인 시키메이트 경로 (shikimate pathway)를 약화시키고자 하였다. 따라서 시키메이트 경로의 첫번째 단계인 포스포에놀피루브산 (PEP)와 D-에리트로스 4-포스페이트 (E4P)를 3-데옥시-D-아라비노-헵툴로소네이트 7-포스페이트 (DAHP)로 전환하는데 관여하는 효소인 3-데옥시-7-포스포헵툴로네이트 합성 효소 (DAHPS)를 불활성화시키도록 하였다.Since mycosporin-like amino acids are produced from sedoheptulose 7-phosphate (S7P), an intermediate of the pentose phosphate pathway (see FIG. 1), in the present invention, the shikimate pathway, a sub-pathway of the pentose phosphate pathway, is used. ) was intended to weaken. Therefore, the first step of the shikimate pathway is the conversion of phosphoenolpyruvate (PEP) and D-erythrose 4-phosphate (E4P) to 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP). 3-deoxy-7-phosphoheptulonate synthase (DAHPS), an enzyme involved in this process, was inactivated.
본 명세서에서 용어 "불활성화"는 본래 미생물이 가진 효소 단백질의 내재적 활성 또는 변형 전 활성에 비하여 그 활성이 약화되는 경우; 단백질이 전혀 발현이 되지 않는 경우; 또는 발현이 되더라도 그 활성이 없는 경우를 의미한다. 상기 불활성화는 효소를 코딩하는 폴리뉴클레오티드의 변이 등으로 효소 자체의 활성이 본래 미생물이 가지고 있는 효소의 활성에 비해 약화하거나 제거된 경우; 효소를 코딩하는 유전자의 발현 저해 또는 번역(translation) 저해 등으로 세포 내에서 전체적인 효소 활성 정도가 천연형 미생물에 비하여 낮거나 제거된 경우; 효소를 코딩하는 유전자의 일부 또는 전체가 결실된 경우; 및 이들의 조합 역시 포함하는 개념으로, 이에 한정되지는 않는다. As used herein, the term "inactivation" refers to a case where the activity of the enzyme protein of the original microorganism is weakened compared to the intrinsic activity or activity before modification; When the protein is not expressed at all; Or, even if expressed, it means that there is no activity. The inactivation occurs when the activity of the enzyme itself is weakened or eliminated compared to the activity of the enzyme originally possessed by the microorganism due to mutation of the polynucleotide encoding the enzyme, etc.; When the overall level of enzyme activity within the cell is lowered or eliminated compared to natural microorganisms due to inhibition of expression or translation of genes encoding enzymes; When part or all of the gene encoding the enzyme is deleted; and combinations thereof, but is not limited thereto.
본 명세서에서 용어 "비변형 미생물"은, 비교 대상 미생물의 특정 단백질이 자연적 또는 인위적 요인에 의해 유전적 변이되어 미생물의 형질이 변화하는 경우, 형질 변화 전 모균주가 본래 가지고 있던 특정 단백질의 활성을 갖고 있는 미생물을 말한다. 본원에서 "비변형 미생물"은 유전적 변이가 일어나지 않은 "내재적 활성을 갖는 미생물"과 혼용되어 사용될 수 있다.In this specification, the term "non-modified microorganism" refers to a change in the characteristics of a microorganism due to a genetic mutation in a specific protein of the microorganism being compared due to natural or artificial factors, the activity of a specific protein originally possessed by the parent strain before the change in the characteristics. refers to the microorganisms it contains. As used herein, “unmodified microorganism” may be used interchangeably with “microorganism with intrinsic activity” in which no genetic mutation has occurred.
상기 효소 활성의 불활성화는, 당해 분야에 잘 알려진 다양한 방법의 적용으로 달성될 수 있다. 상기 방법의 예로, 1) 상기 효소를 코딩하는 염색체상의 유전자의 전체 또는 일부를 결실시키는 방법; 2) 상기 단백질을 코딩하는 염색체상의 유전자의 발현이 감소하도록 발현조절 서열의 변형, 3) 상기 단백질의 활성이 제거 또는 약화되도록 단백질을 코딩하는 염색체 상의 유전자 서열의 변형, 4) 상기 단백질을 코딩하는 염색체상의 유전자의 전사체에 상보적으로 결합하는 안티센스 올리고뉴클레오티드(예컨대, 안티센스 RNA)의 도입; 5) 상기 단백질을 코딩하는 염색체상의 유전자의 사인-달가르노(Shine-Dalgarno) 서열 앞단에 사인-달가르노 서열과 상보적인 서열을 부가하여 2차 구조물을 형성시켜 리보솜(ribosome)의 부착을 불가능하게 만드는 방법; 6) 상기 단백질을 코딩하는 폴리뉴클레오티드 서열의 ORF(open reading frame)의 3' 말단에 반대 방향으로 전사되는 프로모터를 부가하는 방법(Reverse transcription engineering, RTE) 등이 있으며, 이들의 조합으로도 달성할 수 있으나, 이에, 특별히 제한되는 것은 아니다.Inactivation of the enzyme activity can be achieved by applying various methods well known in the art. Examples of the method include: 1) a method of deleting all or part of the gene on the chromosome encoding the enzyme; 2) Modification of the expression control sequence to reduce the expression of the gene on the chromosome encoding the protein, 3) Modification of the gene sequence on the chromosome encoding the protein to eliminate or weaken the activity of the protein, 4) Modification of the gene sequence encoding the protein Introduction of antisense oligonucleotides (eg, antisense RNA) that bind complementary to the transcript of a gene on a chromosome; 5) A secondary structure is formed by adding a sequence complementary to the Shine-Dalgarno sequence in front of the Shine-Dalgarno sequence of the gene on the chromosome encoding the protein, making attachment of ribosomes impossible. how to make; 6) There is a method of adding a promoter that is transcribed in the opposite direction to the 3' end of the ORF (open reading frame) of the polynucleotide sequence encoding the above protein (Reverse transcription engineering, RTE), which can also be achieved by a combination of these. However, this is not particularly limited.
상기 효소를 코딩하는 염색체상의 유전자의 일부 또는 전체를 결실하는 방법은, 미생물 내 염색체 삽입용 벡터를 통해 염색체 내 내재적 목적 단백질을 코딩하는 폴리뉴클레오티드를 일부 뉴클레오티드 서열이 결실된 폴리뉴클레오티드 또는 마커 유전자로 교체함으로써 수행될 수 있다. 이러한 폴리뉴클레오티드의 일부 또는 전체를 결실하는 방법의 일례로 상동 재조합에 의하여 폴리뉴클레오티드를 결실시키는 방법을 사용할 수 있으나, 이에 한정되지는 않는다.The method of deleting part or all of the gene on the chromosome encoding the enzyme involves replacing the polynucleotide encoding the endogenous target protein in the chromosome with a polynucleotide or marker gene in which a portion of the nucleotide sequence has been deleted through a vector for insertion into the chromosome into a microorganism. It can be done by doing. As an example of a method for deleting part or all of a polynucleotide, a method for deleting a polynucleotide by homologous recombination may be used, but is not limited thereto.
상기 발현 조절 서열을 변형하는 방법은 상기 발현 조절 서열의 활성을 더욱 약화하도록 핵산 서열을 결실, 삽입, 비보전적 또는 보전적 치환 또는 이들의 조합으로 발현 조절 서열상의 변이를 유도하여 수행하거나, 더욱 약한 활성을 갖는 핵산 서열로 교체함으로써 수행할 수 있다. 상기 발현 조절서열에는 프로모터, 오퍼레이터 서열, 리보좀 결합부위를 코딩하는 서열, 및 전사와 해독의 종결을 조절하는 서열을 포함하나, 이에 한정되는 것은 아니다.The method of modifying the expression control sequence is carried out by inducing mutations in the expression control sequence by deletion, insertion, non-conservative or conservative substitution of the nucleic acid sequence, or a combination thereof to further weaken the activity of the expression control sequence. This can be accomplished by replacing the nucleic acid sequence with an active nucleic acid sequence. The expression control sequence includes, but is not limited to, a promoter, an operator sequence, a sequence encoding a ribosome binding site, and a sequence that regulates the termination of transcription and translation.
상기 염색체상의 유전자 서열을 변형하는 방법은 상기 효소의 활성을 더욱 약화하도록 유전자 서열을 결실, 삽입, 비보전적 또는 보전적 치환 또는 이들의 조합으로 서열상의 변이를 유도하여 수행하거나, 더욱 약한 활성을 갖도록 개량된 유전자 서열 또는 활성이 없도록 개량된 유전자 서열로 교체함으로써 수행할 수 있으나, 이에 한정되는 것은 아니다.The method of modifying the gene sequence on the chromosome is carried out by inducing a mutation in the gene sequence by deletion, insertion, non-conservative or conservative substitution, or a combination thereof to further weaken the activity of the enzyme, or to have a weaker activity. This can be done by replacing with an improved gene sequence or a gene sequence modified to be inactive, but is not limited to this.
상기 폴리뉴클레오티드는 기능을 할 수 있는 폴리뉴클레오티드 집합체인 경우 유전자로 기재될 수 있다. 본원에서 폴리뉴클레오티드와 유전자는 혼용될 수 있으며, 폴리뉴클레오티드 서열과 뉴클레오티드 서열은 혼용될 수 있다.The polynucleotide may be described as a gene if it is a collection of polynucleotides capable of functioning. As used herein, polynucleotide and gene may be used interchangeably, and polynucleotide sequence and nucleotide sequence may be used interchangeably.
상기에서 "일부"란, 폴리뉴클레오티드의 종류에 따라서 상이하지만, 구체적으로는 1 내지 300개, 더욱 구체적으로는 1 내지 100개, 보다 더욱 구체적으로는 1 내지 50개일 수 있으나, 특별히 이에 제한되는 것은 아니다.In the above, “some” may vary depending on the type of polynucleotide, but may be specifically 1 to 300, more specifically 1 to 100, and even more specifically 1 to 50, but is not particularly limited thereto. no.
본 발명의 미생물은 마이코스포린 유사 아미노산을 생산할 수 있다.The microorganism of the present invention can produce mycosporine-like amino acids.
본 명세서에서 용어 "마이코스포린 유사 아미노산(mycosporine-like amino acids; MAAs)"은 자외선을 흡수하는 고리형 화합물을 의미한다. 상기 마이코스포린 유사 아미노산은 자외선을 흡수할 수 있는 한 제한이 없으나, 구체적으로, 사이클로헥세논(cyclohexanone) 또는 사이클로헥센이민(cyclohexenimine)의 중심 링을 가지는 화합물; 또는 상기 중심 링에 아미노산 등의 다양한 물질이 결합된 화합물일 수 있다. 더욱 구체적으로, 마이코스포린-2-글라이신 (mycosporine-2-glycine), 팰라이티놀 (palythinol), 팰라이텐산 (palythenic acid), 데옥시가두솔 (deoxygadusol), 마이코스포린-메틸아민-트레오닌 (mycosporine-methylamine-threonine), 마이코스포린-글라이신-발린 (mycosporine-glycine-valine), 팰라이틴 (palythine), 아스테리나-330 (asterina-330), 시노린 (shinorine), 포피라-334 (porphyra-334), 유하로테스-362 (euhalothece-362), 마이코스포린-글라이신 (mycosporine-glycine), 마이코스포린-오르니틴 (mycosporine-ornithine), 마이코스포린-라이신 (mycosporine-lysine), 마이코스포린-글루탐산-글라이신 (mycosporine-glutamic acid-glycine), 마이코스포린-메틸아민-세린 (mycosporine-methylamine-serine), 마이코스포린-타우린 (mycosporine-taurine), 팰라이텐 (palythene), 팰라이텐-세린 (palythine-serine), 팰라이텐-세린-설페이트 (palythine-serine-sulfate), 팰라이티놀(palythinol), 및 우수지렌 (usujirene)으로 이루어진 군으로부터 선택된 하나 이상인 것일 수 있으며, 이에 제한되지 않는다.As used herein, the term “mycosporine-like amino acids (MAAs)” refers to cyclic compounds that absorb ultraviolet rays. The mycosporine-like amino acid is not limited as long as it can absorb ultraviolet rays, but specifically includes compounds having a central ring of cyclohexanone or cyclohexenimine; Alternatively, it may be a compound in which various substances such as amino acids are bound to the central ring. More specifically, mycosporine-2-glycine, palythinol, palythenic acid, deoxygadusol, mycosporine-methylamine-threonine -methylamine-threonine), mycosporine-glycine-valine, palythine, asterina-330, shinorine, porphyra -334), euhalothece-362, mycosporine-glycine, mycosporine-ornithine, mycosporine-lysine, mycosporine-glutamic acid -Glycine (mycosporine-glutamic acid-glycine), mycosporine-methylamine-serine, mycosporine-taurine, palythene, palythene -serine), palythine-serine-sulfate, palythinol, and usujirene, but is not limited thereto.
본 명세서에서 마이코스포린 유사 아미노산은 MAA 및 MAAs와 혼용될 수 있다.As used herein, mycosporine-like amino acids may be used interchangeably with MAAs and MAAs.
본 명세서에서 용어 "마이코스포린 유사 아미노산을 생산하는 미생물"은 마이코스포린 유사 아미노산의 생합성에 관여하는 효소의 유전자 또는 상기 유전자들의 클러스터를 포함하는 미생물을 의미할 수 있다. 또한, 본원에서 용어, "마이코스포린 유사 아미노산 생합성 유전자"는 마이코스포린 유사 아미노산 생합성에 관여하는 효소를 코딩하는 유전자를 의미하는 것으로, 상기 유전자들의 클러스터도 포함한다. 상기 마이코스포린 유사 아미노산 생합성 유전자는 이를 포함하는 미생물이 마이코스포린 유사 아미노산을 생산할 수 있는 한, 미생물의 외래 및/또는 내재적인 유전자를 모두 포함한다. 상기 외래 유전자는 동종 및/또는 이종일 수 있다.As used herein, the term “microorganism producing mycosporine-like amino acid” may refer to a microorganism containing a gene for an enzyme involved in the biosynthesis of a mycosporine-like amino acid or a cluster of such genes. Additionally, as used herein, the term “mycosporine-like amino acid biosynthesis gene” refers to a gene encoding an enzyme involved in the biosynthesis of mycosporine-like amino acid, and also includes clusters of the above genes. The mycosporine-like amino acid biosynthetic gene includes both exogenous and/or endogenous genes of the microorganism, as long as the microorganism containing it can produce mycosporine-like amino acid. The foreign gene may be homologous and/or heterologous.
상기 마이코스포린 유사 아미노산 생합성 유전자는, 이를 포함하는 미생물이 마이코스포린 유사 아미노산 생합성에 관여하는 효소를 생산하고 결과적으로 마이코스포린 유사 아미노산을 생산할 수 있는 한, 상기 유전자들의 유래 미생물 종에는 제한이 없으나, 구체적으로, 남세균(cyanobacteria)인 아나베나 바리아빌리스(Anabaena variabilis), 노스탁 펑크티포르메(Nostoc punctiforme), 노두라리아 스푸미게나(Nodularia spumigena), 시아노테스 속 PCC 7424(Cyanothecesp. PCC 7424), 라인비아 속 PCC 8106(Lyngbyasp. PCC 8106), 마이크로카이스티스 아에루기노사(Microcystis aeruginosa), 마이크로코레우스 크토노플라스테스(Microcoleus chthonoplastes), 시아노테스 속 ATCC 51142(Cyanothecesp. ATCC 51142), 크로코스파에라 와트소니(Crocosphaerawatsonii), 시아노테스 속 CCY 0110(Cyanothecesp. CCY 0110), 시린드로스페르멈 스태그날 속 PCC 7417(cylindrospermumstagnale sp,PCC 7417), 아파노테스 할로피티카(Aphanothecehalophytica) 또는 트리코데스미운 에리트라에움(Trichodesmiumerythraeum)이거나, 또는 균류(fungi)인 마그나포르테 오르지아에(Magnaportheorzyae), 피레노포라 트리티씨-레펜티스(Pyrenophora tritici-repentis), 아스퍼질러스 클라바투스(Aspergillus clavatus), 넥트리아 헤마토코카(Nectriahaematococca), 아스퍼질러스 니두란스(Aspergillus nidulans), 지베렐라 제아에(Gibberellazeae), 베르티씰리움 알보-아트룸(Verticillium albo-atrum), 보트리오티니아 푸케리아나(Botryotinia fuckeliana), 파에오스파에리아 노도룸(Phaeosphaerianodorum)이거나, 또는 네마토르텔라 벡텐시스(Nematostellavectensis), 헤테로카프사 트리퀘트라(Heterocapsa triquetra), 옥시리스 마리나(Oxyrrhis marina), 칼로디니움 미크룸(Karlodinium micrum), 악티노신네마 미룸(Actinosynnemamirum) 등일 수 있으나, 이에 제한되지 않는다.The mycosporine-like amino acid biosynthesis genes are not limited to the microbial species from which the genes are derived, as long as the microorganism containing them can produce enzymes involved in mycosporine-like amino acid biosynthesis and consequently produce mycosporine-like amino acids. As, cyanobacteria Anabaena variabilis , Nostoc punctiforme , Nodularia spumigena , Cyanothes genus PCC 7424 ( Cyanothecesp . PCC 7424), Lyngbyasp . PCC 8106), Microcystis aeruginosa , Microcoleus chthonoplastes , Cyanothes ATCC 51142 ( Cyanothecesp . ATCC 51142) ), Crocosphaerawatsonii , Cyanothes genus CCY 0110 ( Cyanothecesp . CCY 0110), Cylindrospermum stagnale genus PCC 7417 ( cylindrospermum stagnale sp ,PCC 7417), Aphanotes halopitica ( Aphanothecehalophytica ) or Trichodesmiumerythraeum , or the fungi Magnaportheorzyae , Pyrenophora tritici-repentis , Aspergillus cla. Aspergillus clavatus , Nectriahaematococca , Aspergillus nidulans, Gibberellazeae , Verticillium albo-atrum , Botrioti Botryotinia fuckeliana , Phaeosphaerianodorum , or Nematostellavectensis , Heterocapsa triquetra, Oxyrrhis marina, Calo It may be Karlodinium micrum, Actinosynnemamirum , etc., but is not limited thereto.
일 실시예에 따르면, 미생물은 마이코스포린 유사 아미노산 생합성 유전자들을 포함할 수 있다.According to one embodiment, the microorganism may contain mycosporin-like amino acid biosynthetic genes.
구체적으로, 상기 마이코스포린 유사 아미노산 생합성 유전자는 미생물이 마이코스포린 유사 아미노산을 생산할 수 있는 한 효소 명칭이나 유래 미생물에 제한되지 않으나, 2-디메틸 4-데옥시가두솔 합성 효소 (2-demethyl 4-deoxygadusol synthase: DDGS), O-메틸 전이 효소 (O-methyltransferase: O-MT), ATP-grasp 라이게이즈 (ATP-grasp ligase), 및 D-알라닌 D-알라닌 라이게이즈 (D-Ala D-Ala ligase)로 이루어지는 군으로부터 선택되는 하나 이상, 구체적으로, 1 이상, 2 이상, 3 이상, 또는 모든 효소 단백질; 또는 이와 동일 및/또는 유사한 활성을 가진 효소 단백질을 코딩하는 유전자를 포함할 수 있다.Specifically, the mycosporine-like amino acid biosynthetic gene is not limited to the name of the enzyme or the originating microorganism as long as the microorganism can produce mycosporine-like amino acid, but 2-dimethyl 4-deoxygadusol synthetase (2-demethyl 4-deoxygadusol) synthase: DDGS), O-methyltransferase (O-MT), ATP-grasp ligase, and D-alanine D-alanine ligase (D-Ala D-Ala) At least one, specifically, at least 1, at least 2, at least 3, or all enzyme proteins selected from the group consisting of ligase); Alternatively, it may include a gene encoding an enzyme protein with the same and/or similar activity.
또한, 마이코스포린 유사 아미노산을 생산하는 미생물은, 마이코스포린 유사 아미노산에 추가적인 아미노산 잔기를 부착하는 활성을 가진 효소의 유전자 또는 상기 유전자들의 클러스터를 포함할 수 있다. 상기 유전자 또는 상기 유전자들의 클러스터는, 마이코스포린 유사 아미노산을 생산하는 미생물이 두 개이상의 아미노산 잔기가 부착된 마이코스포린 유사 아미노산을 생산할 수 있는 한 효소 명칭이나 유래 미생물에 제한되지 않으나, 구체적으로 논-리보좀 펩티드 신테타제 (non-ribosomal peptide synthetase: NRPS), 논-리보좀 펩티드 신테타제 유사 효소 (non-ribosomal peptide synthetase-like enzyme: NRPS-like enzyme) 및 D-알라닌 D-알라닌 리가제 (D-Ala D-Ala ligase: DDL) 로 이루어진 군으로부터 선택되는 하나 이상, 구체적으로, 1 이상, 2 이상, 3 이상, 또는 모든 효소 단백질; 또는 이와 동일 및/또는 유사한 활성을 가진 효소 단백질을 코딩하는 유전자를 포함할 수 있다. 일부 마이코스포린 유사 아미노산은, 마이코스포린-글라이신에 두 번째 아미노산 잔기를 포함한다. 상기 논-리보좀 펩티드 신테타제, 논-리보좀 펩티드 신테타제 유사 효소 및 D-알라닌 D-알라닌 리가제로 이루어지는 군으로부터 선택되는 하나 이상의 효소는, 마이코스포린-글라이신에 두 번째 아미노산 잔기를 부착시킬 수 있다.Additionally, a microorganism that produces a mycosporine-like amino acid may contain a gene or a cluster of genes for an enzyme that has the activity of attaching additional amino acid residues to the mycosporine-like amino acid. The gene or the cluster of genes is not limited to the name of the enzyme or the microorganism from which it is derived, as long as the microorganism that produces mycosporine-like amino acids can produce mycosporine-like amino acids with two or more amino acid residues attached, but is specifically non-ribosomal. Peptide synthetase (non-ribosomal peptide synthetase (NRPS), non-ribosomal peptide synthetase-like enzyme (NRPS-like enzyme) and D-alanine D-alanine ligase (D-Ala D) -Ala ligase: DDL), one or more selected from the group consisting of, specifically, 1 or more, 2 or more, 3 or more, or all enzyme proteins; Alternatively, it may include a gene encoding an enzyme protein with the same and/or similar activity. Some mycosporine-like amino acids contain a second amino acid residue at mycosporine-glycine. One or more enzymes selected from the group consisting of non-ribosomal peptide synthetase, non-ribosomal peptide synthetase-like enzyme and D-alanine D-alanine ligase are capable of attaching a second amino acid residue to mycosporine-glycine.
본 명세서에서 단백질의 불활성화, 단백질의 활성 강화, 유전자의 도입 및/또는 유전자의 결실은 순서에 상관없이 동시, 순차, 역순으로 수행될 수 있다.In the present specification, protein inactivation, protein activity enhancement, gene introduction, and/or gene deletion may be performed simultaneously, sequentially, or in reverse order, regardless of the order.
또한, 상기 미생물은 상기 마이코스포린 유사 아미노산 생합성 유전자를 원래부터 가지고 있는 천연형 미생물; 및 이종 및/또는 동종 유래 마이코스포린 유사 아미노산 생합성 유전자가 도입된 미생물일 수 있으나, 이에 제한되지 않는다.In addition, the microorganism may be a naturally occurring microorganism that originally possesses the mycosporin-like amino acid biosynthetic gene; and may be microorganisms into which heterologous and/or homologous mycosporin-like amino acid biosynthetic genes have been introduced, but are not limited thereto.
또한, 상기 미생물은 내재적 및/또는 도입된, 마이코스포린 유사 아미노산 생합성 관련 유전자가 코딩하는 효소의 활성이 강화된 미생물일 수 있으나, 이에 제한되지 않는다.In addition, the microorganism may be a microorganism with enhanced activity of an enzyme encoded by an endogenous and/or introduced gene related to mycosporine-like amino acid biosynthesis, but is not limited thereto.
또한, 상기 미생물은 구체적으로 효모일 수 있으며, 이에 제한되는 것은 아니다. Additionally, the microorganism may specifically be yeast, but is not limited thereto.
상기 효모는 사카로마이세스(Saccharomyces), 캔디다(Candida), 디베리오마이세스(Debaryomyces), 한세눌라(Hansenula), 클루이베로마이세스 (Kluyveromyces), 피키아(Pichia), 스키조사카로마이세스(Schizosaccharomyces), 야로이야(Yarrowia), 슈완니오마이세스(Schwanniomyces), 아르술라(Arxula), 말라세지아(Malassezia) 등의 속의 효모일 수 있다.The yeast includes Saccharomyces , Candida , Debaryomyces , Hansenula , Kluyveromyces , Pichia , and Schizosaccharomyces ( It may be yeast of genera such as Schizosaccharomyces , Yarrowia , Schwanniomyces , Arxula , and Malassezia.
구체적으로, 상기 효모는 사카로마이세스 세레비지애(Saccharomyces cerevisiae), 캔디다 트로피칼리스(Candidatropicalis), 캔디다 유틸리스(Candida utilis), 캔디다 보이디니(Candidaboidinii), 캔디다 알비칸스(Candida albicans), 클루이베로마이세스 락티스(Kluyveromyceslactis), 피키아 파스토리스(Pichiapastoris), 피키아 스티피티스(Pichiastipitis), 스키조카로마이세스 폼베(Schizosaccharomycespombe), 한세눌라 폴리모르파(Hansenulapolymorpha), 야로이야 리폴리티카(Yarrowia lipolytica), 슈완니오마이세스 옥시덴탈리스(Schwanniomycesoccidentalis), 아르술라 아데니니모란스(Arxula adeninivorans), 말라세지아 리스트릭타(Malassezai restricta), 말라세지아 퍼퍼(Malassezai furfur) 등일 수 있다.Specifically, the yeast is Saccharomyces cerevisiae , Candida tropicalis, Candida utilis , Candida boidinii, Candida albicans , Cluyvero. Myces lactis ( Kluyveromyceslactis ), Pichia pastoris ( Pichiapastoris ), Pichiastipitis , Schizosaccharomycespombe , Hansenulapolymorpha , Yarrowia lipolytica ), Schwanniomyces occidentalis, Arxula adeninivorans , Malassezai restricta , Malassezai furfur , etc.
상기 미생물은 변이 전 모균주 또는 비변형 미생물의 마이코스포린 유사 아미노산 생산능에 비하여 약 1% 이상, 구체적으로는 약 1% 이상, 약 2.5% 이상, 약 5% 이상, 약 6% 이상, 약 7% 이상, 약 8% 이상, 약 9% 이상, 약 10% 이상, 약 11% 이상, 약 11.5% 이상, 약 12% 이상, 약 12.5% 이상, 약 13% 이상, 약 13.5% 이상, 약 14% 이상, 약 14.5% 이상, 약 15% 이상, 약 15.5% 이상, 약 16% 이상, 약 16.5% 이상, 약 17% 이상, 약 17.5% 이상, 약 18% 이상, 약 18.5% 이상, 약 19% 이상, 약 19.5% 이상, 약 20% 이상, 약 20.5% 이상, 약 21% 이상, 약 21.5% 이상, 약 22% 이상, 약 22.5% 이상, 약 23% 이상, 약 23.5% 이상, 약 24% 이상, 약 24.5% 이상, 약 25% 이상, 약 26% 이상, 약 27% 이상, 약 27.5% 이상, 약 30% 이상, 약 35% 이상, 약 40% 이상, 약 45% 이상, 약 50% 이상, 약 55% 이상, 약 60% 이상, 약 65% 이상, 약 70% 이상, 약 75% 이상, 약 80% 이상, 또는 약 85% 이상 (상한값은 특별한 제한은 없으며, 예컨대, 약 200% 이하, 약 150% 이하 또는 약 100% 이하일 수 있음) 증가된 것일 수 있으나, 변이 전 모균주 또는 비변형 미생물의 생산능에 비해 +값의 증가량을 갖는 한, 이에 제한되지 않는다. 다른 예에서, 상기 생산능이 증가된 재조합 균주는 변이 전 모균주 또는 비변형 미생물에 비하여, 마이코스포린 유사 아미노산 생산능이 약 1.01배 이상, 약 1.02배 이상, 약 1.03배 이상, 약 1.05배 이상, 약 1.06배 이상, 약 1.07배 이상, 약 1.08배 이상, 약 1.09배 이상, 약 1.10배 이상, 약 1.11배 이상, 약 1.12배 이상, 약 1.13배 이상, 약 1.14배 이상, 약 1.15배 이상, 약 1.16 배 이상, 약 1.17배 이상, 약 1.18배 이상, 약 1.19배 이상, 약 1.20배 이상, 약 1.5배 이상, 약 2.0배 이상, 약 2.5배 이상, 약 3.0배 이상, 약 4.0배 이상, 약 5.0배 이상, 약 10배 이상, 약 15배 이상, 약 20배 이상, 약 25배 이상, 약 30배 이상, 약 35배 이상, 약 40배 이상, 약 45배 이상, 약 50배 이상, 약 55배 이상 또는 약 60배 이상 (상한값은 특별한 제한은 없으며, 예컨대, 약 100배 이하 또는 약 80배 이하일 수 있음) 증가된 것일 수 있으나, 이에 제한되지 않는다. 상기 용어 "약(about)"은 ±0.5, ±0.4, ±0.3, ± 0.2, ±0.1 등을 모두 포함하는 범위로, 약 이란 용어 뒤에 나오는 수치와 동등하거나 유사한 범위의 수치를 모두 포함하나, 이에 제한되지 않는다. 또한, 본 명세서에서 숫자 앞에 "약"이 쓰여져 있지 않더라도, "약"이 쓰여져 있는 것과 동일하다.The microorganism has a mycosporin-like amino acid production ability of about 1% or more, specifically about 1% or more, about 2.5% or more, about 5% or more, about 6% or more, or about 7% compared to the mycosporine-like amino acid production ability of the parent strain or unmodified microorganism before mutation. or more, about 8% or more, about 9% or more, about 10% or more, about 11% or more, about 11.5% or more, about 12% or more, about 12.5% or more, about 13% or more, about 13.5% or more, about 14% or more, about 14.5% or more, about 15% or more, about 15.5% or more, about 16% or more, about 16.5% or more, about 17% or more, about 17.5% or more, about 18% or more, about 18.5% or more, about 19% or more, about 19.5% or more, about 20% or more, about 20.5% or more, about 21% or more, about 21.5% or more, about 22% or more, about 22.5% or more, about 23% or more, about 23.5% or more, about 24% or more, about 24.5% or more, about 25% or more, about 26% or more, about 27% or more, about 27.5% or more, about 30% or more, about 35% or more, about 40% or more, about 45% or more, about 50% or more or more, about 55% or more, about 60% or more, about 65% or more, about 70% or more, about 75% or more, about 80% or more, or about 85% or more (the upper limit is not particularly limited, for example, about 200%) Hereinafter, it may be about 150% or less or about 100% or less), but it is not limited thereto as long as it has a positive increase compared to the production capacity of the parent strain or unmodified microorganism before mutation. In another example, the recombinant strain with increased production capacity has a mycosporine-like amino acid production capacity of about 1.01 times or more, about 1.02 times or more, about 1.03 times or more, about 1.05 times or more, or about 1.05 times more than the parent strain or unmodified microorganism before mutation. 1.06 times or more, approximately 1.07 times or more, approximately 1.08 times or more, approximately 1.09 times or more, approximately 1.10 times or more, approximately 1.11 times or more, approximately 1.12 times or more, approximately 1.13 times or more, approximately 1.14 times or more, approximately 1.15 times or more, approximately 1.16 times or more, approximately 1.17 times or more, approximately 1.18 times or more, approximately 1.19 times or more, approximately 1.20 times or more, approximately 1.5 times or more, approximately 2.0 times or more, approximately 2.5 times or more, approximately 3.0 times or more, approximately 4.0 times or more, approximately 5.0 times or more, approximately 10 times or more, approximately 15 times or more, approximately 20 times or more, approximately 25 times or more, approximately 30 times or more, approximately 35 times or more, approximately 40 times or more, approximately 45 times or more, approximately 50 times or more, approximately It may be increased by 55 times or more or about 60 times or more (the upper limit is not particularly limited, for example, it may be about 100 times or less or about 80 times or less), but is not limited thereto. The term "about" is a range that includes ±0.5, ±0.4, ±0.3, ±0.2, ±0.1, etc., and includes all values in a range that are equivalent or similar to the value that follows the term "about." Not limited. In addition, even if “about” is not written in front of the number in this specification, it is the same as “about” written in front of the number.
본 명세서에서 용어 "비변형 미생물"은 미생물에 자연적으로 발생할 수 있는 돌연변이를 포함하는 숙주를 제외하는 것이 아니며, 야생형 숙주 또는 천연형 숙주 자체이거나, 자연적 또는 인위적 요인에 의한 유전적 변이로 형 질이 변화되기 전 숙주를 의미할 수 있다. 상기 "비변형 미생물"은 "변형 전 숙주", "변형 전 균주", "변형 전 미생물", "비변이 숙주", "비변이 균주", "비변이 미생물", "비변형 숙주", "비변형 균주" 또는 "기준 미생물"과 혼용될 수 있다.As used herein, the term “non-modified microorganism” does not exclude hosts that contain mutations that may occur naturally in microorganisms, and are either wild-type hosts or natural hosts themselves, or are characterized by genetic mutations caused by natural or artificial factors. It may refer to the host before being changed. The “non-transformed microorganism” refers to “pre-transformed host”, “pre-transformed strain”, “pre-transformed microorganism”, “non-mutated host”, “non-mutated strain”, “non-mutated microorganism”, “non-transformed host”, “ It can be used interchangeably with “unmodified strain” or “reference microorganism.”
일 구체예에 있어서, 마이코스포린 유사 아미노산을 생산하는 미생물은 2-디메틸 4-데옥시가두솔 합성 효소 (DDGS), O-메틸 전이 효소 (O-MT), ATP-grasp 라이게이즈 , 및 D-알라닌 D-알라닌 라이게이즈로 이루어진 군으로부터 선택된 하나 이상의 단백질을 암호화하는 유전자를 포함하는 것일 수 있으며, 이에 한정되지 않는다.In one embodiment, the microorganism producing mycosporine-like amino acids includes 2-dimethyl 4-deoxygadusol synthase (DDGS), O-methyltransferase (O-MT), ATP-grasp ligase, and D -Alanine may include, but is not limited to, a gene encoding one or more proteins selected from the group consisting of D-alanine ligase.
상기 2-디메틸 4-데옥시가두솔 합성 효소(DDGS)는, 예컨대, 도 1에 나타낸 바와 같이, 세도헵툴로스 7-인산(S7P)으로부터 2-디메틸-4-데옥시가두솔 (2-demethyl 4-deoxygadusol: DDG)을 합성할 수 있으나, 이에 한정되지 않는다.The 2-dimethyl 4-deoxygadusol synthase (DDGS) is, for example, as shown in Figure 1, 2-dimethyl-4-deoxygadusol (2-demethyl) from sedoheptulose 7-phosphate (S7P) 4-deoxygadusol: DDG) can be synthesized, but is not limited to this.
상기 O-메틸 전이 효소(O-MT)는 예컨대 2-디메틸-4-데옥시가두솔(DDG)을 4-데옥시가두솔 (4-deoxygadusol: 4-DG)로 전환시킬 수 있으나, 이에 한정되는 것은 아니다.The O-methyltransferase (O-MT) can convert, for example, 2-dimethyl-4-deoxygadusol (DDG) into 4-deoxygadusol (4-DG), but is limited to this. It doesn't work.
상기 ATP-grasp 라이게이즈는 예컨대 글리신 결합 (glycylation)을 촉매하여 4-데옥시가두솔 (4-DG)를 마이코스포린-글리신 (mycosporine-glycine: MG)으로 전환시킬 수 있으나, 이에 한정되는 것은 아니다.The ATP-grasp ligase can, for example, catalyze glycine binding (glycylation) to convert 4-deoxygadusol (4-DG) into mycosporine-glycine (MG), but is limited thereto. no.
상기 D-알라닌 D-알라닌 라이게이즈는 마이코스포린-글리신 (MG)에 L-세린 (L-serine) 또는 L-트레오닌 (L-threonine)이 부착되어 시노린 (shinorine) 또는 포피라-334 (porphyra-334)이 형성되는데 관여할 수 있으나, 이에 한정되는 것은 아니다.The D-alanine D-alanine ligase is formed by attaching L-serine or L-threonine to mycosporine-glycine (MG) to produce shinorine or Porphyra-334 ( porphyra-334) may be involved in the formation, but is not limited to this.
상기 2-디메틸 4-데옥시가두솔 합성 효소, O-메틸 전이 효소, ATP-grasp 라이게이즈, 및 D-알라닌 D-알라닌 라이게이즈는 미생물의 종 또는 미생물에 따라 활성을 나타내는 단백질의 아미노산 서열에 차이가 존재하는 경우가 있기 때문에, 그 유래나 서열에 한정되지 않는다.The 2-dimethyl 4-deoxygadusol synthase, O-methyl transferase, ATP-grasp ligase, and D-alanine D-alanine ligase are amino acids of proteins that are active depending on the species or microorganism of the microorganism. Since there may be differences in sequence, it is not limited to its origin or sequence.
일 구체예에 있어서, 마이코스포린 유사 아미노산을 생산하는 미생물은 글루코오스-6-포스페이트 1-데하이드로게나아제 (glucose-6-phosphate 1-dehydrogenase) 및 6-포스포글루코네이트 데하이드로게나아제 (6-phosphogluconate dehydrogenase)로 이루어진 군으로부터 선택된 하나 이상의 단백질 활성이 비변형 미생물에 비해 강화된 것일 수 있다.In one embodiment, the microorganism producing mycosporine-like amino acids includes glucose-6-phosphate 1-dehydrogenase and 6-phosphogluconate dehydrogenase. The activity of one or more proteins selected from the group consisting of phosphogluconate dehydrogenase may be enhanced compared to unmodified microorganisms.
상기 글루코오스-6-포스페이트 1-데하이드로게나아제는 오탄당 인산경로의 첫번째 단계인 글루코스 6-포스페이트 (glucose 6-phosphate: G6P)를 6-포스포-D-글루코노-1,5-락톤 (6-phospho-D-glucono-1,5-lactone)으로 전환하는데 관여하는 효소이며, 이에 한정되지 않는다. The glucose-6-phosphate 1-dehydrogenase converts glucose 6-phosphate (G6P), the first step of the pentose phosphate pathway, into 6-phospho-D-glucono-1,5-lactone (6) -phospho-D-glucono-1,5-lactone), but is not limited to this.
상기 6-포스포글루코네이트 데하이드로게나아제는 D-글루코네이트 6-포스페이트 (D-gluconate 6-phophate)를 D-리불로스 5-포스페이트 (D-ribulose 5-phosphate)로 전환하는데 관여하는 효소이며, 이에 한정되지 않는다. The 6-phosphogluconate dehydrogenase is an enzyme involved in converting D-gluconate 6-phosphate into D-ribulose 5-phosphate. , but is not limited to this.
상기 글루코오스-6-포스페이트 1-데하이드로게나아제 및 6-포스포글루코네이트 데하이드로게나아제는 미생물의 종 또는 미생물에 따라 활성을 나타내는 단백질의 아미노산 서열에 차이가 존재하는 경우가 있기 때문에, 그 유래나 서열에 한정되지 않는다. 예컨대, 글루코스 6-포스페이트 1-데하이드로게나제를 암호화하는 유전자로는 ZWF (YALI0E22649)가 있으며, 6-포스포글루코네이트 데하이드로게나제를 암호화하는 유전자로는 GND (YALI0B15598p)가 있으나, 이에 한정되지 않는다.Since there may be differences in the amino acid sequence of the active protein depending on the species or microorganism of the glucose-6-phosphate 1-dehydrogenase and 6-phosphogluconate dehydrogenase, their origin I am not limited to rank. For example, the gene encoding glucose 6-phosphate 1-dehydrogenase is ZWF (YALI0E22649), and the gene encoding 6-phosphogluconate dehydrogenase is GND (YALI0B15598p), but these are limited. It doesn't work.
본원에서 용어, "활성의 강화"는 효소 단백질의 활성이 도입되거나, 미생물이 가진 내재적 활성 또는 변형 전 활성에 비하여 활성이 향상된 것을 의미한다. 상기 활성의 "도입"은, 미생물이 본래 가지고 있지 않았던 특정 단백질의 활성이 자연적 혹은 인위적으로 나타나게 되는 것을 의미한다. 예를 들어, 상기 활성 강화는 외래의 글루코오스-6-포스페이트 1-데하이드로게나아제 및/또는 6-포스포글루코네이트 데하이드로게나아제를 도입하여 강화하는 것; 또는 내재적 글루코오스-6-포스페이트 1-데하이드로게나아제 및/또는 6-포스포글루코네이트 데하이드로게나아제의 활성을 강화하는 것을 모두 포함할 수 있다. As used herein, the term “enhancement of activity” means that the activity of an enzyme protein is introduced or the activity is improved compared to the intrinsic activity or activity before modification of the microorganism. The “introduction” of the activity means that the activity of a specific protein that the microorganism did not originally possess is naturally or artificially revealed. For example, the activity enhancement can be achieved by introducing exogenous glucose-6-phosphate 1-dehydrogenase and/or 6-phosphogluconate dehydrogenase; or enhancing the activity of endogenous glucose-6-phosphate 1-dehydrogenase and/or 6-phosphogluconate dehydrogenase.
구체적으로, 본원에서 활성 강화의 방법으로는, 1) 상기 효소들을 암호화하는 폴리뉴클레오티드의 카피수 증가, 2) 상기 폴리뉴클레오티드의 발현이 증가하도록 발현조절 서열의 변형, 3) 상기 효소들의 활성이 강화되도록 염색체 상의 폴리뉴클레오티드 서열의 변형, 또는 4) 이의 조합에 의해 변형하는 방법 등에 의하여 수행할 수 있으나, 이에 제한되지 않는다.Specifically, the method of enhancing activity herein includes 1) increasing the copy number of polynucleotides encoding the enzymes, 2) modifying the expression control sequence to increase expression of the polynucleotide, and 3) enhancing the activity of the enzymes. Preferably, this can be done by modifying the polynucleotide sequence on the chromosome, or 4) a combination thereof, but is not limited thereto.
상기 1) 폴리뉴클레오티드의 카피수 증가는, 특별히 이에 제한되지 않으나, 벡터에 작동 가능하게 연결된 형태로 수행되거나, 숙주세포 내의 염색체 내로 삽입됨으로써 수행될 수 있다. 또한 카피수 증가의 한 양태로, 효소의 활성을 나타내는 외래 폴리뉴클레오티드 또는 상기 폴리뉴클레오티드의 코돈 최적화된 변이형 폴리뉴클레오티드를 숙주세포 내로 도입하여 수행될 수 있다. 상기 외래 폴리뉴클레오티드는 상기 효소와 동일/유사한 활성을 나타내는 한 그 유래나 서열에 제한 없이 사용될 수 있다. 상기 도입은 공지된 형질전환 방법을 통상의 기술자가 적절히 선택하여 수행할 수 있으며, 숙주 세포 내에서 상기 도입된 폴리뉴클레오티드가 발현됨으로써 효소가 생성되어 그 활성이 증가될 수 있다.1) Increasing the copy number of the polynucleotide is not particularly limited thereto, but may be performed by being operably linked to a vector or by inserting it into a chromosome in a host cell. Additionally, as an aspect of copy number increase, it can be performed by introducing a foreign polynucleotide showing enzyme activity or a codon-optimized variant polynucleotide of the polynucleotide into the host cell. The foreign polynucleotide can be used without restrictions on its origin or sequence as long as it exhibits the same/similar activity as the enzyme. The introduction can be performed by a person skilled in the art by appropriately selecting a known transformation method, and by expressing the introduced polynucleotide in the host cell, an enzyme can be produced and its activity can be increased.
다음으로, 2) 폴리뉴클레오티드의 발현이 증가하도록 발현조절 서열의 변형은, 특별히 이에 제한되지 않으나, 상기 발현조절 서열의 활성을 더욱 강화하도록 핵산 서열을 결실, 삽입, 비보전적 또는 보전적 치환 또는 이들의 조합으로 서열상의 변이를 유도하여 수행하거나, 더욱 강한 활성을 가지는 핵산 서열로 교체함에 의하여 수행될 수 있다. 상기 발현조절 서열은, 특별히 이에 제한되지 않으나 프로모터, 오퍼레이터 서열, 리보좀 결합 부위를 코딩하는 서열, 전사 및 해독의 종결을 조절하는 서열 등을 포함할 수 있다.Next, 2) the modification of the expression control sequence to increase the expression of the polynucleotide is not particularly limited, but includes deletion, insertion, non-conservative or conservative substitution of the nucleic acid sequence or these to further enhance the activity of the expression control sequence. It can be performed by inducing a mutation in the sequence through a combination of , or by replacing it with a nucleic acid sequence with stronger activity. The expression control sequence is not particularly limited, but may include a promoter, an operator sequence, a sequence encoding a ribosome binding site, and a sequence that regulates the termination of transcription and translation.
구체적으로, 폴리뉴클레오티드 발현 단위의 상부에는 본래의 프로모터 대신 강력한 이종 프로모터가 연결될 수 있는데, 상기 프로모터와 작동 가능하게 연결되어, 상기 효소를 코딩하는 폴리뉴클레오티드의 발현율을 향상시킬 수 있으나, 이에 한정되지 않는다.Specifically, a strong heterologous promoter may be connected to the upper part of the polynucleotide expression unit instead of the original promoter, and may be operably linked to the promoter to improve the expression rate of the polynucleotide encoding the enzyme, but is not limited to this. .
아울러, 3) 염색체 상의 폴리뉴클레오티드 서열의 변형은, 특별히 이에 제한되지 않으나, 상기 폴리뉴클레오티드 서열의 활성을 더욱 강화하도록 핵산 서열을 결실, 삽입, 비보전적 또는 보전적 치환 또는 이들의 조합으로 발현조절 서열상의 변이를 유도하여 수행하거나, 더욱 강한 활성을 갖도록 개량된 폴리뉴클레오티드 서열로 교체함에 의하여 수행할 수 있다.In addition, 3) the modification of the polynucleotide sequence on the chromosome is not particularly limited, but may include deletion, insertion, non-conservative or conservative substitution of the nucleic acid sequence, or a combination thereof to further enhance the activity of the polynucleotide sequence. This can be done by inducing a mutation in the phase, or by replacing it with an improved polynucleotide sequence to have stronger activity.
마지막으로, 4) 상기 1) 내지 3)의 조합에 의해 변형하는 방법은, 상기 효소를 암호화하는 폴리뉴클레오티드의 카피수 증가, 이의 발현이 증가하도록 발현조절 서열의 변형, 염색체 상의 상기 폴리뉴클레오티드 서열의 변형 및 상기 효소의 활성을 나타내는 외래 폴리뉴클레오티드 또는 이의 코돈 최적화된 변이형 폴리뉴클레오티드의 변형 중 1 이상의 방법을 함께 적용하여 수행할 수 있다.Finally, 4) the method of modification by a combination of 1) to 3) includes increasing the copy number of the polynucleotide encoding the enzyme, modifying the expression control sequence to increase its expression, and modifying the polynucleotide sequence on the chromosome. It can be performed by applying one or more of the following methods together: modification and modification of a foreign polynucleotide showing the activity of the enzyme or a codon-optimized variant polynucleotide thereof.
일 구체예에 있어서, 글루코오스-6-포스페이트 1-데하이드로게나아제 및 6-포스포글루코네이트 데하이드로게나아제 유전자로 이루어진 군으로부터 선택된 어느 하나 이상의 유전자는 UAS1B8TEF 프로모터와 작동가능하게 연결된 것일 수 있다.In one embodiment, one or more genes selected from the group consisting of glucose-6-phosphate 1-dehydrogenase and 6-phosphogluconate dehydrogenase genes may be operably linked to the UAS1B8TEF promoter.
일 구체예에 있어서, UAS1B8TEF 프로모터는 서열번호 18로 구성된 것일 수 있다.In one embodiment, the UAS1B8TEF promoter may consist of SEQ ID NO: 18.
본 명세서에서 용어 "프로모터"는 전사단위의 발현을 제어하는 핵산 서열을 지칭한다. "프로모터 영역 (promoter region)"은 세포 내에서 RNA 중합효소를 결합시키고 다운스트림 (3'방향) 암호화 부위의 전사를 개시할 수 있는 조절 영역을 의미한다. 프로모터 영역 내에서는 추정 -35번째 구역 및 프리브노 구역 (Pribnow box, -10번째 구역)과 같은 RNA 중합효소의 결합을 담당하는 단백질 결합 영역 (공통서열)이 발견될 것이다. 또한, 프로모터 영역은 전사 개시부위 및 조절 단백질을 위한 결합부위를 포함할 수 있다.As used herein, the term “promoter” refers to a nucleic acid sequence that controls the expression of a transcription unit. “Promoter region” refers to a regulatory region capable of binding RNA polymerase within a cell and initiating transcription of the downstream (3'direction) coding region. Within the promoter region, protein binding regions (consensus sequences) responsible for binding RNA polymerase will be found, such as the putative -35th region and the Pribnow box (-10th region). Additionally, the promoter region may include a transcription initiation site and binding sites for regulatory proteins.
본원에서 "아미노산 서열을 포함하는 단백질"은 "아미노산 서열을 가지는 단백질", 또는 "아미노산 서열로 구성되는 단백질"이라는 표현과 혼용되어 사용될 수 있다.As used herein, “protein containing an amino acid sequence” may be used interchangeably with the expressions “protein having an amino acid sequence” or “protein consisting of an amino acid sequence.”
본 명세서에서 상기 효소들은 각각의 효소와 동일하거나 상응하는 생물학적 활성을 가지는 한, 기재된 서열번호뿐만 아니라, 상기 아미노산 서열과 80% 이상, 구체적으로는 90% 이상, 더욱 구체적으로는 95%이상, 보다 더욱 구체적으로는 99% 이상의 상동성을 나타내는 단백질을 포함할 수 있다.In this specification, as long as the enzymes have the same or corresponding biological activity as each enzyme, not only the SEQ ID NOs, but also the amino acid sequences are 80% or more, specifically 90% or more, more specifically 95% or more, and more. More specifically, it may include proteins showing more than 99% homology.
또한 상기 서열과 상동성을 가지는 서열로서 실질적으로 기재된 서열번호의 효소 단백질과 동일하거나 상응하는 생물학적 활성을 가지는 아미노산 서열이라면, 일부 서열이 결실, 변형, 치환 또는 부가된 아미노산 서열을 가지는 경우도 역시 본 출원의 범주에 포함됨은 자명하다.In addition, if it is an amino acid sequence that is identical to or has biological activity corresponding to the enzyme protein of the sequence number substantially described as a sequence having homology to the above sequence, this also applies if some of the sequences have amino acid sequences deleted, modified, substituted, or added. It is obvious that it is included in the scope of the application.
본 명세서에서 용어 "상동성"은 주어진 아미노산 서열 또는 뉴클레오티드 서열과 일치하는 정도를 의미하며 백분율로 표시될 수 있다. 본 명세서에서, 주어진 아미노산 서열 또는 뉴클레오티드 서열과 동일하거나 유사한 활성을 가지는 그의 상동성 서열이 "% 상동성"으로 표시된다. 예를 들면, 점수(score), 동일성(identity) 및 유사도(similarity) 등의 매개 변수(parameter)들을 계산하는 표준 소프트웨어, 구체적으로 BLAST 2.0을 이용하거나, 정의된 엄격한 조건(stringent condition)하에서 썼던 혼성화 실험에 의해 서열을 비교함으로써 확인할 수 있으며, 정의되는 적절한 혼성화 조건은 해당 기술 범위 내이고, 통상의 기술자에게 잘 알려진 방법(예컨대, J. Sambrook et al., Molecular Cloning, A Laboratory Manual, 2nd Edition, Cold Spring Harbor Laboratory press, Cold Spring Harbor, New York, 1989; F.M. Ausubel et al., Current Protocols in Molecular Biology, John Wiley & Sons, Inc., New York)으로 결정될 수 있다. 상기에서 용어 "엄격한 조건"이란 폴리뉴클레오티드 간의 특이적 혼성화를 가능하게 하는 조건을 의미한다. 예를 들어, 이러한 조건은 문헌 (예컨대, J. Sambrook et al., 상동)에 구체적으로 기재되어 있다.As used herein, the term “homology” refers to the degree of matching with a given amino acid sequence or nucleotide sequence and can be expressed as a percentage. In this specification, a given amino acid or nucleotide sequence and its homologous sequence that has the same or similar activity is expressed as “% homology”. For example, standard software for calculating parameters such as score, identity and similarity, specifically BLAST 2.0, or hybridization used under defined stringent conditions. It can be confirmed by comparing sequences experimentally, and appropriate hybridization conditions defined are within the scope of the relevant technology and methods well known to those skilled in the art (e.g., J. Sambrook et al., Molecular Cloning, A Laboratory Manual, 2nd Edition, Cold Spring Harbor Laboratory press, Cold Spring Harbor, New York, 1989; F.M. Ausubel et al., Current Protocols in Molecular Biology, John Wiley & Sons, Inc., New York). As used herein, the term “stringent conditions” refers to conditions that enable specific hybridization between polynucleotides. For example, these conditions are specifically described in the literature (e.g., J. Sambrook et al., supra).
본 명세서에서 용어 "벡터"는 적합한 숙주 내에서 목적 단백질을 발현시킬 수 있도록 적합한 조절 서열에 작동 가능하게 연결된 상기 목적 단백질을 코딩하는 폴리뉴클레오티드의 염기서열을 함유하는 DNA 제조물을 의미한다. 상기 조절 서열은 전사를 개시할 수 있는 프로모터, 그러한 전사를 조절하기 위한 임의의 오퍼레이터 서열, 적합한 mRNA 리보좀 결합부위를 코딩하는 서열, 및 전사 및 해독의 종결을 조절하는 서열을 포함할 수 있다. 벡터는 적당한 숙주세포 내로 형질전환된 후, 숙주 게놈과 무관하게 복제되거나 기능할 수 있으며, 게놈 그 자체에 통합될 수 있다.As used herein, the term “vector” refers to a DNA preparation containing the base sequence of a polynucleotide encoding the target protein operably linked to a suitable control sequence to enable expression of the target protein in a suitable host. The regulatory sequences may include a promoter capable of initiating transcription, an optional operator sequence to regulate such transcription, a sequence encoding a suitable mRNA ribosome binding site, and sequences that regulate the termination of transcription and translation. After transformation into a suitable host cell, the vector can replicate or function independently of the host genome and can be integrated into the genome itself.
일 구체예에 있어서 사용되는 벡터는 숙주세포 내에서 발현 가능한 것이면 특별히 한정되지 않으며, 당업계에 알려진 임의의 벡터를 이용할 수 있다. 통상 사용되는 벡터의 예로는 천연 상태이거나 재조합된 상태의 플라스미드, 코 스미드, 바이러스 및 박테리오파지를 들 수 있다. 예를 들어, 파지 벡터 또는 코스미드 벡터로서 pWE15, M13, MBL3, MBL4, IXII, ASHII, APII, t10, t11, Charon4A, 및 Charon21A 등을 사용할 수 있으며, 플라스미드 벡터로서 pBR계, pUC계, pBluescriptII계, pGEM계, pTZ계, pCL계, pCRE계, pYL계 및 pET계 등을 사용할 수 있으나, 이에 제한되지 않는다.The vector used in one embodiment is not particularly limited as long as it can be expressed in a host cell, and any vector known in the art can be used. Examples of commonly used vectors include plasmids, cosmids, viruses, and bacteriophages in a natural or recombinant state. For example, pWE15, M13, MBL3, MBL4, IXII, ASHII, APII, t10, t11, Charon4A, and Charon21A can be used as phage vectors or cosmid vectors, and pBR, pUC, and pBluescriptII series can be used as plasmid vectors. , pGEM-based, pTZ-based, pCL-based, pCRE-based, pYL-based and pET-based, etc. can be used, but are not limited thereto.
본 명세서에서 용어 "재조합 벡터"는 통상 이종의 DNA의 단편이 삽입된 재조합 캐리어(recombinant carrier)로서 일반적으로 이중 가닥의 DNA의 단편을 의미한다. 여기서, 이종 DNA는 숙주 세포에서 천연적으로 발견되지 않는 DNA인 이형 DNA를 의미한다. 재조합 벡터는 일단 숙주 세포 내에 있으면 숙주 염색체 DNA와 무관하게 복제할 수 있으며 벡터의 수 개의 카피 및 그의 삽입된 (이종) DNA가 생성될 수 있다.As used herein, the term “recombinant vector” refers to a recombinant carrier into which a heterologous DNA fragment is inserted, and generally refers to a double-stranded DNA fragment. Here, heterologous DNA refers to heterologous DNA, which is DNA not naturally found in host cells. Once within a host cell, the recombinant vector can replicate independently of the host chromosomal DNA and several copies of the vector and its inserted (heterologous) DNA can be produced.
라이게이션 후에, 상기 유전자 또는 상기 재조합 벡터는 숙주세포에 형질전환 또는 트랜스펙션(transfection)된다. "형질전환" 또는 "트랜스펙션"시키기 위해 원핵 또는 진핵 숙주세포 내로 외인성 핵산(DNA 또는 RNA)을 도입하는 데에 통상 사용되는 여러 종류의 다양한 기술, 예를 들어 전기 영동법, 인산칼슘 침전법, DEAE-덱스트란 트랜스펙션 또는 리포펙션(lipofection) 등을 사용할 수 있다. After ligation, the gene or the recombinant vector is transformed or transfected into a host cell. There are a variety of techniques commonly used to introduce exogenous nucleic acids (DNA or RNA) into prokaryotic or eukaryotic host cells to "transform" or "transfect" them, such as electrophoresis, calcium phosphate precipitation, DEAE-dextran transfection or lipofection can be used.
당업계에 주지된 바와 같이, 숙주세포에서 형질전환 유전자의 발현 수준을 높이기 위해서는, 해당 유전자가 선택된 발현 숙주 내에서 기능을 발휘하는 전사 및 해독 발현 조절 서열에 작동가능하도록 연결되어야 한다. 구체적으로, 발현 조절서열 및 해당 유전자는 세균 선택 마커 및 복제 개시점(replication origin)을 같이 포함하고 있는 하나의 재조합 벡터 내에 포함되게 된다. 숙주세포가 진핵세포인 경우에는, 재조합 벡터는 진핵 발현 숙주 내에서 유용한 발현 마커를 더 포함하여야 한다. As is well known in the art, to increase the level of expression of a transgene in a host cell, the gene must be operably linked to transcriptional and translational expression control sequences that are functional within the selected expression host. Specifically, the expression control sequence and the corresponding gene are included in one recombinant vector that also contains a bacterial selection marker and a replication origin. If the host cell is a eukaryotic cell, the recombinant vector must further contain an expression marker useful in the eukaryotic expression host.
상술한 재조합 벡터에 의해 형질전환된 숙주 세포는 본 발명의 또 다른 측면을 구성한다. 본 명세서에서 사용된 용어 "형질전환"은 DNA를 숙주로 도입하여 DNA가 염색체 외 인자로서 또는 염색체 통합완성에 의해 복제 가능하게 되는 것을 의미한다. 물론 모든 벡터가 본 발명의 DNA 서열을 발현하는데 모두 동등하게 기능을 발휘하지는 않는다는 것을 이해하여야 한다. 마찬가지로 모든 숙주가 동일한 발현 시스템에 대해 동일하게 기능을 발휘하지는 않는다. 그러나, 통상의 기술자라면 과도한 실험적인 부담 없이 본 발명의 범위를 벗어나지 않는 채로 여러 벡터, 발현 조절 서열 및 숙주 중에서 적절한 선택을 할 수 있다. 예를 들어, 벡터를 선택함에 있어서는 숙주를 고려하여야 하는데, 이는 벡터가 그 안에서 복제되어야 하기 때문이다. 벡터의 복제 수, 복제 수를 조절할 수 있는 능력 및 당해 벡터에 의해 코딩되는 다른 단백질, 예를 들어 항생제 마커의 발현도 또한 고려되어야 한다.Host cells transformed by the above-described recombinant vector constitute another aspect of the present invention. The term “transformation” used herein means introducing DNA into a host so that the DNA can be replicated as an extrachromosomal factor or by completing chromosomal integration. Of course, it should be understood that not all vectors function equally well in expressing the DNA sequence of the present invention. Likewise, not all hosts perform equally well for the same expression system. However, a person skilled in the art can make an appropriate selection among various vectors, expression control sequences, and hosts without excessive experimental burden and without departing from the scope of the present invention. For example, when selecting a vector, the host must be considered, because the vector must replicate within it. The copy number of the vector, the ability to control copy number and the expression of other proteins encoded by the vector, such as antibiotic markers, should also be considered.
본 명세서에서 용어 "작동 가능하게 연결"된 것이란 본 출원의 목적 단백질을 코딩하는 폴리뉴클레오티드의 전사를 개시 및 매개하도록 하는 프로모터 서열과 상기 폴리뉴클레오티드 서열이 기능적으로 연결되어 있는 것을 의미한다. 작동 가능한 연결은 당업계의 공지된 유전자 재조합 기술을 이용하여 제조할 수 있으며, 부위-특이적 DNA 절단 및 연결은 당업계의 절단 및 연결 효소 등을 사용하여 제작할 수 있으나, 이에 제한되지 않는다.As used herein, the term “operably linked” means that the polynucleotide sequence is functionally linked to a promoter sequence that initiates and mediates transcription of the polynucleotide encoding the target protein of the present application. Operable linkages can be prepared using genetic recombination techniques known in the art, and site-specific DNA cutting and linking can be made using cutting and linking enzymes known in the art, but are not limited thereto.
본 발명의 다른 양상은 상기 미생물을 배양하는 단계; 및 상기 배양된 미생물 또는 배지로부터 마이코스포린 유사 아미노산을 회수하는 단계를 포함하는, 마이코스포린 유사 아미노산의 생산방법을 제공한다.Another aspect of the present invention includes culturing the microorganism; and recovering the mycosporine-like amino acid from the cultured microorganism or medium.
이때, 미생물 및 마이코스포린 유사 아미노산은 전술한 바와 같다.At this time, the microorganism and mycosporin-like amino acid are as described above.
본 명세서에서 용어 "배양"은 상기 미생물을 적당히 조절된 환경 조건에서 생육시키는 것을 의미한다. 배양과정은 당업계에 알려진 적당한 배지와 배양조건에 따라 이루어질 수 있다. 이러한 배양 과정은 선택되는 미생물에 따라 통상의 기술자가 용이하게 조정하여 사용할 수 있다. 구체적으로 상기 배양은 회분식, 연속식 및/또는 유가식일 수 있으나, 이에 제한되는 것은 아니다.As used herein, the term “culture” means growing the microorganism under appropriately controlled environmental conditions. The culture process can be carried out according to appropriate media and culture conditions known in the art. This culture process can be easily adjusted and used by a person skilled in the art depending on the selected microorganism. Specifically, the culture may be batch, continuous, and/or fed-batch, but is not limited thereto.
본 명세서에서 용어 "배지"는 상기 미생물을 배양하기 위해 필요로 하는 영양물질을 주성분으로 혼합한 물질을 의미하며, 생존 및 발육에 불가결한 물을 비롯하여 영양물질 및 발육인자 등을 공급한다. 구체적으로, 상기 미생물의 배양에 사용되는 배지 및 기타 배양 조건은 통상의 미생물의 배양에 사용되는 배지라면 특별한 제한 없이 어느 것이나 사용할 수 있으나, 상기 미생물을 적당한 탄소원, 질소원, 인원, 무기화합물, 아미노산 및/또는 비타민 등을 함유한 통상의 배지 내에서 호기성 조건 하에서 온도, pH 등을 조절하면서 배양할 수 있다.In this specification, the term "medium" refers to a material that is mainly mixed with nutrients necessary for cultivating the microorganisms, and supplies nutrients and growth factors, including water, which are essential for survival and development. Specifically, the medium and other culture conditions used for cultivating the microorganisms can be any medium used for cultivating ordinary microorganisms without particular restrictions, but the microorganisms can be grown with appropriate carbon sources, nitrogen sources, personnel, inorganic compounds, amino acids, and /Or, it can be cultured under aerobic conditions in a normal medium containing vitamins, etc., while controlling temperature, pH, etc.
상기 탄소원으로는 글루코오스, 사카로오스, 락토오스, 프룩토오스, 수크로오스, 말토오스 등과 같은 탄수화물; 만니톨, 소르비톨 등과 같은 당 알코올, 피루브산, 락트산, 시트르산 등과 같은 유기산; 글루탐산, 메티오닌, 리신 등과 같은 아미노산 등이 포함될 수 있다. 또한, 전분 가수분해물, 당밀, 블랙스트랩 당밀, 쌀겨울, 카사버, 사탕수수 찌꺼기 및 옥수수 침지액 같은 천연의 유기 영양원을 사용할 수 있으며, 구체적으로는 글루코오스 및 살균된 전처리 당밀(즉, 환원당으로 전환된 당밀) 등과 같은 탄수화물이 사용될 수 있으며, 그 외의 적정량의 탄소원을 제한없이 다양하게 이용할 수 있다. 이들 탄소원은 단독으로 사용되거나 2 종 이상이 조합되어 사용될 수 있으며, 이에 한정되는 것은 아니다.The carbon source includes carbohydrates such as glucose, saccharose, lactose, fructose, sucrose, maltose, etc.; Sugar alcohols such as mannitol, sorbitol, etc., organic acids such as pyruvic acid, lactic acid, citric acid, etc.; Amino acids such as glutamic acid, methionine, lysine, etc. may be included. Additionally, natural organic nutrient sources such as starch hydrolyzate, molasses, blackstrap molasses, rice bran, cassava, bagasse and corn steep liquor can be used, specifically glucose and sterilized pre-treated molasses (i.e. converted to reducing sugars). Carbohydrates such as molasses) can be used, and various other carbon sources in an appropriate amount can be used without limitation. These carbon sources may be used alone or in combination of two or more types, but are not limited thereto.
상기 질소원으로는 암모니아, 황산암모늄, 염화암모늄, 초산암모늄, 인산암모늄, 탄산안모늄, 질산암모늄 등과 같은 무기질소원; 글루탐산, 메티오닌, 글루타민 등과 같은 아미노산, 펩톤, NZ-아민, 육류 추출물, 효모 추출물, 맥아 추출물, 옥수수 침지액, 카세인 가수분해물, 어류 또는 그의 분해생성물, 탈지 대두 케이크 또는 그의 분해 생성물 등과 같은 유기 질소원이 사용될 수 있다. 이들 질소원은 단독으로 사용되거나 2 종 이상이 조합되어 사용될 수 있으며, 이에 한정되는 것은 아니다.The nitrogen source includes inorganic nitrogen sources such as ammonia, ammonium sulfate, ammonium chloride, ammonium acetate, ammonium phosphate, anmonium carbonate, and ammonium nitrate; Organic nitrogen sources such as amino acids such as glutamic acid, methionine, and glutamine, peptone, NZ-amine, meat extract, yeast extract, malt extract, corn steep liquor, casein hydrolyzate, fish or its decomposition products, defatted soybean cake or its decomposition products, etc. can be used These nitrogen sources may be used individually or in combination of two or more types, but are not limited thereto.
상기 인원으로는 인산 제1칼륨, 인산 제2칼륨, 또는 이에 대응되는 소디움-함유 염 등이 포함될 수 있다. 무기 화합물로는 염화나트륨, 염화칼슘, 염화철, 황산마그네슘, 황산철, 황산망간, 탄산칼슘 등이 사용될 수 있으며, 그 외에 아미노산, 비타민 및/또는 적절한 전구체 등이 포함될 수 있다. 이들 구성성분 또는 전구체는 배지에 회분식 또는 연속식으로 첨가될 수 있다. 그러나, 이에 한정되는 것은 아니다.The agent may include monopotassium phosphate, dipotassium phosphate, or a corresponding sodium-containing salt. Inorganic compounds may include sodium chloride, calcium chloride, iron chloride, magnesium sulfate, iron sulfate, manganese sulfate, and calcium carbonate, and may also include amino acids, vitamins, and/or appropriate precursors. These components or precursors can be added to the medium batchwise or continuously. However, it is not limited to this.
또한, 상기 배양 중에 수산화암모늄, 수산화칼륨, 암모니아, 인산, 황산 등과 같은 화합물을 배지에 적절한 방식으로 첨가하여, 배지의 pH를 조정할 수 있다. 또한, 배양 중에는 지방산 폴리글리콜 에스테르와 같은 소포제를 사용하여 기포 생성을 억제할 수 있다. 또한, 배지의 호기 상태를 유지하기 위하여, 배지 내로 산소 또는 산소 함유 기체를 주입하거나 혐기 및 미호기 상태를 유지하기 위해 기체의 주입 없이 혹은 질소, 수소 또는 이산화탄소 가스를 주입할 수 있으며, 이에 한정되는 것은 아니다.Additionally, during the culture, compounds such as ammonium hydroxide, potassium hydroxide, ammonia, phosphoric acid, sulfuric acid, etc. can be added to the medium in an appropriate manner to adjust the pH of the medium. Additionally, during culturing, foam generation can be suppressed by using an antifoaming agent such as fatty acid polyglycol ester. In addition, to maintain the aerobic state of the medium, oxygen or oxygen-containing gas can be injected into the medium, or to maintain the anaerobic and microaerobic state, nitrogen, hydrogen, or carbon dioxide gas can be injected without gas injection, and is limited thereto. That is not the case.
상기 배양에서 배양온도는 20 내지 45℃, 구체적으로는 25 내지 40℃를 유지할 수 있고, 약 10 내지 160 시간 동안 배양할 수 있으나, 이에 한정되는 것은 아니다.In the above culture, the culture temperature can be maintained at 20 to 45°C, specifically 25 to 40°C, and culture can be performed for about 10 to 160 hours, but is not limited thereto.
상기 배양에 의하여 생산된 마이코스포린 유사 아미노산은 배지 중으로 분비되거나 세포 내에 잔류할 수 있다.Mycosporin-like amino acids produced by the above culture may be secreted into the medium or remain within the cells.
상기 배양에 따른 배지(배양이 수행된 배지) 또는 상기 미생물로부터 마이코스포린 유사 아미노산을 회수하는 단계에서, 상기 회수는 상기 미생물의 배양 방법, 예를 들어 회분식, 연속식 또는 유가식 배양 방법 등에 따라 당해 기술 분야에 공지된 적합한 방법을 이용하여 목적하는 마이코스포린 유사 아미노산을 수집(collect)하는 것일 수 있다. 예를 들어, 원심 분리, 여과, 결정화 단백질 침전제에 의한 처리(염석법), 추출, 초음파 파쇄, 한외여과, 투석법, 분자체 크로마토그래피(겔여과), 흡착크로마토그래피, 이온교환 크로마토그래피, 친화도 크로마토그래피 등의 각종 크로마토그래피, HPLC 또는 이들의 방법을 조합하여 사용될 수 있으며, 당해 분야에 공지된 적합한 방법을 이용하여 배지 또는 미생물로부터 목적하는 마이코스포린 유사 아미노산을 회수할 수 있다.In the step of recovering the mycosporine-like amino acid from the culture medium (medium in which the culture was performed) or the microorganism, the recovery is performed according to the culture method of the microorganism, for example, batch, continuous, or fed-batch culture method. The desired mycosporine-like amino acid may be collected using a suitable method known in the art. For example, centrifugation, filtration, crystallization, treatment with protein precipitants (salting out), extraction, ultrasonic disruption, ultrafiltration, dialysis, molecular sieve chromatography (gel filtration), adsorption chromatography, ion exchange chromatography, affinity. Various chromatography such as chromatography, HPLC, or a combination of these methods can be used, and the desired mycosporine-like amino acid can be recovered from the medium or microorganism using a suitable method known in the art.
또한, 상기 생산방법은 추가적으로 정제 단계를 포함할 수 있다. 상기 정제는 당해 기술분야에 공지된 적합한 방법을 이용하여 수행할 수 있다. 일 예에서, 상기 생산방법이 회수 단계와 정제 단계를 모두 포함하는 경우, 상기 회수 단계와 정제 단계는 순서에 상관없이 연속적 또는 비연속적으로 수행되거나, 동시에 또는 하나의 단계로 통합되어 수행될 수 있으나, 이에 제한되는 것은 아니다. Additionally, the production method may additionally include a purification step. The purification can be performed using a suitable method known in the art. In one example, when the production method includes both a recovery step and a purification step, the recovery step and the purification step may be performed continuously or discontinuously regardless of the order, or may be performed simultaneously or integrated into one step. , but is not limited to this.
본 발명의 또 다른 양상은 상기 미생물을 포함하는, 마이코스포린 유사 아미노산 생산용 조성물을 제공한다.Another aspect of the present invention provides a composition for producing a mycosporin-like amino acid, comprising the microorganism.
이때, 미생물 및 마이코스포린 유사 아미노산은 전술한 바와 같다.At this time, the microorganism and mycosporin-like amino acid are as described above.
상기 조성물은 (i) 3-데옥시-7-포스포헵툴로네이트 합성 효소의 활성을 불활성화 시키는 유전자 또는 이를 포함하는 재조합 벡터; (ii) 2-디메틸 4-데옥시가두솔 합성 효소, O-메틸 전이 효소, ATP-grasp 라이게이즈 및 D-알라닌 D-알라닌 라이게이즈로 이루어진 군으로부터 선택된 하나 이상, 이를 암호화하는 유전자 또는 이를 포함하는 재조합 벡터; (iii) 3-데옥시-7-포스포헵툴로네이트 합성 효소 유전자를 결실시키거나 상기 유전자의 발현을 억제 또는 감소시키도록 조작된 재조합 벡터; (iv) 글루코오스-6-포스페이트 1-데하이드로게나아제 및 6-포스포글루코네이트 데하이드로게나아제로 이루어진 군으로부터 선택된 하나 이상, 이를 암호화하는 유전자 또는 이를 포함하는 재조합 벡터; 및/또는 (v) 상기 (i), (ii), (iii), (iv) 또는 이들의 조합을 포함하는 변이 미생물을 포함하는 마이코스포린 유사 아미노산 생산용 조성물을 제공한다. 상기 조성물 또는 상기 조성물에 포함된 변이 미생물은 오탄당 인산경로(pentose phosphate pathway) 강화를 위한 성분을 추가로 포함할 수 있다.The composition includes (i) a gene that inactivates the activity of 3-deoxy-7-phosphoheptulonate synthase or a recombinant vector containing the same; (ii) one or more selected from the group consisting of 2-dimethyl 4-deoxygadusol synthase, O-methyltransferase, ATP-grasp ligase, and D-alanine D-alanine ligase, or a gene encoding the same; Recombinant vector containing it; (iii) a recombinant vector engineered to delete the 3-deoxy-7-phosphoheptulonate synthase gene or to suppress or reduce the expression of the gene; (iv) at least one selected from the group consisting of glucose-6-phosphate 1-dehydrogenase and 6-phosphogluconate dehydrogenase, a gene encoding the same, or a recombinant vector containing the same; and/or (v) a mutant microorganism comprising (i), (ii), (iii), (iv), or a combination thereof. The composition or the mutant microorganism included in the composition may further include ingredients for strengthening the pentose phosphate pathway.
본 발명의 일 양상에 따라 시키메이트 경로에 관여하는 3-데옥시-7-포스포헵툴로네이트 합성 효소 (DAHPS)를 불활성화시키는 경우 마이코스포린 유사 아미노산의 생산능이 향상되므로, 본 발명에 따른 미생물은 마이코스포린 유사 아미노산을 생산하는데 유용하게 사용될 수 있다.According to one aspect of the present invention, the production ability of mycosporine-like amino acids is improved when 3-deoxy-7-phosphoheptulonate synthase (DAHPS) involved in the shikimate pathway is inactivated, so the microorganism according to the present invention is It can be usefully used to produce mycosporine-like amino acids.
도 1은 마이코스포린 유사 아미노산 생산 경로 및 경쟁경로를 도식화한 것이다. 여기서 ZWFGND (초록색)은 과발현 타겟이며 ARO3ARO4 (빨간색)는 불활성화 타겟이다. Figure 1 is a schematic diagram of the mycosporine-like amino acid production pathway and competition pathway. Here, ZWF and GND (green) are overexpression targets and ARO3 and ARO4 (red) are inactivation targets.
도 2는 마이코스포린 유사 아미노산 생합성 경로 구축을 위한 유전자 삽입용 플라스미드의 제작 방법을 도식화한 것이다.Figure 2 schematically illustrates a method for constructing a plasmid for gene insertion to construct a mycosporine-like amino acid biosynthetic pathway.
도 3은 CBEYL002, CBEYL002aro3△, CBEYL002aro4△, CBEYL002aro3△aro4△ 균주의 성장과 마이코스포린 유사 아미노산 생산량을 나타낸 그래프이다. 여기서 PO는 포피라-334를 지칭하고, SH는 시노린을 지칭한다.Figure 3 is a graph showing the growth and mycosporine-like amino acid production of CBEYL002, CBEYL002 aro3△ , CBEYL002 aro4△ , and CBEYL002 aro3△aro4△ strains. Here, PO refers to Porphyra-334 and SH refers to Shinorin.
도 4는 CBEYL002aro3△aro4△ [EV], CBEYL002aro3△aro4△ [PEXP-ZWF], CBEYL002aro3△aro4△ [PUAS1B8TEF(136)-ZWF], CBEYL002aro3△aro4△ [PUAS1B8TEF(136)-GND] 균주의 마이코스포린 유사 아미노산 생산량을 나타낸 그래프이다. 여기서 PO는 포피라-334를 지칭하고, SH는 시노린을 지칭한다.Figure 4 shows CBEYL002 aro3△aro4△ [EV], CBEYL002 aro3△aro4△ [PEXP-ZWF], CBEYL002 aro3△aro4△ [P UAS1B8TEF(136) -ZWF], CBEYL002 aro3△aro4△ [P UAS1B8TEF(136) - GND] This is a graph showing the production of mycosporine-like amino acids of the strain. Here, PO refers to Porphyra-334 and SH refers to Shinorin.
이하, 실시예를 통하여 본 발명을 보다 상세히 설명하고자 한다. 그러나, 이들 실시예는 본 발명을 예시적으로 설명하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail through examples. However, these examples are for illustrative purposes only, and the scope of the present invention is not limited by these examples.
실시예 1: 미세조류 유래 마이코스포린 유사 아미노산 생합성 유전자의 유전체 삽입용 벡터 제작Example 1: Construction of vector for genomic insertion of mycosporin-like amino acid biosynthetic gene derived from microalgae
효모 Yarrowia lipolytica는 마이코스포린 유사 아미노산 생합성 경로가 존재하지 않아 외래의 유전자를 도입하여 마이코스포린 유사 아미노산 생합성 경로를 구축해야 한다 (도 1 참조). 마이코스포린 유사 아미노산인 시노린 및 포피라-334은 오탄당 인산경로의 중간체인 세도헵툴로스 7-인산 (sedoheptulose 7-phosphate: S7P)으로부터 4단계의 효소 전환 반응을 통해 합성된다. 2-디메틸 4-데옥시가두솔 합성 효소 (2-demethyl 4-deoxygadusol synthase: DDGS)에 의하여 세도헵툴로스 7-인산이 2-디메틸-4-데옥시가두솔 (2-demethyl 4-deoxygadusol: DDG)로 전환되며 이후 O-메틸 전이 효소 (O-methyltransferase: O-MT)에 의하여 4-데옥시가두솔 (4-deoxygadusol: 4-DG)로 전환된다. 이후 효소 ATP-grasp 라이게이즈 (ATP-grasp ligase)가 글리신 결합 (glycylation)을 촉매하여 4-DG를 마이코스포린-글리신 (mycosporine-glycine: MG)으로 전환시킨다. 마지막으로 효소 D-알라닌 D-알라닌 라이게이즈 (D-Ala D-Ala ligase)에 의하여 마이코스포린-글리신 (MG)에 L-세린 (L-serine) 또는 L-트레오닌 (L-threonine)이 부착되어 시노린 (shinorine) 또는 포피라-334 (porphyra-334)가 형성된다 (도 1 참조).The yeast Yarrowia lipolytica does not have a mycosporine-like amino acid biosynthetic pathway, so a foreign gene must be introduced to construct a mycosporine-like amino acid biosynthetic pathway (see Figure 1). Mycosporine-like amino acids shinorine and porphyra-334 are synthesized through a four-step enzymatic conversion reaction from sedoheptulose 7-phosphate (S7P), an intermediate in the pentose phosphate pathway. Sedoheptulose 7-phosphate is converted to 2-dimethyl-4-deoxygadusol (DDGS) by 2-demethyl 4-deoxygadusol synthase (DDGS). ) and then converted to 4-deoxygadusol (4-DG) by O-methyltransferase (O-MT). Afterwards, the enzyme ATP-grasp ligase catalyzes glycylation, converting 4-DG into mycosporine-glycine (MG). Finally, L-serine or L-threonine is attached to mycosporine-glycine (MG) by the enzyme D-alanine D-alanine ligase. This forms shinorine or porphyra-334 (see Figure 1).
DDGS (Ava3858), O-MT (Ava3857), 그리고 ATP-grasp ligase (Ava3856)를 암호화하는 유전자는 아나베나 바리아빌리스 (Anabaena variabilis, ATCC 29413) 유래의 것을 코돈 최적화하여 사용하였으며 D-Ala D-Ala ligase (NpF5597)를 암호화하는 유전자는 노스탁 펑크티포르메 (Nostoc punctiforme, ATCC29133) 유래의 것을 코돈 최적화하여 사용하였다. 각 유전자는 UAS1B8TEF(136) 프로모터로 발현하고자 UAS1B8TEF(136) 프로모터 - 유전자 - CYC1 터미네이터 카세트를 제작하였다. The genes encoding DDGS (Ava3858), O-MT (Ava3857), and ATP-grasp ligase (Ava3856) were derived from Anabaena variabilis (ATCC 29413) and used after codon optimization, and D-Ala D The gene encoding -Ala ligase (NpF5597) was derived from Nostoc punctiforme (ATCC29133) and was used after codon optimization. To express each gene using the UAS1B8TEF (136) promoter, a UAS1B8TEF (136) promoter - gene - CYC1 terminator cassette was created.
이들 4종의 유전자 카세트는 Cre-LoxP 시스템을 활용하여 유전체에 삽입하였다. 유전체 삽입 위치는 문헌 (Holkenbrink et al, Biotechnol. J. 2018, 13, 1700543)을 참고하여 유전자 발현이 잘 되는 곳으로 선정하였다. 먼저 선별 마커 (LoxP-URA3-LoxP) 양 말단에 유전체 삽입 위치의 서열 (0.9~1.0 kb)이 포함되도록 플라스미드를 제작하였다. 유전체 삽입 위치는 IntC3, IntD1, IntE3로 명명하며 이에 해당하는 서열은 서열 목록에서 확인할 수 있다. 4종의 유전자 카세트는 NPF5597, Ava3856, Ava3857, 그리고 Ava3858 순으로 클로닝 하였으며 최종적으로 유전자 삽입용 플라스미드 'IntC3-NAAA', 'IntD1-NAAA', 그리고 'IntE3-NAAA'로 명명하였다 (도 2 및 표 1 참조).These four gene cassettes were inserted into the genome using the Cre-LoxP system. The genome insertion location was selected as one with good gene expression, referring to the literature (Holkenbrink et al, Biotechnol. J. 2018, 13, 1700543). First, a plasmid was constructed so that the sequence of the genomic insertion site (0.9 to 1.0 kb) was included at both ends of the selection marker (LoxP-URA3-LoxP). The genomic insertion sites are named IntC3, IntD1, and IntE3, and the corresponding sequences can be confirmed in the sequence list. The four gene cassettes were cloned in the order of NPF5597, Ava3856, Ava3857, and Ava3858, and the final gene insertion plasmids were named 'IntC3-NAAA', 'IntD1-NAAA', and 'IntE3-NAAA' (Figure 2 and Table 1).
PlasmidPlasmid DescriptionDescription
*유전자 삽입용*For gene insertion
IntC3-NAAAIntC3-NAAA IntC3:: PUAS1B8-TEF(136)-NpF5597-TCYC1, PUAS1B8-TEF(136)-Ava3856-TCYC1, PUAS1B8-TEF(136)-Ava3857-TCYC1, PUAS1B8-TEF(136)-Ava3858-TCYC1, loxP-URA3-loxP, AmpR, ColE1IntC3:: P UAS1B8-TEF(136) -NpF5597-T CYC1 , P UAS1B8-TEF(136) -Ava3856-T CYC1 , P UAS1B8-TEF(136) -Ava3857-T CYC1 , P UAS1B8-TEF(136) - Ava3858-T CYC1 , loxP-URA3-loxP, Amp R , ColE1
IntD1-NAAAIntD1-NAAA IntD1:: PUAS1B8-TEF(136)-NpF5597-TCYC1, PUAS1B8-TEF(136)-Ava3856-TCYC1, PUAS1B8-TEF(136)-Ava3857-TCYC1, PUAS1B8-TEF(136)-Ava3858-TCYC1, loxP-URA3-loxP, AmpR, ColE1IntD1:: P UAS1B8-TEF(136) -NpF5597-T CYC1 , P UAS1B8-TEF(136) -Ava3856-T CYC1 , P UAS1B8-TEF(136) -Ava3857-T CYC1 , P UAS1B8-TEF(136) - Ava3858-T CYC1 , loxP-URA3-loxP, Amp R , ColE1
IntE3-NAAAIntE3-NAAA IntE3:: PUAS1B8-TEF(136)-NpF5597-TCYC1, PUAS1B8-TEF(136)-Ava3856-TCYC1, PUAS1B8-TEF(136)-Ava3857-TCYC1, PUAS1B8-TEF(136)-Ava3858-TCYC1, loxP-URA3-loxP, AmpR, ColE1IntE3:: P UAS1B8-TEF(136) -NpF5597-T CYC1 , P UAS1B8-TEF(136) -Ava3856-T CYC1 , P UAS1B8-TEF(136) -Ava3857-T CYC1 , P UAS1B8-TEF(136) - Ava3858-T CYC1 , loxP-URA3-loxP, Amp R , ColE1
pCREpCRE PEXP1-Cre-TCYC1, LEU, ARS18, AmpR, ColE1P EXP1 -Cre-T CYC1 , LEU, ARS18, Amp R , ColE1
실시예 2: 마이코스포린 유사 아미노산 생합성 유전자가 삽입된 균주 제작Example 2: Construction of a strain with an inserted mycosporin-like amino acid biosynthetic gene
실시예 1에서 제작된 IntD1-NAAA 플라스미드를 NdeI 제한효소로 처리하여 마이코스포린 유사 아미노산 생합성 유전자 삽입용 카세트를 제작하였다. 해당 카세트를 Polgku70△ura3△ 균주 (Beag et al., Metabolic Engineering of Yarrowia lipolytica for the production of carotenoids, ß-carotene, and crocetin 참조)에 LiAc/SS carrier DNA/PEG 방법을 사용하여 형질 전환시킨 후 SC-Ura 플레이트에서 선별하였다. URA3 선별마커는 Cre 재조합효소를 발현시키는 pCRE를 이용하여 제거하였다. 동일한 방법을 이용하여 상기 실시예 1에서 제작된 IntC3-NAAA와 IntE3-NAAA도 순차적으로 삽입하였고 이를 'CBEYL002' 균주로 명명하였다. The IntD1-NAAA plasmid prepared in Example 1 was treated with NdeI restriction enzyme to prepare a cassette for inserting a mycosporine-like amino acid biosynthetic gene. The cassette was transformed into the Polg ku70△ura3△ strain (see Beag et al., Metabolic Engineering of Yarrowia lipolytica for the production of carotenoids, ß-carotene, and crocetin) using the LiAc/SS carrier DNA/PEG method. Selection was performed on SC-Ura plates. The URA3 selection marker was removed using pCRE expressing Cre recombinase. Using the same method, IntC3-NAAA and IntE3-NAAA produced in Example 1 were sequentially inserted and named as 'CBEYL002' strain.
실시예 3: 3-데옥시-7-포스포헵툴로네이트 합성 효소 (DAHP synthase)를 불활성화 시킬 수 있는 벡터 제작Example 3: Construction of a vector capable of inactivating 3-deoxy-7-phosphoheptulonate synthase (DAHP synthase)
마이코스포린 유사 아미노산은 오탄당 인산경로의 중간물인 S7P로부터 생산 (도 1 참조)되므로 오탄당 인산경로의 하위 경로인 시키메이트 경로 (shikimate pathway)를 약화시켜 중간물인 S7P이 축적될 수 있도록 하였다. 따라서 시키메이트 경로의 첫번째 단계인 포스포에놀피루브산 (phosphoenolpyruvate: PEP)와 D-에리트로스 4-포스페이트 (D-erythrose 4-phosphate: E4P)를 3-데옥시-D-아라비노-헵툴로소네이트 7-포스페이트 (3-deoxy-D-arabino-heptulosonate 7-phosphate: DAHP)로 전환하는데 관여하는 효소인 3-데옥시-7-포스포헵툴로네이트 합성 효소 (3-deoxy-7-phosphoheptulonate synthase: DAHPS)를 불활성화 시키고자 하였다.Since mycosporin-like amino acids are produced from S7P, an intermediate of the pentose phosphate pathway (see Figure 1), the shikimate pathway, a downstream pathway of the pentose phosphate pathway, was weakened to allow the intermediate S7P to accumulate. Therefore, phosphoenolpyruvate (PEP) and D-erythrose 4-phosphate (E4P), which are the first steps in the shikimate pathway, are converted into 3-deoxy-D-arabino-heptulose. 3-deoxy-7-phosphoheptulonate synthase, an enzyme involved in the conversion to 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) : DAHPS) was intended to be inactivated.
효모 Yarrowia lipolytica 내에는 2가지 이상의 DAHPS isoform이 존재한다. 이에 3-데옥시-7-포스포헵툴로네이트 합성 효소 (DAHPS)를 암호화하는 유전자 ARO3 (YALI0B20020) 또는 ARO4 (YALI0C06952)를 불활성화시켜 마이코스포린 유사 아미노산 생산 증가 효과가 있는지 확인하고자 하였다. There are two or more DAHPS isoforms in the yeast Yarrowia lipolytica . Accordingly, we sought to determine whether there was an effect of increasing mycosporine-like amino acid production by inactivating the gene ARO3 (YALI0B20020) or ARO4 (YALI0C06952) encoding 3-deoxy-7-phosphoheptulonate synthase (DAHPS).
ARO3 또는 ARO4를 불활성화시키기 위하여 CRISPR 시스템 기반의 염기 편집(base editing) 기술 (Bae et al., Biotechnol. J. 2020, 15, 1900238)을 사용하여 타겟 유전자에 종결 코돈을 삽입하고자 하였다. 해당 유전자에 종결 코돈이 삽입될 수 있도록 표 2와 같이 gRNA 서열을 디자인하였으며 해당 서열이 삽입되어 있는 플라스미드는 pCRISPRyl-PTEFin-nCas9-pmCDA1-UGI[W] 플라스미드를 주형으로 inverse PCR을 수행하여 pCRISPRyl-PTEFin-nCas9-pmCDA1-UGI[ARO3], pCRISPRyl-PTEFin-nCas9-pmCDA1-UGI[ARO4] 플라스미드를 제작하였다. 제작된 플라스미드는 표 3과 같다. In order to inactivate ARO3 or ARO4 , a stop codon was attempted to be inserted into the target gene using base editing technology based on the CRISPR system (Bae et al., Biotechnol. J. 2020, 15, 1900238). The gRNA sequence was designed as shown in Table 2 so that a stop codon can be inserted into the gene, and the plasmid into which the sequence is inserted was pCRISPRyl-P TEFin -nCas9-pmCDA1-UGI[W] Inverse PCR was performed using the plasmid as a template. -P TEFin -nCas9-pmCDA1-UGI[ARO3], pCRISPRyl-P TEFin -nCas9-pmCDA1-UGI[ARO4] plasmids were constructed. The produced plasmids are shown in Table 3.
타겟 유전자target gene gRNAgRNA 서열번호sequence number
ARO3ARO3 ACCGAAACCGGACCGAGGACACCGAAACCGGACCGAGGGAC 2626
ARO4ARO4 GCTGCGATCCAAGTCCAAGGGCTGCGATCCAAGTCCAAGG 2727
PlasmidPlasmid DescriptionDescription
* 유전자 불활성화용* For gene inactivation
pCRISPRyl-PTEFin-nCas9-pmCDA1-UGI[W]pCRISPRyl-P TEFin -nCas9-pmCDA1-UGI[W] PTEFin-nCAS9-TCYC1, PSCR1\ ly-TRP1 gRNA, LEU, CEN, Ori1001, AmpR, ColE1P TEFin -nCAS9-T CYC1 , P SCR1\ ly -TRP1 gRNA, LEU, CEN, Ori1001, Amp R , ColE1
pCRISPRyl-PTEFin-nCas9-pmCDA1-UGI[ARO3]pCRISPRyl-P TEFin -nCas9-pmCDA1-UGI[ARO3] pCRISPRyl-PTEFin-nCas9-pmCDA1-UGI[W] replacing TRP1 gRNA with ARO3 gRNApCRISPRyl-P TEFin -nCas9-pmCDA1-UGI[W] replacing TRP1 gRNA with ARO3 gRNA
pCRISPRyl-PTEFin-nCas9-pmCDA1-UGI[ARO4]pCRISPRyl-P TEFin -nCas9-pmCDA1-UGI[ARO4] pCRISPRyl-PTEFin-nCas9-pmCDA1-UGI[W] replacing TRP1 gRNA with ARO3 gRNApCRISPRyl-P TEFin -nCas9-pmCDA1-UGI[W] replacing TRP1 gRNA with ARO3 gRNA
실시예 4: Example 4: ARO3ARO3 and ARO4ARO4 가 불활성된 균주 제작Production of inactivated strains
CBEYL002 균주에 실시예 3에서 제작된 pCRISPRyl-PTEFin-nCas9-pmCDA1-UGI[ARO3], 또는 pCRISPRyl-PTEFin-nCas9-pmCDA1-UGI[ARO4] 플라스미드를 LiAc/SS carrier DNA/PEG 방법을 사용하여 형질 전환시켰다. 상기 얻어진 형질전환 효모 균주를 SC-Leu 배지에 접종하여 약 16~18시간 배양한 후 적절히 희석하여 YPD (yeast extract-peptone-dextrose) 플레이트에 배양하였다. 단일 콜로니를 선별하여 ARO3 또는 ARO4 유전자를 PCR 한 후 시퀀싱하여 넌센스 돌연변이가 삽입되었는지 확인하였다 (표 4). 동일한 방법을 사용하여 CBEYL002aro4△ 균주에 pCRISPRyl-PTEFin-nCas9-pmCDA1-UGI[ARO3]를 형질전환하여 CBEYL002aro3△aro4△를 제작하였다. 제작된 균주는 표 4에 나타내었다.The pCRISPRyl-P TEFin -nCas9-pmCDA1-UGI[ARO3] or pCRISPRyl-P TEFin -nCas9-pmCDA1-UGI[ARO4] plasmid produced in Example 3 was added to the CBEYL002 strain using the LiAc/SS carrier DNA/PEG method. transformed. The obtained transformed yeast strain was inoculated into SC-Leu medium and cultured for about 16 to 18 hours, then appropriately diluted and cultured on a YPD (yeast extract-peptone-dextrose) plate. A single colony was selected, PCR performed on the ARO3 or ARO4 gene, and then sequenced to confirm whether a nonsense mutation had been inserted (Table 4). Using the same method, CBEYL002 aro3△aro4△ was created by transforming the CBEYL002 aro4 strain with pCRISPRyl-P TEFin -nCas9-pmCDA1-UGI[ARO3]. The produced strains are shown in Table 4.
StrainStrain DescriptionDescription
CBEYL002CBEYL002 Polgku70△ura3△ IntC3:: PUAS1B8-TEF(136)-NpF5597-TCYC1, PUAS1B8-TEF(136)-Ava3856-TCYC1, PUAS1B8-TEF(136)-Ava3857-TCYC1, PUAS1B8-TEF(136)-Ava3858-TCYC1-loxP, IntD1:: PUAS1B8-TEF(136)-NpF5597-TCYC1, PUAS1B8-TEF(136)-Ava3856-TCYC1, PUAS1B8-TEF(136)-Ava3857-TCYC1, PUAS1B8-TEF(136)-Ava3858-TCYC1-loxP, IntE3:: PUAS1B8-TEF(136)-NpF5597-TCYC1, PUAS1B8-TEF(136)-Ava3856-TCYC1, PUAS1B8-TEF(136)-Ava3857-TCYC1, PUAS1B8-TEF(136)-Ava3858-TCYC1-loxPPolgku70△ura3△ IntC3:: P UAS1B8-TEF(136) -NpF5597-T CYC1 , P UAS1B8-TEF(136) -Ava3856-T CYC1 , P UAS1B8-TEF(136) -Ava3857-T CYC1 , P UAS1B8-TEF (136) -Ava3858-T CYC1 -loxP, IntD1::P UAS1B8-TEF(136) -NpF5597-T CYC1 , P UAS1B8-TEF(136) -Ava3856-T CYC1 , P UAS1B8-TEF(136) -Ava3857- T CYC1 , P UAS1B8-TEF(136) -Ava3858-T CYC1 -loxP, IntE3::P UAS1B8-TEF(136) -NpF5597-T CYC1 , P UAS1B8-TEF(136) -Ava3856-T CYC1 , P UAS1B8- TEF(136) -Ava3857-T CYC1 ,P UAS1B8-TEF(136) -Ava3858-T CYC1- loxP
CBEYL002aro3△ CBEYL002 aro3△ CBEYL001, Aro3 14R->stopCBEYL001, Aro3 14R->stop
CBEYL002aro4△ CBEYL002 aro4△ CBEYL001, Aro4 40R->stopCBEYL001, Aro4 40R->stop
CBEYL002aro3△aro4△ CBEYL002 aro3△aro4△ CBEYL001, Aro3 14R->stop, Aro4 40R->stopCBEYL001, Aro3 14R->stop, Aro4 40R->stop
CBEYL002aro3△aro4△ [EV]CBEYL002 aro3△aro4△ [EV] CBEYL002aro3△aro4△ harboring pYL-LEUCBEYL002 aro3△aro4△ harboring pYL-LEU
CBEYL002aro3△aro4△ [PEXP-ZWF]CBEYL002 aro3△aro4△ [P EXP -ZWF] CBEYL002aro3△aro4△ harboring pYL-PEXP-ZWF-LEUCBEYL002 aro3△aro4△ harboring pYL-P EXP -ZWF-LEU
CBEYL002aro3△aro4△ [PEXP-GND]CBEYL002 aro3△aro4△ [P EXP -GND] CBEYL002aro3△aro4△ harboring pYL-PEXP-GND-LEUCBEYL002 aro3△aro4△ harboring pYL-P EXP -GND-LEU
CBEYL002aro3△aro4△ [PUAS1B8TEF(136)-ZWF]CBEYL002 aro3△aro4△ [P UAS1B8TEF(136) -ZWF] CBEYL002aro3△aro4△ harboring pYL-PUAS1B8TEF(136)-ZWF-LEUCBEYL002 aro3△aro4△ harboring pYL-P UAS1B8TEF(136) -ZWF-LEU
CBEYL002aro3△aro4△ [PUAS1B8TEF(136)-GND]CBEYL002 aro3△aro4△ [P UAS1B8TEF(136) -GND] CBEYL002aro3△aro4△ harboring pYL-PUAS1B8TEF(136)-GND-LEUCBEYL002 aro3△aro4△ harboring pYL-P UAS1B8TEF(136) -GND-LEU
실시예 5: Example 5: ARO3ARO3 and ARO4ARO4 가 불활성화된 균주의 마이코스포린 유사 아미노산 생산능 평가Evaluation of the ability of inactivated strains to produce mycosporine-like amino acids
실시예 2 및 4에서 제작된 균주 CBEYL002, CBEYL002aro3△, CBEYL002aro4△, CBEYL002aro3△aro4△ 균주의 마이코스포린 유사 아미노산의 생산 효과를 확인하기 위해 다음과 같이 실험을 수행하였다.To confirm the production effect of mycosporine-like amino acids by the strains CBEYL002, CBEYL002 aro3△ , CBEYL002 aro4△ , and CBEYL002 aro3△aro4△ produced in Examples 2 and 4, the following experiment was performed.
구체적으로 먼저, YPD 배지 (20 g/L 포도당, 10 g/L yeast extract, 20 /L bacto-peptone)에 O.D600=0.2로 접종하여 30 ℃ 및 220 rpm 조건하에서 148시간 동안 배양하였다. 배지 내 마이코스포린 유사 아미노산 (MAA)을 정량하기 위하여 배양액 1 mL을 원심분리 한 후 상등액을 얻고, 이를 0.22 ㎛ 필터로 여과하여 HPLC 분석을 수행하였다. Agilent Eclipse XDB-C18 컬럼 (5 μm, 4.6 Х 250 mm)을 갖춘 1260 infinity HPLC 시스템 (Agilent)를 이용하였고, 컬럼 온도는 40 ℃로 유지하며 0.5 mL/분의 유속으로 용매 (0.25% Trifluoroacetic acid가 포함된 물 : 0.25% Trifluoroacetic acid가 포함된 아세토니트릴 = 97.5 : 2.5)를 흘려주었다. 파장 334 nm에서 UV-vis 검출기로 시노린 및 포피라-334를 검출하였다. 상기와 같이 HPLC를 이용하여 마이코스포린 유사 아미노산 (시노린 및 포피라-334)을 정량한 결과를 도 3 및 표 5 에 나타내었다. Specifically, first, YPD medium (20 g/L glucose, 10 g/L yeast extract, 20 /L bacto-peptone) was inoculated at OD 600 = 0.2 and cultured for 148 hours at 30 ° C and 220 rpm. To quantify mycosporine-like amino acids (MAA) in the medium, 1 mL of culture medium was centrifuged to obtain the supernatant, which was filtered through a 0.22 ㎛ filter and subjected to HPLC analysis. A 1260 infinity HPLC system (Agilent) equipped with an Agilent Eclipse Water included: Acetonitrile containing 0.25% Trifluoroacetic acid = 97.5: 2.5) was flowed. Shinorine and Porphyra-334 were detected with a UV-vis detector at a wavelength of 334 nm. The results of quantifying mycosporine-like amino acids (shinorine and Porphyra-334) using HPLC as described above are shown in Figure 3 and Table 5.
도 3 및 표 5에 나타낸 바와 같이, CBEYL002 균주와 비교하여 ARO3 유전자가 불활성화된 CBEYL002aro3△ 균주는 마이코스포린 유사 아미노산 생산량이 약 38% 증가하였고 ARO4 유전자가 불활성화된 CBEYL002aro4△ 균주는 마이코스포린 유사 아미노산 생산량이 약 88% 증가하였다. 또한, ARO3 ARO4 유전자가 모두 불활성화된 CBEYL002aro3△aro4△ 균주는 마이코스포린 유사 아미노산 생산량이 약 74% 증가하였다.As shown in Figure 3 and Table 5, compared to the CBEYL002 strain, the CBEYL002 aro3△ strain with the ARO3 gene inactivated increased the production of mycosporine-like amino acids by about 38%, and the CBEYL002 aro4△ strain with the ARO4 gene inactivated increased mycosporine production. The production of similar amino acids increased by about 88%. In addition, the CBEYL002 aro3△aro4△ strain, in which both ARO3 and ARO4 genes were inactivated, increased mycosporine-like amino acid production by about 74%.
148 h148h O.D600O.D600 마이코스포린 유사 아미노산 (mg/L)Mycosporine-like amino acids (mg/L)
시노린Shinorin 포피라-334Porphyra-334 합계Sum
CBEYL002CBEYL002 27.36±1.4827.36±1.48 10.2010.20 5.965.96 16.1616.16
CBEYL002aro3△ CBEYL002 aro3△ 25.77±1.2825.77±1.28 16.2316.23 6.086.08 22.3122.31
CBEYL002aro4△ CBEYL002 aro4△ 30.05±2.5030.05±2.50 20.0120.01 10.4110.41 30.4230.42
CBEYL002aro3△aro4△ CBEYL002 aro3△aro4△ 25.40±0.2825.40±0.28 18.3418.34 9.909.90 28.2428.24
상기와 같은 실험결과로부터 본 발명의 일 구체예에 따라 시키메이트 경로에 관여하는 3-데옥시-7-포스포헵툴로네이트 합성 효소 (DAHPS)를 암호화하는 유전자 ARO3 (YALI0B20020) 및/또는 ARO4 (YALI0C06952)를 불활성화시키는 경우 마이코스포린 유사 아미노산의 생산이 증가함을 알 수 있다. From the above experimental results, according to one embodiment of the present invention, genes ARO3 (YALI0B20020) and/or ARO4 ( It can be seen that when YALI0C06952) is inactivated, the production of mycosporin-like amino acids increases.
실시예 6: 오탄당 인산경로의 강화를 위한 Example 6: For strengthening the pentose phosphate pathway GNDGND and ZWFZWF 의 과발현용 벡터 제작 Construction of vector for overexpression of
마이코스포린 유사 아미노산은 오탄당 인산경로의 중간물인 S7P로부터 생산되므로(도 1 참조) 해당경로를 강화하여 마이코스포린 유사 아미노산의 생산량을 증대시키고자 하였다. 이에 오탄당 인산경로의 첫번째 단계인 글루코스 6-포스페이트 (glucose 6-phosphate: G6P)를 6-포스포-D-글루코노-1,5-락톤 (6-phospho-D-glucono-1,5-lactone)으로 전환하는데 관여하는 효소 글루코스 6-포스페이트 1-데하이드로게나제 (glucose-6-phosphate 1-dehydrogenase)를 암호화하는 유전자 ZWF (YALI0E22649)를 강화하고자 하였다. 또한 D-글루코네이트 6-포스페이트 (D-gluconate 6-phophate)를 D-리불로스 5-포스페이트 (D-ribulose 5-phosphate)로 전환하는데 관여하는 효소 6-포스포글루코네이트 데하이드로게나제 (6-phosphogluconate dehydrogenase)를 암호화하는 유전자 GND (YALI0B15598p)를 강화하고자 하였다. Since mycosporine-like amino acids are produced from S7P, an intermediate in the pentose phosphate pathway (see Figure 1), we attempted to increase the production of mycosporine-like amino acids by strengthening the glycolytic pathway. Accordingly, glucose 6-phosphate (G6P), the first step in the pentose phosphate pathway, is converted into 6-phospho-D-glucono-1,5-lactone. ), the gene ZWF (YALI0E22649) encoding the enzyme glucose-6-phosphate 1-dehydrogenase, which is involved in the conversion to Additionally, the enzyme 6-phosphogluconate dehydrogenase (6) is involved in converting D-gluconate 6-phosphate to D-ribulose 5-phosphate. We sought to strengthen the gene GND (YALI0B15598p), which encodes -phosphogluconate dehydrogenase).
GNDZWF의 과발현 효과를 확인하기 위해, 이들 유전자를 개별적으로 발현하는 플라스미드를 제작하였다. 각각 유전자의 단편은 CBEYL002의 genomic DNA로부터 PCR을 통해 확보하였고 각 유전자는 EXP 프로모터 또는 UAS1B8TEF(136) 프로모터의 조절하에 발현하였다. 프로모터-유전자-터미네이터 (PEX20) 카세트를 pYL-LEU 플라스미드에 삽입하여 pYL-LEU, pYL-PEXP-ZWF-LEU, pYL-PEXP-GND-LEU, pYL-PUAS1B8TEF(136)-ZWF-LEU, 또는 pYL-PUAS1B8TEF(136)-GND-LEU 플라스미드를 제작하였다. 제작된 플라스미드는 표 6에 나타내었다.To confirm the effect of overexpression of GND and ZWF , plasmids that individually expressed these genes were constructed. Fragments of each gene were obtained through PCR from the genomic DNA of CBEYL002, and each gene was expressed under the control of the EXP promoter or the UAS1B8TEF (136) promoter. Insert the promoter-gene-terminator ( PEX20 ) cassette into the pYL-LEU plasmid to produce pYL-LEU, pYL-P EXP -ZWF-LEU, pYL-P EXP -GND-LEU, pYL-P UAS1B8TEF(136) -ZWF-LEU. , or pYL-P UAS1B8TEF(136) -GND-LEU plasmid was constructed. The constructed plasmids are shown in Table 6.
PlasmidPlasmid DescriptionDescription
*유전자 발현용*For gene expression
pYL-LEUpYL-LEU LEU, CEN, Ori1001, AmpR, ColE1LEU, CEN, Ori1001, AmpR , ColE1
pYL-PEXP-ZWF-LEUpYL-P EXP -ZWF-LEU PEXP-ZWF-TPEX20, LEU, CEN, Ori1001, AmpR, ColE1P EXP -ZWF-T PEX20 , LEU, CEN, Ori1001, Amp R , ColE1
pYL-PEXP-GND-LEUpYL-P EXP -GND-LEU PEXP-GND-TPEX20, LEU, CEN, Ori1001, AmpR, ColE1P EXP -GND-T PEX20 , LEU, CEN, Ori1001, Amp R , ColE1
pYL-PUAS1B8TEF(136)-ZWF-LEUpYL- PUAS1B8TEF(136) -ZWF-LEU PUAS1B8TEF(136)-ZWF-TPEX20, LEU, CEN, Ori1001, AmpR, ColE1P UAS1B8TEF(136) -ZWF-T PEX20 , LEU, CEN, Ori1001, Amp R , ColE1
pYL-PUAS1B8TEF(136)-GND-LEUpYL- PUAS1B8TEF(136) -GND-LEU PUAS1B8TEF(136)-GND-TPEX20, LEU, CEN, Ori1001, AmpR, ColE1P UAS1B8TEF(136) -GND-T PEX20 , LEU, CEN, Ori1001, Amp R , ColE1
실시예 7: Example 7: GNDGND and ZWFZWF 의 과발현을 통한 마이코스포린 유사 아미노산 생산능 평가 Evaluation of mycosporine-like amino acid production ability through overexpression of
GND 또는 ZWF를 과발현 시켰을 때 마이코스포린 유사 아미노산의 생산량이 증가하는지 다음과 같이 확인하였다.It was confirmed as follows whether the production of mycosporine-like amino acids increases when GND or ZWF is overexpressed.
구체적으로, CBEYL002aro3△aro4△ 균주에 실시예 6에서 제작된 pYL-LEU, pYL-PEXP-ZWF-LEU, pYL-PEXP-GND-LEU, pYL-PUAS1B8TEF(136)-ZWF-LEU, 또는 pYL-PUAS1B8TEF(136)-GND-LEU 플라스미드를 LiAc/SS carrier DNA/PEG 방법을 사용하여 형질 전환시켰다. 형질전환 효모 균주는 표 4에 나타내었다. 상기 얻어진 형질전환 효모 균주를 SC-Leu 배지 (20 g/L 포도당, 6.7 g/L YNB without amino acid, 류신을 제외한 아미노산 첨가물)에 O.D600=0.2로 접종하여 30 ℃ 및 220 rpm 조건하에서 148시간 동안 배양하였다. 실시예 5에 명시한 방법과 같이 마이코스포린 유사 아미노산의 농도를 측정하여 도 4 및 표 7에 나타내었다. Specifically, pYL-LEU, pYL-P EXP -ZWF-LEU, pYL-P EXP -GND-LEU, pYL-P UAS1B8TEF (136) -ZWF-LEU, prepared in Example 6 in the CBEYL002 aro3△aro4△ strain. Alternatively, the pYL-P UAS1B8TEF(136) -GND-LEU plasmid was transformed using the LiAc/SS carrier DNA/PEG method. Transformed yeast strains are shown in Table 4. The obtained transformed yeast strain was inoculated into SC-Leu medium (20 g/L glucose, 6.7 g/L YNB without amino acid, amino acid added except leucine) at OD 600 = 0.2 and incubated at 30°C and 220 rpm for 148 hours. cultured for a while. The concentration of mycosporine-like amino acids was measured as described in Example 5 and is shown in Figure 4 and Table 7.
도 4 및 표 7에 나타난 바와 같이, 두 유전자를 EXP 프로모터 조절하에 발현한 경우 효과가 없었지만 UAS1B8TEF(136) 프로모터 조절하에 발현한 경우 마이코스포린 유사 아미노산 생산량이 크게 증가하였다. 또한, 공벡터를 보유하는 CBEYL002aro3△aro4△ [EV] 균주와 비교하여 CBEYL002aro3△aro4△ [PUAS1B8TEF(136)-ZWF] 균주와 CBEYL002aro3△aro4△ [PUAS1B8TEF(136)-GND] 균주의 마이코스포린 유사 아미노산 생산량은 각각 2.4배, 2.7배 증가하였다. As shown in Figure 4 and Table 7, when the two genes were expressed under the control of the EXP promoter, there was no effect, but when the two genes were expressed under the control of the UAS1B8TEF (136) promoter, the production of mycosporine-like amino acids increased significantly. In addition, compared to the CBEYL002 aro3△aro4△ [EV] strain carrying an empty vector, the CBEYL002 aro3△aro4△ [P UAS1B8TEF(136) -ZWF] strain and the CBEYL002 aro3△aro4△ [P UAS1B8TEF(136) -GND] strain The production of mycosporine-like amino acids increased by 2.4-fold and 2.7-fold, respectively.
120 h120h 마이코스포린 유사 아미노산 (mg/L)Mycosporine-like amino acids (mg/L)
시노린Shinorin 포피라-334Porphyra-334 합계Sum
CBEYL002aro3△aro4△ [EV]CBEYL002 aro3△aro4△ [EV] 11.93±0.7711.93±0.77 12.35±1.7312.35±1.73 24.28±1.7624.28±1.76
CBEYL002aro3△aro4△ [PEXP-ZWF]CBEYL002 aro3△aro4△ [P EXP -ZWF] 13.31±2.8213.31±2.82 16.22±4.0216.22±4.02 29.54±4.8429.54±4.84
CBEYL002aro3△aro4△ [PEXP-GND]CBEYL002 aro3△aro4△ [P EXP -GND] 9.58±1.709.58±1.70 10.19±1.9410.19±1.94 19.77±2.5719.77±2.57
CBEYL002aro3△aro4△ [PUAS1B8TEF(136)-ZWF]CBEYL002 aro3△aro4△ [P UAS1B8TEF(136) -ZWF] 24.30±0.6724.30±0.67 26.90±1.9126.90±1.91 57.25±1.8257.25±1.82
CBEYL002aro3△aro4△ [PUAS1B8TEF(136)-GND]CBEYL002 aro3△aro4△ [P UAS1B8TEF(136) -GND] 32.94±2.7032.94±2.70 38.13±3.0138.13±3.01 65.02±4.0465.02±4.04
상기와 같은 실험결과로부터 본 발명의 일 구체예에 따라 본 발명에 따라 시키메이트 경로에 관여하는 3-데옥시-7-포스포헵툴로네이트 합성 효소 (DAHPS)를 암호화하는 유전자가 불활성화된 균주에 UAS1B8TEF(136) 프로모터 조절하에 GND 또는 ZWF를 과발현시킨 경우 마이코스포린 유사 아미노산의 생산이 현저히 증가함을 알 수 있다. 이는 본 발명의 일 구체예에 따른 미생물이 마이코스포린 유사 아미노산 생산에 유용하게 사용될 수 있음을 시사한다. From the above experimental results, according to one embodiment of the present invention, a strain in which the gene encoding 3-deoxy-7-phosphoheptulonate synthase (DAHPS) involved in the shikimate pathway is inactivated according to the present invention It can be seen that when GND or ZWF is overexpressed under the control of the UAS1B8TEF (136) promoter, the production of mycosporine-like amino acids is significantly increased. This suggests that the microorganism according to one embodiment of the present invention can be usefully used to produce mycosporine-like amino acids.

Claims (8)

  1. 3-데옥시-7-포스포헵툴로네이트 합성 효소 (3-deoxy-7-phosphoheptulonate synthase)의 활성이 비변형 미생물에 비해 불활성화된, 마이코스포린 유사 아미노산을 생산하는 미생물.A microorganism that produces mycosporine-like amino acids in which the activity of 3-deoxy-7-phosphoheptulonate synthase is inactivated compared to unmodified microorganisms.
  2. 청구항 1에 있어서, 미생물이 2-디메틸 4-데옥시가두솔 합성 효소 (2-demethyl 4-deoxygadusol synthase), O-메틸 전이 효소 (O-methyltransferase), ATP-grasp 라이게이즈 (ATP-grasp ligase), 및 D-알라닌 D-알라닌 라이게이즈 (D-Ala D-Ala ligase)로 이루어진 군으로부터 선택된 하나 이상의 단백질을 암호화하는 유전자를 포함하는, 마이코스포린 유사 아미노산을 생산하는 미생물.The method of claim 1, wherein the microorganism has 2-demethyl 4-deoxygadusol synthase, O-methyltransferase, and ATP-grasp ligase. ), and D-alanine D-alanine ligase (D-Ala D-Ala ligase), a microorganism that produces mycosporine-like amino acids, comprising a gene encoding one or more proteins selected from the group consisting of
  3. 청구항 1 또는 청구항 2에 있어서, 글루코오스-6-포스페이트 1-데하이드로게나아제 (glucose-6-phosphate 1-dehydrogenase) 및 6-포스포글루코네이트 데하이드로게나아제 (6-phosphogluconate dehydrogenase)로 이루어진 군으로부터 선택된 하나 이상의 단백질 활성이 비변형 미생물에 비해 강화된, 마이코스포린 유사 아미노산을 생산하는 미생물.The method according to claim 1 or 2, from the group consisting of glucose-6-phosphate 1-dehydrogenase and 6-phosphogluconate dehydrogenase. Microorganisms that produce mycosporine-like amino acids in which the activity of one or more selected proteins is enhanced compared to unmodified microorganisms.
  4. 청구항 1 내지 청구항 3 중 어느 한 항에 있어서, 글루코오스-6-포스페이트 1-데하이드로게나아제 및 6-포스포글루코네이트 데하이드로게나아제로 이루어진 군으로부터 선택된 하나 이상의 단백질을 암호화하는 유전자는 UAS1B8TEF 프로모터와 작동가능하게 연결된, 마이코스포린 유사 아미노산을 생산하는 미생물.The method according to any one of claims 1 to 3, wherein the gene encoding one or more proteins selected from the group consisting of glucose-6-phosphate 1-dehydrogenase and 6-phosphogluconate dehydrogenase is selected from the UAS1B8TEF promoter and A microorganism that produces operably linked mycosporin-like amino acids.
  5. 청구항 1 내지 청구항 4 중 어느 한 항에 있어서, 미생물은 효모인 것인, 마이코스포린 유사 아미노산을 생산하는 미생물. The microorganism according to any one of claims 1 to 4, wherein the microorganism is yeast.
  6. 청구항 1 내지 청구항 5 중 어느 한 항에 있어서, 마이코스포린 유사 아미노산은 마이코스포린-2-글라이신 (mycosporine-2-glycine), 팰라이티놀 (palythinol), 팰라이텐산 (palythenic acid), 데옥시가두솔 (deoxygadusol), 마이코스포린-메틸아민-트레오닌 (mycosporine-methylamine-threonine), 마이코스포린-글라이신-발린 (mycosporine-glycine-valine), 팰라이틴 (palythine), 아스테리나-330 (asterina-330), 시노린 (shinorine), 포피라-334 (porphyra-334), 유하로테스-362 (euhalothece-362), 마이코스포린-글라이신 (mycosporine-glycine), 마이코스포린-오르니틴 (mycosporine-ornithine), 마이코스포린-라이신 (mycosporine-lysine), 마이코스포린-글루탐산-글라이신 (mycosporine-glutamic acid-glycine), 마이코스포린-메틸아민-세린 (mycosporine-methylamine-serine), 마이코스포린-타우린 (mycosporine-taurine), 팰라이텐 (palythene), 팰라이텐-세린 (palythine-serine), 팰라이텐-세린-설페이트 (palythine-serine-sulfate), 팰라이티놀(palythinol), 및 우수지렌 (usujirene)으로 이루어진 군으로부터 선택된 하나 이상인, 재조합 미생물. The method according to any one of claims 1 to 5, wherein the mycosporine-like amino acid is mycosporine-2-glycine, palythinol, palythenic acid, and deoxygadusol. (deoxygadusol), mycosporine-methylamine-threonine, mycosporine-glycine-valine, palythine, asterina-330 , shinorine, porphyra-334, euhalothece-362, mycosporine-glycine, mycosporine-ornithine, myco mycosporine-lysine, mycosporine-glutamic acid-glycine, mycosporine-methylamine-serine, mycosporine-taurine, pal selected from the group consisting of palythene, palythine-serine, palythine-serine-sulfate, palythinol, and usujirene One or more recombinant microorganisms.
  7. 청구항 1 내지 청구항 6 중 어느 한 항에 따른 미생물을 배양하는 단계; 및Culturing the microorganism according to any one of claims 1 to 6; and
    상기 배양된 미생물 또는 배지로부터 마이코스포린 유사 아미노산을 회수하는 단계를 포함하는, 마이코스포린 유사 아미노산의 생산방법.A method for producing mycosporine-like amino acids, comprising the step of recovering mycosporine-like amino acids from the cultured microorganism or medium.
  8. 청구항 1 내지 청구항 6 중 어느 한 항에 따른 미생물을 포함하는, 마이코스포린 유사 아미노산 생산용 조성물.A composition for producing a mycosporine-like amino acid, comprising the microorganism according to any one of claims 1 to 6.
PCT/KR2022/014844 2022-09-28 2022-09-30 Microorganism having mycosporine-like amino acid producing ability, and method for producing mycosporine-like amino acids using same WO2024071491A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0123621 2022-09-28
KR1020220123621A KR102548752B1 (en) 2022-09-28 2022-09-28 Microorganisms having mycosporine-like amino acid production ability and method for producing mycosporin-like amino acids using the same

Publications (1)

Publication Number Publication Date
WO2024071491A1 true WO2024071491A1 (en) 2024-04-04

Family

ID=87157757

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/014844 WO2024071491A1 (en) 2022-09-28 2022-09-30 Microorganism having mycosporine-like amino acid producing ability, and method for producing mycosporine-like amino acids using same

Country Status (2)

Country Link
KR (1) KR102548752B1 (en)
WO (1) WO2024071491A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170002587A (en) * 2014-05-13 2017-01-06 각코우호우징 기타사토켄큐쇼 Method for producing mycosporine-like amino acid using microbes
KR101911186B1 (en) * 2017-08-16 2018-10-25 씨제이제일제당 (주) A microorganism for producing a Mycosporine-like amino acid and a method for preparing a Mycosporine-like amino acid using the same
KR102003911B1 (en) * 2018-02-23 2019-07-25 씨제이제일제당 주식회사 A microorganism for producing a Mycosporine-like amino acid and a method for preparing a Mycosporine-like amino acid using the same
KR20210082021A (en) * 2019-12-24 2021-07-02 씨제이제일제당 (주) Microorganism for Producing Mycosporine-like Amino Acid and Method for Preparing Mycosporine-like Amino Acid Using the Same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170002587A (en) * 2014-05-13 2017-01-06 각코우호우징 기타사토켄큐쇼 Method for producing mycosporine-like amino acid using microbes
KR101911186B1 (en) * 2017-08-16 2018-10-25 씨제이제일제당 (주) A microorganism for producing a Mycosporine-like amino acid and a method for preparing a Mycosporine-like amino acid using the same
KR102003911B1 (en) * 2018-02-23 2019-07-25 씨제이제일제당 주식회사 A microorganism for producing a Mycosporine-like amino acid and a method for preparing a Mycosporine-like amino acid using the same
KR20210082021A (en) * 2019-12-24 2021-07-02 씨제이제일제당 (주) Microorganism for Producing Mycosporine-like Amino Acid and Method for Preparing Mycosporine-like Amino Acid Using the Same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHICK J. M., ROMAINE-LIOUD S., FERRIER-PAGÈS C., GATTUSO J.-P.: "Ultraviolet‐B radiation stimulates shikimate pathway‐dependent accumulation of mycosporine‐like amino acids in the coral Stylophora pistillata despite decreases in its population of symbiotic dinoflagellates", LIMNOLOGY AND OCEANOGRAPHY., GRAFTON, WI., US, vol. 44, no. 7, 1 November 1999 (1999-11-01), US , pages 1667 - 1682, XP093151609, ISSN: 0024-3590, DOI: 10.4319/lo.1999.44.7.1667 *

Also Published As

Publication number Publication date
KR102548752B1 (en) 2023-07-03

Similar Documents

Publication Publication Date Title
WO2013162274A1 (en) Novel strain producing d-lactic acid and use thereof
WO2021162459A1 (en) Microorganism comprising variant lyse and method of l-amino acid production using same
EP1792975B1 (en) Microorganism of the genus Corynebacterium having enhanced L-lysine productivity and method of producing L-lysine using said microorganism
KR100838035B1 (en) - - a microorganism of corynebacterium genus having enhanced l-lysine productivity and a method of producing l-lysine using the same
KR101592140B1 (en) Corynebacterium sp. having xylose availability and process for preparing L-lysine employing the same
WO2020122505A1 (en) Mutant strain having enhanced l-glutamic acid producing ability, and l-glutamic acid preparation method using same
WO2019117398A1 (en) Microorganism producing 5'-inosine monophosphate and method for producing 5'-inosine monophosphate by using same
WO2016200207A1 (en) Microorganism producing lactic acid and method for producing lactic acid using same
CA3072748C (en) Microorganism for producing a mycosporine-like amino acid and method for producing a mycosporine-like amino acid using the same
KR20210128742A (en) Recombinant Acid Resistant Yeast Inhibited Glycerol Production and Method for Preparing Lactic Acid Using The Same
DE60132277T2 (en) L-glutamic acid-producing bacterium and method for producing glutamic acid
CN112725210A (en) Recombinant acid-resistant yeast inhibiting lactic acid metabolism and ethanol production and method for producing lactic acid using same
WO2024071491A1 (en) Microorganism having mycosporine-like amino acid producing ability, and method for producing mycosporine-like amino acids using same
WO2021125494A1 (en) Multidrug efflux pump variant, polynucleotide coding variant, microorganism comprising variant, and method for producing violacein or deoxyviolacein using same
KR101773123B1 (en) Genetically engineered yeast cell producing 2,3-butanediol and method of producing 2,3-butanediol using the same
KR20190009872A (en) Microorganism producing putrescine and method of producing putrescine using the microorganism
WO2022225100A1 (en) Novel bifunctional methylenetetrahydrofolate dehydrogenase/methenyltetrahydrofolate cyclohydrolase variant and method for producing xmp or gmp using same
WO2022215800A1 (en) Novel branched-chain amino acid permease variant and method for producing l-valine using same
WO2022004953A1 (en) Genetically engineered yeast having acetoin-producing ability and method for producing acetoin using same
JP4162383B2 (en) Genes involved in the production of homoglutamic acid and use thereof
KR20210079911A (en) A microorganism producing compound and method for producing the compound using the same
KR102613937B1 (en) Yeast strain in which all genes involved in galactose utilization are deleted and method for producing recombinant protein using the same
WO2023063547A1 (en) Corynebacterium glutamicum variant having improved l-lysine production ability and method for producing l-lysine by using same
WO2021133030A1 (en) Microorganism for producing l-amino acid having increased cytochrome c activity, and l-amino acid production method using same
WO2022260403A1 (en) Superoxide dismutase 1 variant and method for producing glutathione or derivative thereof, using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22961091

Country of ref document: EP

Kind code of ref document: A1