WO2024071315A1 - Method for producing mask, mask, method for forming deposited layer, and method for producing organic semiconductor element - Google Patents

Method for producing mask, mask, method for forming deposited layer, and method for producing organic semiconductor element Download PDF

Info

Publication number
WO2024071315A1
WO2024071315A1 PCT/JP2023/035459 JP2023035459W WO2024071315A1 WO 2024071315 A1 WO2024071315 A1 WO 2024071315A1 JP 2023035459 W JP2023035459 W JP 2023035459W WO 2024071315 A1 WO2024071315 A1 WO 2024071315A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
mask
laser
resin
less
Prior art date
Application number
PCT/JP2023/035459
Other languages
French (fr)
Japanese (ja)
Inventor
博司 川崎
勝也 小幡
和彦 相田
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Publication of WO2024071315A1 publication Critical patent/WO2024071315A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/12Organic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]

Definitions

  • Embodiments of the present disclosure relate to a method for manufacturing a mask, a mask, a method for forming a deposition layer, and a method for manufacturing an organic semiconductor element.
  • a deposition mask in which through-holes are formed in a resin film made of a resin such as polyimide.
  • the deposition mask is used, for example, to form an organic layer and an electrode constituting an organic EL element on a substrate when manufacturing an organic EL display device.
  • the through-holes in the deposition mask are formed by overlaying a laser processing mask on the resin film and irradiating the resin film with laser light through the laser processing mask.
  • the resin film is irradiated with laser light multiple times while moving the irradiation position of the laser light on the resin film while keeping the irradiation range of the laser light small.
  • the irradiation position of the laser light on the resin film is moved by placing the resin film on a stage and moving the stage or the irradiation head of the laser device. At this time, the position of the laser processing mask relative to the resin film is also moved according to the movement of the irradiation position.
  • a method for manufacturing a mask according to an embodiment of the present disclosure may include a laminate preparation step of preparing a laminate including a laser shielding layer formed of a metal material or a ceramic material, the laser shielding layer including a first surface, a second surface that is the surface opposite to the first surface, and a plurality of light-transmitting holes extending from the first surface to the second surface, and a resin layer covering the second surface of the laser shielding layer, and a laser processing step of forming a plurality of first openings in the resin layer corresponding to the plurality of light-transmitting holes in the laser shielding layer by irradiating the laminate with laser light toward the first surface of the laser shielding layer.
  • the positional accuracy of the through holes in the mask can be improved.
  • FIG. 1 is a cross-sectional view illustrating an example of an organic device according to an embodiment of the present disclosure.
  • FIG. 1 is a diagram showing an example of a deposition apparatus equipped with a mask.
  • FIG. 2 is a plan view showing an example of a mask, illustrating one surface of the mask.
  • 4 is a plan view showing the other surface of the mask shown in FIG. 3.
  • 4 is a cross-sectional view taken along line VV of the mask shown in FIG. 3.
  • FIG. 6 is a partially enlarged cross-sectional view showing a part of the mask shown in FIG. 5 .
  • 1A to 1C are diagrams for explaining a method for manufacturing a mask.
  • 1A to 1C are diagrams for explaining a method for manufacturing a mask.
  • 1A to 1C are diagrams for explaining a method for manufacturing a mask.
  • 1A to 1C are diagrams for explaining a method for manufacturing a mask.
  • 1A to 1C are diagrams for explaining a method for manufacturing a mask.
  • 1A to 1C are diagrams for explaining a method for manufacturing a mask.
  • 1A to 1C are diagrams for explaining a method for manufacturing a mask.
  • 1A to 1C are diagrams for explaining a method for manufacturing a mask.
  • 1A to 1C are diagrams for explaining a method for manufacturing a mask.
  • 1A to 1C are diagrams for explaining a method for manufacturing a mask.
  • 1A to 1C are diagrams for explaining a method for manufacturing a mask.
  • FIG. 4 corresponds to FIG. 3 and shows a modified example of the mask.
  • 18 is a cross-sectional view taken along line XVIII-XVIII of the mask shown in FIG. 17.
  • the use of the mask is not particularly limited, and this embodiment can be applied to masks used for various purposes.
  • the mask of this embodiment may be used to form electrodes of a device for displaying or projecting images or videos to express virtual reality, or so-called VR, or augmented reality, or so-called AR.
  • the mask of this embodiment may also be used to form electrodes of a display device other than an organic EL display device, such as an electrode of a liquid crystal display device.
  • the mask of this embodiment may also be used to form electrodes of an organic device other than a display device, such as an electrode of a pressure sensor.
  • a first aspect of the present disclosure is a method for manufacturing a mask, comprising: a laminate preparation step of preparing a laminate including a laser shielding layer formed of a metal material or a ceramic material, the laser shielding layer including a first surface, a second surface that is a surface opposite to the first surface, and a plurality of light transmitting holes extending from the first surface to the second surface, and a resin layer that covers the second surface of the laser shielding layer; a laser processing step of forming a plurality of first openings in the resin layer corresponding to the plurality of light transmitting holes of the laser shielding layer by irradiating a laser beam onto the laminate toward the first surface of the laser shielding layer;
  • the method for manufacturing a mask includes the steps of:
  • a second aspect of the present disclosure is a method for manufacturing a mask according to the first aspect described above, wherein the laser shielding layer includes at least one shielding portion including the plurality of light-transmitting holes and a surrounding portion that surrounds the shielding portion in a planar view, and the method for manufacturing the mask may include a shielding portion removal step for removing the shielding portion of the laser shielding layer.
  • a third aspect of the present disclosure is a method for manufacturing a mask according to the first or second aspect described above, wherein the resin layer may include a third surface facing the second surface of the laser shielding layer and a fourth surface that is the surface opposite to the third surface, and the method for manufacturing the mask may include a protective layer forming step of forming a protective layer that covers the fourth surface of the resin layer, and a protective layer removing step of removing the protective layer.
  • the method for manufacturing a mask according to any one of the first to third aspects described above may include a support layer preparation step of preparing a support layer having a fifth surface facing the first surface of the laser shielding layer and a sixth surface that is the surface opposite to the fifth surface and supporting the laminate, and a support frame formation step of forming at least one second opening in the support layer that overlaps with the plurality of light-transmitting holes of the laser shielding layer in a plan view.
  • a fifth aspect of the present disclosure is a method for manufacturing a mask according to the fourth aspect described above, wherein the laminate preparation step may include a step of forming the laser shielding layer on the support layer, a step of partially forming a first resist layer on the second surface of the laser shielding layer, a step of forming the plurality of light-transmitting holes in the laser shielding layer by etching the laser shielding layer from the side of the first resist layer, and a step of removing the first resist layer.
  • a sixth aspect of the present disclosure is a method for manufacturing a mask according to the fourth or fifth aspect described above, wherein the support layer may include a first layer forming the sixth surface and a second layer located between the first layer and the laser shielding layer, and the support frame forming step may include a step of partially forming a second resist layer on the sixth surface of the support layer, and a step of partially removing the first layer by etching the first layer from the side of the second resist layer.
  • a seventh aspect of the present disclosure is a method for manufacturing a mask according to the sixth aspect described above, wherein the support frame forming step may include a step of partially removing the second layer after a step of partially removing the first layer.
  • An eighth aspect of the present disclosure is a method for manufacturing a mask according to any one of the fourth to seventh aspects described above, wherein the support layer may contain an inorganic material.
  • a ninth aspect of the present disclosure is a method for manufacturing a mask according to any one of the fourth to eighth aspects described above, wherein the support layer may contain a metal material.
  • a tenth aspect of the present disclosure is a method for manufacturing a mask according to any one of the sixth to ninth aspects described above, wherein the first layer may contain a non-metallic inorganic material.
  • An eleventh aspect of the present disclosure is a method for manufacturing a mask according to any one of the sixth to ninth aspects described above, wherein the first layer may contain a non-metallic inorganic material, and the second layer may contain a metallic material.
  • a twelfth aspect of the present disclosure is a method for manufacturing a mask according to any one of the first to eleventh aspects described above, wherein the laser shielding layer may contain titanium nitride, nickel, or copper.
  • a thirteenth aspect of the present disclosure is a method for manufacturing a mask according to any one of the first to twelfth aspects described above, in which the laser shielding layer may be formed by a vacuum deposition method or a plating method.
  • a fourteenth aspect of the present disclosure is a mask, comprising: a resin layer including a third surface and a fourth surface that is a surface opposite to the third surface, the resin layer including at least one resin mask portion including a plurality of first openings extending from the third surface to the fourth surface, and a resin surrounding portion surrounding the resin mask portion in a plan view; a laser shielding layer formed of a metal material or a ceramic material, the laser shielding layer including a second surface facing the third surface of the resin layer, and a first surface being a surface opposite to the second surface, and including at least one peripheral portion overlapping the resin peripheral portion of the resin layer in a plan view; a support frame including a fifth surface facing the first surface of the laser shielding layer, a sixth surface being a surface opposite to the fifth surface, and at least one second opening extending from the sixth surface to the fifth surface and overlapping with the resin mask portion of the resin layer in a plan view; Equipped with The support frame is a mask that includes an inorganic material.
  • a fifteenth aspect of the present disclosure is a mask according to the fourteenth aspect described above, wherein the support frame may include a metal material.
  • a sixteenth aspect of the present disclosure is a mask according to the fourteenth or fifteenth aspect described above, wherein the support frame may include a first layer forming the sixth surface and a second layer located between the first layer and the laser shielding layer, and the first layer may include a non-metallic inorganic material.
  • a seventeenth aspect of the present disclosure is a mask according to the sixteenth aspect described above, wherein the second layer may include a metallic material.
  • the eighteenth aspect of the present disclosure is a mask according to any one of the fourteenth to seventeenth aspects described above, wherein the laser shielding layer may contain titanium nitride, nickel, or copper.
  • a nineteenth aspect of the present disclosure is a mask according to any one of the fourteenth to eighteenth aspects described above, wherein each of the first openings of the resin layer may be tapered from the third surface of the resin layer toward the fourth surface, and each of the second openings of the support frame may expand between the fifth surface and the sixth surface of the support frame.
  • a twentieth aspect of the present disclosure is a mask according to any one of the fourteenth to nineteenth aspects described above, wherein the laser shielding layer may include a shielding portion that overlaps the second opening of the support frame in a planar view, and the shielding portion may include a plurality of light-transmitting holes that each overlap the plurality of first openings of the resin layer in a planar view.
  • a twenty-first aspect of the present disclosure is a method for forming a deposition layer, comprising: A method for forming a deposition layer, comprising a step of forming a plurality of deposition layers on a substrate using the mask according to any one of the fourteenth to twentieth aspects described above.
  • a twenty-second aspect of the present disclosure is a method for producing an organic semiconductor device, comprising: A method for manufacturing an organic semiconductor device, comprising a step of forming a plurality of deposition layers on a substrate using the mask according to any one of the fourteenth to twentieth aspects described above.
  • Figure 1 is a cross-sectional view showing an example of an organic device 100.
  • the organic device 100 includes a substrate and a plurality of elements 115 arranged along the in-plane direction of the substrate.
  • the elements 115 are, for example, organic semiconductor elements.
  • the elements 115 correspond to, for example, pixels.
  • a view along the normal direction of the surface of an underlying element such as a substrate is also referred to as a planar view.
  • the organic device 100 may include a substrate 110, a plurality of first electrodes 120, a plurality of organic layers 130, and a second electrode 140.
  • the substrate 110 includes a first surface 111 and a second surface 112.
  • the second surface 112 is located opposite the first surface 111.
  • the multiple first electrodes 120 may be located on the first surface 111.
  • the multiple organic layers 130 may be located on the first electrodes 120.
  • the second electrode 140 may be located on the organic layer 130.
  • the second electrode 140 may extend so as to overlap the multiple first electrodes 120 in a planar view.
  • the element 115 is configured by a laminated structure including the first electrode 120, the organic layer 130, and the second electrode 140. The element 115 can achieve some function by applying a voltage between the first electrode 120 and the second electrode 140, or by causing a current to flow between the first electrode 120 and the second electrode 140.
  • the multiple organic layers 130 may include multiple first organic layers 130A and multiple second organic layers 130B. Although not shown, the multiple organic layers 130 may include multiple third organic layers.
  • the first organic layer 130A, the second organic layer 130B, and the third organic layer are, for example, a red light-emitting layer, a blue light-emitting layer, and a green light-emitting layer.
  • the term and symbol "organic layer 130" are used.
  • the multiple first electrodes 120 may include multiple firstA electrodes 120A and multiple firstB electrodes 120B. Although not shown, the multiple first electrodes 120 may include multiple firstC electrodes.
  • the firstA electrode 120A overlaps the first organic layer 130A in a planar view.
  • the firstB electrode 120B overlaps the second organic layer 130B in a planar view.
  • the firstC electrode overlaps the third organic layer in a planar view.
  • Each element 115 may include at least one first sub-element 115A and at least one second sub-element 115B. Although not shown, each element 115 may include at least one third sub-element.
  • the first sub-element 115A includes a first A electrode 120A, a first organic layer 130A, and a second electrode 140.
  • the second sub-element 115B includes a first B electrode 120B, a second organic layer 130B, and a second electrode 140.
  • the third sub-element includes a first C electrode, a third organic layer, and a second electrode 140.
  • the element formed by using the mask may be the organic layer 130 or the second electrode 140.
  • the element formed by using the mask is also called a deposition layer.
  • the organic device 100 may include an insulating layer 160 located between two adjacent first electrodes 120 in a planar view.
  • the insulating layer 160 includes, for example, polyimide.
  • the insulating layer 160 may overlap an edge of the first electrode 120 in a planar view.
  • FIG. 2 is a diagram showing a deposition device 10.
  • the deposition device 10 performs a deposition process for depositing a deposition material on a substrate 110.
  • the deposition apparatus 10 may include therein a deposition source 6, a heater 8, and a mask 20.
  • the deposition apparatus 10 may further include an exhaust means for creating a vacuum atmosphere inside the deposition apparatus 10.
  • the deposition source 6 is, for example, a crucible, and contains a deposition material 7 such as an organic material or a metallic material.
  • the heater 8 heats the deposition source 6 to evaporate the deposition material 7 under a vacuum atmosphere.
  • the mask 20 is disposed to face the crucible 6.
  • the mask 20 is placed in the deposition apparatus 10 so as to face the first surface 111 of the substrate 110.
  • the mask 20 may be in contact with the first surface 111 of the substrate 110.
  • the mask 20 has a plurality of through holes 21 arranged regularly in a plan view.
  • the through holes 21 allow the deposition material 7 coming from the deposition source 6 to pass through. Therefore, the shape and pattern of the through holes 21 are reflected in the shape and pattern of the layer of the deposition material 7 formed on the first surface 111 of the substrate 110.
  • the mask 20 is used to form an organic layer in an organic EL display, the shape and pattern of the through holes 21 are reflected in the shape and pattern of the organic layer.
  • the deposition device 10 may include a magnet 5 disposed on the second surface 112 side of the substrate 110.
  • the magnet 5 can attract the mask 20 toward the substrate 110 by magnetic force. This can reduce or eliminate the gap between the mask 20 and the substrate 110. This can suppress the occurrence of a shadow in the deposition process.
  • a shadow is a phenomenon in which the thickness of the organic layer 130 formed near the wall surface of the through hole 21 is smaller than the thickness of the organic layer 130 formed at the center of the through hole 21. The shadow occurs due to the deposition material 7 adhering to the wall surface of the mask 20, the deposition material 7 entering the gap between the mask 20 and the substrate 110, etc.
  • Figures 3 and 4 are plan views showing an example of the mask 20.
  • Figure 3 shows the surface of the mask 20 facing the deposition source 6.
  • Figure 4 shows the surface of the mask 20 facing the substrate 110.
  • Figure 5 is a cross-sectional view showing a cross section along line V-V of the mask 20 shown in Figures 3 and 4.
  • the mask 20 includes at least one through-hole group 23 including a plurality of through-holes 21.
  • One through-hole group 23 corresponds to one organic device 100.
  • the plurality of first organic layers 130A included in one organic device 100 are composed of deposition material that has passed through the plurality of through-holes 21 of one through-hole group 23.
  • the mask 20 shown in Figures 3 to 5 is a mask for simultaneously forming deposition layers for a plurality of organic devices 100, and includes a plurality of through-hole groups 23.
  • the mask 20 includes a resin layer 30 in which a plurality of first openings 34 are formed, a support frame 50 that supports the resin layer 30, and a laser shielding layer 40 that is located between the resin layer 30 and the support frame 50.
  • the surface of the laser shielding layer 40 that faces the support frame 50 is referred to as the first surface 41
  • the surface of the laser shielding layer 40 that faces the resin layer 30 is referred to as the second surface 42.
  • the surface of the resin layer 30 that faces the laser shielding layer 40 is referred to as the third surface 31, and the surface of the resin layer 30 opposite the third surface 31 is referred to as the fourth surface 32.
  • the surface of the support frame 50 that faces the laser shielding layer 40 is referred to as the fifth surface 51
  • the surface of the support frame 50 opposite the fifth surface 51 is referred to as the sixth surface 52.
  • the resin layer 30 includes a resin mask portion 36 in which a plurality of first openings 34 are formed, and a resin surrounding portion 37 that surrounds the resin mask portion 36 in a plan view of the resin layer 30.
  • the resin layer 30 includes a plurality of resin mask portions 36. Each resin mask portion 36 is surrounded by the resin surrounding portion 37. Each resin mask portion 36 corresponds to one organic device 100.
  • the third surface 31 of each resin mask portion 36 forms a part of the surface of the mask 20 that faces the deposition source 6.
  • the fourth surface 32 of the resin layer 30 forms the surface of the mask 20 that faces the first surface 111 of the substrate 110.
  • Each first opening 34 of the resin mask portion 36 penetrates the resin layer 30. In other words, the first openings 34 reach from the third surface 31 to the fourth surface 32. In the illustrated example, the first openings 34 form the through-holes 21 of the mask 20.
  • the multiple first openings 34 of one resin mask portion 36 form one first opening group 35. In the illustrated example, one first opening group 35 of the resin layer 30 forms one through-hole group 23 of the mask 20.
  • the shape and pattern of the through holes 21 are reflected in the shape and pattern of the layer of deposition material 7 formed on the substrate 110. Therefore, the shape and pattern of the first openings 34 correspond to the shape and pattern of the deposition layer formed on the substrate 110.
  • the material of the resin layer 30 is not particularly limited.
  • the material of the resin layer 30 may be appropriately selected from conventionally known resin materials.
  • the material of the resin layer 30 is a material that allows the formation of a high-definition first opening 34 by laser processing.
  • the material of the resin layer 30 is a material that has a small dimensional change rate and moisture absorption rate due to heat or time.
  • the material of the resin layer 30 is a lightweight material.
  • Such materials include polyimide resin, polyamide resin, polyamideimide resin, polyester resin, polyethylene resin, polyvinyl alcohol resin, polypropylene resin, polycarbonate resin, polystyrene resin, polyacrylonitrile resin, ethylene vinyl acetate copolymer resin, ethylene-vinyl alcohol copolymer resin, ethylene-methacrylic acid copolymer resin, polyvinyl chloride resin, polyvinylidene chloride resin, cellophane, ionomer resin, etc.
  • a resin material having a thermal expansion coefficient of 16 ppm/°C or less is preferable.
  • a resin material having a moisture absorption rate of 1.0% or less is preferable.
  • resin materials that satisfy both the thermal expansion coefficient and moisture absorption rate conditions are particularly preferred.
  • the thickness T30 of the resin layer 30 is preferably 0.2 ⁇ m or more and 5.0 ⁇ m or less. By setting the thickness T30 of the resin layer 30 within this range, the risk of defects such as pinholes and deformations occurring in the resin layer 30 can be reduced, and the occurrence of shadows can be effectively suppressed.
  • the thickness T30 of the resin layer may be, for example, 0.2 ⁇ m or more, 0.5 ⁇ m or more, 0.8 ⁇ m or more, or 1.0 ⁇ m or more.
  • the thickness T30 may be, for example, 3.0 ⁇ m or less, 3.5 ⁇ m or less, 4.0 ⁇ m or less, or 5.0 ⁇ m or less.
  • the range of the thickness T30 may be determined by a first group consisting of 0.2 ⁇ m, 0.5 ⁇ m, 0.8 ⁇ m, and 1.0 ⁇ m, and/or a second group consisting of 3.0 ⁇ m, 3.5 ⁇ m, 4.0 ⁇ m, and 5.0 ⁇ m.
  • the range of the thickness T30 may be determined by a combination of any one of the values included in the first group described above and any one of the values included in the second group described above.
  • the range of the thickness T30 may be determined by a combination of any two of the values included in the first group described above.
  • the range of the thickness T30 may be determined by a combination of any two of the values included in the second group described above.
  • the thickness T30 may be, for example, 0.2 ⁇ m or more and 5.0 ⁇ m or less, 0.2 ⁇ m or more and 4.0 ⁇ m or less, 0.2 ⁇ m or more and 3.5 ⁇ m or less, 0.2 ⁇ m or more and 3.0 ⁇ m or less, 0.2 ⁇ m or more and 1.0 ⁇ m or less, 0.2 ⁇ m or more and 0.8 ⁇ m or less, 0.2 ⁇ m or more and 0.5 ⁇ m or less, 0.5 ⁇ m or more and 5.0 ⁇ m or less, 0.5 ⁇ m or more and 4.0 ⁇ m or less, 0.5 ⁇ m or more and 3.5 ⁇ m or less, 0.5 ⁇ m or more and 3.0 ⁇ m or less, 0.5 ⁇ m or more and 1.0 ⁇ m or less, 0.5 ⁇ m or more and 0.8 ⁇ m or less, or 0.8 ⁇ m
  • each first opening 34 of the resin mask portion 36 is tapered from the third surface 31 to the fourth surface 32.
  • the dimensions of each first opening 34 along the third surface 31 and the fourth surface 32 gradually decrease from the third surface 31 to the fourth surface 32. This makes it possible to suppress the occurrence of shadows near the wall surfaces of the first openings 34.
  • the tapered first openings 34 can be formed by irradiating the resin layer 30 with laser light, as described below.
  • the dimensions of each first opening 32 on the fourth surface 32 correspond to the dimensions of the deposition layer corresponding to that first opening 32.
  • the dimensions of each first opening 32 on the third surface 31 are larger than the dimensions of the deposition layer corresponding to that first opening 32.
  • FIG. 6 is an enlarged view of a portion of the resin mask portion 36 shown in FIG. 5.
  • the symbol ⁇ represents the angle between the fourth surface 32 and the wall surface of the first opening 34.
  • the angle ⁇ may be, for example, 50° or more, 55° or more, 60° or more, or 65° or more.
  • the angle ⁇ is less than 90°, for example, 75° or less, 80° or less, or 85° or less.
  • the range of the angle ⁇ may be determined by a first group consisting of 50°, 55°, 60°, and 65°, and/or a second group consisting of 75°, 80°, 85°, and 90°.
  • the range of the angle ⁇ may be determined by a combination of any one of the values included in the first group described above and any one of the values included in the second group described above.
  • the range of the angle ⁇ may be determined by a combination of any two of the values included in the first group described above.
  • the range of the angle ⁇ may be determined by a combination of any two of the values included in the second group described above.
  • the angle ⁇ may be, for example, 50° or more and less than 90°, 50° or more and less than 85°, 50° or more and less than 80°, 50° or more and less than 75°, 50° or more and less than 65°, 50° or more and less than 60°, 50° or more and less than 55°, 55° or more and less than 90°, 55° or more and less than 85°, 55° or more and less than 80°, 55° or more and less than 75°, 55° or more and less than 65°, 55° or more and less than 60°, or 60° or more and less than 90°.
  • the laser shielding layer 40 is provided on the third surface 31 of the resin layer 30.
  • the second surface 42 of the laser shielding layer 40 faces the third surface 31 of the resin layer 30.
  • the laser shielding layer 40 covers at least a portion of the third surface 31 of the resin peripheral portion 37 of the resin layer 30.
  • the laser shielding layer 40 covers the entire third surface 31 of the resin peripheral portion 37 of the resin layer 30.
  • the laser shielding layer 40 has at least one third opening 48 that overlaps the resin mask portion 36 of the resin layer 30 in a planar view.
  • the third opening 48 penetrates the laser shielding layer 40.
  • the laser shielding layer 40 extends from the first surface 41 to the second surface 42.
  • the laser shielding layer 40 has a plurality of third openings 48 that overlap the plurality of resin mask portions 36 of the resin layer 30 in a planar view. When viewed in a direction from the laser shielding layer 40 toward the resin layer 30, the laser shielding layer 40 surrounds each of the multiple resin mask portions 36.
  • the portion of the laser shielding layer 40 that overlaps with the resin peripheral portion 37 of the resin layer 30 in a plan view of the laser shielding layer 40 is also referred to as the peripheral portion 47.
  • the laser shielding layer 40 includes at least one peripheral portion 47. In the example shown in Figures 3 to 5, the laser shielding layer 40 is made of the peripheral portion 47.
  • the laser shielding layer 40 is formed of a material capable of shielding laser light.
  • the laser shielding layer 40 is made of, for example, a metal material, ceramics, or other inorganic compounds.
  • the laser shielding layer 40 is formed of, for example, a ceramic material containing titanium nitride, or a metal material containing nickel or copper.
  • Specific examples of metal materials containing nickel include an Invar material containing 34% by mass or more and 38% by mass or less of nickel, and a Super Invar material containing 30% by mass or more and 34% by mass or less of nickel and further containing cobalt.
  • the inorganic elements contained in the laser shielding layer 40 are silver (Ag), aluminum (Al), gold (Au), cobalt (Co), chromium (Cr), iron (Fe), germanium (Ge), iridium (Ir), manganese (Mn), molybdenum (Mo), niobium (Nb), palladium (Pd), ruthenium (Ru), antimony (Sb), silicon (Si), tin (Sn), tantalum (Ta), titanium (Ti), tungsten (W), etc.
  • the inorganic layer 40 may contain a compound or alloy of these inorganic elements.
  • the inorganic layer 40 may contain two or more of these inorganic elements.
  • the inorganic layer 40 may contain two or more of these inorganic elements, compounds or alloys. Two or more kinds of inorganic elements, two or more kinds of compounds or alloys may be contained in the inorganic layer 40 in a mixed state, or may be contained in the inorganic layer 40 in a stacked state.
  • Compounds or alloys of inorganic elements include aluminum-neodymium alloy (Al-Nd), aluminum oxide (Al 2 O 3 ), aluminum copper alloy (Al-Cu), aluminum nitride (AlN), aluminum silicon compound (AlSi), aluminum silicon alloy (Al-Si), aluminum silicon copper alloy (Al-Si-Cu), boron nitride (BN), cerium oxide (CeO 2 ), chromium oxide (Cr 2 O 3 ), indium tin oxide (ITO), indium zinc oxide (IZO), magnesium (Mg), magnesium oxide (MgO), molybdenum oxide (MoO 3 ), molybdenum sulfide (MoS), nickel-chromium alloy (Ni-Cr), nickel-iron compound (NiFe), polycrystalline silicon (Poly-Si), platinum (Pt), lead zirconate titanate (PZT), silicon nitride (Si 3 N 4 ), silicon carbide (SiC), silicon
  • the thickness T40 of the laser shielding layer 40 is, for example, 0.5 ⁇ m or more.
  • the fluence of the laser light incident on the laser shielding layer 40 needs to be, for example, 4 J/m 2 or more.
  • the fluence of the laser light incident on the resin layer 30 may be about 0.4 J/m 2 , which is 1/10 or less of the above-mentioned fluence.
  • the thickness T40 is more preferably 1.0 ⁇ m or more, even more preferably 1.2 ⁇ m or more, and particularly preferably 1.5 ⁇ m or more.
  • the thickness T40 of the laser shielding layer 40 is preferably 10.0 ⁇ m or less, more preferably 8.0 ⁇ m or less, more preferably 7.0 ⁇ m or less, and particularly preferably 6.0 ⁇ m or less. Therefore, the thickness T40 may be, for example, 0.5 ⁇ m or more, 1.0 ⁇ m or more, 1.2 ⁇ m or more, or 1.5 ⁇ m or more. The thickness T40 may be, for example, 6.0 ⁇ m or less, 7.0 ⁇ m or less, 8.0 ⁇ m or less, or 10.0 ⁇ m or less.
  • the range of the thickness T40 may be determined by a first group consisting of 0.5 ⁇ m, 1.0 ⁇ m, 1.2 ⁇ m, and 1.5 ⁇ m, and/or a second group consisting of 6.0 ⁇ m, 7.0 ⁇ m, 8.0 ⁇ m, and 10.0 ⁇ m.
  • the range of thickness T40 may be determined by a combination of any one of the values included in the above-mentioned first group and any one of the values included in the above-mentioned second group.
  • the range of thickness T40 may be determined by a combination of any two of the values included in the above-mentioned first group.
  • the range of thickness T40 may be determined by a combination of any two of the values included in the above-mentioned second group.
  • the thickness T40 may be, for example, 0.5 ⁇ m or more and 10.0 ⁇ m or less, 0.5 ⁇ m or more and 8.0 ⁇ m or less, 0.5 ⁇ m or more and 7.0 ⁇ m or less, 0.5 ⁇ m or more and 6.0 ⁇ m or less, 0.5 ⁇ m or more and 1.5 ⁇ m or less, 0.5 ⁇ m or more and 1.2 ⁇ m or less, 0.5 ⁇ m or more and 1.0 ⁇ m or less, 1.0 ⁇ m or more and 10.0 ⁇ m or less, 1.0 ⁇ m or more and 8.0 ⁇ m or less, 1.0 ⁇ m or more and 7.0 ⁇ m or less, 1.0 ⁇ m or more and 6.0 ⁇ m or less, 1.0 ⁇ m or more and 1.5 ⁇ m or less, 1.0 ⁇ m or more and 1.2 ⁇ m or less, or 1.2 ⁇ m or more and 10.0 ⁇ m or less.
  • it may be 1.2 ⁇ m or more and 8.0 ⁇ m or less, 1.2 ⁇ m or more and 7.0 ⁇ m or less, 1.2 ⁇ m or more and 6.0 ⁇ m or less, 1.2 ⁇ m or more and 1.5 ⁇ m or less, 1.5 ⁇ m or more and 10.0 ⁇ m or less, 1.5 ⁇ m or more and 8.0 ⁇ m or less, 1.5 ⁇ m or more and 7.0 ⁇ m or less, 1.5 ⁇ m or more and 6.0 ⁇ m or less, 6.0 ⁇ m or more and 10.0 ⁇ m or less, 6.0 ⁇ m or more and 8.0 ⁇ m or less, 6.0 ⁇ m or more and 7.0 ⁇ m or less, 7.0 ⁇ m or more and 10.0 ⁇ m or less, 7.0 ⁇ m or more and 8.0 ⁇ m or less, or 8.0 ⁇ m or more and 10.0 ⁇ m or less.
  • the third opening 48 of the laser shielding layer 40 may expand between the first surface 41 and the second surface 42.
  • the wall surface of the third opening 48 may have a recess that is recessed in the surface direction of the laser shielding layer 40.
  • Such a third opening 48 may be formed due to side etching when etching the laser shielding layer 40, as described below.
  • the support frame 50 is provided on the first surface 41 of the laser shielding layer 40.
  • the fifth surface 51 of the support frame 50 faces the first surface 41 of the laser shielding layer 40.
  • the sixth surface 52 of the support frame 50 forms part of the surface of the mask 20 facing the deposition source 6. This support frame 50 supports the resin layer 30 and the laser shielding layer 40.
  • the support frame 50 supports the resin layer 30 in a state of being pulled in the direction of its surface so that the resin layer 30 does not bend.
  • the support frame 50 covers at least a portion of the third surface 31 of the resin peripheral portion 37 of the resin layer 30. In the illustrated example, the support frame 50 covers the entire third surface 31 of the resin peripheral portion 37 of the resin layer 30.
  • the support frame 50 also has at least one second opening 54 that overlaps the resin mask portion 36 of the resin layer 30 in a planar view.
  • the second opening 54 penetrates the support frame 50. In other words, the second opening 54 extends from the sixth surface 52 to the fifth surface 51.
  • the support frame 50 has a plurality of second openings 54 that overlap the plurality of resin mask portions 36 of the resin layer 30 in a planar view.
  • the support frame 50 surrounds each of the plurality of resin mask portions 36.
  • the second opening 54 overlaps with the third opening 48 of the laser shielding layer 40 in a plan view. Since the second opening 54 of the support frame 50 and the third opening 48 of the laser shielding layer 40 overlap with the resin mask portion 36 in a plan view, the third surface 31 of the resin mask portion 36 is exposed in the second opening 54 and the third opening 48 when the mask 20 is viewed in a direction from the support frame 50 toward the resin layer 30.
  • the support frame 50 may include multiple layers.
  • the support frame 50 includes a first layer 55 forming the sixth surface 52 and a second layer 56 located between the first layer 55 and the laser shielding layer 40.
  • the second layer 56 forms the fifth surface 51 of the support frame 50.
  • the second layer 56 and the laser shielding layer 40 are adjacent to each other.
  • the second layer 56 is formed on the first layer 55.
  • the first layer 55 and the second layer 56 are adjacent to each other.
  • the first layer 55 and the second layer 56 include a first layer opening 54a and a second layer opening 54b corresponding to the second opening 54, respectively.
  • the first layer opening 54a and the second layer opening 54b are connected to each other.
  • the first layer opening 54a and the second layer opening 54b form a second opening 54 that penetrates the support frame 50.
  • the support frame 50 is formed, for example, from a material containing an inorganic substance.
  • Metal materials with high rigidity such as SUS, Invar material, and ceramic materials, may also be used as the material of the support frame 50.
  • a metal support frame 50 is preferable in that it is less susceptible to deformation, etc.
  • the first layer 55 may include a non-metallic inorganic material.
  • the second layer 56 may include a metallic material.
  • the second layer 56 may be formed of a material that is resistant to the etchant.
  • the second layer 56 may function as a stopper layer that stops the etching of the first layer 55.
  • the second layer 56 may include aluminum, an aluminum alloy, titanium, or a titanium alloy.
  • the thickness T50 of the support frame 50 is approximately 0.3 mm or more and 70.0 mm or less in terms of rigidity, etc.
  • the thickness T55 of the first layer 55 may be, for example, 20 ⁇ m or more, 100 ⁇ m or more, 500 ⁇ m or more, or 1000 ⁇ m or more.
  • the thickness T55 may be, for example, 2000 ⁇ m or less, 3000 ⁇ m or less, 4000 ⁇ m or less, or 5000 ⁇ m or less.
  • the range of the thickness T55 may be determined by a first group consisting of 20 ⁇ m, 100 ⁇ m, 500 ⁇ m, and 1000 ⁇ m, and/or a second group consisting of 2000 ⁇ m, 3000 ⁇ m, 4000 ⁇ m, and 5000 ⁇ m.
  • the range of the thickness T55 may be determined by a combination of any one of the values included in the first group described above and any one of the values included in the second group described above.
  • the range of thickness T55 may be determined by any combination of two values included in the first group described above.
  • the range of thickness T55 may be determined by any combination of two values included in the second group described above.
  • the thickness T55 may be, for example, 20 ⁇ m or more and 5000 ⁇ m or less, 20 ⁇ m or more and 4000 ⁇ m or less, 20 ⁇ m or more and 3000 ⁇ m or less, 20 ⁇ m or more and 2000 ⁇ m or less, 20 ⁇ m or more and 1000 ⁇ m or less, 20 ⁇ m or more and 500 ⁇ m or less, 20 ⁇ m or more and 100 ⁇ m or less, 100 ⁇ m or more and 5000 ⁇ m or less, 100 ⁇ m or more and 4000 ⁇ m or less, 100 ⁇ m or more and 3000 ⁇ m or less, 100 ⁇ m or more and 2000 ⁇ m or less, 100 ⁇ m or more and 1000 ⁇ m or less, 100 ⁇ m or more and 500 ⁇ m or less, 500 ⁇ m or more and 5000 ⁇ m or less, or 500 ⁇ m or more and 5000 ⁇ m or less.
  • the thickness T56 of the second layer 56 is not particularly limited as long as it can prevent the laser shielding layer 40 and the resin layer 30 from being etched in the process of etching the first layer 55.
  • the thickness T56 may be smaller than the thickness of the laser shielding layer 40 and the resin layer 30, or may be greater than or equal to the thickness of the laser shielding layer 40 and the resin layer 30.
  • the thickness T56 may be, for example, 0.05 ⁇ m or more, 0.10 ⁇ m or more, 0.15 ⁇ m or more, or 0.20 ⁇ m or more.
  • the thickness T56 may be, for example, 0.5 ⁇ m or less, 1.0 ⁇ m or less, 2.0 ⁇ m or less, or 5.0 ⁇ m or less.
  • the range of the thickness T56 may be determined by a first group consisting of 0.05 ⁇ m, 0.10 ⁇ m, 0.15 ⁇ m, and 0.20 ⁇ m, and/or a second group consisting of 0.5 ⁇ m, 1.0 ⁇ m, 2.0 ⁇ m, and 5.0 ⁇ m.
  • the range of the thickness T56 may be determined by a combination of any one of the values included in the above-mentioned first group and any one of the values included in the above-mentioned second group.
  • the range of the thickness T56 may be determined by a combination of any two of the values included in the above-mentioned first group.
  • the range of the thickness T56 may be determined by a combination of any two of the values included in the above-mentioned second group.
  • the thickness T56 may be, for example, 0.05 ⁇ m or more and 5.0 ⁇ m or less, 0.05 ⁇ m or more and 2.0 ⁇ m or less, 0.05 ⁇ m or more and 1.0 ⁇ m or less, 0.05 ⁇ m or more and 0.5 ⁇ m or less, 0.05 ⁇ m or more and 0.20 ⁇ m or less, 0.05 ⁇ m or more and 0.15 ⁇ m or less, 0.05 ⁇ m or more and 0.10 ⁇ m or less, 0.10 ⁇ m or more and 5.0 ⁇ m or less, 0.10 ⁇ m or more and 2.0 ⁇ m or less, 0.10 ⁇ m or more and 1.0 ⁇ m or less, 0.10 ⁇ m or more and 0.5 ⁇ m or less, 0.10 ⁇ m or more and 0.20 ⁇ m or less, 0.10 ⁇ m or more and 0.15 ⁇ m or less, or 0.15 ⁇ m or more and 5 0 ⁇ m or less, 0.15 ⁇ m or more and 2.0 ⁇ m or less, 0.15 ⁇ m
  • Each second opening 54 of the support frame 50 may be expanded between the fifth surface 51 and the sixth surface 52.
  • the wall surface of the second opening 54 may have a recess recessed in the surface direction of the mask 20.
  • such a second opening 54 may be formed due to side etching when etching the support layer 57 formed of the material forming the support frame 50.
  • the first layer opening 54a may be expanded between the sixth surface 52 and the surface facing the second layer 56.
  • the second layer opening 54b may be expanded between the surface facing the first layer 55 and the surface facing the laser shielding layer 40.
  • the mask 20 does not have to include the support frame 50.
  • each layer the dimensions of each component, the spacing, etc. can be measured by observing an image of the cross section of the mask 20 using a scanning electron microscope.
  • a support layer preparation step is performed. Specifically, as shown in FIG. 7, a support layer 57 that supports the laser shielding layer 40 and the resin layer 30 is prepared.
  • the support layer 57 is formed of a material that forms the support frame 50.
  • a base material that constitutes the first layer 55 is first prepared.
  • a second layer 56 is formed on one surface of the first layer 55.
  • the second layer 56 may be formed on the entire surface of the one surface of the first layer 55.
  • the second layer 56 is formed of a material that is resistant to the etchant for the first layer 55.
  • the second layer 56 may be formed by a vacuum film formation method such as a sputtering method. In this manner, the support layer 57 is formed.
  • a laminate preparation process is performed. Specifically, a laminate 25 including a laser shielding layer 40 and a resin layer 30 is prepared.
  • a laser shielding layer 40 is formed on a fifth surface 51 of a support layer 57.
  • the laser shielding layer 40 may be formed on the entire surface of the fifth surface 51.
  • the laser shielding layer 40 may be formed by, for example, a vacuum film formation method such as a sputtering method or a plating method.
  • the laser shielding layer 40 has a first surface 41 facing the support layer 57 and a second surface 42 that is the surface opposite to the first surface 41.
  • a first resist layer 60 is partially formed on the second surface 42 of the laser shielding layer 40.
  • the first resist layer 60 has a plurality of first resist openings 61.
  • the first resist openings 61 are formed corresponding to the plurality of first openings 34 of the resin layer 30.
  • the shape and pattern of the first resist openings 61 correspond to the shape and pattern of the first openings 34.
  • the dimensions of each first resist opening 61 correspond to the dimensions of the corresponding first opening 34 on the third surface.
  • the first resist layer 60 may be formed by a known method. Specifically, a first resist layer material, which is a material for forming the first resist layer 60, is prepared and this is partially applied on the second surface 42 of the laser shielding layer 40. Next, the first resist layer material on the second surface 42 is exposed to light, and the first resist layer material is developed. As a result, the first resist layer 60 having a plurality of first resist openings 61 is formed.
  • the laser shielding layer 40 is etched from the side of the first resist layer 60 to partially remove the laser shielding layer 40.
  • the etching of the laser shielding layer 40 may be performed by dry etching using an etching gas, or by wet etching using an etching solution.
  • the etching gas and the etching solution are examples of the above-mentioned etchants.
  • the first resist opening 61 is formed corresponding to the plurality of first openings 34 of the resin layer 30, so that the plurality of light-transmitting holes 44 are formed corresponding to the plurality of first openings 34.
  • the shape and pattern of the light-transmitting hole 44 correspond to the shape and pattern of the first opening 34.
  • the shape and pattern of the first opening 34 correspond to the shape and pattern of the deposition layer formed on the substrate 110. Therefore, the shape and pattern of the light-transmitting holes 44 correspond to the shape and pattern of the deposition layer formed on the substrate 110.
  • the size of each light-transmitting hole 44 in the plan view of the laser shielding layer 40 corresponds to the size of the corresponding first opening 34 on the third surface 31.
  • each light-transmitting hole 44 in the plan view of the laser shielding layer 40 is larger than the size of the corresponding first opening 34 on the fourth surface 32. Therefore, the size of each light-transmitting hole 44 in the plan view of the laser shielding layer 40 is larger than the size of the deposition layer corresponding to the corresponding first opening 34.
  • the laser shielding layer 40 includes a shielding portion 46 that covers the third surface 31 of the resin mask portion 36, and a surrounding portion 47 that surrounds the shielding portion 46 in a plan view of the laser shielding layer 40.
  • the laser shielding layer 40 includes a plurality of shielding portions 46 corresponding to the plurality of resin mask portions 36.
  • Each shielding portion 46 includes a plurality of light-transmitting holes 44.
  • the plurality of light-transmitting holes 44 of each shielding portion 46 form a third opening group 45.
  • the third opening group 45 corresponds to the first opening group 35 of the resin layer 30 described above.
  • a resin layer 30 is formed on the second surface 42 of the laser shielding layer 40.
  • the resin layer 30 may be formed by a coating method such as spin coating.
  • the resin layer 30 is formed so as to cover the second surface 42 of the laser shielding layer 40.
  • the resin layer 30 is formed so as to cover the light-transmitting holes 44 on the second surface 42 of the laser shielding layer 40.
  • the resin layer 30 may be formed on the entire surface of the second surface 42.
  • the light-transmitting holes 44 may be filled with a part of the resin layer 30.
  • the resin layer 30 includes a third surface 31 facing the second surface of the laser shielding layer 40, and a fourth surface 32 which is the surface opposite to the third surface 31.
  • a heating step may be carried out to heat the resin layer 30.
  • polyamic acid which is a precursor of polyimide
  • a heating step may be carried out to cause an imidization reaction. This allows the resin layer 30 containing polyimide to be formed.
  • a laminate 25 which includes a laser shielding layer 40 including a plurality of light-transmitting holes 44 and a resin layer 30 covering the second surface 42 of the laser shielding layer 40.
  • a protective layer forming process is carried out. Specifically, as shown in FIG. 12, a protective layer 63 for protecting the resin layer 30 is formed on the laminate 25. The protective layer 63 is formed on the fourth surface 32 of the resin layer 30.
  • the material for forming the protective layer 63 is not particularly limited as long as it can protect the resin layer 30.
  • the protective layer 63 may be formed of the same material as the material for forming the laser shielding layer 40.
  • the protective layer 63 may be formed by a vacuum film forming method such as a sputtering method.
  • the thickness of the protective layer 63 is not particularly limited as long as it can protect the resin layer 30.
  • the thickness of the protective layer 63 may be, for example, 0.1 ⁇ m or more, 0.5 ⁇ m or more, or 1.0 ⁇ m or more.
  • a support frame forming process is performed. Specifically, a support frame 50 is formed from the support layer 57.
  • a second resist layer 65 is partially formed on the sixth surface 52 of the support layer 57.
  • the second resist layer 65 has second resist openings 66.
  • the second resist openings 66 are formed corresponding to the second openings 54 of the support frame 50.
  • the second resist layer 65 has a plurality of second resist openings 66 so that a plurality of second openings 54 are formed in the support frame 50.
  • the second resist layer 65 may be formed by a known method.
  • a second resist layer material which is a material for forming the second resist layer 65, is prepared and is partially applied on the sixth surface 52 of the support layer 57.
  • the second resist layer material on the sixth surface 52 is exposed to light, and the second resist layer material is developed.
  • the second resist layer 65 having the second resist openings 66 is formed on the sixth surface 52 of the support layer 57.
  • the first layer 55 of the support layer 57 is etched from the side of the second resist layer 65 to partially remove the first layer 55.
  • a first layer opening 54a is formed in the first layer 55 as shown in FIG. 14.
  • the etching of the first layer 55 may be dry etching using an etching gas.
  • the etching gas is an example of the above-mentioned etchant. Since the second layer 56 is resistant to the etchant, it is possible to prevent the etching from progressing to the laser shielding layer 40 and the resin layer 30 as shown in FIG. 14.
  • the second layer 56 is etched to partially remove the second layer 56.
  • a second layer opening 54b is formed in the second layer 56.
  • the etching of the second layer 56 may be performed by supplying an etchant for the second layer 56 to the first layer opening 54a.
  • a second layer opening 54b connected to the first layer opening 54a is formed.
  • the etching of the second layer 56 may be performed by dry etching using an etching gas, or may be performed by wet etching using an etching solution.
  • the first layer opening 54a is connected to the second layer opening 54b, thereby forming a second opening 54 penetrating the support layer 57.
  • the second opening 54 overlaps with the multiple light-transmitting holes 44 of the shielding portion 46 in a plan view of the support frame 50. Meanwhile, the peripheral portion 47 remains covered by the support layer 57.
  • the second resist layer 65 is removed. The second resist layer 65 can be removed, for example, using a resist processing liquid. In this manner, the support frame 50 is formed.
  • a laser processing step is performed. Specifically, as shown in FIG. 16A, laser light L is incident on the laminate 25 toward the first surface 41 of the shielding portion 46 of the laser shielding layer 40.
  • the laser light L is incident on the resin layer 30 through the second opening 54 of the support frame 50 and the light-transmitting hole 44 of the shielding portion 46.
  • a plurality of first openings 34 corresponding to the plurality of light-transmitting holes 44 are formed in the resin layer 30, and a first opening group 35 overlapping with the third opening group 45 of the laser shielding layer 40 is formed.
  • each first opening 34 is formed in a tapered shape from the third surface 31 toward the fourth surface 32.
  • a KrF excimer laser that emits laser light with a wavelength of 248 nm, or a YAG laser that emits laser light with a wavelength of 355 nm can be used.
  • the laser processing process is carried out, for example, as follows. First, the laminate 25 on which the support frame 50 is formed is placed on a stage. At this time, the laminate 25 is placed on the stage so that the support frame 50 faces away from the stage. Next, laser light L is irradiated from the laser device onto the laminate 25, toward the first surface 41 of the shielding portion 46 of the laser shielding layer 40. This forms a plurality of first openings 34 in the resin layer 30 that overlap with a plurality of light-transmitting holes 44 formed in the shielding portion 46.
  • the beam shape of the laser light L may be any shape.
  • the beam shape of the laser light L is rectangular.
  • the shape of the irradiation area LA of the laser light L on the laser shielding layer 40 is also rectangular.
  • the beam shape of the laser light L is linear.
  • the shape of the irradiation area LA of the laser light L on the laser shielding layer 40 is also linear.
  • the size of the irradiation area LA of the laser light L is determined so that the energy density of the laser light L incident on the shielding portion 46 is large enough to efficiently form the first opening 34 in the resin layer 30. If the energy density of the laser light L incident on the shielding portion 46 is too low, the first opening 34 cannot be efficiently formed in the resin layer 30. Here, the energy density of the laser light L incident on the shielding portion 46 decreases as the irradiation area LA of the laser light L on the laser shielding layer 40 expands. For this reason, in the illustrated example, the size of the irradiation area LA of the laser light L is a size that can include only a part of the laser shielding layer 40.
  • the size of the irradiation area LA of the laser light L is determined in this manner, the entire area of the shielding portion 46 can be irradiated with the laser light by changing the incident position of the laser light L on the laser shielding layer 40.
  • the size of the irradiation area LA of the laser light L on the laser shielding layer 40 is a size that can include at least one light-transmitting hole 44. It is further preferable that the size of the irradiation area LA of the laser light L on the laser shielding layer 40 is a size that can include a plurality of adjacent light-transmitting holes 44. In this case, the first opening 34 can be efficiently formed in the resin layer 30.
  • the incident position of the laser light L can be changed by moving the irradiation head or stage of the laser device.
  • the irradiation of the laser light L may be performed intermittently or continuously.
  • the change in the incident position of the laser light L may also be performed intermittently or continuously.
  • the irradiation of the laser light L and the change of the incident position are performed intermittently. More specifically, in the example shown in FIG. 16B, the size of the irradiation area LA of the laser light L on the laser shielding layer 40 is large enough to include two adjacent light-transmitting holes 44. Then, the irradiation of the laser light L and the change of the incident position are performed as follows. First, the incident position of the laser light L on the laser shielding layer 40 is determined so that the irradiation area LA of the laser light L includes two light-transmitting holes 44. Next, the laser light L is irradiated to these two light-transmitting holes 44 for a predetermined time.
  • the irradiation of the laser light L is stopped.
  • the incident position of the laser light L on the laser shielding layer 40 is changed.
  • the incident position of the laser light L is determined so that the irradiation area LA of the laser light L includes the other two light-transmitting holes 44.
  • the incident position of the laser light L is changed, for example, along the arrow shown in FIG. 16B.
  • the laser light L is irradiated to these other two light-transmitting holes 44 for a predetermined time.
  • the irradiation of the laser light L is stopped. In this way, by repeating the determination or change of the incident position of the laser light L and the irradiation of the laser light L, the laser light can be irradiated to all areas of the shielding portion 46.
  • the irradiation of the laser light L and the change of the incident position are performed continuously. More specifically, in the example shown in FIG. 16C, the irradiation area LA of the laser light L on the laser shielding layer 40 is linear, and its length is a length that allows the irradiation area LA to extend across multiple shielding parts 46. Then, the irradiation of the laser light L and the change of the incident position are performed as follows. First, the incident position of the laser light L on the laser shielding layer 40 is determined so that the irradiation area LA of the laser light L extends along the direction in which the multiple shielding parts 46 are arranged near the edge of the laser shielding layer 40 and extends across the multiple shielding parts 46.
  • the irradiation of the laser light L is started, and the incident position of the laser light L is moved at a constant speed while continuing to irradiate the laser light L on the laser shielding layer 40.
  • the movement of the incident position is performed along a direction perpendicular to the direction in which the irradiation area LA of the laser light L extends, as shown by an arrow in FIG. 16C. In this way, by continuing to irradiate the laser light L onto the laser shielding layer 40 while gradually moving the incident position of the laser light L, it is possible to irradiate the laser light onto all areas of the shielding portion 46.
  • the laser processing of the resin layer 30 is performed in a state where the laser shielding layer 40, which functions as a laser processing mask for forming the first opening 34 in the resin layer 30, constitutes the laminate 25 together with the resin layer 30.
  • the laser shielding layer 40 which functions as a laser processing mask for forming the first opening 34 in the resin layer 30, constitutes the laminate 25 together with the resin layer 30.
  • the laminate 30 includes the laser shielding layer 40 as a laser processing mask, there is no need to align the laser processing mask with the resin layer 30.
  • the shielding portion removal process is carried out. Specifically, the portion of the laser shielding layer 40 exposed in the second opening 54, i.e., the shielding portion 46, is etched. As a result, a third opening 48 is formed in the laser shielding layer 40.
  • the etching of the shielding portion 46 may be performed by supplying an etchant for the laser shielding layer 40 to the second opening 54. As a result, the third opening 48 connected to the second opening 54 is formed.
  • the etching of the shielding portion 46 may be performed by dry etching using an etching gas or by wet etching using an etching solution.
  • the resin mask portion 36 of the resin layer 30 is exposed in the second opening 54 and the third opening 38 (see FIG. 3).
  • the shielding portion 46 By etching the shielding portion 46, the residue attached to the shielding portion 46 when etching the support layer 57 can be removed together with the shielding portion 46.
  • the peripheral portion 47 is covered by the support frame 50 and the resin layer 30, it is not removed in the shielding portion removal process and remains between the support frame 50 and the resin layer 30.
  • a protective layer removal process is performed.
  • the protective layer 63 is removed.
  • the protective layer 63 can be removed by, for example, etching.
  • the etching of the protective layer 63 may be performed by dry etching using an etching gas, or by wet etching using an etching solution.
  • the protective layer 63 may be removed together with the laser shielding layer 40 by an etchant that etches the laser shielding layer 40.
  • the shielding portion removal process and the protective layer removal process may be performed simultaneously.
  • the protective layer 63 may be removed in the shielding portion removal process.
  • the protective layer 63 is preferably formed of the same material as the laser shielding layer 40.
  • the shielding portion 46 of the laser shielding layer 40 is removed in the shielding portion removal step, and as a result, the mask 20 does not include the shielding portion 46.
  • the mask 20 may have the shielding portion 46.
  • the shielding portion removal step does not need to be performed in the manufacturing process of the mask 20.
  • the through hole 21 of the mask 20 is formed by the first opening 34 and the light-transmitting hole 44 that are continuous with each other.
  • the sum of the thickness T40 of the laser shielding layer 40 and the thickness T30 of the resin layer 30 may be, for example, 2.0 ⁇ m or more, 2.5 ⁇ m or more, 3.0 ⁇ m or more, or 4.0 ⁇ m or more.
  • the sum of the thicknesses T40 and T30 may be, for example, 6.0 ⁇ m or less, 7.0 ⁇ m or less, 8.0 ⁇ m or less, or 10.0 ⁇ m or less.
  • the range of the sum of the thicknesses T40 and T30 may be determined by a first group consisting of 2.0 ⁇ m, 2.5 ⁇ m, 3.0 ⁇ m, and 4.0 ⁇ m, and/or a second group consisting of 6.0 ⁇ m, 7.0 ⁇ m, 8.0 ⁇ m, and 10.0 ⁇ m.
  • the range of the sum of the thickness T40 and the thickness T30 may be determined by a combination of any one of the values included in the first group described above and any one of the values included in the second group described above.
  • the range of the sum of the thickness T40 and the thickness T30 may be determined by a combination of any two of the values included in the first group described above.
  • the range of the sum of the thickness T40 and the thickness T30 may be determined by a combination of any two of the values included in the second group described above.
  • the sum of thickness T40 and thickness T30 may be, for example, 2.0 ⁇ m or more and 10.0 ⁇ m or less, 2.0 ⁇ m or more and 8.0 ⁇ m or less, 2.0 ⁇ m or more and 7.0 ⁇ m or less, 2.0 ⁇ m or more and 6.0 ⁇ m or less, 2.0 ⁇ m or more and 4.0 ⁇ m or less, 2.0 ⁇ m or more and 3.0 ⁇ m or less, 2.0 ⁇ m or more and 2.5 ⁇ m or less, 2.5 ⁇ m or more and 10.0 ⁇ m or less, 2.5 ⁇ m or more and 8.0 ⁇ m or less, 2.5 ⁇ m or more and 7.0 ⁇ m or less, 2.5 ⁇ m or more and 6.0 ⁇ m or less, 2.5 ⁇ m or more and 4.0 ⁇ m or less, 2.5 ⁇ m or more and 3.0 ⁇ m or less, or 3.0 ⁇ m
  • the mask 20 includes the shielding portion 46

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Physical Vapour Deposition (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

This method for producing a mask comprises: a laminate preparation step for preparing a laminate including a laser-blocking layer that contains a plurality of light-transmitting holes and a resin layer that covers the laser-blocking layer; and a laser processing step for allowing laser light to enter the laminate toward the laser-blocking layer to form, in the resin layer, a plurality of first openings corresponding to the plurality of light-transmitting holes in the laser-blocking layer.

Description

マスクの製造方法、マスク、蒸着層の形成方法及び有機半導体素子の製造方法MASK MANUFACTURING METHOD, MASK, METHOD FOR FORMING DEPOSITION LAYER, AND MANUFACTURING ORGANIC SEMICONDUCTOR DEVICE
 本開示の実施形態は、マスクの製造方法、マスク、蒸着層の形成方法及び有機半導体素子の製造方法に関する。 Embodiments of the present disclosure relate to a method for manufacturing a mask, a mask, a method for forming a deposition layer, and a method for manufacturing an organic semiconductor element.
 JP2019-42762Aに開示されているように、ポリイミド等の樹脂で作製された樹脂フィルムに貫通孔を形成した蒸着マスクが知られている。蒸着マスクは、例えば有機EL表示装置を製造する際に、有機EL素子を構成する有機層や電極を基板上に形成するために用いられる。蒸着マスクの貫通孔の形成は、樹脂フィルムにレーザ加工用マスクを重ね、樹脂フィルムにレーザ加工用マスクを通じてレーザ光を照射することにより行う。蒸着マスクの広い範囲に亘って貫通孔を形成する場合、一回のレーザ光の照射で樹脂フィルムの全面にレーザ光を照射するためには、レーザ光の照射範囲を広げる必要があり、レーザ光のエネルギー密度が下がってしまう。このため、蒸着マスクの広い範囲に亘って貫通孔を形成する場合は、レーザ光の照射範囲を小さく維持したまま、樹脂フィルムにおけるレーザ光の照射位置を移動させながら、樹脂フィルムへのレーザ光の照射を複数回行う。樹脂フィルムにおけるレーザ光の照射位置の移動は、樹脂フィルムをステージに載せ、ステージ又はレーザ装置の照射ヘッドを移動させることにより行う。このとき、照射位置の移動に応じて、樹脂フィルムに対するレーザ加工用マスクの位置も移動させる。 As disclosed in JP2019-42762A, a deposition mask is known in which through-holes are formed in a resin film made of a resin such as polyimide. The deposition mask is used, for example, to form an organic layer and an electrode constituting an organic EL element on a substrate when manufacturing an organic EL display device. The through-holes in the deposition mask are formed by overlaying a laser processing mask on the resin film and irradiating the resin film with laser light through the laser processing mask. When forming through-holes over a wide range of the deposition mask, in order to irradiate the entire surface of the resin film with laser light by irradiating the entire surface with laser light in one laser light irradiation, it is necessary to widen the irradiation range of the laser light, which reduces the energy density of the laser light. For this reason, when forming through-holes over a wide range of the deposition mask, the resin film is irradiated with laser light multiple times while moving the irradiation position of the laser light on the resin film while keeping the irradiation range of the laser light small. The irradiation position of the laser light on the resin film is moved by placing the resin film on a stage and moving the stage or the irradiation head of the laser device. At this time, the position of the laser processing mask relative to the resin film is also moved according to the movement of the irradiation position.
 高精細な、例えば画素数が3000ppi以上の表示装置を作製するための蒸着マスクを作製する場合、樹脂フィルムに対するレーザ加工用マスクの位置を、ナノメートルのオーダーで精度良く調整する必要がある。上述したように樹脂フィルムに対するレーザ加工用マスクの位置を移動させたり、樹脂フィルムにおけるレーザ光の照射位置を移動させると、レーザ加工用マスクを樹脂フィルムに対して精度良くアライメントした状態でレーザ光を照射することが困難になる。この結果、蒸着マスクの貫通孔の位置精度が低下する虞がある。このことは、蒸着マスクを用いて基板上に形成された有機層や電極の位置精度の低下に繋がる。 When making a deposition mask for producing a high-definition display device, for example one with a pixel count of 3000 ppi or more, it is necessary to adjust the position of the laser processing mask relative to the resin film with high precision on the order of nanometers. As described above, if the position of the laser processing mask relative to the resin film is moved, or the irradiation position of the laser light on the resin film is moved, it becomes difficult to irradiate the laser light with the laser processing mask precisely aligned with the resin film. As a result, there is a risk that the positional precision of the through-holes in the deposition mask will decrease. This leads to a decrease in the positional precision of the organic layers and electrodes formed on the substrate using the deposition mask.
 このため、マスクの貫通孔の位置精度を向上させることが求められている。 As a result, there is a need to improve the positional accuracy of the through holes in the mask.
 本開示の一実施形態によるマスクの製造方法は、金属材料又はセラミック材料で形成されたレーザ遮光層であって、第1面、前記第1面の反対側の面である第2面、及び、前記第1面から前記第2面に至る複数の透光穴を含むレーザ遮光層と、前記レーザ遮光層の前記第2面を覆う樹脂層と、を含む積層体を準備する積層体準備工程と、前記レーザ遮光層の前記第1面に向けて前記積層体にレーザ光を入射させることによって、前記樹脂層に、前記レーザ遮光層の前記複数の透光穴に対応する複数の第1開口を形成するレーザ加工工程と、を備えてもよい。 A method for manufacturing a mask according to an embodiment of the present disclosure may include a laminate preparation step of preparing a laminate including a laser shielding layer formed of a metal material or a ceramic material, the laser shielding layer including a first surface, a second surface that is the surface opposite to the first surface, and a plurality of light-transmitting holes extending from the first surface to the second surface, and a resin layer covering the second surface of the laser shielding layer, and a laser processing step of forming a plurality of first openings in the resin layer corresponding to the plurality of light-transmitting holes in the laser shielding layer by irradiating the laminate with laser light toward the first surface of the laser shielding layer.
 本開示の一実施形態によれば、マスクの貫通孔の位置精度を向上できる。 According to one embodiment of the present disclosure, the positional accuracy of the through holes in the mask can be improved.
本開示の一実施形態による有機デバイスの一例を示す断面図である。FIG. 1 is a cross-sectional view illustrating an example of an organic device according to an embodiment of the present disclosure. マスクを備えた蒸着装置の一例を示す図である。FIG. 1 is a diagram showing an example of a deposition apparatus equipped with a mask. マスクの一例を示す平面図であって、マスクの一方の面を示す図である。FIG. 2 is a plan view showing an example of a mask, illustrating one surface of the mask. 図3に示すマスクの他方の面を示す平面図である。4 is a plan view showing the other surface of the mask shown in FIG. 3. 図3に示すマスクのV-V線に沿った断面を示す図である。4 is a cross-sectional view taken along line VV of the mask shown in FIG. 3. 図5に示すマスクの一部を拡大して示す部分拡大断面図である。FIG. 6 is a partially enlarged cross-sectional view showing a part of the mask shown in FIG. 5 . マスクの製造方法を説明するための図である。1A to 1C are diagrams for explaining a method for manufacturing a mask. マスクの製造方法を説明するための図である。1A to 1C are diagrams for explaining a method for manufacturing a mask. マスクの製造方法を説明するための図である。1A to 1C are diagrams for explaining a method for manufacturing a mask. マスクの製造方法を説明するための図である。1A to 1C are diagrams for explaining a method for manufacturing a mask. マスクの製造方法を説明するための図である。1A to 1C are diagrams for explaining a method for manufacturing a mask. マスクの製造方法を説明するための図である。1A to 1C are diagrams for explaining a method for manufacturing a mask. マスクの製造方法を説明するための図である。1A to 1C are diagrams for explaining a method for manufacturing a mask. マスクの製造方法を説明するための図である。1A to 1C are diagrams for explaining a method for manufacturing a mask. マスクの製造方法を説明するための図である。1A to 1C are diagrams for explaining a method for manufacturing a mask. マスクの製造方法を説明するための図である。1A to 1C are diagrams for explaining a method for manufacturing a mask. マスクの製造方法を説明するための図である。1A to 1C are diagrams for explaining a method for manufacturing a mask. マスクの製造方法を説明するための図である。1A to 1C are diagrams for explaining a method for manufacturing a mask. 図3に対応する図であって、マスクの変形例を示す図である。FIG. 4 corresponds to FIG. 3 and shows a modified example of the mask. 図17に示すマスクのXVIII―XVIII線に沿った断面を示す図である。18 is a cross-sectional view taken along line XVIII-XVIII of the mask shown in FIG. 17.
 本明細書および本図面において、特別な説明が無い限りは、「基板」、「シート」、「フィルム」などの、ある構成の基礎となる物質を意味する用語は、呼称の違いのみに基づいて、互いから区別されるものではない。 In this specification and drawings, unless otherwise specified, terms that refer to the materials that form the basis of a certain configuration, such as "substrate," "sheet," and "film," are not to be distinguished from one another solely on the basis of differences in name.
 本明細書および本図面において、特別な説明が無い限りは、形状や幾何学的条件並びにそれらの程度を特定する、例えば、「平行」や「直交」等の用語や長さや角度の値等については、厳密な意味に縛られることなく、同様の機能を期待してもよい程度の範囲を含めて解釈する。 Unless otherwise specified, in this specification and drawings, terms that specify shapes and geometric conditions and their degrees, such as "parallel" and "orthogonal," and values of lengths and angles, are not bound by strict meanings and are interpreted to include the extent to which similar functions may be expected.
 本明細書および本図面において、特別な説明が無い限りは、ある部材又はある領域等のある構成が、他の部材又は他の領域等の他の構成の「上に」や「下に」、「上側に」や「下側に」、又は「上方に」や「下方に」とする場合、ある構成が他の構成に直接的に接している場合を含む。さらに、ある構成と他の構成との間に別の構成が含まれている場合、つまり間接的に接している場合も含む。また、特別な説明が無い限りは、「上」や「上側」や「上方」、又は、「下」や「下側」や「下方」という語句は、上下方向が逆転してもよい。 In this specification and drawings, unless otherwise specified, when a certain component or region or other component is described as being "on" or "under", "upper" or "lower" or "above" or "below" another component or region, this includes cases where the component is in direct contact with the other component. It also includes cases where another component is included between a certain component and the other component, that is, cases where the components are indirectly in contact. Furthermore, unless otherwise specified, the terms "on", "upper side", "upper", or "lower", or "lower", "lower" and "lower" may be used in the up-down direction.
 本明細書および本図面において、特別な説明が無い限りは、同一部分または同様な機能を有する部分には同一の符号または類似の符号を付し、その繰り返しの説明は省略する場合がある。また、図面の寸法比率は説明の都合上実際の比率とは異なる場合や、構成の一部が図面から省略される場合がある。 In this specification and drawings, unless otherwise specified, identical parts or parts having similar functions are given the same or similar symbols, and repeated explanations may be omitted. In addition, the dimensional ratios of the drawings may differ from the actual ratios for the convenience of explanation, and some components may be omitted from the drawings.
 本明細書および本図面において、特別な説明が無い限りは、本明細書の一実施形態は、矛盾の生じない範囲で、その他の実施形態と組み合わせられ得る。また、その他の実施形態同士も、矛盾の生じない範囲で組み合わせられ得る。 Unless otherwise specified in this specification and drawings, one embodiment of this specification may be combined with other embodiments to the extent that no contradictions arise. In addition, other embodiments may be combined with each other to the extent that no contradictions arise.
 本明細書および本図面において、特別な説明が無い限りは、製造方法などの方法に関して2つ以上のステップ又はプロセスを開示する場合に、開示されているステップ又はプロセスの間に、開示されていないその他のステップ又はプロセスが実施されてもよい。また、開示されているステップ又はプロセスの順序は、矛盾の生じない範囲で任意である。 Unless otherwise specified in this specification and drawings, when two or more steps or processes are disclosed in a method such as a manufacturing method, other steps or processes that are not disclosed may be performed between the disclosed steps or processes. In addition, the order of the disclosed steps or processes is arbitrary to the extent that no contradiction occurs.
 本明細書の一実施形態においては、マスクが、有機EL表示装置を製造する際に有機層又は電極を基板上に形成するために用いられる例について説明する。ただし、マスクの用途が特に限定されることはなく、種々の用途に用いられるマスクに対し、本実施形態を適用することができる。例えば、仮想現実いわゆるVRや拡張現実いわゆるARを表現するための画像や映像を表示又は投影するための装置の電極を形成するために、本実施形態のマスクを用いてもよい。また、液晶表示装置の電極などの、有機EL表示装置以外の表示装置の電極を形成するために、本実施形態のマスクを用いてもよい。また、圧力センサの電極などの、表示装置以外の有機デバイスの電極を形成するために、本実施形態のマスクを用いてもよい。 In one embodiment of this specification, an example will be described in which a mask is used to form an organic layer or electrodes on a substrate when manufacturing an organic EL display device. However, the use of the mask is not particularly limited, and this embodiment can be applied to masks used for various purposes. For example, the mask of this embodiment may be used to form electrodes of a device for displaying or projecting images or videos to express virtual reality, or so-called VR, or augmented reality, or so-called AR. The mask of this embodiment may also be used to form electrodes of a display device other than an organic EL display device, such as an electrode of a liquid crystal display device. The mask of this embodiment may also be used to form electrodes of an organic device other than a display device, such as an electrode of a pressure sensor.
 本開示の第1の態様は、マスクの製造方法であって、
 金属材料又はセラミック材料で形成されたレーザ遮光層であって、第1面、前記第1面の反対側の面である第2面、及び、前記第1面から前記第2面に至る複数の透光穴を含むレーザ遮光層と、前記レーザ遮光層の前記第2面を覆う樹脂層と、を含む積層体を準備する積層体準備工程と、
 前記レーザ遮光層の前記第1面に向けて前記積層体にレーザ光を入射させることによって、前記樹脂層に、前記レーザ遮光層の前記複数の透光穴に対応する複数の第1開口を形成するレーザ加工工程と、
を備える、マスクの製造方法である。
A first aspect of the present disclosure is a method for manufacturing a mask, comprising:
a laminate preparation step of preparing a laminate including a laser shielding layer formed of a metal material or a ceramic material, the laser shielding layer including a first surface, a second surface that is a surface opposite to the first surface, and a plurality of light transmitting holes extending from the first surface to the second surface, and a resin layer that covers the second surface of the laser shielding layer;
a laser processing step of forming a plurality of first openings in the resin layer corresponding to the plurality of light transmitting holes of the laser shielding layer by irradiating a laser beam onto the laminate toward the first surface of the laser shielding layer;
The method for manufacturing a mask includes the steps of:
 本開示の第2の態様は、上述した第1の態様によるマスクの製造方法において、前記レーザ遮光層は、前記複数の透光穴を含む少なくとも1つの遮蔽部と、平面視において前記遮蔽部を囲む周囲部と、を含んでいてもよく、前記マスクの製造方法は、前記レーザ遮光層の前記遮蔽部を除去する遮蔽部除去工程を備えていてもよい。 A second aspect of the present disclosure is a method for manufacturing a mask according to the first aspect described above, wherein the laser shielding layer includes at least one shielding portion including the plurality of light-transmitting holes and a surrounding portion that surrounds the shielding portion in a planar view, and the method for manufacturing the mask may include a shielding portion removal step for removing the shielding portion of the laser shielding layer.
 本開示の第3の態様は、上述した第1の態様又は第2の態様によるマスクの製造方法において、前記樹脂層は、前記レーザ遮光層の前記第2面に対向する第3面と、前記第3面の反対側の面である第4面と、を含んでいてもよく、前記マスクの製造方法は、前記樹脂層の前記第4面を覆う保護層を形成する保護層形成工程と、前記保護層を除去する保護層除去工程と、を備えていてもよい。 A third aspect of the present disclosure is a method for manufacturing a mask according to the first or second aspect described above, wherein the resin layer may include a third surface facing the second surface of the laser shielding layer and a fourth surface that is the surface opposite to the third surface, and the method for manufacturing the mask may include a protective layer forming step of forming a protective layer that covers the fourth surface of the resin layer, and a protective layer removing step of removing the protective layer.
 本開示の第4の態様は、上述した第1の態様~第3の態様のいずれか1つによるマスクの製造方法は、前記レーザ遮光層の前記第1面に対向する第5面、及び前記第5面の反対側の面である第6面を有し、前記積層体を支持する支持層を準備する支持層準備工程と、平面視において前記レーザ遮光層の前記複数の透光穴に重なる少なくとも1つの第2開口を前記支持層に形成する支持フレーム形成工程と、を備えていてもよい。 In a fourth aspect of the present disclosure, the method for manufacturing a mask according to any one of the first to third aspects described above may include a support layer preparation step of preparing a support layer having a fifth surface facing the first surface of the laser shielding layer and a sixth surface that is the surface opposite to the fifth surface and supporting the laminate, and a support frame formation step of forming at least one second opening in the support layer that overlaps with the plurality of light-transmitting holes of the laser shielding layer in a plan view.
 本開示の第5の態様は、上述した第4の態様によるマスクの製造方法において、積層体準備工程は、前記支持層上に前記レーザ遮光層を形成する工程と、前記レーザ遮光層の前記第2面上に部分的に第1レジスト層を形成する工程と、前記第1レジスト層の側から前記レーザ遮光層をエッチングすることによって前記レーザ遮光層に前記複数の透光穴を形成する工程と、前記第1レジスト層を除去する工程と、を含んでいてもよい。 A fifth aspect of the present disclosure is a method for manufacturing a mask according to the fourth aspect described above, wherein the laminate preparation step may include a step of forming the laser shielding layer on the support layer, a step of partially forming a first resist layer on the second surface of the laser shielding layer, a step of forming the plurality of light-transmitting holes in the laser shielding layer by etching the laser shielding layer from the side of the first resist layer, and a step of removing the first resist layer.
 本開示の第6の態様は、上述した第4の態様又は第5の態様によるマスクの製造方法において、前記支持層は、前記第6面を形成する第1層と、前記第1層と前記レーザ遮光層との間に位置する第2層と、を含んでいてもよく、前記支持フレーム形成工程は、前記支持層の前記第6面上に部分的に第2レジスト層を形成する工程と、前記第2レジスト層の側から前記第1層をエッチングすることによって、前記第1層を部分的に除去する工程と、を含んでいてもよい。 A sixth aspect of the present disclosure is a method for manufacturing a mask according to the fourth or fifth aspect described above, wherein the support layer may include a first layer forming the sixth surface and a second layer located between the first layer and the laser shielding layer, and the support frame forming step may include a step of partially forming a second resist layer on the sixth surface of the support layer, and a step of partially removing the first layer by etching the first layer from the side of the second resist layer.
 本開示の第7の態様は、上述した第6の態様によるマスクの製造方法において、前記支持フレーム形成工程は、前記第1層を部分的に除去する工程の後に、前記第2層を部分的に除去する工程を含んでいてもよい。 A seventh aspect of the present disclosure is a method for manufacturing a mask according to the sixth aspect described above, wherein the support frame forming step may include a step of partially removing the second layer after a step of partially removing the first layer.
 本開示の第8の態様は、上述した第4の態様~第7の態様のいずれか1つによるマスクの製造方法において、前記支持層は、無機物を含んでいてもよい。 An eighth aspect of the present disclosure is a method for manufacturing a mask according to any one of the fourth to seventh aspects described above, wherein the support layer may contain an inorganic material.
 本開示の第9の態様は、上述した第4の態様~第8の態様のいずれか1つによるマスクの製造方法において、前記支持層は、金属材料を含んでいてもよい。 A ninth aspect of the present disclosure is a method for manufacturing a mask according to any one of the fourth to eighth aspects described above, wherein the support layer may contain a metal material.
 本開示の第10の態様は、上述した第6の態様~第9の態様のいずれか1つによるマスクの製造方法において、前記第1層は、非金属の無機物を含んでいてもよい。 A tenth aspect of the present disclosure is a method for manufacturing a mask according to any one of the sixth to ninth aspects described above, wherein the first layer may contain a non-metallic inorganic material.
 本開示の第11の態様は、上述した第6の態様~第9の態様のいずれか1つによるマスクの製造方法において、前記第1層は、非金属の無機物を含んでいてもよく、前記第2層は、金属材料を含んでいてもよい。 An eleventh aspect of the present disclosure is a method for manufacturing a mask according to any one of the sixth to ninth aspects described above, wherein the first layer may contain a non-metallic inorganic material, and the second layer may contain a metallic material.
 本開示の第12の態様は、上述した第1の態様~第11の態様のいずれか1つによるマスクの製造方法において、前記レーザ遮光層は、窒化チタン、ニッケル又は銅を含んでいてもよい。 A twelfth aspect of the present disclosure is a method for manufacturing a mask according to any one of the first to eleventh aspects described above, wherein the laser shielding layer may contain titanium nitride, nickel, or copper.
 本開示の第13の態様は、上述した第1の態様~第12の態様のいずれか1つによるマスクの製造方法において、前記レーザ遮光層は、真空成膜法またはめっき法により形成されてもよい。 A thirteenth aspect of the present disclosure is a method for manufacturing a mask according to any one of the first to twelfth aspects described above, in which the laser shielding layer may be formed by a vacuum deposition method or a plating method.
 本開示の第14の態様は、マスクであって、
 第3面、及び前記第3面の反対側の面である第4面を含む樹脂層であって、前記第3面から前記第4面に至る複数の第1開口を含む少なくとも1つの樹脂マスク部と、平面視において前記樹脂マスク部を囲む樹脂周囲部と、を含む樹脂層と、
 金属材料又はセラミック材料で形成されたレーザ遮光層であって、前記樹脂層の前記第3面に対向する第2面、及び前記第2面の反対側の面である第1面を含み、平面視において前記樹脂層の前記樹脂周囲部に重なる少なくとも1つの周囲部を含むレーザ遮光層と、
 前記レーザ遮光層の前記第1面に対向する第5面、前記第5面の反対側の面である第6面、及び、前記第6面から前記第5面に至り、平面視において前記樹脂層の前記樹脂マスク部に重なる少なくとも1つの第2開口を含む支持フレームと、
を備え、
 前記支持フレームは無機物を含む、マスクである。
A fourteenth aspect of the present disclosure is a mask, comprising:
a resin layer including a third surface and a fourth surface that is a surface opposite to the third surface, the resin layer including at least one resin mask portion including a plurality of first openings extending from the third surface to the fourth surface, and a resin surrounding portion surrounding the resin mask portion in a plan view;
a laser shielding layer formed of a metal material or a ceramic material, the laser shielding layer including a second surface facing the third surface of the resin layer, and a first surface being a surface opposite to the second surface, and including at least one peripheral portion overlapping the resin peripheral portion of the resin layer in a plan view;
a support frame including a fifth surface facing the first surface of the laser shielding layer, a sixth surface being a surface opposite to the fifth surface, and at least one second opening extending from the sixth surface to the fifth surface and overlapping with the resin mask portion of the resin layer in a plan view;
Equipped with
The support frame is a mask that includes an inorganic material.
 本開示の第15の態様は、上述した第14の態様によるマスクにおいて、前記支持フレームは、金属材料を含んでいてもよい。 A fifteenth aspect of the present disclosure is a mask according to the fourteenth aspect described above, wherein the support frame may include a metal material.
 本開示の第16の態様は、上述した第14の態様又は第15の態様によるマスクにおいて、前記支持フレームは、前記第6面を形成する第1層と、前記第1層と前記レーザ遮光層との間に位置する第2層と、を含んでいてもよく、前記第1層は非金属の無機物を含んでいてもよい。 A sixteenth aspect of the present disclosure is a mask according to the fourteenth or fifteenth aspect described above, wherein the support frame may include a first layer forming the sixth surface and a second layer located between the first layer and the laser shielding layer, and the first layer may include a non-metallic inorganic material.
 本開示の第17の態様は、上述した第16の態様によるマスクにおいて、前記第2層は、金属材料を含んでいてもよい。 A seventeenth aspect of the present disclosure is a mask according to the sixteenth aspect described above, wherein the second layer may include a metallic material.
 本開示の第18の態様は、上述した第14の態様~第17の態様のいずれか1つによるマスクにおいて、前記レーザ遮光層は、窒化チタン、ニッケル又は銅を含んでいてもよい。 The eighteenth aspect of the present disclosure is a mask according to any one of the fourteenth to seventeenth aspects described above, wherein the laser shielding layer may contain titanium nitride, nickel, or copper.
 本開示の第19の態様は、上述した第14の態様~第18の態様のいずれか1つによるマスクにおいて、前記樹脂層の各第1開口は、前記樹脂層の前記第3面から前記第4面に向かってテーパ状であってもよく、前記支持フレームの各第2開口は、前記支持フレームの前記第5面及び前記第6面の間で膨大してもよい。 A nineteenth aspect of the present disclosure is a mask according to any one of the fourteenth to eighteenth aspects described above, wherein each of the first openings of the resin layer may be tapered from the third surface of the resin layer toward the fourth surface, and each of the second openings of the support frame may expand between the fifth surface and the sixth surface of the support frame.
 本開示の第20の態様は、上述した第14の態様~第19の態様のいずれか1つによるマスクにおいて、前記レーザ遮光層は、平面視において前記支持フレームの前記第2開口に重なる遮蔽部を含んでいてもよく、前記遮蔽部は、平面視において各々が前記樹脂層の前記複数の第1開口に重なる複数の透光穴を含んでいてもよい。 A twentieth aspect of the present disclosure is a mask according to any one of the fourteenth to nineteenth aspects described above, wherein the laser shielding layer may include a shielding portion that overlaps the second opening of the support frame in a planar view, and the shielding portion may include a plurality of light-transmitting holes that each overlap the plurality of first openings of the resin layer in a planar view.
 本開示の第21の態様は、蒸着層の形成方法であって、
 上述した第14の態様~第20の態様のいずれか1つによるマスクを用いて基板に複数の蒸着層を形成する工程を備えた、蒸着層の形成方法である。
A twenty-first aspect of the present disclosure is a method for forming a deposition layer, comprising:
A method for forming a deposition layer, comprising a step of forming a plurality of deposition layers on a substrate using the mask according to any one of the fourteenth to twentieth aspects described above.
 本開示の第22の態様は、有機半導体素子の製造方法であって、
 上述した第14の態様~第20の態様のいずれか1つによるマスクを用いて基板に複数の蒸着層を形成する工程を備えた、有機半導体素子の製造方法である。
A twenty-second aspect of the present disclosure is a method for producing an organic semiconductor device, comprising:
A method for manufacturing an organic semiconductor device, comprising a step of forming a plurality of deposition layers on a substrate using the mask according to any one of the fourteenth to twentieth aspects described above.
 本開示の一実施形態について、図面を参照しながら詳細に説明する。なお、以下に示す実施形態は本開示の実施形態の一例であって、本開示はこれらの実施形態のみに限定して解釈されるものではない。 One embodiment of the present disclosure will be described in detail with reference to the drawings. Note that the embodiment described below is an example of an embodiment of the present disclosure, and the present disclosure should not be interpreted as being limited to only these embodiments.
 まず、マスクを用いることにより形成される有機層を備える有機デバイス100について説明する。図1は、有機デバイス100の一例を示す断面図である。 First, we will explain an organic device 100 that has an organic layer formed using a mask. Figure 1 is a cross-sectional view showing an example of an organic device 100.
 有機デバイス100は、基板と、基板の面内方向に沿って並ぶ複数の素子115と、を含む。素子115は、例えば有機半導体素子である。素子115は、例えば画素に対応する。以下の説明において、基板などの基礎となる要素の面の法線方向に沿って見ることを、平面視とも称する。 The organic device 100 includes a substrate and a plurality of elements 115 arranged along the in-plane direction of the substrate. The elements 115 are, for example, organic semiconductor elements. The elements 115 correspond to, for example, pixels. In the following description, a view along the normal direction of the surface of an underlying element such as a substrate is also referred to as a planar view.
 有機デバイス100は、基板110、複数の第1電極120、複数の有機層130、及び第2電極140を備えてもよい。基板110は、第1面111及び第2面112を含む。第2面112は、第1面111の反対側に位置する。 The organic device 100 may include a substrate 110, a plurality of first electrodes 120, a plurality of organic layers 130, and a second electrode 140. The substrate 110 includes a first surface 111 and a second surface 112. The second surface 112 is located opposite the first surface 111.
 複数の第1電極120は、第1面111上に位置してもよい。複数の有機層130は、第1電極120上に位置してもよい。第2電極140は、有機層130上に位置してもよい。第2電極140は、平面視において複数の第1電極120に重なるように広がっていてもよい。素子115は、第1電極120、有機層130及び第2電極140を含む積層構造体によって構成されている。素子115は、第1電極120と第2電極140との間に電圧が印加されることにより、又は、第1電極120と第2電極140との間に電流が流れることにより、何らかの機能を実現できる。 The multiple first electrodes 120 may be located on the first surface 111. The multiple organic layers 130 may be located on the first electrodes 120. The second electrode 140 may be located on the organic layer 130. The second electrode 140 may extend so as to overlap the multiple first electrodes 120 in a planar view. The element 115 is configured by a laminated structure including the first electrode 120, the organic layer 130, and the second electrode 140. The element 115 can achieve some function by applying a voltage between the first electrode 120 and the second electrode 140, or by causing a current to flow between the first electrode 120 and the second electrode 140.
 図1に示すように、複数の有機層130は、複数の第1有機層130Aと、複数の第2有機層130Bと、を含んでもよい。図示はしないが、複数の有機層130は、複数の第3有機層を含んでいてもよい。第1有機層130A、第2有機層130B及び第3有機層は、例えば、赤色発光層、青色発光層及び緑色発光層である。第1有機層130A、第2有機層130B及び第3有機層に共通する構成を説明する場合には、「有機層130」という用語及び符号を用いる。 As shown in FIG. 1, the multiple organic layers 130 may include multiple first organic layers 130A and multiple second organic layers 130B. Although not shown, the multiple organic layers 130 may include multiple third organic layers. The first organic layer 130A, the second organic layer 130B, and the third organic layer are, for example, a red light-emitting layer, a blue light-emitting layer, and a green light-emitting layer. When describing a configuration common to the first organic layer 130A, the second organic layer 130B, and the third organic layer, the term and symbol "organic layer 130" are used.
 図1に示すように、複数の第1電極120は、複数の第1A電極120Aと、複数の第1B電極120Bと、を含んでいてもよい。図示はしないが、複数の第1電極120は、複数の第1C電極を含んでいてもよい。第1A電極120Aは、平面視において第1有機層130Aに重なる。第1B電極120Bは、平面視において第2有機層130Bに重なる。第1C電極は、平面視において第3有機層に重なる。第1A電極120A、第1B電極120B及び第1C電極に共通する構成を説明する場合には、「第1電極120」という用語及び符号を用いる。 As shown in FIG. 1, the multiple first electrodes 120 may include multiple firstA electrodes 120A and multiple firstB electrodes 120B. Although not shown, the multiple first electrodes 120 may include multiple firstC electrodes. The firstA electrode 120A overlaps the first organic layer 130A in a planar view. The firstB electrode 120B overlaps the second organic layer 130B in a planar view. The firstC electrode overlaps the third organic layer in a planar view. When describing a configuration common to the firstA electrode 120A, the firstB electrode 120B, and the firstC electrode, the term and symbols "first electrode 120" are used.
 1つの素子115は、少なくとも1つの第1サブ素子115Aと、少なくとも1つの第2サブ素子115Bと、を含んでもよい。図示はしないが、1つの素子115は、少なくとも1つの第3サブ素子を含んでいてもよい。第1サブ素子115Aは、第1A電極120A、第1有機層130A及び第2電極140を含む。第2サブ素子115Bは、第1B電極120B、第2有機層130B及び第2電極140を含む。第3サブ素子は、第1C電極、第3有機層及び第2電極140を含む。 Each element 115 may include at least one first sub-element 115A and at least one second sub-element 115B. Although not shown, each element 115 may include at least one third sub-element. The first sub-element 115A includes a first A electrode 120A, a first organic layer 130A, and a second electrode 140. The second sub-element 115B includes a first B electrode 120B, a second organic layer 130B, and a second electrode 140. The third sub-element includes a first C electrode, a third organic layer, and a second electrode 140.
 マスクを用いることにより形成される要素は、有機層130であってもよく、第2電極140であってもよい。マスクを用いることにより形成される要素のことを、蒸着層とも称する。 The element formed by using the mask may be the organic layer 130 or the second electrode 140. The element formed by using the mask is also called a deposition layer.
 有機デバイス100は、平面視において隣り合う2つの第1電極120の間に位置する絶縁層160を備えていてもよい。絶縁層160は、例えばポリイミドを含んでいる。絶縁層160は、平面視において第1電極120の端に重なっていてもよい。 The organic device 100 may include an insulating layer 160 located between two adjacent first electrodes 120 in a planar view. The insulating layer 160 includes, for example, polyimide. The insulating layer 160 may overlap an edge of the first electrode 120 in a planar view.
 次に、有機層130などの蒸着層を蒸着法によって形成する方法について説明する。図2は、蒸着装置10を示す図である。蒸着装置10は、基板110に蒸着材料を蒸着させる蒸着処理を実施する。 Next, a method for forming a deposition layer such as the organic layer 130 by a deposition method will be described. FIG. 2 is a diagram showing a deposition device 10. The deposition device 10 performs a deposition process for depositing a deposition material on a substrate 110.
 図2に示すように、蒸着装置10は、その内部に、蒸着源6、ヒータ8、及びマスク20を備えてもよい。また、蒸着装置10は、蒸着装置10の内部を真空雰囲気にするための排気手段を更に備えていてもよい。蒸着源6は、例えばるつぼであり、有機材料、金属材料などの蒸着材料7を収容する。ヒータ8は、蒸着源6を加熱して、真空雰囲気の下で蒸着材料7を蒸発させる。マスク20は、るつぼ6と対向するよう配置されている。 As shown in FIG. 2, the deposition apparatus 10 may include therein a deposition source 6, a heater 8, and a mask 20. The deposition apparatus 10 may further include an exhaust means for creating a vacuum atmosphere inside the deposition apparatus 10. The deposition source 6 is, for example, a crucible, and contains a deposition material 7 such as an organic material or a metallic material. The heater 8 heats the deposition source 6 to evaporate the deposition material 7 under a vacuum atmosphere. The mask 20 is disposed to face the crucible 6.
 マスク20は、図2に示すように、基板110の第1面111に対面するよう、蒸着装置10内に配置されている。マスク20は、基板110の第1面111に接していてもよい。マスク20には、その平面視において規則的に並ぶ複数の貫通孔21が形成されている。貫通孔21は、蒸着源6から飛来した蒸着材料7を通過させる。したがって、貫通孔21の形状及びパターンが、基板110の第1面111上に形成される蒸着材料7の層の形状及びパターンに反映される。例えば、マスク20を有機ELディスプレイにおける有機層の形成に用いる場合には、貫通孔21の形状及びパターンが、当該有機層の形状及びパターンに反映される。 2, the mask 20 is placed in the deposition apparatus 10 so as to face the first surface 111 of the substrate 110. The mask 20 may be in contact with the first surface 111 of the substrate 110. The mask 20 has a plurality of through holes 21 arranged regularly in a plan view. The through holes 21 allow the deposition material 7 coming from the deposition source 6 to pass through. Therefore, the shape and pattern of the through holes 21 are reflected in the shape and pattern of the layer of the deposition material 7 formed on the first surface 111 of the substrate 110. For example, when the mask 20 is used to form an organic layer in an organic EL display, the shape and pattern of the through holes 21 are reflected in the shape and pattern of the organic layer.
 図2に示すように、蒸着装置10は、基板110の第2面112側に配置されている磁石5を備えていてもよい。マスク20が金属材料を含む場合、磁石5は、磁力によってマスク20を基板110に向けて引き寄せることができる。これにより、マスク20と基板110との間の隙間を低減したり、隙間をなくしたりすることができる。このことにより、蒸着工程においてシャドウが発生することを抑制できる。本願において、シャドウとは、貫通孔21の壁面の近傍に形成される有機層130の厚みが、貫通孔21の中心に形成される有機層130の厚みよりも小さくなる現象である。シャドウは、蒸着材料7がマスク20の壁面に付着すること、蒸着材料7がマスク20と基板110との間の隙間に入り込むこと、などに起因して生じる。 2, the deposition device 10 may include a magnet 5 disposed on the second surface 112 side of the substrate 110. When the mask 20 contains a metal material, the magnet 5 can attract the mask 20 toward the substrate 110 by magnetic force. This can reduce or eliminate the gap between the mask 20 and the substrate 110. This can suppress the occurrence of a shadow in the deposition process. In this application, a shadow is a phenomenon in which the thickness of the organic layer 130 formed near the wall surface of the through hole 21 is smaller than the thickness of the organic layer 130 formed at the center of the through hole 21. The shadow occurs due to the deposition material 7 adhering to the wall surface of the mask 20, the deposition material 7 entering the gap between the mask 20 and the substrate 110, etc.
 次に、マスク20について詳細に説明する。図3及び図4は、マスク20の一例を示す平面図である。図3は、マスク20の、蒸着源6に対向する面を示している。また、図4は、マスク20の、基板110に対向する面を示している。また、図5は、図3及び図4に示すマスク20のV-V線に沿った断面を示す断面図である。 Next, the mask 20 will be described in detail. Figures 3 and 4 are plan views showing an example of the mask 20. Figure 3 shows the surface of the mask 20 facing the deposition source 6. Also, Figure 4 shows the surface of the mask 20 facing the substrate 110. Also, Figure 5 is a cross-sectional view showing a cross section along line V-V of the mask 20 shown in Figures 3 and 4.
 マスク20は、複数の貫通孔21を含む少なくとも1つの貫通孔群23を含む。1つの貫通孔群23は、1つの有機デバイス100に対応する。例えば、1つの有機デバイス100に含まれる複数の第1有機層130Aは、1つの貫通孔群23の複数の貫通孔21を通った蒸着材料によって構成される。図3乃至図5に示すマスク20は、複数の有機デバイス100の蒸着層を同時に形成するためのマスクであり、複数の貫通孔群23を含む。 The mask 20 includes at least one through-hole group 23 including a plurality of through-holes 21. One through-hole group 23 corresponds to one organic device 100. For example, the plurality of first organic layers 130A included in one organic device 100 are composed of deposition material that has passed through the plurality of through-holes 21 of one through-hole group 23. The mask 20 shown in Figures 3 to 5 is a mask for simultaneously forming deposition layers for a plurality of organic devices 100, and includes a plurality of through-hole groups 23.
 図5に示すように、マスク20は、複数の第1開口34が形成された樹脂層30と、樹脂層30を支持する支持フレーム50と、樹脂層30と支持フレーム50との間に位置するレーザ遮光層40と、を備える。以下の説明において、レーザ遮光層40の支持フレーム50に対向する面を第1面41と称し、レーザ遮光層40の樹脂層30に対向する面を第2面42と称する。また、樹脂層30のレーザ遮光層40に対向する面を第3面31と称し、樹脂層30の第3面31とは反対側の面を第4面32と称する。また、支持フレーム50のレーザ遮光層40に対向する面を第5面51と称し、支持フレーム50の第5面51とは反対側の面を第6面52と称する。 5, the mask 20 includes a resin layer 30 in which a plurality of first openings 34 are formed, a support frame 50 that supports the resin layer 30, and a laser shielding layer 40 that is located between the resin layer 30 and the support frame 50. In the following description, the surface of the laser shielding layer 40 that faces the support frame 50 is referred to as the first surface 41, and the surface of the laser shielding layer 40 that faces the resin layer 30 is referred to as the second surface 42. The surface of the resin layer 30 that faces the laser shielding layer 40 is referred to as the third surface 31, and the surface of the resin layer 30 opposite the third surface 31 is referred to as the fourth surface 32. The surface of the support frame 50 that faces the laser shielding layer 40 is referred to as the fifth surface 51, and the surface of the support frame 50 opposite the fifth surface 51 is referred to as the sixth surface 52.
 樹脂層30は、複数の第1開口34が形成された樹脂マスク部36と、樹脂層30の平面視において樹脂マスク部36を囲む樹脂周囲部37と、を含む。図示された例では、樹脂層30は、複数の樹脂マスク部36を含む。各樹脂マスク部36は、樹脂周囲部37によって囲まれている。各樹脂マスク部36は、1つの有機デバイス100に対応する。また、各樹脂マスク部36の第3面31は、マスク20の蒸着源6に対向する面の一部を形成する。また、樹脂層30の第4面32は、マスク20の基板110の第1面111に対向する面を形成する。 The resin layer 30 includes a resin mask portion 36 in which a plurality of first openings 34 are formed, and a resin surrounding portion 37 that surrounds the resin mask portion 36 in a plan view of the resin layer 30. In the illustrated example, the resin layer 30 includes a plurality of resin mask portions 36. Each resin mask portion 36 is surrounded by the resin surrounding portion 37. Each resin mask portion 36 corresponds to one organic device 100. The third surface 31 of each resin mask portion 36 forms a part of the surface of the mask 20 that faces the deposition source 6. The fourth surface 32 of the resin layer 30 forms the surface of the mask 20 that faces the first surface 111 of the substrate 110.
 樹脂マスク部36の各第1開口34は、樹脂層30を貫通している。言い換えると、第1開口34は、第3面31から第4面32に至る。図示された例では、第1開口34によって、マスク20の貫通孔21が形成されている。1つの樹脂マスク部36の複数の第1開口34は、1つの第1開口群35を形成する。図示された例では、樹脂層30の1つの第1開口群35によって、マスク20の1つの貫通孔群23が形成されている。 Each first opening 34 of the resin mask portion 36 penetrates the resin layer 30. In other words, the first openings 34 reach from the third surface 31 to the fourth surface 32. In the illustrated example, the first openings 34 form the through-holes 21 of the mask 20. The multiple first openings 34 of one resin mask portion 36 form one first opening group 35. In the illustrated example, one first opening group 35 of the resin layer 30 forms one through-hole group 23 of the mask 20.
 上述したように、貫通孔21の形状及びパターンが、基板110上に形成される蒸着材料7の層の形状及びパターンに反映される。したがって、第1開口34の形状及びパターンは、基板110上に形成される蒸着層の形状及びパターンに対応している。 As described above, the shape and pattern of the through holes 21 are reflected in the shape and pattern of the layer of deposition material 7 formed on the substrate 110. Therefore, the shape and pattern of the first openings 34 correspond to the shape and pattern of the deposition layer formed on the substrate 110.
 樹脂層30の材料は、特に限定されない。樹脂層30の材料は、従来公知の樹脂材料を適宜選択して用いてもよい。好ましくは、樹脂層30の材料として、レーザ加工によって高精細な第1開口34の形成が可能である材料が用いられる。好ましくは、樹脂層30の材料として、熱や経時での寸法変化率や吸湿率が小さい材料が用いられる。好ましくは、樹脂層30の材料として、軽量な材料が用いられる。このような材料としては、ポリイミド樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、ポリエステル樹脂、ポリエチレン樹脂、ポリビニルアルコール樹脂、ポリプロピレン樹脂、ポリカーボネート樹脂、ポリスチレン樹脂、ポリアクリロニトリル樹脂、エチレン酢酸ビニル共重合体樹脂、エチレン-ビニルアルコール共重合体樹脂、エチレン-メタクリル酸共重合体樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、セロファン、アイオノマー樹脂等を挙げることができる。上記に例示した材料のうち、熱膨張係数が16ppm/℃以下である樹脂材料が好ましい。上記に例示した材料のうち、吸湿率が1.0%以下である樹脂材料が好ましい。上記に例示した材料のうち、熱膨張係数及び吸湿率の両方の条件を満たす樹脂材料が特に好ましい。これらの樹脂材料を用いて樹脂層を構成することによって、第1開口の寸法精度を向上でき、かつ熱や経時での寸法変化率や吸湿率を小さくできる。 The material of the resin layer 30 is not particularly limited. The material of the resin layer 30 may be appropriately selected from conventionally known resin materials. Preferably, the material of the resin layer 30 is a material that allows the formation of a high-definition first opening 34 by laser processing. Preferably, the material of the resin layer 30 is a material that has a small dimensional change rate and moisture absorption rate due to heat or time. Preferably, the material of the resin layer 30 is a lightweight material. Such materials include polyimide resin, polyamide resin, polyamideimide resin, polyester resin, polyethylene resin, polyvinyl alcohol resin, polypropylene resin, polycarbonate resin, polystyrene resin, polyacrylonitrile resin, ethylene vinyl acetate copolymer resin, ethylene-vinyl alcohol copolymer resin, ethylene-methacrylic acid copolymer resin, polyvinyl chloride resin, polyvinylidene chloride resin, cellophane, ionomer resin, etc. Among the materials exemplified above, a resin material having a thermal expansion coefficient of 16 ppm/°C or less is preferable. Among the materials exemplified above, a resin material having a moisture absorption rate of 1.0% or less is preferable. Among the materials listed above, resin materials that satisfy both the thermal expansion coefficient and moisture absorption rate conditions are particularly preferred. By using these resin materials to form the resin layer, the dimensional accuracy of the first opening can be improved, and the dimensional change rate and moisture absorption rate due to heat and time can be reduced.
 樹脂層30の厚みT30についても特に限定はないが、0.2μm以上5.0μm以下であることが好ましい。樹脂層30の厚みT30をこの範囲内とすることで、ピンホール等の欠陥や変形等が樹脂層30に生じるというリスクを低減でき、かつシャドウの発生を効果的に抑制できる。特に、樹脂層の厚みT30を、0.5μm以上4.0μm以下、より好ましくは0.8μm以上3.5μm以下、更に好ましくは1.0μm以上3.0μm以下とすることで、例えば画素数が3000ppi以上である有機ELディスプレイのための蒸着層を高精細なパターンで形成する際のシャドウの影響を、より効果的に低減できる。したがって、樹脂層30の厚みT30は、例えば、0.2μm以上でもよく、0.5μm以上でもよく、0.8μm以上でもよく、1.0μm以上でもよい。厚みT30は、例えば、3.0μm以下でもよく、3.5μm以下でもよく、4.0μm以下でもよく、5.0μm以下でもよい。厚みT30の範囲は、0.2μm、0.5μm、0.8μm及び1.0μmからなる第1グループ、及び/又は、3.0μm、3.5μm、4.0μm及び5.0μmからなる第2グループによって定められてもよい。厚みT30の範囲は、上述の第1グループに含まれる値のうちの任意の1つと、上述の第2グループに含まれる値のうちの任意の1つとの組み合わせによって定められてもよい。厚みT30の範囲は、上述の第1グループに含まれる値のうちの任意の2つの組み合わせによって定められてもよい。厚みT30の範囲は、上述の第2グループに含まれる値のうちの任意の2つの組み合わせによって定められてもよい。厚みT30は、例えば、0.2μm以上5.0μm以下でもよく、0.2μm以上4.0μm以下でもよく、0.2μm以上3.5μm以下でもよく、0.2μm以上3.0μm以下でもよく、0.2μm以上1.0μm以下でもよく、0.2μm以上0.8μm以下でもよく、0.2μm以上0.5μm以下でもよく、0.5μm以上5.0μm以下でもよく、0.5μm以上4.0μm以下でもよく、0.5μm以上3.5μm以下でもよく、0.5μm以上3.0μm以下でもよく、0.5μm以上1.0μm以下でもよく、0.5μm以上0.8μm以下でもよく、0.8μm以上5.0μm以下でもよく、0.8μm以上4.0μm以下でもよく、0.8μm以上3.5μm以下でもよく、0.8μm以上3.0μm以下でもよく、0.8μm以上1.0μm以下でもよく、1.0μm以上5.0μm以下でもよく、1.0μm以上4.0μm以下でもよく、1.0μm以上3.5μm以下でもよく、1.0μm以上3.0μm以下でもよく、3.0μm以上5.0μm以下でもよく、3.0μm以上4.0μm以下でもよく、3.0μm以上3.5μm以下でもよく、3.5μm以上5.0μm以下でもよく、3.5μm以上4.0μm以下でもよく、4.0μm以上5.0μm以下でもよい。 There is no particular limitation on the thickness T30 of the resin layer 30, but it is preferably 0.2 μm or more and 5.0 μm or less. By setting the thickness T30 of the resin layer 30 within this range, the risk of defects such as pinholes and deformations occurring in the resin layer 30 can be reduced, and the occurrence of shadows can be effectively suppressed. In particular, by setting the thickness T30 of the resin layer to 0.5 μm or more and 4.0 μm or less, more preferably 0.8 μm or more and 3.5 μm or less, and even more preferably 1.0 μm or more and 3.0 μm or less, the influence of shadows when forming a deposition layer in a high-definition pattern for an organic EL display having a pixel count of 3000 ppi or more can be more effectively reduced. Therefore, the thickness T30 of the resin layer 30 may be, for example, 0.2 μm or more, 0.5 μm or more, 0.8 μm or more, or 1.0 μm or more. The thickness T30 may be, for example, 3.0 μm or less, 3.5 μm or less, 4.0 μm or less, or 5.0 μm or less. The range of the thickness T30 may be determined by a first group consisting of 0.2 μm, 0.5 μm, 0.8 μm, and 1.0 μm, and/or a second group consisting of 3.0 μm, 3.5 μm, 4.0 μm, and 5.0 μm. The range of the thickness T30 may be determined by a combination of any one of the values included in the first group described above and any one of the values included in the second group described above. The range of the thickness T30 may be determined by a combination of any two of the values included in the first group described above. The range of the thickness T30 may be determined by a combination of any two of the values included in the second group described above. The thickness T30 may be, for example, 0.2 μm or more and 5.0 μm or less, 0.2 μm or more and 4.0 μm or less, 0.2 μm or more and 3.5 μm or less, 0.2 μm or more and 3.0 μm or less, 0.2 μm or more and 1.0 μm or less, 0.2 μm or more and 0.8 μm or less, 0.2 μm or more and 0.5 μm or less, 0.5 μm or more and 5.0 μm or less, 0.5 μm or more and 4.0 μm or less, 0.5 μm or more and 3.5 μm or less, 0.5 μm or more and 3.0 μm or less, 0.5 μm or more and 1.0 μm or less, 0.5 μm or more and 0.8 μm or less, or 0.8 μm or more and 5.0 μm or less. , 0.8 μm or more and 4.0 μm or less, 0.8 μm or more and 3.5 μm or less, 0.8 μm or more and 3.0 μm or less, 0.8 μm or more and 1.0 μm or less, 1.0 μm or more and 5.0 μm or less, 1.0 μm or more and 4.0 μm or less, 1.0 μm or more and 3.5 μm or less, 1.0 μm or more and 3.0 μm or less, 3.0 μm or more and 5.0 μm or less, 3.0 μm or more and 4.0 μm or less, 3.0 μm or more and 3.5 μm or less, 3.5 μm or more and 5.0 μm or less, 3.5 μm or more and 4.0 μm or less, or 4.0 μm or more and 5.0 μm or less.
 図5から理解されるように、樹脂マスク部36の各第1開口34は、第3面31から第4面32に向かってテーパ状である。言い換えると、各第1開口34の第3面31及び第4面32に沿った寸法は、第3面31から第4面32に向かって次第に小さくなる。これにより、第1開口34の壁面の近傍においてシャドウが生じることを抑制できる。テーパ状の第1開口34は、後述するように、樹脂層30にレーザ光を入射させることによって形成され得る。なお、各第1開口32の第4面32における寸法は、当該第1開口32に対応する蒸着層の寸法に対応している。図示された例では、各第1開口32の第3面31における寸法は、当該第1開口32に対応する蒸着層の寸法よりも大きい。 As can be seen from FIG. 5, each first opening 34 of the resin mask portion 36 is tapered from the third surface 31 to the fourth surface 32. In other words, the dimensions of each first opening 34 along the third surface 31 and the fourth surface 32 gradually decrease from the third surface 31 to the fourth surface 32. This makes it possible to suppress the occurrence of shadows near the wall surfaces of the first openings 34. The tapered first openings 34 can be formed by irradiating the resin layer 30 with laser light, as described below. The dimensions of each first opening 32 on the fourth surface 32 correspond to the dimensions of the deposition layer corresponding to that first opening 32. In the illustrated example, the dimensions of each first opening 32 on the third surface 31 are larger than the dimensions of the deposition layer corresponding to that first opening 32.
 図6は、図5に示す樹脂マスク部36の一部を拡大して示す図である。図6において、符号θは、第4面32と第1開口34の壁面とが成す角度を表す。角度θは、例えば、50°以上でもよく、55°以上でもよく、60°以上でもよく、65°以上でもよい。角度θは、90°未満であり、例えば、75°以下でもよく、80°以下でもよく、85°以下でもよい。角度θの範囲は、50°、55°、60°及び65°からなる第1グループ、及び/又は、75°、80°、85°及び90°からなる第2グループによって定められてもよい。角度θの範囲は、上述の第1グループに含まれる値のうちの任意の1つと、上述の第2グループに含まれる値のうちの任意の1つとの組み合わせによって定められてもよい。角度θの範囲は、上述の第1グループに含まれる値のうちの任意の2つの組み合わせによって定められてもよい。角度θの範囲は、上述の第2グループに含まれる値のうちの任意の2つの組み合わせによって定められてもよい。角度θは、例えば、50°以上90°未満でもよく、50°以上85°以下でもよく、50°以上80°以下でもよく、50°以上75°以下でもよく、50°以上65°以下でもよく、50°以上60°以下でもよく、50°以上55°以下でもよく、55°以上90°未満でもよく、55°以上85°以下でもよく、55°以上80°以下でもよく、55°以上75°以下でもよく、55°以上65°以下でもよく、55°以上60°以下でもよく、60°以上90°未満でもよく、60°以上85°以下でもよく、60°以上80°以下でもよく、60°以上75°以下でもよく、60°以上65°以下でもよく、65°以上90°未満でもよく、65°以上85°以下でもよく、65°以上80°以下でもよく、65°以上75°以下でもよく、75°以上90°未満でもよく、75°以上85°以下でもよく、75°以上80°以下でもよく、80°以上90°未満でもよく、80°以上85°以下でもよく、85°以上90°未満でもよい。 6 is an enlarged view of a portion of the resin mask portion 36 shown in FIG. 5. In FIG. 6, the symbol θ represents the angle between the fourth surface 32 and the wall surface of the first opening 34. The angle θ may be, for example, 50° or more, 55° or more, 60° or more, or 65° or more. The angle θ is less than 90°, for example, 75° or less, 80° or less, or 85° or less. The range of the angle θ may be determined by a first group consisting of 50°, 55°, 60°, and 65°, and/or a second group consisting of 75°, 80°, 85°, and 90°. The range of the angle θ may be determined by a combination of any one of the values included in the first group described above and any one of the values included in the second group described above. The range of the angle θ may be determined by a combination of any two of the values included in the first group described above. The range of the angle θ may be determined by a combination of any two of the values included in the second group described above. The angle θ may be, for example, 50° or more and less than 90°, 50° or more and less than 85°, 50° or more and less than 80°, 50° or more and less than 75°, 50° or more and less than 65°, 50° or more and less than 60°, 50° or more and less than 55°, 55° or more and less than 90°, 55° or more and less than 85°, 55° or more and less than 80°, 55° or more and less than 75°, 55° or more and less than 65°, 55° or more and less than 60°, or 60° or more and less than 90°. , 60° or more and 85° or less, 60° or more and 80° or less, 60° or more and 75° or less, 60° or more and 65° or less, 65° or more and less than 90°, 65° or more and 85° or less, 65° or more and 80° or less, 65° or more and 75° or less, 75° or more and less than 90°, 75° or more and 85° or less, 75° or more and 80° or less, 80° or more and less than 90°, 80° or more and 85° or less, 85° or more and less than 90°.
 図5に示すように、レーザ遮光層40は、樹脂層30の第3面31に設けられている。レーザ遮光層40の第2面42は、樹脂層30の第3面31に対向している。レーザ遮光層40は、樹脂層30の樹脂周囲部37の第3面31の少なくとも一部を覆っている。図示された例では、レーザ遮光層40は、樹脂層30の樹脂周囲部37の第3面31の全てを覆っている。また、図示された例では、レーザ遮光層40は、その平面視において、樹脂層30の樹脂マスク部36に重なる少なくとも1つの第3開口48を有する。第3開口48は、レーザ遮光層40を貫通している。言い換えると、レーザ遮光層40は第1面41から第2面42に至る。図示された例では、レーザ遮光層40は、その平面視において、樹脂層30の複数の樹脂マスク部36に重なる複数の第3開口48を有する。レーザ遮光層40から樹脂層30に向かう方向に見て、レーザ遮光層40は、複数の樹脂マスク部36をそれぞれ囲んでいる。 As shown in FIG. 5, the laser shielding layer 40 is provided on the third surface 31 of the resin layer 30. The second surface 42 of the laser shielding layer 40 faces the third surface 31 of the resin layer 30. The laser shielding layer 40 covers at least a portion of the third surface 31 of the resin peripheral portion 37 of the resin layer 30. In the illustrated example, the laser shielding layer 40 covers the entire third surface 31 of the resin peripheral portion 37 of the resin layer 30. In the illustrated example, the laser shielding layer 40 has at least one third opening 48 that overlaps the resin mask portion 36 of the resin layer 30 in a planar view. The third opening 48 penetrates the laser shielding layer 40. In other words, the laser shielding layer 40 extends from the first surface 41 to the second surface 42. In the illustrated example, the laser shielding layer 40 has a plurality of third openings 48 that overlap the plurality of resin mask portions 36 of the resin layer 30 in a planar view. When viewed in a direction from the laser shielding layer 40 toward the resin layer 30, the laser shielding layer 40 surrounds each of the multiple resin mask portions 36.
 以下では、レーザ遮光層40のうち、レーザ遮光層40の平面視において樹脂層30の樹脂周囲部37に重なる部分を、周囲部47とも称する。レーザ遮光層40は、少なくとも1つの周囲部47を含む。図3乃至図5に示す例では、レーザ遮光層40は、周囲部47から成る。 Hereinafter, the portion of the laser shielding layer 40 that overlaps with the resin peripheral portion 37 of the resin layer 30 in a plan view of the laser shielding layer 40 is also referred to as the peripheral portion 47. The laser shielding layer 40 includes at least one peripheral portion 47. In the example shown in Figures 3 to 5, the laser shielding layer 40 is made of the peripheral portion 47.
 レーザ遮光層40は、レーザ光を遮蔽可能な材料で形成される。レーザ遮光層40は、例えば、金属材料、セラミックス又はその他の無機化合物からなる。レーザ遮光層40は、例えば、窒化チタンを含むセラミック材料や、ニッケル又は銅を含む金属材料で形成される。ニッケルを含む金属材料の具体例は、34質量%以上且つ38質量%以下のニッケルを含むインバー材、30質量%以上且つ34質量%以下のニッケルに加えてさらにコバルトを含むスーパーインバー材などである。
 レーザ遮光層40に含まれる無機元素は、銀(Ag)、アルミニウム(Al)、金(Au)、コバルト(Co)、クロム(Cr)、鉄(Fe)、ゲルマニウム(Ge)、イリジウム(Ir)、マンガン(Mn)、モリブデン(Mo)、ニオブ(Nb)、パラジウム(Pd)、ルテニウム(Ru)、アンチモン(Sb)、ケイ素(Si)、スズ(Sn)、タンタル(Ta)、チタン(Ti)、タングステン(W)などである。無機層40は、これらの無機元素の化合物又は合金を含んでもよい。無機層40は、これらの無機元素を2種以上含んでもよい。無機層40は、これらの無機元素の化合物又は合金を2種以上含んでもよい。2種以上の無機元素、2種以上の化合物又は合金は、混合された状態で無機層40に含まれてもよく、積層された状態で無機層40に含まれてもよい。
 無機元素の化合物又は合金は、アルミ・ネオジム合金(Al-Nd)、酸化アルミニウム(Al2O3)、アルミニウム銅合金(Al-Cu)、窒化アルミニウム(AlN)、アルミニウム・シリコン化合物(AlSi)、アルミニウム・シリコン合金(Al-Si)、アルミニウム・シリコン・銅合金(Al-Si-Cu)、窒化ホウ素(BN)、酸化セリウム(CeO2)、酸化クロム(Cr2O3)、酸化インジウムスズ(ITO)、酸化インジウム亜鉛(IZO)、マグネシウム(Mg)、酸化マグネシウム(MgO)、酸化モリブデン(MoO3)、硫化モリブデン(MoS)、ニッケル・クロム合金(Ni-Cr)、ニッケル・鉄化合物(NiFe)、多結晶シリコン(Poly-Si)、白金(Pt)、チタン酸ジルコン酸鉛(PZT)、窒化ケイ素(Si3N4)、炭化ケイ素(SiC)、シリコン・ゲルマニウム合金(Si-Ge)、窒化ケイ素(SiN)、二酸化ケイ素(SiO2)、酸窒化ケイ素(SiON)、五酸化タンタル(Ta2O5)、窒化タンタル(TaN)、炭化チタン(TiC)、チタン・ニッケル合金又はチタン・ニッケル化合物(Ti-Ni)、二酸化チタン(TiO2)、チタン・タングステン合金又はチタン・タングステン化合物(Ti-W)、タングステン・ケイ素合金又はタングステン・ケイ素化合物(W-Si)、酸化イットリウム(Y2O3)、YBCO(YBa2Cu3O7)、亜鉛(Zn)、酸化亜鉛(ZnO)、窒化ジルコニウム(ZrN)、二酸化ジルコニウム(ZrO2)などである。
The laser shielding layer 40 is formed of a material capable of shielding laser light. The laser shielding layer 40 is made of, for example, a metal material, ceramics, or other inorganic compounds. The laser shielding layer 40 is formed of, for example, a ceramic material containing titanium nitride, or a metal material containing nickel or copper. Specific examples of metal materials containing nickel include an Invar material containing 34% by mass or more and 38% by mass or less of nickel, and a Super Invar material containing 30% by mass or more and 34% by mass or less of nickel and further containing cobalt.
The inorganic elements contained in the laser shielding layer 40 are silver (Ag), aluminum (Al), gold (Au), cobalt (Co), chromium (Cr), iron (Fe), germanium (Ge), iridium (Ir), manganese (Mn), molybdenum (Mo), niobium (Nb), palladium (Pd), ruthenium (Ru), antimony (Sb), silicon (Si), tin (Sn), tantalum (Ta), titanium (Ti), tungsten (W), etc. The inorganic layer 40 may contain a compound or alloy of these inorganic elements. The inorganic layer 40 may contain two or more of these inorganic elements. The inorganic layer 40 may contain two or more of these inorganic elements, compounds or alloys. Two or more kinds of inorganic elements, two or more kinds of compounds or alloys may be contained in the inorganic layer 40 in a mixed state, or may be contained in the inorganic layer 40 in a stacked state.
Compounds or alloys of inorganic elements include aluminum-neodymium alloy (Al-Nd), aluminum oxide (Al 2 O 3 ), aluminum copper alloy (Al-Cu), aluminum nitride (AlN), aluminum silicon compound (AlSi), aluminum silicon alloy (Al-Si), aluminum silicon copper alloy (Al-Si-Cu), boron nitride (BN), cerium oxide (CeO 2 ), chromium oxide (Cr 2 O 3 ), indium tin oxide (ITO), indium zinc oxide (IZO), magnesium (Mg), magnesium oxide (MgO), molybdenum oxide (MoO 3 ), molybdenum sulfide (MoS), nickel-chromium alloy (Ni-Cr), nickel-iron compound (NiFe), polycrystalline silicon (Poly-Si), platinum (Pt), lead zirconate titanate (PZT), silicon nitride (Si 3 N 4 ), silicon carbide (SiC), silicon germanium alloy (Si-Ge), silicon nitride (SiN), silicon dioxide (SiO 2 ), silicon oxynitride (SiON), tantalum pentoxide ( Ta2O5 ), tantalum nitride (TaN), titanium carbide (TiC), titanium-nickel alloy or compound (Ti-Ni), titanium dioxide ( TiO2 ), titanium-tungsten alloy or compound (Ti-W), tungsten-silicon alloy or compound (W-Si ) , yttrium oxide ( Y2O3 ), YBCO ( YBa2Cu3O7 ), zinc (Zn), zinc oxide (ZnO), zirconium nitride (ZrN), zirconium dioxide ( ZrO2 ) , etc.
 レーザ遮光層40の厚みT40については、特に限定はない。レーザ遮光層40の厚みT40は、例えば0.5μm以上である。セラミック材料や金属材料で形成されたレーザ遮光層40をレーザアブレーション加工するためには、レーザ遮光層40に入射するレーザ光のフルエンスは、例えば4J/m以上である必要がある。これに対し、樹脂層30を加工するためには、樹脂層30に入射するレーザ光のフルエンスは、上述したフルエンスの1/10以下である0.4J/m程度でよい。そのため、レーザ遮光層40の厚みが0.5μm以上であれば、後述するレーザ加工工程でレーザ遮光層40がレーザ光Lによって破断したり変形する虞が効果的に低減される。後述するレーザ加工工程でレーザ遮光層40が破断したり変形する虞が更に効果的に低減されるよう、厚みT40は、1.0μm以上であることがより好ましく、1.2μm以上であることが更に好ましく、1.5μm以上であることが特に好ましい。その一方で、後述するレーザ加工工程で樹脂層30の第1開口34を高精細に形成する観点から、レーザ遮光層40の厚みT40は、10.0μm以下であることが好ましく、8.0μm以下であることがより好ましく、7.0μm以下であることがより好ましく、6.0μm以下であることが特に好ましい。したがって、厚みT40は、例えば、0.5μm以上でもよく、1.0μm以上でもよく、1.2μm以上でもよく、1.5μm以上でもよい。厚みT40は、例えば、6.0μm以下でもよく、7.0μm以下でもよく、8.0μm以下でもよく、10.0μm以下でもよい。厚みT40の範囲は、0.5μm、1.0μm、1.2μm及び1.5μmからなる第1グループ、及び/又は、6.0μm、7.0μm、8.0μm及び10.0μmからなる第2グループによって定められてもよい。厚みT40の範囲は、上述の第1グループに含まれる値のうちの任意の1つと、上述の第2グループに含まれる値のうちの任意の1つとの組み合わせによって定められてもよい。厚みT40の範囲は、上述の第1グループに含まれる値のうちの任意の2つの組み合わせによって定められてもよい。厚みT40の範囲は、上述の第2グループに含まれる値のうちの任意の2つの組み合わせによって定められてもよい。厚みT40は、例えば、0.5μm以上10.0μm以下でもよく、0.5μm以上8.0μm以下でもよく、0.5μm以上7.0μm以下でもよく、0.5μm以上6.0μm以下でもよく、0.5μm以上1.5μm以下でもよく、0.5μm以上1.2μm以下でもよく、0.5μm以上1.0μm以下でもよく、1.0μm以上10.0μm以下でもよく、1.0μm以上8.0μm以下でもよく、1.0μm以上7.0μm以下でもよく、1.0μm以上6.0μm以下でもよく、1.0μm以上1.5μm以下でもよく、1.0μm以上1.2μm以下でもよく、1.2μm以上10.0μm以下でもよく、1.2μm以上8.0μm以下でもよく、1.2μm以上7.0μm以下でもよく、1.2μm以上6.0μm以下でもよく、1.2μm以上1.5μm以下でもよく、1.5μm以上10.0μm以下でもよく、1.5μm以上8.0μm以下でもよく、1.5μm以上7.0μm以下でもよく、1.5μm以上6.0μm以下でもよく、6.0μm以上10.0μm以下でもよく、6.0μm以上8.0μm以下でもよく、6.0μm以上7.0μm以下でもよく、7.0μm以上10.0μm以下でもよく、7.0μm以上8.0μm以下でもよく、8.0μm以上10.0μm以下でもよい。 There is no particular limitation on the thickness T40 of the laser shielding layer 40. The thickness T40 of the laser shielding layer 40 is, for example, 0.5 μm or more. In order to perform laser ablation processing on the laser shielding layer 40 formed of a ceramic material or a metal material, the fluence of the laser light incident on the laser shielding layer 40 needs to be, for example, 4 J/m 2 or more. In contrast, in order to process the resin layer 30, the fluence of the laser light incident on the resin layer 30 may be about 0.4 J/m 2 , which is 1/10 or less of the above-mentioned fluence. Therefore, if the thickness of the laser shielding layer 40 is 0.5 μm or more, the risk of the laser shielding layer 40 being broken or deformed by the laser light L in the laser processing step described later is effectively reduced. In order to further effectively reduce the risk of the laser shielding layer 40 being broken or deformed in the laser processing step described later, the thickness T40 is more preferably 1.0 μm or more, even more preferably 1.2 μm or more, and particularly preferably 1.5 μm or more. On the other hand, from the viewpoint of forming the first opening 34 of the resin layer 30 with high precision in the laser processing step described later, the thickness T40 of the laser shielding layer 40 is preferably 10.0 μm or less, more preferably 8.0 μm or less, more preferably 7.0 μm or less, and particularly preferably 6.0 μm or less. Therefore, the thickness T40 may be, for example, 0.5 μm or more, 1.0 μm or more, 1.2 μm or more, or 1.5 μm or more. The thickness T40 may be, for example, 6.0 μm or less, 7.0 μm or less, 8.0 μm or less, or 10.0 μm or less. The range of the thickness T40 may be determined by a first group consisting of 0.5 μm, 1.0 μm, 1.2 μm, and 1.5 μm, and/or a second group consisting of 6.0 μm, 7.0 μm, 8.0 μm, and 10.0 μm. The range of thickness T40 may be determined by a combination of any one of the values included in the above-mentioned first group and any one of the values included in the above-mentioned second group. The range of thickness T40 may be determined by a combination of any two of the values included in the above-mentioned first group. The range of thickness T40 may be determined by a combination of any two of the values included in the above-mentioned second group. The thickness T40 may be, for example, 0.5 μm or more and 10.0 μm or less, 0.5 μm or more and 8.0 μm or less, 0.5 μm or more and 7.0 μm or less, 0.5 μm or more and 6.0 μm or less, 0.5 μm or more and 1.5 μm or less, 0.5 μm or more and 1.2 μm or less, 0.5 μm or more and 1.0 μm or less, 1.0 μm or more and 10.0 μm or less, 1.0 μm or more and 8.0 μm or less, 1.0 μm or more and 7.0 μm or less, 1.0 μm or more and 6.0 μm or less, 1.0 μm or more and 1.5 μm or less, 1.0 μm or more and 1.2 μm or less, or 1.2 μm or more and 10.0 μm or less. Alternatively, it may be 1.2 μm or more and 8.0 μm or less, 1.2 μm or more and 7.0 μm or less, 1.2 μm or more and 6.0 μm or less, 1.2 μm or more and 1.5 μm or less, 1.5 μm or more and 10.0 μm or less, 1.5 μm or more and 8.0 μm or less, 1.5 μm or more and 7.0 μm or less, 1.5 μm or more and 6.0 μm or less, 6.0 μm or more and 10.0 μm or less, 6.0 μm or more and 8.0 μm or less, 6.0 μm or more and 7.0 μm or less, 7.0 μm or more and 10.0 μm or less, 7.0 μm or more and 8.0 μm or less, or 8.0 μm or more and 10.0 μm or less.
 レーザ遮光層40の第3開口48は、第1面41及び第2面42の間で膨大してもよい。言い換えると、第3開口48の壁面は、レーザ遮光層40の面方向に窪む凹部を有してもよい。このような第3開口48は、後述するように、レーザ遮光層40をエッチングする際のサイドエッチングに起因して形成され得る。 The third opening 48 of the laser shielding layer 40 may expand between the first surface 41 and the second surface 42. In other words, the wall surface of the third opening 48 may have a recess that is recessed in the surface direction of the laser shielding layer 40. Such a third opening 48 may be formed due to side etching when etching the laser shielding layer 40, as described below.
 支持フレーム50は、レーザ遮光層40の第1面41に設けられている。支持フレーム50の第5面51は、レーザ遮光層40の第1面41に対向している。支持フレーム50の第6面52は、マスク20の蒸着源6に対向する面の一部を形成する。この支持フレーム50は、樹脂層30及びレーザ遮光層40を支持する。 The support frame 50 is provided on the first surface 41 of the laser shielding layer 40. The fifth surface 51 of the support frame 50 faces the first surface 41 of the laser shielding layer 40. The sixth surface 52 of the support frame 50 forms part of the surface of the mask 20 facing the deposition source 6. This support frame 50 supports the resin layer 30 and the laser shielding layer 40.
 図示された例では、支持フレーム50は、樹脂層30が撓まないように、樹脂層30を、その面方向に引っ張った状態で支持する。支持フレーム50は、樹脂層30の樹脂周囲部37の第3面31の少なくとも一部を覆っている。図示された例では、支持フレーム50は、樹脂層30の樹脂周囲部37の第3面31の全てを覆っている。また、支持フレーム50は、その平面視において、樹脂層30の樹脂マスク部36に重なる少なくとも1つの第2開口54を有する。第2開口54は、支持フレーム50を貫通している。言い換えると、第2開口54は、第6面52から第5面51に至る。図示された例では、支持フレーム50は、平面視において、樹脂層30の複数の樹脂マスク部36に重なる複数の第2開口54を有する。支持フレーム50から樹脂層30に向かう方向に見て、支持フレーム50は、複数の樹脂マスク部36をそれぞれ囲んでいる。また、第2開口54は、平面視においてレーザ遮光層40の第3開口48と重なっている。平面視において支持フレーム50の第2開口54及びレーザ遮光層40の第3開口48が樹脂マスク部36に重なっていることにより、マスク20を支持フレーム50から樹脂層30に向かう方向に見て、樹脂マスク部36の第3面31が第2開口54及び第3開口48内に露出している。 In the illustrated example, the support frame 50 supports the resin layer 30 in a state of being pulled in the direction of its surface so that the resin layer 30 does not bend. The support frame 50 covers at least a portion of the third surface 31 of the resin peripheral portion 37 of the resin layer 30. In the illustrated example, the support frame 50 covers the entire third surface 31 of the resin peripheral portion 37 of the resin layer 30. The support frame 50 also has at least one second opening 54 that overlaps the resin mask portion 36 of the resin layer 30 in a planar view. The second opening 54 penetrates the support frame 50. In other words, the second opening 54 extends from the sixth surface 52 to the fifth surface 51. In the illustrated example, the support frame 50 has a plurality of second openings 54 that overlap the plurality of resin mask portions 36 of the resin layer 30 in a planar view. When viewed in a direction from the support frame 50 toward the resin layer 30, the support frame 50 surrounds each of the plurality of resin mask portions 36. In addition, the second opening 54 overlaps with the third opening 48 of the laser shielding layer 40 in a plan view. Since the second opening 54 of the support frame 50 and the third opening 48 of the laser shielding layer 40 overlap with the resin mask portion 36 in a plan view, the third surface 31 of the resin mask portion 36 is exposed in the second opening 54 and the third opening 48 when the mask 20 is viewed in a direction from the support frame 50 toward the resin layer 30.
 支持フレーム50は、複数の層を含んでいてもよい。図5に示す例では、支持フレーム50は、第6面52を形成する第1層55と、第1層55とレーザ遮光層40との間に位置する第2層56とを含んでいる。図示された例では、第2層56は、支持フレーム50の第5面51を形成する。言い換えると、第2層56とレーザ遮光層40とは隣接している。また、図示された例では、第2層56は、第1層55上に形成されている。言い換えると、第1層55と第2層56とは隣接している。支持フレーム50が第1層55及び第2層56を含む場合、第1層55及び第2層56は、それぞれ、第2開口54に対応する第1層開口54a及び第2層開口54bを含む。この場合、第1層開口54aと第2層開口54bとは、互いに接続している。このような第1層開口54aと第2層開口54bによって、支持フレーム50を貫通する第2開口54が形成される。 The support frame 50 may include multiple layers. In the example shown in FIG. 5, the support frame 50 includes a first layer 55 forming the sixth surface 52 and a second layer 56 located between the first layer 55 and the laser shielding layer 40. In the illustrated example, the second layer 56 forms the fifth surface 51 of the support frame 50. In other words, the second layer 56 and the laser shielding layer 40 are adjacent to each other. Also, in the illustrated example, the second layer 56 is formed on the first layer 55. In other words, the first layer 55 and the second layer 56 are adjacent to each other. When the support frame 50 includes the first layer 55 and the second layer 56, the first layer 55 and the second layer 56 include a first layer opening 54a and a second layer opening 54b corresponding to the second opening 54, respectively. In this case, the first layer opening 54a and the second layer opening 54b are connected to each other. The first layer opening 54a and the second layer opening 54b form a second opening 54 that penetrates the support frame 50.
 支持フレーム50の材料について特に限定はない。支持フレーム50は、例えば、無機物を含む材料で形成される。支持フレーム50の材料として、剛性が大きい金属材料、例えば、SUS、インバー材、セラミック材料などを用いてもよい。金属製の支持フレーム50は、変形等の影響が小さいという点で好ましい。 There are no particular limitations on the material of the support frame 50. The support frame 50 is formed, for example, from a material containing an inorganic substance. Metal materials with high rigidity, such as SUS, Invar material, and ceramic materials, may also be used as the material of the support frame 50. A metal support frame 50 is preferable in that it is less susceptible to deformation, etc.
 支持フレーム50が第1層55及び第2層56を含む場合、第1層55は、非金属の無機物を含んでいてもよい。また、第2層56は、金属材料を含んでいてもよい。後述するように、第1層開口54aがエッチャントで第1層55をエッチングすることにより形成される場合、第2層56は、当該エッチャントに対する耐性を有する材料で形成されてよい。この場合、第2層56は、第1層55のエッチングをストップさせるストッパ層として機能してもよい。第2層56は、アルミニウム、アルミニウム合金、チタン又はチタン合金を含んでいてもよい。 When the support frame 50 includes a first layer 55 and a second layer 56, the first layer 55 may include a non-metallic inorganic material. The second layer 56 may include a metallic material. As described below, when the first layer opening 54a is formed by etching the first layer 55 with an etchant, the second layer 56 may be formed of a material that is resistant to the etchant. In this case, the second layer 56 may function as a stopper layer that stops the etching of the first layer 55. The second layer 56 may include aluminum, an aluminum alloy, titanium, or a titanium alloy.
 支持フレーム50の厚みT50についても特に限定はない。好ましくは、支持フレーム50の厚みT50は、剛性等の点から0.3mm以上70.0mm以下程度である。 There are no particular limitations on the thickness T50 of the support frame 50. Preferably, the thickness T50 of the support frame 50 is approximately 0.3 mm or more and 70.0 mm or less in terms of rigidity, etc.
 図5に示すように、支持フレーム50が第1層55及び第2層56を含む場合、第1層55の厚みT55は、例えば、20μm以上でもよく、100μm以上でもよく、500μm以上でもよく、1000μm以上でもよい。厚みT55は、例えば、2000μm以下でもよく、3000μm以下でもよく、4000μm以下でもよく、5000μm以下でもよい。厚みT55の範囲は、20μm、100μm、500μm及び1000μmからなる第1グループ、及び/又は、2000μm、3000μm、4000μm及び5000μmからなる第2グループによって定められてもよい。厚みT55の範囲は、上述の第1グループに含まれる値のうちの任意の1つと、上述の第2グループに含まれる値のうちの任意の1つとの組み合わせによって定められてもよい。厚みT55の範囲は、上述の第1グループに含まれる値のうちの任意の2つの組み合わせによって定められてもよい。厚みT55の範囲は、上述の第2グループに含まれる値のうちの任意の2つの組み合わせによって定められてもよい。厚みT55は、例えば、20μm以上5000μm以下でもよく、20μm以上4000μm以下でもよく、20μm以上3000μm以下でもよく、20μm以上2000μm以下でもよく、20μm以上1000μm以下でもよく、20μm以上500μm以下でもよく、20μm以上100μm以下でもよく、100μm以上5000μm以下でもよく、100μm以上4000μm以下でもよく、100μm以上3000μm以下でもよく、100μm以上2000μm以下でもよく、100μm以上1000μm以下でもよく、100μm以上500μm以下でもよく、500μm以上5000μm以下でもよく、500μm以上4000μm以下でもよく、500μm以上3000μm以下でもよく、500μm以上2000μm以下でもよく、500μm以上1000μm以下でもよく、1000μm以上5000μm以下でもよく、1000μm以上4000μm以下でもよく、1000μm以上3000μm以下でもよく、1000μm以上2000μm以下でもよく、2000μm以上5000μm以下でもよく、2000μm以上4000μm以下でもよく、2000μm以上3000μm以下でもよく、3000μm以上5000μm以下でもよく、3000μm以上4000μm以下でもよく、4000μm以上5000μm以下でもよい。 5, when the support frame 50 includes a first layer 55 and a second layer 56, the thickness T55 of the first layer 55 may be, for example, 20 μm or more, 100 μm or more, 500 μm or more, or 1000 μm or more. The thickness T55 may be, for example, 2000 μm or less, 3000 μm or less, 4000 μm or less, or 5000 μm or less. The range of the thickness T55 may be determined by a first group consisting of 20 μm, 100 μm, 500 μm, and 1000 μm, and/or a second group consisting of 2000 μm, 3000 μm, 4000 μm, and 5000 μm. The range of the thickness T55 may be determined by a combination of any one of the values included in the first group described above and any one of the values included in the second group described above. The range of thickness T55 may be determined by any combination of two values included in the first group described above. The range of thickness T55 may be determined by any combination of two values included in the second group described above. The thickness T55 may be, for example, 20 μm or more and 5000 μm or less, 20 μm or more and 4000 μm or less, 20 μm or more and 3000 μm or less, 20 μm or more and 2000 μm or less, 20 μm or more and 1000 μm or less, 20 μm or more and 500 μm or less, 20 μm or more and 100 μm or less, 100 μm or more and 5000 μm or less, 100 μm or more and 4000 μm or less, 100 μm or more and 3000 μm or less, 100 μm or more and 2000 μm or less, 100 μm or more and 1000 μm or less, 100 μm or more and 500 μm or less, 500 μm or more and 5000 μm or less, or 500 μm or more and 5000 μm or less. It may be 4000 μm or less, 500 μm or more 3000 μm or less, 500 μm or more 2000 μm or less, 500 μm or more 1000 μm or less, 1000 μm or more 5000 μm or less, 1000 μm or more 4000 μm or less, 1000 μm or more 3000 μm or less, 1000 μm or more 2000 μm or less, 2000 μm or more 5000 μm or less, 2000 μm or more 4000 μm or less, 2000 μm or more 3000 μm or less, 3000 μm or more 5000 μm or less, 3000 μm or more 4000 μm or less, or 4000 μm or more 5000 μm or less.
 また、この場合、第2層56の厚みT56は、第1層55をエッチングする工程においてレーザ遮光層40及び樹脂層30がエッチングされることを抑制できる限り、特には限定されない。例えば、厚みT56は、レーザ遮光層40及び樹脂層30の厚みよりも小さくてもよく、レーザ遮光層40及び樹脂層30の厚み以上でもよい。厚みT56は、例えば、0.05μm以上でもよく、0.10μm以上でもよく、0.15μm以上でもよく、0.20μm以上でもよい。厚みT56は、例えば、0.5μm以下でもよく、1.0μm以下でもよく、2.0μm以下でもよく、5.0μm以下でもよい。厚みT56の範囲は、0.05μm、0.10μm、0.15μm及び0.20μmからなる第1グループ、及び/又は、0.5μm、1.0μm、2.0μm及び5.0μmからなる第2グループによって定められてもよい。厚みT56の範囲は、上述の第1グループに含まれる値のうちの任意の1つと、上述の第2グループに含まれる値のうちの任意の1つとの組み合わせによって定められてもよい。厚みT56の範囲は、上述の第1グループに含まれる値のうちの任意の2つの組み合わせによって定められてもよい。厚みT56の範囲は、上述の第2グループに含まれる値のうちの任意の2つの組み合わせによって定められてもよい。厚みT56は、例えば、0.05μm以上5.0μm以下でもよく、0.05μm以上2.0μm以下でもよく、0.05μm以上1.0μm以下でもよく、0.05μm以上0.5μm以下でもよく、0.05μm以上0.20μm以下でもよく、0.05μm以上0.15μm以下でもよく、0.05μm以上0.10μm以下でもよく、0.10μm以上5.0μm以下でもよく、0.10μm以上2.0μm以下でもよく、0.10μm以上1.0μm以下でもよく、0.10μm以上0.5μm以下でもよく、0.10μm以上0.20μm以下でもよく、0.10μm以上0.15μm以下でもよく、0.15μm以上5.0μm以下でもよく、0.15μm以上2.0μm以下でもよく、0.15μm以上1.0μm以下でもよく、0.15μm以上0.5μm以下でもよく、0.15μm以上0.20μm以下でもよく、0.20μm以上5.0μm以下でもよく、0.20μm以上2.0μm以下でもよく、0.20μm以上1.0μm以下でもよく、0.20μm以上0.5μm以下でもよく、0.5μm以上5.0μm以下でもよく、0.5μm以上2.0μm以下でもよく、0.5μm以上1.0μm以下でもよく、1.0μm以上5.0μm以下でもよく、1.0μm以上2.0μm以下でもよく、2.0μm以上5.0μm以下でもよい。第1層55用のエッチャントに対する第2層56の耐性が高いほど、厚みT56を小さくできる。 In this case, the thickness T56 of the second layer 56 is not particularly limited as long as it can prevent the laser shielding layer 40 and the resin layer 30 from being etched in the process of etching the first layer 55. For example, the thickness T56 may be smaller than the thickness of the laser shielding layer 40 and the resin layer 30, or may be greater than or equal to the thickness of the laser shielding layer 40 and the resin layer 30. The thickness T56 may be, for example, 0.05 μm or more, 0.10 μm or more, 0.15 μm or more, or 0.20 μm or more. The thickness T56 may be, for example, 0.5 μm or less, 1.0 μm or less, 2.0 μm or less, or 5.0 μm or less. The range of the thickness T56 may be determined by a first group consisting of 0.05 μm, 0.10 μm, 0.15 μm, and 0.20 μm, and/or a second group consisting of 0.5 μm, 1.0 μm, 2.0 μm, and 5.0 μm. The range of the thickness T56 may be determined by a combination of any one of the values included in the above-mentioned first group and any one of the values included in the above-mentioned second group. The range of the thickness T56 may be determined by a combination of any two of the values included in the above-mentioned first group. The range of the thickness T56 may be determined by a combination of any two of the values included in the above-mentioned second group. The thickness T56 may be, for example, 0.05 μm or more and 5.0 μm or less, 0.05 μm or more and 2.0 μm or less, 0.05 μm or more and 1.0 μm or less, 0.05 μm or more and 0.5 μm or less, 0.05 μm or more and 0.20 μm or less, 0.05 μm or more and 0.15 μm or less, 0.05 μm or more and 0.10 μm or less, 0.10 μm or more and 5.0 μm or less, 0.10 μm or more and 2.0 μm or less, 0.10 μm or more and 1.0 μm or less, 0.10 μm or more and 0.5 μm or less, 0.10 μm or more and 0.20 μm or less, 0.10 μm or more and 0.15 μm or less, or 0.15 μm or more and 5 0 μm or less, 0.15 μm or more and 2.0 μm or less, 0.15 μm or more and 1.0 μm or less, 0.15 μm or more and 0.5 μm or less, 0.15 μm or more and 0.20 μm or less, 0.20 μm or more and 5.0 μm or less, 0.20 μm or more and 2.0 μm or less, 0.20 μm or more and 1.0 μm or less, 0.20 μm or more and 0.5 μm or less, 0.5 μm or more and 5.0 μm or less, 0.5 μm or more and 2.0 μm or less, 0.5 μm or more and 1.0 μm or less, 1.0 μm or more and 5.0 μm or less, 1.0 μm or more and 2.0 μm or less, or 2.0 μm or more and 5.0 μm or less. The higher the resistance of the second layer 56 to the etchant used for the first layer 55, the smaller the thickness T56 can be.
 支持フレーム50の各第2開口54は、第5面51及び第6面52の間で膨大してもよい。言い換えると、第2開口54の壁面は、マスク20の面方向に窪む凹部を有してもよい。このような第2開口54は、後述するように、支持フレーム50を形成する材料で形成された支持層57をエッチングする際のサイドエッチングに起因して形成され得る。支持フレーム50が第1層55及び第2層56を含む場合、第1層開口54aは、第6面52と第2層56に対向する面との間で膨大してもよい。また、第2層開口54bは、第1層55に対向する面とレーザ遮光層40に対向する面との間で膨大してもよい。 Each second opening 54 of the support frame 50 may be expanded between the fifth surface 51 and the sixth surface 52. In other words, the wall surface of the second opening 54 may have a recess recessed in the surface direction of the mask 20. As described below, such a second opening 54 may be formed due to side etching when etching the support layer 57 formed of the material forming the support frame 50. When the support frame 50 includes a first layer 55 and a second layer 56, the first layer opening 54a may be expanded between the sixth surface 52 and the surface facing the second layer 56. Also, the second layer opening 54b may be expanded between the surface facing the first layer 55 and the surface facing the laser shielding layer 40.
 なお、マスク20は、支持フレーム50を含んでいなくてもよい。 The mask 20 does not have to include the support frame 50.
 各層の厚み、各構成要素の寸法、間隔などは、走査型電子顕微鏡を用いてマスク20の断面の画像を観察することによって測定できる。 The thickness of each layer, the dimensions of each component, the spacing, etc. can be measured by observing an image of the cross section of the mask 20 using a scanning electron microscope.
 次に、マスク20を製造する方法について説明する。まず、支持層準備工程を実施する。具体的には、図7に示すように、レーザ遮光層40及び樹脂層30を支持する支持層57を準備する。支持層57は、支持フレーム50を形成する材料で形成される。図示された例では、まず、第1層55を構成する基材を準備する。続いて、第1層55の一方の面上に第2層56を形成する。第2層56は、第1層55の当該一方の面の全面に形成されてよい。第2層56は、第1層55用のエッチャントに対する耐性を有する材料により形成される。第2層56は、例えば、スパッタリング法などの真空成膜法によって形成されてもよい。以上により、支持層57が形成される。 Next, a method for manufacturing the mask 20 will be described. First, a support layer preparation step is performed. Specifically, as shown in FIG. 7, a support layer 57 that supports the laser shielding layer 40 and the resin layer 30 is prepared. The support layer 57 is formed of a material that forms the support frame 50. In the illustrated example, a base material that constitutes the first layer 55 is first prepared. Next, a second layer 56 is formed on one surface of the first layer 55. The second layer 56 may be formed on the entire surface of the one surface of the first layer 55. The second layer 56 is formed of a material that is resistant to the etchant for the first layer 55. The second layer 56 may be formed by a vacuum film formation method such as a sputtering method. In this manner, the support layer 57 is formed.
 続いて、積層体準備工程を実施する。具体的には、レーザ遮光層40及び樹脂層30を含む積層体25を準備する。図示された例では、まず、図8に示すように、支持層57の第5面51上にレーザ遮光層40を形成する。レーザ遮光層40は、第5面51の全面に形成されてよい。レーザ遮光層40は、例えば、スパッタリング法などの真空成膜法や、めっき法により形成されてよい。レーザ遮光層40は、支持層57に対向する第1面41と、第1面41の反対側の面である第2面42と、を有する。 Then, a laminate preparation process is performed. Specifically, a laminate 25 including a laser shielding layer 40 and a resin layer 30 is prepared. In the illustrated example, first, as shown in FIG. 8, a laser shielding layer 40 is formed on a fifth surface 51 of a support layer 57. The laser shielding layer 40 may be formed on the entire surface of the fifth surface 51. The laser shielding layer 40 may be formed by, for example, a vacuum film formation method such as a sputtering method or a plating method. The laser shielding layer 40 has a first surface 41 facing the support layer 57 and a second surface 42 that is the surface opposite to the first surface 41.
 続いて、図9に示すように、レーザ遮光層40の第2面42上に、第1レジスト層60を部分的に形成する。第1レジスト層60は、複数の第1レジスト開口61を有する。第1レジスト開口61は、樹脂層30の複数の第1開口34に対応して形成される。言い換えると、第1レジスト開口61の形状及びパターンは、第1開口34の形状及びパターンに対応している。さらに、各第1レジスト開口61の寸法は、対応する第1開口34の第3面における寸法に対応している。第1レジスト層60は、公知の方法により形成されてよい。具体的には、第1レジスト層60を形成するための材料である第1レジスト層材料を準備し、これをレーザ遮光層40の第2面42上に部分的に塗工する。続いて、第2面42上の第1レジスト層材料を露光し、この第1レジスト層材料を現像する。これにより、複数の第1レジスト開口61を有する第1レジスト層60が形成される。 Subsequently, as shown in FIG. 9, a first resist layer 60 is partially formed on the second surface 42 of the laser shielding layer 40. The first resist layer 60 has a plurality of first resist openings 61. The first resist openings 61 are formed corresponding to the plurality of first openings 34 of the resin layer 30. In other words, the shape and pattern of the first resist openings 61 correspond to the shape and pattern of the first openings 34. Furthermore, the dimensions of each first resist opening 61 correspond to the dimensions of the corresponding first opening 34 on the third surface. The first resist layer 60 may be formed by a known method. Specifically, a first resist layer material, which is a material for forming the first resist layer 60, is prepared and this is partially applied on the second surface 42 of the laser shielding layer 40. Next, the first resist layer material on the second surface 42 is exposed to light, and the first resist layer material is developed. As a result, the first resist layer 60 having a plurality of first resist openings 61 is formed.
 続いて、図10に示すように、第1レジスト層60の側からレーザ遮光層40をエッチングして、レーザ遮光層40を部分的に除去する。レーザ遮光層40のエッチングは、エッチングガスを用いたドライエッチングにより行ってもよいし、エッチング液を用いたウェットエッチングにより行ってもよい。エッチングガスおよびエッチング液は、上述のエッチャントの一例である。レーザ遮光層40を部分的に除去することにより、レーザ遮光層40に複数の透光穴44が形成される。各透光穴44は、第1面41から第2面42に至る。上述したように第1レジスト開口61が樹脂層30の複数の第1開口34に対応して形成されているため、複数の透光穴44は、複数の第1開口34に対応して形成される。言い換えると、透光穴44の形状及びパターンは、第1開口34の形状及びパターンに対応している。上述したように、第1開口34の形状及びパターンは、基板110上に形成される蒸着層の形状及びパターンに対応している。このため、透光穴44の形状及びパターンは、基板110上に形成される蒸着層の形状及びパターンに対応している。また、レーザ遮光層40の平面視における各透光穴44の寸法は、対応する第1開口34の第3面31における寸法に対応している。後で参照する図16Aから理解されるように、レーザ遮光層40の平面視における各透光穴44の寸法は、対応する第1開口34の第4面32における寸法よりも大きい。このため、レーザ遮光層40の平面視における各透光穴44の寸法は、対応する第1開口34に対応する蒸着層の寸法よりも大きい。 10, the laser shielding layer 40 is etched from the side of the first resist layer 60 to partially remove the laser shielding layer 40. The etching of the laser shielding layer 40 may be performed by dry etching using an etching gas, or by wet etching using an etching solution. The etching gas and the etching solution are examples of the above-mentioned etchants. By partially removing the laser shielding layer 40, a plurality of light-transmitting holes 44 are formed in the laser shielding layer 40. Each light-transmitting hole 44 extends from the first surface 41 to the second surface 42. As described above, the first resist opening 61 is formed corresponding to the plurality of first openings 34 of the resin layer 30, so that the plurality of light-transmitting holes 44 are formed corresponding to the plurality of first openings 34. In other words, the shape and pattern of the light-transmitting hole 44 correspond to the shape and pattern of the first opening 34. As described above, the shape and pattern of the first opening 34 correspond to the shape and pattern of the deposition layer formed on the substrate 110. Therefore, the shape and pattern of the light-transmitting holes 44 correspond to the shape and pattern of the deposition layer formed on the substrate 110. In addition, the size of each light-transmitting hole 44 in the plan view of the laser shielding layer 40 corresponds to the size of the corresponding first opening 34 on the third surface 31. As will be understood from FIG. 16A, which will be referred to later, the size of each light-transmitting hole 44 in the plan view of the laser shielding layer 40 is larger than the size of the corresponding first opening 34 on the fourth surface 32. Therefore, the size of each light-transmitting hole 44 in the plan view of the laser shielding layer 40 is larger than the size of the deposition layer corresponding to the corresponding first opening 34.
 図10に示すように、レーザ遮光層40は、樹脂マスク部36の第3面31を覆う遮蔽部46と、レーザ遮光層40の平面視において遮蔽部46を囲む周囲部47と、を含む。図示された例では、レーザ遮光層40は、複数の樹脂マスク部36に対応する複数の遮蔽部46を含む。各遮蔽部46は、複数の透光穴44を含む。各遮蔽部46の複数の透光穴44は、第3開口群45を形成する。第3開口群45は、上述した樹脂層30の第1開口群35に対応する。レーザ遮光層40に透光穴44を形成した後、レーザ遮光層40から第1レジスト層60を除去する。第1レジスト層60は、例えば、レジスト処理液を用いて除去できる。 10, the laser shielding layer 40 includes a shielding portion 46 that covers the third surface 31 of the resin mask portion 36, and a surrounding portion 47 that surrounds the shielding portion 46 in a plan view of the laser shielding layer 40. In the illustrated example, the laser shielding layer 40 includes a plurality of shielding portions 46 corresponding to the plurality of resin mask portions 36. Each shielding portion 46 includes a plurality of light-transmitting holes 44. The plurality of light-transmitting holes 44 of each shielding portion 46 form a third opening group 45. The third opening group 45 corresponds to the first opening group 35 of the resin layer 30 described above. After the light-transmitting holes 44 are formed in the laser shielding layer 40, the first resist layer 60 is removed from the laser shielding layer 40. The first resist layer 60 can be removed, for example, using a resist processing liquid.
 続いて、図11に示すように、レーザ遮光層40の第2面42上に樹脂層30を形成する。樹脂層30は、例えば、スピンコート法などのコーティング法によって形成されてもよい。樹脂層30は、レーザ遮光層40の第2面42を覆うように形成される。樹脂層30は、レーザ遮光層40の第2面42において、透光穴44を覆うように形成される。樹脂層30は、第2面42の全面に形成されてよい。樹脂層30の一部によって透光穴44が埋められてもよい。樹脂層30は、レーザ遮光層40の第2面に対向する第3面31と、第3面31の反対側の面である第4面32と、を含む。 Subsequently, as shown in FIG. 11, a resin layer 30 is formed on the second surface 42 of the laser shielding layer 40. The resin layer 30 may be formed by a coating method such as spin coating. The resin layer 30 is formed so as to cover the second surface 42 of the laser shielding layer 40. The resin layer 30 is formed so as to cover the light-transmitting holes 44 on the second surface 42 of the laser shielding layer 40. The resin layer 30 may be formed on the entire surface of the second surface 42. The light-transmitting holes 44 may be filled with a part of the resin layer 30. The resin layer 30 includes a third surface 31 facing the second surface of the laser shielding layer 40, and a fourth surface 32 which is the surface opposite to the third surface 31.
 樹脂層30の材料をレーザ遮光層40上にコーティングした後、樹脂層30を加熱する加熱工程を実施してもよい。これにより、樹脂層30を固化させることができる。例えば、ポリイミドの前駆体であるポリアミド酸をレーザ遮光層40上にコーティングした後、加熱工程を実施することにより、イミド化反応を生じさせることができる。これにより、ポリイミドを含む樹脂層30を形成できる。 After the material for the resin layer 30 is coated onto the laser shielding layer 40, a heating step may be carried out to heat the resin layer 30. This allows the resin layer 30 to be solidified. For example, polyamic acid, which is a precursor of polyimide, may be coated onto the laser shielding layer 40, and then a heating step may be carried out to cause an imidization reaction. This allows the resin layer 30 containing polyimide to be formed.
 以上により、複数の透光穴44を含むレーザ遮光層40とレーザ遮光層40の第2面42を覆う樹脂層30とを含む積層体25が、形成される。 As a result of the above, a laminate 25 is formed, which includes a laser shielding layer 40 including a plurality of light-transmitting holes 44 and a resin layer 30 covering the second surface 42 of the laser shielding layer 40.
 続いて、保護層形成工程を実施する。具体的には、図12に示すように、積層体25に樹脂層30を保護するための保護層63を形成する。保護層63は、樹脂層30の第4面32に形成される。保護層63を形成する材料は、樹脂層30を保護することができる限りにおいて、特に限定されない。保護層63は、レーザ遮光層40を形成する材料と同じ材料で形成されてよい。保護層63は、例えば、スパッタリング法などの真空成膜法により形成されてよい。保護層63の厚みは、樹脂層30を保護することができる限りにおいて、特に限定されない。保護層63の厚みは、例えば、0.1μm以上であってよく、0.5μm以上であってもよく、1.0μm以上であってもよい。 Subsequently, a protective layer forming process is carried out. Specifically, as shown in FIG. 12, a protective layer 63 for protecting the resin layer 30 is formed on the laminate 25. The protective layer 63 is formed on the fourth surface 32 of the resin layer 30. The material for forming the protective layer 63 is not particularly limited as long as it can protect the resin layer 30. The protective layer 63 may be formed of the same material as the material for forming the laser shielding layer 40. The protective layer 63 may be formed by a vacuum film forming method such as a sputtering method. The thickness of the protective layer 63 is not particularly limited as long as it can protect the resin layer 30. The thickness of the protective layer 63 may be, for example, 0.1 μm or more, 0.5 μm or more, or 1.0 μm or more.
 続いて、支持フレーム形成工程を実施する。具体的には、支持層57から支持フレーム50を形成する。図示された例では、図13に示すように、支持層57の第6面52に、第2レジスト層65を部分的に形成する。第2レジスト層65は、第2レジスト開口66を有する。第2レジスト開口66は、支持フレーム50の第2開口54に対応して形成される。図示された例では、支持フレーム50に複数の第2開口54が形成されるよう、第2レジスト層65は、複数の第2レジスト開口66を有する。第2レジスト層65は、公知の方法により形成されてよい。具体的には、第2レジスト層65を形成するための材料である第2レジスト層材料を準備し、これを支持層57の第6面52上に部分的に塗工する。続いて、第6面52上の第2レジスト層材料を露光し、この第2レジスト層材料を現像する。これにより、支持層57の第6面52上に、第2レジスト開口66を有する第2レジスト層65が形成される。 Subsequently, a support frame forming process is performed. Specifically, a support frame 50 is formed from the support layer 57. In the illustrated example, as shown in FIG. 13, a second resist layer 65 is partially formed on the sixth surface 52 of the support layer 57. The second resist layer 65 has second resist openings 66. The second resist openings 66 are formed corresponding to the second openings 54 of the support frame 50. In the illustrated example, the second resist layer 65 has a plurality of second resist openings 66 so that a plurality of second openings 54 are formed in the support frame 50. The second resist layer 65 may be formed by a known method. Specifically, a second resist layer material, which is a material for forming the second resist layer 65, is prepared and is partially applied on the sixth surface 52 of the support layer 57. Next, the second resist layer material on the sixth surface 52 is exposed to light, and the second resist layer material is developed. As a result, the second resist layer 65 having the second resist openings 66 is formed on the sixth surface 52 of the support layer 57.
 続いて、図14に示すように、第2レジスト層65の側から支持層57の第1層55をエッチングし、第1層55を部分的に除去する。これにより、図14に示すように、第1層55に、第1層開口54aが形成される。第1層55のエッチングは、エッチングガスを用いたドライエッチングであってもよい。エッチングガスは、上述のエッチャントの一例である。第2層56がエッチャントに対する耐性を有するので、図14に示すように、エッチングがレーザ遮光層40及び樹脂層30まで進行することを抑制できる。 Subsequently, as shown in FIG. 14, the first layer 55 of the support layer 57 is etched from the side of the second resist layer 65 to partially remove the first layer 55. As a result, a first layer opening 54a is formed in the first layer 55 as shown in FIG. 14. The etching of the first layer 55 may be dry etching using an etching gas. The etching gas is an example of the above-mentioned etchant. Since the second layer 56 is resistant to the etchant, it is possible to prevent the etching from progressing to the laser shielding layer 40 and the resin layer 30 as shown in FIG. 14.
 続いて、図15に示すように、第2層56をエッチングして、第2層56を部分的に除去する。これにより、第2層56に第2層開口54bが形成される。第2層56のエッチングは、第1層開口54aに第2層56用のエッチャントを供給することにより行ってよい。これにより、第1層開口54aに接続した第2層開口54bが形成される。第2層56のエッチングは、エッチングガスを用いたドライエッチングにより行ってもよいし、エッチング液を用いたウェットエッチングにより行ってもよい。 Then, as shown in FIG. 15, the second layer 56 is etched to partially remove the second layer 56. As a result, a second layer opening 54b is formed in the second layer 56. The etching of the second layer 56 may be performed by supplying an etchant for the second layer 56 to the first layer opening 54a. As a result, a second layer opening 54b connected to the first layer opening 54a is formed. The etching of the second layer 56 may be performed by dry etching using an etching gas, or may be performed by wet etching using an etching solution.
 第1層開口54aが第2層開口54bに接続されることにより、支持層57を貫通する第2開口54が形成される。この結果、レーザ遮光層40の遮蔽部46の第1面41が、第2開口54内に露出する。第2開口54は、支持フレーム50の平面視において、遮蔽部46の複数の透光穴44に重なる。一方で、周囲部47は、支持層57に覆われたままである。第1層開口54aを形成した後、或いは第2層開口54bを形成した後、第2レジスト層65を除去する。第2レジスト層65は、例えば、レジスト処理液を用いて除去できる。以上により、支持フレーム50が形成される。 The first layer opening 54a is connected to the second layer opening 54b, thereby forming a second opening 54 penetrating the support layer 57. As a result, the first surface 41 of the shielding portion 46 of the laser shielding layer 40 is exposed in the second opening 54. The second opening 54 overlaps with the multiple light-transmitting holes 44 of the shielding portion 46 in a plan view of the support frame 50. Meanwhile, the peripheral portion 47 remains covered by the support layer 57. After forming the first layer opening 54a or the second layer opening 54b, the second resist layer 65 is removed. The second resist layer 65 can be removed, for example, using a resist processing liquid. In this manner, the support frame 50 is formed.
 続いて、レーザ加工工程を実施する。具体的には、図16Aに示すように、レーザ遮光層40の遮蔽部46の第1面41に向けて、積層体25にレーザ光Lを入射させる。レーザ光Lは、支持フレーム50の第2開口54及び遮蔽部46の透光穴44を通じて、樹脂層30に入射する。これにより、樹脂層30に、複数の透光穴44に対応する複数の第1開口34が形成され、レーザ遮光層40の第3開口群45と重なる第1開口群35が形成される。レーザ光Lが樹脂層30の第3面31に入射することで、各第1開口34は、第3面31から第4面32に向かってテーパ状に形成される。 Then, a laser processing step is performed. Specifically, as shown in FIG. 16A, laser light L is incident on the laminate 25 toward the first surface 41 of the shielding portion 46 of the laser shielding layer 40. The laser light L is incident on the resin layer 30 through the second opening 54 of the support frame 50 and the light-transmitting hole 44 of the shielding portion 46. As a result, a plurality of first openings 34 corresponding to the plurality of light-transmitting holes 44 are formed in the resin layer 30, and a first opening group 35 overlapping with the third opening group 45 of the laser shielding layer 40 is formed. As the laser light L is incident on the third surface 31 of the resin layer 30, each first opening 34 is formed in a tapered shape from the third surface 31 toward the fourth surface 32.
 レーザ光Lを発光するレーザ装置としては、波長248nmのレーザ光を発光するKrFのエキシマレーザや、波長355nmのレーザ光を発光するYAGレーザなどを使用できる。 As a laser device that emits the laser light L, a KrF excimer laser that emits laser light with a wavelength of 248 nm, or a YAG laser that emits laser light with a wavelength of 355 nm can be used.
 レーザ加工工程は、例えば、次のように実施される。まず、支持フレーム50が形成された積層体25をステージに載せる。このとき、支持フレーム50がステージとは反対の側を向くように、積層体25をステージに載せる。次に、レーザ遮光層40の遮蔽部46の第1面41に向けて、レーザ装置から積層体25にレーザ光Lを照射する。これにより、樹脂層30に、遮蔽部46に形成された複数の透光穴44に重なる複数の第1開口34が、形成される。 The laser processing process is carried out, for example, as follows. First, the laminate 25 on which the support frame 50 is formed is placed on a stage. At this time, the laminate 25 is placed on the stage so that the support frame 50 faces away from the stage. Next, laser light L is irradiated from the laser device onto the laminate 25, toward the first surface 41 of the shielding portion 46 of the laser shielding layer 40. This forms a plurality of first openings 34 in the resin layer 30 that overlap with a plurality of light-transmitting holes 44 formed in the shielding portion 46.
 レーザ光Lのビーム形状は、任意の形状であってよい。図16Bに示す例では、レーザ光Lのビーム形状は矩形である。これに対応して、図16Bに示す例では、レーザ光Lのレーザ遮光層40上での照射領域LAの形状も、矩形である。図16Cに示す例では、レーザ光Lのビーム形状はライン状である。これに対応して、図16Cに示す例では、レーザ光Lのレーザ遮光層40上での照射領域LAの形状も、ライン状である。図16B及び図16Cに示す例では、レーザ光Lの照射領域LAの大きさは、遮蔽部46に入射するレーザ光Lのエネルギー密度が、樹脂層30に第1開口34を効率よく形成するのに十分な大きさになるように、決定されている。遮蔽部46に入射するレーザ光Lのエネルギー密度が低すぎると、樹脂層30に第1開口34を効率よく形成することができない。ここで、遮蔽部46に入射するレーザ光Lのエネルギー密度は、レーザ光Lのレーザ遮光層40上での照射領域LAが広がるほど、低下する。このため、図示された例では、レーザ光Lの照射領域LAの大きさは、当該照射領域LAがレーザ遮光層40の一部の領域のみを含むことができる大きさである。このようにレーザ光Lの照射領域LAの大きさを決定しても、レーザ遮光層40におけるレーザ光Lの入射位置を変更することで、遮蔽部46の全ての領域にレーザ光を照射することができる。ただし、レーザ遮光層40におけるレーザ光Lの照射領域LAの大きさは、当該照射領域LAが少なくとも1つの透光穴44を含むことができる大きさであることが好ましい。また、レーザ遮光層40におけるレーザ光Lの照射領域LAの大きさは、当該照射領域LAが隣り合う複数の透光穴44を含むことができる大きさであることがさらに好ましい。この場合、樹脂層30に第1開口34を効率良く形成することができる。 The beam shape of the laser light L may be any shape. In the example shown in FIG. 16B, the beam shape of the laser light L is rectangular. Correspondingly, in the example shown in FIG. 16B, the shape of the irradiation area LA of the laser light L on the laser shielding layer 40 is also rectangular. In the example shown in FIG. 16C, the beam shape of the laser light L is linear. Correspondingly, in the example shown in FIG. 16C, the shape of the irradiation area LA of the laser light L on the laser shielding layer 40 is also linear. In the examples shown in FIG. 16B and FIG. 16C, the size of the irradiation area LA of the laser light L is determined so that the energy density of the laser light L incident on the shielding portion 46 is large enough to efficiently form the first opening 34 in the resin layer 30. If the energy density of the laser light L incident on the shielding portion 46 is too low, the first opening 34 cannot be efficiently formed in the resin layer 30. Here, the energy density of the laser light L incident on the shielding portion 46 decreases as the irradiation area LA of the laser light L on the laser shielding layer 40 expands. For this reason, in the illustrated example, the size of the irradiation area LA of the laser light L is a size that can include only a part of the laser shielding layer 40. Even if the size of the irradiation area LA of the laser light L is determined in this manner, the entire area of the shielding portion 46 can be irradiated with the laser light by changing the incident position of the laser light L on the laser shielding layer 40. However, it is preferable that the size of the irradiation area LA of the laser light L on the laser shielding layer 40 is a size that can include at least one light-transmitting hole 44. It is further preferable that the size of the irradiation area LA of the laser light L on the laser shielding layer 40 is a size that can include a plurality of adjacent light-transmitting holes 44. In this case, the first opening 34 can be efficiently formed in the resin layer 30.
 なお、レーザ光Lの入射位置は、レーザ装置の照射ヘッド又はステージを移動させることにより、変更することができる。 The incident position of the laser light L can be changed by moving the irradiation head or stage of the laser device.
 レーザ光Lの照射は、間欠的に行われてもよいし、連続的に行われてもよい。また、レーザ光Lの入射位置の変更も、間欠的に行われてもよいし、連続的に行われてもよい。 The irradiation of the laser light L may be performed intermittently or continuously. In addition, the change in the incident position of the laser light L may also be performed intermittently or continuously.
 図16Bに示す例では、レーザ光Lの照射及び入射位置の変更を、間欠的に行う。より具体的には、図16Bに示す例では、レーザ光Lのレーザ遮光層40上での照射領域LAの大きさは、隣り合う2つの透光穴44を含むことができる大きさである。そして、次のようにしてレーザ光Lの照射及び入射位置の変更を行う。まず、レーザ遮光層40上におけるレーザ光Lの入射位置を、レーザ光Lの照射領域LAが2つの透光穴44を含むように決定する。次に、この2つの透光穴44にレーザ光Lを所定時間だけ照射する。次に、レーザ光Lの照射を止める。次に、レーザ遮光層40上におけるレーザ光Lの入射位置を変更する。このとき、レーザ光Lの入射位置を、レーザ光Lの照射領域LAが他の2つの透光穴44を含むように決定する。レーザ光Lの入射位置は、例えば、図16Bに示す矢印に沿って変更される。次に、この他の2つの透光穴44にレーザ光Lを所定時間だけ照射する。次に、レーザ光Lの照射を止める。このように、レーザ光Lの入射位置の決定又は変更と、レーザ光Lの照射を繰り返すことで、遮蔽部46の全ての領域にレーザ光を照射することができる。 In the example shown in FIG. 16B, the irradiation of the laser light L and the change of the incident position are performed intermittently. More specifically, in the example shown in FIG. 16B, the size of the irradiation area LA of the laser light L on the laser shielding layer 40 is large enough to include two adjacent light-transmitting holes 44. Then, the irradiation of the laser light L and the change of the incident position are performed as follows. First, the incident position of the laser light L on the laser shielding layer 40 is determined so that the irradiation area LA of the laser light L includes two light-transmitting holes 44. Next, the laser light L is irradiated to these two light-transmitting holes 44 for a predetermined time. Next, the irradiation of the laser light L is stopped. Next, the incident position of the laser light L on the laser shielding layer 40 is changed. At this time, the incident position of the laser light L is determined so that the irradiation area LA of the laser light L includes the other two light-transmitting holes 44. The incident position of the laser light L is changed, for example, along the arrow shown in FIG. 16B. Next, the laser light L is irradiated to these other two light-transmitting holes 44 for a predetermined time. Next, the irradiation of the laser light L is stopped. In this way, by repeating the determination or change of the incident position of the laser light L and the irradiation of the laser light L, the laser light can be irradiated to all areas of the shielding portion 46.
 図16Cに示す例では、レーザ光Lの照射及び入射位置の変更を、連続的に行う。より具体的には、図16Cに示す例では、レーザ光Lのレーザ遮光層40上での照射領域LAはライン状であり、その長さは、当該照射領域LAが複数の遮蔽部46に亘って延びることができる長さである。そして、次のようにしてレーザ光Lの照射及び入射位置の変更を行う。まず、レーザ遮光層40上におけるレーザ光Lの入射位置を、レーザ光Lの照射領域LAがレーザ遮光層40の縁部の近傍において複数の遮蔽部46が並ぶ方向に沿って延びるように、且つ、複数の遮蔽部46に亘って延びるように決定する。次に、レーザ光Lの照射を開始し、レーザ遮光層40にレーザ光Lを照射し続けたまま、レーザ光Lの入射位置を一定の速度で移動させる。入射位置の移動は、図16Cに矢印で示すように、レーザ光Lの照射領域LAが延びる方向と垂直な方向に沿って行う。このように、レーザ光Lの入射位置を徐々に移動させながらレーザ光Lをレーザ遮光層40に照射し続けることで、遮蔽部46の全ての領域にレーザ光を照射することができる。 In the example shown in FIG. 16C, the irradiation of the laser light L and the change of the incident position are performed continuously. More specifically, in the example shown in FIG. 16C, the irradiation area LA of the laser light L on the laser shielding layer 40 is linear, and its length is a length that allows the irradiation area LA to extend across multiple shielding parts 46. Then, the irradiation of the laser light L and the change of the incident position are performed as follows. First, the incident position of the laser light L on the laser shielding layer 40 is determined so that the irradiation area LA of the laser light L extends along the direction in which the multiple shielding parts 46 are arranged near the edge of the laser shielding layer 40 and extends across the multiple shielding parts 46. Next, the irradiation of the laser light L is started, and the incident position of the laser light L is moved at a constant speed while continuing to irradiate the laser light L on the laser shielding layer 40. The movement of the incident position is performed along a direction perpendicular to the direction in which the irradiation area LA of the laser light L extends, as shown by an arrow in FIG. 16C. In this way, by continuing to irradiate the laser light L onto the laser shielding layer 40 while gradually moving the incident position of the laser light L, it is possible to irradiate the laser light onto all areas of the shielding portion 46.
 本実施の形態では、樹脂層30に第1開口34を形成するためのレーザ加工用マスクとして機能するレーザ遮光層40が樹脂層30と共に積層体25を構成した状態で、樹脂層30のレーザ加工が実施される。このため、レーザ光Lの入射位置を変更する過程で樹脂層30に対するレーザ加工用マスクの位置ずれが生じることが防止される。また、積層体30にレーザ加工用マスクとしてのレーザ遮光層40が含まれているため、樹脂層30に対してレーザ加工用マスクを位置合わせする必要も無い。この結果、レーザ加工工程中にレーザ加工用マスクの樹脂層30に対する位置がずれてマスク20の貫通孔21の位置精度が低下する、ということが防止される。 In this embodiment, the laser processing of the resin layer 30 is performed in a state where the laser shielding layer 40, which functions as a laser processing mask for forming the first opening 34 in the resin layer 30, constitutes the laminate 25 together with the resin layer 30. This prevents the laser processing mask from being misaligned with respect to the resin layer 30 in the process of changing the incident position of the laser light L. In addition, since the laminate 30 includes the laser shielding layer 40 as a laser processing mask, there is no need to align the laser processing mask with the resin layer 30. As a result, it is possible to prevent the laser processing mask from being misaligned with respect to the resin layer 30 during the laser processing step, which would reduce the positional accuracy of the through holes 21 in the mask 20.
 続いて、遮蔽部除去工程を実施する。具体的には、レーザ遮光層40のうち、第2開口54内に露出した部分、すなわち遮蔽部46をエッチングする。これにより、レーザ遮光層40に第3開口48が形成される。遮蔽部46のエッチングは、第2開口54にレーザ遮光層40用のエッチャントを供給することにより行ってよい。これにより、第2開口54に接続した第3開口48が形成される。遮蔽部46のエッチングは、エッチングガスを用いたドライエッチングにより行ってもよいし、エッチング液を用いたウェットエッチングにより行ってもよい。第2開口54が第3開口48に接続されることにより、樹脂層30の樹脂マスク部36が、第2開口54及び第3開口38内に露出する(図3参照)。遮蔽部46のエッチングによって、支持層57をエッチングする際に遮蔽部46に付着した残留物を、遮蔽部46と共に除去することができる。なお、周囲部47は、支持フレーム50と樹脂層30とによって覆われているため遮蔽部除去工程で除去されず、支持フレーム50と樹脂層30との間に残る。 Subsequently, the shielding portion removal process is carried out. Specifically, the portion of the laser shielding layer 40 exposed in the second opening 54, i.e., the shielding portion 46, is etched. As a result, a third opening 48 is formed in the laser shielding layer 40. The etching of the shielding portion 46 may be performed by supplying an etchant for the laser shielding layer 40 to the second opening 54. As a result, the third opening 48 connected to the second opening 54 is formed. The etching of the shielding portion 46 may be performed by dry etching using an etching gas or by wet etching using an etching solution. As the second opening 54 is connected to the third opening 48, the resin mask portion 36 of the resin layer 30 is exposed in the second opening 54 and the third opening 38 (see FIG. 3). By etching the shielding portion 46, the residue attached to the shielding portion 46 when etching the support layer 57 can be removed together with the shielding portion 46. In addition, since the peripheral portion 47 is covered by the support frame 50 and the resin layer 30, it is not removed in the shielding portion removal process and remains between the support frame 50 and the resin layer 30.
 また、保護層除去工程を実施する。保護層除去工程では、保護層63を除去する。保護層63は、例えば、エッチングにより除去できる。保護層63のエッチングは、エッチングガスを用いたドライエッチングにより行ってもよいし、エッチング液を用いたウェットエッチングにより行ってもよい。保護層63は、レーザ遮光層40をエッチングするエッチャントによって、レーザ遮光層40と共に除去されてもよい。言い換えると、遮蔽部除去工程と保護層除去工程が同時に実施されてもよい。さらに言い換えると、遮蔽部除去工程において保護層63が除去されてもよい。この場合、保護層63は、レーザ遮光層40と同じ材料で形成されることが好ましい。 Furthermore, a protective layer removal process is performed. In the protective layer removal process, the protective layer 63 is removed. The protective layer 63 can be removed by, for example, etching. The etching of the protective layer 63 may be performed by dry etching using an etching gas, or by wet etching using an etching solution. The protective layer 63 may be removed together with the laser shielding layer 40 by an etchant that etches the laser shielding layer 40. In other words, the shielding portion removal process and the protective layer removal process may be performed simultaneously. In further words, the protective layer 63 may be removed in the shielding portion removal process. In this case, the protective layer 63 is preferably formed of the same material as the laser shielding layer 40.
 以上により、貫通孔21が形成されたマスク20が製造される。 By the above steps, a mask 20 with a through hole 21 is manufactured.
 上述した一実施形態を様々に変更できる。以下、必要に応じて図面を参照しながら、その他の実施形態について説明する。以下の説明および以下の説明で用いる図面では、上述した一実施形態と同様に構成され得る部分について、上述の一実施形態における対応する部分に対して用いた符号と同一の符号を用いる。重複する説明は省略する。また、上述した一実施形態において得られる作用効果がその他の実施形態においても得られることが明らかである場合、その説明を省略する場合もある。 The embodiment described above can be modified in various ways. Other embodiments will be described below, with reference to the drawings as necessary. In the following description and the drawings used in the following description, the same reference numerals are used for parts that can be configured similarly to the embodiment described above as for the corresponding parts in the embodiment described above. Duplicate descriptions will be omitted. Furthermore, if it is clear that the effects obtained in the embodiment described above can also be obtained in other embodiments, the description may be omitted.
 上述の実施の形態においては、遮蔽部除去工程でレーザ遮光層40の遮蔽部46が除去され、この結果、マスク20が遮蔽部46を含まない例を示した。しかしながら、図17及び図18に示すように、マスク20は遮蔽部46を有していてもよい。言い換えると、マスク20の製造工程において、遮蔽部除去工程は実施されなくてもよい。この場合、マスク20の貫通孔21は、互いに連続する第1開口34と透光穴44とによって形成される。マスク20が遮蔽部46を含むことにより、図2に示すように、蒸着装置10内において、遮蔽部46を磁力によって磁石5に向けて引き寄せることができ、したがって、樹脂マスク部36を磁石5に向けて引き寄せることができる。これにより、マスク20の貫通孔21が設けられた領域と基板110との間の隙間を低減したり、隙間をなくしたりすることができる。このことにより、蒸着工程においてシャドウが発生することを抑制できる。 In the above embodiment, the shielding portion 46 of the laser shielding layer 40 is removed in the shielding portion removal step, and as a result, the mask 20 does not include the shielding portion 46. However, as shown in FIG. 17 and FIG. 18, the mask 20 may have the shielding portion 46. In other words, the shielding portion removal step does not need to be performed in the manufacturing process of the mask 20. In this case, the through hole 21 of the mask 20 is formed by the first opening 34 and the light-transmitting hole 44 that are continuous with each other. By including the shielding portion 46 in the mask 20, as shown in FIG. 2, the shielding portion 46 can be attracted toward the magnet 5 by magnetic force in the deposition device 10, and therefore the resin mask portion 36 can be attracted toward the magnet 5. This can reduce or eliminate the gap between the region where the through hole 21 of the mask 20 is provided and the substrate 110. This can suppress the occurrence of a shadow in the deposition process.
 マスク20が遮蔽部46を含む場合、レーザ遮光層40の厚みT40と樹脂層30の厚みT30との和は、例えば、2.0μm以上でもよく、2.5μm以上でもよく、3.0μm以上でもよく、4.0μm以上でもよい。厚みT40と厚みT30との和は、例えば、6.0μm以下でもよく、7.0μm以下でもよく、8.0μm以下でもよく、10.0μm以下でもよい。厚みT40と厚みT30との和の範囲は、2.0μm、2.5μm、3.0μm及び4.0μmからなる第1グループ、及び/又は、6.0μm、7.0μm、8.0μm及び10.0μmからなる第2グループによって定められてもよい。厚みT40と厚みT30との和の範囲は、上述の第1グループに含まれる値のうちの任意の1つと、上述の第2グループに含まれる値のうちの任意の1つとの組み合わせによって定められてもよい。厚みT40と厚みT30との和の範囲は、上述の第1グループに含まれる値のうちの任意の2つの組み合わせによって定められてもよい。厚みT40と厚みT30との和の範囲は、上述の第2グループに含まれる値のうちの任意の2つの組み合わせによって定められてもよい。厚みT40と厚みT30との和は、例えば、2.0μm以上10.0μm以下でもよく、2.0μm以上8.0μm以下でもよく、2.0μm以上7.0μm以下でもよく、2.0μm以上6.0μm以下でもよく、2.0μm以上4.0μm以下でもよく、2.0μm以上3.0μm以下でもよく、2.0μm以上2.5μm以下でもよく、2.5μm以上10.0μm以下でもよく、2.5μm以上8.0μm以下でもよく、2.5μm以上7.0μm以下でもよく、2.5μm以上6.0μm以下でもよく、2.5μm以上4.0μm以下でもよく、2.5μm以上3.0μm以下でもよく、3.0μm以上10.0μm以下でもよく、3.0μm以上8.0μm以下でもよく、3.0μm以上7.0μm以下でもよく、3.0μm以上6.0μm以下でもよく、3.0μm以上4.0μm以下でもよく、4.0μm以上10.0μm以下でもよく、4.0μm以上8.0μm以下でもよく、4.0μm以上7.0μm以下でもよく、4.0μm以上6.0μm以下でもよく、6.0μm以上10.0μm以下でもよく、6.0μm以上8.0μm以下でもよく、6.0μm以上7.0μm以下でもよく、7.0μm以上10.0μm以下でもよく、7.0μm以上8.0μm以下でもよく、8.0μm以上10.0μm以下でもよい。これにより、例えば画素数が3000ppi以上である有機ELディスプレイのための蒸着層を高精細なパターンで形成する際のシャドウの影響を、より効果的に低減できる。 When the mask 20 includes a shielding portion 46, the sum of the thickness T40 of the laser shielding layer 40 and the thickness T30 of the resin layer 30 may be, for example, 2.0 μm or more, 2.5 μm or more, 3.0 μm or more, or 4.0 μm or more. The sum of the thicknesses T40 and T30 may be, for example, 6.0 μm or less, 7.0 μm or less, 8.0 μm or less, or 10.0 μm or less. The range of the sum of the thicknesses T40 and T30 may be determined by a first group consisting of 2.0 μm, 2.5 μm, 3.0 μm, and 4.0 μm, and/or a second group consisting of 6.0 μm, 7.0 μm, 8.0 μm, and 10.0 μm. The range of the sum of the thickness T40 and the thickness T30 may be determined by a combination of any one of the values included in the first group described above and any one of the values included in the second group described above. The range of the sum of the thickness T40 and the thickness T30 may be determined by a combination of any two of the values included in the first group described above. The range of the sum of the thickness T40 and the thickness T30 may be determined by a combination of any two of the values included in the second group described above. The sum of thickness T40 and thickness T30 may be, for example, 2.0 μm or more and 10.0 μm or less, 2.0 μm or more and 8.0 μm or less, 2.0 μm or more and 7.0 μm or less, 2.0 μm or more and 6.0 μm or less, 2.0 μm or more and 4.0 μm or less, 2.0 μm or more and 3.0 μm or less, 2.0 μm or more and 2.5 μm or less, 2.5 μm or more and 10.0 μm or less, 2.5 μm or more and 8.0 μm or less, 2.5 μm or more and 7.0 μm or less, 2.5 μm or more and 6.0 μm or less, 2.5 μm or more and 4.0 μm or less, 2.5 μm or more and 3.0 μm or less, or 3.0 μm or more and 10. 0 μm or less, 3.0 μm or more and 8.0 μm or less, 3.0 μm or more and 7.0 μm or less, 3.0 μm or more and 6.0 μm or less, 3.0 μm or more and 4.0 μm or less, 4.0 μm or more and 10.0 μm or less, 4.0 μm or more and 8.0 μm or less, 4.0 μm or more and 7.0 μm or less, 4.0 μm or more and 6.0 μm or less, 6.0 μm or more and 10.0 μm or less, 6.0 μm or more and 8.0 μm or less, 6.0 μm or more and 7.0 μm or less, 7.0 μm or more and 10.0 μm or less, 7.0 μm or more and 8.0 μm or less, or 8.0 μm or more and 10.0 μm or less. This makes it possible to more effectively reduce the effects of shadows when forming a highly precise pattern of deposition layers for organic EL displays with a pixel count of 3000 ppi or more.
 また、マスク20が遮蔽部46を含む場合、保護層63の材料として、レーザ遮光層40の材料とは異なる材料が選択されることが好ましい。より具体的には、保護層63をエッチングする際のエッチャントによってレーザ遮光層40が除去されることのないよう、保護層63の材料を選択することが好ましい。 Furthermore, when the mask 20 includes the shielding portion 46, it is preferable to select a material for the protective layer 63 that is different from the material for the laser shielding layer 40. More specifically, it is preferable to select a material for the protective layer 63 so that the laser shielding layer 40 is not removed by the etchant used when etching the protective layer 63.
5:磁石、6:蒸着源、7:蒸着材料、8:ヒータ、10:蒸着装置、20:マスク、21:貫通孔、25:積層体、30:樹脂層、31:第3面、32:第4面、34:第1開口、36:樹脂マスク部、37:樹脂周囲部、40:レーザ遮光層、41:第1面、42:第2面、44:透光穴、46:遮蔽部、47:周囲部、50:支持フレーム、51:第5面、52:第6面、54:第2開口、55:第1層、56:第2層、60:第1レジスト層、63:保護層、65:第2レジスト層、100:有機デバイス、110:基板 5: magnet, 6: deposition source, 7: deposition material, 8: heater, 10: deposition device, 20: mask, 21: through hole, 25: laminate, 30: resin layer, 31: third surface, 32: fourth surface, 34: first opening, 36: resin mask part, 37: resin peripheral part, 40: laser light shielding layer, 41: first surface, 42: second surface, 44: light transmitting hole, 46: shielding part, 47: peripheral part, 50: support frame, 51: fifth surface, 52: sixth surface, 54: second opening, 55: first layer, 56: second layer, 60: first resist layer, 63: protective layer, 65: second resist layer, 100: organic device, 110: substrate

Claims (22)

  1.  金属材料又はセラミック材料で形成されたレーザ遮光層であって、第1面、前記第1面の反対側の面である第2面、及び、前記第1面から前記第2面に至る複数の透光穴を含むレーザ遮光層と、前記レーザ遮光層の前記第2面を覆う樹脂層と、を含む積層体を準備する積層体準備工程と、
     前記レーザ遮光層の前記第1面に向けて前記積層体にレーザ光を入射させることによって、前記樹脂層に、前記レーザ遮光層の前記複数の透光穴に対応する複数の第1開口を形成するレーザ加工工程と、
    を備える、マスクの製造方法。
    a laminate preparation step of preparing a laminate including a laser shielding layer formed of a metal material or a ceramic material, the laser shielding layer including a first surface, a second surface that is a surface opposite to the first surface, and a plurality of light transmitting holes extending from the first surface to the second surface, and a resin layer that covers the second surface of the laser shielding layer;
    a laser processing step of forming a plurality of first openings in the resin layer corresponding to the plurality of light transmitting holes of the laser shielding layer by irradiating a laser beam onto the laminate toward the first surface of the laser shielding layer;
    A method for manufacturing a mask comprising:
  2.  前記レーザ遮光層は、前記複数の透光穴を含む少なくとも1つの遮蔽部と、平面視において前記遮蔽部を囲む周囲部と、を含み、
     前記マスクの製造方法は、前記レーザ遮光層の前記遮蔽部を除去する遮蔽部除去工程を備える、請求項1に記載のマスクの製造方法。
    the laser shielding layer includes at least one shielding portion including the plurality of light-transmitting holes, and a surrounding portion surrounding the shielding portion in a plan view,
    The method for producing a mask according to claim 1 , further comprising a shielding portion removing step of removing the shielding portion of the laser shielding layer.
  3.  前記樹脂層は、前記レーザ遮光層の前記第2面に対向する第3面と、前記第3面の反対側の面である第4面と、を含み、
     前記マスクの製造方法は、前記樹脂層の前記第4面を覆う保護層を形成する保護層形成工程と、
     前記保護層を除去する保護層除去工程と、
    を備える、請求項1に記載のマスクの製造方法。
    the resin layer includes a third surface facing the second surface of the laser shielding layer, and a fourth surface that is a surface opposite to the third surface,
    The method for manufacturing the mask includes a protective layer forming step of forming a protective layer that covers the fourth surface of the resin layer;
    a protective layer removing step of removing the protective layer;
    The method for manufacturing a mask according to claim 1 , comprising:
  4.  前記レーザ遮光層の前記第1面に対向する第5面、及び前記第5面の反対側の面である第6面を有し、前記積層体を支持する支持層を準備する支持層準備工程と、
     平面視において前記レーザ遮光層の前記複数の透光穴に重なる少なくとも1つの第2開口を前記支持層に形成する支持フレーム形成工程と、
    を備える、請求項1に記載のマスクの製造方法。
    a support layer preparation step of preparing a support layer having a fifth surface facing the first surface of the laser shielding layer and a sixth surface that is a surface opposite to the fifth surface, the support layer supporting the laminate;
    a support frame forming step of forming at least one second opening in the support layer, the second opening overlapping the plurality of light transmitting holes in the laser shielding layer in a plan view;
    The method for manufacturing a mask according to claim 1 , comprising:
  5.  積層体準備工程は、
     前記支持層上に前記レーザ遮光層を形成する工程と、
     前記レーザ遮光層の前記第2面上に部分的に第1レジスト層を形成する工程と、
     前記第1レジスト層の側から前記レーザ遮光層をエッチングすることによって前記レーザ遮光層に前記複数の透光穴を形成する工程と、
     前記第1レジスト層を除去する工程と、
    を含む、請求項4に記載のマスクの製造方法。
    The laminate preparation step includes:
    forming the laser shielding layer on the support layer;
    forming a first resist layer partially on the second surface of the laser shielding layer;
    forming the plurality of light transmitting holes in the laser light shielding layer by etching the laser light shielding layer from the first resist layer side;
    removing the first resist layer;
    The method of manufacturing the mask of claim 4 , comprising:
  6.  前記支持層は、前記第6面を形成する第1層と、前記第1層と前記レーザ遮光層との間に位置する第2層と、を含み、
     前記支持フレーム形成工程は、
     前記支持層の前記第6面上に部分的に第2レジスト層を形成する工程と、
     前記第2レジスト層の側から前記第1層をエッチングすることによって、前記第1層を部分的に除去する工程と、
    を含む、請求項4に記載のマスクの製造方法。
    the support layer includes a first layer forming the sixth surface and a second layer located between the first layer and the laser shielding layer,
    The support frame forming step includes:
    forming a second resist layer partially on the sixth surface of the support layer;
    partially removing the first layer by etching the first layer from the second resist layer side;
    The method of manufacturing the mask of claim 4 , comprising:
  7.  前記支持フレーム形成工程は、前記第1層を部分的に除去する工程の後に、前記第2層を部分的に除去する工程を含む、請求項6に記載のマスクの製造方法。 The method for manufacturing a mask according to claim 6, wherein the support frame forming step includes a step of partially removing the second layer after the step of partially removing the first layer.
  8.  前記支持層は、無機物を含む、請求項4に記載のマスクの製造方法。 The method for manufacturing a mask according to claim 4, wherein the support layer includes an inorganic material.
  9.  前記支持層は、金属材料を含む、請求項4に記載のマスクの製造方法。 The method for manufacturing a mask according to claim 4, wherein the support layer includes a metal material.
  10.  前記第1層は、非金属の無機物を含む、請求項6に記載のマスクの製造方法。 The method for manufacturing a mask according to claim 6, wherein the first layer includes a non-metallic inorganic material.
  11.  前記第1層は、非金属の無機物を含み、
     前記第2層は、金属材料を含む、請求項6に記載のマスクの製造方法。
    the first layer comprises a non-metallic inorganic material;
    The method of claim 6 , wherein the second layer comprises a metallic material.
  12.  前記レーザ遮光層は、窒化チタン、ニッケル又は銅を含む、請求項1に記載のマスクの製造方法。 The method for manufacturing a mask according to claim 1, wherein the laser shielding layer contains titanium nitride, nickel or copper.
  13.  前記レーザ遮光層は、真空成膜法またはめっき法により形成される、請求項1に記載のマスクの製造方法。 The method for manufacturing a mask according to claim 1, wherein the laser shielding layer is formed by a vacuum deposition method or a plating method.
  14.  第3面、及び前記第3面の反対側の面である第4面を含む樹脂層であって、前記第3面から前記第4面に至る複数の第1開口を含む少なくとも1つの樹脂マスク部と、平面視において前記樹脂マスク部を囲む樹脂周囲部と、を含む樹脂層と、
     金属材料又はセラミック材料で形成されたレーザ遮光層であって、前記樹脂層の前記第3面に対向する第2面、及び前記第2面の反対側の面である第1面を含み、平面視において前記樹脂層の前記樹脂周囲部に重なる少なくとも1つの周囲部を含むレーザ遮光層と、
     前記レーザ遮光層の前記第1面に対向する第5面、前記第5面の反対側の面である第6面、及び、前記第6面から前記第5面に至り、平面視において前記樹脂層の前記樹脂マスク部に重なる少なくとも1つの第2開口を含む支持フレームと、
    を備え、
     前記支持フレームは無機物を含む、マスク。
    a resin layer including a third surface and a fourth surface that is a surface opposite to the third surface, the resin layer including at least one resin mask portion including a plurality of first openings extending from the third surface to the fourth surface, and a resin surrounding portion surrounding the resin mask portion in a plan view;
    a laser shielding layer formed of a metal material or a ceramic material, the laser shielding layer including a second surface facing the third surface of the resin layer, and a first surface being a surface opposite to the second surface, and including at least one peripheral portion overlapping the resin peripheral portion of the resin layer in a plan view;
    a support frame including a fifth surface facing the first surface of the laser shielding layer, a sixth surface being a surface opposite to the fifth surface, and at least one second opening extending from the sixth surface to the fifth surface and overlapping with the resin mask portion of the resin layer in a plan view;
    Equipped with
    The support frame comprises an inorganic material.
  15.  前記支持フレームは、金属材料を含む、請求項14に記載のマスク。 The mask of claim 14, wherein the support frame comprises a metallic material.
  16.  前記支持フレームは、前記第6面を形成する第1層と、前記第1層と前記レーザ遮光層との間に位置する第2層と、を含み、
     前記第1層は非金属の無機物を含む、請求項14に記載のマスク。
    the support frame includes a first layer forming the sixth surface and a second layer located between the first layer and the laser shielding layer,
    The mask of claim 14 , wherein the first layer comprises a non-metallic inorganic material.
  17.  前記第2層は、金属材料を含む、請求項16に記載のマスク。 The mask of claim 16, wherein the second layer comprises a metallic material.
  18.  前記レーザ遮光層は、窒化チタン、ニッケル又は銅を含む、請求項14に記載のマスク。 The mask of claim 14, wherein the laser shielding layer includes titanium nitride, nickel, or copper.
  19.  前記樹脂層の各第1開口は、前記樹脂層の前記第3面から前記第4面に向かってテーパ状であり、
     前記支持フレームの各第2開口は、前記支持フレームの前記第5面及び前記第6面の間で膨大する、請求項14に記載のマスク。
    each of the first openings of the resin layer is tapered from the third surface to the fourth surface of the resin layer;
    15. The mask of claim 14, wherein each second opening in the support frame flares between the fifth side and the sixth side of the support frame.
  20.  前記レーザ遮光層は、平面視において前記支持フレームの前記第2開口に重なる遮蔽部を含み、
     前記遮蔽部は、平面視において各々が前記樹脂層の前記複数の第1開口に重なる複数の透光穴を含む、請求項14に記載のマスク。
    the laser shielding layer includes a shielding portion that overlaps the second opening of the support frame in a plan view,
    The mask according to claim 14 , wherein the shielding portion includes a plurality of light-transmitting holes each overlapping with a corresponding one of the first openings of the resin layer in a plan view.
  21.  請求項14に記載のマスクを用いて基板に複数の蒸着層を形成する工程を備えた、蒸着層の形成方法。 A method for forming a deposition layer, comprising a step of forming a plurality of deposition layers on a substrate using the mask according to claim 14.
  22.  請求項14に記載のマスクを用いて基板に複数の蒸着層を形成する工程を備えた、有機半導体素子の製造方法。 A method for manufacturing an organic semiconductor device, comprising a step of forming multiple deposition layers on a substrate using the mask according to claim 14.
PCT/JP2023/035459 2022-09-29 2023-09-28 Method for producing mask, mask, method for forming deposited layer, and method for producing organic semiconductor element WO2024071315A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022156828A JP2024050156A (en) 2022-09-29 2022-09-29 MASK MANUFACTURING METHOD, MASK, METHOD FOR FORMING DEPOSITION LAYER, AND MANUFACTURING ORGANIC SEMICONDUCTOR DEVICE
JP2022-156828 2022-09-29

Publications (1)

Publication Number Publication Date
WO2024071315A1 true WO2024071315A1 (en) 2024-04-04

Family

ID=90478042

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/035459 WO2024071315A1 (en) 2022-09-29 2023-09-28 Method for producing mask, mask, method for forming deposited layer, and method for producing organic semiconductor element

Country Status (2)

Country Link
JP (1) JP2024050156A (en)
WO (1) WO2024071315A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018168475A (en) * 2016-02-10 2018-11-01 鴻海精密工業股▲ふん▼有限公司 Method for manufacturing vapor deposition mask, vapor deposition mask and method for manufacturing organic semiconductor element
JP2020026543A (en) * 2018-08-09 2020-02-20 大日本印刷株式会社 Manufacturing method of vapor deposition mask

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018168475A (en) * 2016-02-10 2018-11-01 鴻海精密工業股▲ふん▼有限公司 Method for manufacturing vapor deposition mask, vapor deposition mask and method for manufacturing organic semiconductor element
JP2020026543A (en) * 2018-08-09 2020-02-20 大日本印刷株式会社 Manufacturing method of vapor deposition mask

Also Published As

Publication number Publication date
JP2024050156A (en) 2024-04-10

Similar Documents

Publication Publication Date Title
EP3556899B1 (en) Vapor deposition mask device and method for manufacturing vapor deposition mask device
US11211558B2 (en) Deposition mask device and method of manufacturing deposition mask device
JP5836755B2 (en) Piezoelectric element and liquid discharge head
TWI278132B (en) Dielectric element, piezoelectric element, ink jet head and ink jet recording apparatus and manufacturing method of same
TW201728770A (en) Method for producing deposition mask, deposition mask, and method for producing organic semiconductor device
US20030054646A1 (en) Mask and method of manufacturing the same, electro-luminescence device and method of manufacturing the same, and electronic instrument
TWI410674B (en) The piezoelectric mirror device and the manufacturing method of the optical machine and the piezoelectric mirror device using the piezoelectric mirror device
KR20040054590A (en) An electronic device and a method for producing the same, and a sputtering target
TW201712919A (en) Flexible organic light-emitting diode display and method of manufacturing the same
CN101111128A (en) Method for manufacturing a printed circuit board with a thin film capacitor embedded therein having a dielectric film by using laser lift-off, and printed circuit board with a thin film capacitor embe
CN217230904U (en) Vapor deposition mask, vapor deposition mask device, and vapor deposition device
CN108735917B (en) Peeling film, method for manufacturing display device, and apparatus for manufacturing display device
US7387739B2 (en) Mask and method of manufacturing the same, electroluminescent device and method of manufacturing the same, and electronic instrument
JP4461726B2 (en) ORGANIC LIGHT EMITTING ELEMENT, ITS MANUFACTURING METHOD, AND DISPLAY DEVICE
JP2009087840A (en) Vapor deposition mask and manufacturing method of vapor deposition mask, organic el element, electronic equipment
WO2024071315A1 (en) Method for producing mask, mask, method for forming deposited layer, and method for producing organic semiconductor element
JP2006245094A (en) Manufacturing method and transfer method for thin-film piezoelectric body element
JP2009224740A (en) Laminated structure and device using the same, method of manufacturing device, and liquid ejection device
JP2005224950A (en) Thermal head and its manufacturing method
WO2024071087A1 (en) Mask manufacturing method, and mask
TWI587551B (en) Crystal pattern forming method, piezoelectric film manufacturing method, piezoelectric element manufacturing method, liquid discharge head manufacturing method, ferroelectric element, and manufacturing method thereof
JP2011096706A (en) Method of manufacturing piezoelectric device
WO2023145955A1 (en) Mask and method for producing mask
JP4670495B2 (en) Electronic device and manufacturing method thereof
EP4075516A1 (en) Semiconductor substrate manufacturing method and semiconductor substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23872537

Country of ref document: EP

Kind code of ref document: A1