WO2024071183A1 - Fuel cell power generator, fuel cell power generation system, fuel cell system, and method for controlling fuel cell unit - Google Patents

Fuel cell power generator, fuel cell power generation system, fuel cell system, and method for controlling fuel cell unit Download PDF

Info

Publication number
WO2024071183A1
WO2024071183A1 PCT/JP2023/035117 JP2023035117W WO2024071183A1 WO 2024071183 A1 WO2024071183 A1 WO 2024071183A1 JP 2023035117 W JP2023035117 W JP 2023035117W WO 2024071183 A1 WO2024071183 A1 WO 2024071183A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
output
power
power generation
control device
Prior art date
Application number
PCT/JP2023/035117
Other languages
French (fr)
Japanese (ja)
Inventor
邦幸 高橋
洋 高野
琢 福村
匡 中川
誠 三上
広幸 當山
和芳 糸川
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2023020923A external-priority patent/JP7524984B1/en
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Priority to CN202380023998.4A priority Critical patent/CN118765448A/en
Publication of WO2024071183A1 publication Critical patent/WO2024071183A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04291Arrangements for managing water in solid electrolyte fuel cell systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • This disclosure relates to a fuel cell power generation device, a fuel cell power generation system, a fuel cell system, and a method for controlling a fuel cell unit.
  • Patent Document 1 discloses a fuel cell system that performs refresh control of a fuel cell stack by lowering the voltage of the fuel cell stack.
  • Patent Document 2 discloses a fuel cell system that includes multiple fuel cell groups, a power storage unit for charging and storing the power generated by the fuel cell groups, and a control unit that performs a catalyst poisoning reduction process.
  • the power generation performance of the fuel cell may deteriorate due to long-term operation.
  • a refresh operation is performed.
  • This disclosure provides an invention that effectively refreshes a fuel cell unit.
  • a plurality of fuel cell units a control device for controlling the plurality of fuel cell units; each of the plurality of fuel cell units includes a fuel cell connected to a common output line; The control device varies the output power of each of the plurality of fuel cells while the power supplied from the output line to the outside is maintained at a substantially constant value.
  • the output power of each of the multiple fuel cells is changed while the power supplied from the output line to the outside is maintained at a substantially constant value, so that while a constant power supply from the output line to the outside is ensured, the bias in the humidity distribution within the cell surface of the multiple fuel cells is reduced. Therefore, a substantially constant power supply is ensured, and deterioration of the fuel cells is suppressed.
  • a fuel cell unit including a fuel cell; a control unit for controlling the fuel cell unit;
  • a fuel cell system is provided in which the control unit executes a first refresh process that controls to vary the output of the fuel cell unit, and a second refresh process that stops the operation of the fuel cell unit and controls to start up the fuel cell unit.
  • fuel cell units can be effectively refreshed.
  • FIG. 1 is a diagram showing a first configuration example of a fuel cell power generation system
  • FIG. 11 is a diagram showing a second configuration example of a fuel cell power generation system.
  • 4 is a timing chart for explaining a first condition (permission condition) and a second condition (abnormal condition).
  • 11 is a table illustrating types of flags (permission flags) that permit a low load state;
  • 11 is a table illustrating types of flags (abnormality flags) for determining an abnormally low load state.
  • 11A to 11C are diagrams illustrating a number of examples of processing that is performed after the load state of the fuel cell is determined to be an abnormally low load state.
  • FIG. 11 is a diagram illustrating an example of a sequence for determining an abnormally low load state.
  • FIG. 11 is a diagram illustrating an example of a sequence for permitting a low load state.
  • 10 is a flowchart showing an example of control processing executed by each of a first control device and a second control device in a second configuration example of a fuel cell power generation system.
  • 5 is a flowchart showing an example of a command generating process executed by a first control device.
  • FIG. 11 is a diagram showing a third configuration example of a fuel cell system.
  • 13 is a flowchart showing an example of control processing executed by each of a first control device, a second control device, and a third control device in a third configuration example of a fuel cell power generation system.
  • 10 is a flowchart showing an example of a control process during a refresh operation.
  • 10 is a flowchart showing an example of a setting process for a refresh operation machine.
  • 10 is a flowchart showing an example of a refresh operation process.
  • 11 is a diagram illustrating a state in which power supplied to the outside is maintained constant;
  • FIG. 11 is a diagram showing a first example of an implementation pattern of a refresh operation when four power generation devices are connected in parallel.
  • FIG. 11 is a diagram showing a second example of an implementation pattern of a refresh operation when four power generation devices are connected in parallel.
  • FIG. 11 is a diagram showing a first example of an implementation pattern of a refresh operation when a power generation device is combined with four power generation devices in parallel.
  • 11 is a diagram showing a second example of an implementation pattern of a refresh operation when a power generation device is combined with four power generation devices connected in parallel.
  • 1 is a table illustrating an example of the relationship between the number of power generation devices connected in parallel and the output power of the power generation devices. 13 is data showing an example of a range of the number of parallel units suitable for the case where the refresh operation is used.
  • 1 is a diagram showing a specific configuration example of a fuel cell power generation system including a fuel cell power generation device according to a first embodiment; 1 is a diagram showing in detail an example of the configuration of a fuel cell power generation device according to a first embodiment; FIG.
  • FIG. 2 is a diagram showing a configuration example (modification) of a fuel cell power generation system including the fuel cell power generation device of the first embodiment.
  • FIG. 11 is a diagram showing a specific configuration example of a fuel cell power generation system including a fuel cell power generation device according to a second embodiment.
  • FIG. 13 is a diagram showing in detail an example of the configuration of a fuel cell power generation device according to a second embodiment.
  • FIG. 11 is a diagram showing a first example of a power fluctuation control pattern when three fuel cells are connected in parallel.
  • FIG. 11 is a diagram showing a first example of a power fluctuation control pattern when two fuel cells are connected in parallel.
  • FIG. 13 is a diagram showing a second example of a power fluctuation control pattern when two fuel cells are connected in parallel.
  • FIG. 11 is a diagram showing a specific configuration example of a fuel cell power generation system including a fuel cell power generation device according to a second embodiment.
  • FIG. 13 is a diagram showing in detail an example of the configuration
  • FIG. 13 is a diagram showing a third example of a power fluctuation control pattern when two fuel cells are connected in parallel.
  • FIG. 13 is a diagram showing a fourth example of a power fluctuation control pattern when two fuel cells are connected in parallel.
  • FIG. 13 is a diagram showing a second example of a power fluctuation control pattern when three fuel cells are connected in parallel.
  • FIG. 13 is a diagram showing a third example of a power fluctuation control pattern when three fuel cells are connected in parallel.
  • 1 is a diagram showing an outline of the configuration of a fuel cell system according to a first embodiment
  • FIG. 2 is a flow chart illustrating a process in the fuel cell system according to the first embodiment.
  • FIG. 2 is a diagram illustrating the process in the fuel cell system according to the first embodiment.
  • FIG. 4 is a flow chart illustrating a first refresh process in the fuel cell system according to the first embodiment.
  • 5A and 5B are diagrams illustrating a first refresh process in the fuel cell system according to the first embodiment.
  • FIG. 4 is a flow chart illustrating a second refresh process in the fuel cell system according to the first embodiment.
  • 5A and 5B are diagrams illustrating a second refresh process in the fuel cell system according to the first embodiment.
  • FIG. 11 is a flow chart illustrating a modified example of the first refresh process in the fuel cell system according to the first embodiment.
  • 7A to 7C are diagrams illustrating a modified example of the first refresh process in the fuel cell system according to the first embodiment.
  • FIG. 11 is a flow chart illustrating a first modified example of the second refresh process in the fuel cell system according to the first embodiment.
  • 11A and 11B are diagrams illustrating a first modified example of the second refresh process in the fuel cell system according to the first embodiment.
  • FIG. 11 is a flow chart illustrating a second modified example of the second refresh process in the fuel cell system according to the first embodiment.
  • FIG. 11 is a diagram illustrating a second modified example of the second refresh process in the fuel cell system according to the first embodiment.
  • FIG. 11 is a flow chart illustrating a process in a fuel cell system according to a second embodiment.
  • FIG. 11 is a diagram illustrating a process in a fuel cell system according to a second embodiment.
  • FIG. 11 is a diagram illustrating a process in a fuel cell system according to a second embodiment.
  • FIG. 11 is a flow chart illustrating a process in a fuel cell system according to a third embodiment.
  • FIG. 11 is a diagram illustrating a process in a fuel cell system according to a third embodiment.
  • FIG. 13 is a diagram showing an outline of the configuration of a fuel cell system according to a fourth embodiment.
  • FIG. 13 is a diagram illustrating a process in a fuel cell system according to a fourth embodiment.
  • FIG. 13 is a diagram illustrating a process in a fuel cell system according to a fourth embodiment.
  • FIG. 13 is a diagram illustrating the process in a fuel cell system according to a fifth embodiment.
  • Constant may include “almost constant.”
  • Raster output may be replaced with “maximum output.”
  • Tempoarily may mean “for a certain period of time or longer.”
  • Fig. 1 is a diagram showing a first configuration example of a fuel cell power generation system.
  • a fuel cell power generation system 400 shown in Fig. 1 is a system that supplies power generated by a FC (fuel cell) to an external device (not shown) that is a power supply target.
  • Fig. 2 is a diagram showing a second configuration example of a fuel cell power generation system.
  • a fuel cell power generation system 401 shown in Fig. 2 is a system that supplies power generated by multiple FCs (fuel cells) connected in parallel to an external device (not shown) that is a power supply target.
  • Fuel cell power generation system 400 (Fig. 1) can be considered as a fuel cell power generation system 401 (Fig. 2) in which the number of power generation devices is one. Therefore, unless otherwise specified, the following description will focus on fuel cell power generation system 401, and the description of fuel cell power generation system 400 will be omitted or simplified by incorporating the contents of the description of fuel cell power generation system 401.
  • control device is separated into a first control device 411 and a second control device 421.
  • control device may be configured as a single control device having both the functions of the first control device 411 and the second control device 421.
  • first control device 411 may be separated into multiple control devices
  • second control device 421 may also be separated into multiple control devices
  • the fuel cell power generation system 401 includes multiple (four in this example) power generation devices 451, 452, 453, and 454, an auxiliary system 301, and a first control device 411.
  • the power generation devices 451, 452, 453, and 454 are also referred to as the power generation devices 451, etc.
  • the auxiliary system 301 is a peripheral system that assists the operation of the power generation device 451 and the like.
  • the auxiliary system 301 includes, for example, a control power supply, a fuel system, an air supply system, an exhaust system, a purge system, and a cooler.
  • the control power supply supplies power to the first control device 411.
  • the fuel system supplies hydrogen or hydrogen-rich gas to the power generation device 451 and the like.
  • the air supply system supplies air to the power generation device 451 and the like.
  • the exhaust system exhausts exhaust gas from the power generation device 451 and the like.
  • the purge system supplies an inert gas such as nitrogen to the fuel system.
  • the cooler cools the power generation device 451 and the like.
  • the auxiliary system 301 may include a power storage device 14.
  • the power storage device 14 is an example of an auxiliary power supply that is connected to the output line 17 so that it can supply power.
  • the output line 17 is a power line that is commonly connected to each power generation output terminal of the power
  • Each of the power generation devices 451 etc. generates power using a fuel cell and outputs the generated power.
  • the power generation devices 451 etc. are connected in parallel to the output line 17.
  • the number of multiple power generation devices connected in parallel is not limited to four, and may be two, three, or more than four.
  • the power generation devices 451 and the like have the same configuration.
  • the power generation device 451 has a fuel cell 441, an auxiliary device 431, and a second control device 421.
  • the power generation device 452 has a fuel cell 442, an auxiliary device 432, and a second control device 422.
  • the power generation device 453 has a fuel cell 443, an auxiliary device 433, and a second control device 423.
  • the power generation device 454 has a fuel cell 444, an auxiliary device 434, and a second control device 424.
  • fuel cells 441, 442, 443, 444 are connected to a common output line 17 so that they can supply power.
  • the fuel cells 441, etc. are devices that electrochemically convert the chemical energy of a fuel such as hydrogen into electrical energy.
  • the fuel cells 441, etc. are, for example, polymer electrolyte fuel cells (PEFCs), but are not limited to this and may be other types of fuel cells such as phosphoric acid type.
  • PEFCs polymer electrolyte fuel cells
  • the fuel cells 441, etc. are fitted with voltage sensors for detecting the voltages at their output terminals, and current sensors for detecting the output currents from their output terminals.
  • the first control device 411 obtains the detection values of each voltage output from the fuel cells 441, etc. using the voltage sensors, and obtains the detection values of each current output from the fuel cells 441, etc. using the current sensors.
  • the first control device 411 detects the output powers p1, p2, p3, and p4 of the fuel cells 441, etc. using the detection values of each voltage and each current.
  • the power generated by the fuel cell 441, etc. (power generation device 451, etc.) is supplied to an external device (not shown) via the output line 17.
  • Auxiliary device 431 is a device that assists the power generation operation of the fuel cell 441 that corresponds to it among fuel cells 441, etc. Similar to auxiliary device 431, auxiliary devices 432, 433, and 434 are also devices that assist the power generation operation of the fuel cell that corresponds to them among fuel cells 441, etc.
  • the auxiliary equipment 431 includes, for example, an air compressor that compresses air and supplies it to the fuel cell 441, and a water pump that circulates a coolant between the heat exchanger and the fuel cell 441.
  • the auxiliary equipment 431 may also include a cooling system 36, which will be described later. The same applies to the auxiliary equipment 432, 433, and 434.
  • the first control device 411 is a higher-level controller that controls the operation of the power generation device 451, etc. and the auxiliary system 301.
  • the first control device 411 individually generates command a (commands a1, a2, a3, a4) that instructs the operation of the power generation device 451, etc., and transmits them to each of the power generation devices 451, etc.
  • the first control device 411 determines the command values (output set values) of the output powers P1, P2, P3, and P4 of the power generation devices 451, etc., according to the power (required output power) required of the fuel cell power generation system 401 as the power to be output to the output line 17.
  • the first control device 411 transmits command a (commands a1, a2, a3, a4) instructing the output set values of the output powers P1, P2, P3, and P4 to each of the power generation devices 451, etc.
  • the second control device 421 is a lower-level controller that controls the power generation of the fuel cell 441 by operating the auxiliary device 431 according to command a1 that indicates the operation of the power generation device 451.
  • the second control devices 422, 423, and 424 are lower-level controllers that control the operation of the fuel cell corresponding to them by operating the auxiliary device corresponding to them according to the command a (commands a2, a3, and a4) corresponding to them.
  • the second control device 421 controls the power generation of the fuel cell 441 by operating the auxiliary device 431 so that the output power P1 of the power generation device 451 becomes the output set value instructed by command a1.
  • the second control device 422 controls the power generation of the fuel cell 442 by operating the auxiliary device 432 so that the output power P2 of the power generation device 452 becomes the output set value instructed by command a2.
  • the second control device 423 controls the power generation of the fuel cell 443 by operating the auxiliary device 433 so that the output power P3 of the power generation device 453 becomes the output set value instructed by command a3.
  • the second control device 424 controls the power generation of the fuel cell 444 by operating the auxiliary device 434 so that the output power P4 of the power generation device 454 becomes the output set value instructed by command a4.
  • a power conversion device 11 such as a PCS (described below) connected to output line 17 controls the load current flowing through output line 17 in accordance with a load command output from each of the first control device 411 or the multiple second control devices 421.
  • the second control device 421 controls the power generation of the fuel cell 441 so that the output power P1 of the power generation device 451 becomes the output set value instructed by command a1 by operating the auxiliary device 431 so that the amount of air and hydrogen corresponding to the output current of the power generation device 451 is supplied to the fuel cell 441.
  • the second control device 422 controls the power generation of the fuel cell 442 so that the output power P2 of the power generation device 452 becomes the output set value instructed by command a2 by operating the auxiliary device 432 so that the amount of air and hydrogen corresponding to the output current of the power generation device 452 is supplied to the fuel cell 442.
  • the second control device 423 controls the power generation of the fuel cell 443 so that the output power P3 of the power generation device 453 becomes the output set value instructed by command a3 by operating the auxiliary device 433 so that the amount of air and hydrogen corresponding to the output current of the power generation device 453 is supplied to the fuel cell 443.
  • the second control device 424 controls the power generation of the fuel cell 444 so that the output power P4 of the power generation device 454 becomes the output set value instructed by command a4 by operating the auxiliary device 434 so that the amount of air and hydrogen corresponding to the output current of the power generation device 454 is supplied to the fuel cell 444.
  • a portion of the output power p1 of the fuel cell 441 is used as operating power for part or all of the auxiliary equipment 431, and the surplus power is output as output power P1 of the power generation device 451.
  • the first control device 411 performs control to maintain the power supply from the output line 17 to the outside at a substantially constant predetermined value.
  • Po is the power between each power generation output terminal of the power generation device 451, etc. and the power storage device 14.
  • Pb is the power exchanged between the power storage device 14 and the output line 17.
  • the first control device 411 may perform control (battery output fluctuation control) to change (more specifically, increase or decrease) the output powers p1, p2, p3, and p4 of the fuel cell 441, etc., so that the supply power Pa from the output line 17 to the outside is maintained at a constant required output power.
  • the supply power Pa or the output power Po can be detected by a voltage sensor and a current sensor.
  • the first control device 411 When performing battery output fluctuation control, the first control device 411 individually generates commands a (commands a1, a2, a3, a4) that change the output power of the fuel cell so that the power Pa supplied to the outside from the output line 17 is maintained at a constant required output power, and transmits these to each of the power generation devices 451, etc.
  • the second control device 421 changes the output power p1 of the fuel cell 441 by operating the auxiliary device 431 according to a command a1 generated so that the supply power Pa is maintained at a constant required output power.
  • the second control device 422 changes the output power p2 of the fuel cell 442 by operating the auxiliary device 432 according to a command a2 generated so that the supply power Pa is maintained at a constant required output power.
  • the second control device 423 changes the output power p3 of the fuel cell 443 by operating the auxiliary device 433 according to a command a3 generated so that the supply power Pa is maintained at a constant required output power.
  • the second control device 424 changes the output power p4 of the fuel cell 444 by operating the auxiliary device 434 according to a command a4 generated so that the supply power Pa is maintained at a constant required output power.
  • the second control device 421 changes the output power p1 of the fuel cell 441 so that the output power P1 of the power generation device 451 becomes the output set value instructed by command a1 by operating the auxiliary device 431 so that the amount of air and hydrogen corresponding to the output current of the power generation device 451 is supplied to the fuel cell 441.
  • the second control device 422 changes the output power p2 of the fuel cell 442 so that the output power P2 of the power generation device 452 becomes the output set value instructed by command a2 by operating the auxiliary device 432 so that the amount of air and hydrogen corresponding to the output current of the power generation device 452 is supplied to the fuel cell 442.
  • the second control device 423 changes the output power p3 of the fuel cell 443 so that the output power P3 of the power generation device 453 becomes the output set value instructed by command a3 by operating the auxiliary device 433 so that the amount of air and hydrogen corresponding to the output current of the power generation device 453 is supplied to the fuel cell 443.
  • the second control device 424 operates the auxiliary device 434 so that an amount of air and an amount of hydrogen corresponding to the output current of the power generation device 454 are supplied to the fuel cell 444, thereby changing the output power p4 of the fuel cell 444 so that the output power P4 of the power generation device 454 becomes the output set value instructed by command a4.
  • the output powers p1, p2, p3, and p4 of the fuel cell 441 and the like are increased or decreased while the power supply Pa from the output line 17 to the outside is maintained at an approximately constant value.
  • the humidity distribution imbalance within the cell surface of the fuel cell 441 and the like is reduced compared to the case where the output powers p1, p2, p3, and p4 are always controlled to be constant.
  • the first control device 411 performing the cell output fluctuation control to increase or decrease the output powers p1, p2, p3, and p4 so that the supply power Pa is maintained at an approximately constant value, an approximately constant power supply is ensured and deterioration of the fuel cell 441 and the like is suppressed. Suppression of deterioration of the fuel cell 441 and the like contributes to improving the durability of the fuel cell power generation system 401. This allows fuel cell units such as the fuel cell 441 to be effectively refreshed.
  • a power generation system using a fuel cell is equipped with a control device for controlling operation stop, load changes, and equipment (auxiliary equipment) other than the fuel cell. Since there is a limit to the power that a single fuel cell can output, multiple fuel cells must be operated in parallel to generate the output required by the system using a fuel cell. Furthermore, the required output differs depending on the product to which it is applied, so the number of fuel cells and the performance of the auxiliary equipment change according to the required output. Therefore, when controlling the entire system with one control device, the content of the wide-ranging software, such as "load change and start/stop control of each fuel cell” and “calculation according to the overall output and command control to each auxiliary equipment", differs depending on the product to which it is applied.
  • the content of the software such as "schedule control of refresh operation of each fuel cell" also differs depending on the product to which it is applied. In this way, when controlling the entire system with one control device, there is a risk that the maintainability and functional scalability of the entire system will decrease because there is a limit to the content that can be implemented in one control device.
  • the role of the first control device 411 is separated from the role of the second control devices 421, 422, 423, and 424.
  • the second control devices 421, 422, 423, and 424 which are lower in rank than the first control device 411, control the power generation of the fuel cells assigned to them. For this reason, the control content of the second control device can be determined in advance at the design stage, etc. Therefore, even if the number of fuel cells increases, the same software can be used between multiple second control devices, improving the maintainability of the entire system.
  • the first control device 411 software may be changed depending on the number of fuel cells and the performance of the auxiliary devices.
  • the lower second control device operates the auxiliary devices for controlling the power generation of the fuel cells
  • the range of changes to the software of the first control device is smaller than when one control device controls the entire system, improving the expandability of functions.
  • FIG. 2 by adding power generation devices 455 and 456 that include a second control device having the same software as other second control devices, together with the auxiliary devices and fuel cells, it is possible to easily respond to an increase in the required output power of the fuel cell power generation system 401.
  • the first control device 411 judges whether a first condition (hereinafter also referred to as a permission condition) including a condition for permitting a low load state of the fuel cell 441 of the power generation device 451 is satisfied. If the permission condition is satisfied, the first control device 411 permits the transition of the fuel cell 441 to a low load state by operating the auxiliary device 431, and if the permission condition is not satisfied, the first control device 411 prohibits the transition of the fuel cell 441 to a low load state. If the permission condition is satisfied, it is possible to transition the fuel cell 441 to a low load state.
  • a first condition hereinafter also referred to as a permission condition
  • the first control device 411 recovers the performance degradation of the fuel cell 441 by performing a refresh operation that temporarily transitions the fuel cell 441 to a low load state.
  • the first control device 411 similarly judges whether the permission condition is satisfied for the other fuel cells 442, etc., and performs a refresh operation that temporarily transitions the fuel cell for which the permission condition is satisfied to a low load state. This recovers the performance degradation of the fuel cell.
  • the first control device 411 judges whether a second condition (hereinafter also referred to as an abnormal condition) is satisfied, which includes a condition for judging the load state of the fuel cell 441 to be an abnormal low-load state. If the abnormal condition is satisfied, the first control device 411 operates the auxiliary device 431, etc. to transition the load state of the fuel cell 441 from the abnormal low-load state. If the abnormal condition is not satisfied, the first control device 411 judges that the low-load state of the fuel cell 441 is not abnormal, and continues the low-load state of the fuel cell 441.
  • a second condition hereinafter also referred to as an abnormal condition
  • the first control device 411 similarly judges whether the abnormal condition is satisfied for the other fuel cells 442, etc., and transitions the load state of the fuel cell for which the abnormal condition is satisfied from the abnormal low-load state. This suppresses the performance degradation of the fuel cell due to the continuation of the low-load state.
  • the low load state of the fuel cell 441, etc. is appropriately controlled, so that the performance degradation of the fuel cell 441, etc. is suppressed.
  • the first control device 411 has logic for distinguishing between a low-load state when the performance of the fuel cell 441 etc. is restored by temporarily transitioning the fuel cell 441 etc. to a low-load state and an abnormal low-load state caused by an abnormality or operational error of the fuel cell power generation system.
  • the first control device 411 monitors the operating state of the fuel cell 441, such as the load state, and operates with a control logic having a flag that permits a low-load state (permission flag) and a flag that judges an abnormal low-load state (abnormal flag). This determines whether or not to permit a transition to a refresh operation that temporarily transitions the fuel cell 441 etc. to a low-load state, and a system that does not allow the abnormal low-load state to continue is constructed.
  • the first control device 411 asserts the permission flag when the above permission conditions are met, and negates the permission flag when the above permission conditions are not met.
  • the first control device 411 asserts the abnormality flag when the above abnormality conditions are met, and negates the abnormality flag when the above abnormality conditions are not met.
  • FIG. 3 is a timing chart for explaining the first condition (permission condition) and the second condition (abnormal condition).
  • FIG. 3 illustrates a case where the first control device 411 operates the fuel cell in a refresh operation that is performed in the order of a first high-load operation, an idling operation, and a second high-load operation.
  • the first high-load operation is an operation that temporarily increases the output power of the fuel cell above a predetermined constant power value.
  • the idling operation is an operation that temporarily puts the output power of the fuel cell into a low-load state.
  • the second high-load operation is an operation that temporarily increases the output power of the fuel cell above a constant power value.
  • a low load state refers to a state in which the output power of the fuel cell or the output power of the power generation device is zero or very small.
  • the low load state may be an output state of 0% to 20% of the rated output of the fuel cell (rated value such as output power p1) or the rated output of the power generation device (rated value such as output power P1), an output state of 0% to 10%, or an output state of 0% to 5%.
  • a low load state may include a no-load state in which the output power of the fuel cell or the power generation device is zero. "No-load" in the drawings may be replaced with "low load”.
  • the first control device 411 when the first control device 411 detects the first high-load operation of the fuel cell 441, it determines that the permission conditions for the fuel cell 441 are met and asserts the permission flag of the fuel cell 441. When the permission flag of the fuel cell 441 is asserted, the first control device 411 performs a refresh operation to temporarily transition the fuel cell 441 to a low-load state for a predetermined low-load time Tn. The first control device 411 processes the permission flags of the other fuel cells 442, etc. in the same manner.
  • the first control device 411 detects a low-load state longer than the predetermined low-load time Tn for the fuel cell 441, it determines that an abnormality condition for the fuel cell 441 has been established and asserts an abnormality flag for the fuel cell 441.
  • the first control device 411 stops power generation by the fuel cell 441 in order to transition the fuel cell 441 from the abnormal low-load state.
  • the first control device 411 processes the abnormality flags for the other fuel cells 442, etc. in the same manner.
  • the first control device 411 determines that this is an abnormal low load state, and the continuation of the abnormal low load state can be avoided.
  • FIG. 4 is a table illustrating the types of flags (permission flags) that permit a low load state.
  • the permission flag may be asserted when a command is issued to perform a refresh operation that temporarily transitions the load state of the fuel cell to a low load state to improve the characteristics of the fuel cell (first permission condition).
  • the permission flag may be asserted when a user manually instructs the fuel cell to transition to a low load state (second permission condition).
  • the permission flag may be asserted when a certain range of output power of the fuel cell rises above the certain range (third permission condition).
  • the permission flag may be asserted when a certain range of output power continues for a predetermined time or more (fourth permission condition).
  • the permission flag may be asserted when multiple permission conditions are satisfied.
  • FIG. 5 is a table showing examples of types of flags (abnormality flags) that determine an abnormally low load state.
  • the abnormality flag may be asserted when a main condition is satisfied, or when a main condition and a sub-condition are satisfied.
  • the abnormality flag may be asserted when the low load state of the fuel cell continues for a predetermined time or more set by a timer (first abnormality condition). Alternatively, the abnormality flag may be asserted when the output voltage of the fuel cell in a low load state rises to or exceeds a predetermined set value (second abnormality condition). The abnormality flag may be asserted when both the first abnormality condition and the second abnormality condition are satisfied.
  • the abnormality flag may be asserted when at least one of the first abnormality condition and the second abnormality condition is satisfied, and a first sub-condition is satisfied in which the power generation efficiency of the fuel cell falls beyond a predetermined range.
  • the abnormality flag may be asserted when at least one of the first abnormality condition and the second abnormality condition is satisfied, and a second sub-condition is satisfied in which the voltage of the power storage device 14 falls beyond a predetermined range.
  • the abnormality flag may be asserted when at least one of the first abnormality condition and the second abnormality condition is satisfied, and a third sub-condition is satisfied in which the temperature of the fuel cell power generation system (e.g., the fuel cell or its surrounding temperature), the pressure of the air supplied to the fuel cell, or the flow rate of the fuel cell coolant falls beyond a predetermined range.
  • the temperature of the fuel cell power generation system e.g., the fuel cell or its surrounding temperature
  • FIG. 6 shows several examples of processing that can be performed after the load state of the fuel cell is determined to be an abnormally low load state.
  • the first control device 411 may execute the following control processing.
  • the first control device 411 stops power generation of a fuel cell among the multiple fuel cells for which an abnormal condition exists (see ⁇ Stop> in Figure 6). By stopping power generation of the fuel cell, the load state of the fuel cell can be transitioned from an abnormal low load state. This prevents the performance of the fuel cell from deteriorating due to a continued low load state.
  • the first control device 411 adjusts the load on the fuel cell in which the abnormal condition is satisfied so that the power supply Pa from the output line 17 to the outside is maintained constant, thereby increasing the output power of the fuel cell above the low load state (see ⁇ Output Adjustment A> in FIG. 6).
  • the abnormal condition is no longer satisfied and the load state of the fuel cell can be transitioned from the abnormal low load state. This suppresses the deterioration of the performance of the fuel cell due to the continuation of the low load state.
  • the first control device 411 can maintain the supply power Pa constant even if the output power of the fuel cell is increased above the low load state by greatly adjusting the load on the fuel cell in which the abnormal condition is satisfied (for example, the power consumption of the device connected to the output line 17). For example, the first control device 411 increases the output power of the fuel cell in which the abnormal condition is satisfied to a power range higher than 10% and lower than 15% of the rated output of the fuel cell or power generation device.
  • the first control device 411 increases the output power of a fuel cell among the multiple fuel cells for which an abnormal condition is established above the low load state, and decreases the output power of a fuel cell among the multiple fuel cells for which an abnormal condition is not established, so that the supply power Pa is maintained constant (see ⁇ Output Adjustment B> in FIG. 6).
  • the abnormal condition is no longer established and the load state of the fuel cell can be transitioned from the abnormal low load state. This suppresses the deterioration of the performance of the fuel cell due to the continuation of the low load state.
  • the first control device 411 can maintain the supply power Pa constant even if the output power of the fuel cell for which an abnormal condition is established is increased above the low load state. For example, the first control device 411 increases the output power of the fuel cell for which an abnormal condition is established to a power range higher than 10% and lower than 15% of the rated output of the fuel cell or power generation device.
  • FIG. 7 is a diagram showing an example of a sequence for determining an abnormal low-load state.
  • the first control device 411 constantly monitors the load state of the fuel cell 441, etc., and monitors whether the load state is a low-load state.
  • the first control device 411 determines whether the above abnormal condition is satisfied (whether the state is abnormally low-load state or not) (step S113). If the above abnormal condition is satisfied in step S113, the first control device 411 asserts an abnormality flag of the fuel cell among the multiple fuel cells for which the abnormality condition is satisfied (step S115).
  • the first control device 411 releases the low-load state of the fuel cell for which the abnormality flag is asserted (step S117). For example, the first control device 411 stops the power generation of the fuel cell for which the abnormality flag is asserted, or increases the output power of the fuel cell for which the abnormality flag is asserted, as described above, to transition the fuel cell from the abnormal low-load state. When the above abnormal condition is no longer satisfied as a result of the processing of step S117, the first control device 411 negates the abnormality flag (step S119).
  • FIG. 8 is a diagram showing an example of a sequence for permitting a low-load state.
  • the first control device 411 determines whether the abnormality flag controlled in the sequence of FIG. 7 is asserted or not. If the abnormality flag is not asserted (if the abnormality flag is negated), the first control device 411 transitions the control state to the state of steps S122, S123, and S124. In steps S122, S123, and S124, the first control device 411 determines whether to permit a low-load state. The first control device 411 permits a low-load state only if the above-mentioned specific permission conditions are met. If the specific permission conditions are met, the first control device 411 asserts the permission flag (step S125).
  • the first control device 411 maintains the low-load state until a predetermined time continues (step S126), and negates the permission flag when the predetermined time has elapsed (step S127). As a result, the low load state is prohibited, and the first control device 411 transitions the fuel cell from the low load state.
  • FIG. 9 is a flowchart showing an example of the control process executed by the first control device 411 and the second control devices 421, 422, 423, and 424 in the fuel cell power generation system 401.
  • step S10 the first control device 411 performs a process of generating commands a (commands a1, a2, a3, a4) that indicate the output setting values of the output powers P1, P2, P3, P4 of the power generation devices 451, etc., according to the required output power of the fuel cell power generation system 401.
  • step S20 the first control device 411 transmits the commands a (commands a1, a2, a3, a4) generated in step S10 to each of the power generation devices 451, etc.
  • step S30 the second control device 421 receives a command a1 generated to maintain the supply power Pa at a constant required output power.
  • the second control device 422 receives a command a2 generated to maintain the supply power Pa at a constant required output power.
  • the second control device 423 receives a command a3 generated to maintain the supply power Pa at a constant required output power.
  • the second control device 424 receives a command a4 generated to maintain the supply power Pa at a constant required output power.
  • step S31 the second control device 421 controls the power generation of the fuel cell 441 by operating the auxiliary device 431 so that the output power P1 of the power generation device 451 becomes the output set value specified by command a1.
  • the second control device 422 controls the power generation of the fuel cell 442 by operating the auxiliary device 432 so that the output power P2 of the power generation device 452 becomes the output set value specified by command a2.
  • the second control device 423 controls the power generation of the fuel cell 443 by operating the auxiliary device 433 so that the output power P3 of the power generation device 453 becomes the output set value specified by command a3.
  • the second control device 424 controls the power generation of the fuel cell 444 by operating the auxiliary device 434 so that the output power P4 of the power generation device 454 becomes the output set value specified by command a4.
  • FIG. 10 is a flowchart showing an example of the command generation process (the process of step S10 in FIG. 9 described above) executed by the first control device 411.
  • step S11 the first control device 411 judges whether each of the power generation devices 451, etc. can be operated.
  • the first control device 411 detects the status of each of the power generation devices 451, etc., such as an abnormality or a maintenance deadline, based on information acquired from each of the second control devices 421, 422, 423, 424, for example.
  • the first control device 411 judges the power generation devices 451, etc., in which an abnormality or a maintenance deadline has been detected, as inoperable, and judges the power generation devices in which no abnormality or a maintenance deadline has been detected, as operable.
  • step S12 the first control device 411 calculates the maximum output power that the fuel cell power generation system 401 can generate based on the number of power generation devices determined to be operable (operable number), and calculates the output setting value of the output power of each power generation device determined to be operable.
  • the output power required for the fuel cell power generation system 401 is required to be within the maximum output power. If the output power required for the fuel cell power generation system 401 exceeds the maximum output power, the first control device 411 notifies an error.
  • the first control device 411 sets the output setting value of each output power P1, P2, P3, P4 of the power generation device 451, etc., to a value obtained by dividing the required output power by the number of operable units.
  • the first control device 411 may set the output setting value of one or more operable power generation devices to the rated power of the power generation device based on a predetermined setting order, and set the output setting value of one power generation device to (required output power - the sum of the output setting values of the other power generation devices).
  • the method of calculating the output setting value of the output power of each power generation device is not limited to these.
  • step S13 the first control device 411 generates a command a (commands a1, a2, a3, a4) that indicates the output setting value of the output power of each power generation device calculated in step S12.
  • the second control device of each power generation device controls the power generation of the fuel cell by operating each auxiliary device according to these commands a1, a2, a3, a4.
  • the role of the first control device 411 is separated from the roles of the second control devices 421, 422, 423, and 424, improving maintainability and expandability.
  • Fig. 11 is a diagram showing a third configuration example of a fuel cell power generation system.
  • the fuel cell power generation system 402 shown in Fig. 11 differs from the fuel cell power generation system 401 shown in Fig. 2 in that it includes a third control device 461 that is higher in level than the first control devices 411 and 412. This ensures maintainability and expandability even if the required output power of the fuel cell power generation system increases further.
  • fuel cell power generation system 402 includes multiple (two in this example) systems 471, 472, each having multiple power generation devices and a first control device.
  • System 471 includes multiple (four in this example) power generation devices 451, 452, 453, 454, an auxiliary system 301, and a first control device 411.
  • System 472 includes multiple (three in this example) power generation devices 455, 456, 457, an auxiliary system 302, and a first control device 412. Each component in system 472 has the same function as each component in system 471.
  • the third control device 461 is a top-level controller that controls the operation of each of the systems 471 and 472.
  • the third control device 461 individually generates commands b (commands b1 and b2) that indicate the operation content of the systems 471 and 472, and transmits them to each of the systems 471 and 472.
  • the third control device 461 determines the constant power value that each of the systems 471, 472 should maintain, for example, according to the power (required output power) required of the fuel cell power generation system 402 as the power to be output to the output line 17.
  • the third control device 461 transmits a command b (commands b1, b2) including information on the constant power value to each of the systems 471, 472.
  • the first control device 411 transmits commands a (commands a1, a2, a3, a4) to each of the power generation devices 451, 452, 453, 454 so that the supply power Pa is maintained at the constant power value.
  • the first control device 412 transmits commands a (commands a5, a6, a7) generated so that the supply power Pa is maintained at the constant power value to each of the power generation devices 455, 456, 457.
  • the second control device 425 controls the power generation of the fuel cell 445 by operating the auxiliary device 435 so that the output power P5 of the power generation device 455 becomes the output set value instructed by command a5.
  • the second control device 426 controls the power generation of the fuel cell 446 by operating the auxiliary device 436 so that the output power P6 of the power generation device 456 becomes the output set value instructed by command a6.
  • the second control device 427 controls the power generation of the fuel cell 447 by operating the auxiliary device 437 so that the output power P7 of the power generation device 457 becomes the output set value instructed by command a7.
  • the fuel cell power generation system 402 of this embodiment has maintainability and expandability, similar to the fuel cell power generation system 401. Furthermore, the fuel cell power generation system 402 allows maintenance and management on a system basis, including multiple power generation devices.
  • FIG. 12 is a flowchart showing an example of the control process executed by the first control devices 411, 412, the second control devices 421, 422, 423, 424, 425, 426, 427, and the third control device 461 in the fuel cell power generation system 402 shown in FIG. 11.
  • step S40 the third control device 461 performs a process of generating command b (commands b1, b2) that indicates the output set value (constant power value) of each output power of the systems 471, 472 according to the required output power of the fuel cell power generation system 402.
  • the process of step S40 can be performed by using the generation process shown in FIG. 10 by replacing the power generation device with a system in FIG. 10.
  • step S50 of FIG. 12 the third control device 461 transmits the command b (commands b1, b2) generated in step S40 to each of the systems 471, 472.
  • the first control device 411 receives a command b1 generated so that the supply power Pa is maintained at a constant required output power.
  • the first control device 412 receives a command b2 generated so that the supply power Pa is maintained at a constant required output power.
  • the processing content thereafter may be the same as the control processing shown in FIG. 9.
  • each of the multiple second control devices 421 etc. operates the auxiliary devices according to command a to change the output power of the fuel cell so that the supply power Pa is maintained at a constant required output power.
  • each of the multiple second control devices 421 etc. temporarily reduces the output voltage or output power of the fuel cell, or temporarily stops the fuel cell. This makes it possible to improve characteristics (e.g., output voltage characteristics) that have deteriorated due to continuous operation of the fuel cell, while maintaining the supply power Pa at an approximately constant value.
  • Refresh operation is an operation in which dry areas that occur on the cell surface of a fuel cell as a result of continuous operation, for example, are moistened by following steps 1 to 4 below. Dry areas can cause the battery characteristics to deteriorate.
  • Step 1 Temporarily increase the output power of the fuel cell above a predetermined constant power value (first high-load operation). By performing the first high-load operation, the amount of moisture within the cell surface of the fuel cell can be increased by generating water.
  • Step 2 Temporarily set the fuel cell's output power to zero (idling operation). By temporarily setting the output power to 0kW (idling state) through idling operation, the generated water can be made uniform across the cell surface of the fuel cell.
  • Step 3 Temporarily increase the output power of the fuel cell above a predetermined constant power value (second high-load operation). By temporarily transitioning from an idling state to the second high-load operation, the amount of moisture within the cell surface of the fuel cell can be increased.
  • Step 4 Return the fuel cell output power to a predetermined constant power value.
  • the fuel cell power generation system 401, etc., during refresh operation may compensate for fluctuations in the supply power Pa caused by the implementation of the first high-load operation, idling operation, and second high-load operation by using an auxiliary power source such as an attached power storage device 14.
  • an auxiliary power source such as an attached power storage device 14.
  • the storage battery has a storage capacity capable of absorbing the power Pb input and output during refresh operation.
  • FIG. 13 is a flowchart showing an example of control processing during refresh operation.
  • the processing device during refresh operation can be applied to any of the fuel cell power generation systems 400, 401, and 402. In the following explanation, the fuel cell power generation system 401 will be used as an example.
  • the first control device 411 When starting refresh operation, the first control device 411 performs the processing of steps S60 and S70.
  • step S70 the first control device 411 sets the operating conditions of the auxiliary system 301, such as the cooling system, to the conditions during refresh operation. This is because the output power of each fuel cell is varied during refresh operation.
  • step S60 the first control device 411 performs a process for setting the refresh operation machine.
  • the process for setting the refresh operation machine includes a process for selecting a power generation device that will perform the refresh operation from among multiple power generation devices connected in parallel.
  • FIG. 14 is a flowchart showing an example of a process for setting a refresh operation machine.
  • the power generation device X represents one or more of the multiple power generation devices connected in parallel.
  • the first control device 411 selects the power generation device X to perform the refresh operation from the multiple power generation devices connected in parallel based on a predetermined selection condition such as a selection order.
  • step S61 the first control device 411 sets to on the refresh operation implementation flag of the power generation device X, among the multiple power generation devices connected in parallel, for which the interval count of the refresh operation has been incremented.
  • step S62 the first control device 411 starts the interval count of the refresh operation of the power generation device X for which the refresh operation has ended (initializes the interval counter). This causes the refresh operation of the power generation device X to be performed at a predetermined time interval.
  • step S80 of FIG. 13 the first control device 411 increments the interval counter for the refresh operation.
  • step S81 the first control device 411 individually generates commands a (commands a1, a2, a3, a4) to change the output power of the fuel cell to the output set value so that the supply power Pa is maintained at a constant required output power during the refresh operation, and transmits these to each of the power generation devices 451, etc.
  • step S90 the second control device 421 etc. receives command a generated so that the supply power Pa is maintained at a constant required output power during refresh operation.
  • the second control device 421 etc. performs refresh operation in accordance with command a.
  • FIG. 15 is a flowchart showing an example of the refresh operation process.
  • the second control device in the power generation device X performs the processes of steps S91 to S98 at a timing according to command a from the first control device 411.
  • the second control device in the power generation device X increases the output power of the fuel cell from a predetermined constant power value pX4 and sets it to output power pX1 (step S91), and after a timer count (step S92), reduces the output power of the fuel cell and sets it to output power pX2 (step S93). After a timer count (step S94), the second control device in the power generation device X increases the output power of the fuel cell from output power pX2 and sets it to output power pX3 (step S95).
  • FIG. 17 is a diagram showing a first example of a pattern for implementing refresh operation when four power generation devices are connected in parallel.
  • FIG. 17 shows a case in which the periods during which refresh operation is performed do not overlap among multiple power generation devices.
  • Power generation device 451 performs refresh operation during refresh operation period Tr1
  • power generation device 452 performs refresh operation during refresh operation period Tr2.
  • FIG. 17 shows the refresh operation in which the output power is changed in steps 1 to 4 above.
  • the output power temporarily increases from 45 kW to 60 kW.
  • the output power temporarily decreases from 60 kW to 0 kW.
  • the output power temporarily increases from 0 kW to 60 kW. After these operations are performed in this order, the output power returns from 60 kW to 45 kW.
  • Each of the multiple second control devices 421, etc. changes the output power of each fuel cell as shown in FIG. 17 in accordance with command a (commands a1, a2, a3, a4) that changes the output power of the fuel cell so that the supply power Pa is maintained at a constant required output power.
  • command a commands a1, a2, a3, a4 that changes the output power of the fuel cell so that the supply power Pa is maintained at a constant required output power.
  • This causes the supply power Pa to be maintained at a substantially constant 180 kW as shown in FIG. 16. Therefore, with the supply power Pa maintained at a substantially constant value, it becomes possible to improve the characteristics that have deteriorated due to continuous operation of the fuel cell.
  • FIG. 18 is a diagram showing a second example of a pattern for implementing refresh operation when four power generation units are connected in parallel.
  • FIG. 18 shows a case where the periods during which refresh operation is performed overlap between multiple power generation units.
  • Power generation units 451, 452, 453, and 454 complete the implementation of refresh operation in refresh operation period Tr0. Refresh operation is performed in the order of power generation units 451, 452, 453, and 454.
  • FIG. 18, like FIG. 17, shows refresh operation in which the output power is changed in steps 1 to 4 above.
  • Each of the multiple second control devices 421, etc. changes the output power of the fuel cell as shown in FIG. 18 in accordance with command a (commands a1, a2, a3, a4) which changes the output power of the fuel cell so that the supply power Pa is maintained at a constant required output power.
  • command a commands a1, a2, a3, a4 which changes the output power of the fuel cell so that the supply power Pa is maintained at a constant required output power.
  • FIG. 19 is a diagram showing a first example of an implementation pattern of refresh operation when a power storage device 14 is combined with four parallel power generation devices.
  • FIG. 19 shows a case where the periods during which refresh operation is performed do not overlap among multiple power generation devices.
  • Power generation device 451 performs refresh operation in refresh operation period Tr1
  • power generation device 452 performs refresh operation in refresh operation period Tr2.
  • power generation device 453 performs refresh operation in refresh operation period Tr3
  • power generation device 454 performs refresh operation in refresh operation period Tr4.
  • FIG. 19 shows a refresh operation in which the output power is changed in steps 1 to 4, as in FIG. 17.
  • Each of the second control devices 421, etc. changes the output power of the fuel cell as shown in FIG. 19 in accordance with command a (commands a1, a2, a3, a4) that changes the output power of the fuel cell so that the supply power Pa is maintained at a constant required output power.
  • the power storage device 14 maintains the supply power Pa at a constant required output power by absorbing the increase in the output power of the fuel cell during the first high-load operation and the second high-load operation.
  • the power storage device 14 maintains the supply power Pa at a constant required output power by discharging the decrease in the output power of the fuel cell during the idling operation. This makes it possible to improve the characteristics that have deteriorated due to continuous operation of the fuel cell while maintaining the supply power Pa at a substantially constant value, as shown in FIG. 16.
  • FIG. 20 is a diagram showing a second example of a pattern for implementing refresh operation when a power storage device is combined with four parallel power generation devices.
  • FIG. 20 shows a case in which the periods during which refresh operation is performed overlap between multiple power generation devices.
  • Power generation devices 451, 452, 453, and 454 complete the implementation of refresh operation in refresh operation period Tr0. Refresh operation is performed in the order of power generation devices 451, 452, 453, and 454.
  • FIG. 20, like FIG. 17, shows refresh operation in which the output power is changed in steps 1 to 4 above.
  • Each of the multiple second control devices 421, etc. changes the output power of each fuel cell as shown in FIG. 20 in accordance with command a (commands a1, a2, a3, a4) which changes the output power of the fuel cell so that the supply power Pa is maintained at a constant required output power.
  • the power storage device 14 maintains the supply power Pa at a constant required output power by changing the power Pb by the amount of fluctuation in the supply power Pa due to an increase or decrease in the output power of each fuel cell. This makes it possible to improve the characteristics that have deteriorated due to continuous operation of the fuel cell while maintaining the supply power Pa at an approximately constant value, as shown in FIG. 16.
  • Fig. 21 is a table illustrating the relationship between the number of power generation devices connected in parallel and the output power of the power generation device.
  • the number of power generation devices connected in parallel is n
  • the rated output of one power generation device is A.
  • n is an integer of 2 or more.
  • Fig. 21 illustrates the case where the rated output is 60 kW.
  • the maximum supply power Pa that can be obtained during idling operation when the output power of one of the multiple power generation devices is zero is A x (n-1).
  • a x (n-1) The maximum supply power Pa that can be obtained during idling operation when the output power of one of the multiple power generation devices is zero.
  • the first control device generates a command a that changes the output power of the fuel cell so that the supply power Pa is maintained at a constant required output power that is equal to or less than A x (n-1).
  • the average output power B of one power generation device is expressed as A x (n-1)/n.
  • the output difference C between the output power during first high load operation and the average output power B decreases as the number n of parallel units increases.
  • the output difference C corresponds to the difference between the output power value during first high load operation of one power generation unit and a predetermined constant power value. If the output difference C decreases, it becomes difficult to ensure a sufficient amount of water generated within the cell surface. In view of these, in constant output operation using refresh operation, it is necessary to satisfy the conflicting demands of increasing the number n of parallel units in terms of increasing the supply power Pa, and reducing the number n of parallel units in terms of ensuring the output difference C.
  • FIG. 22 shows data illustrating the range of the number of parallel units suitable for using refresh operation.
  • A represents the rated output of one power generation device.
  • Increasing the number of parallel units n increases the average output power B and decreases the output difference C.
  • D be the first threshold and E be the second threshold smaller than the first threshold.
  • the number of parallel units n is such that B/A is equal to or greater than D and C/A is equal to or less than E, then an increase in the supply power Pa and securing the output difference C can both be achieved.
  • the number n is preferably 4 to 10.
  • Fig. 23 is a diagram showing a specific configuration example of a fuel cell power generation system including the fuel cell power generation device of the first embodiment.
  • the fuel cell power generation system 201 shown in Fig. 23 is a system that supplies power generated by a plurality of FC (fuel cell) platforms connected in parallel to an external device 12 that is a power supply target.
  • Specific examples of applications of the fuel cell power generation system 201 include a stationary power generation system and a power generation system for a mobile body (for example, a vehicle, an aircraft, a railway, a ship, etc.). More specifically, there are power generation systems for cargo handling machines such as port cranes, and construction machines.
  • Applications of the fuel cell power generation system 201 are not limited to these examples, and the fuel cell power generation system 201 may be applied to other applications.
  • the fuel cell power generation system 201 includes a fuel cell power generation device 101 and an auxiliary system 301.
  • the fuel cell power generation system 201 is a specific example of the fuel cell power generation system 401 described above.
  • the auxiliary system 301 is a peripheral system that includes multiple auxiliary devices connected to the fuel cell power generation apparatus 101, which is the main unit, and assists the operation of the fuel cell power generation apparatus 101.
  • FIG. 23 shows examples of multiple auxiliary devices, including a control power supply 32, piping 121, fuel system 18, air supply system 19, output line 17, power conversion device 11, DC/DC converter 13, power storage device 14, exhaust system 31, ventilation device 132, and cooler 15.
  • Some or all of the multiple auxiliary devices may be built into the fuel cell power generation apparatus 101, or may be unitized.
  • the fuel cell power generation apparatus 101 may include some or all of the multiple auxiliary devices inside the fuel cell power generation apparatus 101, or outside the fuel cell power generation apparatus 101.
  • the fuel cell power generation device 101 generates power to be supplied to an external device 12 using multiple FC platforms.
  • the fuel cell power generation device 101 may be unitized.
  • the fuel cell power generation device 101 includes multiple FC platforms (in this example, three FC platforms 1, 2, and 3) connected in parallel to an output line 17, and a control device 10 that controls the multiple FC platforms.
  • the number of multiple FC platforms connected in parallel is not limited to three, and may be two, four, or more.
  • FC platforms 1, 2, and 3 each include an FC stack connected to a common output line 17 via an output point 16.
  • the FC stack is an example of a fuel cell.
  • FC platform 1 includes an FC stack 21
  • FC platform 2 includes an FC stack 22
  • FC platform 3 includes an FC stack 23.
  • the FC platform 1 etc. is an example of the above-mentioned power generation device 451 etc.
  • the FC stack 21 etc. is an example of the above-mentioned fuel cell 441 etc.
  • the control device 10 is an example of the above-mentioned first control device 411 etc. or the above-mentioned second control device 421 etc.
  • the FC stacks 21, 22, and 23 are devices that electrochemically convert the chemical energy of fuels such as hydrogen into electrical energy.
  • the FC stacks 21, 22, and 23 generate electricity through an electrochemical reaction between hydrogen (which may include hydrogen-rich gas) supplied via a fuel system 18 including a fuel pipe and oxygen contained in air supplied from the outside via an air supply system 19 including an air pipe.
  • the power generation state of the FC stacks 21, 22, and 23 (FC platforms 1, 2, and 3) is controlled by the control device 10.
  • Exhaust gas generated by the electrochemical reaction of the FC stacks 21, 22, and 23 is discharged via an exhaust system 31 including an exhaust pipe.
  • the FC stacks 21, 22, and 23 are cooled by cooling water (coolant) supplied from a cooler 15 such as a radiator.
  • the FC stacks 21, 22, and 23 are, for example, polymer electrolyte fuel cells (PEFCs) and have a stack structure in which many single cells are stacked.
  • the single cell has a membrane-electrode assembly (MEA) in which both sides of a polymer electrolyte membrane for selectively transporting hydrogen ions are sandwiched between a pair of electrodes formed of a porous material, and a pair of separators that sandwich the MEA from both sides.
  • MEA membrane-electrode assembly
  • Each of the pair of electrodes has a catalyst layer mainly composed of carbon powder that supports a platinum-based metal catalyst (electrode catalyst), for example, and a gas diffusion layer that is both breathable and electronically conductive.
  • the FC stacks 21, 22, and 23 are fitted with voltage sensors for detecting the voltages at their output terminals, and current sensors for detecting the output currents from their output terminals.
  • the control device 10 obtains the detection values of the voltages output from the FC stacks 21, 22, and 23 using the voltage sensors, and obtains the detection values of the currents output from the FC stacks 21, 22, and 23 using the current sensors.
  • the control device 10 detects the output powers p1, p2, and p3 of the FC stacks 21, 22, and 23 using the detection values of the voltages and currents.
  • FC stacks 21, 22, 23 FC platforms 1, 2, 3 in the fuel cell power generation device 101 is supplied to the external device 12 via the power conversion device 11.
  • the power conversion device 11 is a device that converts input power Pa into power Pc that is supplied to the external device 12.
  • the power conversion device 11 is, for example, an inverter that converts DC power obtained by power generation in the FC stacks 21, 22, and 23 into AC power and supplies it to the external device 12.
  • inverters include a power conditioning system (PCS) and a grid-connected inverter.
  • PCS power conditioning system
  • the power conversion device 11 may be an inverter that drives the motor.
  • the power conversion device 11 may be a converter that converts the voltage of the DC power obtained by power generation in the FC stacks 21, 22, and 23 into DC power of a different voltage and supplies it to the external device 12.
  • the DC power obtained by power generation in the FC stacks 21, 22, 23 may be charged to the power storage device 14 connected to the output line 17 via the DC/DC converter 13.
  • the power Pb discharged from the power storage device 14 is supplied to the external device 12 via the power conversion device 11.
  • the power Pb input (regenerated) from the external device 12 via the power conversion device 11 may be charged to the power storage device 14.
  • the charging or discharging of the power storage device 14 is controlled by the DC/DC converter 13 that operates according to a drive control signal from the control device 10.
  • the DC/DC converter 13 may not be required.
  • the power storage device 14 may include a chargeable and dischargeable secondary battery.
  • the power storage device 14 may include a plurality of storage batteries 14 1 , ..., 14 n (n is an integer of 2 or more) connected in series.
  • Specific examples of the power storage device 14 include a lithium ion battery, a lithium ion capacitor, and an electric double layer capacitor.
  • the fuel system 18 may include a reforming device that reforms the hydrocarbon fuel supplied from the outside into hydrogen-rich gas.
  • the reforming device outputs hydrogen-rich gas produced by a reforming reaction of the hydrocarbon fuel to the hydrogen pipe.
  • the reforming device includes, for example, a desulfurizer that removes sulfur contained in the hydrocarbon fuel, a reformer that causes a reforming reaction of the desulfurized hydrocarbon fuel, and a CO remover that removes carbon monoxide (CO) generated during reforming.
  • Hydrocarbon fuels are not limited to city gas, but may also include methane gas, propane gas, digester gas derived from sewage sludge, etc., and biogas generated from food waste, etc.
  • the control device 10 is a controller that controls the operation of the FC platforms 1, 2, 3 and the auxiliary system 301.
  • the control device 10 operates, for example, with power (e.g., DC 12 volts direct current power) supplied from a control power source 32.
  • the control power source 32 is, for example, a control battery.
  • the number of control devices 10 is not limited to one, but may be multiple, and for example, a control device may be provided for each of the FC platforms 1, 2, 3.
  • the control device 10 may include the above-mentioned first control device 411, etc. or the above-mentioned second control device 421, etc.
  • FIG. 23 illustrates an example of a configuration in which the fuel cell power generation device 101 includes a control power supply 32 common to the FC platforms 1, 2, and 3.
  • the fuel cell power generation system 201 and the fuel cell power generation device 101 can be made smaller than in a configuration in which multiple control power supplies are provided.
  • the fuel cell power generation device 101 may be provided with individual control power supplies 32 for the FC platforms 1, 2, and 3. By providing multiple power supplies separately for the multiple FC platforms, even if some of the multiple control power supplies are unusable due to failure or maintenance, etc., the remaining power supplies can be used to continue operating some or all of the multiple FC platforms.
  • control device 10 (the processing performed by the control device 10) are realized, for example, by a processor such as a CPU (Central Processing Unit) operating according to a program stored in memory.
  • the functions of the control device 10 may also be realized by an FPGA (Field Programmable Gate Array) or an ASIC (Application Specific Integrated Circuit).
  • the fuel cell power generation device 101 includes, for example, a control device 10 and multiple FC platforms 1, 2, and 3.
  • the FC platform 1 includes, for example, a fuel pipe 118, an air pipe 119, an air filter 33, an exhaust pipe 131, a cooling system 36, and an FC unit 51.
  • the FC unit 51 includes an FC stack 21, a boost converter 42, a hydrogen pump 43, an air compressor 45, a water pump 44, an air inlet opening/closing valve 77, and an exhaust air outlet opening/closing valve 78, etc.
  • the boost converter 42, the hydrogen pump 43, the air compressor 45, the water pump 44, the air inlet opening/closing valve 77, and the exhaust air outlet opening/closing valve 78, etc. are controlled by the control device 10.
  • the FC platforms 2 and 3 have the same configuration and function as the FC platform 1, and are controlled by the control device 10 in the same manner as the FC platform 1. Therefore, the explanation of FC platforms 2 and 3 will be omitted, as the explanation of FC platform 1 will be used.
  • the FC stack 21 has a fuel electrode 71 and an air electrode 72.
  • the FC stack 21 generates electricity by an electrochemical reaction between hydrogen (which may include hydrogen-rich gas) supplied to the fuel electrode 71 and oxygen contained in the air supplied to the air electrode 72.
  • the FC stack 21 is connected to the output line 17 via a boost converter 42.
  • the boost converter 42 is a DC/DC converter that boosts the voltage output from the FC stack 21 and outputs the boosted DC power to the output line 17 via the output point 16.
  • the output power of the multiple FC stacks 21, 22, and 23 in the multiple FC platforms 1, 2, and 3 is output to a common output line 17 via the corresponding boost converters 42.
  • the fuel pipe 118 is supplied with hydrogen from a fuel system 18 that is commonly connected to the multiple FC platforms 1, 2, and 3.
  • the fuel pipe 118 supplies hydrogen to the fuel electrode 71 via a hydrogen inlet 75.
  • the fuel pipe 118 is an example of a first pipe that supplies hydrogen to the fuel electrode.
  • Air is supplied to the air pipe 119 from the air supply system 19 that is commonly connected to the multiple FC platforms 1, 2, and 3.
  • the air pipe 119 supplies air to the air electrode 72 of the FC stack 21 via the air inlet 73.
  • the air pipe 119 on the inlet side of the air filter 33 is not essential, and the air filter 33 may directly draw in air from the open parts of the FC platforms 1, 2, and 3.
  • the air pipe 119 is an example of a third pipe that supplies air to the air electrode.
  • the air filter 33 removes dust and impurities that may adversely affect the fuel cell from the air supplied through the air supply system 19, and supplies the air to the air compressor 45 through the air pipe 120.
  • the air filter is also called an air cleaner.
  • the air compressor 45 compresses the air supplied through the air filter 33 and supplies it to the air electrode 72 of the FC stack 21.
  • the oxygen-containing air compressed by the air compressor 45 is supplied to the air electrode 72 of the FC stack 21 via the air inlet 73.
  • the air inlet opening/closing valve 77 blocks the flow of air supplied from the air compressor 45 to the air inlet 73 of the air electrode 72.
  • the exhaust pipe 131 discharges exhaust gas generated in the FC stack 21 to an exhaust system 31 commonly connected to multiple FC platforms 1, 2, and 3.
  • the exhaust air outlet opening/closing valve 78 blocks the flow of off-gas discharged from the air outlet 74 of the air electrode 72 of the FC stack 21 to the exhaust pipe 131.
  • the cooling system 36 cools the FC stack 21 with a first cooling liquid such as cooling water.
  • the cooling system 36 has an intermediate heat exchanger 34 that exchanges heat with a cold heat source 39 to cool the first cooling liquid.
  • a water pump 44 circulates the first cooling liquid between the intermediate heat exchanger 34 and the FC stack 21.
  • the FC stack 21 is cooled by the first cooling liquid circulated by the water pump 44.
  • the intermediate heat exchanger 34 is a heat exchanger capable of exchanging heat between the first cooling liquid that cools the FC stack 21 and a different type of cold heat source 39.
  • the different types of cold heat sources 39 mean that the type of cold heat source 39 used does not matter.
  • the intermediate heat exchanger 34 can cool the first cooling liquid with any cold heat source 39, regardless of the type of cold heat source 39 used, thereby realizing a fuel cell power generation device 101 that can be used for various purposes such as those described above.
  • the intermediate heat exchanger 34 has a heat dissipation section 40 through which the first cooling liquid circulating in the cooling system 36 passes, and a heat receiving section 41 through which a heat medium passes to transfer heat between the cold heat source 39.
  • the heat medium supplied from the cold heat source 39 may be liquid or gas.
  • the first cooling liquid is cooled by dissipating heat from the heat dissipation section 40 to the heat receiving section 41 in the intermediate heat exchanger 34.
  • a specific example of the intermediate heat exchanger 34 is a plate heat exchanger, but the intermediate heat exchanger 34 is not limited to this.
  • the multiple intermediate heat exchangers 34 in the multiple FC platforms 1, 2, 3 may each exchange heat with a cold heat source 39 that is commonly connected to the multiple FC platforms 1, 2, 3. This allows the cold heat source 39 to be common between the multiple FC platforms 1, 2, 3, making it possible to reduce the size of the fuel cell power generation device 101. Note that the cold heat source 39 may be different between the multiple FC platforms 1, 2, 3.
  • the cooler 15 ( Figure 23) is an example of a cold heat source 39.
  • the cold heat source 39 can be, for example, an air-cooled cooler, an open cooling tower, a closed cooling tower, cooling water from a factory, drinking water, river water, seawater, the heat of vaporization of liquefied hydrogen, or the cold heat produced when compressed hydrogen expands.
  • the material of the heat receiving portion 41 of the intermediate heat exchanger 34 is, for example, a low-elution metal with a relatively low elution rate of metal ions (such as highly corrosion-resistant austenitic stainless steel (SUS316L)). If the heat medium in contact with the heat receiving portion 41 is seawater or the like, there is a risk that metal ions will elute from the heat receiving portion 41, depending on the material of the heat receiving portion 41. If the material of the heat receiving portion 41 is a low-elution metal such as the above, the restrictions on the heat medium supplied from the cold heat source 39 are relaxed, and the options for the cold heat source 39 increase. As a result, a fuel cell power generation device 101 that can be used for various applications such as those described above is realized.
  • a low-elution metal with a relatively low elution rate of metal ions such as highly corrosion-resistant austenitic stainless steel (SUS316L)
  • the first coolant can dissipate heat without having to extend the path through which the first coolant circulates to the cold heat source 39 outside the FC platform.
  • the path through which the first coolant circulates can be shortened, and the amount of expensive first coolant used to cool the fuel cell can be reduced. As a result, costs can be reduced.
  • the cooling system 36 may include an ion exchanger 35 that removes ions from the first cooling liquid. By removing ions from the first cooling liquid, an increase in the electrical conductivity of the first cooling liquid inputted and outputted to the FC stack 21 is suppressed, thereby suppressing electrical interference between the FC stack 21 and the first cooling liquid.
  • the use of the intermediate heat exchanger 34 suppresses the dissolution of ions from the first cooling liquid on the cooling system 36 side to the heat medium on the cold heat source 39 side, reducing the frequency of maintenance of the ion exchanger 35.
  • the cooling system 36 may include a sensor 37 that measures the electrical conductivity of the first cooling liquid.
  • the electrical conductivity of the first cooling liquid can be managed. For example, if the sensor 37 detects that the electrical conductivity has started to increase, the user can know when to perform maintenance on the ion exchanger 35. In addition, by managing the electrical conductivity, the insulation between the DC PN (between the positive and negative) of the fuel cell can be maintained. If the electrical conductivity is measured to be equal to or greater than a first threshold value (e.g., 1 ⁇ S/cm), the sensor 37 or the control device 10 may issue an alarm so that the user can be aware of the alarm.
  • a first threshold value e.g., 1 ⁇ S/cm
  • control device 10 may stop the FC platform in which the electrical conductivity equal to or greater than the second threshold value is measured.
  • a second threshold value e.g., 5 ⁇ S/cm
  • the cooling system 36 may include a refrigerant tank 38 that absorbs the expansion or contraction of the first cooling liquid caused by temperature changes. This suppresses the expansion or contraction of the first cooling liquid caused by temperature changes.
  • the FC platform 1 may include a first gas-liquid separator 79 and a hydrogen pump 43.
  • the first gas-liquid separator 79 separates hydrogen gas and wastewater from the first multiphase flow discharged from the hydrogen outlet 76 of the fuel electrode 71.
  • the hydrogen pump 43 circulates the hydrogen gas separated by the first gas-liquid separator 79 to the hydrogen inlet 75 of the fuel electrode 71. This allows surplus hydrogen gas generated by power generation in the FC stack 21 to be reused for power generation in the FC stack 21.
  • the FC platform 1 may also include a mixer 80.
  • the exhaust pipe 131 discharges a second multiphase flow obtained by combining the wastewater separated by the first gas-liquid separator 79, hydrogen mixed in the wastewater, and exhaust air discharged from the air outlet 74 of the air electrode 72 in the mixer 80. This allows the wastewater, hydrogen, and exhaust air to be discharged together.
  • the FC platform 1 may be provided with a second gas-liquid separator 81 that separates water and gas from the second multiphase flow. This allows the wastewater and exhaust gas to be separated and discharged.
  • the wastewater or exhaust gas may be collected by a collector 82. This makes it possible to prevent the moisture contained in the exhaust gas from scattering into the surrounding area.
  • the fuel cell power generation device 101 may include piping 121 that individually supplies an inert gas (e.g., nitrogen, carbon dioxide, water vapor, etc.) to a plurality of fuel pipes 118 in a plurality of FC platforms 1, 2, 3.
  • the control device 10 may switch the flow path of the piping 121 by operating an on-off valve 122 so that the hydrogen contained in the plurality of fuel pipes 118 can be individually purged with the inert gas. This allows the characteristic degradation caused by purging with the inert gas to be managed on a per-FC stack basis.
  • the fuel cell power generation system 201 or the fuel cell power generation device 101 may include a plurality of switches (in this example, electromagnetic switches 61, 62, 63) provided for each of the plurality of FC platforms.
  • the electromagnetic switches 61, 62, 63 open and close the path of the power output from the fuel cell.
  • the electromagnetic switch 61 is a circuit breaker that switches between disconnection and connection of the power path between the FC stack 21 and the boost converter 42, and the output point 16 connected to the output line 17.
  • the electromagnetic switch 62 is a circuit breaker that switches between disconnection and connection of the power path between the FC stack 22 and the boost converter (not shown), and the output point 16 connected to the output line 17.
  • the electromagnetic switch 63 is a circuit breaker that switches between disconnection and connection of the power path between the FC stack 23 and the boost converter (not shown), and the output point 16 connected to the output line 17.
  • the control device 10 may separate some of the FC stacks 21, 22, 23 from the other FC stacks by electromagnetic switches 61, 62, or 63. With the FC stacks separated, the control device 10 may control the output power of the other FC stacks so that the power supply Pa is maintained at a substantially constant value. This makes it easy to replace the FC stacks while the power supply Pa is maintained at a substantially constant value. For example, with the FC stack 21 separated from the FC stacks 22, 23 by the electromagnetic switch 61, the control device 10 may control the output power of the other FC stacks 22, 23 so that the power supply Pa is maintained at a substantially constant value.
  • the electromagnetic switches 61, 62, 63 are automatically switched on and off by the control device 10, but may also be switched manually.
  • the fuel cell power generation system 101 may be equipped with shutoff valves for shutting off the piping and switches for shutting off the wiring so that some of the multiple FC platforms can be shut down and removed while the remaining FC platforms are in operation.
  • the piping transmits liquids (coolant, wastewater, etc.) or gases (air, hydrogen, exhaust gas, etc.), and the wiring transmits power and signals.
  • shutoff valves for shutting off the piping include the air inlet shutoff valve 77 and the exhaust air outlet shutoff valve 78.
  • switches for shutting off the wiring include electromagnetic switches 61, 62, and 63.
  • the fuel cell power generation system 101 may have a function for individually detecting ground faults in multiple FC platforms.
  • the control device 10 may use electromagnetic switches 61, 62, or 63 to disconnect an FC platform among multiple FC platforms 1, 2, and 3 in which a drop in resistance to ground or a ground fault has been detected.
  • the number of the multiple storage batteries 14 1 , ..., 14 n connected in series may be adjusted so that the output voltage of the power storage device 14 is approximately equal to the output voltage at the output point 16. This makes it possible to eliminate the DC/DC converter 13 and reduce the size of the fuel cell power generation device 101.
  • multiple storage batteries 14 1 , ..., 14 n may be connected in parallel to increase the capacity of the power storage device 14.
  • the number of parallel connections of the multiple storage batteries 14 1 , ..., 14 n is preferably smaller than the number of multiple FC platforms commonly connected to the output line 17.
  • the fuel cell power generation system 101 can be made smaller than when storage batteries are individually connected to each output power line of the multiple FC platforms.
  • Pipe 121 supplies an inert gas (nitrogen, carbon dioxide, water vapor, etc.) to fuel pipe 118.
  • Pipe 121 is an example of a second pipe that supplies an inert gas to a first pipe that supplies hydrogen to the fuel electrode.
  • the piping 121 may be configured to supply inert gas individually to multiple fuel pipes 118 of multiple FC platforms 1, 2, and 3. In this case, when only some of the FC platforms are removed for maintenance or the like, they can be safely removed from the fuel cell power generation system 201 by individually purging them with inert gas.
  • the fuel cell power generation device 101 is configured to be able to switch between supplying hydrogen from the fuel pipe 118 to the fuel electrode 71 and supplying inert gas from the pipe 121 to the fuel pipe 118.
  • the switching operation of the pipe 121 is controlled by the control device 10.
  • the fuel cell power generation device 101 may have an on-off valve 123 provided in the fuel pipe 118 and an on-off valve 122 provided in the piping 121, as a configuration capable of individually switching between the supply of hydrogen and the supply of inert gas.
  • the opening and closing of the on-off valve 123 and the on-off valve 122 are each controlled by the control device 10.
  • the on-off valve 123 and the on-off valve 122 are, for example, solenoid valves.
  • the fuel cell power generation device 101 may have a flow path switching valve (e.g., a three-way valve) provided at the point where the pipe 121 supplying the inert gas joins the fuel system 18 supplying the hydrogen, as a configuration that allows for individual switching between the supply of hydrogen and the inert gas.
  • a flow path switching valve e.g., a three-way valve
  • complete switching between hydrogen and the inert gas is possible, and mixing of any composition is also possible.
  • flow control devices such as mass flow controllers (mass flow meters) in each of the fuel pipe 118 and the pipe 121, the mixture composition can also be controlled more precisely.
  • the pipe 121 may be configured so that the inert gas can be supplied to the fuel pipe 118 in one go.
  • the configuration of the fuel cell power generation system 201A can be simplified and costs can be reduced.
  • the opening and closing valve 122 is provided at a point before the pipe 121 branches toward the FC stacks 21, 22, and 23.
  • part of the output power p1 of the FC stack 21 is used as operating power for auxiliary equipment such as the air compressor 45 in the FC unit 51, and the surplus power is output as the output power P1 of the FC unit 51.
  • the control device 10 performs control to maintain the power supplied from the output line 17 to the outside at a substantially constant predetermined value.
  • Po is the power at the output point 16.
  • Pb is the power exchanged between the storage device 14 and the output line 17.
  • the control device 10 may control the power generation of the FC stacks 21, 22, and 23 and the conversion operation of the power conversion device 11 so that the power Pc output from the power conversion device 11 to the external device 12 follows a target value.
  • Pa or Pc is an example of power supplied from the output line 17 to the outside.
  • the control device 10 performs control (power fluctuation control, also called battery output fluctuation control) to change (more specifically, increase or decrease) the output power p1, p2, and p3 of the FC stacks 21, 22, and 23 while maintaining the supply power Pa from the output line 17 to the outside at a substantially constant value.
  • the supply power Pa can be detected by a voltage sensor and a current sensor.
  • the control device 10 increases or decreases the operating current (load current) of the boost converter 42 of the FC platform 1 to increase or decrease the load on the FC stack 21 and increase or decrease the output power p1.
  • the control device 10 increases or decreases the operating current (load current) of the boost converter 42 of the FC platform 2 to increase or decrease the load on the FC stack 22 and increase or decrease the output power p2.
  • the control device 10 increases or decreases the operating current (load current) of the boost converter 42 of the FC platform 3 to increase or decrease the load on the FC stack 23 and increase or decrease the output power p3.
  • the output powers p1, p2, and p3 of the multiple FC stacks 21, 22, and 23 are increased or decreased while the power supply Pa from the output line 17 to the outside is maintained at a substantially constant value.
  • the humidity distribution deviation within the cell surface of the multiple FC stacks 21, 22, and 23 is reduced compared to the case where the output powers p1, p2, and p3 are always controlled to be constant.
  • the control device 10 performing power fluctuation control to increase or decrease the output powers p1, p2, and p3 while the supply power Pa is maintained at a substantially constant value, a substantially constant power supply is ensured and deterioration of the multiple FC stacks 21, 22, and 23 is suppressed. Suppressing deterioration of the multiple FC stacks 21, 22, and 23 contributes to improving the durability of the fuel cell power generation device 101 and the fuel cell power generation system 201 and 201A. Therefore, fuel cell units such as the FC unit 51 can be effectively refreshed.
  • the control device 10 may perform partial load operation in which the output powers p1, p2, and p3 are restricted to a power value Pth or less that is lower than the rated output of the FC stack while the supply power Pa is maintained at a substantially constant value.
  • partial load operation By performing partial load operation, deterioration of the multiple FC stacks 21, 22, and 23 is suppressed and the durability of the fuel cell power generation device 101 and the fuel cell power generation system 201 is improved compared to the case of full load operation in which the output powers p1, p2, and p3 are controlled to the rated output.
  • control device 10 may perform partial load operation in which the output power p1, p2, and p3 are restricted to 10% to 80% of the rated output of the FC stack while the supply power Pa is maintained at a substantially constant value.
  • control device 10 may perform partial load operation in which the output power p1, p2, and p3 are restricted to 20% to 50% of the rated output of the FC stack while the supply power Pa is maintained at a substantially constant value. By performing such partial load operation, it is possible to improve power generation efficiency, reduce noise, and reduce fuel consumption.
  • the control device 10 may intermittently perform a refresh operation to improve the characteristics of the FC stack while the supply power Pa is maintained at a substantially constant value. This makes it possible to improve characteristics (e.g., output voltage characteristics) that have deteriorated due to continuous operation of the FC stack.
  • characteristics e.g., output voltage characteristics
  • Refresh operations include start/stop, low voltage operation, high load operation, idling operation, load fluctuation operation, and increased air flow rate operation.
  • the control device 10 suppresses deterioration of the multiple FC stacks 21, 22, and 23, improving the durability of the fuel cell power generation device 101 and fuel cell power generation systems 201 and 201A.
  • Start-stop is a refresh operation that consumes oxygen in the cathode of the stopped FC stack to lower the fuel cell voltage and release catalyst poisoning substances.
  • the control device 10 stops the multiple FC stacks 21, 22, 23 individually for a certain period of time or more, and reduces the voltage of the stopped FC stack for a minimum period of time or more, thereby releasing the catalyst poisoning substances. More specifically, the control device 10 consumes oxygen in the cathode of the stopped FC stack, and reduces the voltage of the stopped FC stack for a minimum period of time or more until the impurities attached to the catalyst of the cathode are released.
  • the certain period of time is 1 second to 30 minutes, preferably 1 minute.
  • the minimum period of time is 0.5 seconds to 5 minutes, preferably 30 seconds.
  • Low voltage operation is a refresh operation that removes catalyst poisoning substances by temporarily lowering the voltage of the FC stack without stopping the FC stack.
  • the control device 10 removes catalyst poisoning substances by temporarily lowering the voltage of each of the multiple FC stacks 21, 22, and 23 that are in operation.
  • High-load operation is a refresh operation that increases the amount of water produced by the FC stack and uses the water to wash away impurities adhering to the electrodes.
  • the control device 10 increases the output power of the FC stack, which is operating at or below a power value Pth that is lower than the rated output, temporarily above the power value Pth, thereby increasing the amount of water produced by the FC stack and washing away impurities adhering to the electrodes with the water.
  • Idling operation is a refresh operation that equalizes the humidity distribution or temperature distribution within the cell surface while keeping the power Po at the output point 16 at approximately zero.
  • the control device 10 controls the power generation of the multiple FC stacks 21, 22, 23 and the discharge of the storage battery 14 connected to the output line 17, for example, so that the supply power Pa is kept approximately constant and the power Po at the output point 16 is maintained at approximately zero. As a result, even if the power Po output from the fuel cell power generation device 101 becomes approximately zero due to idling operation, the supply power Pa can be maintained approximately constant by discharging from the storage battery 14.
  • Load variation operation is a refresh operation that equalizes the humidity distribution or temperature distribution within the cell surface by varying the output power of the FC stack according to the fluctuation of the load on the FC stack.
  • the fluctuation of the load on the FC stack is controlled by the control device 10.
  • Increased air flow rate operation is a refresh operation that restores the characteristics of the FC stack by improving the discharge of water generated in the FC stack and improving the uniform distribution of oxygen.
  • FIG. 26 is a diagram showing a specific example of the configuration of a fuel cell power generation system including a fuel cell power generation device according to the second embodiment.
  • the fuel cell power generation system 202 shown in FIG. 26 is a system that supplies power generated by multiple FC units connected in parallel to an external device 12 that is the power supply target.
  • the explanation of the configuration and effects similar to those of the first embodiment will be omitted or simplified by invoking the above explanation.
  • the fuel cell power generation system 202 includes a fuel cell power generation device 102 and an auxiliary system 301.
  • the fuel cell power generation system 202 is a specific example of the fuel cell power generation system 401 described above.
  • the fuel cell power generation device 102 generates power to be supplied to the external device 12 using multiple FC units.
  • the fuel cell power generation device 102 may be unitized.
  • the fuel cell power generation device 102 includes multiple FC units (in this example, three FC units 51, 52, 53) connected in parallel to the output line 17, and a control device 10 that controls the multiple FC units.
  • the number of multiple FC units connected in parallel is not limited to three, and may be two, four or more.
  • FC units 51, 52, and 53 each include an FC stack that is connected to a common output line 17 via an output point 16.
  • the FC stack is an example of a fuel cell.
  • FC unit 51 includes an FC stack 21
  • FC unit 52 includes an FC stack 22
  • FC unit 53 includes an FC stack 23.
  • the FC unit 51 etc. is an example of the power generation device 451 etc. described above, or an example of a unit included in the power generation device 451 etc. described above.
  • the FC stack 21 etc. is an example of the fuel cell 441 etc. described above.
  • the control device 10 is an example of the first control device 411 etc. described above or the second control device 421 etc. described above.
  • the control device 10 is a controller that controls the operation of the FC units 51, 52, 53 and the auxiliary system 301.
  • the control device 10 operates, for example, with power (e.g., DC 12 volts direct current power) supplied from the control power supply 32.
  • power e.g., DC 12 volts direct current power
  • the number of control devices 10 is not limited to one, and may be multiple. For example, a control device may be provided for each of the FC units 51, 52, 53.
  • FIG. 27 is a diagram showing in detail an example configuration of a fuel cell power generation system 102 according to the second embodiment.
  • the fuel cell power generation system 102 includes, for example, a control device 10 and multiple FC units 51, 52, and 53.
  • the FC units 52 and 53 have the same configuration and functions as the FC unit 51, and are controlled by the control device 10 in the same manner as the FC unit 51.
  • the control device 10 of the second embodiment therefore performs the same power fluctuation control as the first embodiment, thereby suppressing deterioration of the multiple FC stacks 21, 22, and 23. This allows the fuel cell units such as the FC unit 51 to be effectively refreshed.
  • Figure 28 is a diagram showing a first example of a power fluctuation control pattern when three fuel cells are connected in parallel.
  • the control device 10 controls the load of the FC stack 21 to a fixed value Pth1 of 33.3% of the rated output of the FC stack 21, and increases or decreases the load of the FC stack 21 (output power p1) with a load pattern L1 in which refresh operation is performed intermittently.
  • the control device 10 controls the load of the FC stack 22 to a fixed value Pth2 of 33.3% of the rated output of the FC stack 22, and increases or decreases the load of the FC stack 22 (output power p2) with a load pattern L2 in which refresh operation is performed intermittently.
  • the control device 10 controls the load of the FC stack 23 to a fixed value Pth3 of 33.3% of the rated output of the FC stack 23, and increases or decreases the load of the FC stack 23 (output power p3) with a load pattern L3 in which refresh operation is performed intermittently.
  • the load pattern L is a combination of the load patterns L1, L2, and L3.
  • Load patterns L1, L2, and L3 are patterns in which the output powers p1, p2, and p3 are periodically increased and decreased while the supply power Pa is maintained at a substantially constant value.
  • Load patterns L1, L2, and L3 are patterns in which the output powers p1, p2, and p3 are periodically increased and decreased with waveforms having different phases while the supply power Pa is maintained at a substantially constant value.
  • the control device 10 can periodically perform refresh operations while maintaining the supply power Pa at a substantially constant value by increasing or decreasing the load on the FC stacks 21, 22, and 23 using the corresponding load patterns L1, L2, and L3, respectively.
  • Periods T1, T3, and T5 correspond to periods during which the output powers p1, p2, and p3 are controlled to fixed values Pth1, Pth2, and Pth3 that are lower than the rated output.
  • Periods T2, T4, and T6 correspond to periods during which the output powers p1, p2, and p3 are temporarily changed from the fixed values Pth1, Pth2, and Pth3.
  • the control device 10 temporarily increases the output powers p1, p2, and p3 in turn from the fixed values Pth1, Pth2, and Pth3.
  • the order in which the output powers p1, p2, and p3 are increased from the fixed values Pth1, Pth2, and Pth3 is not limited to this, and may be increased in the order of p1, p3, and p2, for example.
  • the period T2 corresponds to a period during which the output power p1 is temporarily increased from the fixed value Pth1 to any output between 80% and 100% of the rated output to perform a refresh operation of the FC stack 21, and the output powers p2 and P3 are temporarily decreased from the fixed values Pth2 and Pth3 to approximately zero (low load state) to perform a refresh operation of the FC stacks 22 and 23.
  • the period T4 corresponds to a period during which the output power p2 is temporarily increased from the fixed value Pth2 to any output between 80% and 100% of the rated output to perform a refresh operation of the FC stack 22, and the output powers p1 and p3 are temporarily decreased from the fixed values Pth1 and Pth3 to approximately zero (low load state) to perform a refresh operation of the FC stacks 21 and 23.
  • the period T6 corresponds to a period during which the output power p3 is temporarily increased from the fixed value Pth3 to any output between 80% and 100% of the rated output to perform a refresh operation of the FC stack 23, and the output powers p1 and p2 are temporarily decreased from the fixed values Pth1 and Pth2 to approximately zero (low load state) to perform a refresh operation of the FC stacks 21 and 22.
  • FIG. 29 shows a first example of a power fluctuation control pattern when two fuel cells are connected in parallel.
  • the explanation of the same content as in FIG. 28 will be omitted by citing the explanation above.
  • the control device 10 controls the load on the FC stack 21 to a fixed value Pth1 that is 50% of the rated output of the FC stack 21, and increases or decreases the load on the FC stack 21 (output power p1) with a load pattern L1 that performs intermittent refresh operation.
  • the control device 10 controls the load on the FC stack 22 to a fixed value Pth2 that is 50% of the rated output of the FC stack 22, and increases or decreases the load on the FC stack 22 (output power p2) with a load pattern L2 that performs intermittent refresh operation.
  • the load pattern L is a combination of the load patterns L1 and L2.
  • the control device 10 can periodically perform refresh operations while maintaining the supply power Pa at a substantially constant value by increasing or decreasing the load on the FC stacks 21 and 22 using the corresponding load patterns L1 and L2, respectively.
  • FIG. 30 is a diagram showing a second example of a power fluctuation control pattern when two fuel cells are connected in parallel.
  • FIG. 31 is a diagram showing a third example of a power fluctuation control pattern when two fuel cells are connected in parallel.
  • the explanation of the same content as in FIG. 28 and FIG. 29 will be omitted by citing the explanation above.
  • control device 10 can periodically perform refresh operations while maintaining the supply power Pa at a substantially constant value by increasing or decreasing the load on the FC stacks 21 and 22 using corresponding stepped load patterns L1 and L2, respectively.
  • FIG. 32 shows a fourth example of a power fluctuation control pattern when two fuel cells are connected in parallel.
  • the explanation of the same content as in FIG. 28 to FIG. 31 will be omitted by citing the explanation above.
  • control device 10 can periodically perform refresh operations while maintaining the supply power Pa at a substantially constant value by increasing and decreasing the loads on the FC stacks 21 and 22 with the corresponding triangular wave load patterns L1 and L2, respectively.
  • Periods T2 and T4 correspond to the periods during which the refresh operations are performed.
  • FIG. 33 shows a second example of a power fluctuation control pattern when three fuel cells are connected in parallel.
  • the explanation of the same content as in FIG. 28 to FIG. 30 will be omitted by citing the explanation above.
  • control device 10 can periodically perform refresh operations while maintaining the supply power Pa at a substantially constant value by increasing or decreasing the loads on the FC stacks 21, 22, and 23 using the corresponding triangular wave load patterns L1, L2, and L3, respectively.
  • a period during which the refresh operations are performed may be set, as in FIG. 32.
  • FIG. 34 shows a third example of a power fluctuation control pattern when three fuel cells are connected in parallel.
  • the explanation of the same content as in FIG. 28 to FIG. 33 will be omitted by citing the explanation above.
  • control device 10 can periodically perform refresh operations while maintaining the supply power Pa at a substantially constant value by increasing or decreasing the loads on the FC stacks 21, 22, and 23 using the corresponding sinusoidal load patterns L1, L2, and L3, respectively.
  • a period during which the refresh operations are performed may be set, as in FIG. 32.
  • control device 10 may temporarily set the output powers p1, p2, and p3 higher than the fixed values Pth1, Pth2, and Pth3, temporarily increasing the supply power Pa above a substantially constant value. This makes it possible to temporarily increase the supply power Pa up to an upper limit of the sum of the rated outputs of the FC stacks 21, 22, and 23. This makes it possible to handle peak power.
  • control device 10 does not have to periodically increase or decrease each of the output powers p1, p2, and p3. For example, when the voltage of the FC stack reaches a threshold value, the control device 10 may increase or decrease each of the output powers p1, p2, and p3 so that the supply power Pa is maintained at an approximately constant value.
  • the fuel cell system according to the first embodiment includes a fuel cell unit having fuel cells, and a control unit that controls the fuel cell unit.
  • the control unit in the fuel cell system according to the first embodiment executes a first refresh process that controls the output of the fuel cell unit to vary.
  • the control unit in the fuel cell system according to the first embodiment also executes a second refresh process that stops the operation of the fuel cell unit and controls the fuel cell unit to start up.
  • FIG. 35 is a diagram showing an outline of the configuration of a fuel cell system 1001, which is an example of a fuel cell system according to the first embodiment.
  • the fuel cell system 1001 is a fuel cell that uses fuel cells.
  • the fuel cell system 1001 is a chemical cell that uses hydrogen as fuel and converts chemical energy into electricity by reacting with oxygen in the air.
  • the fuel cell system 1001 supplies an output Pout to an external load EX.
  • the fuel cell system 1001 includes a fuel cell unit 1010, a control unit 1020, and a power storage unit 1030.
  • the fuel cell unit 1010 generates electricity by causing a chemical reaction between hydrogen and oxygen, and includes a fuel cell 1011, an output adjustment unit 1012, a gas adjustment unit 1013, and a control unit 1014.
  • the fuel cell 1011 generates electricity by causing a chemical reaction between the supplied hydrogen SH and the oxygen contained in the air SA.
  • the fuel cell 1011 is, for example, a polymer electrolyte fuel cell (PEFC).
  • PEFC polymer electrolyte fuel cell
  • the fuel cell 1011 which is a polymer electrolyte fuel cell, has a stack structure in which many single cells are stacked.
  • the single cell in the fuel cell 1011 which is a polymer electrolyte fuel cell, includes a membrane electrode assembly (MEA) that includes a polymer electrolyte membrane and a pair of electrodes provided on both sides of the polymer electrolyte membrane.
  • MEA membrane electrode assembly
  • the polymer electrolyte membrane selectively transports hydrogen ions.
  • Each electrode is formed of a porous material.
  • Each of the pair of electrodes includes a catalyst layer that is primarily composed of carbon powder that supports a platinum-based metal catalyst (electrode catalyst), and a gas diffusion layer that is both breathable and electronically conductive.
  • the single cell includes a pair of separators that sandwich the membrane electrode assembly (MEA) from both sides.
  • the output adjustment unit 1012 adjusts the output output from the fuel cell 1011 to the outside of the fuel cell unit 1010.
  • the output adjustment unit 1012 boosts the voltage of electricity p1 (output power p1) generated by the fuel cell 1011.
  • the output adjustment unit 1012 then outputs a predetermined output P1 (output power P1).
  • the output adjustment unit 1012 includes, for example, a DC/DC converter.
  • the gas adjustment unit 1013 adjusts the flow rates of hydrogen SH and air SA supplied from the outside.
  • the gas adjustment unit 1013 supplies hydrogen SHs and air SAs after flow rate adjustment to the fuel cell 1011.
  • the gas adjustment unit 1013 includes a control valve for adjusting the flow rate or pressure of hydrogen SH, and a control valve and booster for adjusting the flow rate or pressure of air SA.
  • the control unit 1014 controls the fuel cell unit 1010 based on control from the control unit 1020.
  • the control unit 1014 controls the fuel cell 1011, the output adjustment unit 1012, and the gas adjustment unit 1013 in the fuel cell unit 1010.
  • Control unit 1020 The control unit 1020 controls the fuel cell unit 1010.
  • the control unit 1020 is, for example, a computer or a programmable logic controller (PLC).
  • PLC programmable logic controller
  • the control unit 1020 controls the fuel cell unit 1010 by sending commands to the control unit 1014 included in the fuel cell unit 1010.
  • the control unit 1020 also obtains operational data of the fuel cell unit 1010 from the control unit 1014.
  • the control unit 1020 includes a timer 1021 for measuring time.
  • the control unit 1020 uses the timer 1021 to determine whether a predetermined time has elapsed.
  • the control unit 1020 may measure time by an interrupt from the timer 1021, for example, or may sequentially refer to the count value of the timer 1021 to determine whether the time has elapsed.
  • the power storage unit 1030 supplies startup power when starting up the fuel cell unit 1010.
  • the power storage unit 1030 may store electricity supplied from an external power source, and may supply the stored electricity to an external device as necessary.
  • the power storage unit 1030 charges when there is excess power from the fuel cell unit 1010 to the external load EX.
  • the power storage unit 1030 discharges when there is a shortage of power from the fuel cell unit 1010 to the external load EX.
  • the power storage unit 1030 includes, for example, a lithium ion capacitor, a lithium ion battery, and an electric double layer capacitor.
  • the output Pout is output from the fuel cell system 1001 based on the output P1 supplied from the fuel cell unit 1010 and the output Ps input/output from the power storage unit 1030.
  • the output Pout from the fuel cell system 1001 can be stably output.
  • Fig. 36 is a flow diagram illustrating processing in the fuel cell system 1001, which is an example of the fuel cell system according to the first embodiment.
  • Fig. 37 is a diagram illustrating processing in the fuel cell system 1001, which is an example of the fuel cell system according to the first embodiment.
  • Fig. 37 is a diagram illustrating a schematic result of processing in the fuel cell system 1001. The horizontal axis of Fig. 37 indicates time, and the vertical axis indicates output.
  • the processing in the fuel cell system 1001 will be outlined using FIG. 37. Assume that the fuel cell system 1001 starts operating at time 0:00. The fuel cell system 1001 performs a first refresh process Proc1 at every period Prd21. It also performs a second refresh process Proc2 at every period Prd22. Note that when the fuel cell system 1001 performs the second refresh process Proc2, it does not perform the first refresh process Proc1.
  • the period Prd21 at which the fuel cell system 1001 performs the first refresh process Proc1 is set to 4 hours. Also, in the example shown in FIG. 37, the period Prd22 at which the fuel cell system 1001 performs the second refresh process Proc2 is set to 24 hours.
  • the set time that defines the period Prd21 is the first set time
  • the set time that defines the period Prd22 is the second set time.
  • Step S1010 When processing starts, the fuel cell system 1001 sets the output setting in the fuel cell unit 1010 to a predetermined output setting. Specifically, the control unit 1020 commands the fuel cell unit 1010 to output a predetermined output. The control unit 1014 in the fuel cell unit 1010, which has been commanded by the control unit 1020 to output a predetermined output, controls the fuel cell 1011, the output adjustment unit 1012, and the gas adjustment unit 1013 to output the predetermined output.
  • the output of the fuel cell unit 1010 is controlled to be the output Pop. Note that in FIG. 37, the output is constant at the output Pop except for the time when the first refresh process Proc1 and the second refresh process Proc2 are performed, but the output may be changed as appropriate.
  • Step S1020 the fuel cell system 1001 starts a timer for measuring time. Specifically, the control unit 1020 starts a timer 1021. The control unit 1020 uses the timer 1021 to determine whether a predetermined time has elapsed.
  • Step S1030 The control unit 1020 in the fuel cell system 1001 determines whether the second set time has elapsed. If the second set time has not elapsed (NO in step S1030), the control unit 1020 proceeds to step S1040. If the second set time has elapsed (YES in step S1030), the control unit 1020 proceeds to step S1060.
  • control unit 1020 determines whether 24 hours, which is an example of the second set time, has elapsed.
  • Step S1040 In step S1030, if the second set time has not elapsed (NO in step S1030), the control unit 1020 determines whether the first set time has elapsed. If the first set time has elapsed (YES in step S1040), the control unit 1020 advances the process to step S1050. If the first set time has not elapsed (NO in step S1040), the control unit 1020 returns to step S1030 and repeats the process.
  • control unit 1020 determines whether four hours, which is an example of the first set time, has elapsed.
  • Step S1050 In step S1040, if the first set time has elapsed (YES in step S1040), the control unit 1020 performs a first refresh process.
  • FIG. 38 is a flow diagram explaining the first refresh process in the fuel cell system 1001, which is an example of a fuel cell system according to the first embodiment.
  • FIG. 39 is a diagram explaining the first refresh process in the fuel cell system 1001, which is an example of a fuel cell system according to the first embodiment.
  • FIG. 39 is a diagram generally explaining the results of processing the fuel cell system 1001.
  • the horizontal axis of FIG. 39 indicates time, and the vertical axis indicates output.
  • the fuel cell system 1001 changes the output in the fuel cell unit 1010 in the following order: high output, low output, high output. In other words, in the first refresh process, the fuel cell system 1001 changes the load in the fuel cell unit 1010 in the following order: high load, low load, high load. Meanwhile, in the first refresh process, the fuel cell system 1001 continues to supply hydrogen and air to the fuel cell unit 1010 without stopping.
  • Step S1051 The control unit 1020 sets the output setting of the fuel cell unit 1010 to a high output setting. The control unit 1020 then maintains the output setting of the fuel cell unit 1010 at the high output setting for a certain period of time.
  • the control unit 1020 sets the output of the fuel cell unit 1010 to output Pu, which is a high output setting.
  • the high output setting is, for example, an output between 80% and 100%, where 100% is the maximum output of the fuel cell unit 1010.
  • the control unit 1020 maintains the output setting of the fuel cell unit 1010 at the high output setting for a time Prd1.
  • the time Prd1 is, for example, anywhere from 10 seconds to 3 minutes, and preferably 1 minute.
  • the amount of moisture inside the fuel cell 1011 is increased by the water generated by power generation.
  • the output of the fuel cell unit 1010 changes from output Pop to output Pu from time t1 to time t2.
  • the output conversion speed is anywhere between 1% per second and 100% per second, preferably 10% per second, assuming that the maximum output of the fuel cell unit 1010 is 100%.
  • Step S1052 the control unit 1020 sets the output setting of the fuel cell unit 1010 to a low output setting, and then the control unit 1020 maintains the output setting of the fuel cell unit 1010 at the low output setting for a certain period of time.
  • the control unit 1020 sets the output of the fuel cell unit 1010 to output Pd, which is a low output setting.
  • the low output setting is, for example, an output between 0% and 20% of the maximum output of the fuel cell unit 1010, which is 100%.
  • the control unit 1020 maintains the output setting of the fuel cell unit 1010 at the low output setting for a time Prd2.
  • the time Prd2 is, for example, between 10 seconds and 3 minutes, preferably 1 minute.
  • high-output operation (high-load operation) is followed by low-output operation (low-load operation), which causes the water generated by power generation to be uniform across the surface of the fuel cell 1011.
  • the output of the fuel cell unit 1010 changes from output Pu to output Pd from time t3 to time t4.
  • the output conversion speed is anywhere between 1% per second and 100% per second, and preferably 10% per second.
  • Step S1053 the control unit 1020 sets the output setting of the fuel cell unit 1010 to the high output setting. Then, the control unit 1020 maintains the output setting of the fuel cell unit 1010 at the high output setting for a certain period of time.
  • the control unit 1020 sets the output of the fuel cell unit 1010 to output Pu, which is a high output setting.
  • the high output setting is, for example, an output between 80% and 100%, where 100% is the maximum output of the fuel cell unit 1010.
  • the control unit 1020 maintains the output setting of the fuel cell unit 1010 at the high output setting for a time Prd3.
  • the time Prd3 is, for example, between 10 seconds and 3 minutes, preferably 1 minute.
  • the amount of moisture in the fuel cell 1011 is increased again by sequentially performing high power operation (high load operation), low power operation (low load operation), and high power operation (high load operation).
  • high load operation high power operation
  • low power operation low load operation
  • high power operation high load operation
  • the output of the fuel cell unit 1010 changes from output Pd to output Pu from time t5 to time t6.
  • the output conversion speed is anywhere between 1% per second and 100% per second, and preferably 10% per second.
  • Step S1054 The control unit 1020 then sets the power output setting in the fuel cell unit 1010 to a predetermined power output setting.
  • control unit 1020 sets the output of the fuel cell unit 1010 to a predetermined setting, output Pop.
  • the output of the fuel cell unit 1010 changes from output Pu to output Pop from time t7 to time t8.
  • the output conversion speed is anywhere between 1% per second and 100% per second, and preferably 10% per second.
  • step S1054 the fuel cell system 1001 ends the first refresh processing.
  • the supply of hydrogen and oxygen to the fuel cell unit 1010 continues. By continuing the supply of hydrogen and oxygen to the fuel cell unit 1010, it is possible to prevent oxygen deficiency and deterioration of the fuel cell cells 1011.
  • Step S1060 In step S1030, if the second set time has elapsed (YES in step S1030), the control unit 1020 performs a second refresh process.
  • Figure 40 is a flow diagram explaining the second refresh process in the fuel cell system 1001, which is an example of a fuel cell system according to the first embodiment.
  • Figure 41 is a diagram explaining the second refresh process in the fuel cell system 1001, which is an example of a fuel cell system according to the first embodiment.
  • Figure 41 is a diagram generally explaining the results of processing the fuel cell system 1001.
  • the horizontal axis of Figure 41 indicates time, and the vertical axis indicates output.
  • the fuel cell system 1001 causes the fuel cell unit 1010 to output high power, then stops the fuel cell system 1001 once and restarts it. After restarting, the fuel cell system 1001 outputs high power and then performs normal operation. In other words, in the second refresh process, the fuel cell system 1001 operates the fuel cell unit 1010 at high load, stops it, restarts it, and then performs high load operation. In the second refresh process, the fuel cell system 1001 stops the supply of hydrogen and air to the fuel cell unit 1010 while the fuel cell unit 1010 is stopped.
  • Step S1061 The control unit 1020 sets the output setting of the fuel cell unit 1010 to a high output setting. The control unit 1020 then maintains the output setting of the fuel cell unit 1010 at the high output setting for a certain period of time.
  • the control unit 1020 sets the output of the fuel cell unit 1010 to output Pu, which is a high output setting. For example, if the maximum output of the fuel cell unit 1010 is 100%, the high output setting is any output between 80% and 100%, for example 100%.
  • the control unit 1020 maintains the output setting of the fuel cell unit 1010 at the high output setting for a time Prd11.
  • the time Prd11 is, for example, any time between 10 seconds and 3 minutes, preferably 1 minute.
  • the amount of moisture inside the fuel cell 1011 is increased by the water generated by power generation.
  • the output of the fuel cell unit 1010 changes from output Pop to output Pu from time t11 to time t12.
  • the output conversion speed is anywhere between 1% per second and 100% per second, and preferably 10% per second.
  • Step S1062 the control unit 1020 controls the fuel cell unit 1010 to continue to be shut down for a predetermined minimum time or longer, which is between 0.5 seconds and 5 minutes, and preferably 30 seconds.
  • the control unit 1020 commands the fuel cell unit 1010 to stop operation.
  • the control unit 1020 stops the operation of the fuel cell unit 1010 for a time Prd12.
  • the time Prd12 is, for example, anywhere from 10 seconds to 1 hour, and preferably 1 minute.
  • stopping the operation of the fuel cell unit 1010 reduces the cell voltage in the fuel cell 1011.
  • impurities such as decomposition products adhering to the catalyst of the fuel cell 1011 can be detached from the catalyst of the fuel cell 1011.
  • the output of the fuel cell unit 1010 changes from output Pu to zero from time t13 to time t14.
  • the output conversion speed is anywhere between 1% per second and 100% per second, and preferably 10% per second.
  • Step S1063 the control unit 1020 controls the fuel cell unit 1010 to restart.
  • Time Prd13 is the time required for the fuel cell unit 1010 to start up.
  • Step S1064 the control unit 1020 sets the output setting of the fuel cell unit 1010 to the high output setting. Then, the control unit 1020 maintains the output setting of the fuel cell unit 1010 at the high output setting for a certain period of time.
  • the control unit 1020 sets the output of the fuel cell unit 1010 to output Pu, which is a high output setting. For example, if the maximum output of the fuel cell unit 1010 is 100%, the high output setting is any output between 80% and 100%, for example 100%.
  • the control unit 1020 maintains the output setting of the fuel cell unit 1010 at the high output setting for a time Prd14.
  • the time Prd14 is, for example, any output between 10 seconds and 3 minutes, preferably 1 minute.
  • impurities that have been desorbed from the catalyst of the fuel cell 1011 can be washed away by performing high-output operation (high-load operation) after restarting.
  • the output of the fuel cell unit 1010 changes from 0 to Pu from time t16 to time t17.
  • the output conversion speed is anywhere between 1% per second and 100% per second, and preferably 10% per second.
  • Step S1065 The control unit 1020 then sets the power output setting in the fuel cell unit 1010 to a predetermined power output setting.
  • control unit 1020 sets the output of the fuel cell unit 1010 to a predetermined setting, output Pop.
  • the output of the fuel cell unit 1010 changes from output Pu to output Pop from time t18 to time t19.
  • the output conversion speed is anywhere between 1% per second and 100% per second, and preferably 10% per second.
  • step S1065 the fuel cell system 1001 ends the second refresh processing.
  • Step S1070 The control unit 1020 initializes the timer 1021 .
  • Step S1080 The control unit 1020 determines whether to continue the process. If the control unit 1020 determines to continue the process (YES in step S1080), the control unit 1020 returns to step S1030 and repeats the process. If the control unit 1020 determines not to continue the process (NO in step S1080), the control unit 1020 advances the process to step S1090.
  • Step S1090 the fuel cell system 1001 stops the timer for measuring time. Specifically, the control unit 1020 stops the timer 1021. Then, the process ends.
  • the first refresh process and the second refresh process are performed, thereby effectively refreshing the fuel cell unit.
  • the first refresh process and the second refresh process are not limited to the above examples.
  • modified examples of the first refresh process and the second refresh process in the fuel cell system according to the first embodiment will be described.
  • FIG. 42 is a flow diagram illustrating a modified example of the first refresh process in the fuel cell system 1001, which is an example of the fuel cell system according to the first embodiment.
  • Fig. 43 is a diagram illustrating a modified example of the first refresh process in the fuel cell system 1001, which is an example of the fuel cell system according to the first embodiment.
  • Fig. 43 is a diagram illustrating a schematic result of performing processing in the fuel cell system 1001. The horizontal axis of Fig. 43 indicates time, and the vertical axis indicates output.
  • the fuel cell system 1001 changes the output in the fuel cell unit 1010 in the following order: low output, high output, low output.
  • the fuel cell system 1001 changes the load in the fuel cell unit 1010 in the following order: low load, high load, low load. Meanwhile, even in a modified example of the first refresh process, the fuel cell system 1001 continues to supply hydrogen and air to the fuel cell unit 1010 without stopping.
  • Step S1051a The control unit 1020 sets the output setting of the fuel cell unit 1010 to a low output setting. The control unit 1020 then maintains the output setting of the fuel cell unit 1010 at the low output setting for a certain period of time.
  • the control unit 1020 sets the output of the fuel cell unit 1010 to a low output setting, output Pd.
  • the low output setting is, for example, an output between 0% and 20% of the maximum output of the fuel cell unit 1010, which is taken as 100%.
  • the control unit 1020 maintains the output setting of the fuel cell unit 1010 at the low output setting for a time Prd1a.
  • the time Prd1a is, for example, between 10 seconds and 3 minutes, preferably 1 minute.
  • the water generated by power generation is made uniform on the surface of the fuel cell 1011.
  • Step S1052a Next, the control unit 1020 sets the output setting of the fuel cell unit 1010 to the high output setting. Then, the control unit 1020 maintains the output setting of the fuel cell unit 1010 at the high output setting for a certain period of time.
  • the control unit 1020 sets the output of the fuel cell unit 1010 to output Pu, which is a high output setting.
  • the high output setting is, for example, any output between 80% and 100%, where 100% is the maximum output of the fuel cell unit 1010.
  • the control unit 1020 maintains the output setting of the fuel cell unit 1010 at the high output setting for a time Prd2a.
  • the time Prd2a is, for example, any output between 10 seconds and 3 minutes, preferably 1 minute.
  • the amount of moisture inside the fuel cell 1011 is increased by the water generated by power generation.
  • Step S1053a Next, the control unit 1020 sets the output setting of the fuel cell unit 1010 to a low output setting, and then the control unit 1020 maintains the output setting of the fuel cell unit 1010 at the low output setting for a certain period of time.
  • the control unit 1020 sets the output of the fuel cell unit 1010 to a low output setting, output Pd.
  • the low output setting is, for example, an output between 0% and 20% of the maximum output of the fuel cell unit 1010, which is 100%.
  • the control unit 1020 maintains the output setting of the fuel cell unit 1010 at the high output setting for a time Prd3a.
  • the time Prd3a is, for example, between 10 seconds and 3 minutes, preferably 1 minute.
  • high-power operation (high-load operation) is followed by low-power operation (low-load operation), which causes the water generated by power generation to be uniform across the surface of the fuel cell 1011.
  • low-power operation By uniforming the water generated by power generation across the surface of the fuel cell 1011, it is possible to moisten the dry areas within the surface of the fuel cell 1011 that have been dried through continuous operation. By moistening the dry areas within the surface of the fuel cell 1011, it is possible to suppress the deterioration of the battery characteristics of the fuel cell 1011.
  • Step S1054 The control unit 1020 then sets the power output setting in the fuel cell unit 1010 to a predetermined power output setting.
  • control unit 1020 sets the output of the fuel cell unit 1010 to a predetermined setting, output Pop.
  • step S1054 the fuel cell system 1001 ends the modified first refresh processing.
  • FIG. 44 is a flow diagram illustrating a first modified example of the second refresh process in the fuel cell system 1001, which is an example of the fuel cell system according to the first embodiment.
  • Fig. 45 is a diagram illustrating a first modified example of the second refresh process in the fuel cell system 1001, which is an example of the fuel cell system according to the first embodiment.
  • Fig. 45 is a diagram illustrating a schematic result of performing processing in the fuel cell system 1001. The horizontal axis of Fig. 45 indicates time, and the vertical axis indicates output.
  • the first modified example of the second refresh process in the fuel cell system according to the first embodiment does not perform high-output operation (high-load operation) in step S1061, but stops the fuel cell unit in step S1062.
  • control unit 1020 sets the output setting of the fuel cell unit 1010 to the output Pop until time t13. Then, at time t13, the control unit 1020 commands the fuel cell unit 1010 to stop operation.
  • time t13 For operations after time t13, please refer to the above explanation, and a detailed explanation will be omitted here.
  • the operation of the fuel cell unit 1010 is stopped, thereby lowering the cell voltage in the fuel cell 1011.
  • the fuel cell system according to the first embodiment can detach impurities such as decomposition products adhering to the catalyst of the fuel cell 1011 from the catalyst of the fuel cell 1011.
  • the fuel cell system according to the first embodiment can wash away impurities and the like that have been detached from the catalyst of the fuel cell 1011 by performing high-output operation (high-load operation) after restarting the system, by performing high-output operation (high-load operation).
  • FIG. 46 is a flow diagram illustrating a second modified example of the second refresh process in the fuel cell system 1001, which is an example of the fuel cell system according to the first embodiment.
  • Fig. 47 is a diagram illustrating a second modified example of the second refresh process in the fuel cell system 1001, which is an example of the fuel cell system according to the first embodiment.
  • Fig. 47 is a diagram illustrating a schematic result of performing processing in the fuel cell system 1001. The horizontal axis of Fig. 47 indicates time, and the vertical axis indicates output.
  • step S1064 high output operation (high load operation) is not performed in step S1064, and a predetermined output setting is set in step S1065.
  • the operation before time t16 is the same as in the example of FIG. 41.
  • the control unit 1020 sets the output setting in the fuel cell unit 1010 to output Pop.
  • the fuel cell unit 1010 starts up with the output setting set to output Pop.
  • the operation of the fuel cell unit 1010 is stopped, thereby lowering the cell voltage in the fuel cell 1011.
  • the fuel cell system according to the first embodiment can remove impurities such as decomposition products adhering to the catalyst of the fuel cell 1011 from the catalyst of the fuel cell 1011.
  • the cell voltage is lowered to 0.3V to 0.65V, and more preferably to 0.5V.
  • the impurities that have been removed from the catalyst of the fuel cell 1011 can be washed away by restarting the system and then operating the system.
  • Fuel Cell System According to Second Embodiment A fuel cell system according to a second embodiment will be described.
  • the fuel cell system according to the second embodiment differs in processing from the fuel cell system according to the first embodiment.
  • For the configuration of the fuel cell system according to the second embodiment please refer to the description of the configuration of the fuel cell system according to the first embodiment, and the description will be omitted here.
  • Fig. 48 is a flow diagram illustrating processing in the fuel cell system according to the second embodiment.
  • Fig. 49 is a diagram illustrating processing in the fuel cell system according to the second embodiment.
  • Fig. 49 is a diagram illustrating a schematic result of processing in the fuel cell system according to the second embodiment.
  • the horizontal axis of Fig. 49 indicates time, and the vertical axis indicates cell voltage.
  • the outline of the process in the fuel cell system according to the second embodiment will be described below using FIG. 49.
  • the process in the fuel cell system according to the second embodiment will be described below using the fuel cell system 1001. It is assumed that the fuel cell system 1001 starts operating from time 0.
  • the fuel cell system 1001 first sets a reference voltage V1 based on the cell voltage between time t21 and time t22.
  • the fuel cell system 1001 then calculates a first reference (V1 ⁇ 1) and a second reference (V1 ⁇ 1) (where 0 ⁇ 1 ⁇ 1 ⁇ 1) from the reference voltage V1.
  • the fuel cell system 1001 then performs a second refresh process Proc2 when the cell voltage becomes lower than the first reference during the reference time T1 and further becomes lower than the second reference.
  • the fuel cell system 1001 performs a first refresh process Proc1.
  • Step S1110 When the process starts, the fuel cell system 1001 sets the output setting of the fuel cell unit 1010 to a predetermined output setting.
  • the fuel cell system 1001 sets the output setting of the fuel cell unit 1010 to a predetermined output setting.
  • Step S1120 Next, the fuel cell system 1001 starts a timer for measuring time.
  • step S1020 For specific processing, refer to the description of step S1020 and a description thereof will be omitted here.
  • Step S1130 The fuel cell system 1001 sets a reference voltage V1 for the cell voltage in the fuel cell 1011.
  • the fuel cell system 1001 sets the reference voltage V1 from the cell voltage after a predetermined time has elapsed since the fuel cell unit 1010 was started up.
  • the control unit 1020 sets the reference voltage V1 from the cell voltage of the fuel cell 1011 between time t21 and time t22, a predetermined period of time after startup.
  • the reference voltage V1 is, for example, the average of the cell voltage between time t21 and time t22.
  • the control unit 1020 calculates a first reference (V1 x ⁇ 1) and a second reference (V1 x ⁇ 1) from the reference voltage V1. Note that 0 ⁇ 1 ⁇ 1 ⁇ 1. ⁇ 1 is, for example, 0.98, and ⁇ 1 is, for example, 0.96.
  • Step S1140 the control unit 1020 determines whether the stack voltage (cell voltage of the fuel cell 1011) is lower than the first reference. If the stack voltage is lower than the first reference (YES in step S1140), the control unit 1020 proceeds to step S1150. If the stack voltage is higher than the first reference (NO in step S1140), the control unit 1020 returns to step S1140 and repeats the process.
  • Step S1150 the control unit 1020 determines whether the set time has elapsed. If the set time has elapsed (YES in step S1150), the control unit 1020 proceeds to step S1160. If the set time has not elapsed (NO in step S1150), the control unit 1020 proceeds to step S1170.
  • Step S1160 In step S1150, if the set time has elapsed (YES in step S1150), the control unit 1020 performs a first refresh process.
  • the first refresh process refer to the description of the fuel cell system according to the first embodiment, and the description will be omitted here.
  • Step S1170 In step S1150, if the set time has not elapsed (NO in step S1150), the control unit 1020 determines whether the stack voltage is lower than the second reference. If the stack voltage is lower than the second reference (YES in step S1170), the control unit 1020 proceeds to step S1180. If the stack voltage is higher than the second reference (NO in step S1170), the control unit 1020 returns to step S1140 and repeats the process.
  • step S1180 In step S1170, if the stack voltage is lower than the second reference (YES in step S1170), the control unit 1020 performs a second refresh process.
  • the second refresh process refer to the description of the fuel cell system according to the first embodiment, and the description will be omitted here.
  • Step S1190 The control unit 1020 initializes the timer 1021 .
  • Step S1200 The control unit 1020 determines whether or not to continue the process. If the process is to be continued (YES in step S1200), the control unit 1020 returns to step S1140 and repeats the process. If the process is not to be continued (NO in step S1200), the control unit 1020 advances the process to step S1210.
  • Step S1210 the fuel cell system 1001 stops the timer for measuring time. Specifically, the control unit 1020 stops the timer 1021. Then, the process ends.
  • the fuel cell system 1001 executes the first refresh process at times t23, t24, t25, and t26.
  • the fuel cell system 1001 executes the second refresh process.
  • the first refresh process and the second refresh process are performed, thereby effectively refreshing the fuel cell unit.
  • Fuel Cell System According to Third Embodiment A fuel cell system according to a third embodiment will be described.
  • the fuel cell system according to the third embodiment differs in processing from the fuel cell system according to the first embodiment.
  • For the configuration of the fuel cell system according to the third embodiment please refer to the description of the configuration of the fuel cell system according to the first embodiment, and the description will be omitted here.
  • Fig. 50 is a flow diagram illustrating processing in the fuel cell system according to the third embodiment.
  • Fig. 51 is a diagram illustrating processing in the fuel cell system according to the third embodiment.
  • Fig. 51 is a diagram illustrating a schematic result of processing in the fuel cell system according to the third embodiment.
  • the horizontal axis of Fig. 51 indicates time, and the vertical axis indicates cell voltage.
  • the process of the fuel cell system according to the third embodiment will be outlined with reference to FIG. 51.
  • the process of the fuel cell system according to the third embodiment will be described below with reference to the fuel cell system 1001. It is assumed that the fuel cell system 1001 starts operating from time 0.
  • the fuel cell system 1001 first sets a reference voltage V2 based on the cell voltage between time t31 and time t32.
  • the fuel cell system 1001 then calculates a first reference (V2 ⁇ 2) and a second reference (V2 ⁇ 2) (where 0 ⁇ 2 ⁇ 2 ⁇ 1) from the reference voltage V2.
  • the fuel cell system 1001 then performs the first refresh process Proc1 a predetermined number of times N1.
  • the fuel cell system 1001 then performs the second refresh process Proc2 after performing the first refresh process Proc1 a predetermined number of times N1.
  • Step S1310 When the process starts, the fuel cell system 1001 sets the output setting of the fuel cell unit 1010 to a predetermined output setting.
  • the fuel cell system 1001 sets the output setting of the fuel cell unit 1010 to a predetermined output setting.
  • Step S1320 The fuel cell system 1001 sets a reference voltage V2 for the cell voltage in the fuel cell 1011.
  • the fuel cell system 1001 sets the reference voltage V2 from the cell voltage after a predetermined time has elapsed since the fuel cell unit 1010 was started up.
  • ⁇ 2 is, for example, 0.98
  • ⁇ 2 is, for example, 0.96.
  • Step S1330 the control unit 1020 determines whether the stack voltage (cell voltage of the fuel cell 1011) is lower than the first reference. If the stack voltage is lower than the first reference (YES in step S1330), the control unit 1020 proceeds to step S1340. If the stack voltage is higher than the first reference (NO in step S1330), the control unit 1020 returns to step S1330 and repeats the process.
  • step S1340 In step S1330, if the stack voltage is lower than the first reference (YES in step S1330), the control unit 1020 performs a first refresh process.
  • the first refresh process refer to the description of the fuel cell system according to the first embodiment, and a description thereof will be omitted here.
  • Step S1350 the control unit 1020 determines whether the first refresh process has been performed a predetermined number of times. If the first refresh process has been performed a predetermined number of times (YES in step S1350), the control unit 1020 proceeds to step S1360. If the first refresh process has not been performed a predetermined number of times (NO in step S1350), the control unit 1020 returns to step S1330 and repeats the process.
  • Step S1360 Next, in step S1350, when the first refresh process has been performed a predetermined number of times (YES in step S1350), the control unit 1020 determines whether the stack voltage is lower than the second reference. If the stack voltage is lower than the second reference (YES in step S1360), the control unit 1020 proceeds to step S1370. If the stack voltage is higher than the second reference (NO in step S1360), the control unit 1020 returns to step S1360 and repeats the process.
  • Step S1370 In step S1360, if the stack voltage is lower than the second reference value (YES in step S1360), the control unit 1020 performs a second refresh process.
  • the second refresh process refer to the description of the fuel cell system according to the first embodiment, and the description will be omitted here.
  • Step S1380 The control unit 1020 determines whether or not to continue the process. If the process is to be continued (YES in step S1380), the control unit 1020 returns to step S1330 and repeats the process. Note that, if returning to step S1330, the number of times the first refresh process has been performed is initialized to 0. If the process is not to be continued (NO in step S1380), the control unit 1020 ends the process.
  • the first refresh process and the second refresh process are performed, thereby effectively refreshing the fuel cell unit.
  • the fuel cell system according to the fourth embodiment includes a plurality of fuel cell units.
  • FIG. 52 is a diagram showing an outline of the configuration of a fuel cell system 1002, which is an example of a fuel cell system according to the fourth embodiment.
  • the fuel cell system 1002 includes multiple fuel cell units, a control unit 1120, and a power storage unit 1030.
  • the fuel cell system 1002 includes four fuel cell units: fuel cell unit 1010a, fuel cell unit 1010b, fuel cell unit 1010c, and fuel cell unit 1010d.
  • the number of fuel cell units is not limited to the above example, and may be two or more.
  • the output P1a of the fuel cell unit 1010a, the output P1b of the fuel cell unit 1010b, the output P1c of the fuel cell unit 1010c, and the output P1d of the fuel cell unit 1010d are combined into an output P1f.
  • the output P1f and the output Ps of the power storage unit 1030 provide the output Pout of the fuel cell system 1002 to the external load EX.
  • Each of fuel cell unit 1010a, fuel cell unit 1010b, fuel cell unit 1010c, and fuel cell unit 1010d has the same configuration as fuel cell unit 1010 in fuel cell system 1001, which is an example of a fuel cell system according to the first embodiment.
  • fuel cell unit 1010a, fuel cell unit 1010b, fuel cell unit 1010c, and fuel cell unit 1010d the description of fuel cell unit 1010 is omitted here, and reference should be made to the description of fuel cell unit 1010.
  • Control unit 1120 The control unit 1120 controls each of the fuel cell unit 1010a, the fuel cell unit 1010b, the fuel cell unit 1010c, and the fuel cell unit 1010d.
  • the control unit 1120 includes the functions of the control unit 1020.
  • Figures 53 and 54 are diagrams for explaining the processing in a fuel cell system 1002, which is an example of the fuel cell system according to the fourth embodiment.
  • the horizontal axis represents time
  • the vertical axis represents the output of each of fuel cell unit 1010a, fuel cell unit 1010b, fuel cell unit 1010c, and fuel cell unit 1010d.
  • the horizontal axis represents time
  • the vertical axis represents the output of fuel cell system 1002.
  • the control unit 1120 performs the refresh process on the fuel cell unit 1010a, the fuel cell unit 1010b, the fuel cell unit 1010c, and the fuel cell unit 1010d in that order.
  • the refresh operation is either the first refresh process or the second refresh process described in the fuel cell system according to the first embodiment.
  • the refresh process is indicated by the arrowed line Proc.
  • the fuel cell system 1002 performs the refresh process by switching between fuel cell unit 1010a, fuel cell unit 1010b, fuel cell unit 1010c, and fuel cell unit 1010d in that order, thereby maintaining the output Pa state as shown in Figure 54.
  • the control unit 1120 distributes the power generated by the fuel cell unit undergoing the refresh process to other fuel cell units not undergoing the refresh process, allowing the fuel cell system 1002 to maintain a constant output.
  • the first refresh process and the second refresh process are performed, thereby effectively refreshing the fuel cell unit. Furthermore, according to the fuel cell system of the fourth embodiment, the final output can be maintained at a desired output even while the refresh process is being performed.
  • Fuel Cell System According to Fifth Embodiment A fuel cell system according to a fifth embodiment will be described.
  • the fuel cell system according to the fifth embodiment differs in processing from the fuel cell system according to the fourth embodiment.
  • Fig. 55 is a diagram for explaining the process in the fuel cell system according to the fifth embodiment.
  • the horizontal axis represents time
  • the vertical axis represents the output of each of fuel cell unit 1010a, fuel cell unit 1010b, fuel cell unit 1010c, and fuel cell unit 1010d.
  • the control unit 1120 performs a refresh process on any of the fuel cell units 1010a, 1010b, 1010c, and 1010d during the refresh period Prsh2.
  • the refresh operation is either the first refresh process or the second refresh process described in the fuel cell system according to the first embodiment. In FIG. 55, the refresh process is indicated by the arrowed line Proc.
  • the fuel cell system according to the fifth embodiment can maintain output by performing a refresh process in any one of fuel cell unit 1010a, fuel cell unit 1010b, fuel cell unit 1010c, and fuel cell unit 1010d. Note that the output in the fuel cell system according to the fifth embodiment is the same as the output shown in FIG. 54.
  • the first refresh process and the second refresh process are performed, thereby effectively refreshing the fuel cell unit. Furthermore, according to the fuel cell system of the fifth embodiment, the final output can be maintained at a desired output even while the refresh process is being performed.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

A fuel cell power generator comprising a plurality of fuel cell units and a controller that controls the plurality of fuel cell units, wherein the plurality of fuel cell units include respective fuel cells connected to shared output lines and the controller increases or reduces the output power of each of the plurality of fuel cells while keeping an outward supply power through the output lines approximately constant.

Description

燃料電池発電装置、燃料電池発電システム、燃料電池システム及び燃料電池ユニットの制御方法Fuel cell power generation device, fuel cell power generation system, fuel cell system, and method for controlling fuel cell unit
 本開示は、燃料電池発電装置、燃料電池発電システム、燃料電池システム及び燃料電池ユニットの制御方法に関する。 This disclosure relates to a fuel cell power generation device, a fuel cell power generation system, a fuel cell system, and a method for controlling a fuel cell unit.
 特許文献1には、燃料電池スタックの電圧を低下させることにより燃料電池スタックのリフレッシュ制御を行う燃料電池システムが開示されている。特許文献2には、複数の燃料電池グループと、燃料電池グループが発電した電力を充電して蓄えるための蓄電部と、触媒被毒低減処理を行う制御部と、を備える燃料電池システムが開示されている。 Patent Document 1 discloses a fuel cell system that performs refresh control of a fuel cell stack by lowering the voltage of the fuel cell stack. Patent Document 2 discloses a fuel cell system that includes multiple fuel cell groups, a power storage unit for charging and storing the power generated by the fuel cell groups, and a control unit that performs a catalyst poisoning reduction process.
 燃料電池の出力電力が目標電力となるように制御する電力制御モードと、当該燃料電池の出力電圧が目標電圧となるように制御する電圧制御モードとで、制御モードの切換が可能な燃料電池の出力制御装置が知られている(例えば、特許文献3参照)。 There is known an output control device for a fuel cell that can switch between a power control mode in which the output power of the fuel cell is controlled to a target power, and a voltage control mode in which the output voltage of the fuel cell is controlled to a target voltage (see, for example, Patent Document 3).
特開2020-071957号公報JP 2020-071957 A 特開2009-059610号公報JP 2009-059610 A 国際公開第2013/065132号International Publication No. 2013/065132
 燃料電池スタックを備える燃料電池装置において、長期的な運転により燃料電池における発電性能が低下する場合がある。燃料電池装置において発電性能が低下したときに、リフレッシュ運転が行われる。 In a fuel cell device equipped with a fuel cell stack, the power generation performance of the fuel cell may deteriorate due to long-term operation. When the power generation performance of the fuel cell device deteriorates, a refresh operation is performed.
 本開示は、燃料電池ユニットを効果的にリフレッシュする発明を提供する。 This disclosure provides an invention that effectively refreshes a fuel cell unit.
 本開示の一態様として、
 複数の燃料電池ユニットと、
 前記複数の燃料電池ユニットを制御する制御装置と、を備え、
 前記複数の燃料電池ユニットは、それぞれ、共通の出力線に接続される燃料電池を含み、
 前記制御装置は、前記出力線から外部への供給電力が略一定値に維持された状態で、複数の前記燃料電池の各出力電力を変化させる、燃料電池発電装置が提供される。
As one aspect of the present disclosure,
A plurality of fuel cell units;
a control device for controlling the plurality of fuel cell units;
each of the plurality of fuel cell units includes a fuel cell connected to a common output line;
The control device varies the output power of each of the plurality of fuel cells while the power supplied from the output line to the outside is maintained at a substantially constant value.
 本開示の一態様によれば、出力線から外部への供給電力が略一定値に維持された状態で、複数の燃料電池の各出力電力が変化するので、出力線から外部への一定の電力供給が確保された状態で、複数の燃料電池のセル面内の湿度分布の偏りは、減少する。したがって、略一定の電力供給が確保され、燃料電池の劣化が抑制される。 According to one aspect of the present disclosure, the output power of each of the multiple fuel cells is changed while the power supplied from the output line to the outside is maintained at a substantially constant value, so that while a constant power supply from the output line to the outside is ensured, the bias in the humidity distribution within the cell surface of the multiple fuel cells is reduced. Therefore, a substantially constant power supply is ensured, and deterioration of the fuel cells is suppressed.
 本開示の他の一態様として、
 燃料電池セルを備える燃料電池ユニットと、
 前記燃料電池ユニットを制御する制御ユニットと、を備え、
 前記制御ユニットは、前記燃料電池ユニットの出力を変動させるように制御する第1リフレッシュ処理と、前記燃料電池ユニットの動作を停止させ、前記燃料電池ユニットを起動するように制御する第2リフレッシュ処理と、を実行する、燃料電池システムが提供される。
As another aspect of the present disclosure,
a fuel cell unit including a fuel cell;
a control unit for controlling the fuel cell unit;
A fuel cell system is provided in which the control unit executes a first refresh process that controls to vary the output of the fuel cell unit, and a second refresh process that stops the operation of the fuel cell unit and controls to start up the fuel cell unit.
 本開示によれば、効果的に燃料電池ユニットをリフレッシュできる。 According to this disclosure, fuel cell units can be effectively refreshed.
燃料電池発電システムの第1構成例を示す図である。1 is a diagram showing a first configuration example of a fuel cell power generation system; 燃料電池発電システムの第2構成例を示す図である。FIG. 11 is a diagram showing a second configuration example of a fuel cell power generation system. 第1条件(許可条件)と第2条件(異常条件)を説明するためのタイミングチャートである。4 is a timing chart for explaining a first condition (permission condition) and a second condition (abnormal condition). 低負荷状態を許可するフラグ(許可フラグ)の種類を例示する表である。11 is a table illustrating types of flags (permission flags) that permit a low load state; 異常な低負荷状態を判定するフラグ(異常フラグ)の種類を例示する表である。11 is a table illustrating types of flags (abnormality flags) for determining an abnormally low load state. 燃料電池の負荷状態が異常な低負荷状態と判断された後の複数の処理例を示す図である。11A to 11C are diagrams illustrating a number of examples of processing that is performed after the load state of the fuel cell is determined to be an abnormally low load state. 異常な低負荷状態を判定するシーケンスの一例を示す図である。FIG. 11 is a diagram illustrating an example of a sequence for determining an abnormally low load state. 低負荷状態を許可するシーケンスの一例を示す図である。FIG. 11 is a diagram illustrating an example of a sequence for permitting a low load state. 燃料電池発電システムの第2構成例において、第1制御装置と第2制御装置が各々実行する制御処理の一例を示すフローチャートである。10 is a flowchart showing an example of control processing executed by each of a first control device and a second control device in a second configuration example of a fuel cell power generation system. 第1制御装置が実行する指令生成処理の一例を示すフローチャートである。5 is a flowchart showing an example of a command generating process executed by a first control device. 燃料電池システムの第3構成例を示す図である。FIG. 11 is a diagram showing a third configuration example of a fuel cell system. 燃料電池発電システムの第3構成例において、第1制御装置と第2制御装置と第3制御装置が各々実行する制御処理の一例を示すフローチャートである。13 is a flowchart showing an example of control processing executed by each of a first control device, a second control device, and a third control device in a third configuration example of a fuel cell power generation system. リフレッシュ運転時の制御処理の一例を示すフローチャートである。10 is a flowchart showing an example of a control process during a refresh operation. リフレッシュ運転機の設定処理の一例を示すフローチャートである。10 is a flowchart showing an example of a setting process for a refresh operation machine. リフレッシュ運転処理の一例を示すフローチャートである。10 is a flowchart showing an example of a refresh operation process. 外部への供給電力が一定に維持された状態を例示する図である。11 is a diagram illustrating a state in which power supplied to the outside is maintained constant; FIG. 発電装置が4並列の場合のリフレッシュ運転の実施パターンの第1例を示す図である。FIG. 11 is a diagram showing a first example of an implementation pattern of a refresh operation when four power generation devices are connected in parallel. 発電装置が4並列の場合のリフレッシュ運転の実施パターンの第2例を示す図である。FIG. 11 is a diagram showing a second example of an implementation pattern of a refresh operation when four power generation devices are connected in parallel. 発電装置と4並列の発電装置を組み合わせた場合のリフレッシュ運転の実施パターンの第1例を示す図である。FIG. 11 is a diagram showing a first example of an implementation pattern of a refresh operation when a power generation device is combined with four power generation devices in parallel. 発電装置と4並列の発電装置を組み合わせた場合のリフレッシュ運転の実施パターンの第2例を示す図である。FIG. 11 is a diagram showing a second example of an implementation pattern of a refresh operation when a power generation device is combined with four power generation devices connected in parallel. 発電装置の並列台数と発電装置の出力電力との関係を例示する表である。1 is a table illustrating an example of the relationship between the number of power generation devices connected in parallel and the output power of the power generation devices. リフレッシュ運転を用いる場合に適した並列台数範囲を例示するデータである。13 is data showing an example of a range of the number of parallel units suitable for the case where the refresh operation is used. 第1実施形態の燃料電池発電装置を備える燃料電池発電システムの具体的な構成例を示す図である。1 is a diagram showing a specific configuration example of a fuel cell power generation system including a fuel cell power generation device according to a first embodiment; 第1実施形態の燃料電池発電装置の構成例を詳細に示す図である。1 is a diagram showing in detail an example of the configuration of a fuel cell power generation device according to a first embodiment; 第1実施形態の燃料電池発電装置を備える燃料電池発電システムの構成例(変形例)を示す図である。FIG. 2 is a diagram showing a configuration example (modification) of a fuel cell power generation system including the fuel cell power generation device of the first embodiment. 第2実施形態の燃料電池発電装置を備える燃料電池発電システムの具体的な構成例を示す図である。FIG. 11 is a diagram showing a specific configuration example of a fuel cell power generation system including a fuel cell power generation device according to a second embodiment. 第2実施形態の燃料電池発電装置の構成例を詳細に示す図である。FIG. 13 is a diagram showing in detail an example of the configuration of a fuel cell power generation device according to a second embodiment. 燃料電池が3並列の場合の電力変動制御パターンの第1例を示す図である。FIG. 11 is a diagram showing a first example of a power fluctuation control pattern when three fuel cells are connected in parallel. 燃料電池が2並列の場合の電力変動制御パターンの第1例を示す図である。FIG. 11 is a diagram showing a first example of a power fluctuation control pattern when two fuel cells are connected in parallel. 燃料電池が2並列の場合の電力変動制御パターンの第2例を示す図である。FIG. 13 is a diagram showing a second example of a power fluctuation control pattern when two fuel cells are connected in parallel. 燃料電池が2並列の場合の電力変動制御パターンの第3例を示す図である。FIG. 13 is a diagram showing a third example of a power fluctuation control pattern when two fuel cells are connected in parallel. 燃料電池が2並列の場合の電力変動制御パターンの第4例を示す図である。FIG. 13 is a diagram showing a fourth example of a power fluctuation control pattern when two fuel cells are connected in parallel. 燃料電池が3並列の場合の電力変動制御パターンの第2例を示す図である。FIG. 13 is a diagram showing a second example of a power fluctuation control pattern when three fuel cells are connected in parallel. 燃料電池が3並列の場合の電力変動制御パターンの第3例を示す図である。FIG. 13 is a diagram showing a third example of a power fluctuation control pattern when three fuel cells are connected in parallel. 第1実施形態に係る燃料電池システムにおける構成の概略を示す図である。1 is a diagram showing an outline of the configuration of a fuel cell system according to a first embodiment; 第1実施形態に係る燃料電池システムにおける処理を説明するフロー図である。FIG. 2 is a flow chart illustrating a process in the fuel cell system according to the first embodiment. 第1実施形態に係る燃料電池システムにおける処理を説明する図である。FIG. 2 is a diagram illustrating the process in the fuel cell system according to the first embodiment. 第1実施形態に係る燃料電池システムにおける第1リフレッシュ処理を説明するフロー図である。FIG. 4 is a flow chart illustrating a first refresh process in the fuel cell system according to the first embodiment. 第1実施形態に係る燃料電池システムにおける第1リフレッシュ処理を説明する図である。5A and 5B are diagrams illustrating a first refresh process in the fuel cell system according to the first embodiment. 第1実施形態に係る燃料電池システムにおける第2リフレッシュ処理を説明するフロー図である。FIG. 4 is a flow chart illustrating a second refresh process in the fuel cell system according to the first embodiment. 第1実施形態に係る燃料電池システムにおける第2リフレッシュ処理を説明する図である。5A and 5B are diagrams illustrating a second refresh process in the fuel cell system according to the first embodiment. 第1実施形態に係る燃料電池システムにおける第1リフレッシュ処理の変形例を説明するフロー図である。FIG. 11 is a flow chart illustrating a modified example of the first refresh process in the fuel cell system according to the first embodiment. 第1実施形態に係る燃料電池システムにおける第1リフレッシュ処理の変形例を説明する図である。7A to 7C are diagrams illustrating a modified example of the first refresh process in the fuel cell system according to the first embodiment. 第1実施形態に係る燃料電池システムにおける第2リフレッシュ処理の第1変形例を説明するフロー図である。FIG. 11 is a flow chart illustrating a first modified example of the second refresh process in the fuel cell system according to the first embodiment. 第1実施形態に係る燃料電池システムにおける第2リフレッシュ処理の第1変形例を説明する図である。11A and 11B are diagrams illustrating a first modified example of the second refresh process in the fuel cell system according to the first embodiment. 第1実施形態に係る燃料電池システムにおける第2リフレッシュ処理の第2変形例を説明するフロー図である。FIG. 11 is a flow chart illustrating a second modified example of the second refresh process in the fuel cell system according to the first embodiment. 第1実施形態に係る燃料電池システムにおける第2リフレッシュ処理の第2変形例を説明する図である。FIG. 11 is a diagram illustrating a second modified example of the second refresh process in the fuel cell system according to the first embodiment. 第2実施形態に係る燃料電池システムにおける処理を説明するフロー図である。FIG. 11 is a flow chart illustrating a process in a fuel cell system according to a second embodiment. 第2実施形態に係る燃料電池システムにおける処理を説明する図である。FIG. 11 is a diagram illustrating a process in a fuel cell system according to a second embodiment. 第3実施形態に係る燃料電池システムにおける処理を説明するフロー図である。FIG. 11 is a flow chart illustrating a process in a fuel cell system according to a third embodiment. 第3実施形態に係る燃料電池システムにおける処理を説明する図である。FIG. 11 is a diagram illustrating a process in a fuel cell system according to a third embodiment. 第4実施形態に係る燃料電池システムにおける構成の概略を示す図である。FIG. 13 is a diagram showing an outline of the configuration of a fuel cell system according to a fourth embodiment. 第4実施形態に係る燃料電池システムにおける処理を説明する図である。FIG. 13 is a diagram illustrating a process in a fuel cell system according to a fourth embodiment. 第4実施形態に係る燃料電池システムにおける処理を説明する図である。FIG. 13 is a diagram illustrating a process in a fuel cell system according to a fourth embodiment. 第5実施形態に係る燃料電池システムにおける処理を説明する図である。FIG. 13 is a diagram illustrating the process in a fuel cell system according to a fifth embodiment.
 以下、実施形態を説明する。なお、以下の説明において、「一定」には、「略一定」が含まれてよい。「定格出力」は、「最大出力」と置換されてもよい。「一時的に」とは、「一定時間以上」を意味してもよい。 The following describes an embodiment. In the following description, "constant" may include "almost constant." "Rated output" may be replaced with "maximum output." "Temporarily" may mean "for a certain period of time or longer."
 <燃料電池発電システムの構成例>
 図1は、燃料電池発電システムの第1構成例を示す図である。図1に示す燃料電池発電システム400は、FC(燃料電池)によって発電された電力を、給電対象である不図示の外部装置に供給するシステムである。一方、図2は、燃料電池発電システムの第2構成例を示す図である。図2に示す燃料電池発電システム401は、並列に接続された複数のFC(燃料電池)によって発電された電力を、給電対象である不図示の外部装置に供給するシステムである。
<Configuration example of fuel cell power generation system>
Fig. 1 is a diagram showing a first configuration example of a fuel cell power generation system. A fuel cell power generation system 400 shown in Fig. 1 is a system that supplies power generated by a FC (fuel cell) to an external device (not shown) that is a power supply target. Meanwhile, Fig. 2 is a diagram showing a second configuration example of a fuel cell power generation system. A fuel cell power generation system 401 shown in Fig. 2 is a system that supplies power generated by multiple FCs (fuel cells) connected in parallel to an external device (not shown) that is a power supply target.
 燃料電池発電システム400(図1)は、燃料電池発電システム401(図2)における複数の発電装置の台数が1台の場合と捉えることができる。したがって、以下の説明では、特に断りのない限り、燃料電池発電システム401について説明し、燃料電池発電システム400の説明については、燃料電池発電システム401について説明の内容を援用することで省略又は簡略する。 Fuel cell power generation system 400 (Fig. 1) can be considered as a fuel cell power generation system 401 (Fig. 2) in which the number of power generation devices is one. Therefore, unless otherwise specified, the following description will focus on fuel cell power generation system 401, and the description of fuel cell power generation system 400 will be omitted or simplified by incorporating the contents of the description of fuel cell power generation system 401.
 また、燃料電池発電システム400(図1)では、制御装置は、第1制御装置411と第2制御装置421に分離されている。しかし、制御装置は、第1制御装置411の機能と第2制御装置421の機能を両方有する一つの制御装置で構成されてもよい。 Furthermore, in the fuel cell power generation system 400 (Fig. 1), the control device is separated into a first control device 411 and a second control device 421. However, the control device may be configured as a single control device having both the functions of the first control device 411 and the second control device 421.
 また、図1及び図2において、第1制御装置411は、複数の制御装置に分離されてもよく、第2制御装置421も、複数の制御装置に分離されてもよい。 In addition, in Figures 1 and 2, the first control device 411 may be separated into multiple control devices, and the second control device 421 may also be separated into multiple control devices.
 図2において、燃料電池発電システム401は、複数(この例では、4台)の発電装置451,452,453,454と、補機システム301と、第1制御装置411と、を備える。発電装置451,452,453,454を、以下、発電装置451等ともいう。 In FIG. 2, the fuel cell power generation system 401 includes multiple (four in this example) power generation devices 451, 452, 453, and 454, an auxiliary system 301, and a first control device 411. Hereinafter, the power generation devices 451, 452, 453, and 454 are also referred to as the power generation devices 451, etc.
 補機システム301は、発電装置451等の稼働を補助する周辺システムである。補機システム301は、例えば、制御用電源、燃料系統、給気系統、排気系統、パージ系統および冷却器などを含む。制御用電源は、第1制御装置411に電力を供給する。燃料系統は、発電装置451等に水素又は水素リッチなガスを供給する。給気系統は、発電装置451等に空気を供給する。排気系統は、発電装置451等からの排ガスを排出する。パージ系統は、燃料系統に窒素等の不活性ガスを供給する。冷却器は、発電装置451等を冷却する。補機システム301は、蓄電装置14を含んでもよい。蓄電装置14は、出力線17に給電可能に接続される補助電源の一例である。出力線17は、発電装置451等の各発電出力端子に共通に接続される電力線である。 The auxiliary system 301 is a peripheral system that assists the operation of the power generation device 451 and the like. The auxiliary system 301 includes, for example, a control power supply, a fuel system, an air supply system, an exhaust system, a purge system, and a cooler. The control power supply supplies power to the first control device 411. The fuel system supplies hydrogen or hydrogen-rich gas to the power generation device 451 and the like. The air supply system supplies air to the power generation device 451 and the like. The exhaust system exhausts exhaust gas from the power generation device 451 and the like. The purge system supplies an inert gas such as nitrogen to the fuel system. The cooler cools the power generation device 451 and the like. The auxiliary system 301 may include a power storage device 14. The power storage device 14 is an example of an auxiliary power supply that is connected to the output line 17 so that it can supply power. The output line 17 is a power line that is commonly connected to each power generation output terminal of the power generation device 451 and the like.
 発電装置451等は、それぞれ、燃料電池によって発電し、発生させた電力を出力する。発電装置451等は、出力線17に並列に接続されている。並列に接続される複数の発電装置の台数は、4台に限られず、2台、3台または4台以上でもよい。 Each of the power generation devices 451 etc. generates power using a fuel cell and outputs the generated power. The power generation devices 451 etc. are connected in parallel to the output line 17. The number of multiple power generation devices connected in parallel is not limited to four, and may be two, three, or more than four.
 発電装置451等は、互いに同じ構成を有する。発電装置451は、燃料電池441、補機431および第2制御装置421を有する。発電装置452は、燃料電池442、補機432および第2制御装置422を有する。発電装置453は、燃料電池443、補機433および第2制御装置423を有する。発電装置454は、燃料電池444、補機434および第2制御装置424を有する。 The power generation devices 451 and the like have the same configuration. The power generation device 451 has a fuel cell 441, an auxiliary device 431, and a second control device 421. The power generation device 452 has a fuel cell 442, an auxiliary device 432, and a second control device 422. The power generation device 453 has a fuel cell 443, an auxiliary device 433, and a second control device 423. The power generation device 454 has a fuel cell 444, an auxiliary device 434, and a second control device 424.
 複数の燃料電池441,442,443,444(以下、燃料電池441等ともいう)は、共通の出力線17に給電可能に接続されている。燃料電池441等は、水素などの燃料の化学エネルギーを電気化学的に電気エネルギーに変換する装置である。燃料電池441等は、例えば、固体高分子形燃料電池(PEFC)であるが、これに限られず、リン酸型などの他の形式の燃料電池でもよい。 Multiple fuel cells 441, 442, 443, 444 (hereinafter also referred to as fuel cells 441, etc.) are connected to a common output line 17 so that they can supply power. The fuel cells 441, etc. are devices that electrochemically convert the chemical energy of a fuel such as hydrogen into electrical energy. The fuel cells 441, etc. are, for example, polymer electrolyte fuel cells (PEFCs), but are not limited to this and may be other types of fuel cells such as phosphoric acid type.
 燃料電池441等には、それらの出力端子の電圧を検出するための電圧センサと、それらの出力端子からの出力電流を検出するための電流センサが取り付けられている。第1制御装置411は、燃料電池441等から出力される各電圧の検出値を電圧センサにより取得し、燃料電池441等から出力される各電流の検出値を電流センサにより取得する。第1制御装置411は、各電圧の検出値と各電流の検出値を用いて、燃料電池441等の各出力電力p1,p2,p3,p4を検出する。 The fuel cells 441, etc. are fitted with voltage sensors for detecting the voltages at their output terminals, and current sensors for detecting the output currents from their output terminals. The first control device 411 obtains the detection values of each voltage output from the fuel cells 441, etc. using the voltage sensors, and obtains the detection values of each current output from the fuel cells 441, etc. using the current sensors. The first control device 411 detects the output powers p1, p2, p3, and p4 of the fuel cells 441, etc. using the detection values of each voltage and each current.
 燃料電池441等(発電装置451等)の発電により生成された発電電力は、出力線17を介して、不図示の外部装置に供給される。 The power generated by the fuel cell 441, etc. (power generation device 451, etc.) is supplied to an external device (not shown) via the output line 17.
 補機431は、燃料電池441等のうち自身に対応する燃料電池441の発電動作を補助する装置である。補機432,433,434も、補機431と同様に、燃料電池441等のうち自身に対応する燃料電池の発電動作を補助する装置である。 Auxiliary device 431 is a device that assists the power generation operation of the fuel cell 441 that corresponds to it among fuel cells 441, etc. Similar to auxiliary device 431, auxiliary devices 432, 433, and 434 are also devices that assist the power generation operation of the fuel cell that corresponds to them among fuel cells 441, etc.
 補機431は、例えば、空気を圧縮して燃料電池441に供給する空気コンプレッサ、熱交換器と燃料電池441との間で冷却液を循環させるウォーターポンプなどを含む。補機431は、後述の冷却系統36を含んでもよい。補機432,433,434についても同様である。 The auxiliary equipment 431 includes, for example, an air compressor that compresses air and supplies it to the fuel cell 441, and a water pump that circulates a coolant between the heat exchanger and the fuel cell 441. The auxiliary equipment 431 may also include a cooling system 36, which will be described later. The same applies to the auxiliary equipment 432, 433, and 434.
 第1制御装置411は、発電装置451等及び補機システム301の各運転動作を制御する上位コントローラである。第1制御装置411は、発電装置451等の動作内容を指示する指令a(指令a1,a2,a3,a4)を個別に生成し、発電装置451等の各々に送信する。 The first control device 411 is a higher-level controller that controls the operation of the power generation device 451, etc. and the auxiliary system 301. The first control device 411 individually generates command a (commands a1, a2, a3, a4) that instructs the operation of the power generation device 451, etc., and transmits them to each of the power generation devices 451, etc.
 第1制御装置411は、例えば、出力線17に出力すべき電力として燃料電池発電システム401に要求される電力(要求出力電力)に応じて、発電装置451等の各出力電力P1,P2,P3,P4の指令値(出力設定値)を決定する。第1制御装置411は、各出力電力P1,P2,P3,P4の出力設定値を指示する指令a(指令a1,a2,a3,a4)を、発電装置451等の各々に送信する。 The first control device 411 determines the command values (output set values) of the output powers P1, P2, P3, and P4 of the power generation devices 451, etc., according to the power (required output power) required of the fuel cell power generation system 401 as the power to be output to the output line 17. The first control device 411 transmits command a (commands a1, a2, a3, a4) instructing the output set values of the output powers P1, P2, P3, and P4 to each of the power generation devices 451, etc.
 第2制御装置421は、発電装置451の動作内容を指示する指令a1に従って補機431を操作することで燃料電池441の発電を制御する下位コントローラである。第2制御装置421と同様に、第2制御装置422,423,424は、それぞれ、自身に対応する指令a(指令a2,a3,a4)に従って、自身に対応する補機を操作することで、自身に対応する燃料電池の運転を制御する下位コントローラである。 The second control device 421 is a lower-level controller that controls the power generation of the fuel cell 441 by operating the auxiliary device 431 according to command a1 that indicates the operation of the power generation device 451. Like the second control device 421, the second control devices 422, 423, and 424 are lower-level controllers that control the operation of the fuel cell corresponding to them by operating the auxiliary device corresponding to them according to the command a (commands a2, a3, and a4) corresponding to them.
 例えば、第2制御装置421は、発電装置451の出力電力P1が指令a1で指示された出力設定値となるように、補機431を操作することで燃料電池441の発電を制御する。第2制御装置422は、発電装置452の出力電力P2が指令a2で指示された出力設定値となるように、補機432を操作することで燃料電池442の発電を制御する。第2制御装置423は、発電装置453の出力電力P3が指令a3で指示された出力設定値となるように、補機433を操作することで燃料電池443の発電を制御する。第2制御装置424は、発電装置454の出力電力P4が指令a4で指示された出力設定値となるように、補機434を操作することで燃料電池444の発電を制御する。 For example, the second control device 421 controls the power generation of the fuel cell 441 by operating the auxiliary device 431 so that the output power P1 of the power generation device 451 becomes the output set value instructed by command a1. The second control device 422 controls the power generation of the fuel cell 442 by operating the auxiliary device 432 so that the output power P2 of the power generation device 452 becomes the output set value instructed by command a2. The second control device 423 controls the power generation of the fuel cell 443 by operating the auxiliary device 433 so that the output power P3 of the power generation device 453 becomes the output set value instructed by command a3. The second control device 424 controls the power generation of the fuel cell 444 by operating the auxiliary device 434 so that the output power P4 of the power generation device 454 becomes the output set value instructed by command a4.
 より詳しくは、出力線17に接続されるPCS等の後述の電力変換装置11は、第1制御装置411又は複数の第2制御装置421等の各々から出力される負荷指令に従って、出力線17に流す負荷電流を制御する。第2制御装置421は、発電装置451の出力電流に応じた空気量及び水素量が燃料電池441に供給されるように補機431を操作することで、発電装置451の出力電力P1が指令a1で指示された出力設定値となるように燃料電池441の発電を制御する。第2制御装置422は、発電装置452の出力電流に応じた空気量及び水素量が燃料電池442に供給されるように補機432を操作することで、発電装置452の出力電力P2が指令a2で指示された出力設定値となるように燃料電池442の発電を制御する。第2制御装置423は、発電装置453の出力電流に応じた空気量及び水素量が燃料電池443に供給されるように補機433を操作することで、発電装置453の出力電力P3が指令a3で指示された出力設定値となるように燃料電池443の発電を制御する。第2制御装置424は、発電装置454の出力電流に応じた空気量及び水素量が燃料電池444に供給されるように補機434を操作することで、発電装置454の出力電力P4が指令a4で指示された出力設定値となるように燃料電池444の発電を制御する。 More specifically, a power conversion device 11, such as a PCS (described below), connected to output line 17 controls the load current flowing through output line 17 in accordance with a load command output from each of the first control device 411 or the multiple second control devices 421. The second control device 421 controls the power generation of the fuel cell 441 so that the output power P1 of the power generation device 451 becomes the output set value instructed by command a1 by operating the auxiliary device 431 so that the amount of air and hydrogen corresponding to the output current of the power generation device 451 is supplied to the fuel cell 441. The second control device 422 controls the power generation of the fuel cell 442 so that the output power P2 of the power generation device 452 becomes the output set value instructed by command a2 by operating the auxiliary device 432 so that the amount of air and hydrogen corresponding to the output current of the power generation device 452 is supplied to the fuel cell 442. The second control device 423 controls the power generation of the fuel cell 443 so that the output power P3 of the power generation device 453 becomes the output set value instructed by command a3 by operating the auxiliary device 433 so that the amount of air and hydrogen corresponding to the output current of the power generation device 453 is supplied to the fuel cell 443. The second control device 424 controls the power generation of the fuel cell 444 so that the output power P4 of the power generation device 454 becomes the output set value instructed by command a4 by operating the auxiliary device 434 so that the amount of air and hydrogen corresponding to the output current of the power generation device 454 is supplied to the fuel cell 444.
 燃料電池441の出力電力p1の一部は、補機431の一部又は全部の動作電力として使用され、その余剰電力が、発電装置451の出力電力P1として出力される。出力電力p2,p3,p4についても同様である。 A portion of the output power p1 of the fuel cell 441 is used as operating power for part or all of the auxiliary equipment 431, and the surplus power is output as output power P1 of the power generation device 451. The same applies to the output powers p2, p3, and p4.
 第1制御装置411は、出力線17から外部への供給電力を略一定の所定値に維持する制御を行う。例えば、第1制御装置411は、出力線17から出力される供給電力Pa(=Po-Pb)が一定の目標値(要求出力電力)に維持されるように、燃料電池441等(発電装置451等)の発電を制御する。Poは、発電装置451等の各発電出力端子と蓄電装置14との間における電力である。Poは、発電装置451等の各出力電力P1,P2,P3,P4の和に等しい(Po=P1+P2+P3+P4)。Pbは、蓄電装置14と出力線17との間でやり取りされる電力である。 The first control device 411 performs control to maintain the power supply from the output line 17 to the outside at a substantially constant predetermined value. For example, the first control device 411 controls the power generation of the fuel cell 441, etc. (the power generation device 451, etc.) so that the supply power Pa (=Po-Pb) output from the output line 17 is maintained at a constant target value (required output power). Po is the power between each power generation output terminal of the power generation device 451, etc. and the power storage device 14. Po is equal to the sum of the output powers P1, P2, P3, P4 of the power generation device 451, etc. (Po=P1+P2+P3+P4). Pb is the power exchanged between the power storage device 14 and the output line 17.
 第1制御装置411は、出力線17から外部への供給電力Paが一定の要求出力電力に維持されるように、燃料電池441等の各出力電力p1,p2,p3,p4を変化(より詳しくは、増減)させる制御(電池出力変動制御)を行う場合がある。供給電力Pa又は出力電力Poは、電圧センサ及び電流センサにより検出可能である。 The first control device 411 may perform control (battery output fluctuation control) to change (more specifically, increase or decrease) the output powers p1, p2, p3, and p4 of the fuel cell 441, etc., so that the supply power Pa from the output line 17 to the outside is maintained at a constant required output power. The supply power Pa or the output power Po can be detected by a voltage sensor and a current sensor.
 第1制御装置411は、電池出力変動制御を行う場合、出力線17から外部への供給電力Paが一定の要求出力電力に維持されるように燃料電池の出力電力を変化させる指令a(指令a1,a2,a3,a4)を個別に生成し、発電装置451等の各々に送信する。 When performing battery output fluctuation control, the first control device 411 individually generates commands a (commands a1, a2, a3, a4) that change the output power of the fuel cell so that the power Pa supplied to the outside from the output line 17 is maintained at a constant required output power, and transmits these to each of the power generation devices 451, etc.
 第2制御装置421は、供給電力Paが一定の要求出力電力に維持されるように生成された指令a1に従って補機431を操作することで、燃料電池441の出力電力p1を変化させる。第2制御装置422は、供給電力Paが一定の要求出力電力に維持されるように生成された指令a2に従って、補機432を操作することで燃料電池442の出力電力p2を変化させる。第2制御装置423は、供給電力Paが一定の要求出力電力に維持されるように生成された指令a3に従って、補機433を操作することで燃料電池443の出力電力p3を変化させる。第2制御装置424は、供給電力Paが一定の要求出力電力に維持されるように生成された指令a4に従って、補機434を操作することで燃料電池444の出力電力p4を変化させる。 The second control device 421 changes the output power p1 of the fuel cell 441 by operating the auxiliary device 431 according to a command a1 generated so that the supply power Pa is maintained at a constant required output power. The second control device 422 changes the output power p2 of the fuel cell 442 by operating the auxiliary device 432 according to a command a2 generated so that the supply power Pa is maintained at a constant required output power. The second control device 423 changes the output power p3 of the fuel cell 443 by operating the auxiliary device 433 according to a command a3 generated so that the supply power Pa is maintained at a constant required output power. The second control device 424 changes the output power p4 of the fuel cell 444 by operating the auxiliary device 434 according to a command a4 generated so that the supply power Pa is maintained at a constant required output power.
 より詳しくは、第2制御装置421は、発電装置451の出力電流に応じた空気量及び水素量が燃料電池441に供給されるように補機431を操作することで、発電装置451の出力電力P1が指令a1で指示された出力設定値となるように燃料電池441の出力電力p1を変化させる。第2制御装置422は、発電装置452の出力電流に応じた空気量及び水素量が燃料電池442に供給されるように補機432を操作することで、発電装置452の出力電力P2が指令a2で指示された出力設定値となるように燃料電池442の出力電力p2を変化させる。第2制御装置423は、発電装置453の出力電流に応じた空気量及び水素量が燃料電池443に供給されるように補機433を操作することで、発電装置453の出力電力P3が指令a3で指示された出力設定値となるように燃料電池443の出力電力p3を変化させる。第2制御装置424は、発電装置454の出力電流に応じた空気量及び水素量が燃料電池444に供給されるように補機434を操作することで、発電装置454の出力電力P4が指令a4で指示された出力設定値となるように燃料電池444の出力電力p4を変化させる。 More specifically, the second control device 421 changes the output power p1 of the fuel cell 441 so that the output power P1 of the power generation device 451 becomes the output set value instructed by command a1 by operating the auxiliary device 431 so that the amount of air and hydrogen corresponding to the output current of the power generation device 451 is supplied to the fuel cell 441. The second control device 422 changes the output power p2 of the fuel cell 442 so that the output power P2 of the power generation device 452 becomes the output set value instructed by command a2 by operating the auxiliary device 432 so that the amount of air and hydrogen corresponding to the output current of the power generation device 452 is supplied to the fuel cell 442. The second control device 423 changes the output power p3 of the fuel cell 443 so that the output power P3 of the power generation device 453 becomes the output set value instructed by command a3 by operating the auxiliary device 433 so that the amount of air and hydrogen corresponding to the output current of the power generation device 453 is supplied to the fuel cell 443. The second control device 424 operates the auxiliary device 434 so that an amount of air and an amount of hydrogen corresponding to the output current of the power generation device 454 are supplied to the fuel cell 444, thereby changing the output power p4 of the fuel cell 444 so that the output power P4 of the power generation device 454 becomes the output set value instructed by command a4.
 燃料電池車用の発電装置では、負荷の変動による出力電力の変動が大きい場合がある。これに対し、定置用などの発電装置では、上述の特許文献3における電力制御モードのように、一定の出力電力で発電することが求められる場合がある。 In power generation devices for fuel cell vehicles, fluctuations in load can cause large fluctuations in output power. In contrast, in power generation devices for stationary use, it is sometimes necessary to generate power at a constant output power, as in the power control mode in Patent Document 3 mentioned above.
 しかしながら、燃料電池の出力電力が一定の場合、燃料電池のセル面内の湿度分布に偏りが発生し、燃料電池の劣化が促進するおそれがある。例えば、セル面内の湿度分布の偏りにより有効反応面積が低下すると、電流密度が上昇し、電流密度が上昇した部位における電解質膜の劣化が促進するおそれがある。 However, when the output power of a fuel cell is constant, there is a risk that the humidity distribution within the cell surface of the fuel cell will become uneven, accelerating the deterioration of the fuel cell. For example, if the effective reaction area decreases due to an uneven humidity distribution within the cell surface, the current density will increase, and there is a risk that deterioration of the electrolyte membrane will accelerate in areas where the current density is increased.
 そこで、第1制御装置411が上記のような電池出力変動制御を行うことで、出力線17から外部への供給電力Paが略一定値に維持された状態で、燃料電池441等の各出力電力p1,p2,p3,p4が増減する。これにより、出力線17から外部への一定の電力供給が確保された状態で、燃料電池441等のセル面内の湿度分布の偏りは、各出力電力p1,p2,p3,p4が常に一定に制御される場合に比べて、減少する。セル面内の湿度分布の偏りが減少することで、有効反応面積の低下による電流密度の上昇が抑制されるので、電流密度の上昇による電解質膜の劣化が抑制される。したがって、供給電力Paが略一定値に維持されるように各出力電力p1,p2,p3,p4を増減させる電池出力変動制御が第1制御装置411により行われることで、略一定の電力供給が確保され、燃料電池441等の劣化が抑制される。燃料電池441等の劣化の抑制は、燃料電池発電システム401の耐久性の向上に貢献する。よって、燃料電池441等の燃料電池ユニットを効果的にリフレッシュできる。 Then, by the first control device 411 performing the above-described cell output fluctuation control, the output powers p1, p2, p3, and p4 of the fuel cell 441 and the like are increased or decreased while the power supply Pa from the output line 17 to the outside is maintained at an approximately constant value. As a result, while a constant power supply from the output line 17 to the outside is ensured, the humidity distribution imbalance within the cell surface of the fuel cell 441 and the like is reduced compared to the case where the output powers p1, p2, p3, and p4 are always controlled to be constant. By reducing the humidity distribution imbalance within the cell surface, the increase in current density due to the decrease in effective reaction area is suppressed, and deterioration of the electrolyte membrane due to the increase in current density is suppressed. Therefore, by the first control device 411 performing the cell output fluctuation control to increase or decrease the output powers p1, p2, p3, and p4 so that the supply power Pa is maintained at an approximately constant value, an approximately constant power supply is ensured and deterioration of the fuel cell 441 and the like is suppressed. Suppression of deterioration of the fuel cell 441 and the like contributes to improving the durability of the fuel cell power generation system 401. This allows fuel cell units such as the fuel cell 441 to be effectively refreshed.
 一般に、燃料電池を用いた発電システムは、運転停止や負荷変化、燃料電池以外の機器(補機)を制御するための制御装置を備える。燃料電池1台で出力できる電力には限りがあるため、燃料電池を用いたシステムで要求される出力を発電するためには、複数台の並列運転が求められる。また、要求される出力は、適用される製品等によって異なるので、燃料電池の数や補機の性能は、要求される出力に応じて変わる。そのため、一つの制御装置でシステム全体の制御を行う場合、「1台ごとの燃料電池の負荷変化・起動停止制御」、「全体の出力に合わせた演算と各補機への指令制御」などの多岐にわたるソフトウェアの内容が、適用される製品ごとに異なる。また、リフレッシュ運転を行う場合は、「各燃料電池のリフレッシュ運転のスケジュール制御」などのソフトウェアの内容も、適用される製品ごとに異なる。このように、一つの制御装置でシステム全体の制御を行う場合、1つの制御装置で実装する内容に限界があるため、システム全体の保守性及び機能の拡張性が低下するおそれがある。 Generally, a power generation system using a fuel cell is equipped with a control device for controlling operation stop, load changes, and equipment (auxiliary equipment) other than the fuel cell. Since there is a limit to the power that a single fuel cell can output, multiple fuel cells must be operated in parallel to generate the output required by the system using a fuel cell. Furthermore, the required output differs depending on the product to which it is applied, so the number of fuel cells and the performance of the auxiliary equipment change according to the required output. Therefore, when controlling the entire system with one control device, the content of the wide-ranging software, such as "load change and start/stop control of each fuel cell" and "calculation according to the overall output and command control to each auxiliary equipment", differs depending on the product to which it is applied. Furthermore, when performing refresh operation, the content of the software, such as "schedule control of refresh operation of each fuel cell", also differs depending on the product to which it is applied. In this way, when controlling the entire system with one control device, there is a risk that the maintainability and functional scalability of the entire system will decrease because there is a limit to the content that can be implemented in one control device.
 これに対し、本実施形態の燃料電池発電システム401では、第1制御装置411の役割は、第2制御装置421,422,423,424の役割と切り分けられている。第1制御装置411よりも順位が下位の第2制御装置421,422,423,424は、自身に割り当てられた燃料電池の発電を制御する。このため、第2制御装置の制御内容を設計段階等で予め決めることができる。したがって、燃料電池の台数が増えても、同じソフトウェアを複数の第2制御装置間で流用できるので、システム全体の保守性が向上する。一方、第1制御装置411では、燃料電池の台数と補機の性能に応じてソフトウェアを変更する場合がある。しかし、下位の第2制御装置が燃料電池の発電を制御するための補機を操作するので、第1制御装置のソフトウェアの変更範囲は、一つの制御装置でシステム全体の制御を行う場合に比べて少ないので、機能の拡張性が向上する。例えば図2に示すように、他の第2制御装置と同じソフトウェアを持つ第2制御装置を補機及び燃料電池と共に備える発電装置455,456を追加することで、燃料電池発電システム401への要求出力電力の増加に容易に対応できる。 In contrast, in the fuel cell power generation system 401 of this embodiment, the role of the first control device 411 is separated from the role of the second control devices 421, 422, 423, and 424. The second control devices 421, 422, 423, and 424, which are lower in rank than the first control device 411, control the power generation of the fuel cells assigned to them. For this reason, the control content of the second control device can be determined in advance at the design stage, etc. Therefore, even if the number of fuel cells increases, the same software can be used between multiple second control devices, improving the maintainability of the entire system. On the other hand, in the first control device 411, software may be changed depending on the number of fuel cells and the performance of the auxiliary devices. However, since the lower second control device operates the auxiliary devices for controlling the power generation of the fuel cells, the range of changes to the software of the first control device is smaller than when one control device controls the entire system, improving the expandability of functions. For example, as shown in FIG. 2, by adding power generation devices 455 and 456 that include a second control device having the same software as other second control devices, together with the auxiliary devices and fuel cells, it is possible to easily respond to an increase in the required output power of the fuel cell power generation system 401.
 燃料電池を用いた発電システムでは、安定した性能(発電効率低下の抑制)が求められる。燃料電池の性能は、電極触媒、電解質膜、アイオノマーの劣化により低下するので、これらの劣化を抑制することが求められる。燃料電池の性能低下のうち、電解質膜の可逆的な性能低下は、燃料電池が低負荷状態に一時的に遷移するリフレッシュ運転で回復可能である。一方、電解質膜の薄膜化又は電極触媒の劣化による燃料電池の性能低下は、燃料電池の低負荷状態での電圧上昇によって引き起こされる。このように、燃料電池の性能低下を抑制するためには、燃料電池の低負荷状態を適切にコントロールすることが求められる。 Power generation systems using fuel cells require stable performance (suppression of decline in power generation efficiency). Fuel cell performance declines due to degradation of the electrode catalyst, electrolyte membrane, and ionomer, so it is necessary to suppress this degradation. Reversible performance decline in the electrolyte membrane can be recovered by refreshing the fuel cell, in which the fuel cell temporarily transitions to a low-load state. On the other hand, performance decline in fuel cells due to thinning of the electrolyte membrane or degradation of the electrode catalyst is caused by an increase in the voltage when the fuel cell is in a low-load state. Thus, in order to suppress decline in fuel cell performance, it is necessary to appropriately control the low-load state of the fuel cell.
 本実施形態の燃料電池発電システム400では、第1制御装置411は、発電装置451の燃料電池441の低負荷状態を許可する条件を含む第1条件(以下、許可条件ともいう)が成立するか否かを判断する。第1制御装置411は、許可条件が成立する場合、補機431を操作することで燃料電池441の低負荷状態への遷移を許可し、許可条件が成立しない場合、燃料電池441の低負荷状態への遷移を禁止する。許可条件が成立すれば、燃料電池441を低負荷状態に遷移させることが可能となる。よって、第1制御装置411は、燃料電池441を一時的に低負荷状態に遷移させるリフレッシュ運転を行うことで、燃料電池441の性能低下は回復する。第1制御装置411は、他の燃料電池442等についても同様に許可条件の成否を判断し、許可条件が成立する燃料電池を一時的に低負荷状態に遷移させるリフレッシュ運転を行う。これにより、当該燃料電池の性能低下は回復する。 In the fuel cell power generation system 400 of this embodiment, the first control device 411 judges whether a first condition (hereinafter also referred to as a permission condition) including a condition for permitting a low load state of the fuel cell 441 of the power generation device 451 is satisfied. If the permission condition is satisfied, the first control device 411 permits the transition of the fuel cell 441 to a low load state by operating the auxiliary device 431, and if the permission condition is not satisfied, the first control device 411 prohibits the transition of the fuel cell 441 to a low load state. If the permission condition is satisfied, it is possible to transition the fuel cell 441 to a low load state. Therefore, the first control device 411 recovers the performance degradation of the fuel cell 441 by performing a refresh operation that temporarily transitions the fuel cell 441 to a low load state. The first control device 411 similarly judges whether the permission condition is satisfied for the other fuel cells 442, etc., and performs a refresh operation that temporarily transitions the fuel cell for which the permission condition is satisfied to a low load state. This recovers the performance degradation of the fuel cell.
 一方、第1制御装置411は、燃料電池441の負荷状態を異常な低負荷状態と判定する条件を含む第2条件(以下、異常条件ともいう)が成立するか否かを判断する。第1制御装置411は、異常条件が成立する場合、補機431等を操作することで燃料電池441の負荷状態を異常な低負荷状態から遷移させる。第1制御装置411は、異常条件が成立しない場合、燃料電池441の低負荷状態は異常でないと判断し、燃料電池441の低負荷状態を継続する。異常条件が成立すれば、燃料電池441が異常な低負荷状態のまま継続しないので、低負荷状態の継続による燃料電池441の性能低下が抑制される。第1制御装置411は、他の燃料電池442等についても同様に異常条件の成否を判断し、異常条件が成立する燃料電池の負荷状態を異常な低負荷状態から遷移させる。これにより、低負荷状態の継続による当該燃料電池の性能低下が抑制される。 On the other hand, the first control device 411 judges whether a second condition (hereinafter also referred to as an abnormal condition) is satisfied, which includes a condition for judging the load state of the fuel cell 441 to be an abnormal low-load state. If the abnormal condition is satisfied, the first control device 411 operates the auxiliary device 431, etc. to transition the load state of the fuel cell 441 from the abnormal low-load state. If the abnormal condition is not satisfied, the first control device 411 judges that the low-load state of the fuel cell 441 is not abnormal, and continues the low-load state of the fuel cell 441. If the abnormal condition is satisfied, the fuel cell 441 does not continue in the abnormal low-load state, so that the performance degradation of the fuel cell 441 due to the continuation of the low-load state is suppressed. The first control device 411 similarly judges whether the abnormal condition is satisfied for the other fuel cells 442, etc., and transitions the load state of the fuel cell for which the abnormal condition is satisfied from the abnormal low-load state. This suppresses the performance degradation of the fuel cell due to the continuation of the low-load state.
 このように、本実施形態の燃料電池発電システムによれば、燃料電池441等の低負荷状態が適切にコントロールされるので、燃料電池441等の性能低下は抑制される。 In this way, according to the fuel cell power generation system of this embodiment, the low load state of the fuel cell 441, etc. is appropriately controlled, so that the performance degradation of the fuel cell 441, etc. is suppressed.
 第1制御装置411は、燃料電池441等を一時的に低負荷状態に遷移させることで燃料電池441等の性能を回復させるときの低負荷状態と、燃料電池発電システムの異常又は操作ミスなどで引き起こされる異常な低負荷状態とを判別するロジックを有する。第1制御装置411は、燃料電池441の負荷状態等の運転状態を監視し、低負荷状態を許可するフラグ(許可フラグ)と異常な低負荷状態を判定するフラグ(異常フラグ)とを持つ制御ロジックで動作する。これにより、燃料電池441等を一時的に低負荷状態に遷移させるリフレッシュ運転への遷移の許否を判定するとともに、異常な低負荷状態を継続させないシステムが構築される。したがって、燃料電池441等を一時的に低負荷状態に遷移させるリフレッシュ運転が行われることで燃料電池441等の可逆的な性能低下は回復するとともに、異常な低負荷状態での運転継続による燃料電池441等の性能低下は抑制される。 The first control device 411 has logic for distinguishing between a low-load state when the performance of the fuel cell 441 etc. is restored by temporarily transitioning the fuel cell 441 etc. to a low-load state and an abnormal low-load state caused by an abnormality or operational error of the fuel cell power generation system. The first control device 411 monitors the operating state of the fuel cell 441, such as the load state, and operates with a control logic having a flag that permits a low-load state (permission flag) and a flag that judges an abnormal low-load state (abnormal flag). This determines whether or not to permit a transition to a refresh operation that temporarily transitions the fuel cell 441 etc. to a low-load state, and a system that does not allow the abnormal low-load state to continue is constructed. Therefore, by performing a refresh operation that temporarily transitions the fuel cell 441 etc. to a low-load state, reversible performance degradation of the fuel cell 441 etc. is restored, and performance degradation of the fuel cell 441 etc. due to continued operation in an abnormal low-load state is suppressed.
 第1制御装置411は、上記の許可条件が成立する場合、許可フラグをアサートし、上記の許可条件が不成立の場合、許可フラグをネゲートする。第1制御装置411は、上記の異常条件が成立する場合、異常フラグをアサートし、上記の異常条件が不成立の場合、異常フラグをネゲートする。 The first control device 411 asserts the permission flag when the above permission conditions are met, and negates the permission flag when the above permission conditions are not met. The first control device 411 asserts the abnormality flag when the above abnormality conditions are met, and negates the abnormality flag when the above abnormality conditions are not met.
 図3は、第1条件(許可条件)と第2条件(異常条件)を説明するためのタイミングチャートである。図3は、第1制御装置411が、第1高負荷運転、アイドリング運転及び第2高負荷運転の順に実行するリフレッシュ運転で燃料電池を動作させる場合を例示する。第1高負荷運転は、燃料電池の出力電力を所定の一定電力値よりも一時的に上昇させる運転である。アイドリング運転は、燃料電池の出力電力を一時的に低負荷状態にする運転である。第2高負荷運転は、燃料電池の出力電力を一定電力値よりも一時的に上昇させる運転である。 FIG. 3 is a timing chart for explaining the first condition (permission condition) and the second condition (abnormal condition). FIG. 3 illustrates a case where the first control device 411 operates the fuel cell in a refresh operation that is performed in the order of a first high-load operation, an idling operation, and a second high-load operation. The first high-load operation is an operation that temporarily increases the output power of the fuel cell above a predetermined constant power value. The idling operation is an operation that temporarily puts the output power of the fuel cell into a low-load state. The second high-load operation is an operation that temporarily increases the output power of the fuel cell above a constant power value.
 低負荷状態とは、燃料電池の出力電力又は発電装置の出力電力が零又は微小な状態をいう。例えば、低負荷状態を、燃料電池の定格出力(出力電力p1等の定格値)又は発電装置の定格出力(出力電力P1等の定格値)の0%以上20%以下のいずれかの出力状態、0%以上10%以下のいずれかの出力状態、または0%以上5%以下のいずれかの出力状態としてもよい。低負荷状態には、燃料電池又は発電装置の出力電力が零の無負荷状態が含まれてよい。各図面に記載された「無負荷」は、「低負荷」に置換されてよい。 A low load state refers to a state in which the output power of the fuel cell or the output power of the power generation device is zero or very small. For example, the low load state may be an output state of 0% to 20% of the rated output of the fuel cell (rated value such as output power p1) or the rated output of the power generation device (rated value such as output power P1), an output state of 0% to 10%, or an output state of 0% to 5%. A low load state may include a no-load state in which the output power of the fuel cell or the power generation device is zero. "No-load" in the drawings may be replaced with "low load".
 第1制御装置411は、例えば、燃料電池441の第1高負荷運転を検出すると、燃料電池441の許可条件が成立したとして、燃料電池441の許可フラグをアサートする。燃料電池441の許可フラグがアサートのとき、第1制御装置411は、燃料電池441を低負荷状態に所定の低負荷時間Tnだけ一時的に遷移させるリフレッシュ運転を行う。第1制御装置411は、他の燃料電池442等の許可フラグについても同様に処理する。 For example, when the first control device 411 detects the first high-load operation of the fuel cell 441, it determines that the permission conditions for the fuel cell 441 are met and asserts the permission flag of the fuel cell 441. When the permission flag of the fuel cell 441 is asserted, the first control device 411 performs a refresh operation to temporarily transition the fuel cell 441 to a low-load state for a predetermined low-load time Tn. The first control device 411 processes the permission flags of the other fuel cells 442, etc. in the same manner.
 一方、第1制御装置411は、所定の低負荷時間Tnよりも長い低負荷状態が燃料電池441について検出されると、燃料電池441の異常条件が成立したとして、燃料電池441の異常フラグをアサートする。燃料電池441の異常フラグがアサートのとき、第1制御装置411は、燃料電池441を異常な低負荷状態から遷移させるため、燃料電池441の発電を停止させる。第1制御装置411は、他の燃料電池442等の異常フラグについても同様に処理する。 On the other hand, when the first control device 411 detects a low-load state longer than the predetermined low-load time Tn for the fuel cell 441, it determines that an abnormality condition for the fuel cell 441 has been established and asserts an abnormality flag for the fuel cell 441. When the abnormality flag for the fuel cell 441 is asserted, the first control device 411 stops power generation by the fuel cell 441 in order to transition the fuel cell 441 from the abnormal low-load state. The first control device 411 processes the abnormality flags for the other fuel cells 442, etc. in the same manner.
 このように、本実施形態の燃料電池発電システムによれば、リフレッシュ運転による低負荷状態が当該システムの異常等により継続しても、第1制御装置411は、異常な低負荷状態と判定し、異常な低負荷状態の継続を回避できる。 In this way, according to the fuel cell power generation system of this embodiment, even if the low load state caused by the refresh operation continues due to an abnormality in the system, the first control device 411 determines that this is an abnormal low load state, and the continuation of the abnormal low load state can be avoided.
 図4は、低負荷状態を許可するフラグ(許可フラグ)の種類を例示する表である。許可フラグは、燃料電池の負荷状態を低負荷状態に一時的に遷移させて当該燃料電池の特性を改善させるリフレッシュ運転の実施が指令されること(第1許可条件)が成立することでアサートされてもよい。許可フラグは、燃料電池を低負荷状態への遷移がユーザの手動で指示されること(第2許可条件)が成立することでアサートされてもよい。許可フラグは、燃料電池の一定範囲の出力電力が当該一定範囲よりも上昇すること(第3許可条件)が成立することでアサートされてもよい。許可フラグは、一定範囲の出力電力が所定時間以上継続すること(第4許可条件)が成立することでアサートされてもよい。複数の許可条件の成立によって、許可フラグがアサートされてもよい。 FIG. 4 is a table illustrating the types of flags (permission flags) that permit a low load state. The permission flag may be asserted when a command is issued to perform a refresh operation that temporarily transitions the load state of the fuel cell to a low load state to improve the characteristics of the fuel cell (first permission condition). The permission flag may be asserted when a user manually instructs the fuel cell to transition to a low load state (second permission condition). The permission flag may be asserted when a certain range of output power of the fuel cell rises above the certain range (third permission condition). The permission flag may be asserted when a certain range of output power continues for a predetermined time or more (fourth permission condition). The permission flag may be asserted when multiple permission conditions are satisfied.
 図5は、異常な低負荷状態を判定するフラグ(異常フラグ)の種類を例示する表である。異常フラグは、メイン条件が成立することでアサートされてもよいし、メイン条件とサブ条件が成立することでアサートされてもよい。 FIG. 5 is a table showing examples of types of flags (abnormality flags) that determine an abnormally low load state. The abnormality flag may be asserted when a main condition is satisfied, or when a main condition and a sub-condition are satisfied.
 異常フラグは、燃料電池の低負荷状態がタイマーで設定された所定時間以上継続すること(第1異常条件)が成立することでアサートされてもよい。または、異常フラグは、燃料電池の低負荷状態での出力電圧が所定の設定値以上に上昇すること(第2異常条件)が成立することでアサートされてもよい。異常フラグは、第1異常条件と第2異常条件が成立することでアサートされてもよい。 The abnormality flag may be asserted when the low load state of the fuel cell continues for a predetermined time or more set by a timer (first abnormality condition). Alternatively, the abnormality flag may be asserted when the output voltage of the fuel cell in a low load state rises to or exceeds a predetermined set value (second abnormality condition). The abnormality flag may be asserted when both the first abnormality condition and the second abnormality condition are satisfied.
 異常フラグは、第1異常条件と第2異常条件の少なくとも一方が成立し、且つ、燃料電池の発電効率が所定の低下幅を超えて低下する第1サブ条件が成立することで、アサートされてもよい。異常フラグは、第1異常条件と第2異常条件の少なくとも一方が成立し、且つ、蓄電装置14の電圧が所定の低下幅を超えて低下する第2サブ条件が成立することで、アサートされてもよい。異常フラグは、第1異常条件と第2異常条件の少なくとも一方が成立し、且つ、燃料電池発電システム(例えば、燃料電池またはその周辺温度)の温度、燃料電池に供給される空気の圧力もしくは燃料電池の冷却液の流量が所定の低下幅を超えて低下する第3サブ条件が成立することで、アサートされてもよい。 The abnormality flag may be asserted when at least one of the first abnormality condition and the second abnormality condition is satisfied, and a first sub-condition is satisfied in which the power generation efficiency of the fuel cell falls beyond a predetermined range. The abnormality flag may be asserted when at least one of the first abnormality condition and the second abnormality condition is satisfied, and a second sub-condition is satisfied in which the voltage of the power storage device 14 falls beyond a predetermined range. The abnormality flag may be asserted when at least one of the first abnormality condition and the second abnormality condition is satisfied, and a third sub-condition is satisfied in which the temperature of the fuel cell power generation system (e.g., the fuel cell or its surrounding temperature), the pressure of the air supplied to the fuel cell, or the flow rate of the fuel cell coolant falls beyond a predetermined range.
 次に、燃料電池の負荷状態が異常な低負荷状態と判断された後の処理について説明する。 Next, we will explain the process that is performed after the fuel cell load state is determined to be an abnormally low load state.
 図6は、燃料電池の負荷状態が異常な低負荷状態と判断された後の複数の処理例を示す図である。第1制御装置411は、異常条件が成立し、燃料電池441等の負荷状態が異常な低負荷状態と判定した場合、以下のような制御処理を実行してもよい。 FIG. 6 shows several examples of processing that can be performed after the load state of the fuel cell is determined to be an abnormally low load state. When an abnormality condition is met and the load state of the fuel cell 441, etc. is determined to be an abnormally low load state, the first control device 411 may execute the following control processing.
 例えば、第1制御装置411は、複数の燃料電池のうち異常条件が成立する燃料電池の発電を停止させる(図6の<停止>参照)。燃料電池の発電が停止することで、燃料電池の負荷状態を異常な低負荷状態から遷移させることができる。これにより、低負荷状態の継続による燃料電池の性能低下が抑制される。 For example, the first control device 411 stops power generation of a fuel cell among the multiple fuel cells for which an abnormal condition exists (see <Stop> in Figure 6). By stopping power generation of the fuel cell, the load state of the fuel cell can be transitioned from an abnormal low load state. This prevents the performance of the fuel cell from deteriorating due to a continued low load state.
 例えば、第1制御装置411は、出力線17から外部への供給電力Paが一定に維持されるように、異常条件が成立する燃料電池にかかる負荷を調整することで、当該燃料電池の出力電力を低負荷状態よりも上昇させる(図6の<出力調整A>参照)。燃料電池の出力電力が低負荷状態よりも上昇することで、異常条件が不成立になるとともに、燃料電池の負荷状態を異常な低負荷状態から遷移させることができる。これにより、低負荷状態の継続による燃料電池の性能低下が抑制される。第1制御装置411は、異常条件が成立する燃料電池にかかる負荷(例えば、出力線17に接続される機器の消費電力)を大きく調整することで、当該燃料電池の出力電力を低負荷状態よりも上昇させても、供給電力Paを一定に維持できる。第1制御装置411は、例えば、異常条件が成立する燃料電池の出力電力を、燃料電池または発電装置の定格出力の10%よりも高く15%よりも低い電力範囲に上昇させる。 For example, the first control device 411 adjusts the load on the fuel cell in which the abnormal condition is satisfied so that the power supply Pa from the output line 17 to the outside is maintained constant, thereby increasing the output power of the fuel cell above the low load state (see <Output Adjustment A> in FIG. 6). When the output power of the fuel cell increases above the low load state, the abnormal condition is no longer satisfied and the load state of the fuel cell can be transitioned from the abnormal low load state. This suppresses the deterioration of the performance of the fuel cell due to the continuation of the low load state. The first control device 411 can maintain the supply power Pa constant even if the output power of the fuel cell is increased above the low load state by greatly adjusting the load on the fuel cell in which the abnormal condition is satisfied (for example, the power consumption of the device connected to the output line 17). For example, the first control device 411 increases the output power of the fuel cell in which the abnormal condition is satisfied to a power range higher than 10% and lower than 15% of the rated output of the fuel cell or power generation device.
 例えば、第1制御装置411は、供給電力Paが一定に維持されるように、複数の燃料電池のうち異常条件が成立する燃料電池の出力電力を低負荷状態よりも上昇させ、複数の燃料電池のうち異常条件が成立しない燃料電池の出力電力を低下させる(図6の<出力調整B>参照)。燃料電池の出力電力が低負荷状態よりも上昇することで、異常条件が不成立になるとともに、燃料電池の負荷状態を異常な低負荷状態から遷移させることができる。これにより、低負荷状態の継続による燃料電池の性能低下が抑制される。第1制御装置411は、異常条件が成立しない燃料電池の出力電力を低下させることで、異常条件が成立する燃料電池の出力電力を低負荷状態よりも上昇させても、供給電力Paを一定に維持できる。第1制御装置411は、例えば、異常条件が成立する燃料電池の出力電力を、燃料電池または発電装置の定格出力の10%よりも高く15%よりも低い電力範囲に上昇させる。 For example, the first control device 411 increases the output power of a fuel cell among the multiple fuel cells for which an abnormal condition is established above the low load state, and decreases the output power of a fuel cell among the multiple fuel cells for which an abnormal condition is not established, so that the supply power Pa is maintained constant (see <Output Adjustment B> in FIG. 6). By increasing the output power of the fuel cell above the low load state, the abnormal condition is no longer established and the load state of the fuel cell can be transitioned from the abnormal low load state. This suppresses the deterioration of the performance of the fuel cell due to the continuation of the low load state. By decreasing the output power of the fuel cell for which an abnormal condition is not established, the first control device 411 can maintain the supply power Pa constant even if the output power of the fuel cell for which an abnormal condition is established is increased above the low load state. For example, the first control device 411 increases the output power of the fuel cell for which an abnormal condition is established to a power range higher than 10% and lower than 15% of the rated output of the fuel cell or power generation device.
 図7は、異常な低負荷状態を判定するシーケンスの一例を示す図である。ステップS111において、第1制御装置411は、燃料電池441等の負荷状態を常時監視し、当該負荷状態が低負荷状態か否を監視する。第1制御装置411は、燃料電池441等の低負荷状態がステップS111において検出されると、上記の異常条件が成立するか否か(異常な低負荷状態か否か)を判定する(ステップS113)。第1制御装置411は、上記の異常条件がステップS113において成立する場合、複数の燃料電池のうち異常条件が成立する燃料電池の異常フラグをアサートする(ステップS115)。第1制御装置411は、異常フラグがアサートされた燃料電池の低負荷状態を解除する(ステップS117)。例えば、第1制御装置411は、上記のように、異常フラグがアサートされた燃料電池の発電を停止させる、または、異常フラグがアサートされた燃料電池の出力電力を上昇させることで、当該燃料電池を異常な低負荷状態から遷移させる。第1制御装置411は、ステップS117の処理により上記の異常条件が不成立になると、異常フラグをネゲートする(ステップS119)。 FIG. 7 is a diagram showing an example of a sequence for determining an abnormal low-load state. In step S111, the first control device 411 constantly monitors the load state of the fuel cell 441, etc., and monitors whether the load state is a low-load state. When the low-load state of the fuel cell 441, etc. is detected in step S111, the first control device 411 determines whether the above abnormal condition is satisfied (whether the state is abnormally low-load state or not) (step S113). If the above abnormal condition is satisfied in step S113, the first control device 411 asserts an abnormality flag of the fuel cell among the multiple fuel cells for which the abnormality condition is satisfied (step S115). The first control device 411 releases the low-load state of the fuel cell for which the abnormality flag is asserted (step S117). For example, the first control device 411 stops the power generation of the fuel cell for which the abnormality flag is asserted, or increases the output power of the fuel cell for which the abnormality flag is asserted, as described above, to transition the fuel cell from the abnormal low-load state. When the above abnormal condition is no longer satisfied as a result of the processing of step S117, the first control device 411 negates the abnormality flag (step S119).
 図8は、低負荷状態を許可するシーケンスの一例を示す図である。ステップS121において、第1制御装置411は、図7のシーケンスで制御される異常フラグがアサートか否かを判定する。第1制御装置411は、異常フラグがアサートでない場合(異常フラグがネゲートの場合)、制御状態をステップS122,S123,S124の状態に遷移させる。ステップS122,S123,S124において、第1制御装置411は、低負荷状態を許可するか否かを判定する。第1制御装置411は、上記のような特定の許可条件が成立する場合に限り、低負荷状態を許可する。第1制御装置411は、特定の許可条件が成立する場合、許可フラグをアサートする(ステップS125)。これにより、低負荷状態への遷移が可能となる。第1制御装置411は、所定の時間が継続するまで低負荷状態を維持し(ステップS126)、所定の時間が経過すると、許可フラグをネゲートする(ステップS127)。これにより、低負荷状態が禁止となるので、第1制御装置411は、燃料電池を低負荷状態から遷移させる。 FIG. 8 is a diagram showing an example of a sequence for permitting a low-load state. In step S121, the first control device 411 determines whether the abnormality flag controlled in the sequence of FIG. 7 is asserted or not. If the abnormality flag is not asserted (if the abnormality flag is negated), the first control device 411 transitions the control state to the state of steps S122, S123, and S124. In steps S122, S123, and S124, the first control device 411 determines whether to permit a low-load state. The first control device 411 permits a low-load state only if the above-mentioned specific permission conditions are met. If the specific permission conditions are met, the first control device 411 asserts the permission flag (step S125). This enables a transition to a low-load state. The first control device 411 maintains the low-load state until a predetermined time continues (step S126), and negates the permission flag when the predetermined time has elapsed (step S127). As a result, the low load state is prohibited, and the first control device 411 transitions the fuel cell from the low load state.
 図9は、燃料電池発電システム401において、第1制御装置411と第2制御装置421,422,423,424が各々実行する制御処理の一例を示すフローチャートである。 FIG. 9 is a flowchart showing an example of the control process executed by the first control device 411 and the second control devices 421, 422, 423, and 424 in the fuel cell power generation system 401.
 ステップS10において、第1制御装置411は、燃料電池発電システム401への要求出力電力に応じて、発電装置451等の各出力電力P1,P2,P3,P4の出力設定値を指示する指令a(指令a1,a2,a3,a4)の生成処理を実施する。ステップS20において、第1制御装置411は、ステップS10において生成された指令a(指令a1,a2,a3,a4)を発電装置451等の各々に送信する。 In step S10, the first control device 411 performs a process of generating commands a (commands a1, a2, a3, a4) that indicate the output setting values of the output powers P1, P2, P3, P4 of the power generation devices 451, etc., according to the required output power of the fuel cell power generation system 401. In step S20, the first control device 411 transmits the commands a (commands a1, a2, a3, a4) generated in step S10 to each of the power generation devices 451, etc.
 ステップS30において、第2制御装置421は、供給電力Paが一定の要求出力電力に維持されるように生成された指令a1を受信する。第2制御装置422は、供給電力Paが一定の要求出力電力に維持されるように生成された指令a2を受信する。第2制御装置423は、供給電力Paが一定の要求出力電力に維持されるように生成された指令a3を受信する。第2制御装置424は、供給電力Paが一定の要求出力電力に維持されるように生成された指令a4を受信する。 In step S30, the second control device 421 receives a command a1 generated to maintain the supply power Pa at a constant required output power. The second control device 422 receives a command a2 generated to maintain the supply power Pa at a constant required output power. The second control device 423 receives a command a3 generated to maintain the supply power Pa at a constant required output power. The second control device 424 receives a command a4 generated to maintain the supply power Pa at a constant required output power.
 ステップS31において、第2制御装置421は、発電装置451の出力電力P1が指令a1により指定された出力設定値となるように、補機431を操作することで燃料電池441の発電を制御する。第2制御装置422は、発電装置452の出力電力P2が指令a2により指定された出力設定値となるように、補機432を操作することで燃料電池442の発電を制御する。第2制御装置423は、発電装置453の出力電力P3が指令a3により指定された出力設定値となるように、補機433を操作することで燃料電池443の発電を制御する。第2制御装置424は、発電装置454の出力電力P4が指令a4により指定された出力設定値となるように、補機434を操作することで燃料電池444の発電を制御する。 In step S31, the second control device 421 controls the power generation of the fuel cell 441 by operating the auxiliary device 431 so that the output power P1 of the power generation device 451 becomes the output set value specified by command a1. The second control device 422 controls the power generation of the fuel cell 442 by operating the auxiliary device 432 so that the output power P2 of the power generation device 452 becomes the output set value specified by command a2. The second control device 423 controls the power generation of the fuel cell 443 by operating the auxiliary device 433 so that the output power P3 of the power generation device 453 becomes the output set value specified by command a3. The second control device 424 controls the power generation of the fuel cell 444 by operating the auxiliary device 434 so that the output power P4 of the power generation device 454 becomes the output set value specified by command a4.
 図10は、第1制御装置411が実行する指令生成処理(前述の図9のステップS10の処理)の一例を示すフローチャートである。 FIG. 10 is a flowchart showing an example of the command generation process (the process of step S10 in FIG. 9 described above) executed by the first control device 411.
 ステップS11において、第1制御装置411は、発電装置451等の各々の運転可否を判定する。第1制御装置411は、例えば、第2制御装置421,422,423,424のそれぞれから取得した情報等に基づいて、発電装置451等の各々の異常又はメンテナンス時期などの状態を検知する。第1制御装置411は、発電装置451等のうち、異常又はメンテナンス時期が検知された発電装置を運転不可と判定し、異常又はメンテナンス時期が検知されない発電装置を運転可と判定する。 In step S11, the first control device 411 judges whether each of the power generation devices 451, etc. can be operated. The first control device 411 detects the status of each of the power generation devices 451, etc., such as an abnormality or a maintenance deadline, based on information acquired from each of the second control devices 421, 422, 423, 424, for example. The first control device 411 judges the power generation devices 451, etc., in which an abnormality or a maintenance deadline has been detected, as inoperable, and judges the power generation devices in which no abnormality or a maintenance deadline has been detected, as operable.
 ステップS12において、第1制御装置411は、運転可と判定された発電装置の台数(運転可能台数)で燃料電池発電システム401が発電可能な最大出力電力を演算するとともに、運転可と判定された各発電装置の出力電力の出力設定値を演算する。燃料電池発電システム401への要求出力電力は、最大出力電力以内であることが求められる。燃料電池発電システム401への要求出力電力が最大出力電力を超える場合、第1制御装置411は、エラーを通知する。 In step S12, the first control device 411 calculates the maximum output power that the fuel cell power generation system 401 can generate based on the number of power generation devices determined to be operable (operable number), and calculates the output setting value of the output power of each power generation device determined to be operable. The output power required for the fuel cell power generation system 401 is required to be within the maximum output power. If the output power required for the fuel cell power generation system 401 exceeds the maximum output power, the first control device 411 notifies an error.
 ステップS12において、例えば、第1制御装置411は、要求出力電力を運転可能台数で除した値を、発電装置451等の各出力電力P1,P2,P3,P4の出力設定値と設定する。あるいは、第1制御装置411は、所定の設定順位に基づいて、運転可能な一又は複数の発電装置の出力設定値を当該発電装置の定格電力と設定し、一台の発電装置の出力設定値を(要求出力電力-他の発電装置の出力設定値の和)と設定してもよい。各発電装置の出力電力の出力設定値を演算する方法は、これらに限られない。 In step S12, for example, the first control device 411 sets the output setting value of each output power P1, P2, P3, P4 of the power generation device 451, etc., to a value obtained by dividing the required output power by the number of operable units. Alternatively, the first control device 411 may set the output setting value of one or more operable power generation devices to the rated power of the power generation device based on a predetermined setting order, and set the output setting value of one power generation device to (required output power - the sum of the output setting values of the other power generation devices). The method of calculating the output setting value of the output power of each power generation device is not limited to these.
 ステップS13において、第1制御装置411は、ステップS12で演算された各発電装置の出力電力の出力設定値を指示する指令a(指令a1,a2,a3,a4)を生成する。各発電装置の第2制御装置は、これらの指令a1,a2,a3,a4に従って、各補機を操作することで燃料電池の発電を制御する。 In step S13, the first control device 411 generates a command a (commands a1, a2, a3, a4) that indicates the output setting value of the output power of each power generation device calculated in step S12. The second control device of each power generation device controls the power generation of the fuel cell by operating each auxiliary device according to these commands a1, a2, a3, a4.
 このように、燃料電池発電システム401では、第1制御装置411の役割は、第2制御装置421,422,423,424の役割と切り分けられているので、保守性および拡張性が向上する。 In this way, in the fuel cell power generation system 401, the role of the first control device 411 is separated from the roles of the second control devices 421, 422, 423, and 424, improving maintainability and expandability.
 <燃料電池発電システムの第3構成例>
 図11は、燃料電池発電システムの第3構成例を示す図である。第3構成例において、上記の第1及び第2構成例と同様の構成、作用および効果についての説明は、上述の説明を援用することで省略する。図11に示す燃料電池発電システム402は、第1制御装置411,412よりもさらに上位の第3制御装置461を備えることで、図2に示す燃料電池発電システム401と相違する。これにより、燃料電池発電システムへの要求出力電力がさらに増大しても、保守性および拡張性を確保できる。
<Third Configuration Example of Fuel Cell Power Generation System>
Fig. 11 is a diagram showing a third configuration example of a fuel cell power generation system. In the third configuration example, the description of the configuration, action, and effect similar to those of the first and second configuration examples will be omitted by citing the above description. The fuel cell power generation system 402 shown in Fig. 11 differs from the fuel cell power generation system 401 shown in Fig. 2 in that it includes a third control device 461 that is higher in level than the first control devices 411 and 412. This ensures maintainability and expandability even if the required output power of the fuel cell power generation system increases further.
 図11において、燃料電池発電システム402は、複数の発電装置と第1制御装置を各々有する複数(この例では、2つ)のシステム471,472を備える。システム471は、複数(この例では、4台)の発電装置451,452,453,454と、補機システム301と、第1制御装置411と、を備える。システム472は、複数(この例では、3台)の発電装置455,456,457と、補機システム302と、第1制御装置412と、を備える。システム472内の各構成要素は、システム471内の各構成要素と同じ機能を有する。 In FIG. 11, fuel cell power generation system 402 includes multiple (two in this example) systems 471, 472, each having multiple power generation devices and a first control device. System 471 includes multiple (four in this example) power generation devices 451, 452, 453, 454, an auxiliary system 301, and a first control device 411. System 472 includes multiple (three in this example) power generation devices 455, 456, 457, an auxiliary system 302, and a first control device 412. Each component in system 472 has the same function as each component in system 471.
 第3制御装置461は、システム471,472の各運転動作を制御する最上位コントローラである。第3制御装置461は、システム471,472の動作内容を指示する指令b(指令b1,b2)を個別に生成し、システム471,472の各々に送信する。 The third control device 461 is a top-level controller that controls the operation of each of the systems 471 and 472. The third control device 461 individually generates commands b (commands b1 and b2) that indicate the operation content of the systems 471 and 472, and transmits them to each of the systems 471 and 472.
 第3制御装置461は、例えば、出力線17に出力すべき電力として燃料電池発電システム402に要求される電力(要求出力電力)に応じて、システム471,472の各々が維持すべき一定電力値を決定する。第3制御装置461は、一定電力値の情報を含む指令b(指令b1,b2)を、システム471,472の各々に送信する。 The third control device 461 determines the constant power value that each of the systems 471, 472 should maintain, for example, according to the power (required output power) required of the fuel cell power generation system 402 as the power to be output to the output line 17. The third control device 461 transmits a command b (commands b1, b2) including information on the constant power value to each of the systems 471, 472.
 第1制御装置411は、供給電力Paが当該一定電力値に維持されるように指令a(指令a1,a2,a3,a4)を複数の発電装置451,452,453,454の各々に送信する。第1制御装置412は、供給電力Paが当該一定電力値に維持されるように生成された指令a(指令a5,a6,a7)を複数の発電装置455,456,457の各々に送信する。 The first control device 411 transmits commands a (commands a1, a2, a3, a4) to each of the power generation devices 451, 452, 453, 454 so that the supply power Pa is maintained at the constant power value. The first control device 412 transmits commands a (commands a5, a6, a7) generated so that the supply power Pa is maintained at the constant power value to each of the power generation devices 455, 456, 457.
 例えば、第2制御装置425は、発電装置455の出力電力P5が指令a5で指示された出力設定値となるように、補機435を操作することで燃料電池445の発電を制御する。第2制御装置426は、発電装置456の出力電力P6が指令a6で指示された出力設定値となるように、補機436を操作することで燃料電池446の発電を制御する。第2制御装置427は、発電装置457の出力電力P7が指令a7で指示された出力設定値となるように、補機437を操作することで燃料電池447の発電を制御する。 For example, the second control device 425 controls the power generation of the fuel cell 445 by operating the auxiliary device 435 so that the output power P5 of the power generation device 455 becomes the output set value instructed by command a5. The second control device 426 controls the power generation of the fuel cell 446 by operating the auxiliary device 436 so that the output power P6 of the power generation device 456 becomes the output set value instructed by command a6. The second control device 427 controls the power generation of the fuel cell 447 by operating the auxiliary device 437 so that the output power P7 of the power generation device 457 becomes the output set value instructed by command a7.
 したがって、本実施形態の燃料電池発電システム402は、燃料電池発電システム401と同様に、保守性および拡張性を有する。そして、燃料電池発電システム402によれば、複数の発電装置を含むシステム単位で、保守および管理ができる。 Therefore, the fuel cell power generation system 402 of this embodiment has maintainability and expandability, similar to the fuel cell power generation system 401. Furthermore, the fuel cell power generation system 402 allows maintenance and management on a system basis, including multiple power generation devices.
 図12は、図11に示す燃料電池発電システム402において、第1制御装置411,412と第2制御装置421,422,423,424,425,426,427と第3制御装置461が各々実行する制御処理の一例を示すフローチャートである。 FIG. 12 is a flowchart showing an example of the control process executed by the first control devices 411, 412, the second control devices 421, 422, 423, 424, 425, 426, 427, and the third control device 461 in the fuel cell power generation system 402 shown in FIG. 11.
 ステップS40において、第3制御装置461は、燃料電池発電システム402への要求出力電力に応じて、システム471,472の各出力電力の出力設定値(一定電力値)を指示する指令b(指令b1,b2)の生成処理を実施する。ステップS40の処理は、図10において、発電装置をシステムに置換することで、図10に示す生成処理を援用できる。図12のステップS50において、第3制御装置461は、ステップS40において生成された指令b(指令b1,b2)をシステム471,472の各々に送信する。 In step S40, the third control device 461 performs a process of generating command b (commands b1, b2) that indicates the output set value (constant power value) of each output power of the systems 471, 472 according to the required output power of the fuel cell power generation system 402. The process of step S40 can be performed by using the generation process shown in FIG. 10 by replacing the power generation device with a system in FIG. 10. In step S50 of FIG. 12, the third control device 461 transmits the command b (commands b1, b2) generated in step S40 to each of the systems 471, 472.
 第1制御装置411は、供給電力Paが一定の要求出力電力に維持されるように生成された指令b1を受信する。第1制御装置412は、供給電力Paが一定の要求出力電力に維持されるように生成された指令b2を受信する。これ以後の処理内容は、図9に示す制御処理と同じでよい。 The first control device 411 receives a command b1 generated so that the supply power Pa is maintained at a constant required output power. The first control device 412 receives a command b2 generated so that the supply power Pa is maintained at a constant required output power. The processing content thereafter may be the same as the control processing shown in FIG. 9.
 <リフレッシュ運転>
 燃料電池発電システム400,401,402において、複数の第2制御装置421等の各々は、供給電力Paが一定の要求出力電力に維持されるように燃料電池の出力電力を変化させる指令a(指令a1,a2,a3,a4)を受信する。複数の第2制御装置421等の各々は、自身宛で受信した指令aに従って、補機を操作することで燃料電池の出力電力を変化させることによって、燃料電池の特性を改善させるリフレッシュ運転を間欠的に実施してもよい。これにより、供給電力Paが略一定値に維持された状態で、燃料電池の継続的な運転により低下した特性(例えば、出力電圧の特性)の改善が可能となる。
<Refresh operation>
In the fuel cell power generation systems 400, 401, 402, each of the multiple second control devices 421 etc. receives a command a (commands a1, a2, a3, a4) to change the output power of the fuel cell so that the supply power Pa is maintained at a constant required output power. Each of the multiple second control devices 421 etc. may intermittently perform a refresh operation to improve the characteristics of the fuel cell by operating auxiliary equipment to change the output power of the fuel cell in accordance with the command a received for itself. This makes it possible to improve characteristics (e.g., output voltage characteristics) that have deteriorated due to continuous operation of the fuel cell while the supply power Pa is maintained at a substantially constant value.
 例えば、複数の第2制御装置421等の各々は、供給電力Paが一定の要求出力電力に維持されるように燃料電池の出力電力を変化させる指令aに従って補機を操作する。複数の第2制御装置421等の各々は、このように補機を操作することで、燃料電池の出力電圧もしくは出力電力を一時的に低下させる、または燃料電池を一時的に停止する。これにより、供給電力Paが略一定値に維持された状態で、燃料電池の継続的な運転により低下した特性(例えば、出力電圧の特性)の改善が可能となる。 For example, each of the multiple second control devices 421 etc. operates the auxiliary devices according to command a to change the output power of the fuel cell so that the supply power Pa is maintained at a constant required output power. By operating the auxiliary devices in this manner, each of the multiple second control devices 421 etc. temporarily reduces the output voltage or output power of the fuel cell, or temporarily stops the fuel cell. This makes it possible to improve characteristics (e.g., output voltage characteristics) that have deteriorated due to continuous operation of the fuel cell, while maintaining the supply power Pa at an approximately constant value.
 リフレッシュ運転とは、例えば、連続運転の結果、燃料電池のセル面内に生じる乾燥部を次の手順1~4で湿潤化させる運転である。乾燥部は、電池特性を低下させる原因となる。 Refresh operation is an operation in which dry areas that occur on the cell surface of a fuel cell as a result of continuous operation, for example, are moistened by following steps 1 to 4 below. Dry areas can cause the battery characteristics to deteriorate.
 手順1:燃料電池の出力電力を所定の一定電力値よりも一時的に上昇させる(第1高負荷運転)。第1高負荷運転により、燃料電池のセル面内の水分量を生成水により増加させることができる。 Step 1: Temporarily increase the output power of the fuel cell above a predetermined constant power value (first high-load operation). By performing the first high-load operation, the amount of moisture within the cell surface of the fuel cell can be increased by generating water.
 手順2:燃料電池の出力電力を一時的に零にする(アイドリング運転)。アイドリング運転により、一時的に出力電力を0kW(アイドリング状態)にすることで、生成水を燃料電池のセル面内で均一化させることができる。 Step 2: Temporarily set the fuel cell's output power to zero (idling operation). By temporarily setting the output power to 0kW (idling state) through idling operation, the generated water can be made uniform across the cell surface of the fuel cell.
 手順3:燃料電池の出力電力を所定の一定電力値よりも一時的に上昇させる(第2高負荷運転)。アイドリング状態から第2高負荷運転に一時的に遷移させることで、燃料電池のセル面内水分量を増加させることができる。 Step 3: Temporarily increase the output power of the fuel cell above a predetermined constant power value (second high-load operation). By temporarily transitioning from an idling state to the second high-load operation, the amount of moisture within the cell surface of the fuel cell can be increased.
 手順4:燃料電池の出力電力を所定の一定電力値に戻す。 Step 4: Return the fuel cell output power to a predetermined constant power value.
 燃料電池発電システム401等は、リフレッシュ運転時に、第1高負荷運転とアイドリング運転と第2高負荷運転の実施による供給電力Paの変動を、併設する蓄電装置14等の補助電源を用いて補完してもよい。補助電源として蓄電池を用いる場合、蓄電池は、リフレッシュ運転時に入出力される電力Pbを吸収可能な蓄電容量を有する。 The fuel cell power generation system 401, etc., during refresh operation may compensate for fluctuations in the supply power Pa caused by the implementation of the first high-load operation, idling operation, and second high-load operation by using an auxiliary power source such as an attached power storage device 14. When a storage battery is used as the auxiliary power source, the storage battery has a storage capacity capable of absorbing the power Pb input and output during refresh operation.
 図13は、リフレッシュ運転時の制御処理の一例を示すフローチャートである。リフレッシュ運転時の処理装置は、燃料電池発電システム400,401,402のいずれにも適用可能である。以下の説明では、燃料電池発電システム401を例に挙げて説明する。第1制御装置411は、リフレッシュ運転を開始する場合、ステップS60及びステップS70の処理を行う。 FIG. 13 is a flowchart showing an example of control processing during refresh operation. The processing device during refresh operation can be applied to any of the fuel cell power generation systems 400, 401, and 402. In the following explanation, the fuel cell power generation system 401 will be used as an example. When starting refresh operation, the first control device 411 performs the processing of steps S60 and S70.
 ステップS70において、第1制御装置411は、冷却系統などの補機システム301の運転条件をリフレッシュ運転時の条件に設定する。リフレッシュ運転では、各燃料電池の出力電力を変動させるからである。 In step S70, the first control device 411 sets the operating conditions of the auxiliary system 301, such as the cooling system, to the conditions during refresh operation. This is because the output power of each fuel cell is varied during refresh operation.
 ステップS60において、第1制御装置411は、リフレッシュ運転機の設定処理を行う。リフレッシュ運転機の設定処理は、並列に接続された複数の発電装置の中からリフレッシュ運転を実施する発電装置を選択する処理を含む。 In step S60, the first control device 411 performs a process for setting the refresh operation machine. The process for setting the refresh operation machine includes a process for selecting a power generation device that will perform the refresh operation from among multiple power generation devices connected in parallel.
 図14は、リフレッシュ運転機の設定処理の一例を示すフローチャートである。発電装置Xとは、並列に接続された複数の発電装置の中の一又は複数の発電装置を表す。第1制御装置411は、選択順位などの所定の選択条件に基づいて、並列に接続された複数の発電装置の中からリフレッシュ運転を実施する発電装置Xを選択する。 FIG. 14 is a flowchart showing an example of a process for setting a refresh operation machine. The power generation device X represents one or more of the multiple power generation devices connected in parallel. The first control device 411 selects the power generation device X to perform the refresh operation from the multiple power generation devices connected in parallel based on a predetermined selection condition such as a selection order.
 ステップS61において、第1制御装置411は、並列に接続された複数の発電装置のうち、リフレッシュ運転のインターバルカウントがカウントアップされた発電装置Xのリフレッシュ運転の実施フラグをオンに設定する。ステップS62において、第1制御装置411は、リフレッシュ運転が終了した発電装置Xのリフレッシュ運転のインターバルカウントを開始する(インターバルカウンタを初期化する)。これにより、発電装置Xのリフレッシュ運転が所定の時間間隔で実施される。 In step S61, the first control device 411 sets to on the refresh operation implementation flag of the power generation device X, among the multiple power generation devices connected in parallel, for which the interval count of the refresh operation has been incremented. In step S62, the first control device 411 starts the interval count of the refresh operation of the power generation device X for which the refresh operation has ended (initializes the interval counter). This causes the refresh operation of the power generation device X to be performed at a predetermined time interval.
 図13のステップS80において、第1制御装置411は、リフレッシュ運転のインターバルカウンタをインクリメントする。ステップS81において、第1制御装置411は、供給電力Paが一定の要求出力電力にリフレッシュ運転時に維持されるように燃料電池の出力電力を出力設定値に変化させる指令a(指令a1,a2,a3,a4)を個別に生成し、発電装置451等の各々に送信する。 In step S80 of FIG. 13, the first control device 411 increments the interval counter for the refresh operation. In step S81, the first control device 411 individually generates commands a (commands a1, a2, a3, a4) to change the output power of the fuel cell to the output set value so that the supply power Pa is maintained at a constant required output power during the refresh operation, and transmits these to each of the power generation devices 451, etc.
 ステップS90において、第2制御装置421等は、供給電力Paが一定の要求出力電力にリフレッシュ運転時に維持されるように生成された指令aを受信する。第2制御装置421等は、指令aに従ってリフレッシュ運転を実施する。 In step S90, the second control device 421 etc. receives command a generated so that the supply power Pa is maintained at a constant required output power during refresh operation. The second control device 421 etc. performs refresh operation in accordance with command a.
 図15は、リフレッシュ運転処理の一例を示すフローチャートである。発電装置X内の第2制御装置は、第1制御装置411からの指令aに従ったタイミングで、ステップS91~98の処理を実施する。 FIG. 15 is a flowchart showing an example of the refresh operation process. The second control device in the power generation device X performs the processes of steps S91 to S98 at a timing according to command a from the first control device 411.
 発電装置X内の第2制御装置は、燃料電池の出力電力を所定の一定電力値pX4から上昇させて出力電力pX1に設定し(ステップS91)、タイマカウントの後に(ステップS92)、燃料電池の出力電力を減少させて出力電力pX2に設定する(ステップS93)。発電装置X内の第2制御装置は、タイマカウントの後に(ステップS94)、燃料電池の出力電力を出力電力pX2から上昇させて出力電力pX3に設定する(ステップS95)。発電装置X内の第2制御装置は、タイマカウントの後に(ステップS96)、燃料電池の出力電力を減少させて所定の一定電力値pX4に戻し(ステップS97)、タイマカウントの後に(ステップS98)、リフレッシュ運転処理を終了する。第1制御装置411は、リフレッシュ運転処理の終了を発電装置X内の第2制御装置から受信すると、発電装置Xのリフレッシュ運転の実施フラグをオフに設定する。 The second control device in the power generation device X increases the output power of the fuel cell from a predetermined constant power value pX4 and sets it to output power pX1 (step S91), and after a timer count (step S92), reduces the output power of the fuel cell and sets it to output power pX2 (step S93). After a timer count (step S94), the second control device in the power generation device X increases the output power of the fuel cell from output power pX2 and sets it to output power pX3 (step S95). After a timer count (step S96), the second control device in the power generation device X reduces the output power of the fuel cell to return it to the predetermined constant power value pX4 (step S97), and after a timer count (step S98), ends the refresh operation process. When the first control device 411 receives the end of the refresh operation process from the second control device in the power generation device X, it sets the implementation flag for the refresh operation of the power generation device X to off.
 図17は、発電装置が4並列の場合のリフレッシュ運転の実施パターンの第1例を示す図である。図17は、リフレッシュ運転を実施する期間が複数の発電装置間で重ならない場合を示す。発電装置451は、リフレッシュ運転期間Tr1でリフレッシュ運転を実施し、その後、発電装置452は、リフレッシュ運転期間Tr2でリフレッシュ運転を実施する。 FIG. 17 is a diagram showing a first example of a pattern for implementing refresh operation when four power generation devices are connected in parallel. FIG. 17 shows a case in which the periods during which refresh operation is performed do not overlap among multiple power generation devices. Power generation device 451 performs refresh operation during refresh operation period Tr1, and then power generation device 452 performs refresh operation during refresh operation period Tr2.
 図17は、上記の手順1~4で出力電力を変化させるリフレッシュ運転を示している。例えばリフレッシュ運転期間Tr1,Tr2のそれぞれにおいて、第1高負荷運転では、出力電力は、45kWから60kWに一時的に上昇する。アイドリング運転では、出力電力は、60kWから0kWに一時的に減少する。第2高負荷運転では、出力電力は、0kWから60kWに一時的に上昇する。これらの運転がこの順に実行されてから、出力電力は、60kWから45kWに戻る。 FIG. 17 shows the refresh operation in which the output power is changed in steps 1 to 4 above. For example, in each of the refresh operation periods Tr1 and Tr2, in the first high load operation, the output power temporarily increases from 45 kW to 60 kW. In the idling operation, the output power temporarily decreases from 60 kW to 0 kW. In the second high load operation, the output power temporarily increases from 0 kW to 60 kW. After these operations are performed in this order, the output power returns from 60 kW to 45 kW.
 複数の第2制御装置421等の各々は、供給電力Paが一定の要求出力電力に維持されるように燃料電池の出力電力を変化させる指令a(指令a1,a2,a3,a4)に従って、図17に示すように燃料電池の各出力電力を変化させる。これにより、図16に示すように、供給電力Paが略一定の180kWに維持される。よって、供給電力Paが略一定値に維持された状態で、燃料電池の継続的な運転により低下した特性の改善が可能となる。 Each of the multiple second control devices 421, etc., changes the output power of each fuel cell as shown in FIG. 17 in accordance with command a (commands a1, a2, a3, a4) that changes the output power of the fuel cell so that the supply power Pa is maintained at a constant required output power. This causes the supply power Pa to be maintained at a substantially constant 180 kW as shown in FIG. 16. Therefore, with the supply power Pa maintained at a substantially constant value, it becomes possible to improve the characteristics that have deteriorated due to continuous operation of the fuel cell.
 図18は、発電装置が4並列の場合のリフレッシュ運転の実施パターンの第2例を示す図である。図18は、リフレッシュ運転を実施する期間が複数の発電装置間で重なる場合を示す。発電装置451,452,453,454は、リフレッシュ運転期間Tr0でリフレッシュ運転の実施を完了させる。リフレッシュ運転は、発電装置451,452,453,454の順に実施される。 FIG. 18 is a diagram showing a second example of a pattern for implementing refresh operation when four power generation units are connected in parallel. FIG. 18 shows a case where the periods during which refresh operation is performed overlap between multiple power generation units. Power generation units 451, 452, 453, and 454 complete the implementation of refresh operation in refresh operation period Tr0. Refresh operation is performed in the order of power generation units 451, 452, 453, and 454.
 図18は、図17と同様、上記の手順1~4で出力電力を変化させるリフレッシュ運転を示している。複数の第2制御装置421等の各々は、供給電力Paが一定の要求出力電力に維持されるように燃料電池の出力電力を変化させる指令a(指令a1,a2,a3,a4)に従って、図18に示すように燃料電池の各出力電力を変化させる。これにより、図16に示すように、供給電力Paが略一定値に維持された状態で、燃料電池の継続的な運転により低下した特性の改善が可能となる。 FIG. 18, like FIG. 17, shows refresh operation in which the output power is changed in steps 1 to 4 above. Each of the multiple second control devices 421, etc. changes the output power of the fuel cell as shown in FIG. 18 in accordance with command a (commands a1, a2, a3, a4) which changes the output power of the fuel cell so that the supply power Pa is maintained at a constant required output power. This makes it possible to improve the characteristics that have deteriorated due to continuous operation of the fuel cell while maintaining the supply power Pa at a substantially constant value as shown in FIG. 16.
 図19は、蓄電装置14と4並列の発電装置を組み合わせた場合のリフレッシュ運転の実施パターンの第1例を示す図である。図19は、リフレッシュ運転を実施する期間が複数の発電装置間で重ならない場合を示す。発電装置451は、リフレッシュ運転期間Tr1でリフレッシュ運転を実施し、その後、発電装置452は、リフレッシュ運転期間Tr2でリフレッシュ運転を実施する。その後、発電装置453は、リフレッシュ運転期間Tr3でリフレッシュ運転を実施し、その後、発電装置454は、リフレッシュ運転期間Tr4でリフレッシュ運転を実施する。 FIG. 19 is a diagram showing a first example of an implementation pattern of refresh operation when a power storage device 14 is combined with four parallel power generation devices. FIG. 19 shows a case where the periods during which refresh operation is performed do not overlap among multiple power generation devices. Power generation device 451 performs refresh operation in refresh operation period Tr1, and then power generation device 452 performs refresh operation in refresh operation period Tr2. Then power generation device 453 performs refresh operation in refresh operation period Tr3, and then power generation device 454 performs refresh operation in refresh operation period Tr4.
 図19は、図17と同様、上記の手順1~4で出力電力を変化させるリフレッシュ運転を示している。複数の第2制御装置421等の各々は、供給電力Paが一定の要求出力電力に維持されるように燃料電池の出力電力を変化させる指令a(指令a1,a2,a3,a4)に従って、図19に示すように燃料電池の各出力電力を変化させる。蓄電装置14は、第1高負荷運転及び第2高負荷運転の期間での燃料電池の出力電力の増加分を吸収することで、供給電力Paを一定の要求出力電力に維持する。蓄電装置14は、アイドリング運転の期間での燃料電池の出力電力の減少分を放出することで、供給電力Paを一定の要求出力電力に維持する。これにより、図16に示すように、供給電力Paが略一定値に維持された状態で、燃料電池の継続的な運転により低下した特性の改善が可能となる。 FIG. 19 shows a refresh operation in which the output power is changed in steps 1 to 4, as in FIG. 17. Each of the second control devices 421, etc. changes the output power of the fuel cell as shown in FIG. 19 in accordance with command a (commands a1, a2, a3, a4) that changes the output power of the fuel cell so that the supply power Pa is maintained at a constant required output power. The power storage device 14 maintains the supply power Pa at a constant required output power by absorbing the increase in the output power of the fuel cell during the first high-load operation and the second high-load operation. The power storage device 14 maintains the supply power Pa at a constant required output power by discharging the decrease in the output power of the fuel cell during the idling operation. This makes it possible to improve the characteristics that have deteriorated due to continuous operation of the fuel cell while maintaining the supply power Pa at a substantially constant value, as shown in FIG. 16.
 図20は、蓄電装置と4並列の発電装置を組み合わせた場合のリフレッシュ運転の実施パターンの第2例を示す図である。図20は、リフレッシュ運転を実施する期間が複数の発電装置間で重なる場合を示す。発電装置451,452,453,454は、リフレッシュ運転期間Tr0でリフレッシュ運転の実施を完了させる。リフレッシュ運転は、発電装置451,452,453,454の順に実施される。 FIG. 20 is a diagram showing a second example of a pattern for implementing refresh operation when a power storage device is combined with four parallel power generation devices. FIG. 20 shows a case in which the periods during which refresh operation is performed overlap between multiple power generation devices. Power generation devices 451, 452, 453, and 454 complete the implementation of refresh operation in refresh operation period Tr0. Refresh operation is performed in the order of power generation devices 451, 452, 453, and 454.
 図20は、図17と同様、上記の手順1~4で出力電力を変化させるリフレッシュ運転を示している。複数の第2制御装置421等の各々は、供給電力Paが一定の要求出力電力に維持されるように燃料電池の出力電力を変化させる指令a(指令a1,a2,a3,a4)に従って、図20に示すように燃料電池の各出力電力を変化させる。蓄電装置14は、燃料電池の各出力電力の増減による供給電力Paの変動分だけ電力Pbを変化させることで、供給電力Paを一定の要求出力電力に維持する。これにより、図16に示すように、供給電力Paが略一定値に維持された状態で、燃料電池の継続的な運転により低下した特性の改善が可能となる。 FIG. 20, like FIG. 17, shows refresh operation in which the output power is changed in steps 1 to 4 above. Each of the multiple second control devices 421, etc. changes the output power of each fuel cell as shown in FIG. 20 in accordance with command a (commands a1, a2, a3, a4) which changes the output power of the fuel cell so that the supply power Pa is maintained at a constant required output power. The power storage device 14 maintains the supply power Pa at a constant required output power by changing the power Pb by the amount of fluctuation in the supply power Pa due to an increase or decrease in the output power of each fuel cell. This makes it possible to improve the characteristics that have deteriorated due to continuous operation of the fuel cell while maintaining the supply power Pa at an approximately constant value, as shown in FIG. 16.
 <複数台の並列運転でリフレッシュ運転を実施する際の制約条件>
 図21は、発電装置の並列台数と発電装置の出力電力との関係を例示する表である。上記のリフレッシュ運転を実施するにあたり、並列接続された複数の発電装置の台数をn、1台の発電装置の定格出力をAとする。nは2以上の整数である。図21は、定格出力が60kWの場合を例示する。
<Constraints when performing refresh operation with multiple units operating in parallel>
Fig. 21 is a table illustrating the relationship between the number of power generation devices connected in parallel and the output power of the power generation device. When performing the refresh operation described above, the number of power generation devices connected in parallel is n, and the rated output of one power generation device is A. n is an integer of 2 or more. Fig. 21 illustrates the case where the rated output is 60 kW.
 複数の発電装置のうち1台の発電装置の出力電力が零となるアイドリング運転中で得られる最大の供給電力Paは、A×(n-1)となる。例えば、A=60kW、n=5の場合、最大の供給電力Paは、240kWとなる。つまり、第1制御装置は、供給電力PaがA×(n-1)以下の一定の要求出力電力に維持されるように燃料電池の出力電力を変化させる指令aを生成すればよい。なお、このとき、1台の発電装置の平均出力電力Bは、A×(n-1)/nと表される。 The maximum supply power Pa that can be obtained during idling operation when the output power of one of the multiple power generation devices is zero is A x (n-1). For example, when A = 60 kW and n = 5, the maximum supply power Pa is 240 kW. In other words, the first control device generates a command a that changes the output power of the fuel cell so that the supply power Pa is maintained at a constant required output power that is equal to or less than A x (n-1). At this time, the average output power B of one power generation device is expressed as A x (n-1)/n.
 並列の台数nを増やすにつれて、図21に示すように、1台の発電装置の平均出力電力Bは、増大する。一方、第1高負荷運転時の出力電力と平均出力電力Bとの出力差Cは、並列の台数nを増やすにつれて、減少する。出力差Cは、図17~図20に示すように、1台の発電装置の第1高負荷運転時の出力電力値と所定の一定電力値との差に相当する。出力差Cが減少すると、十分なセル面内の生成水量の確保が難しくなる。これらを鑑みると、リフレッシュ運転を用いた一定出力運転においては、供給電力Paの増加の点では並列の台数nを増やし、出力差Cの確保の点では、並列の台数nを減らすという、相反する要求を満たすことが求められる。 As the number n of parallel units increases, the average output power B of one power generation unit increases, as shown in Figure 21. On the other hand, the output difference C between the output power during first high load operation and the average output power B decreases as the number n of parallel units increases. As shown in Figures 17 to 20, the output difference C corresponds to the difference between the output power value during first high load operation of one power generation unit and a predetermined constant power value. If the output difference C decreases, it becomes difficult to ensure a sufficient amount of water generated within the cell surface. In view of these, in constant output operation using refresh operation, it is necessary to satisfy the conflicting demands of increasing the number n of parallel units in terms of increasing the supply power Pa, and reducing the number n of parallel units in terms of ensuring the output difference C.
 図22は、リフレッシュ運転を用いる場合に適した並列台数範囲を例示するデータである。Aは、1台の発電装置の定格出力を表す。並列の台数nを増加させると、平均出力電力Bは増大し、出力差Cは減少する。第1閾値をD、第1閾値よりも小さい第2閾値をEとする。このとき、並列の台数nは、B/AがD以上かつC/AがE以下を満たす台数であれば、供給電力Paの増加と出力差Cの確保が両立する。図22において、例えば、D=0.7、E=0.1とする場合、台数nは、4以上10以下が好ましい。 FIG. 22 shows data illustrating the range of the number of parallel units suitable for using refresh operation. A represents the rated output of one power generation device. Increasing the number of parallel units n increases the average output power B and decreases the output difference C. Let D be the first threshold and E be the second threshold smaller than the first threshold. In this case, if the number of parallel units n is such that B/A is equal to or greater than D and C/A is equal to or less than E, then an increase in the supply power Pa and securing the output difference C can both be achieved. In FIG. 22, for example, if D = 0.7 and E = 0.1, the number n is preferably 4 to 10.
 <燃料電池発電システムの具体例>
 図23は、第1実施形態の燃料電池発電装置を備える燃料電池発電システムの具体的な構成例を示す図である。図23に示す燃料電池発電システム201は、並列に接続された複数のFC(燃料電池)プラットフォームによって発電された電力を、給電対象である外部装置12に供給するシステムである。燃料電池発電システム201の用途の具体例として、定置用の発電システム、移動体用(例えば、車両用、飛翔体用、鉄道用、船舶用など)の発電システムなどが挙げられる。より具体的には、港湾クレーンなどの荷役機械用の発電システム、建設機械用などもある。燃料電池発電システム201の用途は、これらの例に限られず、燃料電池発電システム201は、他のアプリケーションに適用されてもよい。
<Example of a fuel cell power generation system>
Fig. 23 is a diagram showing a specific configuration example of a fuel cell power generation system including the fuel cell power generation device of the first embodiment. The fuel cell power generation system 201 shown in Fig. 23 is a system that supplies power generated by a plurality of FC (fuel cell) platforms connected in parallel to an external device 12 that is a power supply target. Specific examples of applications of the fuel cell power generation system 201 include a stationary power generation system and a power generation system for a mobile body (for example, a vehicle, an aircraft, a railway, a ship, etc.). More specifically, there are power generation systems for cargo handling machines such as port cranes, and construction machines. Applications of the fuel cell power generation system 201 are not limited to these examples, and the fuel cell power generation system 201 may be applied to other applications.
 燃料電池発電システム201は、燃料電池発電装置101と補機システム301を備える。燃料電池発電システム201は、上記の燃料電池発電システム401の一具体例である。 The fuel cell power generation system 201 includes a fuel cell power generation device 101 and an auxiliary system 301. The fuel cell power generation system 201 is a specific example of the fuel cell power generation system 401 described above.
 補機システム301は、主機である燃料電池発電装置101に接続される複数の補機を含み、燃料電池発電装置101の稼働を補助する周辺システムである。図23は、複数の補機として、制御用電源32、配管121、燃料系統18、給気系統19、出力線17、電力変換装置11、DC/DCコンバータ13、蓄電装置14、排気系統31、換気装置132及び冷却器15を例示する。複数の補機の一部又は全部は、燃料電池発電装置101に内蔵されてもよいし、ユニット化されてもよい。燃料電池発電装置101は、複数の補機の一部又は全部を、燃料電池発電装置101の内部に備えてもよいし、燃料電池発電装置101の外部に備えてもよい。 The auxiliary system 301 is a peripheral system that includes multiple auxiliary devices connected to the fuel cell power generation apparatus 101, which is the main unit, and assists the operation of the fuel cell power generation apparatus 101. FIG. 23 shows examples of multiple auxiliary devices, including a control power supply 32, piping 121, fuel system 18, air supply system 19, output line 17, power conversion device 11, DC/DC converter 13, power storage device 14, exhaust system 31, ventilation device 132, and cooler 15. Some or all of the multiple auxiliary devices may be built into the fuel cell power generation apparatus 101, or may be unitized. The fuel cell power generation apparatus 101 may include some or all of the multiple auxiliary devices inside the fuel cell power generation apparatus 101, or outside the fuel cell power generation apparatus 101.
 燃料電池発電装置101は、外部装置12に供給される電力を複数のFCプラットフォームによって発電する。燃料電池発電装置101は、ユニット化されてもよい。燃料電池発電装置101は、出力線17に並列に接続された複数のFCプラットフォーム(この例では、3つのFCプラットフォーム1,2,3)と、それらの複数のFCプラットフォームを制御する制御装置10とを備える。並列に接続される複数のFCプラットフォームの台数は、3台に限られず、2台でも、4台以上でもよい。 The fuel cell power generation device 101 generates power to be supplied to an external device 12 using multiple FC platforms. The fuel cell power generation device 101 may be unitized. The fuel cell power generation device 101 includes multiple FC platforms (in this example, three FC platforms 1, 2, and 3) connected in parallel to an output line 17, and a control device 10 that controls the multiple FC platforms. The number of multiple FC platforms connected in parallel is not limited to three, and may be two, four, or more.
 FCプラットフォーム1,2,3は、それぞれ、共通の出力線17に出力点16を経由して接続されるFCスタックを含む。FCスタックは、燃料電池の一例である。FCプラットフォーム1は、FCスタック21を含み、FCプラットフォーム2は、FCスタック22を含み、FCプラットフォーム3は、FCスタック23を含む。 FC platforms 1, 2, and 3 each include an FC stack connected to a common output line 17 via an output point 16. The FC stack is an example of a fuel cell. FC platform 1 includes an FC stack 21, FC platform 2 includes an FC stack 22, and FC platform 3 includes an FC stack 23.
 FCプラットフォーム1等は、上記の発電装置451等の一例である。FCスタック21等は、上記の燃料電池441等の一例である。制御装置10は、上記の第1制御装置411等又は上記の第2制御装置421等の一例である。 The FC platform 1 etc. is an example of the above-mentioned power generation device 451 etc. The FC stack 21 etc. is an example of the above-mentioned fuel cell 441 etc. The control device 10 is an example of the above-mentioned first control device 411 etc. or the above-mentioned second control device 421 etc.
 FCスタック21,22,23は、水素などの燃料の化学エネルギーを電気化学的に電気エネルギーに変換する装置である。FCスタック21,22,23は、燃料管を含む燃料系統18を介して供給される水素(水素リッチなガスを含んでよい)と、空気管を含む給気系統19を介して外部から供給される空気に含まれる酸素との電気化学反応によって発電する。FCスタック21,22,23(FCプラットフォーム1,2,3)の発電状態は、制御装置10によって制御される。FCスタック21,22,23の電気化学反応により発生した排ガスは、排気管を含む排気系統31を介して排出される。FCスタック21,22,23は、ラジエータなどの冷却器15から供給される冷却水(クーラント)により冷却される。 The FC stacks 21, 22, and 23 are devices that electrochemically convert the chemical energy of fuels such as hydrogen into electrical energy. The FC stacks 21, 22, and 23 generate electricity through an electrochemical reaction between hydrogen (which may include hydrogen-rich gas) supplied via a fuel system 18 including a fuel pipe and oxygen contained in air supplied from the outside via an air supply system 19 including an air pipe. The power generation state of the FC stacks 21, 22, and 23 ( FC platforms 1, 2, and 3) is controlled by the control device 10. Exhaust gas generated by the electrochemical reaction of the FC stacks 21, 22, and 23 is discharged via an exhaust system 31 including an exhaust pipe. The FC stacks 21, 22, and 23 are cooled by cooling water (coolant) supplied from a cooler 15 such as a radiator.
 FCスタック21,22,23は、例えば、固体高分子形燃料電池(PEFC)であり、多数の単セルを積層したスタック構造を備える。単セルは、水素イオンを選択的に輸送するための高分子電解質膜の両側面を多孔質材料により形成された一対の電極によって挟まれた膜-電極アッセンブリ(MEA)と、このMEAを両側から挟み込む一対のセパレータとを有する。一対の電極のそれぞれは、例えば白金系の金属触媒(電極触媒)を担持するカーボン粉末を主成分とする触媒層と、通気性及び電子導電性を併せ持つガス拡散層とを有している。 The FC stacks 21, 22, and 23 are, for example, polymer electrolyte fuel cells (PEFCs) and have a stack structure in which many single cells are stacked. The single cell has a membrane-electrode assembly (MEA) in which both sides of a polymer electrolyte membrane for selectively transporting hydrogen ions are sandwiched between a pair of electrodes formed of a porous material, and a pair of separators that sandwich the MEA from both sides. Each of the pair of electrodes has a catalyst layer mainly composed of carbon powder that supports a platinum-based metal catalyst (electrode catalyst), for example, and a gas diffusion layer that is both breathable and electronically conductive.
 FCスタック21,22,23には、それらの出力端子の電圧を検出するための電圧センサと、それらの出力端子からの出力電流を検出するための電流センサが取り付けられている。制御装置10は、FCスタック21,22,23から出力される各電圧の検出値を電圧センサにより取得し、FCスタック21,22,23から出力される各電流の検出値を電流センサにより取得する。制御装置10は、各電圧の検出値と各電流の検出値を用いて、FCスタック21,22,23の各出力電力p1,p2,p3を検出する。 The FC stacks 21, 22, and 23 are fitted with voltage sensors for detecting the voltages at their output terminals, and current sensors for detecting the output currents from their output terminals. The control device 10 obtains the detection values of the voltages output from the FC stacks 21, 22, and 23 using the voltage sensors, and obtains the detection values of the currents output from the FC stacks 21, 22, and 23 using the current sensors. The control device 10 detects the output powers p1, p2, and p3 of the FC stacks 21, 22, and 23 using the detection values of the voltages and currents.
 燃料電池発電装置101内のFCスタック21,22,23(FCプラットフォーム1,2,3)の発電により生成された発電電力は、電力変換装置11を介して、外部装置12に供給される。 The power generated by the FC stacks 21, 22, 23 ( FC platforms 1, 2, 3) in the fuel cell power generation device 101 is supplied to the external device 12 via the power conversion device 11.
 電力変換装置11は、入力される電力Paを、外部装置12に供給される電力Pcに変換する装置である。電力変換装置11は、例えば、FCスタック21,22,23の発電により得られた直流電力を交流電力に変換して外部装置12に供給するインバータである。インバータの具体例として、パワーコンディショナ(PCS:Power Conditioning System)、系統連系インバータなどが挙げられる。外部装置12がモータの場合、電力変換装置11は、モータを駆動するインバータでもよい。電力変換装置11は、FCスタック21,22,23の発電により得られた直流電力の電圧を、異なる電圧の直流電力に変換して外部装置12に供給するコンバータでもよい。 The power conversion device 11 is a device that converts input power Pa into power Pc that is supplied to the external device 12. The power conversion device 11 is, for example, an inverter that converts DC power obtained by power generation in the FC stacks 21, 22, and 23 into AC power and supplies it to the external device 12. Specific examples of inverters include a power conditioning system (PCS) and a grid-connected inverter. When the external device 12 is a motor, the power conversion device 11 may be an inverter that drives the motor. The power conversion device 11 may be a converter that converts the voltage of the DC power obtained by power generation in the FC stacks 21, 22, and 23 into DC power of a different voltage and supplies it to the external device 12.
 FCスタック21,22,23の発電により得られた直流電力は、出力線17にDC/DCコンバータ13を介して接続される蓄電装置14に充電されてもよい。蓄電装置14から放電された電力Pbは、電力変換装置11を介して外部装置12に供給される。外部装置12から電力変換装置11を介して入力(回生)された電力Pbが蓄電装置14に充電されてもよい。蓄電装置14の充電又は放電は、制御装置10からの駆動制御信号により動作するDC/DCコンバータ13により制御される。DC/DCコンバータ13は、無くてもよい。 The DC power obtained by power generation in the FC stacks 21, 22, 23 may be charged to the power storage device 14 connected to the output line 17 via the DC/DC converter 13. The power Pb discharged from the power storage device 14 is supplied to the external device 12 via the power conversion device 11. The power Pb input (regenerated) from the external device 12 via the power conversion device 11 may be charged to the power storage device 14. The charging or discharging of the power storage device 14 is controlled by the DC/DC converter 13 that operates according to a drive control signal from the control device 10. The DC/DC converter 13 may not be required.
 蓄電装置14は、充放電可能な二次電池を含んでよい。蓄電装置14は、直列に接続された複数の蓄電池14,…,14を含むものでもよい(nは、2以上の整数)。蓄電装置14(複数の蓄電池14,…,14)の具体例として、リチウムイオンバッテリ、リチウムイオンキャパシタ、電気二重層キャパシタなどが挙げられる。 The power storage device 14 may include a chargeable and dischargeable secondary battery. The power storage device 14 may include a plurality of storage batteries 14 1 , ..., 14 n (n is an integer of 2 or more) connected in series. Specific examples of the power storage device 14 (the plurality of storage batteries 14 1 , ..., 14 n ) include a lithium ion battery, a lithium ion capacitor, and an electric double layer capacitor.
 燃料系統18は、外部から供給される炭化水素系燃料を水素リッチなガスに改質する改質機器を含んでもよい。改質機器は、炭化水素系燃料の改質反応により生成される水素リッチガスを水素管に出力する。改質機器は、例えば、炭化水素系燃料に含まれる硫黄分を除去する脱硫器と、脱硫された炭化水素系燃料を改質反応させる改質器と、改質時に発生する一酸化炭素(CO)を除去するCO除去器とを含む。 The fuel system 18 may include a reforming device that reforms the hydrocarbon fuel supplied from the outside into hydrogen-rich gas. The reforming device outputs hydrogen-rich gas produced by a reforming reaction of the hydrocarbon fuel to the hydrogen pipe. The reforming device includes, for example, a desulfurizer that removes sulfur contained in the hydrocarbon fuel, a reformer that causes a reforming reaction of the desulfurized hydrocarbon fuel, and a CO remover that removes carbon monoxide (CO) generated during reforming.
 炭化水素系燃料は、都市ガスに限られず、メタンガス、プロパンガス、下水汚泥等に由来する消化ガス、食品残渣等から発生するバイオガスなどを含んでもよい。 Hydrocarbon fuels are not limited to city gas, but may also include methane gas, propane gas, digester gas derived from sewage sludge, etc., and biogas generated from food waste, etc.
 制御装置10は、FCプラットフォーム1,2,3及び補機システム301の動作を制御するコントローラである。制御装置10は、例えば、制御用電源32から供給される電力(例えば、DC12ボルトの直流電力)により動作する。制御用電源32は、例えば、制御用電池である。制御装置10の個数は、1つに限られず、複数でもよく、例えば、FCプラットフォーム1,2,3の各々に対して制御装置が設けられてもよい。制御装置10は、上記の第1制御装置411等又は上記の第2制御装置421等を含んでよい。 The control device 10 is a controller that controls the operation of the FC platforms 1, 2, 3 and the auxiliary system 301. The control device 10 operates, for example, with power (e.g., DC 12 volts direct current power) supplied from a control power source 32. The control power source 32 is, for example, a control battery. The number of control devices 10 is not limited to one, but may be multiple, and for example, a control device may be provided for each of the FC platforms 1, 2, 3. The control device 10 may include the above-mentioned first control device 411, etc. or the above-mentioned second control device 421, etc.
 図23は、燃料電池発電装置101がFCプラットフォーム1,2,3に共通の制御用電源32を備える形態を例示する。FCプラットフォーム1,2,3の電源が制御用電源32に共通化されることで、複数の制御用電源を備える形態の場合に比べて、燃料電池発電システム201及び燃料電池発電装置101を小型化できる。 FIG. 23 illustrates an example of a configuration in which the fuel cell power generation device 101 includes a control power supply 32 common to the FC platforms 1, 2, and 3. By sharing the power supply for the FC platforms 1, 2, and 3 as the control power supply 32, the fuel cell power generation system 201 and the fuel cell power generation device 101 can be made smaller than in a configuration in which multiple control power supplies are provided.
 燃料電池発電装置101は、FCプラットフォーム1,2,3に個別の制御用電源32を備えてもよい。複数のFCプラットフォームの電源が個別に複数用意されることで、複数の制御用電源のうち一部の電源が故障又はメンテナンス等により使用不能な場合でも、残りの電源を用いて複数のFCプラットフォームの一部又は全部の動作を継続できる。 The fuel cell power generation device 101 may be provided with individual control power supplies 32 for the FC platforms 1, 2, and 3. By providing multiple power supplies separately for the multiple FC platforms, even if some of the multiple control power supplies are unusable due to failure or maintenance, etc., the remaining power supplies can be used to continue operating some or all of the multiple FC platforms.
 制御装置10の機能(制御装置10が行う処理)は、例えば、メモリに記憶されたプログラムによって、CPU(Central Processing Unit)等のプロセッサが動作することにより実現される。制御装置10の機能は、FPGA(Field Programmable Gate Array)又はASIC(Application Specific Integrated Circuit)によって実現されてもよい。 The functions of the control device 10 (the processing performed by the control device 10) are realized, for example, by a processor such as a CPU (Central Processing Unit) operating according to a program stored in memory. The functions of the control device 10 may also be realized by an FPGA (Field Programmable Gate Array) or an ASIC (Application Specific Integrated Circuit).
 図24は、第1実施形態の燃料電池発電装置101の構成例を詳細に示す図である。燃料電池発電装置101は、例えば、制御装置10及び複数のFCプラットフォーム1,2,3を備える。FCプラットフォーム1は、例えば、燃料管118、空気管119、空気フィルタ33、排気管131、冷却系統36、FCユニット51を備える。FCユニット51は、FCスタック21、昇圧コンバータ42、水素ポンプ43、空気コンプレッサ45、ウォーターポンプ44、空気入口開閉弁77及び排空気出口開閉弁78等を備える。昇圧コンバータ42、水素ポンプ43、空気コンプレッサ45、ウォーターポンプ44、空気入口開閉弁77及び排空気出口開閉弁78等は、制御装置10により制御される。FCプラットフォーム2,3は、FCプラットフォーム1と同じ構成及び機能を有し、FCプラットフォーム1と同様に、制御装置10により制御される。よって、FCプラットフォーム2,3の説明については、FCプラットフォーム1の説明を援用することで、省略する。 24 is a diagram showing in detail an example of the configuration of the fuel cell power generation device 101 of the first embodiment. The fuel cell power generation device 101 includes, for example, a control device 10 and multiple FC platforms 1, 2, and 3. The FC platform 1 includes, for example, a fuel pipe 118, an air pipe 119, an air filter 33, an exhaust pipe 131, a cooling system 36, and an FC unit 51. The FC unit 51 includes an FC stack 21, a boost converter 42, a hydrogen pump 43, an air compressor 45, a water pump 44, an air inlet opening/closing valve 77, and an exhaust air outlet opening/closing valve 78, etc. The boost converter 42, the hydrogen pump 43, the air compressor 45, the water pump 44, the air inlet opening/closing valve 77, and the exhaust air outlet opening/closing valve 78, etc. are controlled by the control device 10. The FC platforms 2 and 3 have the same configuration and function as the FC platform 1, and are controlled by the control device 10 in the same manner as the FC platform 1. Therefore, the explanation of FC platforms 2 and 3 will be omitted, as the explanation of FC platform 1 will be used.
 FCスタック21は、燃料極71と空気極72を有する。FCスタック21は、燃料極71に供給された水素(水素リッチなガスを含んでよい)と、空気極72に供給された空気に含まれる酸素との電気化学反応によって発電する。FCスタック21は、昇圧コンバータ42を介して、出力線17に接続されている。昇圧コンバータ42は、FCスタック21から出力された電圧を昇圧し、昇圧後の直流電力を出力点16を経由して出力線17に出力するDC/DCコンバータである。複数のFCプラットフォーム1,2,3における複数のFCスタック21,22,23の出力電力は、対応する昇圧コンバータ42を介して、共通の出力線17に出力される。 The FC stack 21 has a fuel electrode 71 and an air electrode 72. The FC stack 21 generates electricity by an electrochemical reaction between hydrogen (which may include hydrogen-rich gas) supplied to the fuel electrode 71 and oxygen contained in the air supplied to the air electrode 72. The FC stack 21 is connected to the output line 17 via a boost converter 42. The boost converter 42 is a DC/DC converter that boosts the voltage output from the FC stack 21 and outputs the boosted DC power to the output line 17 via the output point 16. The output power of the multiple FC stacks 21, 22, and 23 in the multiple FC platforms 1, 2, and 3 is output to a common output line 17 via the corresponding boost converters 42.
 燃料管118は、複数のFCプラットフォーム1,2,3に共通に接続された燃料系統18から水素が供給される。燃料管118は、燃料極71に水素入口75を介して水素を供給する。燃料管118は、燃料極に水素を供給する第1配管の一例である。 The fuel pipe 118 is supplied with hydrogen from a fuel system 18 that is commonly connected to the multiple FC platforms 1, 2, and 3. The fuel pipe 118 supplies hydrogen to the fuel electrode 71 via a hydrogen inlet 75. The fuel pipe 118 is an example of a first pipe that supplies hydrogen to the fuel electrode.
 空気管119は、複数のFCプラットフォーム1,2,3に共通に接続された給気系統19から空気が供給される。空気管119は、FCスタック21の空気極72に空気入口73を介して空気を供給する。空気フィルタ33の入口側の空気管119は必須ではなく、FCプラットフォーム1,2,3の開放部から空気フィルタ33が直接空気を吸い込んでもよい。空気管119は、空気極に空気を供給する第3配管の一例である。 Air is supplied to the air pipe 119 from the air supply system 19 that is commonly connected to the multiple FC platforms 1, 2, and 3. The air pipe 119 supplies air to the air electrode 72 of the FC stack 21 via the air inlet 73. The air pipe 119 on the inlet side of the air filter 33 is not essential, and the air filter 33 may directly draw in air from the open parts of the FC platforms 1, 2, and 3. The air pipe 119 is an example of a third pipe that supplies air to the air electrode.
 空気フィルタ33は、給気系統19を介して供給される空気に含まれる塵や燃料電池に悪影響を及ぼす不純物を取り除いて、空気コンプレッサ45に空気管120を介して供給する。空気フィルタは、エアクリーナーとも称される。 The air filter 33 removes dust and impurities that may adversely affect the fuel cell from the air supplied through the air supply system 19, and supplies the air to the air compressor 45 through the air pipe 120. The air filter is also called an air cleaner.
 空気コンプレッサ45は、空気フィルタ33を通して供給された空気を圧縮し、FCスタック21の空気極72に供給する。空気コンプレッサ45により圧縮された酸素を含む空気は、FCスタック21の空気極72に空気入口73を介して供給される。空気入口開閉弁77は、空気コンプレッサ45から空気極72の空気入口73へ供給される空気の流れを遮断する。 The air compressor 45 compresses the air supplied through the air filter 33 and supplies it to the air electrode 72 of the FC stack 21. The oxygen-containing air compressed by the air compressor 45 is supplied to the air electrode 72 of the FC stack 21 via the air inlet 73. The air inlet opening/closing valve 77 blocks the flow of air supplied from the air compressor 45 to the air inlet 73 of the air electrode 72.
 排気管131は、複数のFCプラットフォーム1,2,3に共通に接続された排気系統31に、FCスタック21で発生する排ガスを排出する。排空気出口開閉弁78は、FCスタック21の空気極72の空気出口74から排気管131に排出されるオフガスの流れを遮断する。 The exhaust pipe 131 discharges exhaust gas generated in the FC stack 21 to an exhaust system 31 commonly connected to multiple FC platforms 1, 2, and 3. The exhaust air outlet opening/closing valve 78 blocks the flow of off-gas discharged from the air outlet 74 of the air electrode 72 of the FC stack 21 to the exhaust pipe 131.
 冷却系統36は、FCスタック21を冷却水等の第1冷却液によって冷却する。冷却系統36は、冷熱源39との間で第1冷却液の熱交換を行って第1冷却液を冷却する中間熱交換器34を有する。ウォーターポンプ44は、第1冷却液を、中間熱交換器34とFCスタック21との間で循環させる。ウォーターポンプ44により循環された第1冷却液により、FCスタック21は冷却される。 The cooling system 36 cools the FC stack 21 with a first cooling liquid such as cooling water. The cooling system 36 has an intermediate heat exchanger 34 that exchanges heat with a cold heat source 39 to cool the first cooling liquid. A water pump 44 circulates the first cooling liquid between the intermediate heat exchanger 34 and the FC stack 21. The FC stack 21 is cooled by the first cooling liquid circulated by the water pump 44.
 中間熱交換器34は、FCスタック21を冷却する第1冷却液を異種の冷熱源39との間で熱交換可能な熱交換器である。異種の冷熱源39とは、利用する冷熱源39の種類を問わないことを意味する。中間熱交換器34は、利用する冷熱源39の種類を問わずに、任意の冷熱源39で第1冷却液を冷却できるので、上記のような様々な用途に適用可能な燃料電池発電装置101が実現される。 The intermediate heat exchanger 34 is a heat exchanger capable of exchanging heat between the first cooling liquid that cools the FC stack 21 and a different type of cold heat source 39. The different types of cold heat sources 39 mean that the type of cold heat source 39 used does not matter. The intermediate heat exchanger 34 can cool the first cooling liquid with any cold heat source 39, regardless of the type of cold heat source 39 used, thereby realizing a fuel cell power generation device 101 that can be used for various purposes such as those described above.
 中間熱交換器34は、冷却系統36を循環する第1冷却液が通過する放熱部40と、冷熱源39との間で熱を移動させる熱媒が通過する受熱部41と、を有する。冷熱源39から供給される熱媒は、液体でも気体でもよい。中間熱交換器34において放熱部40から受熱部41へ放熱されることで、第1冷却液は、冷却される。中間熱交換器34の具体例として、プレート熱交換器などが挙げられるが、中間熱交換器34は、これに限られない。 The intermediate heat exchanger 34 has a heat dissipation section 40 through which the first cooling liquid circulating in the cooling system 36 passes, and a heat receiving section 41 through which a heat medium passes to transfer heat between the cold heat source 39. The heat medium supplied from the cold heat source 39 may be liquid or gas. The first cooling liquid is cooled by dissipating heat from the heat dissipation section 40 to the heat receiving section 41 in the intermediate heat exchanger 34. A specific example of the intermediate heat exchanger 34 is a plate heat exchanger, but the intermediate heat exchanger 34 is not limited to this.
 複数のFCプラットフォーム1,2,3における複数の中間熱交換器34は、それぞれ、複数のFCプラットフォーム1,2,3に共通に接続される冷熱源39との間で熱交換してもよい。これにより、冷熱源39が複数のFCプラットフォーム1,2,3間で共通化されるので、燃料電池発電装置101を小型化できる。なお、冷熱源39は、複数のFCプラットフォーム1,2,3間で相違してもよい。 The multiple intermediate heat exchangers 34 in the multiple FC platforms 1, 2, 3 may each exchange heat with a cold heat source 39 that is commonly connected to the multiple FC platforms 1, 2, 3. This allows the cold heat source 39 to be common between the multiple FC platforms 1, 2, 3, making it possible to reduce the size of the fuel cell power generation device 101. Note that the cold heat source 39 may be different between the multiple FC platforms 1, 2, 3.
 冷却器15(図23)は、冷熱源39の一例である。冷熱源39は、例えば、空冷冷却器、開放式冷却塔、密閉式冷却塔、工場の冷却水、上水、河川水、海水、液化水素の気化熱、または圧縮水素が膨張した際の冷熱などである。 The cooler 15 (Figure 23) is an example of a cold heat source 39. The cold heat source 39 can be, for example, an air-cooled cooler, an open cooling tower, a closed cooling tower, cooling water from a factory, drinking water, river water, seawater, the heat of vaporization of liquefied hydrogen, or the cold heat produced when compressed hydrogen expands.
 中間熱交換器34の受熱部41の素材は、例えば、金属イオンの溶出性が比較的低い低溶出性金属(例えば、高耐食のオーステナイト系ステンレス(SUS316L)など)である。受熱部41に接触する熱媒が海水などであると、受熱部41の素材によっては、金属イオンが受熱部41から溶出するおそれがある。受熱部41の素材が上記のような低溶出性金属であると、冷熱源39から供給される熱媒の制約が緩和されるので、冷熱源39の選択肢が増える。その結果、上記のような様々な用途に適用可能な燃料電池発電装置101が実現される。 The material of the heat receiving portion 41 of the intermediate heat exchanger 34 is, for example, a low-elution metal with a relatively low elution rate of metal ions (such as highly corrosion-resistant austenitic stainless steel (SUS316L)). If the heat medium in contact with the heat receiving portion 41 is seawater or the like, there is a risk that metal ions will elute from the heat receiving portion 41, depending on the material of the heat receiving portion 41. If the material of the heat receiving portion 41 is a low-elution metal such as the above, the restrictions on the heat medium supplied from the cold heat source 39 are relaxed, and the options for the cold heat source 39 increase. As a result, a fuel cell power generation device 101 that can be used for various applications such as those described above is realized.
 また、中間熱交換器34の採用によって、第1冷却液が循環する経路をFCプラットフォームの外側の冷熱源39まで伸ばさなくても、第1冷却液を放熱できる。つまり、第1冷却液が循環する経路を短縮でき、燃料電池を冷却する高価な第1冷却液の使用量を削減できる。その結果、コスト低減が可能となる。 In addition, by using the intermediate heat exchanger 34, the first coolant can dissipate heat without having to extend the path through which the first coolant circulates to the cold heat source 39 outside the FC platform. In other words, the path through which the first coolant circulates can be shortened, and the amount of expensive first coolant used to cool the fuel cell can be reduced. As a result, costs can be reduced.
 冷却系統36は、第1冷却液からイオンを取り除くイオン交換器35を備えてもよい。第1冷却液からのイオンの取り除きによって、FCスタック21において入出力される第1冷却液の電気伝導度の上昇が抑制されるので、FCスタック21と第1冷却液との間の電気的な干渉が抑制される。 The cooling system 36 may include an ion exchanger 35 that removes ions from the first cooling liquid. By removing ions from the first cooling liquid, an increase in the electrical conductivity of the first cooling liquid inputted and outputted to the FC stack 21 is suppressed, thereby suppressing electrical interference between the FC stack 21 and the first cooling liquid.
 また、中間熱交換器34が採用されることで、冷却系統36側の第1冷却液から冷熱源39側の熱媒へのイオンの溶出が抑制されるので、イオン交換器35のメンテナンスの頻度が低減する。 In addition, the use of the intermediate heat exchanger 34 suppresses the dissolution of ions from the first cooling liquid on the cooling system 36 side to the heat medium on the cold heat source 39 side, reducing the frequency of maintenance of the ion exchanger 35.
 冷却系統36は、第1冷却液の電気伝導度を測定するセンサ37を備えてもよい。センサ37を備えることで、第1冷却液の電気伝導度を管理できる。例えば、電気伝導度が上昇し始めたことがセンサ37により検知された場合、ユーザは、イオン交換器35をメンテナンスするタイミングを把握できる。また、電気伝導度を管理することで燃料電池の直流PN間(プラスとマイナス間)の絶縁性を保つことができる。センサ37又は制御装置10は、電気伝導度が第1閾値(例えば、1μS/cm)以上と測定された場合、ユーザが認知できるように、警報を発報してもよい。制御装置10は、電気伝導度が第1閾値よりも大きな第2閾値(例えば、5μS/cm)以上と測定された場合、第2閾値以上の電気伝導度が測定されたFCプラットフォームを停止させてもよい。 The cooling system 36 may include a sensor 37 that measures the electrical conductivity of the first cooling liquid. By including the sensor 37, the electrical conductivity of the first cooling liquid can be managed. For example, if the sensor 37 detects that the electrical conductivity has started to increase, the user can know when to perform maintenance on the ion exchanger 35. In addition, by managing the electrical conductivity, the insulation between the DC PN (between the positive and negative) of the fuel cell can be maintained. If the electrical conductivity is measured to be equal to or greater than a first threshold value (e.g., 1 μS/cm), the sensor 37 or the control device 10 may issue an alarm so that the user can be aware of the alarm. If the electrical conductivity is measured to be equal to or greater than a second threshold value (e.g., 5 μS/cm) that is greater than the first threshold value, the control device 10 may stop the FC platform in which the electrical conductivity equal to or greater than the second threshold value is measured.
 冷却系統36は、第1冷却液の温度変化に伴う膨張又は収縮を吸収する冷媒タンク38を備えてもよい。これにより、第1冷却液の温度変化に伴う膨張又は収縮が抑制される。 The cooling system 36 may include a refrigerant tank 38 that absorbs the expansion or contraction of the first cooling liquid caused by temperature changes. This suppresses the expansion or contraction of the first cooling liquid caused by temperature changes.
 FCプラットフォーム1は、第1気液分離器79及び水素ポンプ43を備えてもよい。第1気液分離器79は、燃料極71の水素出口76から排出される第1混相流から水素ガスと排水を分離する。水素ポンプ43は、第1気液分離器79により分離された水素ガスを燃料極71の水素入口75へ循環させる。これにより、FCスタック21での発電により生成された余剰の水素ガスを、FCスタック21での発電に再利用できる。 The FC platform 1 may include a first gas-liquid separator 79 and a hydrogen pump 43. The first gas-liquid separator 79 separates hydrogen gas and wastewater from the first multiphase flow discharged from the hydrogen outlet 76 of the fuel electrode 71. The hydrogen pump 43 circulates the hydrogen gas separated by the first gas-liquid separator 79 to the hydrogen inlet 75 of the fuel electrode 71. This allows surplus hydrogen gas generated by power generation in the FC stack 21 to be reused for power generation in the FC stack 21.
 FCプラットフォーム1は、混合器80を備えてもよい。排気管131は、第1気液分離器79により分離された排水と、当該排水に混入する水素と、空気極72の空気出口74から排出される排空気とを混合器80で合流させた第2混相流を排出する。これにより、排水と水素と排空気をまとめて排出できる。 The FC platform 1 may also include a mixer 80. The exhaust pipe 131 discharges a second multiphase flow obtained by combining the wastewater separated by the first gas-liquid separator 79, hydrogen mixed in the wastewater, and exhaust air discharged from the air outlet 74 of the air electrode 72 in the mixer 80. This allows the wastewater, hydrogen, and exhaust air to be discharged together.
 FCプラットフォーム1は、第2混相流から水と気体を分離する第2気液分離器81を備えてもよい。これにより、排水と排ガスを分離して排出できる。排水又は排ガスは、回収器82により回収されてもよい。これにより、排ガス中に含まれる水分が周辺に飛散することを抑制することができる。 The FC platform 1 may be provided with a second gas-liquid separator 81 that separates water and gas from the second multiphase flow. This allows the wastewater and exhaust gas to be separated and discharged. The wastewater or exhaust gas may be collected by a collector 82. This makes it possible to prevent the moisture contained in the exhaust gas from scattering into the surrounding area.
 燃料電池発電装置101は、複数のFCプラットフォーム1,2,3における複数の燃料管118に不活性ガス(例えば、窒素、二酸化炭素、水蒸気など)を個別に供給する配管121を備えてもよい。制御装置10は、複数の燃料管118に含まれる水素を不活性ガスで個別にパージできるように、開閉弁122を作動させることにより、配管121の流路を切り替えてもよい。これにより、不活性ガスのパージによる特性劣化をFCスタック単位で管理できる。 The fuel cell power generation device 101 may include piping 121 that individually supplies an inert gas (e.g., nitrogen, carbon dioxide, water vapor, etc.) to a plurality of fuel pipes 118 in a plurality of FC platforms 1, 2, 3. The control device 10 may switch the flow path of the piping 121 by operating an on-off valve 122 so that the hydrogen contained in the plurality of fuel pipes 118 can be individually purged with the inert gas. This allows the characteristic degradation caused by purging with the inert gas to be managed on a per-FC stack basis.
 燃料電池発電システム201又は燃料電池発電装置101は、複数のFCプラットフォームのそれぞれに対して設けられた複数の開閉器(この例では、電磁開閉器61,62,63)を備えてもよい。電磁開閉器61,62,63は、燃料電池から出力される電力の経路を開閉する。電磁開閉器61は、FCスタック21及び昇圧コンバータ42と、出力線17に接続される出力点16との間の電力経路の遮断と接続を切り替える遮断器である。電磁開閉器62は、FCスタック22及び不図示の昇圧コンバータと、出力線17に接続される出力点16との間の電力経路の遮断と接続を切り替える遮断器である。電磁開閉器63は、FCスタック23及び不図示の昇圧コンバータと、出力線17に接続される出力点16との間の電力経路の遮断と接続を切り替える遮断器である。 The fuel cell power generation system 201 or the fuel cell power generation device 101 may include a plurality of switches (in this example, electromagnetic switches 61, 62, 63) provided for each of the plurality of FC platforms. The electromagnetic switches 61, 62, 63 open and close the path of the power output from the fuel cell. The electromagnetic switch 61 is a circuit breaker that switches between disconnection and connection of the power path between the FC stack 21 and the boost converter 42, and the output point 16 connected to the output line 17. The electromagnetic switch 62 is a circuit breaker that switches between disconnection and connection of the power path between the FC stack 22 and the boost converter (not shown), and the output point 16 connected to the output line 17. The electromagnetic switch 63 is a circuit breaker that switches between disconnection and connection of the power path between the FC stack 23 and the boost converter (not shown), and the output point 16 connected to the output line 17.
 制御装置10は、複数のFCスタック21,22,23のうち、一部のFCスタックを他のFCスタックから電磁開閉器61,62又は63により切り離してもよい。当該一部のFCスタックが切り離された状態で、制御装置10は、供給電力Paが略一定値に維持されるように、当該他のFCスタックの出力電力を制御してもよい。これにより、供給電力Paが略一定値に維持された状態で、当該一部のFCスタックの交換が容易になる。例えば、制御装置10は、FCスタック21が電磁開閉器61によりFCスタック22,23から切り離された状態で、供給電力Paが略一定値に維持されるように、他のFCスタック22,23の出力電力を制御してもよい。電磁開閉器61,62,63の開閉は、制御装置10によって自動で切り替えられるが、手動で切り替えられてもよい。 The control device 10 may separate some of the FC stacks 21, 22, 23 from the other FC stacks by electromagnetic switches 61, 62, or 63. With the FC stacks separated, the control device 10 may control the output power of the other FC stacks so that the power supply Pa is maintained at a substantially constant value. This makes it easy to replace the FC stacks while the power supply Pa is maintained at a substantially constant value. For example, with the FC stack 21 separated from the FC stacks 22, 23 by the electromagnetic switch 61, the control device 10 may control the output power of the other FC stacks 22, 23 so that the power supply Pa is maintained at a substantially constant value. The electromagnetic switches 61, 62, 63 are automatically switched on and off by the control device 10, but may also be switched manually.
 燃料電池発電装置101は、複数のFCプラットフォームのうち、一部のFCプラットフォームが動作中に残りのFCプラットフォームを運転停止して取り外せるように、配管を遮断する遮断弁、及び、配線を遮断する開閉器を備えてもよい。配管は、液体(冷却液、排水など)又は気体(空気、水素、排ガスなど)を伝達し、配線は、電力や信号を伝送する。配管を遮断する遮断弁として、空気入口開閉弁77及び排空気出口開閉弁78が例示される。配線を遮断する開閉器として、電磁開閉器61,62,63が例示される。 The fuel cell power generation system 101 may be equipped with shutoff valves for shutting off the piping and switches for shutting off the wiring so that some of the multiple FC platforms can be shut down and removed while the remaining FC platforms are in operation. The piping transmits liquids (coolant, wastewater, etc.) or gases (air, hydrogen, exhaust gas, etc.), and the wiring transmits power and signals. Examples of shutoff valves for shutting off the piping include the air inlet shutoff valve 77 and the exhaust air outlet shutoff valve 78. Examples of switches for shutting off the wiring include electromagnetic switches 61, 62, and 63.
 燃料電池発電装置101は、複数のFCプラットフォームの地絡を個別に検出する機能を備えてもよい。例えば、制御装置10は、複数のFCプラットフォーム1,2,3のうち、対地間抵抗の低下もしくは地絡が検出されたFCプラットフォームを、電磁開閉器61,62又は63により切り離してもよい。 The fuel cell power generation system 101 may have a function for individually detecting ground faults in multiple FC platforms. For example, the control device 10 may use electromagnetic switches 61, 62, or 63 to disconnect an FC platform among multiple FC platforms 1, 2, and 3 in which a drop in resistance to ground or a ground fault has been detected.
 蓄電装置14の出力電圧と出力点16での出力電圧とが略等しくなるように、直列に接続される複数の蓄電池14,…,14の数が調整されてもよい。これにより、DC/DCコンバータ13を削除して燃料電池発電装置101を小型化できる。 The number of the multiple storage batteries 14 1 , ..., 14 n connected in series may be adjusted so that the output voltage of the power storage device 14 is approximately equal to the output voltage at the output point 16. This makes it possible to eliminate the DC/DC converter 13 and reduce the size of the fuel cell power generation device 101.
 外部装置12の電力需要と燃料電池発電装置101の関係から、蓄電装置14の容量を増加させるため、複数の蓄電池14,…,14を並列に接続してもよい。複数の蓄電池14,…,14の並列数は、出力線17に共通接続される複数のFCプラットフォームの数よりも少ないのが好ましい。この場合、複数のFCプラットフォームの各出力電力ラインに個別に蓄電池を接続する場合に比べて、燃料電池発電装置101を小型化できる。 Depending on the relationship between the power demand of the external device 12 and the fuel cell power generation system 101, multiple storage batteries 14 1 , ..., 14 n may be connected in parallel to increase the capacity of the power storage device 14. The number of parallel connections of the multiple storage batteries 14 1 , ..., 14 n is preferably smaller than the number of multiple FC platforms commonly connected to the output line 17. In this case, the fuel cell power generation system 101 can be made smaller than when storage batteries are individually connected to each output power line of the multiple FC platforms.
 配管121は、燃料管118に不活性ガス(窒素、二酸化炭素、水蒸気など)を供給する。配管121は、燃料極に水素を供給する第1配管に不活性ガスを供給する第2配管の一例である。 Pipe 121 supplies an inert gas (nitrogen, carbon dioxide, water vapor, etc.) to fuel pipe 118. Pipe 121 is an example of a second pipe that supplies an inert gas to a first pipe that supplies hydrogen to the fuel electrode.
 配管121は、図23に示すように、複数のFCプラットフォーム1,2,3の複数の燃料管118に個別に不活性ガスを供給できるように構成されてもよい。この場合、一部のFCプラットフォームのみメンテナンス等で取り外す場合に、不活性ガスパージが個別に行われることで、燃料電池発電システム201から安全に取り外すことが可能である。 As shown in FIG. 23, the piping 121 may be configured to supply inert gas individually to multiple fuel pipes 118 of multiple FC platforms 1, 2, and 3. In this case, when only some of the FC platforms are removed for maintenance or the like, they can be safely removed from the fuel cell power generation system 201 by individually purging them with inert gas.
 燃料電池発電装置101は、燃料管118から燃料極71への水素の供給と配管121から燃料管118への不活性ガスの供給を切り替え可能に構成されている。配管121の切り替え動作は、制御装置10により制御される。 The fuel cell power generation device 101 is configured to be able to switch between supplying hydrogen from the fuel pipe 118 to the fuel electrode 71 and supplying inert gas from the pipe 121 to the fuel pipe 118. The switching operation of the pipe 121 is controlled by the control device 10.
 燃料電池発電装置101は、個別に水素と不活性ガスの供給を切り替え可能な構成として、燃料管118に設けられた開閉弁123と、配管121に設けられた開閉弁122とを有してもよい。開閉弁123及び開閉弁122の各々の開閉は、制御装置10により制御される。開閉弁123及び開閉弁122は、例えば、電磁弁である。 The fuel cell power generation device 101 may have an on-off valve 123 provided in the fuel pipe 118 and an on-off valve 122 provided in the piping 121, as a configuration capable of individually switching between the supply of hydrogen and the supply of inert gas. The opening and closing of the on-off valve 123 and the on-off valve 122 are each controlled by the control device 10. The on-off valve 123 and the on-off valve 122 are, for example, solenoid valves.
 燃料電池発電装置101は、個別に水素と不活性ガスの供給を切り替え可能な構成として、不活性ガスを供給する配管121が水素を供給する燃料系統18に合流する箇所に設けられた流路切換え弁(例えば、三方弁など)を有してもよい。三方弁の場合、水素と不活性ガスのどちらかの完全な切り替えもできるし、任意の組成での混合もできる。燃料管118及び配管121のそれぞれに、マスフローコントローラー(質量流量計)などの流量制御機器を設置することで、より精密に混合組成を制御することもできる。 The fuel cell power generation device 101 may have a flow path switching valve (e.g., a three-way valve) provided at the point where the pipe 121 supplying the inert gas joins the fuel system 18 supplying the hydrogen, as a configuration that allows for individual switching between the supply of hydrogen and the inert gas. In the case of a three-way valve, complete switching between hydrogen and the inert gas is possible, and mixing of any composition is also possible. By installing flow control devices such as mass flow controllers (mass flow meters) in each of the fuel pipe 118 and the pipe 121, the mixture composition can also be controlled more precisely.
 図25に示す燃料電池発電システム201Aのように、配管121は、不活性ガスを一括で燃料管118に供給できるように構成されてもよい。この場合、燃料電池発電システム201Aについて、構成の簡素化とコストダウンができる。図25の場合、開閉弁122は、配管121がFCスタック21,22,23に向けて分岐する前の箇所に設けられている。 As in the fuel cell power generation system 201A shown in FIG. 25, the pipe 121 may be configured so that the inert gas can be supplied to the fuel pipe 118 in one go. In this case, the configuration of the fuel cell power generation system 201A can be simplified and costs can be reduced. In the case of FIG. 25, the opening and closing valve 122 is provided at a point before the pipe 121 branches toward the FC stacks 21, 22, and 23.
 図23~図25において、FCスタック21の出力電力p1の一部は、FCユニット51内の空気コンプレッサ45等の補機の動作電力として使用され、その余剰電力が、FCユニット51の出力電力P1として出力される。FCスタック22の出力電力p2及びFCスタック23の出力電力p3についても同様である。 In Figures 23 to 25, part of the output power p1 of the FC stack 21 is used as operating power for auxiliary equipment such as the air compressor 45 in the FC unit 51, and the surplus power is output as the output power P1 of the FC unit 51. The same applies to the output power p2 of the FC stack 22 and the output power p3 of the FC stack 23.
 制御装置10は、出力線17から外部への供給電力を略一定の所定値に維持する制御を行う。例えば、制御装置10は、出力線17から電力変換装置11に向けて出力される供給電力Pa(=Po-Pb)が一定の目標値に維持されるように、FCスタック21,22,23(FCプラットフォーム1,2,3)の発電及びDC/DCコンバータ13の変換動作を制御する。Poは、出力点16における電力である。Poは、FCプラットフォーム1,2,3の各出力電力P1,P2,P3の和に等しい(Po=P1+P2+P3)。Pbは、蓄電装置14と出力線17との間でやり取りされる電力である。 The control device 10 performs control to maintain the power supplied from the output line 17 to the outside at a substantially constant predetermined value. For example, the control device 10 controls the power generation of the FC stacks 21, 22, 23 ( FC platforms 1, 2, 3) and the conversion operation of the DC/DC converter 13 so that the supply power Pa (=Po-Pb) output from the output line 17 to the power conversion device 11 is maintained at a constant target value. Po is the power at the output point 16. Po is equal to the sum of the output powers P1, P2, P3 of the FC platforms 1, 2, 3 (Po=P1+P2+P3). Pb is the power exchanged between the storage device 14 and the output line 17.
 制御装置10は、電力変換装置11から外部装置12に向けて出力される電力Pcが目標値に追従するように、FCスタック21,22,23の発電及び電力変換装置11の変換動作を制御してもよい。Pa又はPcは、出力線17から外部への供給電力の一例である。 The control device 10 may control the power generation of the FC stacks 21, 22, and 23 and the conversion operation of the power conversion device 11 so that the power Pc output from the power conversion device 11 to the external device 12 follows a target value. Pa or Pc is an example of power supplied from the output line 17 to the outside.
 制御装置10は、出力線17から外部への供給電力Paが略一定値に維持された状態で、FCスタック21,22,23の各出力電力p1,p2,p3を変化(より詳しくは、増減)させる制御(電力変動制御。電池出力変動制御とも称する)を行う。供給電力Paは、電圧センサ及び電流センサにより検出可能である。 The control device 10 performs control (power fluctuation control, also called battery output fluctuation control) to change (more specifically, increase or decrease) the output power p1, p2, and p3 of the FC stacks 21, 22, and 23 while maintaining the supply power Pa from the output line 17 to the outside at a substantially constant value. The supply power Pa can be detected by a voltage sensor and a current sensor.
 制御装置10は、例えば、FCプラットフォーム1の昇圧コンバータ42の動作電流(負荷電流)を増減することでFCスタック21の負荷を増減させ、出力電力p1を増減させる。同様に、制御装置10は、FCプラットフォーム2の昇圧コンバータ42の動作電流(負荷電流)を増減することでFCスタック22の負荷を増減させ、出力電力p2を増減させる。制御装置10は、FCプラットフォーム3の昇圧コンバータ42の動作電流(負荷電流)を増減することでFCスタック23の負荷を増減させ、出力電力p3を増減させる。 The control device 10, for example, increases or decreases the operating current (load current) of the boost converter 42 of the FC platform 1 to increase or decrease the load on the FC stack 21 and increase or decrease the output power p1. Similarly, the control device 10 increases or decreases the operating current (load current) of the boost converter 42 of the FC platform 2 to increase or decrease the load on the FC stack 22 and increase or decrease the output power p2. The control device 10 increases or decreases the operating current (load current) of the boost converter 42 of the FC platform 3 to increase or decrease the load on the FC stack 23 and increase or decrease the output power p3.
 制御装置10が上記のような電力変動制御(電池出力変動制御)を行うことで、出力線17から外部への供給電力Paが略一定値に維持された状態で、複数のFCスタック21,22,23の各出力電力p1,p2,p3が増減する。これにより、出力線17から外部への一定の電力供給が確保された状態で、複数のFCスタック21,22,23のセル面内の湿度分布の偏りは、各出力電力p1,p2,p3が常に一定に制御される場合に比べて、減少する。セル面内の湿度分布の偏りが減少することで、有効反応面積の低下による電流密度の上昇が抑制されるので、電流密度の上昇による電解質膜の劣化が抑制される。したがって、供給電力Paが略一定値に維持された状態で各出力電力p1,p2,p3を増減させる電力変動制御が制御装置10により行われることで、略一定の電力供給が確保され、複数のFCスタック21,22,23の劣化が抑制される。複数のFCスタック21,22,23の劣化の抑制は、燃料電池発電装置101及び燃料電池発電システム201,201Aの耐久性の向上に貢献する。よって、FCユニット51等の燃料電池ユニットを効果的にリフレッシュできる。 By the control device 10 performing the above-mentioned power fluctuation control (battery output fluctuation control), the output powers p1, p2, and p3 of the multiple FC stacks 21, 22, and 23 are increased or decreased while the power supply Pa from the output line 17 to the outside is maintained at a substantially constant value. As a result, while a constant power supply from the output line 17 to the outside is ensured, the humidity distribution deviation within the cell surface of the multiple FC stacks 21, 22, and 23 is reduced compared to the case where the output powers p1, p2, and p3 are always controlled to be constant. By reducing the humidity distribution deviation within the cell surface, the increase in current density due to the decrease in effective reaction area is suppressed, and deterioration of the electrolyte membrane due to the increase in current density is suppressed. Therefore, by the control device 10 performing power fluctuation control to increase or decrease the output powers p1, p2, and p3 while the supply power Pa is maintained at a substantially constant value, a substantially constant power supply is ensured and deterioration of the multiple FC stacks 21, 22, and 23 is suppressed. Suppressing deterioration of the multiple FC stacks 21, 22, and 23 contributes to improving the durability of the fuel cell power generation device 101 and the fuel cell power generation system 201 and 201A. Therefore, fuel cell units such as the FC unit 51 can be effectively refreshed.
 制御装置10は、供給電力Paが略一定値に維持された状態で、各出力電力p1,p2,p3をFCスタックの定格出力よりも低い電力値Pth以下に制限的に制御する部分負荷運転を行ってもよい。部分負荷運転が行われることで、各出力電力p1,p2,p3を定格出力に制御する全負荷運転を行う場合に比べて、複数のFCスタック21,22,23の劣化が抑制され、燃料電池発電装置101及び燃料電池発電システム201の耐久性が向上する。 The control device 10 may perform partial load operation in which the output powers p1, p2, and p3 are restricted to a power value Pth or less that is lower than the rated output of the FC stack while the supply power Pa is maintained at a substantially constant value. By performing partial load operation, deterioration of the multiple FC stacks 21, 22, and 23 is suppressed and the durability of the fuel cell power generation device 101 and the fuel cell power generation system 201 is improved compared to the case of full load operation in which the output powers p1, p2, and p3 are controlled to the rated output.
 燃料電池は、出力(発電負荷)が高くなるほど、発電効率が低下する傾向がある。また、高出力の運転では、空気コンプレッサ45など回転機の騒音が大きくなるおそれがある。一方、低出力の運転でも、発電効率が低下する場合がある。低出力の運転で発電効率が低下するのは、燃料電池の効率だけではなく、燃料電池の出力電力に対する、FCユニット内の補機の動力の割合(補機損失)が増大するからである。そこで、制御装置10は、供給電力Paが略一定値に維持された状態で、各出力電力p1,p2,p3をFCスタックの定格出力の10%以上80%以下に制限的に制御する部分負荷運転を行ってもよい。制御装置10は、より好ましくは、供給電力Paが略一定値に維持された状態で、各出力電力p1,p2,p3をFCスタックの定格出力の20%以上50%以下に制限的に制御する部分負荷運転を行ってもよい。このような部分負荷運転が行われることで、発電効率の向上、騒音の低減、および、燃料消費量の削減が可能となる。 The higher the output (power generation load) of a fuel cell, the lower the power generation efficiency tends to be. In addition, high-power operation may cause the noise of rotating machines such as the air compressor 45 to increase. On the other hand, power generation efficiency may also decrease when operating at low power. The reason why power generation efficiency decreases when operating at low power is not only the efficiency of the fuel cell, but also because the ratio of the power of the auxiliary equipment in the FC unit to the output power of the fuel cell (auxiliary equipment loss) increases. Therefore, the control device 10 may perform partial load operation in which the output power p1, p2, and p3 are restricted to 10% to 80% of the rated output of the FC stack while the supply power Pa is maintained at a substantially constant value. More preferably, the control device 10 may perform partial load operation in which the output power p1, p2, and p3 are restricted to 20% to 50% of the rated output of the FC stack while the supply power Pa is maintained at a substantially constant value. By performing such partial load operation, it is possible to improve power generation efficiency, reduce noise, and reduce fuel consumption.
 制御装置10は、供給電力Paが略一定値に維持された状態で、FCスタックの特性を改善させるリフレッシュ運転を間欠的に行ってもよい。これにより、FCスタックの継続的な運転により低下した特性(例えば、出力電圧の特性)の改善が可能となる。 The control device 10 may intermittently perform a refresh operation to improve the characteristics of the FC stack while the supply power Pa is maintained at a substantially constant value. This makes it possible to improve characteristics (e.g., output voltage characteristics) that have deteriorated due to continuous operation of the FC stack.
 リフレッシュ運転には、起動停止、低電圧運転、高負荷運転、アイドリング運転、負荷変動運転、空気流量増加運転などがある。制御装置10は、並列に接続された複数のFCスタックをリフレッシュ運転することで、複数のFCスタック21,22,23の劣化が抑制され、燃料電池発電装置101及び燃料電池発電システム201,201Aの耐久性が向上する。 Refresh operations include start/stop, low voltage operation, high load operation, idling operation, load fluctuation operation, and increased air flow rate operation. By performing refresh operations on multiple FC stacks connected in parallel, the control device 10 suppresses deterioration of the multiple FC stacks 21, 22, and 23, improving the durability of the fuel cell power generation device 101 and fuel cell power generation systems 201 and 201A.
 起動停止は、停止中のFCスタックのカソード内の酸素を消費することで、燃料電池の電圧を低下させ、触媒被毒物質を脱離させるリフレッシュ運転である。制御装置10は、例えば、複数のFCスタック21,22,23を個別に一定時間以上停止して、停止中のFCスタックの電圧を最低時間以上低下させることで、触媒被毒物質を脱離させる。より具体的には、制御装置10は、停止中のFCスタックのカソードの酸素を消費し、そのカソードの触媒に付着した不純物が脱離するまで、その停止中のFCスタックの電圧を最低時間以上低下させる。一定時間は、1秒から30分、好ましくは1分である。最低時間は、0.5秒から5分、好ましくは30秒である。 Start-stop is a refresh operation that consumes oxygen in the cathode of the stopped FC stack to lower the fuel cell voltage and release catalyst poisoning substances. The control device 10, for example, stops the multiple FC stacks 21, 22, 23 individually for a certain period of time or more, and reduces the voltage of the stopped FC stack for a minimum period of time or more, thereby releasing the catalyst poisoning substances. More specifically, the control device 10 consumes oxygen in the cathode of the stopped FC stack, and reduces the voltage of the stopped FC stack for a minimum period of time or more until the impurities attached to the catalyst of the cathode are released. The certain period of time is 1 second to 30 minutes, preferably 1 minute. The minimum period of time is 0.5 seconds to 5 minutes, preferably 30 seconds.
 低電圧運転は、FCスタックを停止せずに、FCスタックの電圧を一時的に低下させることで、触媒被毒物質を脱離させるリフレッシュ運転である。制御装置10は、例えば、動作中の複数のFCスタック21,22,23の電圧を個別に一時的に低下させることで、触媒被毒物質を脱離させる。 Low voltage operation is a refresh operation that removes catalyst poisoning substances by temporarily lowering the voltage of the FC stack without stopping the FC stack. For example, the control device 10 removes catalyst poisoning substances by temporarily lowering the voltage of each of the multiple FC stacks 21, 22, and 23 that are in operation.
 高負荷運転は、FCスタックで生成される水量を増やし、水分で電極に付着した不純物を洗い流すリフレッシュ運転である。制御装置10は、例えば、定格出力よりも低い電力値Pth以下で動作中のFCスタックの出力電力を、電力値Pthよりも一時的に高くすることで、そのFCスタックで生成される水量を増やし、水分で電極に付着した不純物を洗い流す。 High-load operation is a refresh operation that increases the amount of water produced by the FC stack and uses the water to wash away impurities adhering to the electrodes. For example, the control device 10 increases the output power of the FC stack, which is operating at or below a power value Pth that is lower than the rated output, temporarily above the power value Pth, thereby increasing the amount of water produced by the FC stack and washing away impurities adhering to the electrodes with the water.
 アイドリング運転は、出力点16における電力Poを略零にした状態で、セル面内の湿度分布又は温度分布を均一化するリフレッシュ運転である。制御装置10は、例えば、供給電力Paが略一定に且つ出力点16における電力Poが略零に維持されるように、複数のFCスタック21,22,23の発電及び出力線17に接続される蓄電池14の放電を制御する。これにより、燃料電池発電装置101から出力される電力Poがアイドリング運転により略零になっても、蓄電池14からの放電によって供給電力Paを略一定に維持できる。 Idling operation is a refresh operation that equalizes the humidity distribution or temperature distribution within the cell surface while keeping the power Po at the output point 16 at approximately zero. The control device 10 controls the power generation of the multiple FC stacks 21, 22, 23 and the discharge of the storage battery 14 connected to the output line 17, for example, so that the supply power Pa is kept approximately constant and the power Po at the output point 16 is maintained at approximately zero. As a result, even if the power Po output from the fuel cell power generation device 101 becomes approximately zero due to idling operation, the supply power Pa can be maintained approximately constant by discharging from the storage battery 14.
 負荷変動運転は、FCスタックの負荷の変動によりそのFCスタックの出力電力を変動させることで、セル面内の湿度分布又は温度分布を均一化するリフレッシュ運転である。FCスタックの負荷の変動は、制御装置10により制御される。 Load variation operation is a refresh operation that equalizes the humidity distribution or temperature distribution within the cell surface by varying the output power of the FC stack according to the fluctuation of the load on the FC stack. The fluctuation of the load on the FC stack is controlled by the control device 10.
 空気流量増加運転は、FCスタックで生成された水の排出性の改善、および、酸素の等配性の改善によって、FCスタックの特性を回復するリフレッシュ運転である。 Increased air flow rate operation is a refresh operation that restores the characteristics of the FC stack by improving the discharge of water generated in the FC stack and improving the uniform distribution of oxygen.
 図26は、第2実施形態の燃料電池発電装置を備える燃料電池発電システムの具体的な構成例を示す図である。図26に示す燃料電池発電システム202は、並列に接続された複数のFCユニットによって発電された電力を、給電対象である外部装置12に供給するシステムである。第2実施形態において、第1実施形態と同様の構成及び効果についての説明は、上述の説明を援用することで、省略又は簡略する。 FIG. 26 is a diagram showing a specific example of the configuration of a fuel cell power generation system including a fuel cell power generation device according to the second embodiment. The fuel cell power generation system 202 shown in FIG. 26 is a system that supplies power generated by multiple FC units connected in parallel to an external device 12 that is the power supply target. In the second embodiment, the explanation of the configuration and effects similar to those of the first embodiment will be omitted or simplified by invoking the above explanation.
 燃料電池発電システム202は、燃料電池発電装置102と補機システム301を備える。燃料電池発電システム202は、上記の燃料電池発電システム401の一具体例である。 The fuel cell power generation system 202 includes a fuel cell power generation device 102 and an auxiliary system 301. The fuel cell power generation system 202 is a specific example of the fuel cell power generation system 401 described above.
 燃料電池発電装置102は、外部装置12に供給される電力を複数のFCユニットによって発電する。燃料電池発電装置102は、ユニット化されてもよい。燃料電池発電装置102は、出力線17に並列に接続された複数のFCユニット(この例では、3つのFCユニット51,52,53)と、それらの複数のFCユニットを制御する制御装置10とを備える。並列に接続される複数のFCユニットの台数は、3台に限られず、2台でも、4台以上でもよい。 The fuel cell power generation device 102 generates power to be supplied to the external device 12 using multiple FC units. The fuel cell power generation device 102 may be unitized. The fuel cell power generation device 102 includes multiple FC units (in this example, three FC units 51, 52, 53) connected in parallel to the output line 17, and a control device 10 that controls the multiple FC units. The number of multiple FC units connected in parallel is not limited to three, and may be two, four or more.
 FCユニット51,52,53は、それぞれ、共通の出力線17に出力点16を経由して接続されるFCスタックを含む。FCスタックは、燃料電池の一例である。FCユニット51は、FCスタック21を含み、FCユニット52は、FCスタック22を含み、FCユニット53は、FCスタック23を含む。 FC units 51, 52, and 53 each include an FC stack that is connected to a common output line 17 via an output point 16. The FC stack is an example of a fuel cell. FC unit 51 includes an FC stack 21, FC unit 52 includes an FC stack 22, and FC unit 53 includes an FC stack 23.
 FCユニット51等は、上記の発電装置451等の一例である、又は、上記の発電装置451等に含まれるユニットの一例である。FCスタック21等は、上記の燃料電池441等の一例である。制御装置10は、上記の第1制御装置411等又は上記の第2制御装置421等の一例である。 The FC unit 51 etc. is an example of the power generation device 451 etc. described above, or an example of a unit included in the power generation device 451 etc. described above. The FC stack 21 etc. is an example of the fuel cell 441 etc. described above. The control device 10 is an example of the first control device 411 etc. described above or the second control device 421 etc. described above.
 制御装置10は、FCユニット51,52,53及び補機システム301の動作を制御するコントローラである。制御装置10は、例えば、制御用電源32から供給される電力(例えば、DC12ボルトの直流電力)により動作する。制御装置10の個数は、1つに限られず、複数でもよく、例えば、FCユニット51,52,53の各々に対して制御装置が設けられてもよい。 The control device 10 is a controller that controls the operation of the FC units 51, 52, 53 and the auxiliary system 301. The control device 10 operates, for example, with power (e.g., DC 12 volts direct current power) supplied from the control power supply 32. The number of control devices 10 is not limited to one, and may be multiple. For example, a control device may be provided for each of the FC units 51, 52, 53.
 図27は、第2実施形態の燃料電池発電装置102の構成例を詳細に示す図である。燃料電池発電装置102は、例えば、制御装置10及び複数のFCユニット51,52,53を備える。FCユニット52,53は、FCユニット51と同じ構成及び機能を有し、FCユニット51と同様に、制御装置10により制御される。 FIG. 27 is a diagram showing in detail an example configuration of a fuel cell power generation system 102 according to the second embodiment. The fuel cell power generation system 102 includes, for example, a control device 10 and multiple FC units 51, 52, and 53. The FC units 52 and 53 have the same configuration and functions as the FC unit 51, and are controlled by the control device 10 in the same manner as the FC unit 51.
 したがって、第2実施形態の制御装置10は、第1実施形態と同様の電力変動制御を行うことで、複数のFCスタック21,22,23の劣化を抑制できる。よって、FCユニット51等の燃料電池ユニットを効果的にリフレッシュできる。 The control device 10 of the second embodiment therefore performs the same power fluctuation control as the first embodiment, thereby suppressing deterioration of the multiple FC stacks 21, 22, and 23. This allows the fuel cell units such as the FC unit 51 to be effectively refreshed.
 図28は、燃料電池が3並列の場合の電力変動制御パターンの第1例を示す図である。制御装置10は、FCスタック21の負荷をFCスタック21の定格出力の33.3%の固定値Pth1に制御し、リフレッシュ運転を間欠的に行う負荷パターンL1で、FCスタック21の負荷(出力電力p1)を増減させる。制御装置10は、FCスタック22の負荷をFCスタック22の定格出力の33.3%の固定値Pth2に制御し、リフレッシュ運転を間欠的に行う負荷パターンL2で、FCスタック22の負荷(出力電力p2)を増減させる。制御装置10は、FCスタック23の負荷をFCスタック23の定格出力の33.3%の固定値Pth3に制御し、リフレッシュ運転を間欠的に行う負荷パターンL3で、FCスタック23の負荷(出力電力p3)を増減させる。負荷パターンLは、負荷パターンL1,L2,L3の組み合わせである。 Figure 28 is a diagram showing a first example of a power fluctuation control pattern when three fuel cells are connected in parallel. The control device 10 controls the load of the FC stack 21 to a fixed value Pth1 of 33.3% of the rated output of the FC stack 21, and increases or decreases the load of the FC stack 21 (output power p1) with a load pattern L1 in which refresh operation is performed intermittently. The control device 10 controls the load of the FC stack 22 to a fixed value Pth2 of 33.3% of the rated output of the FC stack 22, and increases or decreases the load of the FC stack 22 (output power p2) with a load pattern L2 in which refresh operation is performed intermittently. The control device 10 controls the load of the FC stack 23 to a fixed value Pth3 of 33.3% of the rated output of the FC stack 23, and increases or decreases the load of the FC stack 23 (output power p3) with a load pattern L3 in which refresh operation is performed intermittently. The load pattern L is a combination of the load patterns L1, L2, and L3.
 負荷パターンL1,L2,L3は、供給電力Paが略一定値に維持された状態で、各出力電力p1,p2,p3を周期的に増減させるパターンである。負荷パターンL1,L2,L3は、供給電力Paが略一定値に維持された状態で、各出力電力p1,p2,p3を位相が互いに異なる波形で増減させるパターンである。 Load patterns L1, L2, and L3 are patterns in which the output powers p1, p2, and p3 are periodically increased and decreased while the supply power Pa is maintained at a substantially constant value. Load patterns L1, L2, and L3 are patterns in which the output powers p1, p2, and p3 are periodically increased and decreased with waveforms having different phases while the supply power Pa is maintained at a substantially constant value.
 制御装置10は、FCスタック21,22,23の負荷を、それぞれ、対応する負荷パターンL1,L2,L3で増減させることで、供給電力Paが略一定値に維持された状態でリフレッシュ運転を周期的に実施できる。 The control device 10 can periodically perform refresh operations while maintaining the supply power Pa at a substantially constant value by increasing or decreasing the load on the FC stacks 21, 22, and 23 using the corresponding load patterns L1, L2, and L3, respectively.
 期間T1,T3,T5は、各出力電力p1,p2,p3を定格出力よりも低い各固定値Pth1,Pth2,Pth3に制御する期間に相当する。期間T2,T4,T6は、各出力電力p1,p2,p3を各固定値Pth1,Pth2,Pth3から一時的に変化させる期間に相当する。この例では、制御装置10は、各出力電力p1,p2,p3を各固定値Pth1,Pth2,Pth3から順に一時的に高くする。各出力電力p1,p2,p3を各固定値Pth1,Pth2,Pth3から高くする順番は、これに限られず、例えば、p1,p3,p2の順に高くされてもよい。 Periods T1, T3, and T5 correspond to periods during which the output powers p1, p2, and p3 are controlled to fixed values Pth1, Pth2, and Pth3 that are lower than the rated output. Periods T2, T4, and T6 correspond to periods during which the output powers p1, p2, and p3 are temporarily changed from the fixed values Pth1, Pth2, and Pth3. In this example, the control device 10 temporarily increases the output powers p1, p2, and p3 in turn from the fixed values Pth1, Pth2, and Pth3. The order in which the output powers p1, p2, and p3 are increased from the fixed values Pth1, Pth2, and Pth3 is not limited to this, and may be increased in the order of p1, p3, and p2, for example.
 期間T2は、出力電力p1を固定値Pth1から定格出力の80%以上100%以下のいずれかの出力に一時的に高くしてFCスタック21のリフレッシュ運転を実施し、出力電力p2,P3を固定値Pth2,Pth3から略零(低負荷状態)に一時的に低くしてFCスタック22,23のリフレッシュ運転を実施する期間に相当する。 The period T2 corresponds to a period during which the output power p1 is temporarily increased from the fixed value Pth1 to any output between 80% and 100% of the rated output to perform a refresh operation of the FC stack 21, and the output powers p2 and P3 are temporarily decreased from the fixed values Pth2 and Pth3 to approximately zero (low load state) to perform a refresh operation of the FC stacks 22 and 23.
 期間T4は、出力電力p2を固定値Pth2から定格出力の80%以上100%以下のいずれかの出力に一時的に高くしてFCスタック22のリフレッシュ運転を実施し、出力電力p1,p3を固定値Pth1,Pth3から略零(低負荷状態)に一時的に低くしてFCスタック21,23のリフレッシュ運転を実施する期間に相当する。 The period T4 corresponds to a period during which the output power p2 is temporarily increased from the fixed value Pth2 to any output between 80% and 100% of the rated output to perform a refresh operation of the FC stack 22, and the output powers p1 and p3 are temporarily decreased from the fixed values Pth1 and Pth3 to approximately zero (low load state) to perform a refresh operation of the FC stacks 21 and 23.
 期間T6は、出力電力p3を固定値Pth3から定格出力の80%以上100%以下のいずれかの出力に一時的に高くしてFCスタック23のリフレッシュ運転を実施し、出力電力p1,p2を固定値Pth1,Pth2から略零(低負荷状態)に一時的に低くしてFCスタック21,22のリフレッシュ運転を実施する期間に相当する。 The period T6 corresponds to a period during which the output power p3 is temporarily increased from the fixed value Pth3 to any output between 80% and 100% of the rated output to perform a refresh operation of the FC stack 23, and the output powers p1 and p2 are temporarily decreased from the fixed values Pth1 and Pth2 to approximately zero (low load state) to perform a refresh operation of the FC stacks 21 and 22.
 図29は、燃料電池が2並列の場合の電力変動制御パターンの第1例を示す図である。図29において、図28と同様の内容の説明については、上述の説明を援用することで省略する。 FIG. 29 shows a first example of a power fluctuation control pattern when two fuel cells are connected in parallel. In FIG. 29, the explanation of the same content as in FIG. 28 will be omitted by citing the explanation above.
 制御装置10は、FCスタック21の負荷をFCスタック21の定格出力の50%の固定値Pth1に制御し、リフレッシュ運転を間欠的に行う負荷パターンL1で、FCスタック21の負荷(出力電力p1)を増減させる。制御装置10は、FCスタック22の負荷をFCスタック22の定格出力の50%の固定値Pth2に制御し、リフレッシュ運転を間欠的に行う負荷パターンL2で、FCスタック22の負荷(出力電力p2)を増減させる。負荷パターンLは、負荷パターンL1,L2の組み合わせである。 The control device 10 controls the load on the FC stack 21 to a fixed value Pth1 that is 50% of the rated output of the FC stack 21, and increases or decreases the load on the FC stack 21 (output power p1) with a load pattern L1 that performs intermittent refresh operation. The control device 10 controls the load on the FC stack 22 to a fixed value Pth2 that is 50% of the rated output of the FC stack 22, and increases or decreases the load on the FC stack 22 (output power p2) with a load pattern L2 that performs intermittent refresh operation. The load pattern L is a combination of the load patterns L1 and L2.
 制御装置10は、FCスタック21,22の負荷を、それぞれ、対応する負荷パターンL1,L2で増減させることで、供給電力Paが略一定値に維持された状態でリフレッシュ運転を周期的に実施できる。 The control device 10 can periodically perform refresh operations while maintaining the supply power Pa at a substantially constant value by increasing or decreasing the load on the FC stacks 21 and 22 using the corresponding load patterns L1 and L2, respectively.
 図30は、燃料電池が2並列の場合の電力変動制御パターンの第2例を示す図である。図31は、燃料電池が2並列の場合の電力変動制御パターンの第3例を示す図である。図30及び図31において、図28及び図29と同様の内容の説明については、上述の説明を援用することで省略する。 FIG. 30 is a diagram showing a second example of a power fluctuation control pattern when two fuel cells are connected in parallel. FIG. 31 is a diagram showing a third example of a power fluctuation control pattern when two fuel cells are connected in parallel. In FIG. 30 and FIG. 31, the explanation of the same content as in FIG. 28 and FIG. 29 will be omitted by citing the explanation above.
 図30及び図31において、制御装置10は、FCスタック21,22の負荷を、それぞれ、対応する階段状の負荷パターンL1,L2で増減させることで、供給電力Paが略一定値に維持された状態でリフレッシュ運転を周期的に実施できる。 In Figures 30 and 31, the control device 10 can periodically perform refresh operations while maintaining the supply power Pa at a substantially constant value by increasing or decreasing the load on the FC stacks 21 and 22 using corresponding stepped load patterns L1 and L2, respectively.
 図32は、燃料電池が2並列の場合の電力変動制御パターンの第4例を示す図である。図32において、図28~図31と同様の内容の説明については、上述の説明を援用することで省略する。 FIG. 32 shows a fourth example of a power fluctuation control pattern when two fuel cells are connected in parallel. In FIG. 32, the explanation of the same content as in FIG. 28 to FIG. 31 will be omitted by citing the explanation above.
 図32において、制御装置10は、FCスタック21,22の負荷を、それぞれ、対応する三角波状の負荷パターンL1,L2で増減させることで、供給電力Paが略一定値に維持された状態でリフレッシュ運転を周期的に実施できる。期間T2,T4,は、リフレッシュ運転を実施する期間に相当する。 In FIG. 32, the control device 10 can periodically perform refresh operations while maintaining the supply power Pa at a substantially constant value by increasing and decreasing the loads on the FC stacks 21 and 22 with the corresponding triangular wave load patterns L1 and L2, respectively. Periods T2 and T4 correspond to the periods during which the refresh operations are performed.
 図33は、燃料電池が3並列の場合の電力変動制御パターンの第2例を示す図である。図33において、図28~図30と同様の内容の説明については、上述の説明を援用することで省略する。 FIG. 33 shows a second example of a power fluctuation control pattern when three fuel cells are connected in parallel. In FIG. 33, the explanation of the same content as in FIG. 28 to FIG. 30 will be omitted by citing the explanation above.
 図33において、制御装置10は、FCスタック21,22,23の負荷を、それぞれ、対応する三角波状の負荷パターンL1,L2,L3で増減させることで、供給電力Paが略一定値に維持された状態でリフレッシュ運転を周期的に実施できる。図33において、図32と同様に、リフレッシュ運転を実施する期間が設定されてもよい。 In FIG. 33, the control device 10 can periodically perform refresh operations while maintaining the supply power Pa at a substantially constant value by increasing or decreasing the loads on the FC stacks 21, 22, and 23 using the corresponding triangular wave load patterns L1, L2, and L3, respectively. In FIG. 33, a period during which the refresh operations are performed may be set, as in FIG. 32.
 図34は、燃料電池が3並列の場合の電力変動制御パターンの第3例を示す図である。図34において、図28~図33と同様の内容の説明については、上述の説明を援用することで省略する。 FIG. 34 shows a third example of a power fluctuation control pattern when three fuel cells are connected in parallel. In FIG. 34, the explanation of the same content as in FIG. 28 to FIG. 33 will be omitted by citing the explanation above.
 図34において、制御装置10は、FCスタック21,22,23の負荷を、それぞれ、対応する正弦波状の負荷パターンL1,L2,L3で増減させることで、供給電力Paが略一定値に維持された状態でリフレッシュ運転を周期的に実施できる。図34において、図32と同様に、リフレッシュ運転を実施する期間が設定されてもよい。 In FIG. 34, the control device 10 can periodically perform refresh operations while maintaining the supply power Pa at a substantially constant value by increasing or decreasing the loads on the FC stacks 21, 22, and 23 using the corresponding sinusoidal load patterns L1, L2, and L3, respectively. In FIG. 34, a period during which the refresh operations are performed may be set, as in FIG. 32.
 なお、図28~図34において、制御装置10は、各出力電力p1,p2,p3を各固定値Pth1,Pth2,Pth3よりも一時的に高くして、供給電力Paを略一定値よりも一時的に上昇させてもよい。これにより、FCスタック21,22,23の各々の定格出力の和を上限に、供給電力Paを一時的に上昇させることができる。これにより、ピーク電力への対応が可能である。 In addition, in Figures 28 to 34, the control device 10 may temporarily set the output powers p1, p2, and p3 higher than the fixed values Pth1, Pth2, and Pth3, temporarily increasing the supply power Pa above a substantially constant value. This makes it possible to temporarily increase the supply power Pa up to an upper limit of the sum of the rated outputs of the FC stacks 21, 22, and 23. This makes it possible to handle peak power.
 また、制御装置10は、各出力電力p1,p2,p3を周期的に増減させなくてもよい。例えば、制御装置10は、FCスタックの電圧が閾値に達すると、供給電力Paが略一定値に維持されるように、各出力電力p1,p2,p3を増減させてもよい。 Furthermore, the control device 10 does not have to periodically increase or decrease each of the output powers p1, p2, and p3. For example, when the voltage of the FC stack reaches a threshold value, the control device 10 may increase or decrease each of the output powers p1, p2, and p3 so that the supply power Pa is maintained at an approximately constant value.
 ≪第1実施形態に係る燃料電池システム≫
 第1実施形態に係る燃料電池システムについて説明する。第1実施形態に係る燃料電池システムは、燃料電池セルを備える燃料電池ユニットと、燃料電池ユニットを制御する制御ユニットと、を備える。第1実施形態に係る燃料電池システムにおける制御ユニットは、燃料電池ユニットの出力を変動させるように制御する第1リフレッシュ処理を実行する。また、第1実施形態に係る燃料電池システムにおける制御ユニットは、燃料電池ユニットの動作を停止させ、燃料電池ユニットを起動するように制御する第2リフレッシュ処理を実行する。
Fuel Cell System According to First Embodiment
A fuel cell system according to a first embodiment will be described. The fuel cell system according to the first embodiment includes a fuel cell unit having fuel cells, and a control unit that controls the fuel cell unit. The control unit in the fuel cell system according to the first embodiment executes a first refresh process that controls the output of the fuel cell unit to vary. The control unit in the fuel cell system according to the first embodiment also executes a second refresh process that stops the operation of the fuel cell unit and controls the fuel cell unit to start up.
 図35は、第1実施形態に係る燃料電池システムの一例である燃料電池システム1001における構成の概略を示す図である。 FIG. 35 is a diagram showing an outline of the configuration of a fuel cell system 1001, which is an example of a fuel cell system according to the first embodiment.
 燃料電池システム1001は、燃料電池セルを用いる燃料電池である。燃料電池システム1001は、水素を燃料として、空気中の酸素と反応することにより、化学エネルギーを電気に変換する化学電池である。燃料電池システム1001は、出力Poutを外部負荷EXに供給する。 The fuel cell system 1001 is a fuel cell that uses fuel cells. The fuel cell system 1001 is a chemical cell that uses hydrogen as fuel and converts chemical energy into electricity by reacting with oxygen in the air. The fuel cell system 1001 supplies an output Pout to an external load EX.
 燃料電池システム1001は、燃料電池ユニット1010と、制御ユニット1020と、蓄電ユニット1030と、を備える。 The fuel cell system 1001 includes a fuel cell unit 1010, a control unit 1020, and a power storage unit 1030.
 [燃料電池ユニット1010]
 燃料電池ユニット1010は、水素と酸素を化学反応させることにより電気を発生させる。燃料電池ユニット1010は、燃料電池セル1011と、出力調整部1012と、ガス調整部1013と、制御部1014と、を備える。
[Fuel cell unit 1010]
The fuel cell unit 1010 generates electricity by causing a chemical reaction between hydrogen and oxygen, and includes a fuel cell 1011, an output adjustment unit 1012, a gas adjustment unit 1013, and a control unit 1014.
 燃料電池セル1011は、供給される水素SHと、空気SAに含まれる酸素とを化学反応させることにより電気を発生させる。燃料電池セル1011は、例えば、固体高分子形燃料電池(PEFC:Polymer Electrolyte Fuel Cell)である。固体高分子形燃料電池である燃料電池セル1011は、多数の単セルを積層したスタック構造を有する。 The fuel cell 1011 generates electricity by causing a chemical reaction between the supplied hydrogen SH and the oxygen contained in the air SA. The fuel cell 1011 is, for example, a polymer electrolyte fuel cell (PEFC). The fuel cell 1011, which is a polymer electrolyte fuel cell, has a stack structure in which many single cells are stacked.
 固体高分子形燃料電池である燃料電池セル1011における単セルは、高分子電解質膜と、高分子電解質膜の両側面に設けられた一対の電極と、を備える膜-電極アッセンブリ(MEA:Membrane Electrode Assembly)を備える。高分子電解質膜は、水素イオンを選択的に輸送する。また、一つの電極のそれぞれは、多孔質材料により形成される。一対の電極のそれぞれは、例えば、白金系の金属触媒(電極触媒)を担持するカーボン粉末を主成分とする触媒層と、通気性及び電子導電性を併せ持つガス拡散層と、を有する。さらに、単セルは、膜-電極アッセンブリ(MEA)を両側から挟み込む一対のセパレータを有する。 The single cell in the fuel cell 1011, which is a polymer electrolyte fuel cell, includes a membrane electrode assembly (MEA) that includes a polymer electrolyte membrane and a pair of electrodes provided on both sides of the polymer electrolyte membrane. The polymer electrolyte membrane selectively transports hydrogen ions. Each electrode is formed of a porous material. Each of the pair of electrodes includes a catalyst layer that is primarily composed of carbon powder that supports a platinum-based metal catalyst (electrode catalyst), and a gas diffusion layer that is both breathable and electronically conductive. Furthermore, the single cell includes a pair of separators that sandwich the membrane electrode assembly (MEA) from both sides.
 出力調整部1012は、燃料電池セル1011から燃料電池ユニット1010の外部へ出力する出力を調整する。出力調整部1012は、燃料電池セル1011により発生した電気p1(出力電力p1)を昇圧する。そして、出力調整部1012は、所定の出力P1(出力電力P1)を出力する。出力調整部1012は、例えば、DC/DCコンバータを含む。 The output adjustment unit 1012 adjusts the output output from the fuel cell 1011 to the outside of the fuel cell unit 1010. The output adjustment unit 1012 boosts the voltage of electricity p1 (output power p1) generated by the fuel cell 1011. The output adjustment unit 1012 then outputs a predetermined output P1 (output power P1). The output adjustment unit 1012 includes, for example, a DC/DC converter.
 ガス調整部1013は、外部から供給される水素SH及び空気SAのそれぞれの流量を調整する。ガス調整部1013は、流量調整を行った水素SHs及び空気SAsを燃料電池セル1011に供給する。ガス調整部1013は、水素SHの流量もしくは圧力を調整するための調節弁及び空気SAの流量もしくは圧力を調整するための調節弁や昇圧器を含む。 The gas adjustment unit 1013 adjusts the flow rates of hydrogen SH and air SA supplied from the outside. The gas adjustment unit 1013 supplies hydrogen SHs and air SAs after flow rate adjustment to the fuel cell 1011. The gas adjustment unit 1013 includes a control valve for adjusting the flow rate or pressure of hydrogen SH, and a control valve and booster for adjusting the flow rate or pressure of air SA.
 制御部1014は、制御ユニット1020からの制御に基づいて、燃料電池ユニット1010を制御する。制御部1014は、燃料電池ユニット1010における燃料電池セル1011、出力調整部1012及びガス調整部1013を制御する。 The control unit 1014 controls the fuel cell unit 1010 based on control from the control unit 1020. The control unit 1014 controls the fuel cell 1011, the output adjustment unit 1012, and the gas adjustment unit 1013 in the fuel cell unit 1010.
 [制御ユニット1020]
 制御ユニット1020は、燃料電池ユニット1010を制御する。制御ユニット1020は、例えば、コンピュータ、プログラマブルロジックコントローラ(PLC:Programmable Logic Controller)である。
[Control unit 1020]
The control unit 1020 controls the fuel cell unit 1010. The control unit 1020 is, for example, a computer or a programmable logic controller (PLC).
 制御ユニット1020は、燃料電池ユニット1010が備える制御部1014に指令を送信することにより、燃料電池ユニット1010を制御する。また、制御ユニット1020は、制御部1014から燃料電池ユニット1010の動作データ等を取得する。 The control unit 1020 controls the fuel cell unit 1010 by sending commands to the control unit 1014 included in the fuel cell unit 1010. The control unit 1020 also obtains operational data of the fuel cell unit 1010 from the control unit 1014.
 制御ユニット1020は、時間を計測するためのタイマー1021を備える。制御ユニット1020は、タイマー1021を用いて、所定の時間が経過したかどうかを判定する。制御ユニット1020は、例えば、タイマー1021からの割り込みにより時間を計測してもよいし、タイマー1021のカウント値を逐次参照して、時間が経過したかどうかを判定してもよい。 The control unit 1020 includes a timer 1021 for measuring time. The control unit 1020 uses the timer 1021 to determine whether a predetermined time has elapsed. The control unit 1020 may measure time by an interrupt from the timer 1021, for example, or may sequentially refer to the count value of the timer 1021 to determine whether the time has elapsed.
 [蓄電ユニット1030]
 蓄電ユニット1030は、燃料電池ユニット1010を起動させるときの起動電力を供給する。蓄電ユニット1030は、外部電源から供給される電気を蓄えてもよいし、必要に応じて蓄えた電気を外部装置に供給してもよい。蓄電ユニット1030は、燃料電池ユニット1010から外部負荷EXへの電力が余る場合は充電する。そして、蓄電ユニット1030は、燃料電池ユニット1010から外部負荷EXへの電力が不足する場合は放電する。
[Electricity storage unit 1030]
The power storage unit 1030 supplies startup power when starting up the fuel cell unit 1010. The power storage unit 1030 may store electricity supplied from an external power source, and may supply the stored electricity to an external device as necessary. The power storage unit 1030 charges when there is excess power from the fuel cell unit 1010 to the external load EX. The power storage unit 1030 discharges when there is a shortage of power from the fuel cell unit 1010 to the external load EX.
 蓄電ユニット1030は、例えば、リチウムイオンキャパシタ、リチウムイオンバッテリ、電気二重層キャパシタを含む。 The power storage unit 1030 includes, for example, a lithium ion capacitor, a lithium ion battery, and an electric double layer capacitor.
 燃料電池ユニット1010から供給される出力P1と蓄電ユニット1030から入出力される出力Psにより、燃料電池システム1001から出力Poutが出力される。 The output Pout is output from the fuel cell system 1001 based on the output P1 supplied from the fuel cell unit 1010 and the output Ps input/output from the power storage unit 1030.
 燃料電池システム1001が蓄電ユニット1030を備えることにより、燃料電池システム1001から出力する出力Poutを安定して出力できる。 By providing the fuel cell system 1001 with the power storage unit 1030, the output Pout from the fuel cell system 1001 can be stably output.
 <第1実施形態に係る燃料電池システムにおける処理>
 第1実施形態に係る燃料電池システムにおける処理について説明する。図36は、第1実施形態に係る燃料電池システムの一例である燃料電池システム1001における処理を説明するフロー図である。図37は、第1実施形態に係る燃料電池システムの一例である燃料電池システム1001における処理を説明する図である。図37は、燃料電池システム1001の処理を行った結果を概略的に説明する図である。図37の横軸は時刻、縦軸は出力を示す。
<Processing in the fuel cell system according to the first embodiment>
Processing in the fuel cell system according to the first embodiment will be described. Fig. 36 is a flow diagram illustrating processing in the fuel cell system 1001, which is an example of the fuel cell system according to the first embodiment. Fig. 37 is a diagram illustrating processing in the fuel cell system 1001, which is an example of the fuel cell system according to the first embodiment. Fig. 37 is a diagram illustrating a schematic result of processing in the fuel cell system 1001. The horizontal axis of Fig. 37 indicates time, and the vertical axis indicates output.
 図37を用いて、燃料電池システム1001における処理の概要を説明する。時刻0:00から燃料電池システム1001が動作を開始するとする。燃料電池システム1001は、周期Prd21毎に第1リフレッシュ処理Proc1を行う。また、周期Prd22毎に第2リフレッシュ処理Proc2を行う。なお、燃料電池システム1001は、第2リフレッシュ処理Proc2を行う場合、第1リフレッシュ処理Proc1は行わないものとする。 The processing in the fuel cell system 1001 will be outlined using FIG. 37. Assume that the fuel cell system 1001 starts operating at time 0:00. The fuel cell system 1001 performs a first refresh process Proc1 at every period Prd21. It also performs a second refresh process Proc2 at every period Prd22. Note that when the fuel cell system 1001 performs the second refresh process Proc2, it does not perform the first refresh process Proc1.
 図37に示す例では、燃料電池システム1001が第1リフレッシュ処理Proc1を行う周期Prd21は、4時間であるとする。また、図37に示す例では、燃料電池システム1001が第2リフレッシュ処理Proc2を行う周期Prd22は、24時間であるとする。 In the example shown in FIG. 37, the period Prd21 at which the fuel cell system 1001 performs the first refresh process Proc1 is set to 4 hours. Also, in the example shown in FIG. 37, the period Prd22 at which the fuel cell system 1001 performs the second refresh process Proc2 is set to 24 hours.
 なお、周期Prd21を規定する設定時間を第1設定時間、周期Prd22を規定する設定時間を第2設定時間とする。 The set time that defines the period Prd21 is the first set time, and the set time that defines the period Prd22 is the second set time.
 (ステップS1010)
 処理を開始すると、燃料電池システム1001は、燃料電池ユニット1010における出力設定を予め定められた出力設定に設定する。具体的には、制御ユニット1020は、燃料電池ユニット1010に予め定められた出力を出力するように指令する。制御ユニット1020から、予め定められた出力を出力するように指令された燃料電池ユニット1010における制御部1014は、燃料電池セル1011、出力調整部1012及びガス調整部1013を、予め定められた出力を出力するように制御する。
(Step S1010)
When processing starts, the fuel cell system 1001 sets the output setting in the fuel cell unit 1010 to a predetermined output setting. Specifically, the control unit 1020 commands the fuel cell unit 1010 to output a predetermined output. The control unit 1014 in the fuel cell unit 1010, which has been commanded by the control unit 1020 to output a predetermined output, controls the fuel cell 1011, the output adjustment unit 1012, and the gas adjustment unit 1013 to output the predetermined output.
 図37において、一例として、燃料電池ユニット1010の出力が出力Popになるように制御されているとする。なお、図37において、第1リフレッシュ処理Proc1及び第2リフレッシュ処理Proc2を行う時間以外は、出力は出力Popで一定となっているが、出力は適宜変更してもよい。 In FIG. 37, as an example, the output of the fuel cell unit 1010 is controlled to be the output Pop. Note that in FIG. 37, the output is constant at the output Pop except for the time when the first refresh process Proc1 and the second refresh process Proc2 are performed, but the output may be changed as appropriate.
 (ステップS1020)
 次に、燃料電池システム1001は、時間を計測するためのタイマーを起動する。具体的には、制御ユニット1020は、タイマー1021を起動する。制御ユニット1020は、タイマー1021を用いて予め定められた時間が経過したかどうかを判定する。
(Step S1020)
Next, the fuel cell system 1001 starts a timer for measuring time. Specifically, the control unit 1020 starts a timer 1021. The control unit 1020 uses the timer 1021 to determine whether a predetermined time has elapsed.
 (ステップS1030)
 燃料電池システム1001における制御ユニット1020は、第2設定時間が経過したかどうかを判定する。第2設定時間が経過していない場合(ステップS1030のNO)、制御ユニット1020は、ステップS1040に処理を進める。第2設定時間が経過した場合(ステップS1030のYES)、制御ユニット1020は、ステップS1060に処理を進める。
(Step S1030)
The control unit 1020 in the fuel cell system 1001 determines whether the second set time has elapsed. If the second set time has not elapsed (NO in step S1030), the control unit 1020 proceeds to step S1040. If the second set time has elapsed (YES in step S1030), the control unit 1020 proceeds to step S1060.
 図37の例について説明すると、制御ユニット1020は、第2設定時間の一例である24時間が経過したかどうか判定する。 In the example of Figure 37, the control unit 1020 determines whether 24 hours, which is an example of the second set time, has elapsed.
 (ステップS1040)
 ステップS1030において、第2設定時間が経過していない場合(ステップS1030のNO)、制御ユニット1020は、第1設定時間が経過したかどうかを判定する。第1設定時間が経過した場合(ステップS1040のYES)、制御ユニット1020は、ステップS1050に処理を進める。第1設定時間が経過していない場合(ステップS1040のNO)、制御ユニット1020は、ステップS1030に戻って処理を繰り返す。
(Step S1040)
In step S1030, if the second set time has not elapsed (NO in step S1030), the control unit 1020 determines whether the first set time has elapsed. If the first set time has elapsed (YES in step S1040), the control unit 1020 advances the process to step S1050. If the first set time has not elapsed (NO in step S1040), the control unit 1020 returns to step S1030 and repeats the process.
 図37の例について説明すると、制御ユニット1020は、第1設定時間の一例である4時間が経過したかどうか判定する。 In the example of Figure 37, the control unit 1020 determines whether four hours, which is an example of the first set time, has elapsed.
 (ステップS1050)
 ステップS1040において、第1設定時間が経過した場合(ステップS1040のYES)、制御ユニット1020は、第1リフレッシュ処理を行う。
(Step S1050)
In step S1040, if the first set time has elapsed (YES in step S1040), the control unit 1020 performs a first refresh process.
 燃料電池システム1001における第1リフレッシュ処理について説明する。図38は、第1実施形態に係る燃料電池システムの一例である燃料電池システム1001における第1リフレッシュ処理を説明するフロー図である。図39は、第1実施形態に係る燃料電池システムの一例である燃料電池システム1001における第1リフレッシュ処理を説明する図である。図39は、燃料電池システム1001の処理を行った結果を概略的に説明する図である。図39の横軸は時刻、縦軸は出力を示す。 The first refresh process in the fuel cell system 1001 is explained. FIG. 38 is a flow diagram explaining the first refresh process in the fuel cell system 1001, which is an example of a fuel cell system according to the first embodiment. FIG. 39 is a diagram explaining the first refresh process in the fuel cell system 1001, which is an example of a fuel cell system according to the first embodiment. FIG. 39 is a diagram generally explaining the results of processing the fuel cell system 1001. The horizontal axis of FIG. 39 indicates time, and the vertical axis indicates output.
 第1リフレッシュ処理において、燃料電池システム1001は、燃料電池ユニット1010における出力を、高出力、低出力、高出力の順で変化させる。言い換えると、第1リフレッシュ処理において、燃料電池システム1001は、燃料電池ユニット1010における負荷を、高負荷、低負荷、高負荷の順で変化させる。一方、第1リフレッシュ処理において、燃料電池システム1001は、燃料電池ユニット1010への水素及び空気の供給は停止せずに継続する。 In the first refresh process, the fuel cell system 1001 changes the output in the fuel cell unit 1010 in the following order: high output, low output, high output. In other words, in the first refresh process, the fuel cell system 1001 changes the load in the fuel cell unit 1010 in the following order: high load, low load, high load. Meanwhile, in the first refresh process, the fuel cell system 1001 continues to supply hydrogen and air to the fuel cell unit 1010 without stopping.
  (ステップS1051)
 制御ユニット1020は、燃料電池ユニット1010における出力設定を、高出力設定に設定する。そして、制御ユニット1020は、燃料電池ユニット1010における出力設定を、高出力設定に設定した状態で一定時間維持する。
(Step S1051)
The control unit 1020 sets the output setting of the fuel cell unit 1010 to a high output setting. The control unit 1020 then maintains the output setting of the fuel cell unit 1010 at the high output setting for a certain period of time.
 図39の例で説明すると、時刻t1において、制御ユニット1020は、燃料電池ユニット1010の出力を高出力設定である出力Puに設定する。高出力設定は、例えば、燃料電池ユニット1010における最大出力を100%とすると、80%から100%までのいずれかの出力である。制御ユニット1020は、時間Prd1の間、燃料電池ユニット1010における出力設定を、高出力設定に設定した状態で維持する。時間Prd1は、例えば、10秒から3分までのいずれか、好ましくは、1分である。 Using the example of Figure 39, at time t1, the control unit 1020 sets the output of the fuel cell unit 1010 to output Pu, which is a high output setting. The high output setting is, for example, an output between 80% and 100%, where 100% is the maximum output of the fuel cell unit 1010. The control unit 1020 maintains the output setting of the fuel cell unit 1010 at the high output setting for a time Prd1. The time Prd1 is, for example, anywhere from 10 seconds to 3 minutes, and preferably 1 minute.
 燃料電池システム1001において、一時的に高出力運転(高負荷運転)を行うことにより、燃料電池セル1011の内部における水分量を、発電により発生する生成水により増加させる。 In the fuel cell system 1001, by temporarily performing high-output operation (high-load operation), the amount of moisture inside the fuel cell 1011 is increased by the water generated by power generation.
 なお、図39の例において、時刻t1から時刻t2にかけて、燃料電池ユニット1010の出力が出力Popから出力Puまで変化するようにしている。例えば、出力の変換速度は、燃料電池ユニット1010における最大出力を100%とすると、1%毎秒から100%毎秒までのいずれか、好ましくは、10%毎秒である。 In the example of FIG. 39, the output of the fuel cell unit 1010 changes from output Pop to output Pu from time t1 to time t2. For example, the output conversion speed is anywhere between 1% per second and 100% per second, preferably 10% per second, assuming that the maximum output of the fuel cell unit 1010 is 100%.
  (ステップS1052)
 次に、制御ユニット1020は、燃料電池ユニット1010における出力設定を、低出力設定に設定する。そして、制御ユニット1020は、燃料電池ユニット1010における出力設定を、低出力設定に設定した状態で一定時間維持する。
(Step S1052)
Next, the control unit 1020 sets the output setting of the fuel cell unit 1010 to a low output setting, and then the control unit 1020 maintains the output setting of the fuel cell unit 1010 at the low output setting for a certain period of time.
 図39の例で説明すると、時刻t3において、制御ユニット1020は、燃料電池ユニット1010の出力を低出力設定である出力Pdに設定する。低出力設定は、例えば、燃料電池ユニット1010における最大出力を100%とすると、0%から20%までのいずれかの出力である。制御ユニット1020は、時間Prd2の間、燃料電池ユニット1010における出力設定を、低出力設定に設定した状態で維持する。時間Prd2は、例えば、10秒から3分までのいずれか、好ましくは、1分である。 Using the example of Figure 39, at time t3, the control unit 1020 sets the output of the fuel cell unit 1010 to output Pd, which is a low output setting. The low output setting is, for example, an output between 0% and 20% of the maximum output of the fuel cell unit 1010, which is 100%. The control unit 1020 maintains the output setting of the fuel cell unit 1010 at the low output setting for a time Prd2. The time Prd2 is, for example, between 10 seconds and 3 minutes, preferably 1 minute.
 燃料電池システム1001において、高出力運転(高負荷運転)を行った後に、低出力運転(低負荷運転)を行うことにより、発電により発生する生成水を燃料電池セル1011の面において均一化させる。 In the fuel cell system 1001, high-output operation (high-load operation) is followed by low-output operation (low-load operation), which causes the water generated by power generation to be uniform across the surface of the fuel cell 1011.
 なお、図39の例において、時刻t3から時刻t4にかけて、燃料電池ユニット1010の出力が出力Puから出力Pdまで変化するようにしている。例えば、出力の変換速度は、燃料電池ユニット1010における最大出力を100%とすると、1%毎秒から100%毎秒までのいずれか、好ましくは、10%毎秒である。 In the example of FIG. 39, the output of the fuel cell unit 1010 changes from output Pu to output Pd from time t3 to time t4. For example, if the maximum output of the fuel cell unit 1010 is 100%, the output conversion speed is anywhere between 1% per second and 100% per second, and preferably 10% per second.
  (ステップS1053)
 次に、制御ユニット1020は、燃料電池ユニット1010における出力設定を、高出力設定に設定する。そして、制御ユニット1020は、燃料電池ユニット1010における出力設定を、高出力設定に設定した状態で一定時間維持する。
(Step S1053)
Next, the control unit 1020 sets the output setting of the fuel cell unit 1010 to the high output setting. Then, the control unit 1020 maintains the output setting of the fuel cell unit 1010 at the high output setting for a certain period of time.
 図39の例で説明すると、時刻t5において、制御ユニット1020は、燃料電池ユニット1010の出力を高出力設定である出力Puに設定する。高出力設定は、例えば、燃料電池ユニット1010における最大出力を100%とすると、80%から100%までのいずれかの出力である。制御ユニット1020は、時間Prd3の間、燃料電池ユニット1010における出力設定を、高出力設定に設定した状態で維持する。時間Prd3は、例えば、10秒から3分までのいずれか、好ましくは、1分である。 Using the example of Figure 39, at time t5, the control unit 1020 sets the output of the fuel cell unit 1010 to output Pu, which is a high output setting. The high output setting is, for example, an output between 80% and 100%, where 100% is the maximum output of the fuel cell unit 1010. The control unit 1020 maintains the output setting of the fuel cell unit 1010 at the high output setting for a time Prd3. The time Prd3 is, for example, between 10 seconds and 3 minutes, preferably 1 minute.
 燃料電池システム1001において、高出力運転(高負荷運転)、低出力運転(低負荷運転)及び高出力運転(高負荷運転)を順に行うことにより、再度、燃料電池セル1011における水分量を増加させる。燃料電池セル1011における水分量を増加させることにより、連続運転を行うことによって乾燥した燃料電池セル1011の面内における乾燥部を湿潤化できる。燃料電池セル1011の面内における乾燥部を湿潤化することにより、燃料電池セル1011における電池特性の低下を抑制できる。 In the fuel cell system 1001, the amount of moisture in the fuel cell 1011 is increased again by sequentially performing high power operation (high load operation), low power operation (low load operation), and high power operation (high load operation). By increasing the amount of moisture in the fuel cell 1011, it is possible to moisten the dry areas within the surface of the fuel cell 1011 that have been dried by performing continuous operation. By moistening the dry areas within the surface of the fuel cell 1011, it is possible to suppress the deterioration of the battery characteristics of the fuel cell 1011.
 なお、図39の例において、時刻t5から時刻t6にかけて、燃料電池ユニット1010の出力が出力Pdから出力Puまで変化するようにしている。例えば、出力の変換速度は、燃料電池ユニット1010における最大出力を100%とすると、1%毎秒から100%毎秒までのいずれか、好ましくは、10%毎秒である。 In the example of FIG. 39, the output of the fuel cell unit 1010 changes from output Pd to output Pu from time t5 to time t6. For example, if the maximum output of the fuel cell unit 1010 is 100%, the output conversion speed is anywhere between 1% per second and 100% per second, and preferably 10% per second.
  (ステップS1054)
 次に、制御ユニット1020は、燃料電池ユニット1010における出力設定を、予め定められた出力設定に設定する。
(Step S1054)
The control unit 1020 then sets the power output setting in the fuel cell unit 1010 to a predetermined power output setting.
 図39の例で説明すると、時刻t7において、制御ユニット1020は、燃料電池ユニット1010の出力を予め定められた設定である出力Popに設定する。 Using the example of Figure 39, at time t7, the control unit 1020 sets the output of the fuel cell unit 1010 to a predetermined setting, output Pop.
 なお、図39の例において、時刻t7から時刻t8にかけて、燃料電池ユニット1010の出力が出力Puから出力Popまで変化するようにしている。例えば、出力の変換速度は、燃料電池ユニット1010における最大出力を100%とすると、1%毎秒から100%毎秒までのいずれか、好ましくは、10%毎秒である。 In the example of FIG. 39, the output of the fuel cell unit 1010 changes from output Pu to output Pop from time t7 to time t8. For example, if the maximum output of the fuel cell unit 1010 is 100%, the output conversion speed is anywhere between 1% per second and 100% per second, and preferably 10% per second.
 ステップS1054における処理が終了すると、燃料電池システム1001は、第1リフレッシュ処理を終了する。 When the processing in step S1054 is completed, the fuel cell system 1001 ends the first refresh processing.
 燃料電池システム1001における第1リフレッシュ処理において、燃料電池ユニット1010への水素及び酸素の供給は継続する。燃料電池ユニット1010への水素及び酸素の供給は継続することにより、酸素が欠乏して、燃料電池セル1011が劣化することを抑制できる。 In the first refresh process in the fuel cell system 1001, the supply of hydrogen and oxygen to the fuel cell unit 1010 continues. By continuing the supply of hydrogen and oxygen to the fuel cell unit 1010, it is possible to prevent oxygen deficiency and deterioration of the fuel cell cells 1011.
 (ステップS1060)
 ステップS1030において、第2設定時間が経過した場合(ステップS1030のYES)、制御ユニット1020は、第2リフレッシュ処理を行う。
(Step S1060)
In step S1030, if the second set time has elapsed (YES in step S1030), the control unit 1020 performs a second refresh process.
 燃料電池システム1001における第2リフレッシュ処理について説明する。図40は、第1実施形態に係る燃料電池システムの一例である燃料電池システム1001における第2リフレッシュ処理を説明するフロー図である。図41は、第1実施形態に係る燃料電池システムの一例である燃料電池システム1001における第2リフレッシュ処理を説明する図である。図41は、燃料電池システム1001の処理を行った結果を概略的に説明する図である。図41の横軸は時刻、縦軸は出力を示す。 The second refresh process in the fuel cell system 1001 is explained. Figure 40 is a flow diagram explaining the second refresh process in the fuel cell system 1001, which is an example of a fuel cell system according to the first embodiment. Figure 41 is a diagram explaining the second refresh process in the fuel cell system 1001, which is an example of a fuel cell system according to the first embodiment. Figure 41 is a diagram generally explaining the results of processing the fuel cell system 1001. The horizontal axis of Figure 41 indicates time, and the vertical axis indicates output.
 第2リフレッシュ処理において、燃料電池システム1001は、燃料電池ユニット1010を高出力で出力させた後に、燃料電池システム1001を一度停止して再起動を行う。そして、燃料電池システム1001は、再起動後、高出力で出力させた後に、通常の運転を行う。言い換えると、第2リフレッシュ処理において、燃料電池システム1001は、燃料電池ユニット1010において高負荷運転後、停止して、再起動後、高負荷運転を行う。第2リフレッシュ処理において、燃料電池システム1001は、燃料電池ユニット1010の停止中、燃料電池ユニット1010への水素及び空気の供給は停止する。 In the second refresh process, the fuel cell system 1001 causes the fuel cell unit 1010 to output high power, then stops the fuel cell system 1001 once and restarts it. After restarting, the fuel cell system 1001 outputs high power and then performs normal operation. In other words, in the second refresh process, the fuel cell system 1001 operates the fuel cell unit 1010 at high load, stops it, restarts it, and then performs high load operation. In the second refresh process, the fuel cell system 1001 stops the supply of hydrogen and air to the fuel cell unit 1010 while the fuel cell unit 1010 is stopped.
  (ステップS1061)
 制御ユニット1020は、燃料電池ユニット1010における出力設定を、高出力設定に設定する。そして、制御ユニット1020は、燃料電池ユニット1010における出力設定を、高出力設定に設定した状態で一定時間維持する。
(Step S1061)
The control unit 1020 sets the output setting of the fuel cell unit 1010 to a high output setting. The control unit 1020 then maintains the output setting of the fuel cell unit 1010 at the high output setting for a certain period of time.
 図41の例で説明すると、時刻t11において、制御ユニット1020は、燃料電池ユニット1010の出力を高出力設定である出力Puに設定する。高出力設定は、例えば、燃料電池ユニット1010における最大出力を100%とすると、80%から100%までのいずれかの出力、例えば、100%である。制御ユニット1020は、時間Prd11の間、燃料電池ユニット1010における出力設定を、高出力設定に設定した状態で維持する。時間Prd11は、例えば、10秒から3分までのいずれか、好ましくは、1分である。 Using the example of FIG. 41, at time t11, the control unit 1020 sets the output of the fuel cell unit 1010 to output Pu, which is a high output setting. For example, if the maximum output of the fuel cell unit 1010 is 100%, the high output setting is any output between 80% and 100%, for example 100%. The control unit 1020 maintains the output setting of the fuel cell unit 1010 at the high output setting for a time Prd11. The time Prd11 is, for example, any time between 10 seconds and 3 minutes, preferably 1 minute.
 燃料電池システム1001において、一時的に高出力運転(高負荷運転)を行うことにより、燃料電池セル1011の内部における水分量を、発電により発生する生成水により増加させる。 In the fuel cell system 1001, by temporarily performing high-output operation (high-load operation), the amount of moisture inside the fuel cell 1011 is increased by the water generated by power generation.
 なお、図41の例において、時刻t11から時刻t12にかけて、燃料電池ユニット1010の出力が出力Popから出力Puまで変化するようにしている。例えば、出力の変換速度は、燃料電池ユニット1010における最大出力を100%とすると、1%毎秒から100%毎秒までのいずれか、好ましくは、10%毎秒である。 In the example of FIG. 41, the output of the fuel cell unit 1010 changes from output Pop to output Pu from time t11 to time t12. For example, if the maximum output of the fuel cell unit 1010 is 100%, the output conversion speed is anywhere between 1% per second and 100% per second, and preferably 10% per second.
  (ステップS1062)
 次に、制御ユニット1020は、予め定められた最低時間以上燃料電池ユニット1010を継続して動作停止するように制御する。最低時間は、0.5秒から5分、好ましくは30秒である。
(Step S1062)
Next, the control unit 1020 controls the fuel cell unit 1010 to continue to be shut down for a predetermined minimum time or longer, which is between 0.5 seconds and 5 minutes, and preferably 30 seconds.
 図41の例で説明すると、時刻t13において、制御ユニット1020は、燃料電池ユニット1010に、動作を停止するように指令する。制御ユニット1020は、時間Prd12の間、燃料電池ユニット1010の動作を停止させる。時間Prd12は、例えば、10秒から1時間までのいずれか、好ましくは、1分である。 Using the example of FIG. 41, at time t13, the control unit 1020 commands the fuel cell unit 1010 to stop operation. The control unit 1020 stops the operation of the fuel cell unit 1010 for a time Prd12. The time Prd12 is, for example, anywhere from 10 seconds to 1 hour, and preferably 1 minute.
 燃料電池システム1001において、燃料電池ユニット1010の動作を停止させることにより、燃料電池セル1011におけるセル電圧が低下する。燃料電池セル1011におけるセル電圧が低下することにより、燃料電池セル1011の触媒に付着している分解物等の不純物を燃料電池セル1011の触媒から脱離できる。 In the fuel cell system 1001, stopping the operation of the fuel cell unit 1010 reduces the cell voltage in the fuel cell 1011. By reducing the cell voltage in the fuel cell 1011, impurities such as decomposition products adhering to the catalyst of the fuel cell 1011 can be detached from the catalyst of the fuel cell 1011.
 なお、図41の例において、時刻t13から時刻t14にかけて、燃料電池ユニット1010の出力が出力Puから出力が零になるまで変化するようにしている。例えば、出力の変換速度は、燃料電池ユニット1010における最大出力を100%とすると、1%毎秒から100%毎秒までのいずれか、好ましくは、10%毎秒である。 In the example of FIG. 41, the output of the fuel cell unit 1010 changes from output Pu to zero from time t13 to time t14. For example, if the maximum output of the fuel cell unit 1010 is 100%, the output conversion speed is anywhere between 1% per second and 100% per second, and preferably 10% per second.
  (ステップS1063)
 次に、制御ユニット1020は、燃料電池ユニット1010を再起動するように制御する。
(Step S1063)
Next, the control unit 1020 controls the fuel cell unit 1010 to restart.
 図41の例で説明すると、時刻t15において、制御ユニット1020は、燃料電池ユニット1010に、再起動するように指令する。時間Prd13は、燃料電池ユニット1010が起動するために必要な時間である。 Using the example of Figure 41, at time t15, the control unit 1020 commands the fuel cell unit 1010 to restart. Time Prd13 is the time required for the fuel cell unit 1010 to start up.
  (ステップS1064)
 次に、制御ユニット1020は、燃料電池ユニット1010における出力設定を、高出力設定に設定する。そして、制御ユニット1020は、燃料電池ユニット1010における出力設定を、高出力設定に設定した状態で一定時間維持する。
(Step S1064)
Next, the control unit 1020 sets the output setting of the fuel cell unit 1010 to the high output setting. Then, the control unit 1020 maintains the output setting of the fuel cell unit 1010 at the high output setting for a certain period of time.
 図41の例で説明すると、時刻t16において、制御ユニット1020は、燃料電池ユニット1010の出力を高出力設定である出力Puに設定する。高出力設定は、例えば、燃料電池ユニット1010における最大出力を100%とすると、80%から100%までのいずれかの出力、例えば、100%である。制御ユニット1020は、時間Prd14の間、燃料電池ユニット1010における出力設定を、高出力設定に設定した状態で維持する。時間Prd14は、例えば、10秒から3分までのいずれか、好ましくは、1分である。 Using the example of FIG. 41, at time t16, the control unit 1020 sets the output of the fuel cell unit 1010 to output Pu, which is a high output setting. For example, if the maximum output of the fuel cell unit 1010 is 100%, the high output setting is any output between 80% and 100%, for example 100%. The control unit 1020 maintains the output setting of the fuel cell unit 1010 at the high output setting for a time Prd14. The time Prd14 is, for example, any output between 10 seconds and 3 minutes, preferably 1 minute.
 燃料電池システム1001において、再起動後に高出力運転(高負荷運転)を行うことにより、燃料電池セル1011の触媒から脱離した不純物を洗い流すことができる。 In the fuel cell system 1001, impurities that have been desorbed from the catalyst of the fuel cell 1011 can be washed away by performing high-output operation (high-load operation) after restarting.
 なお、図41の例において、時刻t16から時刻t17にかけて、燃料電池ユニット1010の出力が出力0から出力Puまで変化するようにしている。例えば、出力の変換速度は、燃料電池ユニット1010における最大出力を100%とすると、1%毎秒から100%毎秒までのいずれか、好ましくは、10%毎秒である。 In the example of FIG. 41, the output of the fuel cell unit 1010 changes from 0 to Pu from time t16 to time t17. For example, if the maximum output of the fuel cell unit 1010 is 100%, the output conversion speed is anywhere between 1% per second and 100% per second, and preferably 10% per second.
  (ステップS1065)
 次に、制御ユニット1020は、燃料電池ユニット1010における出力設定を、予め定められた出力設定に設定する。
(Step S1065)
The control unit 1020 then sets the power output setting in the fuel cell unit 1010 to a predetermined power output setting.
 図41の例で説明すると、時刻t18において、制御ユニット1020は、燃料電池ユニット1010の出力を予め定められた設定である出力Popに設定する。 Using the example of Figure 41, at time t18, the control unit 1020 sets the output of the fuel cell unit 1010 to a predetermined setting, output Pop.
 なお、図41の例において、時刻t18から時刻t19にかけて、燃料電池ユニット1010の出力が出力Puから出力Popまで変化するようにしている。例えば、出力の変換速度は、燃料電池ユニット1010における最大出力を100%とすると、1%毎秒から100%毎秒までのいずれか、好ましくは、10%毎秒である。 In the example of FIG. 41, the output of the fuel cell unit 1010 changes from output Pu to output Pop from time t18 to time t19. For example, if the maximum output of the fuel cell unit 1010 is 100%, the output conversion speed is anywhere between 1% per second and 100% per second, and preferably 10% per second.
 ステップS1065における処理が終了すると、燃料電池システム1001は、第2リフレッシュ処理を終了する。 When the processing in step S1065 is completed, the fuel cell system 1001 ends the second refresh processing.
 (ステップS1070)
 制御ユニット1020は、タイマー1021を初期化する。
(Step S1070)
The control unit 1020 initializes the timer 1021 .
 (ステップS1080)
 制御ユニット1020は、処理を継続するかどうか判断する。制御ユニット1020は、処理を継続する場合(ステップS1080のYES)、制御ユニット1020は、ステップS1030に戻って処理を繰り返す。制御ユニット1020は、処理を継続しない場合(ステップS1080のNO)、制御ユニット1020は、ステップS1090に処理を進める。
(Step S1080)
The control unit 1020 determines whether to continue the process. If the control unit 1020 determines to continue the process (YES in step S1080), the control unit 1020 returns to step S1030 and repeats the process. If the control unit 1020 determines not to continue the process (NO in step S1080), the control unit 1020 advances the process to step S1090.
 (ステップS1090)
 次に、燃料電池システム1001は、時間を計測するためのタイマーを停止する。具体的には、制御ユニット1020は、タイマー1021を停止する。そして、処理を終了する。
(Step S1090)
Next, the fuel cell system 1001 stops the timer for measuring time. Specifically, the control unit 1020 stops the timer 1021. Then, the process ends.
 第1実施形態に係る燃料電池システムによれば、第1リフレッシュ処理と第2リフレッシュ処理を行うことにより、効果的に燃料電池ユニットをリフレッシュできる。 In the fuel cell system according to the first embodiment, the first refresh process and the second refresh process are performed, thereby effectively refreshing the fuel cell unit.
 <変形例>
 第1実施形態に係る燃料電池システムにおいて、第1リフレッシュ処理及び第2リフレッシュ処理のそれぞれは、上記の例に限らない。燃料電池システム1001を用いて、第1実施形態に係る燃料電池システムにおける第1リフレッシュ処理及び第2リフレッシュ処理のそれぞれにおける変形例について説明する。
<Modification>
In the fuel cell system according to the first embodiment, the first refresh process and the second refresh process are not limited to the above examples. Using the fuel cell system 1001, modified examples of the first refresh process and the second refresh process in the fuel cell system according to the first embodiment will be described.
 [第1リフレッシュの変形例]
 第1実施形態に係る燃料電池システムにおける第1リフレッシュ処理の変形例について説明する。図42は、第1実施形態に係る燃料電池システムの一例である燃料電池システム1001における第1リフレッシュ処理の変形例を説明するフロー図である。図43は、第1実施形態に係る燃料電池システムの一例である燃料電池システム1001における第1リフレッシュ処理の変形例を説明する図である。図43は、燃料電池システム1001の処理を行った結果を概略的に説明する図である。図43の横軸は時刻、縦軸は出力を示す。
[Modification of the First Refresh]
A modified example of the first refresh process in the fuel cell system according to the first embodiment will be described. Fig. 42 is a flow diagram illustrating a modified example of the first refresh process in the fuel cell system 1001, which is an example of the fuel cell system according to the first embodiment. Fig. 43 is a diagram illustrating a modified example of the first refresh process in the fuel cell system 1001, which is an example of the fuel cell system according to the first embodiment. Fig. 43 is a diagram illustrating a schematic result of performing processing in the fuel cell system 1001. The horizontal axis of Fig. 43 indicates time, and the vertical axis indicates output.
 第1リフレッシュ処理の変形例において、燃料電池システム1001は、燃料電池ユニット1010における出力を、低出力、高出力、低出力の順で変化させる。言い換えると、第1リフレッシュ処理の変形例において、燃料電池システム1001は、燃料電池ユニット1010における負荷を、低負荷、高負荷、低負荷の順で変化させる。一方、第1リフレッシュ処理の変形例においても、燃料電池システム1001は、燃料電池ユニット1010への水素及び空気の供給は停止せずに継続する。 In a modified example of the first refresh process, the fuel cell system 1001 changes the output in the fuel cell unit 1010 in the following order: low output, high output, low output. In other words, in a modified example of the first refresh process, the fuel cell system 1001 changes the load in the fuel cell unit 1010 in the following order: low load, high load, low load. Meanwhile, even in a modified example of the first refresh process, the fuel cell system 1001 continues to supply hydrogen and air to the fuel cell unit 1010 without stopping.
  (ステップS1051a)
 制御ユニット1020は、燃料電池ユニット1010における出力設定を、低出力設定に設定する。そして、制御ユニット1020は、燃料電池ユニット1010における出力設定を、低出力設定に設定した状態で一定時間維持する。
(Step S1051a)
The control unit 1020 sets the output setting of the fuel cell unit 1010 to a low output setting. The control unit 1020 then maintains the output setting of the fuel cell unit 1010 at the low output setting for a certain period of time.
 図43の例で説明すると、時刻t1において、制御ユニット1020は、燃料電池ユニット1010の出力を低出力設定である出力Pdに設定する。低出力設定は、例えば、燃料電池ユニット1010における最大出力を100%とすると、0%から20%までのいずれかの出力である。制御ユニット1020は、時間Prd1aの間、燃料電池ユニット1010における出力設定を、低出力設定に設定した状態で維持する。時間Prd1aは、例えば、10秒から3分までのいずれか、好ましくは、1分である。 Using the example of Figure 43, at time t1, the control unit 1020 sets the output of the fuel cell unit 1010 to a low output setting, output Pd. The low output setting is, for example, an output between 0% and 20% of the maximum output of the fuel cell unit 1010, which is taken as 100%. The control unit 1020 maintains the output setting of the fuel cell unit 1010 at the low output setting for a time Prd1a. The time Prd1a is, for example, between 10 seconds and 3 minutes, preferably 1 minute.
 燃料電池システム1001において、一時的に低出力運転(低負荷運転)を行うことにより、発電により発生する生成水を燃料電池セル1011の面において均一化させる。 In the fuel cell system 1001, by temporarily operating at low output (low load), the water generated by power generation is made uniform on the surface of the fuel cell 1011.
 なお、出力の変換速度について、変形例においても同様であることから、前出の説明を参照することとして説明を省略する。以下の説明についても同様である。 As the output conversion speed is the same in the modified example, please refer to the above explanation and we will omit the explanation here. The same applies to the following explanation.
  (ステップS1052a)
 次に、制御ユニット1020は、燃料電池ユニット1010における出力設定を、高出力設定に設定する。そして、制御ユニット1020は、燃料電池ユニット1010における出力設定を、高出力設定に設定した状態で一定時間維持する。
(Step S1052a)
Next, the control unit 1020 sets the output setting of the fuel cell unit 1010 to the high output setting. Then, the control unit 1020 maintains the output setting of the fuel cell unit 1010 at the high output setting for a certain period of time.
 図43の例で説明すると、時刻t3において、制御ユニット1020は、燃料電池ユニット1010の出力を高出力設定である出力Puに設定する。高出力設定は、例えば、燃料電池ユニット1010における最大出力を100%とすると、80%から100%までのいずれかの出力である。制御ユニット1020は、時間Prd2aの間、燃料電池ユニット1010における出力設定を、高出力設定に設定した状態で維持する。時間Prd2aは、例えば、10秒から3分までのいずれか、好ましくは、1分である。 Using the example of Figure 43, at time t3, the control unit 1020 sets the output of the fuel cell unit 1010 to output Pu, which is a high output setting. The high output setting is, for example, any output between 80% and 100%, where 100% is the maximum output of the fuel cell unit 1010. The control unit 1020 maintains the output setting of the fuel cell unit 1010 at the high output setting for a time Prd2a. The time Prd2a is, for example, any output between 10 seconds and 3 minutes, preferably 1 minute.
 燃料電池システム1001において、一時的に高出力運転(高負荷運転)を行うことにより、燃料電池セル1011の内部における水分量を、発電により発生する生成水により増加させる。 In the fuel cell system 1001, by temporarily performing high-output operation (high-load operation), the amount of moisture inside the fuel cell 1011 is increased by the water generated by power generation.
  (ステップS1053a)
 次に、制御ユニット1020は、燃料電池ユニット1010における出力設定を、低出力設定に設定する。そして、制御ユニット1020は、燃料電池ユニット1010における出力設定を、低出力設定に設定した状態で一定時間維持する。
(Step S1053a)
Next, the control unit 1020 sets the output setting of the fuel cell unit 1010 to a low output setting, and then the control unit 1020 maintains the output setting of the fuel cell unit 1010 at the low output setting for a certain period of time.
 図43の例で説明すると、時刻t5において、制御ユニット1020は、燃料電池ユニット1010の出力を低出力設定である出力Pdに設定する。低出力設定は、例えば、燃料電池ユニット1010における最大出力を100%とすると、0%から20%までのいずれかの出力である。制御ユニット1020は、時間Prd3aの間、燃料電池ユニット1010における出力設定を、高出力設定に設定した状態で維持する。時間Prd3aは、例えば、10秒から3分までのいずれか、好ましくは、1分である。 Using the example of Figure 43, at time t5, the control unit 1020 sets the output of the fuel cell unit 1010 to a low output setting, output Pd. The low output setting is, for example, an output between 0% and 20% of the maximum output of the fuel cell unit 1010, which is 100%. The control unit 1020 maintains the output setting of the fuel cell unit 1010 at the high output setting for a time Prd3a. The time Prd3a is, for example, between 10 seconds and 3 minutes, preferably 1 minute.
 燃料電池システム1001において、高出力運転(高負荷運転)を行った後に、低出力運転(低負荷運転)を行うことにより、発電により発生する生成水を燃料電池セル1011の面において均一化させる。発電により発生する生成水を燃料電池セル1011の面において均一化させることにより、連続運転を行うことによって乾燥した燃料電池セル1011の面内における乾燥部を湿潤化できる。燃料電池セル1011の面内における乾燥部を湿潤化することにより、燃料電池セル1011における電池特性の低下を抑制できる。 In the fuel cell system 1001, high-power operation (high-load operation) is followed by low-power operation (low-load operation), which causes the water generated by power generation to be uniform across the surface of the fuel cell 1011. By uniforming the water generated by power generation across the surface of the fuel cell 1011, it is possible to moisten the dry areas within the surface of the fuel cell 1011 that have been dried through continuous operation. By moistening the dry areas within the surface of the fuel cell 1011, it is possible to suppress the deterioration of the battery characteristics of the fuel cell 1011.
  (ステップS1054)
 次に、制御ユニット1020は、燃料電池ユニット1010における出力設定を、予め定められた出力設定に設定する。
(Step S1054)
The control unit 1020 then sets the power output setting in the fuel cell unit 1010 to a predetermined power output setting.
 図43の例で説明すると、時刻t7において、制御ユニット1020は、燃料電池ユニット1010の出力を予め定められた設定である出力Popに設定する。 Using the example of Figure 43, at time t7, the control unit 1020 sets the output of the fuel cell unit 1010 to a predetermined setting, output Pop.
 ステップS1054における処理が終了すると、燃料電池システム1001は、第1リフレッシュ処理の変形例を終了する。 When the processing in step S1054 is completed, the fuel cell system 1001 ends the modified first refresh processing.
 [第2リフレッシュの第1変形例]
 第1実施形態に係る燃料電池システムにおける第2リフレッシュ処理の第1変形例について説明する。図44は、第1実施形態に係る燃料電池システムの一例である燃料電池システム1001における第2リフレッシュ処理の第1変形例を説明するフロー図である。図45は、第1実施形態に係る燃料電池システムの一例である燃料電池システム1001における第2リフレッシュ処理の第1変形例を説明する図である。図45は、燃料電池システム1001の処理を行った結果を概略的に説明する図である。図45の横軸は時刻、縦軸は出力を示す。
[First Modification of the Second Refresh]
A first modified example of the second refresh process in the fuel cell system according to the first embodiment will be described. Fig. 44 is a flow diagram illustrating a first modified example of the second refresh process in the fuel cell system 1001, which is an example of the fuel cell system according to the first embodiment. Fig. 45 is a diagram illustrating a first modified example of the second refresh process in the fuel cell system 1001, which is an example of the fuel cell system according to the first embodiment. Fig. 45 is a diagram illustrating a schematic result of performing processing in the fuel cell system 1001. The horizontal axis of Fig. 45 indicates time, and the vertical axis indicates output.
 第1実施形態に係る燃料電池システムにおける第2リフレッシュ処理の第1変形例は、ステップS1061における高出力運転(高負荷運転)を行わずに、ステップS1062において燃料電池ユニットを停止する。 The first modified example of the second refresh process in the fuel cell system according to the first embodiment does not perform high-output operation (high-load operation) in step S1061, but stops the fuel cell unit in step S1062.
 図45の例で説明すると、制御ユニット1020は、時刻t13まで、燃料電池ユニット1010における出力設定を出力Popに設定する。そして、時刻t13において、制御ユニット1020は、燃料電池ユニット1010に、動作を停止するように指令する。時刻t13以降の動作については、上述の説明を参照することとして、ここでは詳細な説明は省略する。 Using the example of FIG. 45, the control unit 1020 sets the output setting of the fuel cell unit 1010 to the output Pop until time t13. Then, at time t13, the control unit 1020 commands the fuel cell unit 1010 to stop operation. For operations after time t13, please refer to the above explanation, and a detailed explanation will be omitted here.
 第1実施形態に係る燃料電池システムにおける第2リフレッシュ処理の第1変形例において、燃料電池ユニット1010の動作を停止させることにより、燃料電池セル1011におけるセル電圧が低下する。燃料電池セル1011におけるセル電圧が低下することにより、第1実施形態に係る燃料電池システムは、燃料電池セル1011の触媒に付着している分解物等の不純物を燃料電池セル1011の触媒から脱離できる。また、第1実施形態に係る燃料電池システムは、第2リフレッシュ処理の第1変形例により、燃料電池セル1011の触媒から脱離した不純物等を、再起動後に高出力運転(高負荷運転)を行うことにより、燃料電池セル1011の触媒から脱離した不純物を洗い流すことができる。 In a first modified example of the second refresh process in the fuel cell system according to the first embodiment, the operation of the fuel cell unit 1010 is stopped, thereby lowering the cell voltage in the fuel cell 1011. As the cell voltage in the fuel cell 1011 is lowered, the fuel cell system according to the first embodiment can detach impurities such as decomposition products adhering to the catalyst of the fuel cell 1011 from the catalyst of the fuel cell 1011. Furthermore, the fuel cell system according to the first embodiment can wash away impurities and the like that have been detached from the catalyst of the fuel cell 1011 by performing high-output operation (high-load operation) after restarting the system, by performing high-output operation (high-load operation).
 [第2リフレッシュの第2変形例]
 第1実施形態に係る燃料電池システムにおける第2リフレッシュ処理の第2変形例について説明する。図46は、第1実施形態に係る燃料電池システムの一例である燃料電池システム1001における第2リフレッシュ処理の第2変形例を説明するフロー図である。図47は、第1実施形態に係る燃料電池システムの一例である燃料電池システム1001における第2リフレッシュ処理の第2変形例を説明する図である。図47は、燃料電池システム1001の処理を行った結果を概略的に説明する図である。図47の横軸は時刻、縦軸は出力を示す。
[Second Modification of the Second Refresh]
A second modified example of the second refresh process in the fuel cell system according to the first embodiment will be described. Fig. 46 is a flow diagram illustrating a second modified example of the second refresh process in the fuel cell system 1001, which is an example of the fuel cell system according to the first embodiment. Fig. 47 is a diagram illustrating a second modified example of the second refresh process in the fuel cell system 1001, which is an example of the fuel cell system according to the first embodiment. Fig. 47 is a diagram illustrating a schematic result of performing processing in the fuel cell system 1001. The horizontal axis of Fig. 47 indicates time, and the vertical axis indicates output.
 第1実施形態に係る燃料電池システムにおける第2リフレッシュ処理の第3変形例は、ステップS1064における高出力運転(高負荷運転)を行わずに、ステップS1065において予め定められた出力設定にする。 In the third modified example of the second refresh process in the fuel cell system according to the first embodiment, high output operation (high load operation) is not performed in step S1064, and a predetermined output setting is set in step S1065.
 図47の例で説明すると、時刻t16以前の動作については、図41の例と同様である。そして、図47の例で説明すると、制御ユニット1020は、時刻t16において、燃料電池ユニット1010における出力設定を出力Popに設定する。時刻t16以降において、燃料電池ユニット1010は、出力設定を出力Popに設定した状態で起動させる。 Using the example of FIG. 47, the operation before time t16 is the same as in the example of FIG. 41. And, using the example of FIG. 47, at time t16, the control unit 1020 sets the output setting in the fuel cell unit 1010 to output Pop. After time t16, the fuel cell unit 1010 starts up with the output setting set to output Pop.
 第1実施形態に係る燃料電池システムにおける第2リフレッシュ処理の第2変形例において、燃料電池ユニット1010の動作を停止させることにより、燃料電池セル1011におけるセル電圧が低下する。燃料電池セル1011におけるセル電圧が低下することにより、第1実施形態に係る燃料電池システムは、燃料電池セル1011の触媒に付着している分解物等の不純物を燃料電池セル1011の触媒から脱離できる。セル電圧は、0.3V~0.65V、より好ましくは0.5Vまで低下させる。また、第1実施形態に係る燃料電池システムは、第2リフレッシュ処理の第2変形例において、燃料電池セル1011の触媒から脱離した不純物等を、再起動後に運転することにより、燃料電池セル1011の触媒から脱離した不純物を洗い流すことができる。 In a second modified example of the second refresh process in the fuel cell system according to the first embodiment, the operation of the fuel cell unit 1010 is stopped, thereby lowering the cell voltage in the fuel cell 1011. By lowering the cell voltage in the fuel cell 1011, the fuel cell system according to the first embodiment can remove impurities such as decomposition products adhering to the catalyst of the fuel cell 1011 from the catalyst of the fuel cell 1011. The cell voltage is lowered to 0.3V to 0.65V, and more preferably to 0.5V. In addition, in the second modified example of the second refresh process in the fuel cell system according to the first embodiment, the impurities that have been removed from the catalyst of the fuel cell 1011 can be washed away by restarting the system and then operating the system.
 ≪第2実施形態に係る燃料電池システム≫
 第2実施形態に係る燃料電池システムについて説明する。第2実施形態に係る燃料電池システムは、第1実施形態に係る燃料電池システムと処理が異なる。第2実施形態に係る燃料電池システムの構成については、第1実施形態に係る燃料電池システムの構成についての説明を参照することとして、ここでは説明を省略する。
Fuel Cell System According to Second Embodiment
A fuel cell system according to a second embodiment will be described. The fuel cell system according to the second embodiment differs in processing from the fuel cell system according to the first embodiment. For the configuration of the fuel cell system according to the second embodiment, please refer to the description of the configuration of the fuel cell system according to the first embodiment, and the description will be omitted here.
 <第2実施形態に係る燃料電池システムにおける処理>
 第2実施形態に係る燃料電池システムにおける処理について説明する。図48は、第2実施形態に係る燃料電池システムにおける処理を説明するフロー図である。図49は、第2実施形態に係る燃料電池システムにおける処理を説明する図である。図49は、第2実施形態に係る燃料電池システムの処理を行った結果を概略的に説明する図である。図49の横軸は時刻、縦軸はセル電圧を示す。
<Processing in the fuel cell system according to the second embodiment>
Processing in the fuel cell system according to the second embodiment will be described. Fig. 48 is a flow diagram illustrating processing in the fuel cell system according to the second embodiment. Fig. 49 is a diagram illustrating processing in the fuel cell system according to the second embodiment. Fig. 49 is a diagram illustrating a schematic result of processing in the fuel cell system according to the second embodiment. The horizontal axis of Fig. 49 indicates time, and the vertical axis indicates cell voltage.
 図49を用いて、第2実施形態に係る燃料電池システムにおける処理の概要を説明する。以下、第2実施形態に係る燃料電池システムの処理を、燃料電池システム1001を用いて説明する。なお、燃料電池システム1001は、時刻0から燃料電池システム1001が動作を開始するとする。燃料電池システム1001は、最初に、時刻t21から時刻t22までの間のセル電圧に基づいて、基準電圧V1を設定する。そして、燃料電池システム1001は、基準電圧V1から第1基準(V1×α1)及び第2基準(V1×β1)(ただし、0<β1<α1<1)を算出する。そして、燃料電池システム1001は、基準時間T1の間に第1基準よりセル電圧が低くなって、更に第2基準よりセル電圧が低くなったら、第2リフレッシュ処理Proc2を行う。また、燃料電池システム1001、基準時間T1の間、第1基準よりセル電圧が高い状態であって、第1基準よりセル電圧が低くなると、燃料電池システム1001は、第1リフレッシュ処理Proc1を行う。 The outline of the process in the fuel cell system according to the second embodiment will be described below using FIG. 49. The process in the fuel cell system according to the second embodiment will be described below using the fuel cell system 1001. It is assumed that the fuel cell system 1001 starts operating from time 0. The fuel cell system 1001 first sets a reference voltage V1 based on the cell voltage between time t21 and time t22. The fuel cell system 1001 then calculates a first reference (V1×α1) and a second reference (V1×β1) (where 0<β1<α1<1) from the reference voltage V1. The fuel cell system 1001 then performs a second refresh process Proc2 when the cell voltage becomes lower than the first reference during the reference time T1 and further becomes lower than the second reference. Also, when the cell voltage of the fuel cell system 1001 is higher than the first reference during the reference time T1 and becomes lower than the first reference, the fuel cell system 1001 performs a first refresh process Proc1.
 (ステップS1110)
 処理を開始すると、燃料電池システム1001は、燃料電池ユニット1010における出力設定を予め定められた出力設定に設定する。具体的な処理については、ステップS1010の説明を参照することとしてここでは説明を省略する。
(Step S1110)
When the process starts, the fuel cell system 1001 sets the output setting of the fuel cell unit 1010 to a predetermined output setting. For specific processing, refer to the description of step S1010 and a description thereof will be omitted here.
 (ステップS1120)
 次に、燃料電池システム1001は、時間を計測するためのタイマーを起動する。具体的な処理については、ステップS1020の説明を参照することとしてここでは説明を省略する。
(Step S1120)
Next, the fuel cell system 1001 starts a timer for measuring time. For specific processing, refer to the description of step S1020 and a description thereof will be omitted here.
 (ステップS1130)
 燃料電池システム1001は、燃料電池セル1011におけるセル電圧について、基準電圧V1を設定する。燃料電池システム1001は、燃料電池ユニット1010が起動してから所定の時間が経過した後のセル電圧から、基準電圧V1を設定する。
(Step S1130)
The fuel cell system 1001 sets a reference voltage V1 for the cell voltage in the fuel cell 1011. The fuel cell system 1001 sets the reference voltage V1 from the cell voltage after a predetermined time has elapsed since the fuel cell unit 1010 was started up.
 図49の例について説明すると、制御ユニット1020は、起動してから所定の期間経過した時刻t21から時刻t22の間における燃料電池セル1011のセル電圧から基準電圧V1を設定する。基準電圧V1は、例えば、時刻t21から時刻t22までの間のセル電圧の平均である。 In the example of FIG. 49, the control unit 1020 sets the reference voltage V1 from the cell voltage of the fuel cell 1011 between time t21 and time t22, a predetermined period of time after startup. The reference voltage V1 is, for example, the average of the cell voltage between time t21 and time t22.
 制御ユニット1020は、基準電圧V1から第1基準(V1×α1)、第2基準(V1×β1)を計算する。なお、0<β1<α1<1である。α1は例えば0.98、β1は例えば、0.96である。 The control unit 1020 calculates a first reference (V1 x α1) and a second reference (V1 x β1) from the reference voltage V1. Note that 0<β1<α1<1. α1 is, for example, 0.98, and β1 is, for example, 0.96.
 (ステップS1140)
 次に、制御ユニット1020は、スタック電圧(燃料電池セル1011のセル電圧)が第1基準より低いかどうかを判定する。スタック電圧が第1基準より低い場合(ステップS1140のYES)、制御ユニット1020は、ステップS1150に処理を進める。スタック電圧が第1基準より高い場合(ステップS1140のNO)、制御ユニット1020は、ステップS1140に戻って処理を繰り返す。
(Step S1140)
Next, the control unit 1020 determines whether the stack voltage (cell voltage of the fuel cell 1011) is lower than the first reference. If the stack voltage is lower than the first reference (YES in step S1140), the control unit 1020 proceeds to step S1150. If the stack voltage is higher than the first reference (NO in step S1140), the control unit 1020 returns to step S1140 and repeats the process.
 (ステップS1150)
 次に、制御ユニット1020は、設定時間が経過したかどうか判定する。設定時間が経過した場合(ステップS1150のYES)、制御ユニット1020は、ステップS1160に処理を進める。設定時間が経過していない場合(ステップS1150のNO)、制御ユニット1020は、ステップS1170に処理を進める。
(Step S1150)
Next, the control unit 1020 determines whether the set time has elapsed. If the set time has elapsed (YES in step S1150), the control unit 1020 proceeds to step S1160. If the set time has not elapsed (NO in step S1150), the control unit 1020 proceeds to step S1170.
 (ステップS1160)
 ステップS1150において、設定時間が経過した場合(ステップS1150のYES)、制御ユニット1020は、第1リフレッシュ処理を行う。第1リフレッシュ処理の詳細については、第1実施形態に係る燃料電池システムの説明を参照することとしてここでは説明を省略する。
(Step S1160)
In step S1150, if the set time has elapsed (YES in step S1150), the control unit 1020 performs a first refresh process. For details of the first refresh process, refer to the description of the fuel cell system according to the first embodiment, and the description will be omitted here.
 (ステップS1170)
 ステップS1150において、設定時間が経過していない場合(ステップS1150のNO)、制御ユニット1020は、スタック電圧が第2基準より低いかどうかを判定する。スタック電圧が第2基準より低い場合(ステップS1170のYES)、制御ユニット1020は、ステップS1180に処理を進める。スタック電圧が第2基準より高い場合(ステップS1170のNO)、制御ユニット1020は、ステップS1140に戻って処理を繰り返す。
(Step S1170)
In step S1150, if the set time has not elapsed (NO in step S1150), the control unit 1020 determines whether the stack voltage is lower than the second reference. If the stack voltage is lower than the second reference (YES in step S1170), the control unit 1020 proceeds to step S1180. If the stack voltage is higher than the second reference (NO in step S1170), the control unit 1020 returns to step S1140 and repeats the process.
 (ステップS1180)
 ステップS1170において、スタック電圧が第2基準より低い場合(ステップS1170のYES)、制御ユニット1020は、第2リフレッシュ処理を行う。第2リフレッシュ処理の詳細については、第1実施形態に係る燃料電池システムの説明を参照することとしてここでは説明を省略する。
(Step S1180)
In step S1170, if the stack voltage is lower than the second reference (YES in step S1170), the control unit 1020 performs a second refresh process. For details of the second refresh process, refer to the description of the fuel cell system according to the first embodiment, and the description will be omitted here.
 (ステップS1190)
 制御ユニット1020は、タイマー1021を初期化する。
(Step S1190)
The control unit 1020 initializes the timer 1021 .
 (ステップS1200)
 制御ユニット1020は、処理を継続するかどうか判断する。処理を継続する場合(ステップS1200のYES)、制御ユニット1020は、ステップS1140に戻って処理を繰り返す。処理を継続しない場合(ステップS1200のNO)、制御ユニット1020は、ステップS1210に処理を進める。
(Step S1200)
The control unit 1020 determines whether or not to continue the process. If the process is to be continued (YES in step S1200), the control unit 1020 returns to step S1140 and repeats the process. If the process is not to be continued (NO in step S1200), the control unit 1020 advances the process to step S1210.
 (ステップS1210)
 次に、燃料電池システム1001は、時間を計測するためのタイマーを停止する。具体的には、制御ユニット1020は、タイマー1021を停止する。そして、処理を終了する。
(Step S1210)
Next, the fuel cell system 1001 stops the timer for measuring time. Specifically, the control unit 1020 stops the timer 1021. Then, the process ends.
 図49に基づいて処理を説明すると、基準時間T1が経過するまでの間、セル電圧が第1基準(V1×α1)より高いことから、時刻t23、時刻t24、時刻t25及び時刻t26において、燃料電池システム1001は、第1リフレッシュ処理を実行する。一方、時刻t27の後に、基準時間T1が経過する前に第1基準(V1×α1)より低下し、更に第2基準(V1×β1)より低くなっていることから、燃料電池システム1001は、第2リフレッシュ処理を実行する。 To explain the process based on FIG. 49, since the cell voltage is higher than the first reference (V1×α1) until the reference time T1 has elapsed, the fuel cell system 1001 executes the first refresh process at times t23, t24, t25, and t26. On the other hand, after time t27, since the cell voltage falls below the first reference (V1×α1) before the reference time T1 has elapsed and then falls below the second reference (V1×β1), the fuel cell system 1001 executes the second refresh process.
 第2実施形態に係る燃料電池システムによれば、第1リフレッシュ処理と第2リフレッシュ処理を行うことにより、効果的に燃料電池ユニットをリフレッシュできる。 In the fuel cell system according to the second embodiment, the first refresh process and the second refresh process are performed, thereby effectively refreshing the fuel cell unit.
 ≪第3実施形態に係る燃料電池システム≫
 第3実施形態に係る燃料電池システムについて説明する。第3実施形態に係る燃料電池システムは、第1実施形態に係る燃料電池システムと処理が異なる。第3実施形態に係る燃料電池システムの構成については、第1実施形態に係る燃料電池システムの構成についての説明を参照することとして、ここでは説明を省略する。
Fuel Cell System According to Third Embodiment
A fuel cell system according to a third embodiment will be described. The fuel cell system according to the third embodiment differs in processing from the fuel cell system according to the first embodiment. For the configuration of the fuel cell system according to the third embodiment, please refer to the description of the configuration of the fuel cell system according to the first embodiment, and the description will be omitted here.
 <第3実施形態に係る燃料電池システムにおける処理>
 第3実施形態に係る燃料電池システムにおける処理について説明する。図50は、第3実施形態に係る燃料電池システムにおける処理を説明するフロー図である。図51は、第3実施形態に係る燃料電池システムにおける処理を説明する図である。図51は、第3実施形態に係る燃料電池システムの処理を行った結果を概略的に説明する図である。図51の横軸は時刻、縦軸はセル電圧を示す。
<Processing in the fuel cell system according to the third embodiment>
Processing in the fuel cell system according to the third embodiment will be described. Fig. 50 is a flow diagram illustrating processing in the fuel cell system according to the third embodiment. Fig. 51 is a diagram illustrating processing in the fuel cell system according to the third embodiment. Fig. 51 is a diagram illustrating a schematic result of processing in the fuel cell system according to the third embodiment. The horizontal axis of Fig. 51 indicates time, and the vertical axis indicates cell voltage.
 図51を用いて、第3実施形態に係る燃料電池システムにおける処理の概要を説明する。以下、第3実施形態に係る燃料電池システムの処理を、燃料電池システム1001を用いて説明する。燃料電池システム1001は、時刻0から燃料電池システム1001が動作を開始するとする。燃料電池システム1001は、最初に、時刻t31から時刻t32までの間のセル電圧に基づいて、基準電圧V2を設定する。そして、燃料電池システム1001は、基準電圧V2から第1基準(V2×α2)及び第2基準(V2×β2)(ただし、0<β2<α2<1)を算出する。そして、燃料電池システム1001は、第1リフレッシュ処理Proc1を所定の回数N1行う。そして、燃料電池システム1001は、所定の回数N1、第1リフレッシュ処理Proc1を行った後に、第2リフレッシュ処理Proc2を行う。 The process of the fuel cell system according to the third embodiment will be outlined with reference to FIG. 51. The process of the fuel cell system according to the third embodiment will be described below with reference to the fuel cell system 1001. It is assumed that the fuel cell system 1001 starts operating from time 0. The fuel cell system 1001 first sets a reference voltage V2 based on the cell voltage between time t31 and time t32. The fuel cell system 1001 then calculates a first reference (V2×α2) and a second reference (V2×β2) (where 0<β2<α2<1) from the reference voltage V2. The fuel cell system 1001 then performs the first refresh process Proc1 a predetermined number of times N1. The fuel cell system 1001 then performs the second refresh process Proc2 after performing the first refresh process Proc1 a predetermined number of times N1.
 (ステップS1310)
 処理を開始すると、燃料電池システム1001は、燃料電池ユニット1010における出力設定を予め定められた出力設定に設定する。具体的な処理については、ステップS1010の説明を参照することとしてここでは説明を省略する。
(Step S1310)
When the process starts, the fuel cell system 1001 sets the output setting of the fuel cell unit 1010 to a predetermined output setting. For specific processing, refer to the explanation of step S1010 and an explanation thereof will be omitted here.
 (ステップS1320)
 燃料電池システム1001は、燃料電池セル1011におけるセル電圧について、基準電圧V2を設定する。燃料電池システム1001は、燃料電池ユニット1010が起動してから所定の時間が経過した後のセル電圧から、基準電圧V2を設定する。
(Step S1320)
The fuel cell system 1001 sets a reference voltage V2 for the cell voltage in the fuel cell 1011. The fuel cell system 1001 sets the reference voltage V2 from the cell voltage after a predetermined time has elapsed since the fuel cell unit 1010 was started up.
 基準電圧を設定する工程については、ステップS1130の説明を参照することとして、詳細な説明は省略する。α2は例えば0.98、β2は例えば、0.96である。 For the process of setting the reference voltage, please refer to the explanation of step S1130 and a detailed explanation will be omitted. α2 is, for example, 0.98, and β2 is, for example, 0.96.
 (ステップS1330)
 次に、制御ユニット1020は、スタック電圧(燃料電池セル1011のセル電圧)が第1基準より低いかどうかを判定する。スタック電圧が第1基準より低い場合(ステップS1330のYES)、制御ユニット1020は、ステップS1340に処理を進める。スタック電圧が第1基準より高い場合(ステップS1330のNO)、制御ユニット1020は、ステップS1330に戻って処理を繰り返す。
(Step S1330)
Next, the control unit 1020 determines whether the stack voltage (cell voltage of the fuel cell 1011) is lower than the first reference. If the stack voltage is lower than the first reference (YES in step S1330), the control unit 1020 proceeds to step S1340. If the stack voltage is higher than the first reference (NO in step S1330), the control unit 1020 returns to step S1330 and repeats the process.
 (ステップS1340)
 ステップS1330において、スタック電圧が第1基準より低い場合(ステップS1330のYES)、制御ユニット1020は、第1リフレッシュ処理を行う。第1リフレッシュ処理の詳細については、第1実施形態に係る燃料電池システムの説明を参照することとしてここでは説明を省略する。
(Step S1340)
In step S1330, if the stack voltage is lower than the first reference (YES in step S1330), the control unit 1020 performs a first refresh process. For details of the first refresh process, refer to the description of the fuel cell system according to the first embodiment, and a description thereof will be omitted here.
 (ステップS1350)
 次に、制御ユニット1020は、第1リフレッシュ処理を所定の回数行ったかどうか判定する。第1リフレッシュ処理を所定の回数行った場合(ステップS1350のYES)、制御ユニット1020は、ステップS1360に処理を進める。第1リフレッシュ処理を所定の回数行っていない場合(ステップS1350のNO)、制御ユニット1020は、ステップS1330に戻って処理を繰り返す。
(Step S1350)
Next, the control unit 1020 determines whether the first refresh process has been performed a predetermined number of times. If the first refresh process has been performed a predetermined number of times (YES in step S1350), the control unit 1020 proceeds to step S1360. If the first refresh process has not been performed a predetermined number of times (NO in step S1350), the control unit 1020 returns to step S1330 and repeats the process.
 (ステップS1360)
 次に、ステップS1350において、第1リフレッシュ処理を所定の回数行った場合(ステップS1350のYES)、制御ユニット1020は、スタック電圧が第2基準より低いかどうかを判定する。スタック電圧が第2基準より低い場合(ステップS1360のYES)、制御ユニット1020は、ステップS1370に処理を進める。スタック電圧が第2基準より高い場合(ステップS1360のNO)、制御ユニット1020は、ステップS1360に戻って処理を繰り返す。
(Step S1360)
Next, in step S1350, when the first refresh process has been performed a predetermined number of times (YES in step S1350), the control unit 1020 determines whether the stack voltage is lower than the second reference. If the stack voltage is lower than the second reference (YES in step S1360), the control unit 1020 proceeds to step S1370. If the stack voltage is higher than the second reference (NO in step S1360), the control unit 1020 returns to step S1360 and repeats the process.
 (ステップS1370)
 ステップS1360において、スタック電圧が第2基準より低い場合(ステップS1360のYES)、制御ユニット1020は、第2リフレッシュ処理を行う。第2リフレッシュ処理の詳細については、第1実施形態に係る燃料電池システムの説明を参照することとしてここでは説明を省略する。
(Step S1370)
In step S1360, if the stack voltage is lower than the second reference value (YES in step S1360), the control unit 1020 performs a second refresh process. For details of the second refresh process, refer to the description of the fuel cell system according to the first embodiment, and the description will be omitted here.
 (ステップS1380)
 制御ユニット1020は、処理を継続するかどうか判断する。処理を継続する場合(ステップS1380のYES)、制御ユニット1020は、ステップS1330に戻って処理を繰り返す。なお、ステップS1330に戻る場合、第1リフレッシュ処理を行った回数は0回に初期化する。処理を継続しない場合(ステップS1380のNO)、制御ユニット1020は、処理を終了する。
(Step S1380)
The control unit 1020 determines whether or not to continue the process. If the process is to be continued (YES in step S1380), the control unit 1020 returns to step S1330 and repeats the process. Note that, if returning to step S1330, the number of times the first refresh process has been performed is initialized to 0. If the process is not to be continued (NO in step S1380), the control unit 1020 ends the process.
 図51に基づいて処理を説明すると、時刻t33、時刻t34、時刻t35及び時刻t36において、燃料電池システム1001は、第1リフレッシュ処理を実行する。そして、所定の回数N1(ここではN1=4)第1リフレッシュ処理を行った後、時刻t37において、燃料電池システム1001は、第2リフレッシュ処理を実行する。 To explain the process based on FIG. 51, the fuel cell system 1001 executes a first refresh process at time t33, time t34, time t35, and time t36. Then, after executing the first refresh process a predetermined number of times N1 (here, N1=4), at time t37, the fuel cell system 1001 executes a second refresh process.
 第3実施形態に係る燃料電池システムによれば、第1リフレッシュ処理と第2リフレッシュ処理を行うことにより、効果的に燃料電池ユニットをリフレッシュできる。 In the fuel cell system according to the third embodiment, the first refresh process and the second refresh process are performed, thereby effectively refreshing the fuel cell unit.
 ≪第4実施形態に係る燃料電池システム≫
 第4実施形態に係る燃料電池システムについて説明する。第4実施形態に係る燃料電池システムは、複数の燃料電池ユニットを備える。
Fuel Cell System According to Fourth Embodiment
A fuel cell system according to a fourth embodiment will now be described. The fuel cell system according to the fourth embodiment includes a plurality of fuel cell units.
 図52は、第4実施形態に係る燃料電池システムの一例である燃料電池システム1002における構成の概略を示す図である。 FIG. 52 is a diagram showing an outline of the configuration of a fuel cell system 1002, which is an example of a fuel cell system according to the fourth embodiment.
 燃料電池システム1002は、複数の燃料電池ユニットと、制御ユニット1120と、蓄電ユニット1030と、を備える。燃料電池システム1002の例では、燃料電池システム1002は、燃料電池ユニット1010a、燃料電池ユニット1010b、燃料電池ユニット1010c及び燃料電池ユニット1010dの4台の燃料電池ユニットを備える。なお、燃料電池ユニットの台数については、上記の例に限らず、2台以上であればよい。 The fuel cell system 1002 includes multiple fuel cell units, a control unit 1120, and a power storage unit 1030. In the example of the fuel cell system 1002, the fuel cell system 1002 includes four fuel cell units: fuel cell unit 1010a, fuel cell unit 1010b, fuel cell unit 1010c, and fuel cell unit 1010d. The number of fuel cell units is not limited to the above example, and may be two or more.
 燃料電池システム1002は、燃料電池ユニット1010aの出力P1a、燃料電池ユニット1010bの出力P1b、燃料電池ユニット1010cの出力P1c及び燃料電池ユニット1010dの出力P1dは、出力P1fにまとめられる。そして、出力P1fと、蓄電ユニット1030の出力Psとにより、燃料電池システム1002の出力Poutが外部負荷EXに供給される。 In the fuel cell system 1002, the output P1a of the fuel cell unit 1010a, the output P1b of the fuel cell unit 1010b, the output P1c of the fuel cell unit 1010c, and the output P1d of the fuel cell unit 1010d are combined into an output P1f. The output P1f and the output Ps of the power storage unit 1030 provide the output Pout of the fuel cell system 1002 to the external load EX.
 燃料電池ユニット1010a、燃料電池ユニット1010b、燃料電池ユニット1010c及び燃料電池ユニット1010dのそれぞれは、第1実施形態に係る燃料電池システムの一例である燃料電池システム1001における燃料電池ユニット1010と同じ構成を有する。燃料電池ユニット1010a、燃料電池ユニット1010b、燃料電池ユニット1010c及び燃料電池ユニット1010dのそれぞれについて、燃料電池ユニット1010の説明を参照することとしてここでは説明を省略する。 Each of fuel cell unit 1010a, fuel cell unit 1010b, fuel cell unit 1010c, and fuel cell unit 1010d has the same configuration as fuel cell unit 1010 in fuel cell system 1001, which is an example of a fuel cell system according to the first embodiment. For each of fuel cell unit 1010a, fuel cell unit 1010b, fuel cell unit 1010c, and fuel cell unit 1010d, the description of fuel cell unit 1010 is omitted here, and reference should be made to the description of fuel cell unit 1010.
 [制御ユニット1120]
 制御ユニット1120は、燃料電池ユニット1010a、燃料電池ユニット1010b、燃料電池ユニット1010c及び燃料電池ユニット1010dのそれぞれを制御する。制御ユニット1120は、制御ユニット1020の機能を含む。
[Control unit 1120]
The control unit 1120 controls each of the fuel cell unit 1010a, the fuel cell unit 1010b, the fuel cell unit 1010c, and the fuel cell unit 1010d. The control unit 1120 includes the functions of the control unit 1020.
 <第4実施形態に係る燃料電池システムにおける処理>
 第4実施形態に係る燃料電池システムにおける処理について説明する。図53及び図54は、第4実施形態に係る燃料電池システムの一例である燃料電池システム1002における処理を説明する図である。
<Processing in the fuel cell system according to the fourth embodiment>
The following describes the processing in the fuel cell system according to the fourth embodiment. Figures 53 and 54 are diagrams for explaining the processing in a fuel cell system 1002, which is an example of the fuel cell system according to the fourth embodiment.
 図53における横軸は時間、縦軸は燃料電池ユニット1010a、燃料電池ユニット1010b、燃料電池ユニット1010c及び燃料電池ユニット1010dのそれぞれの出力を示す。図54における横軸は時間、縦軸は燃料電池システム1002の出力を示す。 In FIG. 53, the horizontal axis represents time, and the vertical axis represents the output of each of fuel cell unit 1010a, fuel cell unit 1010b, fuel cell unit 1010c, and fuel cell unit 1010d. In FIG. 54, the horizontal axis represents time, and the vertical axis represents the output of fuel cell system 1002.
 制御ユニット1120は、リフレッシュ期間Prsh1において、燃料電池ユニット1010a、燃料電池ユニット1010b、燃料電池ユニット1010c、燃料電池ユニット1010dの順にリフレッシュ処理を行う。なお、リフレッシュ運転は、第1実施形態に係る燃料電池システムにおいて説明した第1リフレッシュ処理又は第2リフレッシュ処理のいずれかである。図53において、リフレッシュ処理を矢印付き線Procにより示す。 During the refresh period Prsh1, the control unit 1120 performs the refresh process on the fuel cell unit 1010a, the fuel cell unit 1010b, the fuel cell unit 1010c, and the fuel cell unit 1010d in that order. Note that the refresh operation is either the first refresh process or the second refresh process described in the fuel cell system according to the first embodiment. In FIG. 53, the refresh process is indicated by the arrowed line Proc.
 燃料電池ユニットにおいてリフレッシュ処理を行うと、一時的に出力が大きく変動する。一方、燃料電池システムは、一定の出力を継続することが求められる。 When a fuel cell unit undergoes a refresh process, output temporarily fluctuates significantly. On the other hand, a fuel cell system is required to maintain a constant output.
 そこで、燃料電池システム1002は、図53に示すように、リフレッシュ処理を燃料電池ユニット1010a、燃料電池ユニット1010b、燃料電池ユニット1010c、燃料電池ユニット1010dの順に切換ながら行うことにより、図54に示すように、出力Pa状態を維持できる。制御ユニット1120は、リフレッシュ処理を行っている燃料電池ユニットが発電する電力分を、リフレッシュ処理を行っていない他の燃料電池ユニットに振り分けることより、燃料電池システム1002は、出力を一定の状態で維持できる。 As shown in Figure 53, the fuel cell system 1002 performs the refresh process by switching between fuel cell unit 1010a, fuel cell unit 1010b, fuel cell unit 1010c, and fuel cell unit 1010d in that order, thereby maintaining the output Pa state as shown in Figure 54. The control unit 1120 distributes the power generated by the fuel cell unit undergoing the refresh process to other fuel cell units not undergoing the refresh process, allowing the fuel cell system 1002 to maintain a constant output.
 第4実施形態に係る燃料電池システムによれば、第1リフレッシュ処理と第2リフレッシュ処理を行うことにより、効果的に燃料電池ユニットをリフレッシュできる。また、第4実施形態に係る燃料電池システムによれば、リフレッシュ処理を行っている間においても、最終的な出力を所望の出力で維持できる。 According to the fuel cell system of the fourth embodiment, the first refresh process and the second refresh process are performed, thereby effectively refreshing the fuel cell unit. Furthermore, according to the fuel cell system of the fourth embodiment, the final output can be maintained at a desired output even while the refresh process is being performed.
 ≪第5実施形態に係る燃料電池システム≫
 第5実施形態に係る燃料電池システムについて説明する。第5実施形態に係る燃料電池システムは、第4実施形態に係る燃料電池システムと処理が異なる。第5実施形態に係る燃料電池システムの構成については、第4実施形態に係る燃料電池システムの構成についての説明を参照することとして、ここでは説明を省略する。
Fuel Cell System According to Fifth Embodiment
A fuel cell system according to a fifth embodiment will be described. The fuel cell system according to the fifth embodiment differs in processing from the fuel cell system according to the fourth embodiment. For the configuration of the fuel cell system according to the fifth embodiment, please refer to the description of the configuration of the fuel cell system according to the fourth embodiment, and the description will be omitted here.
 <第5実施形態に係る燃料電池システムにおける処理>
 第5実施形態に係る燃料電池システムにおける処理について説明する。図55は、第5実施形態に係る燃料電池システムにおける処理を説明する図である。
<Processing in the fuel cell system according to the fifth embodiment>
The process in the fuel cell system according to the fifth embodiment will be described below. Fig. 55 is a diagram for explaining the process in the fuel cell system according to the fifth embodiment.
 図55における横軸は時間、縦軸は燃料電池ユニット1010a、燃料電池ユニット1010b、燃料電池ユニット1010c及び燃料電池ユニット1010dのそれぞれの出力を示す。 In Figure 55, the horizontal axis represents time, and the vertical axis represents the output of each of fuel cell unit 1010a, fuel cell unit 1010b, fuel cell unit 1010c, and fuel cell unit 1010d.
 制御ユニット1120は、リフレッシュ期間Prsh2において、燃料電池ユニット1010a、燃料電池ユニット1010b、燃料電池ユニット1010c及び燃料電池ユニット1010dのいずれかについてリフレッシュ処理を行う。なお、リフレッシュ運転は、第1実施形態に係る燃料電池システムにおいて説明した第1リフレッシュ処理又は第2リフレッシュ処理のいずれかである。図55において、リフレッシュ処理を矢印付き線Procにより示す。 The control unit 1120 performs a refresh process on any of the fuel cell units 1010a, 1010b, 1010c, and 1010d during the refresh period Prsh2. The refresh operation is either the first refresh process or the second refresh process described in the fuel cell system according to the first embodiment. In FIG. 55, the refresh process is indicated by the arrowed line Proc.
 第5実施形態に係る燃料電池システムは、図55に示すように、リフレッシュ処理を燃料電池ユニット1010a、燃料電池ユニット1010b、燃料電池ユニット1010c及び燃料電池ユニット1010dのいずれかで行うことにより、出力を維持できる。なお、第5実施形態に係る燃料電池システムにおける出力は、図54で示した出力と同じ出力となる。 As shown in FIG. 55, the fuel cell system according to the fifth embodiment can maintain output by performing a refresh process in any one of fuel cell unit 1010a, fuel cell unit 1010b, fuel cell unit 1010c, and fuel cell unit 1010d. Note that the output in the fuel cell system according to the fifth embodiment is the same as the output shown in FIG. 54.
 第5実施形態に係る燃料電池システムによれば、第1リフレッシュ処理と第2リフレッシュ処理を行うことにより、効果的に燃料電池ユニットをリフレッシュできる。また、第5実施形態に係る燃料電池システムによれば、リフレッシュ処理を行っている間においても、最終的な出力を所望の出力で維持できる。 According to the fuel cell system of the fifth embodiment, the first refresh process and the second refresh process are performed, thereby effectively refreshing the fuel cell unit. Furthermore, according to the fuel cell system of the fifth embodiment, the final output can be maintained at a desired output even while the refresh process is being performed.
 以上の通り、実施形態を説明したが、上記実施形態は、例として提示したものであり、上記実施形態により本発明が限定されるものではない。上記実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の組み合わせ、省略、置き換え、変更などを行うことが可能である。これら実施形態やその変形は、発明の範囲や要旨に含まれると共に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although the embodiments have been described above, they are presented as examples, and the present invention is not limited to the above embodiments. The above embodiments can be implemented in various other forms, and various combinations, omissions, substitutions, modifications, etc. can be made without departing from the gist of the invention. These embodiments and their variations are included in the scope and gist of the invention, and are included in the scope of the invention and its equivalents described in the claims.
 例えば、図23、図25及び図26では、窒素を供給する配管121(パージ系統30)が水素を供給する燃料系統18に合流する箇所は、燃料系統18がFCスタック21,22,23に向けて分岐した後の系統であるが、分岐する前の系統でもよい。 For example, in Figures 23, 25, and 26, the point where the pipe 121 (purge system 30) that supplies nitrogen joins the fuel system 18 that supplies hydrogen is after the fuel system 18 branches off toward the FC stacks 21, 22, and 23, but it may be before the branching.
 本国際出願は、2022年9月27日に出願した日本国特許出願第2022-153948号、2023年2月14日に出願した日本国特許出願第2023-020923号、2023年4月17日に出願した日本国特許出願第2023-067426号、および2023年7月12日に出願した日本国特許出願第2023-114233号に基づく優先権を主張するものであり、それらの4出願の全内容を本国際出願に援用する。 This international application claims priority to Japanese Patent Application No. 2022-153948 filed on September 27, 2022, Japanese Patent Application No. 2023-020923 filed on February 14, 2023, Japanese Patent Application No. 2023-067426 filed on April 17, 2023, and Japanese Patent Application No. 2023-114233 filed on July 12, 2023, and the entire contents of these four applications are incorporated by reference into this international application.
 1,2,3 FCプラットフォーム
 10 制御装置
 11 電力変換装置
 12 外部装置
 13 DC/DCコンバータ
 14 蓄電装置
 14,14 蓄電池
 15 冷却器
 16 出力点
 17 出力線
 18 燃料系統
 19 給気系統
 21,22,23 FCスタック
 30 パージ系統
 31 排気系統
 32 制御用電源
 33 空気フィルタ
 34 中間熱交換器
 35 イオン交換器
 36 冷却系統
 37 センサ
 38 冷媒タンク
 39 冷熱源
 40 放熱部
 41 受熱部
 42 昇圧コンバータ
 43 水素ポンプ
 44 ウォーターポンプ
 45 空気コンプレッサ
 51,52,53 FCユニット
 61,62,63 電磁開閉器
 71 燃料極
 72 空気極
 73 空気入口
 74 空気出口
 75 水素入口
 76 水素出口
 77 空気入口開閉弁
 78 排空気出口開閉弁
 79 第1気液分離器
 80 混合器
 81 第2気液分離器
 82 回収器
 101,102 燃料電池発電装置
 201,201A,202 燃料電池発電システム
 301,302 補機システム
 400,401,402 燃料電池発電システム
 411,412 第1制御装置
 421~427 第2制御装置
 431~437 補機
 441~447 燃料電池
 451~457 発電装置
 461 第3制御装置
 471,472 システム
 1001,1002 燃料電池システム
 1010,1010a,1010b,1010c,1010d 燃料電池ユニット
 1011 燃料電池セル
 1012 出力調整部
 1013 ガス調整部
 1014 制御部
 1020 制御ユニット
 1021 タイマー
 1030 蓄電ユニット
 1120 制御ユニット
REFERENCE SIGNS LIST 1, 2, 3 FC platform 10 Control device 11 Power conversion device 12 External device 13 DC/DC converter 14 Power storage device 14 1 , 14 n storage battery 15 Cooler 16 Output point 17 Output line 18 Fuel system 19 Air supply system 21, 22, 23 FC stack 30 Purge system 31 Exhaust system 32 Control power supply 33 Air filter 34 Intermediate heat exchanger 35 Ion exchanger 36 Cooling system 37 Sensor 38 Coolant tank 39 Cold source 40 Heat dissipation section 41 Heat receiving section 42 Boost converter 43 Hydrogen pump 44 Water pump 45 Air compressor 51, 52, 53 FC unit 61, 62, 63 Electromagnetic switch 71 Fuel electrode 72 Air electrode 73 Air inlet 74 Air outlet 75 Hydrogen inlet 76 Hydrogen outlet 77 Air inlet on-off valve 78 Exhaust air outlet on-off valve 79 First gas-liquid separator 80 Mixer 81 Second gas-liquid separator 82 Recovery device 101, 102 Fuel cell power generation device 201, 201A, 202 Fuel cell power generation system 301, 302 Auxiliary system 400, 401, 402 Fuel cell power generation system 411, 412 First control device 421 to 427 Second control device 431 to 437 Auxiliary device 441 to 447 Fuel cell 451 to 457 Power generation device 461 Third control device 471, 472 System 1001, 1002 Fuel cell system 1010, 1010a, 1010b, 1010c, 1010d Fuel cell unit 1011 Fuel cell 1012 Output adjustment section 1013 Gas adjustment section 1014 Control section 1020 Control unit 1021 Timer 1030 Power storage unit 1120 Control unit

Claims (41)

  1.  複数の燃料電池ユニットと、
     前記複数の燃料電池ユニットを制御する制御装置と、を備え、
     前記複数の燃料電池ユニットは、それぞれ、共通の出力線に接続される燃料電池を含み、
     前記制御装置は、前記出力線から外部への供給電力が略一定値に維持された状態で、複数の前記燃料電池の各出力電力を変化させる、燃料電池発電装置。
    A plurality of fuel cell units;
    a control device for controlling the plurality of fuel cell units;
    each of the plurality of fuel cell units includes a fuel cell connected to a common output line;
    The control device changes the output power of each of the plurality of fuel cells while maintaining the power supplied from the output line to the outside at a substantially constant value.
  2.  前記制御装置は、前記供給電力が前記略一定値に維持された状態で、前記各出力電力を周期的に変化させる、請求項1に記載の燃料電池発電装置。 The fuel cell power generation device according to claim 1, wherein the control device periodically changes each of the output powers while the supply power is maintained at the substantially constant value.
  3.  前記制御装置は、前記供給電力が前記略一定値に維持された状態で、前記各出力電力を位相が互いに異なる波形で変化させる、請求項2に記載の燃料電池発電装置。 The fuel cell power generation device according to claim 2, wherein the control device changes the output powers with waveforms having mutually different phases while the supply power is maintained at the substantially constant value.
  4.  前記制御装置は、前記供給電力が前記略一定値に維持された状態で、前記各出力電力を階段状、三角波状、又は正弦波状に変化させる、請求項3に記載の燃料電池発電装置。 The fuel cell power generation device according to claim 3, wherein the control device changes each of the output powers in a stepwise, triangular, or sinusoidal wave form while the supply power is maintained at the substantially constant value.
  5.  前記制御装置は、前記供給電力が前記略一定値に維持された状態で、前記各出力電力を前記燃料電池の定格出力よりも低い電力値に制御する、請求項1から4のいずれか一項に記載の燃料電池発電装置。 The fuel cell power generation device according to any one of claims 1 to 4, wherein the control device controls each of the output powers to a power value lower than the rated output of the fuel cell while the supply power is maintained at the substantially constant value.
  6.  前記制御装置は、前記供給電力が前記略一定値に維持された状態で、複数の前記燃料電池の一部の燃料電池の出力を低負荷状態にする、請求項5に記載の燃料電池発電装置。 The fuel cell power generation device according to claim 5, wherein the control device places the output of some of the fuel cells in a low load state while the supply power is maintained at the substantially constant value.
  7.  前記制御装置は、前記供給電力が前記略一定値に維持された状態で、複数の前記燃料電池のうち、一部の前記燃料電池の出力を低負荷状態にし、他の前記燃料電池の出力を最大出力状態にする、請求項6に記載の燃料電池発電装置。 The fuel cell power generation device according to claim 6, wherein the control device, while maintaining the supply power at the substantially constant value, sets the output of some of the fuel cells to a low load state and sets the output of the other fuel cells to a maximum output state.
  8.  前記制御装置は、前記各出力電力を前記定格出力よりも低い各固定値に制御する期間の後に、複数の前記燃料電池の一部の燃料電池の出力を低負荷状態にする、請求項6に記載の燃料電池発電装置。 The fuel cell power generation device according to claim 6, wherein the control device places the output of some of the fuel cells in a low load state after a period during which the output power is controlled to a fixed value lower than the rated output.
  9.  前記制御装置は、前記供給電力が前記略一定値に維持された状態で、前記燃料電池の特性を改善させるリフレッシュ運転を行う、請求項5に記載の燃料電池発電装置。 The fuel cell power generation device according to claim 5, wherein the control device performs a refresh operation to improve the characteristics of the fuel cell while the supply power is maintained at the substantially constant value.
  10.  前記制御装置は、前記各出力電力を、前記定格出力よりも低い各固定値から一時的に変化させる、請求項5に記載の燃料電池発電装置。 The fuel cell power generation device according to claim 5, wherein the control device temporarily changes each of the output powers from a fixed value lower than the rated output.
  11.  前記制御装置は、複数の前記燃料電池の電圧を個別に一時的に低下させる、請求項5に記載の燃料電池発電装置。 The fuel cell power generation device according to claim 5, wherein the control device temporarily reduces the voltage of each of the fuel cells.
  12.  前記制御装置は、複数の前記燃料電池を個別に一時的に停止して、停止中の前記燃料電池の電圧を一時的に低下させる、請求項11に記載の燃料電池発電装置。 The fuel cell power generation device according to claim 11, wherein the control device temporarily stops each of the fuel cells and temporarily reduces the voltage of the fuel cells that are stopped.
  13.  前記制御装置は、停止中の前記燃料電池のカソードの酸素を消費し、前記カソードの触媒に付着した不純物が脱離するまで、停止中の前記燃料電池の電圧を一時的に低下させる、請求項12に記載の燃料電池発電装置。 The fuel cell power generation device according to claim 12, wherein the control device consumes oxygen in the cathode of the fuel cell during a shutdown and temporarily reduces the voltage of the fuel cell during a shutdown until impurities adhering to the catalyst of the cathode are released.
  14.  複数の前記燃料電池は、出力点を経由して前記出力線に接続され、
     前記制御装置は、前記供給電力が前記略一定値に且つ前記出力点における電力が略零に維持されるように、複数の前記燃料電池の発電及び前記出力線に接続される蓄電池の放電を制御する、請求項5に記載の燃料電池発電装置。
    The fuel cells are connected to the output line via output points;
    6. The fuel cell power generation device according to claim 5, wherein the control device controls the power generation of the plurality of fuel cells and the discharge of a storage battery connected to the output line so that the supplied power is maintained at the approximately constant value and the power at the output point is maintained at approximately zero.
  15.  前記制御装置は、前記燃料電池の出力電力を前記電力値よりも一時的に高くする、請求項5に記載の燃料電池発電装置。 The fuel cell power generation device according to claim 5, wherein the control device temporarily increases the output power of the fuel cell above the power value.
  16.  前記制御装置は、前記各出力電力を前記電力値よりも順に一時的に高くする、請求項15に記載の燃料電池発電装置。 The fuel cell power generation device according to claim 15, wherein the control device temporarily increases each of the output powers in sequence above the power value.
  17.  前記制御装置は、前記燃料電池の出力電力を前記電力値よりも一時的に高くして、前記供給電力を前記略一定値よりも一時的に上昇させる、請求項15に記載の燃料電池発電装置。 The fuel cell power generation device according to claim 15, wherein the control device temporarily increases the output power of the fuel cell above the power value, thereby temporarily increasing the supply power above the approximately constant value.
  18.  前記制御装置は、前記燃料電池の出力電力と、前記出力線に接続される蓄電池からの放電電力とを合わせて、前記供給電力を前記略一定値よりも一時的に上昇させる、請求項17に記載の燃料電池発電装置。 The fuel cell power generation device according to claim 17, wherein the control device temporarily increases the supply power above the approximately constant value by combining the output power of the fuel cell and the discharge power from a storage battery connected to the output line.
  19.  前記制御装置は、前記各出力電力を前記定格出力よりも低い各固定値に制御する期間の後に、前記各出力電力を前記各固定値から一時的に変化させる、請求項5に記載の燃料電池発電装置。 The fuel cell power generation device according to claim 5, wherein the control device temporarily changes each of the output powers from the respective fixed values after a period during which each of the output powers is controlled to a respective fixed value lower than the rated output.
  20.  前記制御装置は、前記燃料電池の出力電力と、前記出力線に接続される蓄電池からの放電電力とを合わせて、前記供給電力を前記略一定値に維持する、請求項1から4のいずれか一項に記載の燃料電池発電装置。 The fuel cell power generation device according to any one of claims 1 to 4, wherein the control device maintains the supply power at the approximately constant value by combining the output power of the fuel cell and the discharge power from a storage battery connected to the output line.
  21.  前記燃料電池は、水素を燃料とする、請求項1から4のいずれか一項に記載の燃料電池発電装置。 The fuel cell power generation device according to any one of claims 1 to 4, wherein the fuel cell uses hydrogen as fuel.
  22.  前記制御装置は、前記燃料電池の電圧が閾値に達すると、前記供給電力が前記略一定値に維持されるように、前記各出力電力を変化させる、請求項1から4のいずれか一項に記載の燃料電池発電装置。 The fuel cell power generation device according to any one of claims 1 to 4, wherein the control device changes each of the output powers so that the supply power is maintained at the approximately constant value when the voltage of the fuel cell reaches a threshold value.
  23.  前記制御装置は、複数の前記燃料電池のうち、一部の前記燃料電池を他の前記燃料電池から切り離し、前記供給電力が前記略一定値に維持されるように、前記他の前記燃料電池の出力電力を制御する、請求項1から4のいずれか一項に記載の燃料電池発電装置。 The fuel cell power generation device according to any one of claims 1 to 4, wherein the control device separates some of the fuel cells from the other fuel cells and controls the output power of the other fuel cells so that the supply power is maintained at the approximately constant value.
  24.  請求項1から4のいずれか一項に記載の燃料電池発電装置を備え、
     前記複数の燃料電池ユニットは、前記燃料電池と補機を各々有する複数の発電装置であり又は複数の前記発電装置に含まれるユニットであり、
     前記制御装置は、
     前記供給電力が一定に維持されるように前記燃料電池の出力電力を変化させる指令を、複数の前記発電装置の各々に送信する第1制御装置と、
     複数の前記発電装置の各々に設けられ、前記指令に従って前記補機を操作することで前記燃料電池の出力電力を変化させる第2制御装置と、を含む、燃料電池発電システム。
    The fuel cell power generation device according to any one of claims 1 to 4,
    the plurality of fuel cell units are a plurality of power generation devices each having the fuel cell and an auxiliary device, or are units included in the plurality of power generation devices;
    The control device includes:
    a first control device that transmits a command to each of the plurality of power generating devices to change the output power of the fuel cell so that the supply power is maintained constant;
    a second control device provided in each of the plurality of power generation devices and configured to vary the output power of the fuel cell by operating the auxiliary device in accordance with the command.
  25.  燃料電池セルを備える燃料電池ユニットと、
     前記燃料電池ユニットを制御する制御ユニットと、
    を備え、
     前記制御ユニットは、
      前記燃料電池ユニットの出力を変動させるように制御する第1リフレッシュ処理と、
      前記燃料電池ユニットの動作を停止させ、前記燃料電池ユニットを起動するように制御する第2リフレッシュ処理と、
    を実行する、
    燃料電池システム。
    a fuel cell unit including a fuel cell;
    a control unit for controlling the fuel cell unit;
    Equipped with
    The control unit
    a first refresh process for controlling the output of the fuel cell unit to vary;
    a second refresh process for stopping the operation of the fuel cell unit and controlling the fuel cell unit to start up;
    Execute
    Fuel cell system.
  26.  前記制御ユニットは、前記第1リフレッシュ処理において、
     (a)前記燃料電池ユニットを第1出力で動作させるように制御する処理と、
     (b)前記燃料電池ユニットを前記第1出力より低い第2出力で動作させるように制御する処理と、
     (c)前記燃料電池ユニットを前記第2出力より高い第3出力で動作させるように制御する処理と、
    を順に実行する、
    請求項25に記載の燃料電池システム。
    The control unit, in the first refresh process,
    (a) controlling the fuel cell unit to operate at a first output;
    (b) controlling the fuel cell unit to operate at a second output lower than the first output;
    (c) controlling the fuel cell unit to operate at a third output power, the third output power being higher than the second output power;
    Execute the following in order.
    26. The fuel cell system of claim 25.
  27.  前記制御ユニットは、
     前記(a)処理において、前記第1出力で一定時間維持するように制御し、
     前記(b)処理において、前記第2出力で一定時間維持するように制御し、
     前記(c)処理において、前記第3出力で一定時間維持するように制御する、
    請求項26に記載の燃料電池システム。
    The control unit
    In the process (a), a control is performed so as to maintain the first output for a certain period of time;
    In the process (b), the second output is controlled to be maintained for a certain period of time;
    In the process (c), control is performed so as to maintain the third output for a certain period of time.
    27. The fuel cell system of claim 26.
  28.  前記第1出力及び前記第3出力のそれぞれは、前記燃料電池システムにおける最大出力の80%以上100%以下のいずれかの出力であり、
     前記第2出力は、前記燃料電池システムにおける最大出力の0%以上20%以下のいずれかの出力である、
    請求項26に記載の燃料電池システム。
    each of the first output and the third output is equal to or greater than 80% and equal to or less than 100% of a maximum output of the fuel cell system;
    The second output is an output that is equal to or greater than 0% and equal to or less than 20% of a maximum output of the fuel cell system.
    27. The fuel cell system of claim 26.
  29.  前記制御ユニットは、前記第1リフレッシュ処理において、
     (d)前記燃料電池ユニットを第4出力で動作させるように制御する処理と、
     (e)前記燃料電池ユニットを前記第4出力より高い第5出力で動作させるように制御する処理と、
     (f)前記燃料電池ユニットを前記第5出力より低い第6出力で動作させるように制御する処理と、
    を順に実行する、
    請求項25に記載の燃料電池システム。
    The control unit, in the first refresh process,
    (d) controlling the fuel cell unit to operate at a fourth output;
    (e) controlling the fuel cell unit to operate at a fifth output power, the fifth output power being higher than the fourth output power;
    (f) controlling the fuel cell unit to operate at a sixth output lower than the fifth output;
    Execute the following in order.
    26. The fuel cell system of claim 25.
  30.  前記制御ユニットは、
     前記(d)処理において、前記第4出力で一定時間維持するように制御し、
     前記(e)処理において、前記第5出力で一定時間維持するように制御し、
     前記(f)処理において、前記第6出力で一定時間維持するように制御する、
    請求項29に記載の燃料電池システム。
    The control unit
    In the process (d), the fourth output is controlled to be maintained for a certain period of time;
    In the process (e), the fifth output is controlled to be maintained for a certain period of time;
    In the process (f), the sixth output is controlled to be maintained for a certain period of time.
    30. The fuel cell system of claim 29.
  31.  前記第5出力は、前記燃料電池システムにおける最大出力の80%以上100%以下のいずれかの出力であり、
     前記第4出力及び前記第6出力のそれぞれは、前記燃料電池システムにおける最大出力の0%以上20%以下のいずれかの出力である、
    請求項29に記載の燃料電池システム。
    the fifth output is an output that is equal to or greater than 80% and equal to or less than 100% of a maximum output of the fuel cell system,
    Each of the fourth output and the sixth output is an output that is equal to or greater than 0% and equal to or less than 20% of a maximum output of the fuel cell system.
    30. The fuel cell system of claim 29.
  32.  前記第1リフレッシュ処理を行う時に、前記燃料電池ユニットへの水素及び空気の供給を継続する、
    請求項25から請求項31のいずれか一項に記載の燃料電池システム。
    When performing the first refresh process, the supply of hydrogen and air to the fuel cell unit is continued.
    32. A fuel cell system according to any one of claims 25 to 31.
  33.  前記制御ユニットは、前記第2リフレッシュ処理において、
     (g)前記燃料電池ユニットを動作停止するように制御する処理と、
     (h)前記燃料電池ユニットを起動するように制御する処理と、
     (i)前記燃料電池ユニットを第7出力で動作させるように制御する処理と、
    を順に実行する、
    請求項25から請求項31のいずれか一項に記載の燃料電池システム。
    The control unit, in the second refresh process,
    (g) controlling the fuel cell unit to stop operating;
    (h) controlling the fuel cell unit to start up;
    (i) controlling the fuel cell unit to operate at a seventh output;
    Execute the following in order.
    32. A fuel cell system according to any one of claims 25 to 31.
  34. 前記制御ユニットは、前記(g)処理において、最低時間以上前記燃料電池ユニットを継続して停止するように制御する、
    請求項33に記載の燃料電池システム。
    the control unit controls the fuel cell unit to be continuously stopped for a minimum time or more in the process (g);
    34. The fuel cell system of claim 33.
  35.  前記第7出力は、前記燃料電池システムにおける最大出力の80%以上100%以下のいずれかの出力である、
    請求項33に記載の燃料電池システム。
    The seventh output is any output between 80% and 100% of a maximum output of the fuel cell system.
    34. The fuel cell system of claim 33.
  36.  前記第1リフレッシュ処理を行う時に、前記燃料電池ユニットへの水素及び空気の供給を継続する、
    請求項33に記載の燃料電池システム。
    When performing the first refresh process, the supply of hydrogen and air to the fuel cell unit is continued.
    34. The fuel cell system of claim 33.
  37.  前記制御ユニットは、前記第2リフレッシュ処理において、
     (j)前記燃料電池ユニットを第8出力で動作させるように制御する処理と、
     (k)前記燃料電池ユニットを動作停止するように制御する処理と、
     (l)前記燃料電池ユニットを起動するように制御する処理と、
     (m)前記燃料電池ユニットを第9出力で動作させるように制御する処理と、
    を順に実行する、
    請求項25から請求項31のいずれか一項に記載の燃料電池システム。
    The control unit, in the second refresh process,
    (j) controlling the fuel cell unit to operate at an eighth output;
    (k) controlling the fuel cell unit to stop operating;
    (l) controlling the fuel cell unit to start up;
    (m) controlling the fuel cell unit to operate at a ninth output;
    Execute the following in order.
    32. A fuel cell system according to any one of claims 25 to 31.
  38. 前記制御ユニットは、前記(k)処理において、最低時間以上前記燃料電池ユニットを継続して停止するように制御する、
    請求項37に記載の燃料電池システム。
    the control unit controls the fuel cell unit to be continuously stopped for a minimum time or more in the process (k);
    38. The fuel cell system of claim 37.
  39.  前記第8出力及び前記第9出力のそれぞれは、前記燃料電池システムにおける最大出力の80%以上100%以下のいずれかの出力である、
    請求項37に記載の燃料電池システム。
    Each of the eighth output and the ninth output is an output that is 80% or more and 100% or less of a maximum output in the fuel cell system.
    38. The fuel cell system of claim 37.
  40.  前記第1リフレッシュ処理を行う時に、前記燃料電池ユニットへの水素及び空気の供給を継続する、
    請求項37に記載の燃料電池システム。
    When performing the first refresh process, the supply of hydrogen and air to the fuel cell unit is continued.
    38. The fuel cell system of claim 37.
  41.  燃料電池セルを備える燃料電池ユニットの制御方法であって、
     前記燃料電池ユニットの出力を変動させるように制御する工程と、
     前記燃料電池ユニットの動作を停止させ、前記燃料電池ユニットを起動するように制御する工程と、
    を含む、
    燃料電池ユニットの制御方法。
    A method for controlling a fuel cell unit including fuel cells, comprising the steps of:
    controlling the output of the fuel cell unit to vary;
    a step of controlling the fuel cell unit to stop operating and to start up the fuel cell unit;
    including,
    A method for controlling a fuel cell unit.
PCT/JP2023/035117 2022-09-27 2023-09-27 Fuel cell power generator, fuel cell power generation system, fuel cell system, and method for controlling fuel cell unit WO2024071183A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202380023998.4A CN118765448A (en) 2022-09-27 2023-09-27 Fuel cell power generation device, fuel cell power generation system, fuel cell system, and method for controlling fuel cell unit

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2022153948 2022-09-27
JP2022-153948 2022-09-27
JP2023-020923 2023-02-14
JP2023020923A JP7524984B1 (en) 2023-02-14 2023-02-14 Fuel Cell Power Generation System
JP2023-067426 2023-04-17
JP2023067426 2023-04-17
JP2023-114233 2023-07-12
JP2023114233 2023-07-12

Publications (1)

Publication Number Publication Date
WO2024071183A1 true WO2024071183A1 (en) 2024-04-04

Family

ID=90477811

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/035117 WO2024071183A1 (en) 2022-09-27 2023-09-27 Fuel cell power generator, fuel cell power generation system, fuel cell system, and method for controlling fuel cell unit

Country Status (1)

Country Link
WO (1) WO2024071183A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010062162A (en) * 2009-12-14 2010-03-18 Hitachi Ltd Polymer electrolyte fuel cell power generation system and distributed power supply system for domestic use
JP2011175963A (en) * 2010-01-29 2011-09-08 Sanyo Electric Co Ltd Fuel cell system
JP6614120B2 (en) * 2016-12-13 2019-12-04 トヨタ自動車株式会社 Catalyst activation method for fuel cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010062162A (en) * 2009-12-14 2010-03-18 Hitachi Ltd Polymer electrolyte fuel cell power generation system and distributed power supply system for domestic use
JP2011175963A (en) * 2010-01-29 2011-09-08 Sanyo Electric Co Ltd Fuel cell system
JP6614120B2 (en) * 2016-12-13 2019-12-04 トヨタ自動車株式会社 Catalyst activation method for fuel cell

Similar Documents

Publication Publication Date Title
US7695839B2 (en) Method for improved power up-transient response in the fuel cell system
US20080107933A1 (en) Fuel cell hibernation mode method and apparatus
JPWO2005078844A1 (en) Fuel cell system and method for removing residual fuel gas
CA2583549A1 (en) Fuel cell system method and apparatus
US8617754B2 (en) Systems and methods for independently controlling the operation of fuel cell stacks and fuel cell systems incorporating the same
JP2013225514A (en) Exhaust emissions control of hydrogen throughout fuel cell stack operation
JP2008192614A (en) Method of mitigating battery deterioration during starting and shutting down by storing of h2/n2
US9437889B2 (en) Powering a fuel cell stack during standby
JP2007059120A (en) Fuel battery system
US20120169127A1 (en) Power supply system and fuel cell backup power system thereof
WO2024071183A1 (en) Fuel cell power generator, fuel cell power generation system, fuel cell system, and method for controlling fuel cell unit
KR101418422B1 (en) System for independent start-up of fuel cell for ship
JP7525027B2 (en) Fuel cell power generation device and fuel cell power generation system
WO2008066228A1 (en) Fuel cell system including reliable power distributor
US20220293974A1 (en) Fuel cell system
JP2007103370A (en) System and method for control of cathode stoichiometry to minimize relative humidity deviation in transient phenomenon
JP7477808B1 (en) Fuel Cell Power Generation System
JP7524984B1 (en) Fuel Cell Power Generation System
CN118765448A (en) Fuel cell power generation device, fuel cell power generation system, fuel cell system, and method for controlling fuel cell unit
JP5358988B2 (en) Fuel cell system
JP7477005B1 (en) Fuel cell power generation device and fuel cell power generation system
JP7143785B2 (en) fuel cell system
KR101435394B1 (en) Fuel cell operation system system and method
JP7477032B1 (en) Power supply system and control method
US11688865B2 (en) Fuel cell system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23872405

Country of ref document: EP

Kind code of ref document: A1