WO2024071162A1 - Optically anisotropic laminate and optical element - Google Patents

Optically anisotropic laminate and optical element Download PDF

Info

Publication number
WO2024071162A1
WO2024071162A1 PCT/JP2023/035064 JP2023035064W WO2024071162A1 WO 2024071162 A1 WO2024071162 A1 WO 2024071162A1 JP 2023035064 W JP2023035064 W JP 2023035064W WO 2024071162 A1 WO2024071162 A1 WO 2024071162A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
protective layer
ring
liquid crystal
film
Prior art date
Application number
PCT/JP2023/035064
Other languages
French (fr)
Japanese (ja)
Inventor
祥貢 光田
輝恒 大澤
淳一 大泉
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Publication of WO2024071162A1 publication Critical patent/WO2024071162A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements

Definitions

  • the present invention relates to an optically anisotropic laminate and optical element that exhibits high dichroism and is useful for linear polarizing films, circular polarizing films, etc., provided in display elements such as light control elements, liquid crystal elements (LCDs), and organic electroluminescence elements (OLEDs).
  • display elements such as light control elements, liquid crystal elements (LCDs), and organic electroluminescence elements (OLEDs).
  • linear and circular polarizing films are used to control the optical rotation and birefringence of the display.
  • Circular polarizing films are also used in OLEDs to prevent reflection of external light in bright places.
  • polarizing films include a polarizing film made of polyvinyl alcohol (PVA) dyed with low concentration of iodine (iodine-PVA polarizing film) (Patent Document 1).
  • PVA polyvinyl alcohol
  • iodine-PVA polarizing film dyed with low concentrations of iodine
  • problems such as changes in color due to sublimation or deterioration of iodine depending on the usage environment, and warping due to relaxation of the stretching of PVA.
  • an anisotropic dye film formed by coating a liquid crystal composition containing a dye functions as a polarizing film (Patent Document 2).
  • an optically anisotropic laminate is formed by laminating a protective layer on the anisotropic dye layer.
  • the present invention aims to provide an optically anisotropic laminate in which an anisotropic dye layer and a protective layer are laminated, which suppresses deterioration of appearance and performance under heating conditions and maintains good appearance and performance, and an optical element.
  • the present inventors have discovered that by setting the absolute value of the surface free energy difference between the anisotropic dye layer and the protective layer to a predetermined value or more, it is possible to suppress compatibility between the anisotropic dye layer and the protective layer, and to provide an optically anisotropic laminate that exhibits good heat resistance without mixing between the two layers even in a heated environment, and that is excellent in solvent resistance, appearance, and performance.
  • the gist of the first aspect of the present invention is as follows.
  • An optically anisotropic laminate in which a protective layer is laminated on an anisotropic dye layer, the anisotropic dye layer is a layer formed from a composition for forming an anisotropic dye film, which contains a dye, a polymerizable liquid crystal compound, and a photopolymerization initiator;
  • An optically anisotropic laminate wherein the absolute value of the difference in surface free energy between the anisotropic dye layer and the protective layer is 3 mN/ m2 or more.
  • -Q1 represents a hydrogen atom or a polymerizable group
  • -Q2 represents a polymerizable group
  • -R 1 - and -R 2 - each independently represent a chain organic group
  • -A 11 - and -A 13 - each independently represent a partial structure represented by the following formula (2), a divalent organic group, or a single bond
  • -A 12 - represents a partial structure represented by the following formula (2) or a divalent organic group
  • two -Y 2 -A 13 - may be the same or different.
  • -Cy- represents a hydrocarbon ring group or a heterocyclic group
  • the present inventors have discovered that by setting the surface free energy of a film obtained by curing a curable resin contained in a composition for forming a protective layer to a predetermined value or less, it is possible to suppress compatibility between the anisotropic dye layer and the protective layer, and provide an optically anisotropic laminate that exhibits good heat resistance without mixing between the two layers even in a heated environment, and that also has excellent solvent resistance, appearance, and performance.
  • the second aspect of the present invention is as follows.
  • An optically anisotropic laminate in which a protective layer is laminated on an anisotropic dye layer, the anisotropic dye layer is a layer formed from a composition for forming an anisotropic dye film, which contains a dye, a polymerizable liquid crystal compound, and a photopolymerization initiator; the protective layer is a layer formed from a protective layer-forming composition containing a curable resin, An optically anisotropic laminate, wherein the surface free energy of a film obtained by curing the curable resin is 45 mN/ m2 or less.
  • -Q1 represents a hydrogen atom or a polymerizable group
  • -Q2 represents a polymerizable group
  • -R 1 - and -R 2 - each independently represent a chain organic group
  • -A 11 - and -A 13 - each independently represent a partial structure represented by the following formula (2), a divalent organic group, or a single bond
  • -A 12 - represents a partial structure represented by the following formula (2) or a divalent organic group
  • two -Y 2 -A 13 - may be the same or different.
  • -Cy- represents a hydrocarbon ring group or a heterocyclic group
  • the present inventors have discovered that by forming a protective layer from a composition for forming a protective layer containing a photocurable resin and using a photocurable silicone resin as the photocurable resin, it is possible to suppress compatibility between the anisotropic dye layer and the protective layer, and to provide an optically anisotropic laminate that exhibits good heat resistance without mixing between the two layers even in a heated environment, and that is excellent in solvent resistance, appearance, and performance.
  • the third aspect of the present invention is as follows.
  • An optically anisotropic laminate in which a protective layer is laminated on an anisotropic dye layer, the anisotropic dye layer is a layer formed from a composition for forming an anisotropic dye film, which contains a dye, a polymerizable liquid crystal compound, and a photopolymerization initiator; the protective layer is a layer formed from a protective layer-forming composition containing a photocurable resin,
  • -Q1 represents a hydrogen atom or a polymerizable group
  • -Q2 represents a polymerizable group
  • -R 1 - and -R 2 - each independently represent a chain organic group
  • -A 11 - and -A 13 - each independently represent a partial structure represented by the following formula (2), a divalent organic group, or a single bond
  • -A 12 - represents a partial structure represented by the following formula (2) or a divalent organic group
  • two -Y 2 -A 13 - may be the same or different.
  • -Cy- represents a hydrocarbon ring group or a heterocyclic group
  • the optically anisotropic laminate of the present invention is excellent in heat resistance and solvent resistance, and can maintain a good appearance and a high degree of polarization when used as a polarizer.
  • the optical element of the present invention contains such an optically anisotropic laminate of the present invention, and therefore can maintain excellent optical performance.
  • the optically anisotropic laminate of the first invention of the present invention is an optically anisotropic laminate in which a protective layer (hereinafter, may be referred to as the "protective layer of the first invention") is laminated on an anisotropic dye layer (hereinafter, may be referred to as the "anisotropic dye film of the present invention” or simply as the “anisotropic dye film”), the anisotropic dye layer is a layer formed from a composition for forming an anisotropic dye film containing a dye, a polymerizable liquid crystal compound, and a photopolymerization initiator, and is characterized in that the absolute value of the surface free energy difference between the anisotropic dye layer and the protective layer is 3 mN/ m2 or more.
  • the optically anisotropic laminate of the second invention of the present invention is an optically anisotropic laminate in which a protective layer (hereinafter, may be referred to as the "protective layer of the second invention") is laminated on an anisotropic dye layer (hereinafter, may be referred to as the "anisotropic dye film of the present invention” or simply as the “anisotropic dye film”),
  • the anisotropic dye layer is a layer formed from an anisotropic dye film-forming composition containing a dye, a polymerizable liquid crystal compound, and a photopolymerization initiator
  • the protective layer is a layer formed from a protective layer-forming composition containing a curable resin (hereinafter, may be referred to as the "protective layer-forming composition of the second invention"), and the surface free energy of the film obtained by curing the curable resin is 32 mN/ m2 or less.
  • the optically anisotropic laminate of the third invention of the present invention is an optically anisotropic laminate in which a protective layer (hereinafter, sometimes referred to as the "protective layer of the third invention") is laminated on an anisotropic dye layer (hereinafter, sometimes referred to as the "anisotropic dye film of the present invention” or simply as the “anisotropic dye film”)
  • the anisotropic dye layer is a layer formed from a composition for forming an anisotropic dye film containing a dye, a polymerizable liquid crystal compound, and a photopolymerization initiator
  • the protective layer is a layer formed from a composition for forming a protective layer containing a photocurable resin
  • the photocurable resin is a photocurable silicone resin.
  • the "optically anisotropic laminate of the first invention”, the “optically anisotropic laminate of the second invention” and the “optically anisotropic laminate of the third invention” will be collectively referred to as the “optically anisotropic laminate of the present invention”.
  • the "protective layer of the first invention”, the “protective layer of the second invention” and the “protective layer of the third invention” are collectively referred to as the “protective layer of the present invention”.
  • the anisotropic dye film referred to in this invention is a dye film that has anisotropy in electromagnetic properties in any two directions selected from a total of three directions in a three-dimensional coordinate system, the thickness direction of the anisotropic dye film and any two orthogonal in-plane directions.
  • electromagnetic properties include optical properties such as absorption and refraction, and electrical properties such as resistance and capacitance.
  • the protective layer referred to in the present invention is a layer for imparting functionality such as abrasion resistance, scratch resistance, stress relaxation resistance, chemical resistance, gas resistance, water resistance, and corrosion resistance, as well as preventing bleeding, flattening, making the surface easier to adhere, releasing the surface, and adjusting optical properties.
  • the protective layer may be made of a photocurable film or may be a layer that does not have polymerizability, but is preferably a photocurable film.
  • the total thickness (overall thickness) of the optically anisotropic laminate of the present invention is preferably 0.5 ⁇ m or more, more preferably 1 ⁇ m or more, and even more preferably 1.5 ⁇ m or more.
  • the total thickness (overall thickness) of the optically anisotropic laminate of the present invention is preferably 800 ⁇ m or less, more preferably 500 ⁇ m or less, and even more preferably 300 ⁇ m or less.
  • the optically anisotropic laminate of the present invention having an anisotropic dye layer and a protective layer may be laminated with a photocurable film or a functional film that does not have photopolymerizability other than the anisotropic dye layer and the protective layer.
  • other functional films include adhesive films having tackiness and/or adhesion, anti-reflection films, retardation films, light control films that absorb, reflect or scatter light, low refractive films, high refractive films, electrically insulating films, electrically conductive films, alignment films, release films, etc.
  • the anisotropic dye layer is usually produced by irradiating an active energy ray to a film formed by wet film formation of a composition for forming an anisotropic dye film containing a dye, a polymerizable liquid crystal compound, and a photopolymerization initiator, as described below (hereinafter, sometimes referred to as the "composition for forming an anisotropic dye film of the present invention").
  • the polymerizable liquid crystal compound in the composition for forming an anisotropic dye film is at least partially polymerized during the manufacturing process of the anisotropic dye film, and becomes a polymer of the polymerizable liquid crystal compound and is present in the anisotropic dye film.
  • the protective layer is preferably a layer formed from a protective layer-forming composition containing a photocurable silicone resin described below (hereinafter, sometimes referred to as the "protective layer-forming composition of the present invention").
  • the protective layer is usually a layer formed from a protective layer-forming composition containing a photocurable silicone resin described below, that is, the protective layer-forming composition of the present invention.
  • the optically anisotropic laminate of the first invention is characterized in that the absolute value of the surface free energy difference between the anisotropic dye layer of the present invention and the protective layer of the first invention is 3 mN/m 2 or more. If the absolute value of the surface free energy difference is 3 mN/m 2 or more, the heat resistance and solvent resistance are excellent, and the appearance and performance as a polarizer or the like can be stably maintained.
  • the absolute value of the surface free energy difference between the anisotropic dye layer of the present invention and the protective layer of the first invention is preferably 5 mN/ m2 or more, more preferably 8 mN/ m2 or more, and even more preferably 12 mN/m2 or more .
  • the absolute value of this surface free energy difference is usually 60 mN/ m2 or less due to the influence of intermolecular interactions, etc.
  • the following methods (1) and/or (2) can be used to set the absolute value of the difference in surface free energy between the anisotropic dye layer of the present invention and the protective layer of the first invention to the above lower limit or more.
  • (1) Reducing the surface free energy of the protective layer In order to reduce the surface energy of the protective layer, the protective layer-forming composition of the present invention containing a photocurable silicone resin described below, particularly a photocurable silicone resin having fluorine atoms, is used as the photocurable resin, thereby suppressing intermolecular interactions and reducing the dispersion component of the surface free energy, thereby making it possible to reduce the surface energy of the protective layer.
  • the surface free energy of the anisotropic dye layer formed using the anisotropic dye film-forming composition suitable for the present invention described below is usually about 20 to 50 mN/m 2 , preferably 30 to 40 mN/m 2.
  • the surface free energy of the protective layer formed using the protective layer-forming composition suitable for the present invention described below is usually about 15 to 45 mN/m 2 , preferably 20 to 35 mN/m 2. Therefore, the surface free energy of the anisotropic dye layer of the present invention is preferably about 3 to 30 mN/m 2 higher than the surface free energy of the protective layer of the first invention.
  • the surface free energy is measured for the cured anisotropic dye film surface and the protective layer surface, respectively, by the method described in the Examples section below.
  • the optically anisotropic laminate of the second invention is characterized in that it comprises a protective layer formed from a protective layer-forming composition containing a curable resin, and the surface free energy of the film obtained by curing the curable resin is 45 mN/m 2 or less.
  • a protective layer formed from a protective layer-forming composition containing a curable resin and the surface free energy of the film obtained by curing the curable resin is 45 mN/m 2 or less, it is possible to stably maintain the appearance and performance as a polarizer or the like, with excellent heat resistance and solvent resistance.
  • the small surface free energy of the film obtained by curing the curable resin means that the film tends to have low wettability to other substances, and the low affinity with the anisotropic dye film as another substance means that the two layers are less likely to mix even when exposed to heat or solvent, resulting in good heat resistance and solvent resistance.
  • the surface free energy of the film obtained by curing the curable resin is 45 mN / m 2 or less, preferably 40 mN / m 2 or less, more preferably 35 mN / m 2 or less, and even more preferably 30 mN / m 2 or less.
  • the curable resin contained in the protective layer forming composition of the second invention there is no particular restriction on the lower limit of the surface free energy of the film obtained by curing the curable resin, but in order to laminate another layer on the protective layer, it is preferably 10 mN / m 2 or more, more preferably 15 mN / m 2 or more, and even more preferably 18 mN / m 2 or more.
  • each component of the surface free energy of the film obtained by curing the protective layer resin can take any range as long as the surface free energy is within the above range, but the dispersion component ⁇ d is preferably 35 mN/ m2 or less, more preferably 30 mN/m2 or less, preferably 10 mN/ m2 or more, more preferably 15 mN/ m2 or more, and even more preferably 18 mN/ m2 or more.
  • the polar component ⁇ h is preferably 5.0 mN/ m2 or less, more preferably 3.0 mN/ m2 or less. There is no particular limit to the lower limit of ⁇ d , but it is usually 0.0 mN/ m2 or more.
  • the curable resin contained in the protective layer forming composition of the second invention a method for making the surface free energy of the film obtained by curing the curable resin equal to or less than the above upper limit can be mentioned, for example, by using the protective layer forming composition of the present invention containing the photocurable silicone resin described below, particularly the photocurable silicone resin having fluorine atoms, as the photocurable resin to form the protective layer. That is, the photocurable silicone resin described below, particularly the photocurable silicone resin having fluorine atoms, can reduce the surface free energy by suppressing intermolecular interactions and reducing the dispersion component of the surface free energy.
  • the surface free energy of the protective layer formed using the protective layer-forming composition suitable for the present invention described below is usually about 10 to 32 mN/m 2 , and preferably 15 to 30 mN/m 2 .
  • the surface free energy is measured for the cured resin layer surface, the anisotropic dye film surface, and the protective layer surface, respectively, by the method described in the Examples section below.
  • the optically anisotropic laminate of the third invention is characterized in that the protective layer is a layer formed from the protective layer-forming composition of the present invention, which contains a photocurable silicone resin described below.
  • the protective layer-forming composition contains a photocurable silicone resin, good curability can be obtained, and the protective layer can exhibit sufficient protective performance.
  • the anisotropic dye layer is a dye film having anisotropy in electromagnetic properties in any two directions selected from a total of three directions in a three-dimensional coordinate system, the thickness direction and any two orthogonal in-plane directions.
  • the electromagnetic properties include optical properties such as absorption and refraction, and electrical properties such as resistance and capacitance.
  • the film having optical anisotropy such as absorption or refraction include a polarizing film such as a linear polarizing film or a circular polarizing film, a retardation film, and a conductive anisotropic dye film.
  • the anisotropic dye film is preferably used as a polarizing film or a conductive anisotropic dye film, and more preferably as a polarizing film.
  • the anisotropic dye film can function as a polarizing film that obtains linearly polarized light, circularly polarized light, elliptically polarized light, etc. by utilizing the anisotropy of light absorption.
  • the anisotropic dye film can function as various anisotropic dye films having refractive anisotropy, conductive anisotropy, etc.
  • the orientation characteristics of the anisotropic dye film can be expressed by a dichroic ratio. If the dichroic ratio is 8 or more, it functions as a polarizing element.
  • the dichroic ratio is preferably 15 or more, more preferably 20 or more, even more preferably 25 or more, particularly preferably 30 or more, and most preferably 40 or more.
  • the film is useful as an optical element, particularly a polarizing element, as described below.
  • the dichroic ratio (D) in the present invention is expressed by the following formula when the dyes are uniformly oriented.
  • D Az/Ay
  • Az is the absorbance observed when the polarization direction of light incident on the anisotropic dye film is parallel to the orientation direction of the anisotropic dye
  • Ay is the absorbance observed when the polarization direction of light incident on the anisotropic dye film is perpendicular to the orientation direction of the anisotropic dye.
  • any wavelength may be selected depending on the purpose.
  • the transmittance of the anisotropic dye film of the present invention in the visible light wavelength range is preferably 25% or more, more preferably 35% or more, and particularly preferably 40% or more.
  • the transmittance may be the upper limit according to the application. For example, when the degree of polarization is to be increased, the transmittance is preferably 50% or less.
  • the film is useful as an optical element, which will be described later, and is particularly useful as an optical element for liquid crystal displays used for color display, and as an anti-reflection film combining an anisotropic dye film and a retardation film.
  • the anisotropic dye film of the present invention has a dry thickness of preferably 10 nm or more, more preferably 100 nm or more, and even more preferably 500 nm or more.
  • the anisotropic dye film of the present invention has a dry thickness of preferably 30 ⁇ m or less, more preferably 10 ⁇ m or less, and even more preferably 5 ⁇ m or less.
  • the anisotropic dye film of the present invention is formed using the composition for forming an anisotropic dye film of the present invention, which contains a dye, a polymerizable liquid crystal compound, and a photopolymerization initiator.
  • the anisotropic dye film-forming composition of the present invention may contain additives and solvents other than the dye, the polymerizable liquid crystal compound and the photopolymerization initiator.
  • a dye is a substance or compound that absorbs at least a part of the wavelengths in the visible light region (380 nm to 780 nm).
  • Dyes that can be used in the present invention include dichroic dyes.
  • a dichroic dye is a dye that has different absorbance in the long axis direction of the molecule and absorbance in the short axis direction.
  • the dye may or may not have liquid crystallinity. Having liquid crystallinity means that a liquid crystal phase is expressed at any temperature.
  • the dyes contained in the anisotropic dye film-forming composition of the present invention include azo dyes, quinone dyes (including naphthoquinone dyes, anthraquinone dyes, etc.), stilbene dyes, cyanine dyes, phthalocyanine dyes, indigo dyes, condensed polycyclic dyes (including perylene dyes, oxazine dyes, acridine dyes, etc.).
  • quinone dyes including naphthoquinone dyes, anthraquinone dyes, etc.
  • stilbene dyes include cyanine dyes, phthalocyanine dyes, indigo dyes, condensed polycyclic dyes (including perylene dyes, oxazine dyes, acridine dyes, etc.).
  • cyanine dyes including naphthoquinone dyes, anthraquinone dyes, etc.
  • stilbene dyes include cyanine dyes, phthal
  • An example of the azo dye is a compound represented by the formula (A).
  • D 1 , D 2 and D 3 each independently represent a phenylene group which may have a substituent, a naphthylene group which may have a substituent, or a divalent heterocyclic group which may have a substituent;
  • p represents an integer of 0 to 4; When p is an integer of 2 or more, multiple D2 may be the same or different;
  • R 11 and R 12 each independently represent a monovalent organic group.
  • D 1 , D 2 and D 3 each independently represent a phenylene group which may have a substituent, a naphthylene group which may have a substituent, or a divalent heterocyclic group which may have a substituent.
  • a 1,4-phenylene group is preferred because it provides high molecular linearity.
  • a 1,4-naphthylene group or a 2,6-naphthylene group is preferred because the linearity of the molecule is high.
  • the divalent heterocyclic group is a heterocyclic group having a ring with preferably 3 to 14 carbon atoms, more preferably 10 or less. Monocyclic or bicyclic heterocyclic groups are particularly preferred.
  • the non-carbon atom constituting the divalent heterocyclic group is at least one selected from a nitrogen atom, a sulfur atom, and an oxygen atom.
  • a heterocyclic group has multiple non-carbon atoms constituting the ring, these may be the same or different.
  • divalent heterocyclic groups include pyridinediyl, quinolinediyl, isoquinolinediyl, thiazolediyl, benzothiazolediyl, thienothiazolediyl, thienothiophenediyl, benzimidazolidinonediyl, benzofurandiyl, phthalimidodiyl, oxazolediyl, and benzoxazolediyl groups.
  • Examples of the substituents that the phenylene group, naphthylene group, and divalent heterocyclic group in D 1 , D 2 , and D 3 may have include an alkyl group having 1 to 4 carbon atoms; an alkoxy group having 1 to 4 carbon atoms, such as a methoxy group, an ethoxy group, and a butoxy group; a fluorinated alkyl group having 1 to 4 carbon atoms, such as a trifluoromethyl group; a cyano group; a nitro group; a hydroxyl group; a halogen atom; and a substituted or unsubstituted amino group, such as an amino group, a diethylamino group, and a pyrrolidino group.
  • the substituted amino group means an amino group having one or two alkyl groups having 1 to 4 carbon atoms, or an amino group in which two substituted alkyl groups are bonded to each other to form an alkanediyl group having 2 to 8 carbon atoms.
  • the unsubstituted amino group is -NH 2.
  • Examples of the alkyl group having 1 to 4 carbon atoms of the substituted amino group include a methyl group, an ethyl group, and a butyl group.
  • alkanediyl group having 2 to 8 carbon atoms examples include an ethylene group, a propane-1,3-diyl group, a butane-1,3-diyl group, a butane-1,4-diyl group, a pentane-1,5-diyl group, a hexane-1,6-diyl group, a heptane-1,7-diyl group, and an octane-1,8-diyl group.
  • the phenylene group, naphthylene group, and divalent heterocyclic group in D 1 , D 2 , and D 3 are preferably unsubstituted, or, if substituted, are preferably substituted with a methyl group, a methoxy group, a hydroxyl group, a fluorine atom, a chlorine atom, a dimethylamino group, a pyrrolidinyl group, or a piperidinyl group.
  • p represents an integer of 0 to 4. From the viewpoints of solubility in solvents, compatibility with liquid crystal compounds, color tone, and ease of manufacture, p is preferably 1 or more, more preferably 4 or less, and even more preferably 3 or less.
  • R 11 and R 12 each independently represent a monovalent organic group.
  • the monovalent organic group in R 11 and R 12 include a hydrogen atom, an alkyl group having 1 to 20 carbon atoms which may have a branch; an alicyclic alkyl group having 1 to 20 carbon atoms; an alkoxy group having 1 to 20 carbon atoms which may have a branch, such as a methoxy group, an ethoxy group, and a butoxy group; a fluorinated alkyl group having 1 to 20 carbon atoms which may have a branch, such as a trifluoromethyl group; a cyano group; a nitro group; a hydroxyl group; a halogen atom; a substituted or unsubstituted amino group such as an amino group, a diethylamino group, and a pyrrolidino group; a carboxy group; an alkyloxycarbonyl group having 1 to 20 carbon atoms which may have a branch, such as a
  • the substituted amino group refers to an amino group having one or two alkyl groups having 1 to 20 carbon atoms, which may be branched, or an amino group in which two substituted alkyl groups are bonded to each other to form an alkanediyl group having 2 to 20 carbon atoms.
  • the unsubstituted amino group is -NH 2 .
  • Examples of the alkyl group having 1 to 20 carbon atoms in the substituted amino group include a methyl group, an ethyl group, and a butyl group.
  • alkanediyl group having 2 to 20 carbon atoms examples include an ethylene group, a propane-1,3-diyl group, a butane-1,3-diyl group, a butane-1,4-diyl group, a pentane-1,5-diyl group, a hexane-1,6-diyl group, a heptane-1,7-diyl group, and an octane-1,8-diyl group.
  • R 11 and R 12 are preferably a hydrogen atom or a chain group.
  • R 11 and R 12 are preferably a hydrogen atom or an aliphatic organic group. In yet another embodiment, R 11 and R 12 are preferably a hydrogen atom or an aliphatic organic group in which a portion of the carbon atom is replaced with a nitrogen atom and/or an oxygen atom.
  • chain group examples include the above-mentioned alkyl group having 1 to 20 carbon atoms, which may be branched; alkoxy group having 1 to 20 carbon atoms, which may be branched; fluorinated alkyl group having 1 to 20 carbon atoms, which may be branched; substituted or unsubstituted amino group (substituted amino group means an amino group having one or two alkyl groups having 1 to 20 carbon atoms, which may be branched.
  • An unsubstituted amino group is -NH2 ); carboxy group; alkyloxycarbonyl group having 1 to 20 carbon atoms, which may be branched; carbamoyl group; alkylcarbamoyl group having 1 to 20 carbon atoms, which may be branched; sulfamoyl group; alkylsulfamoyl group having 1 to 20 carbon atoms, which may be branched; acylamino group having 1 to 20 carbon atoms, which may be branched; acyloxy group having 1 to 20 carbon atoms, which may be branched; sulfanyl group; alkylsulfanyl group having 1 to 20 carbon atoms, and the like.
  • Aliphatic organic groups include the above-mentioned alkyl groups having 1 to 20 carbon atoms, which may be branched, and alicyclic alkyl groups having 1 to 20 carbon atoms.
  • Examples of the aliphatic organic group in which a part of the carbon atoms is replaced by a nitrogen atom and/or an oxygen atom include the above-mentioned alkoxy group having 1 to 20 carbon atoms, which may be branched; substituted or unsubstituted amino group; carboxy group; alkyloxycarbonyl group having 1 to 20 carbon atoms, which may be branched; carbamoyl group; alkylcarbamoyl group having 1 to 20 carbon atoms, which may be branched; acylamino group having 1 to 20 carbon atoms, which may be branched; and acyloxy group having 1 to 20 carbon atoms, which may be branched.
  • the above-mentioned substituted amino group means an amino group having one or two alkyl groups having 1 to 20 carbon atoms, which may be branched, or an amino group in which two substituted alkyl groups are bonded to each other to form an alkanediyl group having 2 to 20 carbon atoms.
  • the unsubstituted amino group is -NH2 .
  • Examples of the alkyl group having 1 to 20 carbon atoms of the substituted amino group include a methyl group, an ethyl group, and a butyl group.
  • alkanediyl group having 2 to 20 carbon atoms examples include an ethylene group, a propane-1,3-diyl group, a butane-1,3-diyl group, a butane-1,4-diyl group, a pentane-1,5-diyl group, a hexane-1,6-diyl group, a heptane-1,7-diyl group, and an octane-1,8-diyl group.
  • R 11 and R 12 are each preferably independently a hydrogen atom, an alkyl group having 1 to 10 carbon atoms such as a butyl group, a pentyl group, a hexyl group, a heptyl group, or an octyl group, an alkoxy group having 1 to 10 carbon atoms such as a butoxy group, a pentyloxy group, a hexyloxy group, a heptyloxy group, or an octyloxy group, a diethylamino group, a pyrrolidino group, or a piperidinyl group.
  • the preferred chain organic groups having a polymerizable group of R 1 and R 2 in the liquid crystal compound described later are also preferably used.
  • the dye contained in the anisotropic dye film of the present invention is not particularly limited, and any known dye can be used.
  • known dyes include the dyes (dichroic dyes and dichroic dyes) described in the above-mentioned Patent Document 1, Japanese Patent No. 5982762, JP-A-2017-025317, and JP-A-2014-095899.
  • the molecular weight of these dyes is preferably 300 or more, more preferably 350 or more, even more preferably 380 or more, and is preferably 1500 or less, more preferably 1200 or less, and even more preferably 1000 or less.
  • the molecular weight of the dye according to the present invention is preferably 300 to 1500, more preferably 350 to 1200, and even more preferably 380 to 1000.
  • the molecular weight of the dye is the sum of the atomic weights contained in the dye molecule.
  • the content of the dye (dichroic dye) in the anisotropic dye film is, for example, preferably 0.01 parts by mass or more, more preferably 0.05 parts by mass or more, more preferably 50 parts by mass or less, more preferably 30 parts by mass or less, and even more preferably 10 parts by mass or less, relative to the anisotropic dye film (100 parts by mass).
  • the content of the dye (dichroic dye) in the anisotropic dye film is, for example, preferably 0.01 to 50 parts by mass, more preferably 0.05 to 30 parts by mass, and even more preferably 0.05 to 10 parts by mass, relative to the anisotropic dye film (100 parts by mass).
  • the content of the dye (dichroic dye) is within the above range, the polymerizable liquid crystal compound tends to be polymerized while maintaining high orientation in the anisotropic dye film of the present invention. If the content of the dye (dichroic dye) is equal to or greater than the above lower limit, sufficient light absorption and sufficient polarization performance tend to be obtained. If the content of the dye (dichroic dye) is equal to or less than the upper limit, the alignment of the liquid crystal molecules tends to be less affected.
  • the content of the dye (dichroic dye) in the anisotropic dye film-forming composition of the present invention is, for example, preferably 0.01 parts by mass or more, more preferably 0.05 parts by mass or more, more preferably 50 parts by mass or less, more preferably 30 parts by mass or less, and even more preferably 10 parts by mass or less, relative to the solid content (100 parts by mass) in the anisotropic dye film-forming composition.
  • the content of the dye (dichroic dye) in the solid content in the anisotropic dye film-forming composition is, for example, preferably 0.01 to 50 parts by mass, more preferably 0.05 to 30 parts by mass, and even more preferably 0.05 to 10 parts by mass, relative to the solid content (100 parts by mass).
  • the polymerizable liquid crystal compound tends to be polymerized while maintaining high alignment in the anisotropic dye film-forming composition of the present invention. If the content of the dye (dichroic dye) is equal to or greater than the lower limit, sufficient light absorption and sufficient polarization performance tend to be obtained. If the content of the dye (dichroic dye) is equal to or less than the upper limit, the alignment of the liquid crystal molecules tends to be less affected.
  • the solid content in the composition for forming an anisotropic dye film corresponds to the total of all components other than the solvent in the composition for forming an anisotropic dye film, and corresponds to the mass of the anisotropic dye film formed by the composition for forming an anisotropic dye film.
  • the anisotropic dye film-forming composition of the present invention and the anisotropic dye film of the present invention may contain only one type of dye, or may contain two or more types.
  • the liquid crystal compound refers to a substance that exhibits a liquid crystal state, and specifically refers to a compound that does not directly transition from a crystal to a liquid state but becomes a liquid state via an intermediate state that exhibits properties of both a crystal and a liquid, as described on pages 1 to 28 of "Liquid Crystal Handbook" (Maruzen Co., Ltd., published on October 30, 2000).
  • the polymerizable liquid crystal compound contained in the composition for forming an anisotropic dye film of the present invention is a liquid crystal compound having a polymerizable group, which will be described later.
  • the polymerizable group can be located at any position in the liquid crystal compound molecule.
  • the polymerizable group is preferably substituted at the terminal of the liquid crystal compound molecule from the viewpoint of ease of polymerization.
  • one or more polymerizable groups may be present in the liquid crystal compound molecule. When two or more polymerizable groups are present, it is preferable that they are present at both ends of the liquid crystal compound molecule from the viewpoint of ease of polymerization.
  • the polymerizable liquid crystal compound is preferably a compound having a carbon-carbon triple bond in the liquid crystal compound molecule.
  • the carbon-carbon triple bond is capable of rotational motion while also being able to become the core of the liquid crystal molecule, and the molecular mobility is high, and there is strong intermolecular interaction between the liquid crystal molecules and with compounds having a ⁇ -conjugated system such as dye molecules, which tends to result in high molecular orientation.
  • the polymerizable liquid crystal compound is preferably a low molecular weight liquid crystal compound that does not have a repeating structure containing units that exhibit liquid crystallinity, as this makes it easier to obtain a high dichroic ratio.
  • the polymerizable liquid crystal compound contained in the composition for forming an anisotropic dye film of the present invention is not particularly limited, and any liquid crystal compound having a polymerizable group can be used.
  • the polymerizable liquid crystal compound contained in the anisotropic dye film-forming composition of the present invention may be a compound represented by the following formula (1) (hereinafter, sometimes referred to as "polymerizable liquid crystal compound (1)").
  • -Q1 represents a hydrogen atom or a polymerizable group
  • -Q2 represents a polymerizable group
  • -R 1 - and -R 2 - each independently represent a chain organic group
  • -A 11 - and -A 13 - each independently represent a partial structure represented by the following formula (2), a divalent organic group, or a single bond
  • -A 12 - represents a partial structure represented by the following formula (2) or a divalent organic group
  • -Cy- represents a hydrocarbon ring group or a heterocyclic group
  • formula (1) may be the following formula (1A) or the following formula (1B).
  • formula (1) may be the following formula (1C) or the following formula (1D).
  • formula (1) may be the following formula (1E) or the following formula (1F).
  • -A 11 -, -A 12 - and -A 13 - are each independently a partial structure or a divalent organic group represented by formula (2).
  • -A 11 - and -A 13 - may be a single bond, but -A 11 - and -A 13 - are not both single bonds.
  • the hydrocarbon ring group in -Cy- includes aromatic hydrocarbon ring groups and non-aromatic hydrocarbon ring groups.
  • the aromatic hydrocarbon ring group includes an unlinked aromatic hydrocarbon ring group and a linked aromatic hydrocarbon ring group.
  • the non-linked aromatic hydrocarbon ring group is a divalent group of a monocyclic or condensed aromatic hydrocarbon ring, and preferably has 6 to 20 carbon atoms, because the appropriate core size provides good molecular orientation.
  • the non-linked aromatic hydrocarbon ring group more preferably has 6 to 15 carbon atoms.
  • aromatic hydrocarbon rings examples include a benzene ring, a naphthalene ring, an anthracene ring, a phenanthrene ring, a perylene ring, a tetracene ring, a pyrene ring, a benzpyrene ring, a chrysene ring, a triphenylene ring, an acenaphthene ring, a fluoranthene ring, and a fluorene ring.
  • the linked aromatic hydrocarbon ring group is a divalent group in which a plurality of monocyclic or condensed aromatic hydrocarbon rings are bonded by single bonds and have a bond on an atom constituting the ring.
  • the number of carbon atoms in the monocyclic or condensed ring is preferably 6 to 20 because the molecular orientation is good due to the appropriate core size.
  • the number of carbon atoms in the monocyclic or condensed ring is more preferably 6 to 15.
  • Examples of the linked aromatic hydrocarbon ring group include a divalent group in which a first monocyclic or condensed aromatic hydrocarbon ring having 6 to 20 carbon atoms is bonded by a single bond to a second monocyclic or condensed aromatic hydrocarbon ring having 6 to 20 carbon atoms, which has a first bond on an atom constituting the ring of the first monocyclic or condensed aromatic hydrocarbon ring having 6 to 20 carbon atoms, and a second bond on an atom constituting the ring of the second monocyclic or condensed aromatic hydrocarbon ring having 6 to 20 carbon atoms.
  • Specific examples of the linked aromatic hydrocarbon ring group include a biphenyl-4,4'-diyl group.
  • the aromatic hydrocarbon ring group a non-linked aromatic hydrocarbon ring group is preferable because it optimizes the intermolecular interaction acting between liquid crystal compounds, thereby improving the molecular alignment.
  • the aromatic hydrocarbon ring group is preferably a divalent group of a benzene ring or a divalent group of a naphthalene ring, and more preferably a divalent group of a benzene ring (phenylene group).
  • phenylene group a 1,4-phenylene group is preferable. When -Cy- is one of these groups, the linearity of the liquid crystal molecules is increased, and the effect of improving molecular alignment tends to be obtained.
  • Non-aromatic hydrocarbon ring groups include unlinked non-aromatic hydrocarbon ring groups and linked non-aromatic hydrocarbon ring groups.
  • the non-linked non-aromatic hydrocarbon ring group is a divalent group of a monocyclic or condensed non-aromatic hydrocarbon ring, and preferably has 3 to 20 carbon atoms because the appropriate core size provides good molecular orientation.
  • the non-linked non-aromatic hydrocarbon ring group more preferably has 3 to 15 carbon atoms.
  • non-aromatic hydrocarbon rings examples include a cyclopropane ring, a cyclobutane ring, a cyclopentane ring, a cyclohexane ring, a cycloheptane ring, a cyclooctane ring, a cyclohexene ring, a norbornane ring, a bornane ring, an adamantane ring, a tetrahydronaphthalene ring, and a bicyclo[2.2.2]octane ring.
  • the non-linked non-aromatic hydrocarbon ring group includes an alicyclic hydrocarbon ring group that does not have an unsaturated bond between the atoms that constitute the ring of the non-aromatic hydrocarbon ring, and an unsaturated non-aromatic hydrocarbon ring group that has an unsaturated bond between the atoms that constitute the ring of the non-aromatic hydrocarbon ring.
  • the non-linked non-aromatic hydrocarbon ring group is preferably an alicyclic hydrocarbon ring group.
  • the linked non-aromatic hydrocarbon ring group is a divalent group in which a plurality of monocyclic or condensed non-aromatic hydrocarbon rings are bonded together with single bonds and has a bond on an atom constituting the ring; or a divalent group in which one or more rings selected from the group consisting of monocyclic aromatic hydrocarbon rings, condensed aromatic hydrocarbon rings, monocyclic non-aromatic hydrocarbon rings, and condensed non-aromatic hydrocarbon rings are bonded together with a monocyclic or condensed non-aromatic hydrocarbon ring with a single bond and has a bond on an atom constituting the ring.
  • the number of carbon atoms in the single ring or condensed ring is preferably 3 to 20 because an appropriate core size provides good molecular orientation.
  • Examples of the linked non-aromatic hydrocarbon ring group include a divalent group in which a first monocyclic or condensed non-aromatic hydrocarbon ring having 3 to 20 carbon atoms is bonded to a second monocyclic or condensed non-aromatic hydrocarbon ring having 3 to 20 carbon atoms by a single bond, the divalent group having a first bond on an atom constituting the first monocyclic or condensed non-aromatic hydrocarbon ring having 3 to 20 carbon atoms, and a second bond on an atom constituting the second monocyclic or condensed non-aromatic hydrocarbon ring having 3 to 20 carbon atoms.
  • Further examples include a divalent group in which a monocyclic or condensed aromatic hydrocarbon ring having 3 to 20 carbon atoms is bonded to a monocyclic or condensed non-aromatic hydrocarbon ring having 3 to 20 carbon atoms by a single bond, the divalent group having a first bond on an atom constituting the monocyclic or condensed aromatic hydrocarbon ring having 3 to 20 carbon atoms, and a second bond on an atom constituting the monocyclic or condensed non-aromatic hydrocarbon ring having 3 to 20 carbon atoms.
  • linking non-aromatic hydrocarbon ring groups include bis(cyclohexane)-4,4'-diyl and 1-cyclohexylbenzene-4,4'-diyl groups.
  • non-aromatic hydrocarbon ring group a non-linked non-aromatic hydrocarbon ring group is preferred because it optimizes the intermolecular interactions that act between liquid crystal compounds, thereby improving molecular orientation.
  • non-linked non-aromatic hydrocarbon ring group a divalent group of cyclohexane (cyclohexanediyl group) is preferable.
  • cyclohexanediyl group a cyclohexane-1,4-diyl group is preferable.
  • -Cy- is one of these groups, the linearity of the liquid crystal molecules is increased, and the effect of improving molecular alignment tends to be obtained.
  • the heterocyclic group in -Cy- includes aromatic heterocyclic groups and non-aromatic heterocyclic groups.
  • Aromatic heterocyclic groups include unlinked aromatic heterocyclic groups and linked aromatic heterocyclic groups.
  • the non-linked aromatic heterocyclic group is a divalent group of a monocyclic or condensed aromatic heterocyclic ring, and preferably has 4 to 20 carbon atoms because the appropriate core size provides good molecular orientation.
  • the non-linked aromatic heterocyclic group more preferably has 4 to 15 carbon atoms.
  • Aromatic heterocycles include furan ring, benzofuran ring, thiophene ring, benzothiophene ring, pyrrole ring, pyrazole ring, imidazole ring, thiazole ring, isothiazole ring, oxadiazole ring, thiadiazole ring, triazole ring, indole ring, carbazole ring, pyrroloimidazole ring, pyrrolopyrazole ring, pyrrolopyrrole ring, thienopyrrole ring, thienothiophene ring, furopyrrole ring, furofuran ring, thienofuran ring, thienothiazole ring, benzoisoxazole ring, benzoisothiazole ring, benzimidazole ring, pyridine ring, pyrazine ring, pyridazine ring, pyrimidine ring, tri
  • the linked aromatic heterocyclic group is a divalent group in which multiple monocyclic or condensed aromatic heterocyclic rings are bonded with single bonds and have bonds on the atoms that make up the ring.
  • the number of carbon atoms in the monocyclic or condensed ring is preferably 4 to 20, because the appropriate core size provides good molecular orientation.
  • the number of carbon atoms in the linked aromatic heterocyclic group is more preferably 4 to 15.
  • linked aromatic heterocyclic groups include divalent groups in which a first monocyclic or condensed aromatic heterocyclic ring having 4 to 20 carbon atoms is bonded to a second monocyclic or condensed aromatic heterocyclic ring having 4 to 20 carbon atoms by a single bond, the divalent group having a first bond on an atom constituting the ring of the first monocyclic or condensed aromatic heterocyclic ring having 4 to 20 carbon atoms, and a second bond on an atom constituting the ring of the second monocyclic or condensed aromatic heterocyclic ring having 4 to 20 carbon atoms.
  • Non-aromatic heterocyclic groups include unlinked non-aromatic heterocyclic groups and linked non-aromatic heterocyclic groups.
  • the non-linked non-aromatic heterocyclic group is a divalent group of a monocyclic or condensed non-aromatic heterocyclic ring, and preferably has 4 to 20 carbon atoms because the appropriate core size provides good molecular orientation.
  • the non-linked non-aromatic heterocyclic group more preferably has 4 to 15 carbon atoms.
  • non-aromatic heterocycles that are divalent groups of monocyclic or condensed non-aromatic heterocycles having 4 to 20 carbon atoms include a tetrahydrofuran ring, a tetrahydropyran ring, a dioxane ring, a tetrahydrothiophene ring, a tetrahydrothiopyran ring, a pyrrolidine ring, a piperidine ring, a dihydropyridine ring, a piperazine ring, a tetrahydrothiazole ring, a tetrahydrooxazole ring, an octahydroquinoline ring, a tetrahydroquinoline ring, an octahydroquinazoline ring, a tetrahydroquinazoline ring, a tetrahydroimidazole ring, a tetrahydrobenzimidazole ring
  • a linked non-aromatic heterocyclic group is a divalent group in which multiple monocyclic or condensed non-aromatic heterocyclic rings are bonded with single bonds and have bonds on the atoms that make up the ring.
  • the number of carbon atoms in the monocyclic or condensed ring is preferably 4 to 20, because the appropriate core size provides good molecular orientation.
  • the number of carbon atoms in the linked non-aromatic heterocyclic group is more preferably 4 to 15.
  • linked aromatic heterocyclic groups include divalent groups in which a first monocyclic or condensed non-aromatic heterocyclic ring having 4 to 20 carbon atoms is bonded to a second monocyclic or condensed non-aromatic heterocyclic ring having 4 to 20 carbon atoms by a single bond, the divalent group having a first bond on an atom constituting the ring of the first monocyclic or condensed non-aromatic heterocyclic ring having 4 to 20 carbon atoms, and a second bond on an atom constituting the ring of the second monocyclic or condensed non-aromatic heterocyclic ring having 4 to 20 carbon atoms.
  • the aromatic hydrocarbon ring group, non-aromatic hydrocarbon ring group, aromatic heterocyclic group, and non-aromatic heterocyclic group in -Cy- are each preferably independently unsubstituted or substituted with a methyl group, a methoxy group, a fluorine atom, a chlorine atom, or a bromine atom, and more preferably unsubstituted, in that the molecular structure has a high linearity and the polymerizable liquid crystal compounds (1) are likely to associate with each other and exhibit a liquid crystal state.
  • the substituents of the aromatic hydrocarbon ring group, non-aromatic hydrocarbon ring group, aromatic heterocyclic group, and non-aromatic heterocyclic group in -Cy- may be the same or different.
  • the aromatic hydrocarbon ring group, non-aromatic hydrocarbon ring group, aromatic heterocyclic group, and non-aromatic heterocyclic group may be entirely substituted, entirely unsubstituted, or partially substituted and partially unsubstituted.
  • a hydrocarbon ring group is preferable because it improves the molecular alignment of the polymerizable liquid crystal compound (1), and a phenylene group or a cyclohexanediyl group is more preferable.
  • a 1,4-phenylene group or a cyclohexane-1,4-diyl group is even more preferable because it can increase the linearity of the molecular structure of the polymerizable liquid crystal compound (1), and a 1,4-phenylene group is particularly preferable.
  • -X 1 - is preferably -C( ⁇ O)O-, -OC( ⁇ O)-, -C( ⁇ S)O-, -OC( ⁇ S)-, -C( ⁇ O)S-, -SC( ⁇ O)-, -CH 2 CH 2 -, -CH 2 O-, -OCH 2 -, -CH 2 S-, -SCH 2 -, etc., which have small ⁇ bonding property, because the polymerizable liquid crystal compound (1) tends to have linearity and easy rotational motion around the molecular short axis.
  • —C( ⁇ O)O-, -OC ( ⁇ O)-, -CH 2 CH 2 -, -CH 2 O-, -OCH 2 - are more preferable
  • -X 1 - is still more preferably -C( ⁇ O)O- or -OC( ⁇ O)-.
  • —X 1 — is preferably —CH 2 CH 2 —, —CH 2 O— or —OCH 2 —.
  • -X 2 - is preferably a single bond, or -C( ⁇ O)O-, -OC( ⁇ O)-, -C( ⁇ S)O-, -OC( ⁇ S)-, -C( ⁇ O)S-, -SC( ⁇ O)-, -CH ⁇ CH-, -C( ⁇ O)NH- or -NHC( ⁇ O)- having ⁇ -bonding property, and is more preferably a single bond due to its higher linearity.
  • the polymerizable group in -Q1 and -Q2 is a group having a partial structure capable of being polymerized by light, heat, and/or radiation, and is a functional group or atomic group necessary for ensuring the function of polymerization. From the viewpoint of producing an anisotropic dye film, the polymerizable group is preferably a photopolymerizable group.
  • polymerizable groups examples include acryloyl groups, methacryloyl groups, acryloyloxy groups, methacryloyloxy groups, acryloylamino groups, methacryloylamino groups, vinyl groups, vinyloxy groups, ethynyl groups, ethynyloxy groups, 1,3-butadienyl groups, 1,3-butadienyloxy groups, oxiranyl groups, oxetanyl groups, glycidyl groups, glycidyloxy groups, styryl groups, and styryloxy groups.
  • acryloyl group, methacryloyl group, acryloyloxy group, methacryloyloxy group, acryloylamino group, methacryloylamino group, oxiranyl group, glycidyl group, and glycidyloxy group are preferred, acryloyl group, methacryloyl group, acryloyloxy group, methacryloylamino group, methacryloylamino group, glycidyl group, and glycidyloxy group are more preferred, and acryloyloxy group, methacryloyloxy group, and glycidyloxy group are even more preferred.
  • the chain organic group in -R 1 - and -R 2 - is a divalent organic group that does not contain a cyclic structure such as the above-mentioned aromatic hydrocarbon ring, non-aromatic hydrocarbon ring, aromatic heterocycle, or non-aromatic heterocycle.
  • alkylene group in these chain organic groups examples include linear or branched alkylene groups having 1 to 25 carbon atoms.
  • the carbon-carbon bonds of the alkylene group may be partially unsaturated.
  • One or more methylene groups contained in the alkylene group may be displaced by -O-, -S-, -NH-, -N(R m )-, -C( ⁇ O)-, -C( ⁇ O)-O-, -C( ⁇ O)-NH-, -CHF-, -CF 2 -, -CHCl-, or -CCl 2 -.
  • R m represents a linear or branched alkyl group having 1 to 6 carbon atoms.
  • the alkylene group in these chain organic groups is preferably a straight-chain alkylene group having 1 to 25 carbon atoms, in which some of the carbon atoms in the alkylene group may be unsaturated, and in which one or more methylene groups contained in the alkylene group may be replaced (displaced) by the above-mentioned groups, due to their high molecular linearity.
  • the number of atoms in the main chain (meaning the longest chain portion in the chain organic group) in the chain organic group is preferably 3 to 25, more preferably 5 to 20, and even more preferably 6 to 20.
  • r in these formulas is an integer of 1 to 24, preferably an integer of 2 to 24, more preferably an integer of 4 to 19, and even more preferably an integer of 5 to 19.
  • r1, r2, and r3 in these formulas each independently represent an integer, and the number of atoms in the main chain (meaning the longest chain portion in the chain organic group) in the chain organic group is appropriately adjusted to be preferably 3 to 25, more preferably 5 to 20, and even more preferably 6 to 20.
  • -R 1 - and -R 2 - are each independently -(alkylene group)- or -O-(alkylene group)-.
  • the chain organic group in -R 1 - and -R 2 - is -(alkylene group)-, and in another embodiment, is -O-(alkylene group)-.
  • -R 1 - or -R 2 - which is not directly bonded to -X 1 -, -Y 1 - or -Y 2 - is preferably -O-(alkylene group)-.
  • the divalent organic group in -A 11 -, -A 12 - and -A 13 - is preferably a group represented by the following formula (3).
  • Q3 represents a hydrocarbon ring group or a heterocyclic group.
  • the hydrocarbon ring group in -Q 3 - includes an aromatic hydrocarbon ring group and a non-aromatic hydrocarbon ring group.
  • Aromatic hydrocarbon ring groups include unlinked aromatic hydrocarbon ring groups and linked aromatic hydrocarbon ring groups.
  • the non-linked aromatic hydrocarbon ring group is a divalent group of a monocyclic or condensed aromatic hydrocarbon ring, and preferably has 6 to 20 carbon atoms because the appropriate core size provides good molecular orientation.
  • the non-linked aromatic hydrocarbon ring group more preferably has 6 to 15 carbon atoms.
  • aromatic hydrocarbon rings examples include a benzene ring, a naphthalene ring, an anthracene ring, a phenanthrene ring, a perylene ring, a tetracene ring, a pyrene ring, a benzpyrene ring, a chrysene ring, a triphenylene ring, an acenaphthene ring, a fluoranthene ring, and a fluorene ring.
  • the linked aromatic hydrocarbon ring group is a divalent group in which a plurality of monocyclic or condensed aromatic hydrocarbon rings are bonded by single bonds and have a bond on an atom constituting the ring.
  • the number of carbon atoms in the monocyclic or condensed ring is preferably 6 to 20 because the appropriate core size provides good orientation.
  • the number of carbon atoms in the linked aromatic hydrocarbon ring group is more preferably 6 to 15.
  • Examples of the linked aromatic hydrocarbon ring group include a divalent group in which a first monocyclic or condensed aromatic hydrocarbon ring having 6 to 20 carbon atoms is bonded by a single bond to a second monocyclic or condensed aromatic hydrocarbon ring having 6 to 20 carbon atoms, which has a first bond on an atom constituting the ring of the first monocyclic or condensed aromatic hydrocarbon ring having 6 to 20 carbon atoms, and a second bond on an atom constituting the ring of the second monocyclic or condensed aromatic hydrocarbon ring having 6 to 20 carbon atoms.
  • Specific examples of the linked aromatic hydrocarbon ring group include biphenyl-4,4'-diyl groups.
  • the aromatic hydrocarbon ring group a non-linked aromatic hydrocarbon ring group is preferable because it optimizes the intermolecular interaction acting between liquid crystal compounds, thereby improving the molecular alignment.
  • the aromatic hydrocarbon ring group is preferably a divalent group of a benzene ring or a divalent group of a naphthalene ring, and more preferably a divalent group of a benzene ring (phenylene group).
  • phenylene group a 1,4-phenylene group is preferable. When -Q 3 - is one of these groups, the linearity of the liquid crystal molecules is increased, and the effect of improving molecular alignment tends to be obtained.
  • Non-aromatic hydrocarbon ring groups include unlinked non-aromatic hydrocarbon ring groups and linked non-aromatic hydrocarbon ring groups.
  • the non-linked non-aromatic hydrocarbon ring group is a divalent group of a monocyclic or condensed non-aromatic hydrocarbon ring, and preferably has 3 to 20 carbon atoms because the appropriate core size provides good molecular orientation.
  • the non-linked non-aromatic hydrocarbon ring group more preferably has 3 to 15 carbon atoms.
  • non-aromatic hydrocarbon rings examples include a cyclopropane ring, a cyclobutane ring, a cyclopentane ring, a cyclohexane ring, a cycloheptane ring, a cyclooctane ring, a cyclohexene ring, a norbornane ring, a bornane ring, an adamantane ring, a tetrahydronaphthalene ring, and a bicyclo[2.2.2]octane ring.
  • the non-linked non-aromatic hydrocarbon ring group includes an alicyclic hydrocarbon ring group that does not have an unsaturated bond between the atoms that constitute the ring of the non-aromatic hydrocarbon ring, and an unsaturated non-aromatic hydrocarbon ring group that has an unsaturated bond between the atoms that constitute the ring of the non-aromatic hydrocarbon ring.
  • the non-linked non-aromatic hydrocarbon ring group is preferably an alicyclic hydrocarbon ring group.
  • the linked non-aromatic hydrocarbon ring group is a divalent group in which a plurality of monocyclic or condensed non-aromatic hydrocarbon rings are bonded together with single bonds and has a bond on an atom constituting the ring; or a divalent group in which one or more rings selected from the group consisting of monocyclic aromatic hydrocarbon rings, condensed aromatic hydrocarbon rings, monocyclic non-aromatic hydrocarbon rings, and condensed non-aromatic hydrocarbon rings are bonded together with a monocyclic or condensed non-aromatic hydrocarbon ring with a single bond and has a bond on an atom constituting the ring.
  • the number of carbon atoms in the single ring or condensed ring is preferably 3 to 20 because an appropriate core size provides good molecular orientation.
  • Examples of the linked non-aromatic hydrocarbon ring group include a divalent group in which a first monocyclic or condensed non-aromatic hydrocarbon ring having 3 to 20 carbon atoms is bonded to a second monocyclic or condensed non-aromatic hydrocarbon ring having 3 to 20 carbon atoms by a single bond, the divalent group having a first bond on an atom constituting the first monocyclic or condensed non-aromatic hydrocarbon ring having 3 to 20 carbon atoms, and a second bond on an atom constituting the second monocyclic or condensed non-aromatic hydrocarbon ring having 3 to 20 carbon atoms.
  • Further examples include a divalent group in which a monocyclic or condensed aromatic hydrocarbon ring having 3 to 20 carbon atoms is bonded to a monocyclic or condensed non-aromatic hydrocarbon ring having 3 to 20 carbon atoms by a single bond, the divalent group having a first bond on an atom constituting the monocyclic or condensed aromatic hydrocarbon ring having 3 to 20 carbon atoms, and a second bond on an atom constituting the monocyclic or condensed non-aromatic hydrocarbon ring having 3 to 20 carbon atoms.
  • linking non-aromatic hydrocarbon ring groups include bis(cyclohexane)-4,4'-diyl and 1-cyclohexylbenzene-4,4'-diyl groups.
  • non-aromatic hydrocarbon ring group a non-linked non-aromatic hydrocarbon ring group is preferred because it optimizes the intermolecular interactions that act between liquid crystal compounds, thereby improving molecular orientation.
  • cyclohexanediyl group a divalent group of cyclohexane (cyclohexanediyl group) is preferred.
  • cyclohexanediyl group a cyclohexane-1,4-diyl group is preferred.
  • the heterocyclic group in -Q 3 - includes an aromatic heterocyclic group and a non-aromatic heterocyclic group.
  • the aromatic heterocyclic group includes an unlinked aromatic heterocyclic group and a linked aromatic heterocyclic group.
  • the non-linked aromatic heterocyclic group is a divalent group of a monocyclic or condensed aromatic heterocyclic ring, and preferably has 4 to 20 carbon atoms because the appropriate core size provides good molecular orientation.
  • the non-linked aromatic heterocyclic group more preferably has 4 to 15 carbon atoms.
  • Aromatic heterocycles include a furan ring, a benzofuran ring, a thiophene ring, a benzothiophene ring, a pyrrole ring, a pyrazole ring, an imidazole ring, a thiazole ring, an oxadiazole ring, an indole ring, a carbazole ring, a pyrroloimidazole ring, a pyrrolopyrazole ring, a pyrrolopyrrole ring, a thienopyrrole ring, a thienothiophene ring, a furopyrrole ring, a furofuran ring, a thienofuran ring, a thienothiazole ring, a benzisoxazole ring, a benzisothiazole ring, a benzimidazole ring, a pyridine ring, a
  • the linked aromatic heterocyclic group is a divalent group in which multiple monocyclic or condensed aromatic heterocyclic rings are bonded with single bonds and have bonds on the atoms that make up the ring.
  • the number of carbon atoms in the monocyclic or condensed ring is preferably 4 to 20, because the appropriate core size provides good molecular orientation.
  • the number of carbon atoms in the linked aromatic heterocyclic group is more preferably 4 to 15.
  • linked aromatic heterocyclic groups include divalent groups in which a first monocyclic or condensed aromatic heterocyclic ring having 4 to 20 carbon atoms is bonded to a second monocyclic or condensed aromatic heterocyclic ring having 4 to 20 carbon atoms by a single bond, the divalent group having a first bond on an atom constituting the ring of the first monocyclic or condensed aromatic heterocyclic ring having 4 to 20 carbon atoms, and a second bond on an atom constituting the ring of the second monocyclic or condensed aromatic heterocyclic ring having 4 to 20 carbon atoms.
  • Non-aromatic heterocyclic groups include unlinked non-aromatic heterocyclic groups and linked non-aromatic heterocyclic groups.
  • the non-linked non-aromatic heterocyclic group is a divalent group of a monocyclic or condensed non-aromatic heterocyclic ring, and preferably has 4 to 20 carbon atoms because the appropriate core size provides good molecular orientation.
  • the non-linked non-aromatic heterocyclic group more preferably has 4 to 15 carbon atoms.
  • non-aromatic heterocycles that are divalent groups of monocyclic or condensed non-aromatic heterocycles having 4 to 20 carbon atoms include a tetrahydrofuran ring, a tetrahydropyran ring, a dioxane ring, a tetrahydrothiophene ring, a tetrahydrothiopyran ring, a pyrrolidine ring, a piperidine ring, a dihydropyridine ring, a piperazine ring, a tetrahydrothiazole ring, a tetrahydrooxazole ring, an octahydroquinoline ring, a tetrahydroquinoline ring, an octahydroquinazoline ring, a tetrahydroquinazoline ring, a tetrahydroimidazole ring, a tetrahydrobenzimidazole ring
  • a linked non-aromatic heterocyclic group is a divalent group in which multiple monocyclic or condensed non-aromatic heterocyclic rings are bonded with single bonds and have bonds on the atoms that make up the ring.
  • the number of carbon atoms in the monocyclic or condensed ring is preferably 4 to 20, because the appropriate core size provides good molecular orientation.
  • the number of carbon atoms in the linked non-aromatic heterocyclic group is more preferably 4 to 15.
  • linked aromatic heterocyclic groups include divalent groups in which a first monocyclic or condensed non-aromatic heterocyclic ring having 4 to 20 carbon atoms is bonded to a second monocyclic or condensed non-aromatic heterocyclic ring having 4 to 20 carbon atoms by a single bond, the divalent group having a first bond on an atom constituting the ring of the first monocyclic or condensed non-aromatic heterocyclic ring having 4 to 20 carbon atoms, and a second bond on an atom constituting the ring of the second monocyclic or condensed non-aromatic heterocyclic ring having 4 to 20 carbon atoms.
  • the aromatic hydrocarbon ring group, non-aromatic hydrocarbon ring group, aromatic heterocyclic group and non-aromatic heterocyclic group in -Q 3 - may each be substituted with one or more groups selected from the group consisting of -R n , -OH, -O-R n , -O-C( ⁇ O)-R n , -NH 2 , -NH-R n , -N(R n' )-R n , -C( ⁇ O)-R n , -C( ⁇ O )-O-R n , -C( ⁇ O)-NH 2 , -C( ⁇ O)-NH-R n, -C( ⁇ O)-N(R n' )-R n , -SH, -S-R n , trifluoromethyl group, sulfamoyl group, carboxy group, sulfo group, cyano group, nitro group and hal
  • the aromatic hydrocarbon ring group, non-aromatic hydrocarbon ring group, aromatic heterocyclic group and non-aromatic heterocyclic group in -Q 3 - are each preferably independently unsubstituted or substituted with a methyl group, a methoxy group, a fluorine atom, a chlorine atom or a bromine atom, and more preferably unsubstituted, in terms of high linearity of the molecular structure, and ease of association of the polymerizable liquid crystal compounds (1) with each other to exhibit a liquid crystal state.
  • the substituents possessed by the aromatic hydrocarbon ring group, non-aromatic hydrocarbon ring group, aromatic heterocyclic group and non-aromatic heterocyclic group in -Q 3 - may be the same or different, and the aromatic hydrocarbon ring group, non-aromatic hydrocarbon ring group, aromatic heterocyclic group and non-aromatic heterocyclic group may be entirely substituted, entirely unsubstituted, or partially substituted and partially unsubstituted.
  • the substituents possessed by the divalent organic groups in -A 11 -, -A 12 - and -A 13 - may be the same or different, and all of the divalent organic groups in -A 11 -, -A 12 - and -A 13 - may be substituted, all of them may be unsubstituted, or some of them may be substituted and some of them may be unsubstituted.
  • -Q 3 - is preferably a hydrocarbon ring group, more preferably a phenylene group or a cyclohexanediyl group, and further preferably a 1,4-phenylene group or a cyclohexane-1,4-diyl group, since the linearity of the molecular structure of the polymerizable liquid crystal compound (1) can be increased.
  • the divalent organic group of -A 11 -, -A 12 - and -A 13 -, -Q 3 - is preferably a hydrocarbon ring group, i.e., the divalent organic group is preferably a hydrocarbon ring group.
  • the divalent organic group a phenylene group or a cyclohexanediyl group is more preferable, and a 1,4-phenylene group or a cyclohexane-1,4-diyl group is even more preferable because the linearity of the molecular structure of the polymerizable liquid crystal compound (1) can be increased.
  • one of -A 11 -, -A 12 -, and -A 13 - is a partial structure represented by formula (2), and the other two are each independently a divalent organic group.
  • -A 11 -, -A 12 -, and -A 13 - it is preferable that -Cy- in the partial structure represented by formula (2) is a hydrocarbon ring group, and it is particularly preferable that the divalent organic group is a hydrocarbon ring group.
  • the hydrocarbon ring group is a 1,4-phenylene group or a cyclohexane-1,4-diyl group.
  • one of -A 11 - and -A 13 - is a cyclohexane-1,4-diyl group.
  • one of -A 11 - and -A 13 - is a partial structure represented by formula (2), and the remaining one and -A 12 - are divalent organic groups.
  • one of -A 11 - and -A 13 - which is a divalent organic group is a cyclohexane-1,4-diyl group, and it is particularly preferable that -A 12 - is a 1,4-phenylene group.
  • -X 1 - and -Y 1 - or -X 1 - and -Y 2 - are bonded as in the formulae (1A), (1C), (1D) and (1F), -Y 1 - bonded to -X 1 - or -Y 2 - bonded to -X 1 - is preferably a single bond.
  • the other of -X 1 -, -Y 1 - and -Y 2 - is preferably -C( ⁇ O)O- or -OC( ⁇ O)-.
  • k is 1 or 2. In one embodiment, k is preferably 1. In another embodiment, k is preferably 2. When k is 2, each -Y 2 - may be the same or different, and each -A 13 - may be the same or different.
  • the compound be represented by the above formula (1A), (1B), (1E) or (1F) because it optimizes the intermolecular interactions acting between the liquid crystal compounds and has an appropriate core size, resulting in good molecular orientation.
  • the polymerizable liquid crystal compound (1) is preferably a low molecular weight compound that does not have a repeating structure containing a unit that exhibits liquid crystallinity, and therefore preferably has the compound structure represented by the formula (1).
  • “does not have a repeating structure containing a unit that exhibits liquid crystallinity” refers to a structure that does not have two or more repeating units that exhibit liquid crystallinity, as represented by a polymer liquid crystal compound.
  • the molecular weight of the polymerizable liquid crystal compound (1) is preferably 2000 or less, more preferably 1500 or less, and even more preferably 1000 or less. There is no particular lower limit, but it is preferably 400 or more, and more preferably 500 or more.
  • the molecular weight of the polymerizable liquid crystal compound (1) is, for example, preferably 400 to 2000, more preferably 400 to 1500, and particularly preferably 500 to 1000.
  • the molecular weight of the polymerizable liquid crystal compound is the sum of the atomic weights contained in the polymerizable liquid crystal compound molecule.
  • Specific examples of the polymerizable liquid crystal compound contained in the anisotropic dye film of the present invention include, but are not limited to, the polymerizable liquid crystal compounds described below.
  • C 6 H 13 represents an n-hexyl group.
  • C 5 H 11 represents an n-pentyl group.
  • the liquid crystal compound contained in the composition for forming an anisotropic dye film of the present invention is preferably a polymerizable liquid crystal compound (1).
  • the composition for forming an anisotropic dye film of the present invention may contain only one type of polymerizable liquid crystal compound alone, or may contain two or more types in any combination and ratio.
  • the content of the liquid crystal compound in the anisotropic dye film-forming composition of the present invention is preferably 50 parts by mass or more, more preferably 55 parts by mass or more, and preferably 99 parts by mass or less, and more preferably 98 parts by mass or less, relative to the solid content (100 parts by mass) of the anisotropic dye film-forming composition. If the content of the liquid crystal compound is within the above range, the alignment of the liquid crystal molecules tends to be high.
  • the anisotropic dye film-forming composition of the present invention may contain one or more polymerizable or non-polymerizable liquid crystal compounds other than the polymerizable liquid crystal compound (1).
  • the proportion of the polymerizable liquid crystal compound (1) in the total amount of liquid crystal compounds contained in the anisotropic dye film-forming composition of the present invention (100% by mass) is preferably 5% by mass or more, more preferably 10% by mass or more, and particularly preferably 15 to 100% by mass.
  • the polymerizable liquid crystal compound contained in the composition for forming an anisotropic dye film of the present invention preferably has an isotropic phase appearance temperature of 160° C. or less, more preferably 140° C. or less, even more preferably 115° C. or less, even more preferably 110° C. or less, and particularly preferably 105° C. or less.
  • the isotropic phase appearance temperature means the phase transition temperature from liquid crystal to liquid and the phase transition temperature from liquid to liquid crystal.
  • it is preferable that at least one of these phase transition temperatures is equal to or lower than the above upper limit, and it is more preferable that both of these phase transition temperatures are equal to or lower than the above upper limit.
  • the ratio (r n1 /r n2 ) of the number of ring structures (r n1 ) of the polymerizable liquid crystal compound contained in the anisotropic dye film-forming composition of the present invention to the number of ring structures (r n2 ) of the dye is not particularly limited, but is preferably 0.7 to 1.5.
  • the difference between the molecular length of the polymerizable liquid crystal compound and the molecular length of the dye is smaller, since this leads to stronger intermolecular interaction between the liquid crystal molecules and the dye molecules and makes it difficult for the dye molecules to inhibit association between the liquid crystal molecules.
  • a fused ring in which two or more rings are fused is counted as one ring structure.
  • the number of ring structures is the sum of D1 , D2 , and D3 in formula (A), and specifically, when p is 0, rn2 is 2; when p is 1, rn2 is 3; and when p is 4, rn2 is 6. Even if -R 11 and -R 12 are cyclic functional groups such as a pyrrolidinyl group or a piperidinyl group, the ring structures contained in -R 11 and -R 12 are not included in the number (r n2 ) of ring structures possessed by the compound represented by formula (A).
  • the number of ring structures (r n1 ) contained in the polymerizable liquid crystal compound does not include ring structures (such as oxirane rings and oxetane rings) contained in the polymerizable group in the polymerizable liquid crystal compound.
  • the polymerizable liquid crystal compound contained in the composition for forming an anisotropic dye film of the present invention can be produced by combining known chemical reactions such as an alkylation reaction, an esterification reaction, an amidation reaction, an etherification reaction, an ipso substitution reaction, and a coupling reaction using a metal catalyst.
  • the polymerizable liquid crystal compound contained in the composition for forming an anisotropic dye film of the present invention can be synthesized according to the method described in the Examples below or the method described on pages 449 to 468 of "Liquid Crystal Handbook" (Maruzen Co., Ltd., published on October 30, 2000).
  • the photopolymerization initiator in the present invention is a polymerization initiator that generates active radicals by the action of light, and is a compound that can initiate the polymerization reaction of a polymerizable liquid crystal compound.
  • the maximum absorption wavelength of the photopolymerization initiator is preferably 260 nm or more, more preferably 280 nm or more, and even more preferably 300 nm or more.
  • the maximum absorption wavelength of the photopolymerization initiator is preferably 440 nm or less, more preferably 420 nm or less, even more preferably 400 nm or less, and even more preferably 380 nm or less. Having a maximum absorption wavelength in this range allows the photopolymerization reaction to proceed sufficiently, and has the effect of obtaining an anisotropic dye film with a good degree of hardening.
  • Usable photopolymerization initiators include, for example, titanocene derivatives; biimidazole derivatives; halomethylated oxadiazole derivatives; halomethyl-s-triazine derivatives; alkylphenone derivatives; oxime ester derivatives; benzoins; benzophenone derivatives; acylphosphine oxide derivatives; iodonium salts; sulfonium salts; anthraquinone derivatives; thioxanthone derivatives; acridine derivatives; phenazine derivatives; anthrone derivatives; phenylglyoxylate derivatives; ketosulfone derivatives, organic peroxides, etc.
  • alkylphenone derivatives alkylphenone derivatives, oxime ester derivatives, biimidazole derivatives, and thioxanthone derivatives are more preferred because they allow the photopolymerization reaction to proceed sufficiently and produce a film with a high degree of hardening.
  • titanocene derivatives include dichlorobis(cyclopentadienyl)titanium, bis(cyclopentadienyl)diphenyltitanium, bis(cyclopentadienyl)bis(2,3,4,5,6-pentafluorophenyl)titanium, bis(methylcyclopentadienyl)bis(2,3,5,6-tetrafluorophenyl)titanium, bis(cyclopentadienyl)bis(2,4,6-trifluorophenyl)titanium, bis(cyclopentadienyl)bis(2,6-difluorophenyl)titanium, bis(cyclopentadienyl)bis(2,4-difluorophenyl)titanium, bis(methylcyclopentadienyl)bis(2,3,4,5,6-pentafluorophenyl)titanium, bis(methylcyclopentadienyl)bis(
  • Biimidazole derivatives include 2-(2'-chlorophenyl)-4,5-diphenylimidazole dimer, 2-(2'-chlorophenyl)-4,5-bis(3'-methoxyphenyl)imidazole dimer, 2-(2'-fluorophenyl)-4,5-diphenylimidazole dimer, 2-(2'-methoxyphenyl)-4,5-diphenylimidazole dimer, 2-(4'-methoxyphenyl)-4,5-diphenylimidazole dimer, etc.
  • Halomethylated oxadiazole derivatives include 2-(2-benzofuranyl)-5-trichloromethyl-1,3,4-oxadiazole, 2-[2-(2-benzofuranyl)ethenyl]-5-trichloromethyl-1,3,4-oxadiazole, 2-trichloromethyl-5-furyl-1,3,4-oxadiazole, 2-phenyl-5-trichloromethyl-1,3,4-oxadiazole, 2-(1-naphthyl)-5-trichloromethyl-1,3,4-oxadiazole, 2-(2-naphthyl)-5-trichloromethyl-1,3,4-oxadiazole, 2-styryl-5-trichloromethyl-1,3,4-oxadiazole, and 2-(4-methoxystyryl)-5-trichloromethyl-1,3,4-oxadiazole.
  • Halomethyl-s-triazine derivatives include 2-(4-methoxyphenyl)-4,6-bis(trichloromethyl)-s-triazine, 2-(4-methoxynaphthyl)-4,6-bis(trichloromethyl)-s-triazine, 2-(4-ethoxynaphthyl)-4,6-bis(trichloromethyl)-s-triazine, 2-(4-ethoxycarbonylnaphthyl)-4,6-bis(trichloromethyl)-s-triazine, 2-[2-(4-methoxyphenyl)ethenyl]-4,6-bis(trichloromethyl)-s-triazine, 2-(3,4-dimethoxyphenyl)-4,6-bis(trichloromethyl)-s-triazine, and 2-[2-(2-furanyl)ethenyl]-4,6-bis(trichloromethyl)-s
  • Alkylphenone derivatives include 2,2-diethoxyacetophenone, 2-methyl-1-[4-(methylthio)phenyl]-2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)butan-1-one, 2-dimethylamino-2-(4-methylbenzyl)-1-(4-morpholinophenyl)butan-1-one, 3,6-bis(2-methyl-2-morpholinopropionyl)-9-octylcarbazole, benzyl dimethyl ketal, Examples include 2-hydroxy-2-methylpropiophenone, 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-4'-(2-hydroxyethoxy)-2-methylpropiophenone, 2-hydroxy-1- ⁇ 4-[4-(2-hydroxy-2-methylpropionyl)benzyl]phenyl ⁇ -2-methylpropan-1-one, 2-hydroxy-2-methyl-1-(4-isopropylpheny
  • Oxime ester derivatives include 2-(benzoyloxyimino)-1-[4-(phenylthio)phenyl]-1-octanone, O-acetyl-1-[6-(2-methylbenzoyl)-9-ethyl-9H-carbazol-3-yl]ethanone oxime, (9-ethyl-6-nitrocarbazol-3-yl)-[2-methyl-4-(3-methoxypropyl-2-yloxy)phenyl]-methylideneaminoacetate, JP 2000-80068 A, JP 2006-36750 A, JP 2008-17
  • Examples of such oxime ester derivatives include those described in Japanese Patent Publication No. 9611, Japanese Patent Application Laid-Open No.
  • benzoins examples include benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin phenyl ether, benzoin isobutyl ether, and benzoin isopropyl ether.
  • benzophenone derivatives include benzophenone, Michler's ketone, 4,4'-bis(diethylamino)benzophenone, 4,4'-bis(methylethylamino)benzophenone, 2-methylbenzophenone, 3-methylbenzophenone, 4-methylbenzophenone, 2-chlorobenzophenone, 4-bromobenzophenone, 2-carboxybenzophenone, o-methylbenzoate, 4-phenylbenzophenone, 4-benzoyl-4'-methyldiphenyl sulfide, and 2,4,6-trimethylbenzophenone.
  • Acylphosphine oxide derivatives include 2,4,6-trimethylbenzoyldiphenylphosphine oxide, bis(2,6-dimethoxybenzoyl)-2,4,4-trimethylpentylphosphine oxide, bis(2,4,6-trimethylbenzoyl)phenylphosphine oxide, and ethyl (2,4,6-trimethylbenzoyl)phenylphosphineate.
  • Iodonium salts include diphenyliodonium tetrakis(pentafluorophenyl)borate, diphenyliodonium hexafluorophosphate, diphenyliodonium hexafluoroantimonate, di(4-nonylphenyl)iodonium hexafluorophosphate, 4-(methylphenyl)[4-(2-methylpropyl)phenyl]iodonium hexafluorophosphate, etc.
  • Sulfonium salts include triphenylsulfonium hexafluorophosphate, triphenylsulfonium hexafluoroantimonate, triphenylsulfonium tetrakis(pentafluorophenyl)borate, diphenyl[4-(phenylthio)phenyl]sulfonium hexafluorophosphate, 4,4'-bis[diphenylsulfonio]diphenylsulfide bishexafluorophosphate, 4,4'-bis[di( ⁇ -hydroxyethoxy)phenylsulfonio]diphenylsulfide bishexafluoroantimonate, 4,4'-bis[di( ⁇ -hydroxyethoxy)phenylsulfonio]diphenylsulfide bishexafluorophosphate, 7-[di(p-toluyl)sulfonio]
  • Anthraquinone derivatives include 2-methylanthraquinone, 2-ethylanthraquinone, 2-t-butylanthraquinone, 1-chloroanthraquinone, etc.
  • Thioxanthone derivatives include thioxanthone, 2-ethylthioxanthone, 4-ethylthioxanthone, 2-isopropylthioxanthone, 4-isopropylthioxanthone, 2-chlorothioxanthone, 2,4-dimethylthioxanthone, 2,4-diethylthioxanthone, 2,4-diisopropylthioxanthone, 1-chloro-4-propoxythioxanthone, 1-methoxycarbonylthioxanthone, 2-ethoxycarbonylthioxanthone, etc.
  • Acridine derivatives include 9-phenylacridine, 9-(p-methoxyphenyl)acridine, 1,5-bis(9-acridinyl)pentane, 1,7-bis(9-acridinyl)heptane, etc.
  • Phenazine derivatives include 9,10-dimethylbenzphenazine, etc.
  • Anthrone derivatives include benzanthrone, etc.
  • Phenyl glyoxylate derivatives include methyl benzoyl formate, etc.
  • Ketosulfone derivatives include 1-[4-[(4-benzoylphenyl)thio]phenyl]-2-methyl-2-[(4-methylphenyl)sulfonyl]-1-propanone, etc.
  • Organic peroxides include 3,3',4,4'-tetrakis(tert-butylperoxycarbonyl)benzophenone, 2-(1-tert-butylperoxy-1-methylethyl)-9H-thioxanthen-9-one, triazine peroxide derivatives, etc.
  • the photopolymerization initiator may be used alone or in combination with two or more types.
  • a commercially available product can also be used.
  • commercially available products include Omnicat (registered trademark, the same applies below) 250, Omnicat 270, Omnirad (registered trademark) 651, Omnirad 184, Omnirad 1173, Omnirad 2959, Omnirad 127, Omnirad 907, Omnirad 369, Omnirad 379EG, Omnirad TPO H, Omnirad 819, Omnirad 784, Omnirad MBF, Omnirad 754 (IGM Resins), IRGACURE (registered trademark) OXE01, IRGACURE OXE02, IRGACURE OXE03, IRGACURE OXE04, IRGACURE 290, IRGACURE 369 (manufactured by BASF); SEIKUOR (registered trademark) BZ, Z, and BEE (manufactured by Seiko Chemical Co., Ltd.); Kayacure (registered trademark) BP100, DETX-S; UVI-6992 (manufactured by UVI-6992 (man
  • TRONLYTR-PBG-304, TRONLYTR-PBG-309, TRONLYTR-PBG-305, TRONLYTR-PBG-3057, TRONLYTR-PBG-314, TRONLYTR-PBG-326, TRONLYTR-PBG-345 (manufactured by Changzhou TRONLY NEW ELECTRONIC MATERIALS CO. LTD.); Perdual (registered trademark) TA-30G, TA-70H, TX (manufactured by NOF Corporation).
  • the content of the photopolymerization initiator in the composition for forming an anisotropic dye film of the present invention is preferably 0.1 parts by mass or more, and more preferably 0.5 parts by mass or more, relative to 100 parts by mass of the polymerizable liquid crystal compound, from the viewpoint of obtaining a sufficiently polymerized anisotropic dye film. Furthermore, from the viewpoint of preventing the orientation of the polymerizable liquid crystal compound from being disturbed, the content of the photopolymerization initiator is preferably 30 parts by mass or less, and more preferably 10 parts by mass or less, further preferably 8 parts by mass or less, and particularly preferably 3 parts by mass or less, relative to 100 parts by mass of the polymerizable liquid crystal compound.
  • the anisotropic dye film-forming composition of the present invention may contain a polymerization accelerator, a polymerization aid, etc., in order to use them in combination with the photopolymerization initiator as necessary.
  • the polymerization accelerators and polymerization aids used include, for example, amine compounds such as triethanolamine, N-methyldiethanolamine, ethyl-4-dimethylaminobenzoate, 2-(dimethylamino)ethyl benzoate, 2-ethylhexyl-4-dimethylaminobenzoate, octyl-4-dimethylaminobenzoate, and N-(2-hydroxyethyl)-N-methyl-p-toluidine; 2-mercaptobenzothiazole, 2-mercaptobenzoxazole, and 2- Examples of mercapto compounds include mercapto compounds having a heterocyclic ring such as mercaptobenzimidazole; mercapto compounds such as aliphatic polyfunctional mercapto compounds such as pentaerythritol tetrakis(3-mercaptobutyrate), 1,4-bis(3-mercaptobutyryloxy)butane, 1,3,5-
  • the polymerization accelerator and polymerization aid may be used alone or in combination of two or more.
  • the anisotropic dye film-forming composition of the present invention may contain a sensitizing dye or other sensitizers, etc., for the purpose of increasing sensitivity, as necessary.
  • Sensitizing dyes that are appropriate for the wavelength of the exposure light source are used.
  • xanthene dyes described in JP-A-4-221958 and JP-A-4-219756 coumarin dyes having a heterocycle described in JP-A-3-239703 and JP-A-5-289335; 3-ketocoumarin dyes described in JP-A-3-239703 and JP-A-5-289335; pyrromethene dyes described in JP-A-6-19240; JP-A-47-2528 and JP-A-54-155292.
  • sensitizers include the above-mentioned benzophenone derivatives and thioxanthone derivatives. Further sensitizers include anthracene derivatives, phenothiazine derivatives, perylene derivatives, etc.
  • Anthracene derivatives include anthracene, 9,10-diethoxyanthracene, 9,10-dibutoxyanthracene, etc.
  • Phenothiazine derivatives include phenothiazine, 10-methylphenothiazine, 10-phenylphenothiazine, 2-methoxyphenothiazine, 2-chlorophenothiazine, 2-acetylphenothiazine, etc.
  • Perylene derivatives include perylene, 2,5,8,11-tetra-tert-butylperylene, etc.
  • the sensitizing dyes and other sensitizers may be used alone or in combination of two or more.
  • the anisotropic dye film-forming composition of the present invention may further contain, as necessary, a non-polymerizable liquid crystal compound, a thermal polymerization initiator, a polymerization inhibitor, a polymerization aid, a polymerizable non-liquid crystal compound, a non-polymerizable non-liquid crystal compound, a surfactant, a leveling agent, a coupling agent, a pH adjuster, a dispersant, an antioxidant, an organic or inorganic filler, an organic or inorganic nanosheet, an organic or inorganic nanofiber, a metal oxide, or the like.
  • the anisotropic dye film-forming composition of the present invention may contain a solvent, if necessary.
  • the solvent that can be used is not particularly limited as long as it can sufficiently disperse or dissolve the polymerizable liquid crystal compound, the dye, and other additives in the composition for forming an anisotropic dye film.
  • the solvent include alcohol solvents such as methanol, ethanol, ethylene glycol, isopropyl alcohol, propylene glycol, ethylene glycol methyl ether, ethylene glycol butyl ether, and propylene glycol monomethyl ether; ester solvents such as ethyl acetate, butyl acetate, ethylene glycol methyl ether acetate, ⁇ -butyrolactone, propylene glycol methyl ether acetate, and ethyl lactate; ketone solvents such as acetone, methyl ethyl ketone, cyclopentanone, cyclohexanone, 2-heptanone, and methyl isobutyl ketone; aliphatic hydrocarbon solvents such as pentane, hex
  • the solvent is preferably one that can dissolve the polymerizable liquid crystal compound and the dye, and more preferably one that completely dissolves the polymerizable liquid crystal compound and the dye.
  • the solvent is preferably one that is inactive in the polymerization reaction of the polymerizable liquid crystal compound.
  • a solvent having a boiling point in the range of 50 to 200°C is preferable.
  • the content ratio of the solvent in the anisotropic dye film-forming composition of the present invention is preferably 50 to 98 mass % relative to the total amount (100 mass %) of the anisotropic dye film-forming composition of the present invention.
  • the solid content in the anisotropic dye film-forming composition of the present invention is preferably 2 to 50 mass %.
  • the solid content in the composition for forming an anisotropic dye film is equal to or less than the upper limit, the viscosity of the composition for forming an anisotropic dye film does not become too high, the thickness of the anisotropic dye film obtained becomes uniform, and unevenness in the anisotropic dye film tends to be less likely to occur.
  • the solid content of the composition for forming an anisotropic dye film can be determined taking into consideration the thickness of the anisotropic dye film to be produced.
  • the viscosity of the anisotropic dye film-forming composition of the present invention is not particularly limited as long as a uniform film without thickness unevenness can be formed by the coating method described below. From the viewpoint of obtaining thickness uniformity over a large area, productivity such as coating speed, and in-plane uniformity of optical properties, the viscosity of the anisotropic dye film-forming composition of the present invention is preferably 0.1 mPa ⁇ s or more, and preferably 500 mPa ⁇ s or less, more preferably 100 mPa ⁇ s or less, and even more preferably 50 mPa ⁇ s or less.
  • the method for producing the composition for forming an anisotropic dye film of the present invention is not particularly limited.
  • a dye, a polymerizable liquid crystal compound, a photopolymerization initiator, and optionally a solvent and other additives are mixed, and the mixture is stirred and shaken at 0 to 80° C. to dissolve the dye. If these are poorly soluble, a homogenizer, a bead mill disperser, or the like may be used.
  • the method for producing the anisotropic dye film-forming composition of the present invention may include a filtration step for the purpose of removing foreign matter, etc., from the composition.
  • the anisotropic dye film-forming composition of the present invention when the solvent is removed from the anisotropic dye film-forming composition, may or may not be liquid crystal at any temperature, but it is preferable that the composition exhibits liquid crystallinity at any temperature.
  • the composition obtained by removing the solvent from the anisotropic dye film forming composition generally has an isotropic phase appearance temperature of less than 200°C, preferably less than 160°C, more preferably less than 140°C, even more preferably less than 115°C, even more preferably less than 110°C, and particularly preferably less than 105°C, from the viewpoint of the coating process described below.
  • the anisotropic dye film of the present invention is preferably produced by a wet film-forming method using the anisotropic dye film-forming composition of the present invention.
  • the wet film-forming method referred to in this invention is a method in which an anisotropic dye film-forming composition is applied and oriented on a substrate by some method. Therefore, the anisotropic dye film-forming composition only needs to have fluidity, and may or may not contain a solvent. From the viewpoint of viscosity during application and film uniformity, it is preferable for the composition to contain a solvent.
  • the liquid crystal compounds and dyes in the anisotropic dye film may be oriented by shear during the coating process, or may be oriented during the drying process of the solvent.
  • the liquid crystal compounds and dyes may be oriented and laminated on the substrate through a process of heating after coating and drying to re-align the liquid crystal compounds and dyes.
  • the dyes and liquid crystal compounds self-associate (a molecular association state such as a liquid crystal state) already in the composition for forming an anisotropic dye film, or during the drying process of the solvent, or after the solvent has been completely removed, and orientation occurs in a small area.
  • orientation can be achieved in a certain direction in a macroscopic region, and an anisotropic dye film with the desired performance can be obtained.
  • the external field includes the influence of an orientation treatment layer previously applied to the substrate, shear force, magnetic field, electric field, heat, etc. These may be used alone or in combination. If necessary, a heating process may be performed.
  • the process of applying the anisotropic dye film-forming composition onto a substrate to form a film, the process of applying an external field to orient the film, and the process of drying the solvent may be performed sequentially or simultaneously.
  • examples of methods for applying the composition for forming an anisotropic dye film onto a substrate include a coating method, a dip coating method, an LB film formation method, and a known printing method. There is also a method of transferring the anisotropic dye film thus obtained onto another substrate.
  • composition for forming an anisotropic dye film onto the substrate using a coating method.
  • the orientation direction of the anisotropic dye film may be different from the coating direction.
  • the orientation direction of the anisotropic dye film refers to, for example, the transmission axis (polarization axis) or absorption axis of polarized light in the case of a polarizing film.
  • the orientation direction refers to the fast axis or slow axis.
  • the method of applying the composition for forming an anisotropic dye film to obtain an anisotropic dye film is not particularly limited, but examples include the method described in "Coating Engineering” by Harasaki Yuji (published by Asakura Publishing Co., Ltd. on March 20, 1971) on pages 253-277, the method described in "Creation and Application of Molecular Cooperative Materials” edited by Ichimura Kunihiro (published by CMC Publishing Co., Ltd. on March 3, 1998) on pages 118-149, and the method of applying the composition to a substrate having a stepped structure (which may be pre-treated for orientation) by slot die coating, spin coating, spray coating, bar coating, roll coating, blade coating, curtain coating, fountain coating, dip coating, etc.
  • the slot die coating and bar coating methods are preferred because they can obtain a highly uniform anisotropic dye film.
  • the die coater used in the slot die coating method is generally equipped with a coating machine that ejects the coating liquid, a so-called slit die.
  • Slit dies are disclosed, for example, in JP-A-2-164480, JP-A-6-154687, JP-A-9-131559, “Fundamentals and Applications of Dispersion, Coating, and Drying” (2014, Techno System Co., Ltd., ISBN 9784924728707 C 305), “Wet Coating Technology for Displays and Optical Components” (2007, Information Organization, ISBN 9784901677752), and “Precision Coating and Drying Technology in the Electronics Field” (2007, Technical Information Association, ISBN 9784861041389).
  • These known slit dies can be used to coat flexible materials such as films and tapes, as well as hard materials such as glass substrates.
  • Substrates used in the formation of the anisotropic dye film of the present invention include glass, triacetate, acrylic, polyester, polyimide, polyetherimide, polyetheretherketone, polycarbonate, cycloolefin polymer, polyolefin, polyvinyl chloride, triacetyl cellulose, or urethane-based films.
  • the substrate surface may be subjected to an orientation treatment (orientation film) by a known method (rubbing method, method of forming grooves (fine groove structure) on the surface of the orientation film, method of using polarized ultraviolet light/polarized laser (photo-orientation method), orientation method by forming an LB film, orientation method by oblique deposition of inorganic material, etc.) described on pages 226-239 of "Liquid Crystal Handbook” (Maruzen Co., Ltd., published October 30, 2000).
  • orientation treatment by rubbing method and photo-orientation method are preferred.
  • Materials used in the rubbing method include polyvinyl alcohol (PVA), polyimide (PI), epoxy resin, acrylic resin, etc.
  • Materials used in the photo-orientation method include polycinnamate, polyamic acid/polyimide, azobenzene, etc.
  • orientation treatment layer it is thought that the liquid crystal compound and the dye are oriented by the influence of the orientation treatment of the orientation treatment layer and the shear force applied to the anisotropic dye film forming composition during application.
  • the anisotropic dye film-forming composition When applying the anisotropic dye film-forming composition, there are no particular limitations on the method or interval for supplying the anisotropic dye film-forming composition. If the operation for supplying the coating liquid becomes complicated, or the coating film thickness fluctuates when the coating liquid is started and stopped, it is desirable to apply the anisotropic dye film-forming composition while continuously supplying it when the anisotropic dye film is thin.
  • the speed at which the composition for forming an anisotropic dye film is applied is usually 0.001 m/min or more, preferably 0.01 m/min or more, more preferably 0.1 m/min or more, even more preferably 1.0 m/min or more, and particularly preferably 5.0 m/min or more.
  • the speed at which the composition for forming an anisotropic dye film is applied is usually 400 m/min or less, preferably 200 m/min or less, more preferably 100 m/min or less, and even more preferably 50 m/min or less.
  • the application temperature of the composition for forming anisotropic dye film is usually 0°C or higher and 100°C or lower, preferably 80°C or lower, and more preferably 60°C or lower.
  • the humidity during application of the anisotropic dye film forming composition is preferably 10% RH or higher, and preferably 80% RH or lower.
  • the anisotropic dye film may be subjected to an insolubilization treatment.
  • Insolubilization refers to a treatment for reducing the solubility of a compound in the anisotropic dye film, thereby controlling the elution of the compound from the anisotropic dye film and increasing the stability of the film.
  • film polymerization or overcoating is preferred from the standpoint of ease of post-processing and durability of the anisotropic dye film.
  • the film in which the liquid crystal molecules and dye molecules are oriented is polymerized using light and/or radiation.
  • the light source of the active energy ray having a wavelength of 190 to 450 nm is not particularly limited.
  • the light source include lamp light sources such as xenon lamps, halogen lamps, tungsten lamps, high-pressure mercury lamps, ultra-high-pressure mercury lamps, metal halide lamps, medium-pressure mercury lamps, low-pressure mercury lamps, carbon arcs, and fluorescent lamps; and laser light sources such as argon ion lasers, YAG lasers, excimer lasers, nitrogen lasers, helium cadmium lasers, and semiconductor lasers.
  • an optical filter can also be used.
  • the exposure dose of the active energy rays is preferably from 1 to 100,000 J/ m2 , and more preferably from 10 to 10,000 J/ m2 .
  • Polymerization may be performed using light and/or radiation, but photopolymerization or a combination of photopolymerization and thermal polymerization is preferred because it shortens the film formation process time and requires simple equipment.
  • thermal polymerization it is preferred to perform it in the range of 50 to 200°C, and more preferably in the range of 60 to 150°C.
  • the protective layer is a film for protecting the anisotropic dye film (for example, imparting or improving abrasion resistance, scratch resistance, stress relaxation resistance, chemical resistance, gas resistance, water resistance, and corrosion resistance), and preferably, the protective layer is a photocurable film.
  • the protective layer may also serve as an overcoat film having functions such as bleeding prevention (prevention of bleeding out of low molecular weight components), flattening, easy adhesion, release, and optical property adjustment.
  • bleeding prevention prevention of bleeding out of low molecular weight components
  • flattening flattening
  • easy adhesion easy adhesion
  • release and optical property adjustment.
  • the protective layer can exhibit the function of protecting the anisotropic film, there are no limitations on the lamination position with respect to the anisotropic dye film.
  • the protective layer preferably has a laminated structure adjacent to the anisotropic dye film of the present invention, and more preferably has a laminated structure adjacent to the surface of the anisotropic dye film opposite the substrate.
  • the protective layer of the first invention is preferably formed using a composition for forming a protective layer, which will be described later.
  • the protective layer of the second invention is formed using a protective layer-forming composition containing a curable resin.
  • the protective layer of the third invention is formed using a composition for forming a protective layer, which contains a photocurable resin and will be described later.
  • the thickness of the protective layer of the present invention is preferably 0.1 ⁇ m or more, more preferably 0.3 ⁇ m or more, even more preferably 0.5 ⁇ m or more, and even more preferably 1 ⁇ m or more, from the viewpoint of increasing the mechanical strength and fully exerting the protective effect. Also, from the viewpoint of reducing the thickness of the obtained optically anisotropic laminate, the thickness of the protective layer of the present invention is preferably 175 ⁇ m or less, more preferably 120 ⁇ m or less, even more preferably 100 ⁇ m or less, even more preferably 80 ⁇ m or less, particularly preferably 60 ⁇ m or less, especially preferably 50 ⁇ m or less, most preferably 20 ⁇ m or less, and most preferably 10 ⁇ m or less.
  • the protective layer of the present invention preferably has a light transmittance at wavelengths of 380 nm or less of less than 50%, more preferably less than 30%, and even more preferably less than 20%.
  • the light transmittance at wavelengths of 400 nm or less is preferably less than 30%, more preferably less than 25%, even more preferably less than 22%, and especially preferably less than 20%.
  • the protective layer of the present invention preferably has a light transmittance at a wavelength of 430 nm of 60% or more, more preferably 70% or more, even more preferably 75% or more, and particularly preferably 80% or more.
  • the protective layer forming composition used to form the protective layer of the first invention preferably contains at least a photocurable resin, more preferably further contains a photopolymerization initiator, and may further contain other components.
  • the composition for forming the protective layer of the second invention used to form the protective layer of the second invention contains at least a curable resin, and preferably further contains a photopolymerization initiator, and may further contain other components.
  • the protective layer forming composition used to form the protective layer of the third invention contains at least a photocurable silicone resin, preferably further contains a photopolymerization initiator, and may further contain other components.
  • the “composition for forming a protective layer of the first invention,” the “composition for forming a protective layer of the second invention,” and the “composition for forming a protective layer of the third invention” may be collectively referred to as the “composition for forming a protective layer of the present invention.”
  • the photocurable resin of the protective layer-forming composition of the first invention various resins known in the art can be used, such as acrylic resin, polyester resin, urethane resin, polyvinyl resin, epoxy resin, silicone resin, vinyl acetate resin, fluorine-based resin, nitrile rubber, chloroprene rubber, and styrene-butadiene rubber.
  • the composition for forming a protective layer according to the first invention preferably contains a photocurable silicone resin as the photocurable resin.
  • the curable resin of the protective layer-forming composition of the second invention various resins known in the art can be used, such as acrylic resin, polyester resin, urethane resin, polyvinyl resin, epoxy resin, silicone resin, vinyl acetate resin, fluorine-based resin, nitrile rubber, chloroprene rubber, and styrene-butadiene rubber.
  • the composition for forming a protective layer according to the second invention preferably contains a photocurable resin as the curable resin, and more preferably contains a photocurable silicone resin.
  • the composition for forming a protective layer according to the third invention contains a photocurable silicone resin as the photocurable resin.
  • composition for forming a protective layer of the present invention contains a photocurable silicone resin, good curability can be obtained, and sufficient protective performance as a protective layer can be achieved.
  • the photocurable silicone resin will be described below.
  • the photocurable silicone resin preferably contains a siloxane unit in the main chain skeleton, and more preferably contains a dimethylsiloxane unit.
  • the photocurable silicone resin preferably contains fluorine atoms, from the viewpoint of suppressing compatibility between the anisotropic dye layer and the protective layer, preventing the two layers from mixing even when heated, and exhibiting good heat resistance.
  • the photocurable silicone resin used in the present invention has a siloxane unit represented by the following formula (B) from the viewpoint of suppressing compatibility between the anisotropic dye layer and the protective layer, preventing the two layers from mixing even when heated, and exhibiting good heat resistance.
  • R 21 to R 26 each independently represent a monovalent aliphatic hydrocarbon group which may have a substituent, or a monovalent aromatic hydrocarbon group which may have a substituent, and any of R 21 to R 26 has a polymerizable group as a substituent.
  • R27 is a hydrogen atom or an alkyl group.
  • n1 to n5 each independently represent an average of 0 to 1, and the sum of n1, n2, n3 and n4 is 1.
  • the monovalent aliphatic hydrocarbon group is preferably a monovalent aliphatic hydrocarbon group having 1 to 6 carbon atoms. Examples include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, and a cyclohexyl group.
  • the alkyl group may have a linear or branched structure.
  • the monovalent aromatic hydrocarbon group is preferably a monovalent aromatic hydrocarbon group having 6 to 10 carbon atoms, such as a phenyl group, a tolyl group, a phenylethyl group, a xylyl group, and a naphthyl group.
  • the alkyl group is preferably an alkyl group having a carbon number of 1 to 4. Examples include a methyl group, an ethyl group, a propyl group, and a butyl group, and the alkyl group may have a straight chain structure or a branched chain structure.
  • Examples of the polymerizable group possessed by any of R 21 to R 26 include a (meth)acryloyl group, a (meth)acryloyloxy group, a (meth)acryloylamino group, a vinyl group, a vinyloxy group, an epoxy structure-containing group, a mercapto group, an isocyanate group, an ethynyl group, an ethynyloxy group, a 1,3-butadienyl group, a 1,3-butadienyloxy group, an oxiranyl group, an oxetanyl group, a glycidyl group, a glycidyloxy group, a styryl group, a styryloxy group, etc.
  • the (meth)acryloyl group and the (meth)acryloyloxy group are preferred, and the (meth)acryloyloxy group is more preferred, since good curability can be obtained.
  • the siloxane units having a substituent containing a polymerizable group are preferably 0.01 mol% or more of the total siloxane units, more preferably 0.05 mol% or more, and even more preferably 0.1 mol% or more.
  • the siloxane units having a substituent containing a polymerizable group are preferably 95 mol% or less of the total siloxane units, more preferably 90 mol% or less, and even more preferably 85 mol% or less.
  • Examples of the substituent other than the polymerizable group that R to R may have include a fluorine atom, a chlorine atom, a bromine atom, a phenyl group, an amino functional group, a perfluoroalkyl group, a poly(hexafluoropropylene oxide) structure-containing group, and other substituents containing a fluorine atom.
  • a fluorine atom or a substituent containing a fluorine atom is preferred, and a fluorine atom is more preferred.
  • the siloxane units having the fluorine atom or a substituent containing a fluorine atom of the formula (B) suppress the compatibility between the anisotropic dye layer and the protective layer, and from the viewpoint of exhibiting good heat resistance without mixing of the two layers even when heated, the content of the siloxane units is preferably 0.01 mol% or more, and more preferably 0.05 mol% or more, based on the total siloxane units.
  • the content of the siloxane units having the fluorine atom or a substituent containing a fluorine atom of the formula (B) is preferably 90 mol% or less, more preferably 80 mol% or less, and even more preferably 70 mol% or less, based on the total siloxane units.
  • the dimethylsiloxane units preferably account for 0.5 mol % or more and 95 mol % or less, and more preferably 1 mol % or more and 90 mol % or less, of the total siloxane units.
  • the dimethylsiloxane unit preferably accounts for 0.5 mol % or more and 60 mol % or less, and more preferably 1 mol % or more and 50 mol % or less, of the total siloxane units.
  • photocurable silicone resin used in the photocurable silicone resin composition a commercially available product can also be used.
  • a commercially available photocurable silicone resin that does not contain fluorine atoms is X-40-2761 (manufactured by Shin-Etsu Chemical Co., Ltd.), and a commercially available photocurable silicone resin that contains fluorine atoms is X-12-2430C (manufactured by Shin-Etsu Chemical Co., Ltd.).
  • the molecular weight M of the photocurable silicone resin used in the first and third inventions is preferably 5,000 or more, more preferably 10,000 or more, even more preferably 12,000 or more, particularly preferably 15,000 or more, preferably 500,000 or less, more preferably 300,000 or less, and even more preferably 100,000 or less. If the molecular weight M of the photocurable silicone resin is equal to or greater than the lower limit, the cure shrinkage can be reduced and the optical performance of the optically anisotropic laminate can be improved. On the other hand, if the molecular weight M of the photocurable silicone resin is equal to or less than the upper limit, film formation tends to be easier.
  • the molecular weight M of the photocurable silicone resin used in the second invention is preferably 1000 or more, more preferably 5000 or more, even more preferably 10,000 or more, particularly preferably 15,000 or more, preferably 500,000 or less, more preferably 300,000 or less, and even more preferably 100,000 or less. If the molecular weight M of the photocurable silicone resin is equal to or greater than the lower limit, the cure shrinkage can be reduced and the optical performance of the optically anisotropic laminate can be improved. On the other hand, if the molecular weight M of the photocurable silicone resin is equal to or less than the upper limit, film formation tends to be easier.
  • the molecular weight M of a resin such as a photocurable silicone resin can be determined using the dynamic viscosity value. Specific measurement conditions are shown in the examples below.
  • curable silicone resins may be used alone or in combination of two or more.
  • the protective layer forming composition of the present invention may contain a photocurable resin other than a photocurable silicone resin as the photocurable resin or curable resin.
  • photocurable resins other than a photocurable silicone resin include acrylic resins, which are excellent in terms of ease of introduction of curable carbon-carbon double bonds such as (meth)acryloyl groups.
  • the degree of crosslinking can be controlled, making it easier to adjust the bleed-out of low molecular weight components.
  • photocurable resins also have excellent bending properties. This is presumably because the inclusion of an appropriate amount of crosslinking groups in the resin component makes it possible to achieve both flexibility and curability.
  • Curable functional groups contained in photocurable resins include active energy ray-curable functional groups such as carbon-carbon double bonds.
  • Examples include (meth)acryloyl groups and vinyl ether compounds. Among these, (meth)acryloyl groups, and especially acryloyl groups, are preferred in terms of ease of introduction and reactivity.
  • the polymerization reaction of the resin raw materials is usually radical polymerization, and can be carried out under conventionally known conditions.
  • Monomers that can be used in combination as raw materials include methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, butyl (meth)acrylate, pentyl (meth)acrylate, hexyl (meth)acrylate, cyclohexyl (meth)acrylate, phenyl (meth)acrylate, methoxy (poly)ethylene glycol (meth)acrylate, methoxy (poly)propylene glycol (meth)acrylate, methoxy (poly)ethylene glycol (poly)propylene glycol (meth)acrylate, octoxy (poly)ethylene glycol (meth)acrylate, octoxy (poly)propylene glycol (meth)acrylate, Examples of such methacrylates include (meth)acrylates such as t-butyl (meth)acrylamide, octoxytetramethylene glycol (meth)acrylate, lauroxy
  • Acrylic resins can be produced by radical polymerization using the above-mentioned raw vinyl monomers.
  • the radical polymerization reaction is preferably carried out in an organic solvent in the presence of a radical polymerization initiator.
  • the content of the photocurable resin in the protective layer is preferably 50% by mass or more, more preferably 60% by mass or more, and even more preferably 70% by mass or more, based on 100% by mass of the protective layer, from the viewpoint of expressing the function of the protective layer or obtaining a smooth protective layer.
  • the content of the photocurable resin in the protective layer is preferably 99.99% by mass or less, more preferably 99.9% by mass or less, based on 100% by mass of the protective layer.
  • the content of the photocurable resin in the composition for forming a protective layer used for forming the protective layer is preferably 50 parts by mass or more, more preferably 60 parts by mass or more, and even more preferably 70 parts by mass or more, relative to 100 parts by mass of the solid content of the composition for forming a protective layer, from the viewpoint of expressing the function of the protective layer or from the viewpoint of obtaining a smooth protective layer.
  • the content of the photocurable resin in the composition for forming a protective layer is preferably 99.99 parts by mass or less, more preferably 99.9 parts by mass or less, relative to 100 parts by mass of the solid content of the composition for forming a protective layer.
  • the solid content in the composition for forming a protective layer corresponds to the total of all components other than the solvent in the composition for forming a protective layer, and corresponds to the mass of the protective layer formed by the composition for forming a protective layer.
  • the content of the photocurable silicone resin in the protective layer forming composition used to form the protective layer is preferably 20 parts by mass or more, more preferably 30 parts by mass or more, and even more preferably 35 parts by mass or more, per 100 parts by mass of the solid content of the protective layer forming composition, from the viewpoint of expressing the function of the protective layer or obtaining a smooth protective layer.
  • the content of the photocurable silicone resin is preferably 99.5 parts by mass or less, more preferably 99 parts by mass or less, per 100 parts by mass of the solid content of the protective layer forming composition.
  • the composition for forming a protective layer of the present invention preferably contains a photopolymerization initiator.
  • the maximum absorption wavelength of the photopolymerization initiator contained in the protective layer forming composition of the present invention is preferably 300 nm or more, more preferably 320 nm or more, and even more preferably 340 nm or more.
  • the maximum absorption wavelength of the photopolymerization initiator is preferably 450 nm or less, more preferably 430 nm or less, and even more preferably 410 nm or less. By being in this range, the photopolymerization reaction proceeds sufficiently, and there is an effect that a protective layer with a good degree of hardening can be obtained.
  • the photopolymerization initiators exemplified in the composition for forming an anisotropic dye film can be used.
  • the content of the photopolymerization initiator in the protective layer is preferably 0.1% by mass or more, and more preferably 0.5% by mass or more, based on 100% by mass of the protective layer.
  • the content of the photopolymerization initiator is preferably 30% by mass or less, more preferably 10% by mass or less, even more preferably 8% by mass or less, particularly preferably 5% by mass or less, and especially preferably 3% by mass or less, based on 100% by mass of the protective layer.
  • the content of the photopolymerization initiator in the protective layer forming composition used to form the protective layer is preferably 0.1 parts by mass or more, and more preferably 0.5 parts by mass or more, per 100 parts by mass of the solid content of the protective layer forming composition. Furthermore, the content of the photopolymerization initiator is preferably 30 parts by mass or less, more preferably 10 parts by mass or less, even more preferably 8 parts by mass or less, and particularly preferably 3 parts by mass or less, per 100 parts by mass of the solid content of the protective layer forming composition.
  • composition for forming a protective layer of the present invention may contain a polymerizable liquid crystal compound and the like in addition to a photocurable resin as a polymerizable component that is cured by photopolymerization.
  • polymerizable liquid crystal compound various conventionally known polymerizable liquid crystal compounds can be used.
  • the polymerizable liquid crystal compounds mentioned in the above-mentioned anisotropic dye film forming composition are described on pages 408-410, 521-524, 562-563, etc. of "Liquid Crystal Handbook” (Maruzen Co., Ltd., published October 30, 2000).
  • the protective layer forming composition of the present invention may further contain a non-polymerizable resin, a non-polymerizable liquid crystal compound, a thermal polymerization initiator, a polymerization inhibitor, a polymerization aid, a surfactant, a leveling agent, a coupling agent, a pH adjuster, a dispersant, an antioxidant, an antistatic agent, an ultraviolet absorber, a light stabilizer, a thickener, an antifoaming agent, a dye, an organic or inorganic filler, an organic or inorganic nanosheet, an organic or inorganic nanofiber, a metal oxide, etc.
  • ultraviolet absorbers examples include benzophenone-based ultraviolet absorbers, benzotriazole-based ultraviolet absorbers, triazine-based ultraviolet absorbers, salicylic acid-based ultraviolet absorbers, and cyanoacrylate-based ultraviolet absorbers.
  • benzophenone-based ultraviolet absorbers, benzotriazole-based ultraviolet absorbers, and triazine-based ultraviolet absorbers are preferred from the viewpoint of the ease with which the ultraviolet absorption effect can be obtained.
  • benzophenone-based ultraviolet absorbers are more preferred from the viewpoint of excellent yellowing resistance.
  • UV absorbents can be used alone or in combination of two or more.
  • composition for forming a protective layer of the present invention may contain a solvent, if necessary.
  • the solvent there are no particular limitations on the solvent that can be used, so long as it can sufficiently disperse or dissolve the photocurable resin, photopolymerization initiator, and other components contained in the composition for forming the protective layer.
  • the solvent include alcohol solvents such as water, methanol, ethanol, ethylene glycol, isopropyl alcohol, propylene glycol, ethylene glycol methyl ether, ethylene glycol butyl ether, and propylene glycol monomethyl ether; ester solvents such as ethyl acetate, butyl acetate, ethylene glycol methyl ether acetate, ⁇ -butyrolactone, propylene glycol methyl ether acetate, and ethyl lactate; ketone solvents such as acetone, methyl ethyl ketone, cyclopentanone, cyclohexanone, 2-heptanone, and methyl isobutyl ketone; aliphatic hydrocarbon solvents such as pentan
  • preferred solvents are alcohol solvents such as water, methanol, ethanol, ethylene glycol, isopropyl alcohol, propylene glycol, ethylene glycol methyl ether, ethylene glycol butyl ether, and propylene glycol monomethyl ether; and ester solvents such as ethyl acetate, butyl acetate, ethylene glycol methyl ether acetate, ⁇ -butyrolactone, propylene glycol methyl ether acetate, and ethyl lactate, and more preferred are alcohol solvents such as water, methanol, ethanol, ethylene glycol, isopropyl alcohol, propylene glycol, ethylene glycol methyl ether, ethylene glycol butyl ether, and propylene glycol monomethyl ether.
  • alcohol solvents such as water, methanol, ethanol, ethylene glycol, isopropyl alcohol, propylene glycol, ethylene glycol methyl ether, ethylene glycol butyl ether, and propy
  • polar solvents are preferred as the solvent.
  • polar solvents with a relative dielectric constant of 10 or more are more preferred, polar solvents with a relative dielectric constant of 15 or more are even more preferred, and polar solvents with a relative dielectric constant of 20 or more are particularly preferred.
  • solvents may be used alone or in combination of two or more.
  • the solvent it is preferable for the solvent to have a boiling point in the range of 50 to 200°C.
  • the content ratio of the solvent in the composition for forming a protective layer of the present invention is preferably 50 to 98 mass % relative to the total amount (100 mass %) of the composition for forming a protective layer of the present invention.
  • the content of the solid content in the composition for forming a protective layer of the present invention is preferably 2 to 50 mass %.
  • the viscosity of the protective layer forming composition of the present invention is not particularly limited as long as a uniform protective layer without thickness unevenness is formed. From the viewpoint of obtaining a thickness uniformity over a large area and productivity such as coating speed by the coating method described later, the viscosity of the protective layer forming composition of the present invention is preferably 0.1 mPa ⁇ s or more, preferably 500 mPa ⁇ s or less, more preferably 100 mPa ⁇ s or less, and even more preferably 50 mPa ⁇ s or less.
  • the method for producing the composition for forming a protective layer of the present invention is not particularly limited.
  • a photocurable resin, a photopolymerization initiator, and optionally a solvent and other components are mixed.
  • a filtration step may be included for the purpose of removing foreign matter from the composition.
  • the method for producing the protective layer of the present invention is not particularly limited.
  • the protective layer may be produced by forming the composition for forming a protective layer of the present invention into a sheet or by a wet film-forming method.
  • the method of forming into a sheet as referred to in the present invention is a method in which the protective layer forming composition is formed into a molded body, for example a sheet body, by some method, and then irradiated with heat and/or active energy rays to harden the protective layer forming composition.
  • Methods for forming into a sheet include known methods such as wet lamination, dry lamination, extrusion casting using a T-die, extrusion lamination, calendaring, inflation, injection molding, and liquid injection curing. Among these, the wet lamination, extrusion casting, and extrusion lamination methods are preferred.
  • the wet film-forming method referred to in the present invention is a method in which the composition for forming a protective layer is applied to a substrate by some method, and then the composition for forming a protective layer is cured by polymerization using active energy rays.
  • Thermal polymerization may be used in combination with polymerization using active energy rays.
  • the substrate may be a substrate containing an anisotropic dye film, or a substrate not containing an anisotropic dye film.
  • the protective layer can be produced by transferring the protective layer forming composition applied to the substrate to a substrate containing an anisotropic dye film, or by transferring the anisotropic dye film applied to the substrate to a substrate containing a protective layer forming composition, and then curing the composition by irradiating it with active energy rays.
  • Methods for applying the protective layer-forming composition of the present invention onto a substrate include, for example, reverse coating, gravure coating, rod coating, bar coating, Mayer bar coating, die coating, spray coating, etc.
  • composition for forming a protective layer of the present invention may be dried at 30° C. or more and 150° C. or less, if necessary, before being polymerized by irradiation with active energy rays.
  • active energy rays include light and radiation, of which ultraviolet light and visible light are preferred from the viewpoint of easy polymerization control.
  • a xenon lamp, a high pressure mercury lamp, a metal halide lamp, an LED-UV lamp, or the like can be used as the light source of the ultraviolet irradiation device.
  • the amount of ultraviolet irradiation is appropriately determined depending on the composition for forming a protective layer, but is usually 10 mJ/cm 2 or more and 10,000 mJ/cm 2 or less. From the viewpoint of the degree of curing, the amount of ultraviolet irradiation is preferably 15 mJ/cm 2 or more and 5,000 mJ/cm 2 or less, and more preferably 20 mJ/cm 2 or more and 3,000 mJ/cm 2 or less.
  • the optically anisotropic laminate of the present invention may have a functional film such as a pressure-sensitive adhesive film having tackiness and/or adhesion, an antireflection film, a retardation film, a light control film that absorbs, reflects or scatters light, a low refractive film, a high refractive film, an electrically insulating film, an electrically conductive film, an alignment film, etc.
  • a functional film such as a pressure-sensitive adhesive film having tackiness and/or adhesion, an antireflection film, a retardation film, a light control film that absorbs, reflects or scatters light, a low refractive film, a high refractive film, an electrically insulating film, an electrically conductive film, an alignment film, etc.
  • These functional films are preferably photocurable films having photopolymerizability, but may also be films having no photopolymerizability.
  • the optically anisotropic laminate having a tacky adhesive film and a protective layer preferably has a laminate structure of anisotropic dye film/protective layer/tacky adhesive film. Other layers may be laminated between the anisotropic dye film, the protective layer and the tacky adhesive film.
  • the adhesive film can be produced using a composition for forming an adhesive film.
  • the adhesive film preferably has a light transmittance at wavelengths of 380 nm or less of less than 50%, more preferably less than 30%, and even more preferably less than 20%.
  • the adhesive film preferably has a light transmittance at wavelengths of 400 nm or less of less than 30%, more preferably less than 25%, even more preferably less than 22%, and especially preferably less than 20%.
  • the adhesive film preferably has a light transmittance at a wavelength of 430 nm of 60% or more, more preferably 70% or more, even more preferably 75% or more, and particularly preferably 80% or more.
  • the thickness of the adhesive film is preferably 3 ⁇ m or more from the viewpoint of ensuring adhesiveness, more preferably 10 ⁇ m or more, even more preferably 20 ⁇ m or more, particularly preferably 30 ⁇ m or more, and especially preferably 40 ⁇ m or more.
  • the upper limit of the thickness of the adhesive film is preferably 175 ⁇ m or less from the viewpoint of contributing to the thinning of the optically anisotropic laminate, more preferably 120 ⁇ m or less, even more preferably 80 ⁇ m or less, and especially preferably 60 ⁇ m or less.
  • the adhesive film-forming composition contains a curable resin and a photopolymerization initiator.
  • the photopolymerization initiator of the adhesive film-forming composition can be any of the photopolymerization initiators listed for the protective layer-forming composition.
  • the content of the photopolymerization initiator in the composition for forming a tacky adhesive film is not particularly limited. From the viewpoint of sufficiently progressing the polymerization reaction and improving the shape stability of the tacky adhesive film, the content of the photopolymerization initiator in the composition for forming a tacky adhesive film is preferably 0.1 parts by mass or more, more preferably 0.5 parts by mass or more, even more preferably 1 part by mass or more, and particularly preferably 2 parts by mass or more, relative to 100 parts by mass of the curable resin.
  • the upper limit of the content of the photopolymerization initiator in the composition for forming a tacky adhesive film is preferably 15 parts by mass or less, more preferably 10 parts by mass or less, even more preferably 6 parts by mass or less, and particularly preferably 4 parts by mass or less, relative to 100 parts by mass of the curable resin, from the viewpoint of ensuring adhesion.
  • the curable resin contained in the adhesive film-forming composition has adhesive and/or bonding properties.
  • various resins that are conventionally known can be used. Examples include acrylic resin, epoxy resin, urethane resin, silicone resin, vinyl acetate resin, nitrile rubber, chloroprene rubber, and styrene butadiene rubber. Among these, acrylic resin is preferred because of its excellent adhesive properties.
  • the adhesive film may contain an ultraviolet absorbing agent.
  • an ultraviolet absorbing agent By containing an ultraviolet absorbing agent, deterioration of the optically anisotropic laminate caused by light can be reduced.
  • the ultraviolet absorbing agent the ultraviolet absorbing agents exemplified in the composition for forming the protective layer can be used.
  • the method for producing the optically anisotropic laminate of the present invention is not particularly limited, but the following methods (1) to (4) can be mentioned.
  • a method for producing an optically anisotropic laminate by transferring a composition for forming a protective layer that has been applied to a substrate on which an anisotropic dye film has not been formed, or formed into a sheet form, to a substrate on which an anisotropic dye film has been formed, and then curing the composition using active energy rays to form a protective layer.
  • a method for producing an optically anisotropic laminate by transferring an anisotropic dye film from a substrate on which an anisotropic dye film has been formed to a composition for forming a protective layer that has been applied to a substrate on which an anisotropic dye film has not been formed, or formed into a sheet form, and then curing the composition using active energy rays to form a protective layer.
  • a method of producing an optically anisotropic laminate is preferred in which a composition for forming a protective layer is applied or formed into a sheet on a substrate on which an anisotropic dye film has been produced, and then polymerized using active energy rays to form a protective layer.
  • Functional films other than the protective layer can be formed in the same manner as the protective layer.
  • optical elements The optical element of the present invention includes the optically anisotropic laminate of the present invention.
  • the optical element refers to a polarizing element that utilizes the anisotropy of light absorption to obtain linearly polarized light, circularly polarized light, elliptically polarized light, etc., a phase difference element, an optical compensation element, and an element that has functions such as reflection, brightness improvement, refractive anisotropy, and conductive anisotropy.
  • An optical element may have one or more functions. These functions can be appropriately adjusted by selecting the anisotropic dye film formation process and the composition containing the substrate and organic compound (dye or transparent material).
  • the optical element of the present invention is preferably used as a polarizing element or a polarizing element combined with other functions, and is more preferably used as a polarizing element.
  • the optical element of the present invention can be suitably used for applications such as flexible displays because a polarizing element can be obtained by forming an anisotropic dye film on a substrate by coating or the like.
  • the polarizing element may have any other layer as long as it has the optically anisotropic laminate of the present invention.
  • the layers that can be used in combination with the polarizing element can be provided appropriately in accordance with the manufacturing process, characteristics, and functions, and the positions and order of lamination thereof are not particularly limited.
  • the layer having an optical function can be formed by the following method.
  • the layer that functions as a retardation film can be formed by coating or laminating a retardation film onto other layers that make up the polarizing element.
  • the retardation film can be formed, for example, by carrying out the stretching treatment described in JP-A-2-59703 and JP-A-4-230704, or the treatment described in JP-A-7-230007.
  • the layer that functions as a brightness enhancement film can be formed by coating or laminating the brightness enhancement film onto other layers that make up the polarizing element.
  • the brightness enhancement film can be formed, for example, by forming micropores using the methods described in JP-A-2002-169025 and JP-A-2003-29030, or by superimposing two or more cholesteric liquid crystal layers that have different central wavelengths of selective reflection.
  • a layer that functions as a reflective film or semi-transparent reflective film can be formed, for example, by coating or laminating a thin metal film obtained by vapor deposition or sputtering onto other layers that make up the polarizing element.
  • the layer that functions as a diffusion film can be formed, for example, by coating the other layers that make up the polarizing element with a resin solution that contains fine particles.
  • the optical element of the present invention When the optical element of the present invention is used in various display elements such as LCDs and OLEDs, the optical element of the present invention may be formed directly on the surface of the electrode substrate or the like that constitutes these display elements, or the optical element of the present invention may be used as a component of these display elements.
  • the surface free energy ⁇ can be calculated by determining the static contact angle of water or diiodomethane at 25° C. with respect to the target surface and using the theoretical formula described in D. K. Owens and R. C. Wendt, J. Appl. Polym. Sci., 13, 1741 (1969).
  • the static contact angle was measured using a contact angle meter "DropMaster 500" manufactured by Kyowa Interface Science Co., Ltd. The measurement temperature was 25°C, the amount of droplet was 2 ⁇ L, and the contact angles of distilled water and diiodomethane were evaluated 1 second after the droplet landed. Five points were measured for each and the average value was calculated.
  • ⁇ d represents the dispersion component (dispersion term) of the surface free energy
  • ⁇ h represents the polar component (polar term) of the surface free energy
  • a polymerizable liquid crystal compound (I-1) (molecular weight: 828) represented by the following structural formula was synthesized according to the description of JP2020-042305A.
  • C11H22 means that 11 methylene chains are bonded in a linear chain.
  • Example I-1 ⁇ Preparation of composition for forming anisotropic dye film> To 69.31 parts of cyclopentanone, 28.57 parts of polymerizable liquid crystal compound (I-1), 0.34 parts of dye (II-1) (manufactured by Hayashibara Co., Ltd.), 0.84 parts of dye (II-2) (manufactured by Showa Kako Co., Ltd.), 0.29 parts of IRGACURE (registered trademark) 369 (manufactured by BASF) (maximum absorption wavelength 319 nm), and 0.34 parts of BYK-361N (manufactured by BYK-Chemie) were added, and the mixture was heated and stirred at 80° C., and then filtered using a syringe equipped with a syringe filter (manufactured by Membrane Solutions, PTFE13045, aperture 0.45 ⁇ m) to obtain
  • the composition for forming an anisotropic dye film was applied by spin coating to a substrate on which a polyimide alignment film (LX1400, Hitachi Chemical DuPont Microsystems, the alignment film was formed by rubbing) had been formed on glass.
  • the substrate was then dried by heating at 120°C for 2 minutes, cooled to the liquid crystal phase, and polymerized at an exposure dose of 500 mJ/ cm2 (based on 365 nm) to obtain an anisotropic dye film with a thickness of 3 ⁇ m.
  • the photocurable silicone resin the following fluorine-containing photocurable silicone resin X-12-2430C (manufactured by Shin-Etsu Chemical Co., Ltd.) (R-1) was used.
  • This fluorine-containing photocurable silicone resin has a molecular weight M of 24,000.
  • the protective layer-forming composition I-1 was applied onto the anisotropic dye film by spin coating, and the film was dried by heating at 50°C for 2 minutes. The film was then polymerized at an exposure dose of 500 mj/ cm2 (based on 365 nm) to form a protective layer I-1 having a thickness of 2 ⁇ m, thereby obtaining an optically anisotropic laminate I-1.
  • the surface free energy of the protective layer I-1 thus formed is shown in Table 1.
  • Example I-2 A protective layer I-2 was formed on the anisotropic dye film formed in the same manner as in Example I-1, except that the amount of the fluorine-containing photocurable silicone resin (R-1) was changed from 40 parts to 50 parts, and the amount of the photopolymerization initiator Omnirad 369 was changed from 0.40 parts to 0.50 parts, to obtain an optically anisotropic laminate I-2.
  • the surface free energy of the protective layer I-2 formed was as shown in Table 1.
  • Example I-3 A protective layer I-3 was formed on the anisotropic dye film in the same manner as in Example I-1, except that fluorine-free photocurable silicone resin X-40-2761 (manufactured by Shin-Etsu Chemical Co., Ltd.) (R-2) was used as the photocurable silicone resin of the protective layer-forming composition, to obtain an optically anisotropic laminate I-3.
  • the molecular weight M of this fluorine-free photocurable silicone resin (R-2) is 19,000.
  • the surface free energy of the formed protective layer I-3 is as shown in Table 1.
  • a protective layer I-4 was formed on the anisotropic dye film in the same manner as in Example I-1, except that the following photocurable urethane acrylate resin Shikoh UV-7600B (manufactured by Mitsubishi Chemical Corporation) (R-3) was used as the photocurable resin of the protective layer-forming composition, to obtain an optically anisotropic laminate I-4.
  • the weight average molecular weight (Mw) of this photocurable urethane acrylate resin (R-3) was 2000.
  • the surface free energy of the formed protective layer I-4 was as shown in Table 1.
  • the optically anisotropic laminate of the first invention in which the absolute value of the surface free energy difference between the anisotropic dye layer and the protective layer is 3 mN/ m2 or more, is excellent in heat resistance and solvent resistance, and can maintain good appearance and performance in applications such as polarizers.
  • Example II-1 ⁇ Preparation of composition for forming anisotropic dye film>
  • polymerizable liquid crystal compound (I-1) 28.57 parts of polymerizable liquid crystal compound (I-1), 0.34 parts of dye (II-1) (manufactured by Hayashibara Co., Ltd.), 0.84 parts of dye (II-2) (manufactured by Showa Kako Co., Ltd.), 0.29 parts of IRGACURE (registered trademark) 369 (manufactured by BASF) (maximum absorption wavelength 319 nm), and 0.34 parts of BYK-361N (manufactured by BYK-Chemie) were added, and the mixture was heated and stirred at 80° C., and then filtered using a syringe equipped with a syringe filter (manufactured by Membrane Solutions, PTFE13045, aperture 0.45 ⁇ m) to obtain
  • the composition for forming an anisotropic dye film was applied by spin coating to a substrate on which a polyimide alignment film (LX1400, Hitachi Chemical DuPont Microsystems, the alignment film was formed by rubbing) had been formed on glass.
  • the substrate was then dried by heating at 120°C for 2 minutes, cooled to the liquid crystal phase, and polymerized at an exposure dose of 500 mJ/ cm2 (based on 365 nm) to obtain an anisotropic dye film with a thickness of 3 ⁇ m.
  • a polarizing plate over the anisotropic dye film, clear light and dark appeared every time the polarizing plate was rotated by 90 degrees, indicating that the film had good polarizing performance.
  • the photocurable silicone resin the following fluorine-containing photocurable silicone resin X-12-2430C (manufactured by Shin-Etsu Chemical Co., Ltd.) (R-1) was used.
  • This fluorine-containing photocurable silicone resin has a molecular weight M of 24,000.
  • the protective layer-forming composition II-1 was applied onto the anisotropic dye film by spin coating, and the film was dried by heating at 50°C for 2 minutes. The film was then polymerized at an exposure dose of 500 mj/ cm2 (based on 365 nm) to form a protective layer II-1 having a thickness of 2 ⁇ m, thereby obtaining an optically anisotropic laminate II-1.
  • the surface free energy of the fluorine-containing photocurable silicone resin (R-1) was determined as the surface free energy of the R-1 resin layer, and is shown in Table 2.
  • Example II-2 A protective layer II-2 was formed on the anisotropic dye film formed in the same manner as in Example II-1, except that the amount of the fluorine-containing photocurable silicone resin (R-1) was changed from 40 parts to 50 parts, and the amount of the photopolymerization initiator Omnirad 369 was changed from 0.40 parts to 0.50 parts, to obtain an optically anisotropic laminate II-2.
  • Example II-3 A protective layer II-3 was formed on the anisotropic dye film in the same manner as in Example II-1, except that a fluorine-free photocurable silicone resin X-40-2761 (manufactured by Shin-Etsu Chemical Co., Ltd.) (R-2) was used as the photocurable silicone resin of the protective layer-forming composition, to obtain an optically anisotropic laminate II-3.
  • the molecular weight M of this fluorine-free photocurable silicone resin (R-2) is 19,000.
  • the R-2 resin layer was obtained in the same manner as in Example II-1, except that the photocurable silicone resin (R-1) was replaced with the fluorine-free photocurable silicone resin (R-2).
  • the surface free energy of the fluorine-free photocurable silicone resin (R-2) was determined as the surface free energy of the R-2 resin layer, and is shown in Table 2.
  • a protective layer II-4 was formed on the anisotropic dye film in the same manner as in Example II-1, except that the photocurable urethane acrylate resin Shikoh UV-7600B (manufactured by Mitsubishi Chemical Corporation) (R-3) was used as the photocurable resin of the protective layer-forming composition, to obtain an optically anisotropic laminate II-4.
  • the weight average molecular weight (Mw) of this photocurable urethane acrylate resin (R-3) is 2000.
  • the R-3 resin layer was obtained in the same manner as in Example II-1, except that the photocurable silicone resin (R-1) was replaced with the photocurable urethane acrylate resin (R-3).
  • the surface free energy of the photocurable urethane acrylate resin (R-3) was determined as the surface free energy of the R-3 resin layer, and is shown in Table 2.
  • the optically anisotropic laminate of the second invention in which the surface free energy of the film obtained by curing the curable resin contained in the composition for forming a protective layer is 45 mN/ m2 or less, has excellent heat resistance and solvent resistance, and can maintain good appearance and performance in applications such as polarizers.
  • Example III-1 ⁇ Preparation of composition for forming anisotropic dye film>
  • polymerizable liquid crystal compound (I-1) 28.57 parts of polymerizable liquid crystal compound (I-1), 0.34 parts of dye (II-1) (manufactured by Hayashibara Co., Ltd.), 0.84 parts of dye (II-2) (manufactured by Showa Kako Co., Ltd.), 0.29 parts of IRGACURE (registered trademark) 369 (manufactured by BASF) (maximum absorption wavelength 319 nm), and 0.34 parts of BYK-361N (manufactured by BYK-Chemie) were added, and the mixture was heated and stirred at 80° C., and then filtered using a syringe equipped with a syringe filter (manufactured by Membrane Solutions, PTFE13045, aperture 0.45 ⁇ m) to obtain
  • the composition for forming an anisotropic dye film was applied by spin coating to a substrate on which a polyimide alignment film (LX1400, Hitachi Chemical DuPont Microsystems, the alignment film was formed by rubbing) had been formed on glass.
  • the substrate was then dried by heating at 120°C for 2 minutes, cooled to the liquid crystal phase, and polymerized at an exposure dose of 500 mJ/ cm2 (based on 365 nm) to obtain an anisotropic dye film with a thickness of 3 ⁇ m.
  • a polarizing plate over the anisotropic dye film, clear light and dark appeared every time the polarizing plate was rotated by 90 degrees, indicating that the film had good polarizing performance.
  • the photocurable silicone resin the following fluorine-containing photocurable silicone resin X-12-2430C (manufactured by Shin-Etsu Chemical Co., Ltd.) (R-1) was used.
  • This fluorine-containing photocurable silicone resin has a molecular weight M of 24,000.
  • the protective layer-forming composition III-1 was applied onto the anisotropic dye film by spin coating, and the film was dried by heating at 50°C for 2 minutes. The film was then polymerized at an exposure dose of 500 mj/ cm2 (based on 365 nm) to form a protective layer III-1 having a thickness of 2 ⁇ m, thereby obtaining an optically anisotropic laminate III-1.
  • Example III-2 A protective layer III-2 was formed on the anisotropic dye film formed in the same manner as in Example III-1, except that the amount of the fluorine-containing photocurable silicone resin (R-1) was changed from 40 parts to 50 parts, and the amount of the photopolymerization initiator Omnirad 369 was changed from 0.40 parts to 0.50 parts, to obtain an optically anisotropic laminate III-2.
  • Example III-3 A protective layer III-3 was formed on the anisotropic dye film in the same manner as in Example III-1, except that a fluorine-free photocurable silicone resin X-40-2761 (manufactured by Shin-Etsu Chemical Co., Ltd.) (R-2) was used as the photocurable silicone resin of the protective layer-forming composition, to obtain an optically anisotropic laminate III-3.
  • the molecular weight M of this fluorine-free photocurable silicone resin (R-2) is 19,000.
  • a protective layer III-4 was formed on the anisotropic dye film in the same manner as in Example III-1, except that the photocurable urethane acrylate resin SHIKO UV-7600B (manufactured by Mitsubishi Chemical Corporation) (R-3) was used as the photocurable resin of the protective layer-forming composition, to obtain an optically anisotropic laminate III-4.
  • the weight average molecular weight (Mw) of this photocurable urethane acrylate resin (R-3) is 2000.
  • the optically anisotropic laminate of the third invention in which the protective layer is formed from a protective layer-forming composition containing a photocurable silicone resin, has excellent heat resistance and solvent resistance, and can maintain good appearance and performance in applications such as polarizers.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polarising Elements (AREA)
  • Laminated Bodies (AREA)

Abstract

Provided is an optically anisotropic laminate in which a protective layer is laminated on an anisotropic pigment layer. The anisotropic pigment layer is a layer formed from an anisotropic pigment film formation composition that contains a pigment, a polymerizable liquid crystal compound, and a photopolymerization initiator. Provided is an optically anisotropic laminate in which the absolute value of the surface free energy difference between the anisotropic pigment layer and the protective layer is 3 mN/m2 or greater. Alternatively, there is provided an optically anisotropic laminate in which the surface free energy of a film obtained by curing a curable resin is 45 mN/m2 or less. Alternatively, there is provided an optically anisotropic laminate in which the protective layer is formed from a protective layer formation composition that contains a photocurable resin, and the photocurable resin includes a photocurable silicone resin.

Description

光学異方性積層体および光学素子Optically anisotropic laminate and optical element
 本発明は、調光素子、液晶素子(LCD)、および有機エレクトロルミネッセンス素子(OLED)の表示素子に具備される直線偏光膜、円偏光膜等に有用な、高い二色性を示す光学異方性積層体および光学素子に関する。 The present invention relates to an optically anisotropic laminate and optical element that exhibits high dichroism and is useful for linear polarizing films, circular polarizing films, etc., provided in display elements such as light control elements, liquid crystal elements (LCDs), and organic electroluminescence elements (OLEDs).
 LCDでは、表示における旋光性や複屈折性を制御するために、直線偏光膜および円偏光膜が用いられている。OLEDにおいても、明所での外光の反射防止のために円偏光膜が用いられている。 In LCDs, linear and circular polarizing films are used to control the optical rotation and birefringence of the display. Circular polarizing films are also used in OLEDs to prevent reflection of external light in bright places.
 従来、このような偏光膜として、たとえば、ポリビニルアルコール(PVA)を低濃度のヨウ素で染色した偏光膜(ヨウ素-PVA偏光膜)を含むものが知られている(特許文献1)。
 しかし、低濃度のヨウ素で染色したヨウ素-PVA偏光膜は、使用環境によっては、ヨウ素が昇華したり、変質したりして、色目が変わってしまうといった問題や、PVAの延伸が緩和されることによる反りが発生するといった問題がある。
Conventionally, examples of such polarizing films include a polarizing film made of polyvinyl alcohol (PVA) dyed with low concentration of iodine (iodine-PVA polarizing film) (Patent Document 1).
However, iodine-PVA polarizing films dyed with low concentrations of iodine have problems such as changes in color due to sublimation or deterioration of iodine depending on the usage environment, and warping due to relaxation of the stretching of PVA.
 色素を含有する液晶組成物を塗布して形成される異方性色素膜が偏光膜として機能することも知られている(特許文献2)。
 この場合、異方性色素層には通常保護層が積層された光学異方性積層体とされる。
It is also known that an anisotropic dye film formed by coating a liquid crystal composition containing a dye functions as a polarizing film (Patent Document 2).
In this case, an optically anisotropic laminate is formed by laminating a protective layer on the anisotropic dye layer.
特開平1-105204号公報Japanese Patent Application Laid-Open No. 1-105204 特表2004-535483号公報JP 2004-535483 A
 異方性色素層と保護層が積層された光学異方性積層体を偏光子として用いる際、加熱条件下において偏光子として外観、性能が低下する課題がある。 When an optically anisotropic laminate consisting of an anisotropic dye layer and a protective layer is used as a polarizer, there is an issue that the appearance and performance of the polarizer deteriorates under heating conditions.
 本発明は、異方性色素層と保護層が積層された光学異方性積層体であって、加熱条件下における外観及び性能の低下を抑制し、良好な外観と性能を維持できる光学異方性積層体及び光学素子を提供することを目的とする。 The present invention aims to provide an optically anisotropic laminate in which an anisotropic dye layer and a protective layer are laminated, which suppresses deterioration of appearance and performance under heating conditions and maintains good appearance and performance, and an optical element.
 本発明者は、異方性色素層と保護層の表面自由エネルギー差の絶対値を所定値以上とすることで、異方性色素層と保護層との相溶を抑制し、加熱環境下においても両層が混合せずに良好な耐熱性を示し、また耐溶剤性、外観及び性能に優れる光学異方性積層体を提供できることを見出した。
 本発明の第1の発明は以下を要旨とする。
The present inventors have discovered that by setting the absolute value of the surface free energy difference between the anisotropic dye layer and the protective layer to a predetermined value or more, it is possible to suppress compatibility between the anisotropic dye layer and the protective layer, and to provide an optically anisotropic laminate that exhibits good heat resistance without mixing between the two layers even in a heated environment, and that is excellent in solvent resistance, appearance, and performance.
The gist of the first aspect of the present invention is as follows.
[1-1] 異方性色素層に保護層が積層された光学異方性積層体であって、
 前記異方性色素層は色素、重合性液晶化合物及び光重合開始剤を含有する異方性色素膜形成用組成物から形成された層であり、
 前記異方性色素層と前記保護層の表面自由エネルギー差の絶対値が3mN/m以上である、光学異方性積層体。
[1-1] An optically anisotropic laminate in which a protective layer is laminated on an anisotropic dye layer,
the anisotropic dye layer is a layer formed from a composition for forming an anisotropic dye film, which contains a dye, a polymerizable liquid crystal compound, and a photopolymerization initiator;
An optically anisotropic laminate, wherein the absolute value of the difference in surface free energy between the anisotropic dye layer and the protective layer is 3 mN/ m2 or more.
[1-2] 前記保護層は光硬化性シリコーン樹脂を含有する保護層形成用組成物から形成された層である、[1-1]に記載の光学異方性積層体。 [1-2] The optically anisotropic laminate described in [1-1], wherein the protective layer is a layer formed from a protective layer-forming composition containing a photocurable silicone resin.
[1-3] 前記光硬化性シリコーン樹脂がフッ素原子を有する、[1-2]に記載の光学異方性積層体。 [1-3] The optically anisotropic laminate according to [1-2], in which the photocurable silicone resin contains fluorine atoms.
[1-4] 前記重合性液晶化合物が繰り返し構造を有さない低分子重合性液晶化合物である、[1-1]~[1-3]のいずれかに記載の光学異方性積層体。 [1-4] An optically anisotropic laminate according to any one of [1-1] to [1-3], in which the polymerizable liquid crystal compound is a low molecular weight polymerizable liquid crystal compound that does not have a repeating structure.
[1-5] 前記重合性液晶化合物が、下記式(1)で表される化合物である、[1-1]~[1-4]のいずれかに記載の光学異方性積層体。
 Q-R-A11-Y-A12-(Y-A13-R-Q  …(1)
(式(1)中、
 -Qは、水素原子または重合性基を表し;
 -Qは、重合性基を表し;
 -R-および-R-は、それぞれ独立に、鎖状有機基を表し;
 -A11-および-A13-は、それぞれ独立に、下記式(2)で表される部分構造、2価有機基または単結合を表し;
 -A12-は、下記式(2)で表される部分構造または2価有機基を表し;
 -Y-および-Y-は、それぞれ独立に、単結合、-C(=O)O-、-OC(=O)-、-C(=S)O-、-OC(=S)-、-C(=O)S-、-SC(=O)-、-CHCH-、-CH=CH-、-C≡C-、-C(=O)NH-、-NHC(=O)-、-CHO-、-OCH-、-CHS-、または-SCH-を表し;
 -A11-および-A13-の一方は、下記式(2)で表される部分構造または2価有機基であり;
 kは1または2である。
 kが2の場合、2つの-Y-A13-は互いに同一でも異なっていてもよい。)
 -Cy-X-C≡C-X-  …(2)
(式(2)中、
 -Cy-は、炭化水素環基または複素環基を表し;
 -X-は、-C(=O)O-、-OC(=O)-、-C(=S)O-、-OC(=S)-、-C(=O)S-、-SC(=O)-、-CHCH-、-CH=CH-、-C(=O)NH-、-NHC(=O)-、-CHO-、-OCH-、-CHS-、または-SCH-を表し;
 -X-は、単結合、-C(=O)O-、-OC(=O)-、-C(=S)O-、-OC(=S)-、-C(=O)S-、-SC(=O)-、-CHCH-、-CH=CH-、-C(=O)NH-、-NHC(=O)-、-CHO-、-OCH-、-CHS-、または-SCH-を表す。)
[1-5] The optically anisotropic laminate according to any one of [1-1] to [1-4], wherein the polymerizable liquid crystal compound is a compound represented by the following formula (1):
Q 1 -R 1 -A 11 -Y 1 -A 12 -(Y 2 -A 13 ) k -R 2 -Q 2 ... (1)
(In formula (1),
-Q1 represents a hydrogen atom or a polymerizable group;
-Q2 represents a polymerizable group;
-R 1 - and -R 2 - each independently represent a chain organic group;
-A 11 - and -A 13 - each independently represent a partial structure represented by the following formula (2), a divalent organic group, or a single bond;
-A 12 - represents a partial structure represented by the following formula (2) or a divalent organic group;
Each of -Y 1 - and -Y 2 - independently represents a single bond, -C(=O)O-, -OC(=O)-, -C(=S)O-, -OC(=S)-, -C(=O)S-, -SC(=O)-, -CH 2 CH 2 -, -CH=CH-, -C≡C-, -C(=O)NH-, -NHC(=O)-, -CH 2 O-, -OCH 2 -, -CH 2 S-, or -SCH 2 -;
One of -A 11 - and -A 13 - is a partial structure represented by the following formula (2) or a divalent organic group:
k is 1 or 2.
When k is 2, two -Y 2 -A 13 - may be the same or different.
-Cy-X 2 -C≡C-X 1 - ... (2)
(In formula (2),
-Cy- represents a hydrocarbon ring group or a heterocyclic group;
-X 1 - represents -C(=O)O-, -OC(=O)-, -C(=S)O-, -OC(=S)-, -C(=O)S-, -SC(=O)-, -CH 2 CH 2 -, -CH=CH-, -C(=O)NH-, -NHC(=O)-, -CH 2 O-, -OCH 2 -, -CH 2 S-, or -SCH 2 -;
-X 2 - represents a single bond, -C(=O)O-, -OC(=O)-, -C(=S)O-, -OC(=S)-, -C(=O)S-, -SC(=O)-, -CH 2 CH 2 -, -CH=CH-, -C(=O)NH-, -NHC(=O)-, -CH 2 O-, -OCH 2 -, -CH 2 S-, or -SCH 2 -.
[1-6] [1-1]~[1-5]のいずれかに記載の光学異方性積層体を有する、光学素子。 [1-6] An optical element having an optically anisotropic laminate according to any one of [1-1] to [1-5].
 本発明者は、保護層形成用組成物に含有される硬化性樹脂について、該硬化性樹脂を硬化して得られる膜の表面自由エネルギーを所定値以下とすることで、異方性色素層と保護層との相溶を抑制し、加熱環境下においても両層が混合せずに良好な耐熱性を示し、また耐溶剤性、外観及び性能に優れる光学異方性積層体を提供できることを見出した。
 本発明の第2の発明は以下を要旨とする。
The present inventors have discovered that by setting the surface free energy of a film obtained by curing a curable resin contained in a composition for forming a protective layer to a predetermined value or less, it is possible to suppress compatibility between the anisotropic dye layer and the protective layer, and provide an optically anisotropic laminate that exhibits good heat resistance without mixing between the two layers even in a heated environment, and that also has excellent solvent resistance, appearance, and performance.
The second aspect of the present invention is as follows.
[2-1] 異方性色素層に保護層が積層された光学異方性積層体であって、
 前記異方性色素層は色素、重合性液晶化合物及び光重合開始剤を含有する異方性色素膜形成用組成物から形成された層であり、
 前記保護層は硬化性樹脂を含有する保護層形成用組成物から形成された層であり、
 前記硬化性樹脂を硬化して得られる膜の表面自由エネルギーが45mN/m以下である、光学異方性積層体。
[2-1] An optically anisotropic laminate in which a protective layer is laminated on an anisotropic dye layer,
the anisotropic dye layer is a layer formed from a composition for forming an anisotropic dye film, which contains a dye, a polymerizable liquid crystal compound, and a photopolymerization initiator;
the protective layer is a layer formed from a protective layer-forming composition containing a curable resin,
An optically anisotropic laminate, wherein the surface free energy of a film obtained by curing the curable resin is 45 mN/ m2 or less.
[2-2] 前記硬化性樹脂は光硬化性シリコーン樹脂である、[2-1]に記載の光学異方性積層体。 [2-2] The optically anisotropic laminate described in [2-1], wherein the curable resin is a photocurable silicone resin.
[2-3] 前記光硬化性シリコーン樹脂がフッ素原子を有する、[2-2]に記載の光学異方性積層体。 [2-3] The optically anisotropic laminate according to [2-2], in which the photocurable silicone resin contains fluorine atoms.
[2-4] 前記重合性液晶化合物が繰り返し構造を有さない低分子重合性液晶化合物である、[2-1]~[2-3]のいずれかに記載の光学異方性積層体。 [2-4] An optically anisotropic laminate according to any one of [2-1] to [2-3], in which the polymerizable liquid crystal compound is a low molecular weight polymerizable liquid crystal compound that does not have a repeating structure.
[2-5] 前記重合性液晶化合物が、下記式(1)で表される化合物である、[2-1]~[2-4]のいずれかに記載の光学異方性積層体。
 Q-R-A11-Y-A12-(Y-A13-R-Q  …(1)
(式(1)中、
 -Qは、水素原子または重合性基を表し;
 -Qは、重合性基を表し;
 -R-および-R-は、それぞれ独立に、鎖状有機基を表し;
 -A11-および-A13-は、それぞれ独立に、下記式(2)で表される部分構造、2価有機基または単結合を表し;
 -A12-は、下記式(2)で表される部分構造または2価有機基を表し;
 -Y-および-Y-は、それぞれ独立に、単結合、-C(=O)O-、-OC(=O)-、-C(=S)O-、-OC(=S)-、-C(=O)S-、-SC(=O)-、-CHCH-、-CH=CH-、-C≡C-、-C(=O)NH-、-NHC(=O)-、-CHO-、-OCH-、-CHS-、または-SCH-を表し;
 -A11-および-A13-の一方は、下記式(2)で表される部分構造または2価有機基であり;
 kは1または2である。
 kが2の場合、2つの-Y-A13-は互いに同一でも異なっていてもよい。)
 -Cy-X-C≡C-X-  …(2)
(式(2)中、
 -Cy-は、炭化水素環基または複素環基を表し;
 -X-は、-C(=O)O-、-OC(=O)-、-C(=S)O-、-OC(=S)-、-C(=O)S-、-SC(=O)-、-CHCH-、-CH=CH-、-C(=O)NH-、-NHC(=O)-、-CHO-、-OCH-、-CHS-、または-SCH-を表し;
 -X-は、単結合、-C(=O)O-、-OC(=O)-、-C(=S)O-、-OC(=S)-、-C(=O)S-、-SC(=O)-、-CHCH-、-CH=CH-、-C(=O)NH-、-NHC(=O)-、-CHO-、-OCH-、-CHS-、または-SCH-を表す。)
[2-5] The optically anisotropic laminate according to any one of [2-1] to [2-4], wherein the polymerizable liquid crystal compound is a compound represented by the following formula (1):
Q 1 -R 1 -A 11 -Y 1 -A 12 -(Y 2 -A 13 ) k -R 2 -Q 2 ... (1)
(In formula (1),
-Q1 represents a hydrogen atom or a polymerizable group;
-Q2 represents a polymerizable group;
-R 1 - and -R 2 - each independently represent a chain organic group;
-A 11 - and -A 13 - each independently represent a partial structure represented by the following formula (2), a divalent organic group, or a single bond;
-A 12 - represents a partial structure represented by the following formula (2) or a divalent organic group;
Each of -Y 1 - and -Y 2 - independently represents a single bond, -C(=O)O-, -OC(=O)-, -C(=S)O-, -OC(=S)-, -C(=O)S-, -SC(=O)-, -CH 2 CH 2 -, -CH=CH-, -C≡C-, -C(=O)NH-, -NHC(=O)-, -CH 2 O-, -OCH 2 -, -CH 2 S-, or -SCH 2 -;
One of -A 11 - and -A 13 - is a partial structure represented by the following formula (2) or a divalent organic group:
k is 1 or 2.
When k is 2, two -Y 2 -A 13 - may be the same or different.
-Cy-X 2 -C≡C-X 1 - ... (2)
(In formula (2),
-Cy- represents a hydrocarbon ring group or a heterocyclic group;
-X 1 - represents -C(=O)O-, -OC(=O)-, -C(=S)O-, -OC(=S)-, -C(=O)S-, -SC(=O)-, -CH 2 CH 2 -, -CH=CH-, -C(=O)NH-, -NHC(=O)-, -CH 2 O-, -OCH 2 -, -CH 2 S-, or -SCH 2 -;
-X 2 - represents a single bond, -C(=O)O-, -OC(=O)-, -C(=S)O-, -OC(=S)-, -C(=O)S-, -SC(=O)-, -CH 2 CH 2 -, -CH=CH-, -C(=O)NH-, -NHC(=O)-, -CH 2 O-, -OCH 2 -, -CH 2 S-, or -SCH 2 -.
[2-6] [2-1]~[2-5]のいずれかに記載の光学異方性積層体を有する、光学素子。 [2-6] An optical element having an optically anisotropic laminate according to any one of [2-1] to [2-5].
 本発明者は、保護層保護層が光硬化性樹脂を含有する保護層形成用組成物から形成された層であり、前記光硬化性樹脂が光硬化性シリコーン樹脂とすることで、異方性色素層と保護層との相溶を抑制し、加熱環境下においても両層が混合せずに良好な耐熱性を示し、また耐溶剤性、外観及び性能に優れる光学異方性積層体を提供できることを見出した。
 本発明の第3の発明は以下を要旨とする。
The present inventors have discovered that by forming a protective layer from a composition for forming a protective layer containing a photocurable resin and using a photocurable silicone resin as the photocurable resin, it is possible to suppress compatibility between the anisotropic dye layer and the protective layer, and to provide an optically anisotropic laminate that exhibits good heat resistance without mixing between the two layers even in a heated environment, and that is excellent in solvent resistance, appearance, and performance.
The third aspect of the present invention is as follows.
[3-1] 異方性色素層に保護層が積層された光学異方性積層体であって、
 前記異方性色素層は色素、重合性液晶化合物及び光重合開始剤を含有する異方性色素膜形成用組成物から形成された層であり、
 前記保護層は光硬化性樹脂を含有する保護層形成用組成物から形成された層であり、
 前記光硬化性樹脂が光硬化性シリコーン樹脂を含む、光学異方性積層体。
[3-1] An optically anisotropic laminate in which a protective layer is laminated on an anisotropic dye layer,
the anisotropic dye layer is a layer formed from a composition for forming an anisotropic dye film, which contains a dye, a polymerizable liquid crystal compound, and a photopolymerization initiator;
the protective layer is a layer formed from a protective layer-forming composition containing a photocurable resin,
The optically anisotropic laminate, wherein the photocurable resin comprises a photocurable silicone resin.
[3-2] 前記光硬化性シリコーン樹脂の分子量Mが5000以上である、[3-1]に記載の光学異方性積層体。 [3-2] The optically anisotropic laminate according to [3-1], in which the molecular weight M of the photocurable silicone resin is 5000 or more.
[3-3] 前記光硬化性シリコーン樹脂がフッ素原子を有する、[3-1]~[3-2]のいずれかに記載の光学異方性積層体。 [3-3] An optically anisotropic laminate according to any one of [3-1] to [3-2], in which the photocurable silicone resin has fluorine atoms.
[3-4] 前記重合性液晶化合物が繰り返し構造を有さない低分子重合性液晶化合物である、[3-1]~[3-3]のいずれかに記載の光学異方性積層体。 [3-4] An optically anisotropic laminate according to any one of [3-1] to [3-3], in which the polymerizable liquid crystal compound is a low molecular weight polymerizable liquid crystal compound that does not have a repeating structure.
[3-5] 前記重合性液晶化合物が、下記式(1)で表される化合物である、[3-1]~[3-4]のいずれかに記載の光学異方性積層体。
 Q-R-A11-Y-A12-(Y-A13-R-Q  …(1)
(式(1)中、
 -Qは、水素原子または重合性基を表し;
 -Qは、重合性基を表し;
 -R-および-R-は、それぞれ独立に、鎖状有機基を表し;
 -A11-および-A13-は、それぞれ独立に、下記式(2)で表される部分構造、2価有機基または単結合を表し;
 -A12-は、下記式(2)で表される部分構造または2価有機基を表し;
 -Y-および-Y-は、それぞれ独立に、単結合、-C(=O)O-、-OC(=O)-、-C(=S)O-、-OC(=S)-、-C(=O)S-、-SC(=O)-、-CHCH-、-CH=CH-、-C≡C-、-C(=O)NH-、-NHC(=O)-、-CHO-、-OCH-、-CHS-、または-SCH-を表し;
 -A11-および-A13-の一方は、下記式(2)で表される部分構造または2価有機基であり;
 kは1または2である。
 kが2の場合、2つの-Y-A13-は互いに同一でも異なっていてもよい。)
 -Cy-X-C≡C-X-  …(2)
(式(2)中、
 -Cy-は、炭化水素環基または複素環基を表し;
 -X-は、-C(=O)O-、-OC(=O)-、-C(=S)O-、-OC(=S)-、-C(=O)S-、-SC(=O)-、-CHCH-、-CH=CH-、-C(=O)NH-、-NHC(=O)-、-CHO-、-OCH-、-CHS-、または-SCH-を表し;
 -X-は、単結合、-C(=O)O-、-OC(=O)-、-C(=S)O-、-OC(=S)-、-C(=O)S-、-SC(=O)-、-CHCH-、-CH=CH-、-C(=O)NH-、-NHC(=O)-、-CHO-、-OCH-、-CHS-、または-SCH-を表す。)
[3-5] The optically anisotropic laminate according to any one of [3-1] to [3-4], wherein the polymerizable liquid crystal compound is a compound represented by the following formula (1):
Q 1 -R 1 -A 11 -Y 1 -A 12 -(Y 2 -A 13 ) k -R 2 -Q 2 ... (1)
(In formula (1),
-Q1 represents a hydrogen atom or a polymerizable group;
-Q2 represents a polymerizable group;
-R 1 - and -R 2 - each independently represent a chain organic group;
-A 11 - and -A 13 - each independently represent a partial structure represented by the following formula (2), a divalent organic group, or a single bond;
-A 12 - represents a partial structure represented by the following formula (2) or a divalent organic group;
Each of -Y 1 - and -Y 2 - independently represents a single bond, -C(=O)O-, -OC(=O)-, -C(=S)O-, -OC(=S)-, -C(=O)S-, -SC(=O)-, -CH 2 CH 2 -, -CH=CH-, -C≡C-, -C(=O)NH-, -NHC(=O)-, -CH 2 O-, -OCH 2 -, -CH 2 S-, or -SCH 2 -;
One of -A 11 - and -A 13 - is a partial structure represented by the following formula (2) or a divalent organic group:
k is 1 or 2.
When k is 2, two -Y 2 -A 13 - may be the same or different.
-Cy-X 2 -C≡C-X 1 - ... (2)
(In formula (2),
-Cy- represents a hydrocarbon ring group or a heterocyclic group;
-X 1 - represents -C(=O)O-, -OC(=O)-, -C(=S)O-, -OC(=S)-, -C(=O)S-, -SC(=O)-, -CH 2 CH 2 -, -CH=CH-, -C(=O)NH-, -NHC(=O)-, -CH 2 O-, -OCH 2 -, -CH 2 S-, or -SCH 2 -;
-X 2 - represents a single bond, -C(=O)O-, -OC(=O)-, -C(=S)O-, -OC(=S)-, -C(=O)S-, -SC(=O)-, -CH 2 CH 2 -, -CH=CH-, -C(=O)NH-, -NHC(=O)-, -CH 2 O-, -OCH 2 -, -CH 2 S-, or -SCH 2 -.
[3-6] [3-1]~[3-5]のいずれかに記載の光学異方性積層体を有する、光学素子。 [3-6] An optical element having an optically anisotropic laminate according to any one of [3-1] to [3-5].
 本発明の光学異方性積層体は、耐熱性、耐溶剤性に優れ、外観を良好に維持すると共に偏光子として用いる際の偏光度を高く維持することができる。
 本発明の光学素子は、このような本発明の光学異方性積層体を含むため、優れた光学性能を維持することができる。
The optically anisotropic laminate of the present invention is excellent in heat resistance and solvent resistance, and can maintain a good appearance and a high degree of polarization when used as a polarizer.
The optical element of the present invention contains such an optically anisotropic laminate of the present invention, and therefore can maintain excellent optical performance.
 以下、本発明の実施の形態を具体的に説明する。本発明は、以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々に変更して実施することができる。 The following is a detailed description of an embodiment of the present invention. The present invention is not limited to the following embodiment, and can be modified in various ways within the scope of the invention.
[光学異方性積層体]
 本発明の第1の発明の光学異方性積層体は、異方性色素層(以下、「本発明の異方性色素膜」又は単に「異方性色素膜」と称す場合がある。)に保護層(以下、「第1の発明の保護層」と称す場合がある。)が積層された光学異方性積層体であって、前記異方性色素層は色素、重合性液晶化合物及び光重合開始剤を含有する異方性色素膜形成用組成物から形成された層であり、前記異方性色素層と前記保護層の表面自由エネルギー差の絶対値が3mN/m以上であることを特徴とする。
[Optical anisotropic laminate]
The optically anisotropic laminate of the first invention of the present invention is an optically anisotropic laminate in which a protective layer (hereinafter, may be referred to as the "protective layer of the first invention") is laminated on an anisotropic dye layer (hereinafter, may be referred to as the "anisotropic dye film of the present invention" or simply as the "anisotropic dye film"), the anisotropic dye layer is a layer formed from a composition for forming an anisotropic dye film containing a dye, a polymerizable liquid crystal compound, and a photopolymerization initiator, and is characterized in that the absolute value of the surface free energy difference between the anisotropic dye layer and the protective layer is 3 mN/ m2 or more.
 本発明の第2の発明の光学異方性積層体は、異方性色素層(以下、「本発明の異方性色素膜」又は単に「異方性色素膜」と称す場合がある。)に保護層(以下、「第2の発明の保護層」と称す場合がある。)が積層された光学異方性積層体であって、前記異方性色素層は色素、重合性液晶化合物及び光重合開始剤を含有する異方性色素膜形成用組成物から形成された層であり、前記保護層は硬化性樹脂を含有する保護層形成用組成物(以下、「第2の発明の保護層形成用組成物」と称す場合がある。)から形成された層であり、前記硬化性樹脂を硬化して得られる膜の表面自由エネルギーが32mN/m以下であることを特徴とする。 The optically anisotropic laminate of the second invention of the present invention is an optically anisotropic laminate in which a protective layer (hereinafter, may be referred to as the "protective layer of the second invention") is laminated on an anisotropic dye layer (hereinafter, may be referred to as the "anisotropic dye film of the present invention" or simply as the "anisotropic dye film"), the anisotropic dye layer is a layer formed from an anisotropic dye film-forming composition containing a dye, a polymerizable liquid crystal compound, and a photopolymerization initiator, the protective layer is a layer formed from a protective layer-forming composition containing a curable resin (hereinafter, may be referred to as the "protective layer-forming composition of the second invention"), and the surface free energy of the film obtained by curing the curable resin is 32 mN/ m2 or less.
 本発明の第3の発明の光学異方性積層体は、異方性色素層(以下、「本発明の異方性色素膜」又は単に「異方性色素膜」と称す場合がある。)に保護層(以下、「第3の発明の保護層」と称す場合がある。)が積層された光学異方性積層体であって、前記異方性色素層は色素、重合性液晶化合物及び光重合開始剤を含有する異方性色素膜形成用組成物から形成された層であり、前記保護層は光硬化性樹脂を含有する保護層形成用組成物から形成された層であり、前記光硬化性樹脂が光硬化性シリコーン樹脂であることを特徴とする。 The optically anisotropic laminate of the third invention of the present invention is an optically anisotropic laminate in which a protective layer (hereinafter, sometimes referred to as the "protective layer of the third invention") is laminated on an anisotropic dye layer (hereinafter, sometimes referred to as the "anisotropic dye film of the present invention" or simply as the "anisotropic dye film"), the anisotropic dye layer is a layer formed from a composition for forming an anisotropic dye film containing a dye, a polymerizable liquid crystal compound, and a photopolymerization initiator, the protective layer is a layer formed from a composition for forming a protective layer containing a photocurable resin, and the photocurable resin is a photocurable silicone resin.
 以下において、「第1の発明の光学異方性積層体」と「第2の発明の光学異方性積層体」と「第3の発明の光学異方性積層体」を「本発明の光学異方性積層体」と総称する。
 また、「第1の発明の保護層」と「第2の発明の保護層」と「第3の発明の保護層」を「本発明の保護層」と総称する。
Hereinafter, the "optically anisotropic laminate of the first invention", the "optically anisotropic laminate of the second invention" and the "optically anisotropic laminate of the third invention" will be collectively referred to as the "optically anisotropic laminate of the present invention".
Moreover, the "protective layer of the first invention", the "protective layer of the second invention" and the "protective layer of the third invention" are collectively referred to as the "protective layer of the present invention".
 本発明で言う異方性色素膜とは、異方性色素膜の厚み方向および任意の直交する面内2方向の立体座標系における合計3方向から選ばれる、任意の2方向における電磁気的性質に異方性を有する色素膜である。電磁気学的性質としては、たとえば、吸収、屈折等の光学的性質、抵抗、容量等の電気的性質が挙げられる。 The anisotropic dye film referred to in this invention is a dye film that has anisotropy in electromagnetic properties in any two directions selected from a total of three directions in a three-dimensional coordinate system, the thickness direction of the anisotropic dye film and any two orthogonal in-plane directions. Examples of electromagnetic properties include optical properties such as absorption and refraction, and electrical properties such as resistance and capacitance.
 本発明で言う保護層とは、例えば、耐摩耗性、耐擦傷性、耐応力緩和、耐薬品性、耐ガス性、耐水性、耐腐食性などの付与、更には、ブリーディング防止、平坦化、易接着化、離型化、光学特性調整等の機能性付与のための層である。保護層は、光硬化性膜よりなるものであってもよく、重合性を有さない層であってもよいが、好ましくは光硬化性膜である。 The protective layer referred to in the present invention is a layer for imparting functionality such as abrasion resistance, scratch resistance, stress relaxation resistance, chemical resistance, gas resistance, water resistance, and corrosion resistance, as well as preventing bleeding, flattening, making the surface easier to adhere, releasing the surface, and adjusting optical properties. The protective layer may be made of a photocurable film or may be a layer that does not have polymerizability, but is preferably a photocurable film.
 本発明の光学異方性積層体の総厚み(全体の厚さ)は、好ましくは0.5μm以上、より好ましくは1μm以上、さらに好ましくは1.5μm以上である。一方、本発明の光学異方性積層体の総厚み(全体の厚さ)は、好ましくは800μm以下、より好ましくは500μm以下、さらに好ましくは300μm以下である。本発明の光学異方性積層体の総厚みが上記下限以上であることで取り扱いが容易となり、上記上限以下であることで光学素子として用いられたときに薄く、軽量化できる傾向にある。 The total thickness (overall thickness) of the optically anisotropic laminate of the present invention is preferably 0.5 μm or more, more preferably 1 μm or more, and even more preferably 1.5 μm or more. On the other hand, the total thickness (overall thickness) of the optically anisotropic laminate of the present invention is preferably 800 μm or less, more preferably 500 μm or less, and even more preferably 300 μm or less. When the total thickness of the optically anisotropic laminate of the present invention is equal to or more than the above lower limit, it becomes easy to handle, and when it is equal to or less than the above upper limit, it tends to be thinner and lighter when used as an optical element.
 異方性色素層と保護層を有する本発明の光学異方性積層体は、異方性色素層と保護層以外の光硬化性膜や光重合性を有さない機能性膜が積層されていてもよい。その他の機能性膜としては、粘着および/または接着性を有する粘接着膜、反射防止膜、位相差膜、光を吸収、反射または散乱する光制御膜、低屈折膜、高屈折膜、電気絶縁膜、電気導電膜、配向膜、離型膜等が挙げられる。 The optically anisotropic laminate of the present invention having an anisotropic dye layer and a protective layer may be laminated with a photocurable film or a functional film that does not have photopolymerizability other than the anisotropic dye layer and the protective layer. Examples of other functional films include adhesive films having tackiness and/or adhesion, anti-reflection films, retardation films, light control films that absorb, reflect or scatter light, low refractive films, high refractive films, electrically insulating films, electrically conductive films, alignment films, release films, etc.
 本発明の光学異方性積層体において、異方性色素層は通常、後述の色素、重合性液晶化合物及び光重合開始剤を含有する異方性色素膜形成用組成物(以下、「本発明の異方性色素膜形成用組成物」と称す場合がある。)の湿式成膜により形成された膜に活性エネルギー線を照射して硬化させることにより製造される。 In the optically anisotropic laminate of the present invention, the anisotropic dye layer is usually produced by irradiating an active energy ray to a film formed by wet film formation of a composition for forming an anisotropic dye film containing a dye, a polymerizable liquid crystal compound, and a photopolymerization initiator, as described below (hereinafter, sometimes referred to as the "composition for forming an anisotropic dye film of the present invention").
 異方性色素膜形成用組成物中の重合性液晶化合物は、異方性色素膜の製造過程でその少なくとも一部が重合し、重合性液晶化合物の重合体となって異方性色素膜中に存在する。 The polymerizable liquid crystal compound in the composition for forming an anisotropic dye film is at least partially polymerized during the manufacturing process of the anisotropic dye film, and becomes a polymer of the polymerizable liquid crystal compound and is present in the anisotropic dye film.
 第1の発明及び第2の発明の光学異方性積層体において、保護層は、好ましくは、後述の光硬化性シリコーン樹脂を含有する保護層形成用組成物(以下、「本発明の保護層形成用組成物」と称す場合がある。)から形成された層である。
 第3の発明の光学異方性積層体において、保護層は、通常、後述の光硬化性シリコーン樹脂を含有する保護層形成用組成物、即ち、本発明の保護層形成用組成物から形成された層である。
In the optically anisotropic laminates of the first and second inventions, the protective layer is preferably a layer formed from a protective layer-forming composition containing a photocurable silicone resin described below (hereinafter, sometimes referred to as the "protective layer-forming composition of the present invention").
In the optically anisotropic laminate of the third invention, the protective layer is usually a layer formed from a protective layer-forming composition containing a photocurable silicone resin described below, that is, the protective layer-forming composition of the present invention.
[第1の発明の光学異方性積層体の特徴]
 第1の発明の光学異方性積層体は、本発明の異方性色素層と第1の発明の保護層の表面自由エネルギー差の絶対値が3mN/m以上であることを特徴とする。この表面自由エネルギー差の絶対値が3mN/m以上であれば、耐熱性、耐溶剤性に優れ、偏光子等としての外観や性能を安定に維持することができる。
 即ち、異方性色素層と保護層の表面自由エネルギー差の絶対値が大きいことは異方性色素層と保護層の相溶性が低いことを意味し、相溶性が低いことで加熱または溶剤にさらされた状態でも両層が混合しにくいために、耐熱性、耐溶剤性が良好となる。
 この観点から、本発明の異方性色素層と第1の発明の保護層の表面自由エネルギー差の絶対値は5mN/m以上であることが好ましく、8mN/m以上であることがより好ましく、12mN/m以上であることがさらに好ましい。
 この表面自由エネルギー差の絶対値の上限については特に制限はないが、通常、分子間の相互作用の影響などによりであることから60mN/m以下である。
[Characteristics of the optically anisotropic laminate of the first invention]
The optically anisotropic laminate of the first invention is characterized in that the absolute value of the surface free energy difference between the anisotropic dye layer of the present invention and the protective layer of the first invention is 3 mN/m 2 or more. If the absolute value of the surface free energy difference is 3 mN/m 2 or more, the heat resistance and solvent resistance are excellent, and the appearance and performance as a polarizer or the like can be stably maintained.
In other words, a large absolute value of the difference in surface free energy between the anisotropic dye layer and the protective layer means that the anisotropic dye layer and the protective layer have low compatibility, and the low compatibility makes it difficult for the two layers to mix even when heated or exposed to a solvent, resulting in good heat resistance and solvent resistance.
From this viewpoint, the absolute value of the surface free energy difference between the anisotropic dye layer of the present invention and the protective layer of the first invention is preferably 5 mN/ m2 or more, more preferably 8 mN/ m2 or more, and even more preferably 12 mN/m2 or more .
There is no particular upper limit to the absolute value of this surface free energy difference, but it is usually 60 mN/ m2 or less due to the influence of intermolecular interactions, etc.
 本発明の異方性色素層と第1の発明の保護層の表面自由エネルギー差の絶対値を上記下限以上とする方法としては、以下の(1)及び/または(2)の方法が挙げられる。
(1) 保護層の表面自由エネルギーを小さくする。保護層の表面エネルギーを小さくするためには、光硬化性樹脂として、後述の光硬化性シリコーン樹脂、特にフッ素原子を有する光硬化性シリコーン樹脂を含む本発明の保護層形成用組成物を用いることで、分子間相互作用を抑えて表面自由エネルギーの分散成分を小さくすることにより、保護層の表面エネルギーを小さくすることができる。
(2) 異方性色素層の表面自由エネルギーを大きくする。異方性色素層の表面自由エネルギーを大きくするためには、重合性液晶化合物の構造、レベリング剤等の添加剤で調整する方法が挙げられる。
The following methods (1) and/or (2) can be used to set the absolute value of the difference in surface free energy between the anisotropic dye layer of the present invention and the protective layer of the first invention to the above lower limit or more.
(1) Reducing the surface free energy of the protective layer In order to reduce the surface energy of the protective layer, the protective layer-forming composition of the present invention containing a photocurable silicone resin described below, particularly a photocurable silicone resin having fluorine atoms, is used as the photocurable resin, thereby suppressing intermolecular interactions and reducing the dispersion component of the surface free energy, thereby making it possible to reduce the surface energy of the protective layer.
(2) Increasing the surface free energy of the anisotropic dye layer In order to increase the surface free energy of the anisotropic dye layer, there can be mentioned a method of adjusting the structure of the polymerizable liquid crystal compound or an additive such as a leveling agent.
 後述の本発明に好適な異方性色素膜形成用組成物を用いて形成される異方性色素層の表面自由エネルギーは通常20~50mN/m程度で、好ましくは30~40mN/mである。また、後述の本発明に好適な保護層形成用組成物を用いて形成される保護層の表面自由エネルギーは通常15~45mN/m程度で、好ましくは20~35mN/mである。よって、本発明の異方性色素層の表面自由エネルギーは、第1の発明の保護層の表面自由エネルギーの表面自由エネルギーよりも3~30mN/m程度大きい値となることが好ましい。 The surface free energy of the anisotropic dye layer formed using the anisotropic dye film-forming composition suitable for the present invention described below is usually about 20 to 50 mN/m 2 , preferably 30 to 40 mN/m 2. The surface free energy of the protective layer formed using the protective layer-forming composition suitable for the present invention described below is usually about 15 to 45 mN/m 2 , preferably 20 to 35 mN/m 2. Therefore, the surface free energy of the anisotropic dye layer of the present invention is preferably about 3 to 30 mN/m 2 higher than the surface free energy of the protective layer of the first invention.
 第1の発明において、表面自由エネルギーは、後掲の実施例の項に記載の方法で硬化後の異方性色素膜表面及び保護層表面に対してそれぞれ測定される。 In the first invention, the surface free energy is measured for the cured anisotropic dye film surface and the protective layer surface, respectively, by the method described in the Examples section below.
[第2の発明の光学異方性積層体の特徴]
 第2の発明の光学異方性積層体は、硬化性樹脂を含有する保護層形成用組成物から形成された保護層を備え、該硬化性樹脂を硬化して得られる膜の表面自由エネルギーが45mN/m以下であることを特徴とする。硬化性樹脂を含有する保護層形成用組成物から形成された保護層を備え、該硬化性樹脂を硬化して得られる膜の表面自由エネルギーが45mN/m以下であることで、耐熱性、耐溶剤性に優れ、偏光子等としての外観や性能を安定に維持することができる。
[Characteristics of the optically anisotropic laminate of the second invention]
The optically anisotropic laminate of the second invention is characterized in that it comprises a protective layer formed from a protective layer-forming composition containing a curable resin, and the surface free energy of the film obtained by curing the curable resin is 45 mN/m 2 or less. By comprising a protective layer formed from a protective layer-forming composition containing a curable resin, and the surface free energy of the film obtained by curing the curable resin is 45 mN/m 2 or less, it is possible to stably maintain the appearance and performance as a polarizer or the like, with excellent heat resistance and solvent resistance.
 即ち、保護層形成用組成物に含有される硬化性樹脂について、該硬化性樹脂を硬化して得られる膜の表面自由エネルギーが小さいことは、他の物質への濡れ性が低くなる傾向であることを意味し、他の物質としての異方性色素膜との親和性が低いことで加熱または溶剤にさらされた状態でも両層が混合しにくいために、耐熱性、耐溶剤性が良好となる。
 この観点から、第2の発明の保護層形成用組成物に含有される硬化性樹脂について、該硬化性樹脂を硬化して得られる膜の表面自由エネルギーは45mN/m以下であり、40mN/m以下であることが好ましく、35mN/m以下であることがより好ましく、30mN/m以下であることが更に好ましい。第2の発明の保護層形成用組成物に含有される硬化性樹脂について、該硬化性樹脂を硬化して得られる膜の表面自由エネルギーの下限については特に制限はないが、保護層上に他層を積層するために10mN/m以上であることが好ましく、15mN/m以上であることがより好ましく、18mN/m以上であることがさらに好ましい。
In other words, for the curable resin contained in the composition for forming a protective layer, the small surface free energy of the film obtained by curing the curable resin means that the film tends to have low wettability to other substances, and the low affinity with the anisotropic dye film as another substance means that the two layers are less likely to mix even when exposed to heat or solvent, resulting in good heat resistance and solvent resistance.
From this viewpoint, for the curable resin contained in the protective layer forming composition of the second invention, the surface free energy of the film obtained by curing the curable resin is 45 mN / m 2 or less, preferably 40 mN / m 2 or less, more preferably 35 mN / m 2 or less, and even more preferably 30 mN / m 2 or less. For the curable resin contained in the protective layer forming composition of the second invention, there is no particular restriction on the lower limit of the surface free energy of the film obtained by curing the curable resin, but in order to laminate another layer on the protective layer, it is preferably 10 mN / m 2 or more, more preferably 15 mN / m 2 or more, and even more preferably 18 mN / m 2 or more.
 第2の発明の保護層形成用組成物に含有される硬化性樹脂について、該保護層樹脂を硬化して得られる膜の表面自由エネルギーの各成分は、表面自由エネルギーが前記範囲にあれば任意の範囲を取りうるが、分散成分γは35mN/m以下であることが好ましく、30mN/m以下であることがより好ましく、10mN/m以上であることが好ましく、15mN/m以上であることがより好ましく、18mN/m以上であることがさらに好ましい。また、極性成分γは5.0mN/m以下であることが好ましく、3.0mN/m以下であることがより好ましい。γの下限に特に制限ないが、通常0.0mN/m以上である。 Regarding the curable resin contained in the protective layer forming composition of the second invention, each component of the surface free energy of the film obtained by curing the protective layer resin can take any range as long as the surface free energy is within the above range, but the dispersion component γd is preferably 35 mN/ m2 or less, more preferably 30 mN/m2 or less, preferably 10 mN/ m2 or more, more preferably 15 mN/ m2 or more, and even more preferably 18 mN/ m2 or more. In addition, the polar component γh is preferably 5.0 mN/ m2 or less, more preferably 3.0 mN/ m2 or less. There is no particular limit to the lower limit of γd , but it is usually 0.0 mN/ m2 or more.
 第2の発明の保護層形成用組成物に含有される硬化性樹脂について、該硬化性樹脂を硬化して得られる膜の表面自由エネルギーを上記上限以下とする方法としては、保護層の形成に、光硬化性樹脂として、後述の光硬化性シリコーン樹脂、特にフッ素原子を有する光硬化性シリコーン樹脂を含む本発明の保護層形成用組成物を用いる方法が挙げられる。即ち、後述の光硬化性シリコーン樹脂、特にフッ素原子を有する光硬化性シリコーン樹脂は、分子間相互作用を抑えて表面自由エネルギーの分散成分を小さくすることにより、表面自由エネルギーを小さくすることができる。 As for the curable resin contained in the protective layer forming composition of the second invention, a method for making the surface free energy of the film obtained by curing the curable resin equal to or less than the above upper limit can be mentioned, for example, by using the protective layer forming composition of the present invention containing the photocurable silicone resin described below, particularly the photocurable silicone resin having fluorine atoms, as the photocurable resin to form the protective layer. That is, the photocurable silicone resin described below, particularly the photocurable silicone resin having fluorine atoms, can reduce the surface free energy by suppressing intermolecular interactions and reducing the dispersion component of the surface free energy.
 後述の本発明に好適な保護層形成用組成物を用いて形成される保護層の表面自由エネルギーは通常10~32mN/m程度で、好ましくは15~30mN/mである。 The surface free energy of the protective layer formed using the protective layer-forming composition suitable for the present invention described below is usually about 10 to 32 mN/m 2 , and preferably 15 to 30 mN/m 2 .
 第2の発明において、表面自由エネルギーは、後掲の実施例の項に記載の方法で硬化後の樹脂層表面、異方性色素膜表面及び保護層表面に対してそれぞれ測定される。 In the second invention, the surface free energy is measured for the cured resin layer surface, the anisotropic dye film surface, and the protective layer surface, respectively, by the method described in the Examples section below.
[第3の発明の光学異方性積層体の特徴]
 第3の発明の光学異方性積層体は、保護層が、後述の光硬化性シリコーン樹脂を含有する本発明の保護層形成用組成物から形成された層であることを特徴とする。
 保護層形成用組成物が光硬化性シリコーン樹脂を含むことで良好な硬化性が得られ、保護層として十分な保護性能を発現することができる。
[Characteristics of the optically anisotropic laminate of the third invention]
The optically anisotropic laminate of the third invention is characterized in that the protective layer is a layer formed from the protective layer-forming composition of the present invention, which contains a photocurable silicone resin described below.
When the protective layer-forming composition contains a photocurable silicone resin, good curability can be obtained, and the protective layer can exhibit sufficient protective performance.
[異方性色素層]
 異方性色素層とは、前述の通り、厚み方向および任意の直交する面内2方向の立体座標系における合計3方向から選ばれる、任意の2方向における電磁気的性質に異方性を有する色素膜である。電磁気学的性質としては、たとえば、吸収、屈折等の光学的性質、抵抗、容量等の電気的性質が挙げられる。
 吸収、屈折等の光学的異方性を有する膜としては、たとえば、直線偏光膜、円偏光膜等の偏光膜、位相差膜、導電異方性色素膜が挙げられる。前記異方性色素膜は、偏光膜、または導電異方性色素膜として用いられることが好ましく、偏光膜に用いられることがより好ましい。
 前記異方性色素膜は、光吸収の異方性を利用して、直線偏光、円偏光、楕円偏光等を得る偏光膜として機能しうる他、膜形成プロセスと基板や有機化合物(色素や透明材料)を含有する組成物の選択により、屈折異方性や伝導異方性等の各種異方性色素膜として機能化が可能である。
[Anisotropic Dye Layer]
As described above, the anisotropic dye layer is a dye film having anisotropy in electromagnetic properties in any two directions selected from a total of three directions in a three-dimensional coordinate system, the thickness direction and any two orthogonal in-plane directions. Examples of the electromagnetic properties include optical properties such as absorption and refraction, and electrical properties such as resistance and capacitance.
Examples of the film having optical anisotropy such as absorption or refraction include a polarizing film such as a linear polarizing film or a circular polarizing film, a retardation film, and a conductive anisotropic dye film. The anisotropic dye film is preferably used as a polarizing film or a conductive anisotropic dye film, and more preferably as a polarizing film.
The anisotropic dye film can function as a polarizing film that obtains linearly polarized light, circularly polarized light, elliptically polarized light, etc. by utilizing the anisotropy of light absorption. In addition, depending on the selection of the film formation process and the composition containing the substrate and organic compound (dye or transparent material), the anisotropic dye film can function as various anisotropic dye films having refractive anisotropy, conductive anisotropy, etc.
 本発明の光学異方性積層体を液晶ディスプレイ用や、OLED用反射防止膜の偏光素子として使う場合は、異方性色素膜の配向特性は二色比を用いて表すことができる。二色比は8以上あれば偏光素子として機能する。二色比は15以上が好ましく、20以上がさらに好ましく、25以上がさらに好ましく、30以上が特に好ましく、40以上がことさら好ましい。
 二色比が前記下限値以上であることで、後述する光学素子、特に偏光素子として有用である。二色比は高いほど好ましい。
When the optically anisotropic laminate of the present invention is used as a polarizing element for a liquid crystal display or an anti-reflection film for an OLED, the orientation characteristics of the anisotropic dye film can be expressed by a dichroic ratio. If the dichroic ratio is 8 or more, it functions as a polarizing element. The dichroic ratio is preferably 15 or more, more preferably 20 or more, even more preferably 25 or more, particularly preferably 30 or more, and most preferably 40 or more.
When the dichroic ratio is equal to or greater than the lower limit, the film is useful as an optical element, particularly a polarizing element, as described below.
 OLED用反射防止膜の偏光素子として用いる場合、位相差フィルム等の周辺材料の性能が低くても、偏光素子の性能が高ければ、反射防止膜としての特性は向上する。そのため、偏光素子の性能が高ければ、層構成を簡素化させやすく、薄膜構成でも十分な機能を発現しやすくなり、折る、曲げる、を含む変形させて使用する用途にも好適に使用できる。また、コストも低く抑えることが可能となる。 When used as a polarizing element in an anti-reflection film for OLEDs, even if the performance of peripheral materials such as retardation films is low, if the performance of the polarizing element is high, the characteristics as an anti-reflection film will be improved. Therefore, if the performance of the polarizing element is high, it is easier to simplify the layer structure, and even a thin film structure can easily exhibit sufficient functionality, making it suitable for use in applications where it is used after being deformed, including folding and bending. It also makes it possible to keep costs low.
 本発明で言う二色比(D)は、色素が一様に配向している場合、以下の式で表される。
  D=Az/Ay
 ここで、Azは異方性色素膜に入射した光の偏光方向が異方性色素の配向方向に平行な場合に観測される吸光度である。Ayは異方性色素膜に入射した光の偏光方向が垂直な場合に観測される吸光度である。
The dichroic ratio (D) in the present invention is expressed by the following formula when the dyes are uniformly oriented.
D = Az/Ay
Here, Az is the absorbance observed when the polarization direction of light incident on the anisotropic dye film is parallel to the orientation direction of the anisotropic dye, and Ay is the absorbance observed when the polarization direction of light incident on the anisotropic dye film is perpendicular to the orientation direction of the anisotropic dye.
 それぞれの吸光度は同じ波長のものを用いれば特に制限はなく、目的によっていずれの波長を選択してもよい。異方性色素膜の配向の度合を表す場合は、異方性色素膜の380nm~780nmの特定波長域に視感度で補正した値や、可視域の極大吸収波長における値を用いることが好ましい。 There are no particular limitations on the absorbance of each, so long as they are of the same wavelength, any wavelength may be selected depending on the purpose. When expressing the degree of orientation of an anisotropic dye film, it is preferable to use a value corrected for visual sensitivity in a specific wavelength range of 380 nm to 780 nm for the anisotropic dye film, or a value at the maximum absorption wavelength in the visible range.
 本発明の異方性色素膜の可視光波長域における透過率は、好ましくは25%以上であり、35%以上がさらに好ましく、40%以上が特に好ましい。透過率は用途に応じた上限であればよい。たとえば、偏光度を高くする場合には、透過率は50%以下であることが好ましい。透過率が上記範囲であることで、後述する光学素子として有用であり、特にカラー表示に用いる液晶ディスプレイ用や、異方性色素膜と位相差膜とを組み合わせた反射防止膜用の光学素子として有用である。 The transmittance of the anisotropic dye film of the present invention in the visible light wavelength range is preferably 25% or more, more preferably 35% or more, and particularly preferably 40% or more. The transmittance may be the upper limit according to the application. For example, when the degree of polarization is to be increased, the transmittance is preferably 50% or less. With a transmittance in the above range, the film is useful as an optical element, which will be described later, and is particularly useful as an optical element for liquid crystal displays used for color display, and as an anti-reflection film combining an anisotropic dye film and a retardation film.
 本発明の異方性色素膜の膜厚は、乾燥膜厚として、好ましくは10nm以上、より好ましくは100nm以上、さらに好ましくは500nm以上である。一方、本発明の異方性色素膜の膜厚は、乾燥膜厚として、好ましくは30μm以下、より好ましくは10μm以下、さらに好ましくは5μm以下である。異方性色素膜の膜厚が上記範囲にあることで、膜内で色素の均一な配向および均一な膜厚を得られる傾向にある。 The anisotropic dye film of the present invention has a dry thickness of preferably 10 nm or more, more preferably 100 nm or more, and even more preferably 500 nm or more. On the other hand, the anisotropic dye film of the present invention has a dry thickness of preferably 30 μm or less, more preferably 10 μm or less, and even more preferably 5 μm or less. By having the anisotropic dye film have a thickness in the above range, there is a tendency to obtain a uniform orientation of the dye within the film and a uniform film thickness.
[異方性色素膜形成用組成物]
 本発明の異方性色素膜は、色素、重合性液晶化合物及び光重合開始剤を含有する本発明の異方性色素膜形成用組成物を用いて形成される。
 本発明の異方性色素膜形成用組成物は色素、重合性液晶化合物及び光重合性開始剤以外のその他の添加剤や溶剤を含有していてもよい。
[Anisotropic dye film-forming composition]
The anisotropic dye film of the present invention is formed using the composition for forming an anisotropic dye film of the present invention, which contains a dye, a polymerizable liquid crystal compound, and a photopolymerization initiator.
The anisotropic dye film-forming composition of the present invention may contain additives and solvents other than the dye, the polymerizable liquid crystal compound and the photopolymerization initiator.
<色素>
 本発明において色素とは、可視光領域(380nm~780nm)の波長の少なくとも一部を吸収する物質または化合物である。
 本発明に用いることができる色素としては、二色性色素が挙げられる。二色性色素とは、分子の長軸方向における吸光度と、短軸方向における吸光度とが異なる性質を有する色素を言う。色素は、液晶性を有する色素であってもよいし、液晶性を有さなくてもよい。液晶性を有するとは、任意の温度で液晶相を発現することを言う。
<Dye>
In the present invention, a dye is a substance or compound that absorbs at least a part of the wavelengths in the visible light region (380 nm to 780 nm).
Dyes that can be used in the present invention include dichroic dyes. A dichroic dye is a dye that has different absorbance in the long axis direction of the molecule and absorbance in the short axis direction. The dye may or may not have liquid crystallinity. Having liquid crystallinity means that a liquid crystal phase is expressed at any temperature.
 本発明の異方性色素膜形成用組成物に含有される色素、即ち、本発明の異方性色素膜に含有される色素としては、アゾ系色素、キノン系色素(ナフトキノン系色素、アントラキノン系色素等を含む。)、スチルベン系色素、シアニン系色素、フタロシアニン系色素、インジゴ系色素、縮合多環系色素(ペリレン系色素、オキサジン系色素、アクリジン系色素等を含む。)等が挙げられる。これらの色素の中でも、分子長短軸比が大きく、異方性色素膜中で高い分子配列をとり得るため、アゾ系色素が好ましい。 The dyes contained in the anisotropic dye film-forming composition of the present invention, i.e., the dyes contained in the anisotropic dye film of the present invention, include azo dyes, quinone dyes (including naphthoquinone dyes, anthraquinone dyes, etc.), stilbene dyes, cyanine dyes, phthalocyanine dyes, indigo dyes, condensed polycyclic dyes (including perylene dyes, oxazine dyes, acridine dyes, etc.). Among these dyes, azo dyes are preferred because they have a large molecular long/short axis ratio and can achieve high molecular alignment in the anisotropic dye film.
 アゾ系色素とは、アゾ基(-N=N-)を少なくとも1個以上有する色素を言い、その一分子中のアゾ基の数は、溶剤への溶解性、液晶化合物との相溶性、色調および製造容易性の観点から、1以上が好ましく、2以上がより好ましく、6以下が好ましく、4以下がより好ましく、3以下がさらに好ましい。 Azo dyes are dyes that have at least one azo group (-N=N-), and the number of azo groups in one molecule is preferably 1 or more, more preferably 2 or more, and is preferably 6 or less, more preferably 4 or less, and even more preferably 3 or less, from the viewpoints of solubility in solvents, compatibility with liquid crystal compounds, color tone, and ease of production.
 アゾ系色素としては、たとえば、式(A)で表される化合物が挙げられる。
 R11-D-N=N-(D-N=N)p-D-R12  …(A)
 式(A)中、
 D、DおよびDは、それぞれ独立に、置換基を有していてもよいフェニレン基、置換基を有していてもよいナフチレン基、または置換基を有していてもよい2価の複素環基を表し;
 pは0~4の整数を表し;
 pが2以上の整数である場合、複数のDは互いに同一でも異なっていてもよく;
 R11およびR12は、それぞれ独立に、1価の有機基を表す。
An example of the azo dye is a compound represented by the formula (A).
R 11 -D 1 -N=N-(D 2 -N=N)p-D 3 -R 12 ... (A)
In formula (A),
D 1 , D 2 and D 3 each independently represent a phenylene group which may have a substituent, a naphthylene group which may have a substituent, or a divalent heterocyclic group which may have a substituent;
p represents an integer of 0 to 4;
When p is an integer of 2 or more, multiple D2 may be the same or different;
R 11 and R 12 each independently represent a monovalent organic group.
 D、DおよびDは、それぞれ独立に、置換基を有していてもよいフェニレン基、置換基を有していてもよいナフチレン基、または置換基を有していてもよい2価の複素環基を表す。
 フェニレン基の置換位置としては、分子の直線性が高いため、1,4-フェニレン基が好ましい。
 ナフチレン基の置換位置としては、分子の直線性が高いため、1,4-ナフチレン基または2,6-ナフチレン基が好ましい。
D 1 , D 2 and D 3 each independently represent a phenylene group which may have a substituent, a naphthylene group which may have a substituent, or a divalent heterocyclic group which may have a substituent.
As the substitution position of the phenylene group, a 1,4-phenylene group is preferred because it provides high molecular linearity.
As the substitution position of the naphthylene group, a 1,4-naphthylene group or a 2,6-naphthylene group is preferred because the linearity of the molecule is high.
 2価の複素環基は、環を形成する炭素数が好ましくは3以上14以下、より好ましくは10以下の複素環基である。特に単環または2環式の複素環基が好ましい。 The divalent heterocyclic group is a heterocyclic group having a ring with preferably 3 to 14 carbon atoms, more preferably 10 or less. Monocyclic or bicyclic heterocyclic groups are particularly preferred.
 2価の複素環基を構成する炭素以外の原子としては、窒素原子、硫黄原子および酸素原子から選択される少なくとも1つが挙げられる。複素環基が炭素以外の環を構成する原子を複数有する場合、これらは同一であっても異なっていてもよい。 The non-carbon atom constituting the divalent heterocyclic group is at least one selected from a nitrogen atom, a sulfur atom, and an oxygen atom. When a heterocyclic group has multiple non-carbon atoms constituting the ring, these may be the same or different.
 2価の複素環基としては、具体的には、ピリジンジイル基、キノリンジイル基、イソキノリンジイル基、チアゾールジイル基、ベンゾチアゾールジイル基、チエノチアゾールジイル基、チエノチオフェンジイル基、ベンズイミダゾリジノンジイル基、ベンゾフランジイル基、フタルイミドジイル基、オキサゾールジイル基、ベンゾオキサゾールジイル基等が挙げられる。 Specific examples of divalent heterocyclic groups include pyridinediyl, quinolinediyl, isoquinolinediyl, thiazolediyl, benzothiazolediyl, thienothiazolediyl, thienothiophenediyl, benzimidazolidinonediyl, benzofurandiyl, phthalimidodiyl, oxazolediyl, and benzoxazolediyl groups.
 D、DおよびDにおけるフェニレン基、ナフチレン基、および2価の複素環基が任意に有する置換基としては、炭素数1~4のアルキル基;メトキシ基、エトキシ基およびブトキシ基などの炭素数1~4のアルコキシ基;トリフルオロメチル基などの炭素数1~4のフッ化アルキル基;シアノ基;ニトロ基;水酸基;ハロゲン原子;アミノ基、ジエチルアミノ基、およびピロリジノ基などの置換または無置換アミノ基が挙げられる。ここで、置換アミノ基とは、炭素数1~4のアルキル基を1つまたは2つ有するアミノ基、あるいは2つの置換アルキル基が互いに結合して炭素数2~8のアルカンジイル基を形成しているアミノ基を意味する。無置換アミノ基は、-NHである。置換アミノ基の炭素数1~4のアルキル基としては、メチル基、エチル基およびブチル基などが挙げられる。炭素数2~8のアルカンジイル基としては、エチレン基、プロパン-1,3-ジイル基、ブタン-1,3-ジイル基、ブタン-1,4-ジイル基、ペンタン-1,5-ジイル基、ヘキサン-1,6-ジイル基、ヘプタン-1,7-ジイル基、オクタン-1,8-ジイル基などが挙げられる。 Examples of the substituents that the phenylene group, naphthylene group, and divalent heterocyclic group in D 1 , D 2 , and D 3 may have include an alkyl group having 1 to 4 carbon atoms; an alkoxy group having 1 to 4 carbon atoms, such as a methoxy group, an ethoxy group, and a butoxy group; a fluorinated alkyl group having 1 to 4 carbon atoms, such as a trifluoromethyl group; a cyano group; a nitro group; a hydroxyl group; a halogen atom; and a substituted or unsubstituted amino group, such as an amino group, a diethylamino group, and a pyrrolidino group. Here, the substituted amino group means an amino group having one or two alkyl groups having 1 to 4 carbon atoms, or an amino group in which two substituted alkyl groups are bonded to each other to form an alkanediyl group having 2 to 8 carbon atoms. The unsubstituted amino group is -NH 2. Examples of the alkyl group having 1 to 4 carbon atoms of the substituted amino group include a methyl group, an ethyl group, and a butyl group. Examples of the alkanediyl group having 2 to 8 carbon atoms include an ethylene group, a propane-1,3-diyl group, a butane-1,3-diyl group, a butane-1,4-diyl group, a pentane-1,5-diyl group, a hexane-1,6-diyl group, a heptane-1,7-diyl group, and an octane-1,8-diyl group.
 分子直線性が高い点から、D、DおよびDにおけるフェニレン基、ナフチレン基、および2価の複素環基は、無置換であるか、または、置換されている場合には、メチル基、メトキシ基、水酸基、フッ素原子、塩素原子、ジメチルアミノ基、ピロリジニル基、ピペリジニル基で置換されているのが好ましい。 In terms of high molecular linearity, the phenylene group, naphthylene group, and divalent heterocyclic group in D 1 , D 2 , and D 3 are preferably unsubstituted, or, if substituted, are preferably substituted with a methyl group, a methoxy group, a hydroxyl group, a fluorine atom, a chlorine atom, a dimethylamino group, a pyrrolidinyl group, or a piperidinyl group.
 pは0~4の整数を表す。溶剤への溶解性、液晶化合物との相溶性、色調および製造容易性の観点から、pは1以上が好ましく、4以下が好ましく、3以下がより好ましい。 p represents an integer of 0 to 4. From the viewpoints of solubility in solvents, compatibility with liquid crystal compounds, color tone, and ease of manufacture, p is preferably 1 or more, more preferably 4 or less, and even more preferably 3 or less.
 R11およびR12は、それぞれ独立に、1価の有機基を表す。
 R11およびR12における1価の有機基としては、水素原子、分岐を有していてもよい炭素数1~20のアルキル基;脂環式の炭素数1~20のアルキル基;メトキシ基、エトキシ基およびブトキシ基などの分岐を有していてもよい炭素数1~20のアルコキシ基;トリフルオロメチル基などの分岐を有していてもよい炭素数1~20のフッ化アルキル基;シアノ基;ニトロ基;水酸基;ハロゲン原子;アミノ基、ジエチルアミノ基、およびピロリジノ基などの置換または無置換アミノ基;カルボキシ基;ブトキシカルボニル基などの分岐を有していてもよい炭素数1~20のアルキルオキシカルボニル基;エテニル基などの分岐を有していてもよい炭素数1~20のアルケニル基;2-(4-ブチルフェニル)エテニル基などのアルキルフェニルアルケニル基;カルバモイル基;ブチルカルバモイル基などの分岐を有していてもよい炭素数1~20のアルキルカルバモイル基;スルファモイル基;ブチルスルファモイル基などの分岐を有していてもよい炭素数1~20のアルキルスルファモイル基;ブチルカルボニルアミノ基などの分岐を有していてもよい炭素数1~20のアシルアミノ基;ブチルカルボニルオキシ基などの分岐を有していてもよい炭素数1~20のアシルオキシ基;スルファニル基;ブチルスルファニル基などの炭素数1~20のアルキルスルファニル基;後述の液晶化合物におけるRおよびRの重合性基を有する鎖状有機基が挙げられる。上記の置換アミノ基とは、分岐を有していてもよい炭素数1~20のアルキル基を1つまたは2つ有するアミノ基、あるいは2つの置換アルキル基が互いに結合して炭素数2~20のアルカンジイル基を形成しているアミノ基を意味する。無置換アミノ基は、-NHである。置換アミノ基の炭素数1~20のアルキル基としては、メチル基、エチル基およびブチル基などが挙げられる。炭素数2~20のアルカンジイル基としては、エチレン基、プロパン-1,3-ジイル基、ブタン-1,3-ジイル基、ブタン-1,4-ジイル基、ペンタン-1,5-ジイル基、ヘキサン-1,6-ジイル基、ヘプタン-1,7-ジイル基、オクタン-1,8-ジイル基などが挙げられる。
R 11 and R 12 each independently represent a monovalent organic group.
Examples of the monovalent organic group in R 11 and R 12 include a hydrogen atom, an alkyl group having 1 to 20 carbon atoms which may have a branch; an alicyclic alkyl group having 1 to 20 carbon atoms; an alkoxy group having 1 to 20 carbon atoms which may have a branch, such as a methoxy group, an ethoxy group, and a butoxy group; a fluorinated alkyl group having 1 to 20 carbon atoms which may have a branch, such as a trifluoromethyl group; a cyano group; a nitro group; a hydroxyl group; a halogen atom; a substituted or unsubstituted amino group such as an amino group, a diethylamino group, and a pyrrolidino group; a carboxy group; an alkyloxycarbonyl group having 1 to 20 carbon atoms which may have a branch, such as a butoxycarbonyl group; Examples of the alkyl group include an alkenyl group having 1 to 20 carbon atoms; an alkylphenylalkenyl group such as a 2-(4-butylphenyl)ethenyl group; a carbamoyl group; an alkylcarbamoyl group having 1 to 20 carbon atoms, which may be branched, such as a butylcarbamoyl group; a sulfamoyl group; an alkylsulfamoyl group having 1 to 20 carbon atoms, which may be branched, such as a butylsulfamoyl group; an acylamino group having 1 to 20 carbon atoms, which may be branched, such as a butylcarbonylamino group; an acyloxy group having 1 to 20 carbon atoms, which may be branched, such as a butylcarbonyloxy group; a sulfanyl group; an alkylsulfanyl group having 1 to 20 carbon atoms, such as a butylsulfanyl group; and a chain organic group having polymerizable groups R 1 and R 2 in the liquid crystal compound described below. The substituted amino group refers to an amino group having one or two alkyl groups having 1 to 20 carbon atoms, which may be branched, or an amino group in which two substituted alkyl groups are bonded to each other to form an alkanediyl group having 2 to 20 carbon atoms. The unsubstituted amino group is -NH 2 . Examples of the alkyl group having 1 to 20 carbon atoms in the substituted amino group include a methyl group, an ethyl group, and a butyl group. Examples of the alkanediyl group having 2 to 20 carbon atoms include an ethylene group, a propane-1,3-diyl group, a butane-1,3-diyl group, a butane-1,4-diyl group, a pentane-1,5-diyl group, a hexane-1,6-diyl group, a heptane-1,7-diyl group, and an octane-1,8-diyl group.
 R11およびR12としては、水素原子、鎖状基、脂肪族有機基(「脂肪族有機基」は、鎖状のものおよび環状のものを含む。)、炭素の一部が窒素および/または酸素で置き換えられた脂肪族有機基(「炭素の一部が窒素および/または酸素で置き換えられた脂肪族有機基」は、鎖状のものおよび環状のものを含み、脂肪族有機基の一部のメチル基が水酸基、オキソ基(=O)、アミノ基、イミノ基等にそれぞれ置き換えられたものを含む。)等が挙げられる。ある態様としては、R11およびR12としては、水素原子、鎖状基が好ましい。別の態様としては、R11およびR12としては、水素原子、脂肪族有機基が好ましい。さらに別の態様としては、R11およびR12としては、水素原子、炭素原子の一部が窒素原子および/または酸素原子で置き換えられた脂肪族有機基が好ましい。 Examples of R 11 and R 12 include a hydrogen atom, a chain group, an aliphatic organic group (the "aliphatic organic group" includes a chain and a cyclic group), and an aliphatic organic group in which a portion of the carbon is replaced with nitrogen and/or oxygen (the "aliphatic organic group in which a portion of the carbon is replaced with nitrogen and/or oxygen" includes a chain and a cyclic group, and includes a portion of the methyl group in the aliphatic organic group replaced with a hydroxyl group, an oxo group (=O), an amino group, an imino group, etc.). In one embodiment, R 11 and R 12 are preferably a hydrogen atom or a chain group. In another embodiment, R 11 and R 12 are preferably a hydrogen atom or an aliphatic organic group. In yet another embodiment, R 11 and R 12 are preferably a hydrogen atom or an aliphatic organic group in which a portion of the carbon atom is replaced with a nitrogen atom and/or an oxygen atom.
 鎖状基としては、上記の、分岐を有していてもよい炭素数1~20のアルキル基;分岐を有していてもよい炭素数1~20のアルコキシ基;分岐を有していてもよい炭素数1~20のフッ化アルキル基;置換または無置換アミノ基(置換アミノ基とは、分岐を有していてもよい炭素数1~20のアルキル基を1つまたは2つ有するアミノ基を意味する。無置換アミノ基は、-NHである。);カルボキシ基;分岐を有していてもよい炭素数1~20のアルキルオキシカルボニル基;カルバモイル基;分岐を有していてもよい炭素数1~20のアルキルカルバモイル基;スルファモイル基;分岐を有していてもよい炭素数1~20のアルキルスルファモイル基;分岐を有していてもよい炭素数1~20のアシルアミノ基;分岐を有していてもよい炭素数1~20のアシルオキシ基;スルファニル基;炭素数1~20のアルキルスルファニル基等が挙げられる。 Examples of the chain group include the above-mentioned alkyl group having 1 to 20 carbon atoms, which may be branched; alkoxy group having 1 to 20 carbon atoms, which may be branched; fluorinated alkyl group having 1 to 20 carbon atoms, which may be branched; substituted or unsubstituted amino group (substituted amino group means an amino group having one or two alkyl groups having 1 to 20 carbon atoms, which may be branched. An unsubstituted amino group is -NH2 ); carboxy group; alkyloxycarbonyl group having 1 to 20 carbon atoms, which may be branched; carbamoyl group; alkylcarbamoyl group having 1 to 20 carbon atoms, which may be branched; sulfamoyl group; alkylsulfamoyl group having 1 to 20 carbon atoms, which may be branched; acylamino group having 1 to 20 carbon atoms, which may be branched; acyloxy group having 1 to 20 carbon atoms, which may be branched; sulfanyl group; alkylsulfanyl group having 1 to 20 carbon atoms, and the like.
 脂肪族有機基としては、上記の、分岐を有していてもよい炭素数1~20のアルキル基、脂環式の炭素数1~20のアルキル基等が挙げられる。 Aliphatic organic groups include the above-mentioned alkyl groups having 1 to 20 carbon atoms, which may be branched, and alicyclic alkyl groups having 1 to 20 carbon atoms.
 炭素原子の一部が窒素原子および/または酸素原子で置き換えられた脂肪族有機基としては、上記の、分岐を有していてもよい炭素数1~20のアルコキシ基;置換または無置換アミノ基;カルボキシ基;分岐を有していてもよい炭素数1~20のアルキルオキシカルボニル基;カルバモイル基;分岐を有していてもよい炭素数1~20のアルキルカルバモイル基;分岐を有していてもよい炭素数1~20のアシルアミノ基;分岐を有していてもよい炭素数1~20のアシルオキシ基等が挙げられる。上記の置換アミノ基とは、分岐を有していてもよい炭素数1~20のアルキル基を1つまたは2つ有するアミノ基、あるいは2つの置換アルキル基が互いに結合して炭素数2~20のアルカンジイル基を形成しているアミノ基を意味する。無置換アミノ基は、-NHである。置換アミノ基の炭素数1~20のアルキル基としては、メチル基、エチル基およびブチル基などが挙げられる。炭素数2~20のアルカンジイル基としては、エチレン基、プロパン-1,3-ジイル基、ブタン-1,3-ジイル基、ブタン-1,4-ジイル基、ペンタン-1,5-ジイル基、ヘキサン-1,6-ジイル基、ヘプタン-1,7-ジイル基、オクタン-1,8-ジイル基などが挙げられる。 Examples of the aliphatic organic group in which a part of the carbon atoms is replaced by a nitrogen atom and/or an oxygen atom include the above-mentioned alkoxy group having 1 to 20 carbon atoms, which may be branched; substituted or unsubstituted amino group; carboxy group; alkyloxycarbonyl group having 1 to 20 carbon atoms, which may be branched; carbamoyl group; alkylcarbamoyl group having 1 to 20 carbon atoms, which may be branched; acylamino group having 1 to 20 carbon atoms, which may be branched; and acyloxy group having 1 to 20 carbon atoms, which may be branched. The above-mentioned substituted amino group means an amino group having one or two alkyl groups having 1 to 20 carbon atoms, which may be branched, or an amino group in which two substituted alkyl groups are bonded to each other to form an alkanediyl group having 2 to 20 carbon atoms. The unsubstituted amino group is -NH2 . Examples of the alkyl group having 1 to 20 carbon atoms of the substituted amino group include a methyl group, an ethyl group, and a butyl group. Examples of the alkanediyl group having 2 to 20 carbon atoms include an ethylene group, a propane-1,3-diyl group, a butane-1,3-diyl group, a butane-1,4-diyl group, a pentane-1,5-diyl group, a hexane-1,6-diyl group, a heptane-1,7-diyl group, and an octane-1,8-diyl group.
 分子直線性が高い点から、R11およびR12としては、それぞれ独立に、水素原子、または、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基などの炭素数1~10のアルキル基;ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基などの炭素数1~10のアルコキシ基、ジエチルアミノ基、ピロリジノ基およびピペリジニル基が好ましい。また、後述の、液晶化合物におけるRおよびRの重合性基を有する鎖状有機基における好ましいものも好ましい。 From the viewpoint of high molecular linearity, R 11 and R 12 are each preferably independently a hydrogen atom, an alkyl group having 1 to 10 carbon atoms such as a butyl group, a pentyl group, a hexyl group, a heptyl group, or an octyl group, an alkoxy group having 1 to 10 carbon atoms such as a butoxy group, a pentyloxy group, a hexyloxy group, a heptyloxy group, or an octyloxy group, a diethylamino group, a pyrrolidino group, or a piperidinyl group. In addition, the preferred chain organic groups having a polymerizable group of R 1 and R 2 in the liquid crystal compound described later are also preferably used.
 本発明の異方性色素膜に含有される色素としては、特に限定されることなく、公知の色素を用いることもできる。
 公知の色素としては、たとえば、前述の特許文献1、特許第5982762号公報、特開2017-025317号公報、特開2014-095899号公報に記載の色素(二色性色素、二色性染料)が挙げられる。
The dye contained in the anisotropic dye film of the present invention is not particularly limited, and any known dye can be used.
Examples of known dyes include the dyes (dichroic dyes and dichroic dyes) described in the above-mentioned Patent Document 1, Japanese Patent No. 5982762, JP-A-2017-025317, and JP-A-2014-095899.
 具体的には、以下に記載の色素が挙げられるが、これらに限定されるものではない。 Specific examples include, but are not limited to, the dyes listed below.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 これらの色素の分子量は、300以上が好ましく、350以上がより好ましく、380以上がさらに好ましく、1500以下が好ましく、1200以下がより好ましく、1000以下がさらに好ましい。具体的には、本発明に係る色素の分子量は、300~1500が好ましく、350~1200がより好ましく、380~1000がさらに好ましい。色素の分子量は、色素分子に含まれる原子量の総和である。 The molecular weight of these dyes is preferably 300 or more, more preferably 350 or more, even more preferably 380 or more, and is preferably 1500 or less, more preferably 1200 or less, and even more preferably 1000 or less. Specifically, the molecular weight of the dye according to the present invention is preferably 300 to 1500, more preferably 350 to 1200, and even more preferably 380 to 1000. The molecular weight of the dye is the sum of the atomic weights contained in the dye molecule.
 異方性色素膜における色素(二色性色素)の含有量は、例えば、異方性色素膜(100質量部)に対して、0.01質量部以上が好ましく、0.05質量部以上がより好ましく、50質量部以下が好ましく、30質量部以下がより好ましく、10質量部以下がさらに好ましい。具体的には、異方性色素膜における色素(二色性色素)の含有量は、例えば、異方性色素膜(100質量部)に対して、好ましくは0.01~50質量部であり、より好ましくは0.05~30質量部であり、さらに好ましくは0.05~10質量部である。色素(二色性色素)の含有量が前記範囲内であれば、本発明の異方性色素膜において高い配向を維持したまま、重合性液晶化合物を重合させることができる傾向にある。色素(二色性色素)が占める含有量が前記下限値以上であれば、十分な光吸収が得られ、十分な偏光性能が得られる傾向にある。色素(二色性色素)が占める含有量が前記上限値以下であれば、液晶分子の配向の阻害が抑制されやすい傾向にある。 The content of the dye (dichroic dye) in the anisotropic dye film is, for example, preferably 0.01 parts by mass or more, more preferably 0.05 parts by mass or more, more preferably 50 parts by mass or less, more preferably 30 parts by mass or less, and even more preferably 10 parts by mass or less, relative to the anisotropic dye film (100 parts by mass). Specifically, the content of the dye (dichroic dye) in the anisotropic dye film is, for example, preferably 0.01 to 50 parts by mass, more preferably 0.05 to 30 parts by mass, and even more preferably 0.05 to 10 parts by mass, relative to the anisotropic dye film (100 parts by mass). If the content of the dye (dichroic dye) is within the above range, the polymerizable liquid crystal compound tends to be polymerized while maintaining high orientation in the anisotropic dye film of the present invention. If the content of the dye (dichroic dye) is equal to or greater than the above lower limit, sufficient light absorption and sufficient polarization performance tend to be obtained. If the content of the dye (dichroic dye) is equal to or less than the upper limit, the alignment of the liquid crystal molecules tends to be less affected.
 従って、本発明の異方性色素膜形成用組成物における色素(二色性色素)の含有量は、例えば、異方性色素膜形成用組成物中の固形分(100質量部)に対して、0.01質量部以上が好ましく、0.05質量部以上がより好ましく、50質量部以下が好ましく、30質量部以下がより好ましく、10質量部以下がさらに好ましい。具体的には、異方性色素膜形成用組成物中の固形分における色素(二色性色素)の含有量は、例えば、固形分(100質量部)に対して、好ましくは0.01~50質量部であり、より好ましくは0.05~30質量部であり、さらに好ましくは0.05~10質量部である。色素(二色性色素)の含有量が前記範囲内であれば、本発明の異方性色素膜形成用組成物において高い配向を維持したまま、重合性液晶化合物を重合させることができる傾向にある。色素(二色性色素)が占める含有量が前記下限値以上であれば、十分な光吸収が得られ、十分な偏光性能が得られる傾向にある。色素(二色性色素)が占める含有量が前記上限値以下であれば、液晶分子の配向の阻害が抑制されやすい傾向にある。 Therefore, the content of the dye (dichroic dye) in the anisotropic dye film-forming composition of the present invention is, for example, preferably 0.01 parts by mass or more, more preferably 0.05 parts by mass or more, more preferably 50 parts by mass or less, more preferably 30 parts by mass or less, and even more preferably 10 parts by mass or less, relative to the solid content (100 parts by mass) in the anisotropic dye film-forming composition. Specifically, the content of the dye (dichroic dye) in the solid content in the anisotropic dye film-forming composition is, for example, preferably 0.01 to 50 parts by mass, more preferably 0.05 to 30 parts by mass, and even more preferably 0.05 to 10 parts by mass, relative to the solid content (100 parts by mass). If the content of the dye (dichroic dye) is within the above range, the polymerizable liquid crystal compound tends to be polymerized while maintaining high alignment in the anisotropic dye film-forming composition of the present invention. If the content of the dye (dichroic dye) is equal to or greater than the lower limit, sufficient light absorption and sufficient polarization performance tend to be obtained. If the content of the dye (dichroic dye) is equal to or less than the upper limit, the alignment of the liquid crystal molecules tends to be less affected.
 ここで異方性色素膜形成用組成物中の固形分とは、異方性色素膜形成用組成物における溶剤以外の全成分の合計に相当し、異方性色素膜形成用組成物により形成される異方性色素膜質量に相当する。 Here, the solid content in the composition for forming an anisotropic dye film corresponds to the total of all components other than the solvent in the composition for forming an anisotropic dye film, and corresponds to the mass of the anisotropic dye film formed by the composition for forming an anisotropic dye film.
 本発明の異方性色素膜形成用組成物及び本発明の異方性色素膜は、色素の1種のみを含むものであってもよく、2種以上を含むものであってもよい。 The anisotropic dye film-forming composition of the present invention and the anisotropic dye film of the present invention may contain only one type of dye, or may contain two or more types.
<重合性液晶化合物>
 本発明において、液晶化合物とは、液晶状態を示す物質を指し、具体的には、「液晶便覧」(丸善株式会社、平成12年10月30日発行)の1~28ページに記載されているように、結晶から液体には直接転移せず、結晶と液体の両方の性質を示す中間の状態を経て液体になる化合物をいう。
<Polymerizable Liquid Crystal Compound>
In the present invention, the liquid crystal compound refers to a substance that exhibits a liquid crystal state, and specifically refers to a compound that does not directly transition from a crystal to a liquid state but becomes a liquid state via an intermediate state that exhibits properties of both a crystal and a liquid, as described on pages 1 to 28 of "Liquid Crystal Handbook" (Maruzen Co., Ltd., published on October 30, 2000).
 本発明の異方性色素膜形成用組成物に含まれる重合性液晶化合物は、後述する重合性基を有する液晶化合物である。 The polymerizable liquid crystal compound contained in the composition for forming an anisotropic dye film of the present invention is a liquid crystal compound having a polymerizable group, which will be described later.
 重合性液晶化合物において、重合性基は液晶化合物分子内の任意の位置に配置することができる。重合性液晶化合物において、重合性基は液晶化合物分子の末端に置換していることが重合しやすさの観点から好ましい。
 重合性液晶化合物において、重合性基は液晶化合物分子内に1つ以上存在することができる。重合性基が2つ以上存在する場合は、液晶化合物分子の両末端にそれぞれ存在していることが重合しやすさの観点から好ましい。
In the polymerizable liquid crystal compound, the polymerizable group can be located at any position in the liquid crystal compound molecule. In the polymerizable liquid crystal compound, the polymerizable group is preferably substituted at the terminal of the liquid crystal compound molecule from the viewpoint of ease of polymerization.
In the polymerizable liquid crystal compound, one or more polymerizable groups may be present in the liquid crystal compound molecule. When two or more polymerizable groups are present, it is preferable that they are present at both ends of the liquid crystal compound molecule from the viewpoint of ease of polymerization.
 重合性液晶化合物は、液晶化合物分子内に炭素-炭素三重結合を有する化合物であることが好ましい。炭素-炭素三重結合を有する化合物であると、該炭素-炭素三重結合が、回転運動が可能でありながら、液晶分子のコアとなることが可能で、分子の運動性が高く、かつ液晶分子同士や色素分子などのπ共役系を有する化合物と分子間相互作用が強く、分子配向が高くなる傾向にある。 The polymerizable liquid crystal compound is preferably a compound having a carbon-carbon triple bond in the liquid crystal compound molecule. In a compound having a carbon-carbon triple bond, the carbon-carbon triple bond is capable of rotational motion while also being able to become the core of the liquid crystal molecule, and the molecular mobility is high, and there is strong intermolecular interaction between the liquid crystal molecules and with compounds having a π-conjugated system such as dye molecules, which tends to result in high molecular orientation.
 重合性液晶化合物は液晶性を示すユニットを含む繰り返し構造を有さない、低分子量液晶化合物であることが、高い二色比を得られやすいため好ましい。 The polymerizable liquid crystal compound is preferably a low molecular weight liquid crystal compound that does not have a repeating structure containing units that exhibit liquid crystallinity, as this makes it easier to obtain a high dichroic ratio.
 本発明の異方性色素膜形成用組成物に含まれる重合性液晶化合物としては、特に限定されることなく重合性基を有する液晶化合物を用いることができる。 The polymerizable liquid crystal compound contained in the composition for forming an anisotropic dye film of the present invention is not particularly limited, and any liquid crystal compound having a polymerizable group can be used.
 たとえば、本発明の異方性色素膜形成用組成物に含まれる重合性液晶化合物としては、下記式(1)で表される化合物(以下、「重合性液晶化合物(1)」と称す場合がある。)を挙げることができる。 For example, the polymerizable liquid crystal compound contained in the anisotropic dye film-forming composition of the present invention may be a compound represented by the following formula (1) (hereinafter, sometimes referred to as "polymerizable liquid crystal compound (1)").
  Q-R-A11-Y-A12-(Y-A13-R-Q  …(1)
(式(1)中、
 -Qは、水素原子または重合性基を表し;
 -Qは、重合性基を表し;
 -R-および-R-は、それぞれ独立に、鎖状有機基を表し;
 -A11-および-A13-は、それぞれ独立に、下記式(2)で表される部分構造、2価有機基、または単結合を表し;
 -A12-は、下記式(2)で表される部分構造または2価有機基を表し;
 -Y-および-Y-は、それぞれ独立に、単結合、-C(=O)O-、-OC(=O)-、-C(=S)O-、-OC(=S)-、-C(=O)S-、-SC(=O)-、-CHCH-、-CH=CH-、-C≡C-、-C(=O)NH-、-NHC(=O)-、-CHO-、-OCH-、-CHS-、または-SCH-を表し;
 -A11-および-A13-の一方は、下記式(2)で表される部分構造または2価有機基であり;
 kは1または2である。
 kが2の場合、2つの-Y-A13-は互いに同一でも異なっていてもよい。)
Q 1 -R 1 -A 11 -Y 1 -A 12 -(Y 2 -A 13 ) k -R 2 -Q 2 ... (1)
(In formula (1),
-Q1 represents a hydrogen atom or a polymerizable group;
-Q2 represents a polymerizable group;
-R 1 - and -R 2 - each independently represent a chain organic group;
-A 11 - and -A 13 - each independently represent a partial structure represented by the following formula (2), a divalent organic group, or a single bond;
-A 12 - represents a partial structure represented by the following formula (2) or a divalent organic group;
Each of -Y 1 - and -Y 2 - independently represents a single bond, -C(=O)O-, -OC(=O)-, -C(=S)O-, -OC(=S)-, -C(=O)S-, -SC(=O)-, -CH 2 CH 2 -, -CH=CH-, -C≡C-, -C(=O)NH-, -NHC(=O)-, -CH 2 O-, -OCH 2 -, -CH 2 S-, or -SCH 2 -;
One of -A 11 - and -A 13 - is a partial structure represented by the following formula (2) or a divalent organic group:
k is 1 or 2.
When k is 2, two -Y 2 -A 13 - may be the same or different.
  -Cy-X-C≡C-X-  …(2)
(式(2)中、
 -Cy-は、炭化水素環基または複素環基を表し;
 -X-は、-C(=O)O-、-OC(=O)-、-C(=S)O-、-OC(=S)-、-C(=O)S-、-SC(=O)-、-CHCH-、-CH=CH-、-C(=O)NH-、-NHC(=O)-、-CHO-、-OCH-、-CHS-、または-SCH-を表し;
 -X-は、単結合、-C(=O)O-、-OC(=O)-、-C(=S)O-、-OC(=S)-、-C(=O)S-、-SC(=O)-、-CHCH-、-CH=CH-、-C(=O)NH-、-NHC(=O)-、-CHO-、-OCH-、-CHS-、または-SCH-を表す。)
-Cy-X 2 -C≡C-X 1 - ... (2)
(In formula (2),
-Cy- represents a hydrocarbon ring group or a heterocyclic group;
-X 1 - represents -C(=O)O-, -OC(=O)-, -C(=S)O-, -OC(=S)-, -C(=O)S-, -SC(=O)-, -CH 2 CH 2 -, -CH=CH-, -C(=O)NH-, -NHC(=O)-, -CH 2 O-, -OCH 2 -, -CH 2 S-, or -SCH 2 -;
-X 2 - represents a single bond, -C(=O)O-, -OC(=O)-, -C(=S)O-, -OC(=S)-, -C(=O)S-, -SC(=O)-, -CH 2 CH 2 -, -CH=CH-, -C(=O)NH-, -NHC(=O)-, -CH 2 O-, -OCH 2 -, -CH 2 S-, or -SCH 2 -.
 -A11-が、式(2)で表される部分構造である場合、式(1)は、下記式(1A)であってもよく、下記式(1B)であってもよい。
 Q-R-Cy-X-C≡C-X-Y-A12-(Y-A13-R-Q   …(1A)
 Q-R-X-C≡C-X-Cy-Y-A12-(Y-A13-R-Q   …(1B)
When -A 11 - is a partial structure represented by formula (2), formula (1) may be the following formula (1A) or the following formula (1B).
Q 1 -R 1 -Cy-X 2 -C≡C-X 1 -Y 1 -A 12 -(Y 2 -A 13 ) k -R 2 -Q 2 ... (1A)
Q 1 -R 1 -X 1 -C≡C-X 2 -Cy-Y 1 -A 12 -(Y 2 -A 13 ) k -R 2 -Q 2 ... (1B)
 -A12-が、式(2)で表される部分構造である場合、式(1)は、下記式(1C)であってもよく、下記式(1D)であってもよい。
 Q-R-A11-Y-Cy-X-C≡C-X-(Y-A13-R-Q   …(1C)
 Q-R-A11-Y-X-C≡C-X-Cy-(Y-A13-R-Q   …(1D)
When -A 12 - is a partial structure represented by formula (2), formula (1) may be the following formula (1C) or the following formula (1D).
Q 1 -R 1 -A 11 -Y 1 -Cy-X 2 -C≡C-X 1 -(Y 2 -A 13 ) k -R 2 -Q 2 ... (1C)
Q 1 -R 1 -A 11 -Y 1 -X 1 -C≡C-X 2 -Cy-(Y 2 -A 13 ) k -R 2 -Q 2 ... (1D)
 -A13-が、式(2)で表される部分構造である場合、式(1)は、下記式(1E)であってもよく、下記式(1F)であってもよい。
 Q-R-A11-Y-A12-(Y-Cy-X-C≡C-X-R-Q   …(1E)
 Q-R-A11-Y-A12-(Y-X-C≡C-X-Cy)-R-Q   …(1F)
When -A 13 - is a partial structure represented by formula (2), formula (1) may be the following formula (1E) or the following formula (1F).
Q 1 -R 1 -A 11 -Y 1 -A 12 -(Y 2 -Cy-X 2 -C≡C-X 1 ) k -R 2 -Q 2 ... (1E)
Q 1 -R 1 -A 11 -Y 1 -A 12 -(Y 2 -X 1 -C≡C-X 2 -Cy) k -R 2 -Q 2 ... (1F)
 同様に、-A11-、-A12-および-A13-のうち、二つ以上が式(2)で表される部分構造である場合、それぞれ独立に、式(2)で表される部分構造の向きが反転していてもよい。 Similarly, when two or more of -A 11 -, -A 12 - and -A 13 - are partial structures represented by formula (2), the orientation of the partial structures represented by formula (2) may be inverted, independently of each other.
 上記のように、-A11-、-A12-および-A13-は、それぞれ独立に、式(2)で表される部分構造または2価有機基である。加えて、-A11-および-A13-は、単結合であってもよいが、-A11-および-A13-が、ともに単結合であることはない。 As described above, -A 11 -, -A 12 - and -A 13 - are each independently a partial structure or a divalent organic group represented by formula (2). In addition, -A 11 - and -A 13 - may be a single bond, but -A 11 - and -A 13 - are not both single bonds.
(-Cy-)
 -Cy-における炭化水素環基は、芳香族炭化水素環基と非芳香族炭化水素環基とを含む。
 芳香族炭化水素環基は、非連結芳香族炭化水素環基と連結芳香族炭化水素環基とを含む。
(-Cy-)
The hydrocarbon ring group in -Cy- includes aromatic hydrocarbon ring groups and non-aromatic hydrocarbon ring groups.
The aromatic hydrocarbon ring group includes an unlinked aromatic hydrocarbon ring group and a linked aromatic hydrocarbon ring group.
 非連結芳香族炭化水素環基は、単環もしくは縮合した芳香族炭化水素環の2価基であり、その炭素数は6~20であることが、適切なコアの大きさにより分子配向性が良好となる理由で好ましい。非連結芳香族炭化水素環基の炭素数は6~15がより好ましい。芳香族炭化水素環としては、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、ペリレン環、テトラセン環、ピレン環、ベンズピレン環、クリセン環、トリフェニレン環、アセナフテン環、フルオランテン環、フルオレン環等が挙げられる。 The non-linked aromatic hydrocarbon ring group is a divalent group of a monocyclic or condensed aromatic hydrocarbon ring, and preferably has 6 to 20 carbon atoms, because the appropriate core size provides good molecular orientation. The non-linked aromatic hydrocarbon ring group more preferably has 6 to 15 carbon atoms. Examples of aromatic hydrocarbon rings include a benzene ring, a naphthalene ring, an anthracene ring, a phenanthrene ring, a perylene ring, a tetracene ring, a pyrene ring, a benzpyrene ring, a chrysene ring, a triphenylene ring, an acenaphthene ring, a fluoranthene ring, and a fluorene ring.
 連結芳香族炭化水素環基は、単環もしくは縮合した芳香族炭化水素環の複数が単結合で結合し、環を構成する原子上に結合手を有する2価基である。単環もしくは縮合環の炭素数は6~20であることが、適切なコアの大きさにより分子配向性が良好となる理由で好ましい。単環もしくは縮合環の炭素数は6~15がより好ましい。連結芳香族炭化水素環基としては、たとえば、第1の炭素数6~20の単環もしくは縮合した芳香族炭化水素環と第2の炭素数6~20の単環もしくは縮合した芳香族炭化水素環とが単結合で結合し、第1の炭素数6~20の単環もしくは縮合した芳香族炭化水素環の環を構成する原子上に第1の結合手を有し、第2の炭素数6~20の単環もしくは縮合した芳香族炭化水素環の環を構成する原子上に第2の結合手を有する2価基が挙げられる。連結芳香族炭化水素環基としては、具体的には、ビフェニル-4,4’-ジイル基が挙げられる。 The linked aromatic hydrocarbon ring group is a divalent group in which a plurality of monocyclic or condensed aromatic hydrocarbon rings are bonded by single bonds and have a bond on an atom constituting the ring. The number of carbon atoms in the monocyclic or condensed ring is preferably 6 to 20 because the molecular orientation is good due to the appropriate core size. The number of carbon atoms in the monocyclic or condensed ring is more preferably 6 to 15. Examples of the linked aromatic hydrocarbon ring group include a divalent group in which a first monocyclic or condensed aromatic hydrocarbon ring having 6 to 20 carbon atoms is bonded by a single bond to a second monocyclic or condensed aromatic hydrocarbon ring having 6 to 20 carbon atoms, which has a first bond on an atom constituting the ring of the first monocyclic or condensed aromatic hydrocarbon ring having 6 to 20 carbon atoms, and a second bond on an atom constituting the ring of the second monocyclic or condensed aromatic hydrocarbon ring having 6 to 20 carbon atoms. Specific examples of the linked aromatic hydrocarbon ring group include a biphenyl-4,4'-diyl group.
 芳香族炭化水素環基としては、非連結芳香族炭化水素環基が液晶化合物の間に働く分子間相互作用を最適とすることで分子配向性が良好となる理由で好ましい。
 これらのうち、芳香族炭化水素環基としては、ベンゼン環の2価基、ナフタレン環の2価基が好ましく、ベンゼン環の2価基(フェニレン基)がより好ましい。フェニレン基としては、1,4-フェニレン基が好ましい。-Cy-がこれらの基であることで液晶分子の直線性が高まり、分子配向性向上の効果が得られる傾向にある。
As the aromatic hydrocarbon ring group, a non-linked aromatic hydrocarbon ring group is preferable because it optimizes the intermolecular interaction acting between liquid crystal compounds, thereby improving the molecular alignment.
Of these, the aromatic hydrocarbon ring group is preferably a divalent group of a benzene ring or a divalent group of a naphthalene ring, and more preferably a divalent group of a benzene ring (phenylene group). As the phenylene group, a 1,4-phenylene group is preferable. When -Cy- is one of these groups, the linearity of the liquid crystal molecules is increased, and the effect of improving molecular alignment tends to be obtained.
 非芳香族炭化水素環基は、非連結非芳香族炭化水素環基と連結非芳香族炭化水素環基とを含む。 Non-aromatic hydrocarbon ring groups include unlinked non-aromatic hydrocarbon ring groups and linked non-aromatic hydrocarbon ring groups.
 非連結非芳香族炭化水素環基は、単環もしくは縮合した非芳香族炭化水素環の2価基であり、その炭素数は3~20であることが、適切なコアの大きさにより分子配向性が良好となる理由で好ましい。非連結非芳香族炭化水素環基の炭素数は3~15がより好ましい。非芳香族炭化水素環としては、シクロプロパン環、シクロブタン環、シクロペンタン環、シクロヘキサン環、シクロヘプタン環、シクロオクタン環、シクロヘキセン環、ノルボルナン環、ボルナン環、アダマンタン環、テトラヒドロナフタレン環、ビシクロ[2.2.2]オクタン環等が挙げられる。 The non-linked non-aromatic hydrocarbon ring group is a divalent group of a monocyclic or condensed non-aromatic hydrocarbon ring, and preferably has 3 to 20 carbon atoms because the appropriate core size provides good molecular orientation. The non-linked non-aromatic hydrocarbon ring group more preferably has 3 to 15 carbon atoms. Examples of non-aromatic hydrocarbon rings include a cyclopropane ring, a cyclobutane ring, a cyclopentane ring, a cyclohexane ring, a cycloheptane ring, a cyclooctane ring, a cyclohexene ring, a norbornane ring, a bornane ring, an adamantane ring, a tetrahydronaphthalene ring, and a bicyclo[2.2.2]octane ring.
 非連結非芳香族炭化水素環基は、非芳香族炭化水素環の環を構成する原子間結合として不飽和結合を有さない脂環式炭化水素環基と、非芳香族炭化水素環の環を構成する原子間結合として不飽和結合を有する不飽和非芳香族炭化水素環基とを含む。非連結非芳香族炭化水素環基としては、生産性の観点から脂環式炭化水素環基が好ましい。  The non-linked non-aromatic hydrocarbon ring group includes an alicyclic hydrocarbon ring group that does not have an unsaturated bond between the atoms that constitute the ring of the non-aromatic hydrocarbon ring, and an unsaturated non-aromatic hydrocarbon ring group that has an unsaturated bond between the atoms that constitute the ring of the non-aromatic hydrocarbon ring. From the viewpoint of productivity, the non-linked non-aromatic hydrocarbon ring group is preferably an alicyclic hydrocarbon ring group.
 連結非芳香族炭化水素環基は、単環もしくは縮合した非芳香族炭化水素環の複数が単結合で結合し、環を構成する原子上に結合手を有する2価基;あるいは、単環の芳香族炭化水素環、縮合した芳香族炭化水素環、単環の非芳香族炭化水素環、および縮合した非芳香族炭化水素環からなる群より選択される1つ以上の環と、単環もしくは縮合した非芳香族炭化水素環とが単結合で結合し、環を構成する原子上に結合手を有する2価基である。
 単環もしくは縮合環の炭素数は適切なコアの大きさにより分子配向性が良好となる理由で3~20であることが好ましい。
The linked non-aromatic hydrocarbon ring group is a divalent group in which a plurality of monocyclic or condensed non-aromatic hydrocarbon rings are bonded together with single bonds and has a bond on an atom constituting the ring; or a divalent group in which one or more rings selected from the group consisting of monocyclic aromatic hydrocarbon rings, condensed aromatic hydrocarbon rings, monocyclic non-aromatic hydrocarbon rings, and condensed non-aromatic hydrocarbon rings are bonded together with a monocyclic or condensed non-aromatic hydrocarbon ring with a single bond and has a bond on an atom constituting the ring.
The number of carbon atoms in the single ring or condensed ring is preferably 3 to 20 because an appropriate core size provides good molecular orientation.
 連結非芳香族炭化水素環基としてはたとえば、第1の炭素数3~20の単環もしくは縮合した非芳香族炭化水素環と第2の炭素数3~20の単環もしくは縮合した非芳香族炭化水素環とが単結合で結合し、第1の炭素数3~20の単環もしくは縮合した非芳香族炭化水素環の環を構成する原子上に第1の結合手を有し、第2の炭素数3~20の単環もしくは縮合した非芳香族炭化水素環の環を構成する原子上に第2の結合手を有する2価基が挙げられる。さらに、たとえば、炭素数3~20の単環もしくは縮合した芳香族炭化水素環と炭素数3~20の単環もしくは縮合した非芳香族炭化水素環とが単結合で結合し、炭素数3~20の単環もしくは縮合した芳香族炭化水素環の環を構成する原子上に第1の結合手を有し、炭素数3~20の単環もしくは縮合した非芳香族炭化水素環の環を構成する原子上に第2の結合手を有する2価基が挙げられる。 Examples of the linked non-aromatic hydrocarbon ring group include a divalent group in which a first monocyclic or condensed non-aromatic hydrocarbon ring having 3 to 20 carbon atoms is bonded to a second monocyclic or condensed non-aromatic hydrocarbon ring having 3 to 20 carbon atoms by a single bond, the divalent group having a first bond on an atom constituting the first monocyclic or condensed non-aromatic hydrocarbon ring having 3 to 20 carbon atoms, and a second bond on an atom constituting the second monocyclic or condensed non-aromatic hydrocarbon ring having 3 to 20 carbon atoms. Further examples include a divalent group in which a monocyclic or condensed aromatic hydrocarbon ring having 3 to 20 carbon atoms is bonded to a monocyclic or condensed non-aromatic hydrocarbon ring having 3 to 20 carbon atoms by a single bond, the divalent group having a first bond on an atom constituting the monocyclic or condensed aromatic hydrocarbon ring having 3 to 20 carbon atoms, and a second bond on an atom constituting the monocyclic or condensed non-aromatic hydrocarbon ring having 3 to 20 carbon atoms.
 連結非芳香族炭化水素環基としては、具体的には、ビス(シクロヘキサン)-4,4’-ジイル基、1-シクロヘキシルベンゼン-4,4’-ジイル基が挙げられる。 Specific examples of linking non-aromatic hydrocarbon ring groups include bis(cyclohexane)-4,4'-diyl and 1-cyclohexylbenzene-4,4'-diyl groups.
 非芳香族炭化水素環基としては、液晶化合物の間に働く分子間相互作用を最適とすることで分子配向性が良好となる理由で非連結非芳香族炭化水素環基が好ましい。 As the non-aromatic hydrocarbon ring group, a non-linked non-aromatic hydrocarbon ring group is preferred because it optimizes the intermolecular interactions that act between liquid crystal compounds, thereby improving molecular orientation.
 非連結非芳香族炭化水素環基としては、シクロヘキサンの2価基(シクロヘキサンジイル基)が好ましい。シクロヘキサンジイル基としては、シクロヘキサン-1,4-ジイル基が好ましい。-Cy-がこれらの基であることで液晶分子の直線性が高まり、分子配向性向上の効果が得られる傾向にある。 As the non-linked non-aromatic hydrocarbon ring group, a divalent group of cyclohexane (cyclohexanediyl group) is preferable. As the cyclohexanediyl group, a cyclohexane-1,4-diyl group is preferable. When -Cy- is one of these groups, the linearity of the liquid crystal molecules is increased, and the effect of improving molecular alignment tends to be obtained.
 -Cy-における複素環基は、芳香族複素環基と非芳香族複素環基とを含む。 The heterocyclic group in -Cy- includes aromatic heterocyclic groups and non-aromatic heterocyclic groups.
 芳香族複素環基は、非連結芳香族複素環基と連結芳香族複素環基とを含む。 Aromatic heterocyclic groups include unlinked aromatic heterocyclic groups and linked aromatic heterocyclic groups.
 非連結芳香族複素環基は、単環もしくは縮合した芳香族複素環の2価基であり、その炭素数は4~20であることが、適切なコアの大きさにより分子配向性が良好となる理由で好ましい。非連結芳香族複素環基の炭素数は4~15がより好ましい。 The non-linked aromatic heterocyclic group is a divalent group of a monocyclic or condensed aromatic heterocyclic ring, and preferably has 4 to 20 carbon atoms because the appropriate core size provides good molecular orientation. The non-linked aromatic heterocyclic group more preferably has 4 to 15 carbon atoms.
 芳香族複素環としては、フラン環、ベンゾフラン環、チオフェン環、ベンゾチオフェン環、ピロ-ル環、ピラゾ-ル環、イミダゾ-ル環、チアゾール環、イソチアゾール環、オキサジアゾ-ル環、チアジアゾール環、トリアゾール環、インド-ル環、カルバゾ-ル環、ピロロイミダゾ-ル環、ピロロピラゾ-ル環、ピロロピロ-ル環、チエノピロ-ル環、チエノチオフェン環、フロピロ-ル環、フロフラン環、チエノフラン環、チエノチアゾ-ル環、ベンゾイソオキサゾ-ル環、ベンゾイソチアゾ-ル環、ベンゾイミダゾ-ル環、ピリジン環、ピラジン環、ピリダジン環、ピリミジン環、トリアジン環、キノリン環、イソキノリン環、シノリン環、キノキサリン環、フェナントリジン環、キナゾリン環、キナゾリノン環、アズレン環等が挙げられる。 Aromatic heterocycles include furan ring, benzofuran ring, thiophene ring, benzothiophene ring, pyrrole ring, pyrazole ring, imidazole ring, thiazole ring, isothiazole ring, oxadiazole ring, thiadiazole ring, triazole ring, indole ring, carbazole ring, pyrroloimidazole ring, pyrrolopyrazole ring, pyrrolopyrrole ring, thienopyrrole ring, thienothiophene ring, furopyrrole ring, furofuran ring, thienofuran ring, thienothiazole ring, benzoisoxazole ring, benzoisothiazole ring, benzimidazole ring, pyridine ring, pyrazine ring, pyridazine ring, pyrimidine ring, triazine ring, quinoline ring, isoquinoline ring, cinnoline ring, quinoxaline ring, phenanthridine ring, quinazoline ring, quinazolinone ring, azulene ring, etc.
 連結芳香族複素環基は、単環もしくは縮合した芳香族複素環の複数が単結合で結合し、環を構成する原子上に結合手を有する2価基である。単環もしくは縮合環の炭素数は4~20であることが、適切なコアの大きさにより分子配向性が良好となる理由で好ましい。連結芳香族複素環基の炭素数は4~15がより好ましい。 The linked aromatic heterocyclic group is a divalent group in which multiple monocyclic or condensed aromatic heterocyclic rings are bonded with single bonds and have bonds on the atoms that make up the ring. The number of carbon atoms in the monocyclic or condensed ring is preferably 4 to 20, because the appropriate core size provides good molecular orientation. The number of carbon atoms in the linked aromatic heterocyclic group is more preferably 4 to 15.
 連結芳香族複素環基としては、たとえば、第1の炭素数4~20の単環もしくは縮合した芳香族複素環と第2の炭素数4~20の単環もしくは縮合した芳香族複素環とが単結合で結合し、第1の炭素数4~20の単環もしくは縮合した芳香族複素環の環を構成する原子上に第1の結合手を有し、第2の炭素数4~20の単環もしくは縮合した芳香族複素環の環を構成する原子上に第2の結合手を有する2価基が挙げられる。 Examples of linked aromatic heterocyclic groups include divalent groups in which a first monocyclic or condensed aromatic heterocyclic ring having 4 to 20 carbon atoms is bonded to a second monocyclic or condensed aromatic heterocyclic ring having 4 to 20 carbon atoms by a single bond, the divalent group having a first bond on an atom constituting the ring of the first monocyclic or condensed aromatic heterocyclic ring having 4 to 20 carbon atoms, and a second bond on an atom constituting the ring of the second monocyclic or condensed aromatic heterocyclic ring having 4 to 20 carbon atoms.
 非芳香族複素環基は、非連結非芳香族複素環基と連結非芳香族複素環基とを含む。 Non-aromatic heterocyclic groups include unlinked non-aromatic heterocyclic groups and linked non-aromatic heterocyclic groups.
 非連結非芳香族複素環基は、単環もしくは縮合した非芳香族複素環の2価基であり、その炭素数は4~20であることが、適切なコアの大きさにより分子配向性が良好となる理由で好ましい。非連結非芳香族複素環基の炭素数は4~15がより好ましい。 The non-linked non-aromatic heterocyclic group is a divalent group of a monocyclic or condensed non-aromatic heterocyclic ring, and preferably has 4 to 20 carbon atoms because the appropriate core size provides good molecular orientation. The non-linked non-aromatic heterocyclic group more preferably has 4 to 15 carbon atoms.
 炭素数4~20の単環もしくは縮合した非芳香族複素環の2価基の非芳香族複素環としては、テトラヒドロフラン環、テトラヒドロピラン環、ジオキサン環、テトラヒドロチオフェン環、テトラヒドロチオピラン環、ピロリジン環、ピペリジン環、ジヒドロピリジン環、ピペラジン環、テトラヒドロチアゾール環、テトラヒドロオキサゾール環、オクタヒドロキノリン環、テトラヒドロキノリン環、オクタヒドロキナゾリン環、テトラヒドロキナゾリン環、テトラヒドロイミダゾール環、テトラヒドロベンゾイミダゾール環、キヌクリジン環等が挙げられる。 Examples of non-aromatic heterocycles that are divalent groups of monocyclic or condensed non-aromatic heterocycles having 4 to 20 carbon atoms include a tetrahydrofuran ring, a tetrahydropyran ring, a dioxane ring, a tetrahydrothiophene ring, a tetrahydrothiopyran ring, a pyrrolidine ring, a piperidine ring, a dihydropyridine ring, a piperazine ring, a tetrahydrothiazole ring, a tetrahydrooxazole ring, an octahydroquinoline ring, a tetrahydroquinoline ring, an octahydroquinazoline ring, a tetrahydroquinazoline ring, a tetrahydroimidazole ring, a tetrahydrobenzimidazole ring, and a quinuclidine ring.
 連結非芳香族複素環基は、単環もしくは縮合した非芳香族複素環の複数が単結合で結合し、環を構成する原子上に結合手を有する2価基である。単環もしくは縮合環の炭素数は4~20であることが、適切なコアの大きさにより分子配向性が良好となる理由で好ましい。連結非芳香族複素環基の炭素数は4~15がより好ましい。  A linked non-aromatic heterocyclic group is a divalent group in which multiple monocyclic or condensed non-aromatic heterocyclic rings are bonded with single bonds and have bonds on the atoms that make up the ring. The number of carbon atoms in the monocyclic or condensed ring is preferably 4 to 20, because the appropriate core size provides good molecular orientation. The number of carbon atoms in the linked non-aromatic heterocyclic group is more preferably 4 to 15.
 連結芳香族複素環基としては、たとえば、第1の炭素数4~20の単環もしくは縮合した非芳香族複素環と第2の炭素数4~20の単環もしくは縮合した非芳香族複素環とが単結合で結合し、第1の炭素数4~20の単環もしくは縮合した非芳香族複素環の環を構成する原子上に第1の結合手を有し、第2の炭素数4~20の単環もしくは縮合した非芳香族複素環の環を構成する原子上に第2の結合手を有する2価基が挙げられる。 Examples of linked aromatic heterocyclic groups include divalent groups in which a first monocyclic or condensed non-aromatic heterocyclic ring having 4 to 20 carbon atoms is bonded to a second monocyclic or condensed non-aromatic heterocyclic ring having 4 to 20 carbon atoms by a single bond, the divalent group having a first bond on an atom constituting the ring of the first monocyclic or condensed non-aromatic heterocyclic ring having 4 to 20 carbon atoms, and a second bond on an atom constituting the ring of the second monocyclic or condensed non-aromatic heterocyclic ring having 4 to 20 carbon atoms.
 -Cy-における芳香族炭化水素環基、非芳香族炭化水素環基、芳香族複素環基、非芳香族複素環基は、それぞれ、-R、-OH、-O-R、-O-C(=O)-R、-NH、-NH-R、-N(R’)-R、-C(=O)-R、-C(=O)-O-R、-C(=O)-NH、-C(=O)-NH-R、-C(=O)-N(R’)-R、-SH、-S-R、トリフルオロメチル基、スルファモイル基、カルボキシ基、スルホ基、シアノ基、ニトロ基、およびハロゲンからなる群より選択される1以上の基で置換されていてもよい。ここで、-Rおよび-R’は、それぞれ独立に、炭素数1~6の直鎖状もしくは分枝状のアルキル基を表す。 The aromatic hydrocarbon ring group, non-aromatic hydrocarbon ring group, aromatic heterocyclic group and non-aromatic heterocyclic group in -Cy- may each be substituted with one or more groups selected from the group consisting of -R k , -OH, -O-R k , -O-C(=O)-R k , -NH 2 , -NH-R k , -N(R k ')-R k , -C(=O)-R k , -C(=O)-O-R k , -C(=O)-NH 2 , -C(=O)-NH-R k , -C(=O)-N(R k ')-R k , -SH, -S-R k , trifluoromethyl group, sulfamoyl group, carboxy group, sulfo group, cyano group, nitro group and halogen. Here, -R k and -R k ' each independently represent a linear or branched alkyl group having 1 to 6 carbon atoms.
 -Cy-における芳香族炭化水素環基、非芳香族炭化水素環基、芳香族複素環基、非芳香族複素環基は、分子構造の直線性が高く、重合性液晶化合物(1)同士が会合しやすく液晶状態を発現しやすい点から、それぞれ独立に、無置換であるか、メチル基、メトキシ基、フッ素原子、塩素原子、臭素原子が置換していることが好ましく、無置換であることがより好ましい。 The aromatic hydrocarbon ring group, non-aromatic hydrocarbon ring group, aromatic heterocyclic group, and non-aromatic heterocyclic group in -Cy- are each preferably independently unsubstituted or substituted with a methyl group, a methoxy group, a fluorine atom, a chlorine atom, or a bromine atom, and more preferably unsubstituted, in that the molecular structure has a high linearity and the polymerizable liquid crystal compounds (1) are likely to associate with each other and exhibit a liquid crystal state.
 -Cy-における芳香族炭化水素環基、非芳香族炭化水素環基、芳香族複素環基、非芳香族複素環基が有する置換基は、同一でも異なっていてもよい。また、芳香族炭化水素環基、非芳香族炭化水素環基、芳香族複素環基、非芳香族複素環基の全部が置換されていてもよく、全部が無置換であってもよく、一部が置換されていて一部が無置換であってもよい。 The substituents of the aromatic hydrocarbon ring group, non-aromatic hydrocarbon ring group, aromatic heterocyclic group, and non-aromatic heterocyclic group in -Cy- may be the same or different. In addition, the aromatic hydrocarbon ring group, non-aromatic hydrocarbon ring group, aromatic heterocyclic group, and non-aromatic heterocyclic group may be entirely substituted, entirely unsubstituted, or partially substituted and partially unsubstituted.
 -Cy-としては、重合性液晶化合物(1)の分子配向性が良好となることから炭化水素環基が好ましく、フェニレン基、シクロヘキサンジイル基がより好ましい。重合性液晶化合物(1)の分子構造の直線性を高くすることができることから、-Cy-としては、1,4-フェニレン基、シクロヘキサン-1,4-ジイル基がさらに好ましく、1,4-フェニレン基がとりわけ好ましい。 As -Cy-, a hydrocarbon ring group is preferable because it improves the molecular alignment of the polymerizable liquid crystal compound (1), and a phenylene group or a cyclohexanediyl group is more preferable. As -Cy-, a 1,4-phenylene group or a cyclohexane-1,4-diyl group is even more preferable because it can increase the linearity of the molecular structure of the polymerizable liquid crystal compound (1), and a 1,4-phenylene group is particularly preferable.
 -X-は、-C(=O)O-、-OC(=O)-、-C(=S)O-、-OC(=S)-、-C(=O)S-、-SC(=O)-、-CHCH-、-CH=CH-、-C(=O)NH-、-NHC(=O)-、-CHO-、-OCH-、-CHS-または-SCH-を表す。このうち、重合性液晶化合物(1)の直線性や分子短軸周りの回転運動がしやすい傾向にあることから、-X-としては、π結合性の小さい、-C(=O)O-、-OC(=O)-、-C(=S)O-、-OC(=S)-、-C(=O)S-、-SC(=O)-、-CHCH-、-CHO-、-OCH-、-CHS-、-SCH-等が好ましいものとして挙げられる。これらの中でもより好ましくは、-C(=O)O-、-OC(=O)-、-CHCH-、-CHO-、-OCH-であり、さらに好ましくは、-X-は、-C(=O)O-または-OC(=O)-である。また、別の態様として、-X-は、-CHCH-、-CHO-または-OCH-であることが好ましい。 -X 1 - represents -C(=O)O-, -OC(=O)-, -C(=S)O-, -OC(=S)-, -C(=O)S-, -SC(=O)-, -CH 2 CH 2 -, -CH=CH-, -C(=O)NH-, -NHC(=O)-, -CH 2 O-, -OCH 2 -, -CH 2 S- or -SCH 2 -. Among these, -X 1 - is preferably -C(═O)O-, -OC(═O)-, -C(═S)O-, -OC(═S)-, -C(═O)S-, -SC(═O)-, -CH 2 CH 2 -, -CH 2 O-, -OCH 2 -, -CH 2 S-, -SCH 2 -, etc., which have small π bonding property, because the polymerizable liquid crystal compound (1) tends to have linearity and easy rotational motion around the molecular short axis. Among these, -C(═O)O-, -OC ( ═O)-, -CH 2 CH 2 -, -CH 2 O-, -OCH 2 -, are more preferable , and -X 1 - is still more preferably -C(═O)O- or -OC(═O)-. In another embodiment, —X 1 — is preferably —CH 2 CH 2 —, —CH 2 O— or —OCH 2 —.
 -X-は、単結合、-C(=O)O-、-OC(=O)-、-C(=S)O-、-OC(=S)-、-C(=O)S-、-SC(=O)-、-CHCH-、-CH=CH-、-C(=O)NH-、-NHC(=O)-、-CHO-、-OCH-、-CHS-、または-SCH-を表す。 -X 2 - represents a single bond, -C(=O)O-, -OC(=O)-, -C(=S)O-, -OC(=S)-, -C(=O)S-, -SC(=O)-, -CH 2 CH 2 -, -CH=CH-, -C(=O)NH-, -NHC(=O)-, -CH 2 O-, -OCH 2 -, -CH 2 S-, or -SCH 2 -.
 重合性液晶化合物(1)のコアを大きくし、異方性色素膜の二色性を大きくする観点から直線性が高い基で-Cy-と-C≡C-を連結することが好ましく、具体的には、-X-としては、単結合、またはπ結合性を有する-C(=O)O-、-OC(=O)-、-C(=S)O-、-OC(=S)-、-C(=O)S-、-SC(=O)-、-CH=CH-、-C(=O)NH-または-NHC(=O)-であることが好ましく、より直線性が高いことから単結合であることがさらに好ましい。 From the viewpoint of enlarging the core of the polymerizable liquid crystal compound (1) and increasing the dichroism of the anisotropic dye film, it is preferable to link -Cy- and -C≡C- with a group having high linearity. Specifically, -X 2 - is preferably a single bond, or -C(═O)O-, -OC(═O)-, -C(═S)O-, -OC(═S)-, -C(═O)S-, -SC(═O)-, -CH═CH-, -C(═O)NH- or -NHC(═O)- having π-bonding property, and is more preferably a single bond due to its higher linearity.
 -Qおよび-Qにおける重合性基は、光、熱、および/または放射線によって重合することが可能な部分構造を有する基であり、重合の機能を担保するために必要な官能基ないし原子団である。該重合性基は、光重合性基であることが異方性色素膜の製造の観点から好ましい。 The polymerizable group in -Q1 and -Q2 is a group having a partial structure capable of being polymerized by light, heat, and/or radiation, and is a functional group or atomic group necessary for ensuring the function of polymerization. From the viewpoint of producing an anisotropic dye film, the polymerizable group is preferably a photopolymerizable group.
 重合性基としては、たとえば、アクリロイル基、メタクリロイル基、アクリロイルオキシ基、メタクリロイルオキシ基、アクリロイルアミノ基、メタクリロイルアミノ基、ビニル基、ビニルオキシ基、エチニル基、エチニルオキシ基、1,3-ブタジエニル基、1,3-ブタジエニルオキシ基、オキシラニル基、オキセタニル基、グリシジル基、グリシジルオキシ基、スチリル基、スチリルオキシ基等が挙げられる。これらの中でも、アクリロイル基、メタクリロイル基、アクリロイルオキシ基、メタクリロイルオキシ基、アクリロイルアミノ基、メタクリロイルアミノ基、オキシラニル基、グリシジル基、グリシジルオキシ基が好ましく、アクリロイル基、メタクリロイル基、アクリロイルオキシ基、メタクリロイルオキシ基、アクリロイルアミノ基、メタクリロイルアミノ基、グリシジル基、グリシジルオキシ基がより好ましく、アクリロイルオキシ基、メタクリロイルオキシ基、グリシジルオキシ基がさらに好ましい。 Examples of polymerizable groups include acryloyl groups, methacryloyl groups, acryloyloxy groups, methacryloyloxy groups, acryloylamino groups, methacryloylamino groups, vinyl groups, vinyloxy groups, ethynyl groups, ethynyloxy groups, 1,3-butadienyl groups, 1,3-butadienyloxy groups, oxiranyl groups, oxetanyl groups, glycidyl groups, glycidyloxy groups, styryl groups, and styryloxy groups. Among these, acryloyl group, methacryloyl group, acryloyloxy group, methacryloyloxy group, acryloylamino group, methacryloylamino group, oxiranyl group, glycidyl group, and glycidyloxy group are preferred, acryloyl group, methacryloyl group, acryloyloxy group, methacryloylamino group, methacryloylamino group, glycidyl group, and glycidyloxy group are more preferred, and acryloyloxy group, methacryloyloxy group, and glycidyloxy group are even more preferred.
 -R-および-R-における鎖状有機基は、前述の芳香族炭化水素環、非芳香族炭化水素環、芳香族複素環、非芳香族複素環等の環状構造を含まない2価の有機基である。
 このような鎖状有機基としては、-(アルキレン基)-、-O-(アルキレン基)-、-S-(アルキレン基)-、-NH-(アルキレン基)-、-N(アルキル基)-(アルキレン基)-、-OC(=O)-(アルキレン基)-、-C(=O)O-(アルキレン基)-が挙げられる。
The chain organic group in -R 1 - and -R 2 - is a divalent organic group that does not contain a cyclic structure such as the above-mentioned aromatic hydrocarbon ring, non-aromatic hydrocarbon ring, aromatic heterocycle, or non-aromatic heterocycle.
Examples of such a chain organic group include -(alkylene group)-, -O-(alkylene group)-, -S-(alkylene group)-, -NH-(alkylene group)-, -N(alkyl)-(alkylene group)-, -OC(=O)-(alkylene group)-, and -C(=O)O-(alkylene group)-.
 これらの鎖状有機基におけるアルキレン基としては、炭素数1~25の直鎖状もしくは分枝状のアルキレン基が挙げられる。アルキレン基の炭素-炭素結合は、一部が不飽和結合になっていてもよい。アルキレン基に含まれる一つまたはそれ以上のメチレン基は、-O-、-S-、-NH-、-N(R)-、-C(=O)-、-C(=O)-O-、-C(=O)-NH-、-CHF-、-CF-、-CHCl-、-CCl-によって置き換えられた(displace)構造とされていてもよい。ここで、Rは、炭素数1~6の直鎖状または分枝状のアルキル基を表す。 Examples of the alkylene group in these chain organic groups include linear or branched alkylene groups having 1 to 25 carbon atoms. The carbon-carbon bonds of the alkylene group may be partially unsaturated. One or more methylene groups contained in the alkylene group may be displaced by -O-, -S-, -NH-, -N(R m )-, -C(═O)-, -C(═O)-O-, -C(═O)-NH-, -CHF-, -CF 2 -, -CHCl-, or -CCl 2 -. Here, R m represents a linear or branched alkyl group having 1 to 6 carbon atoms.
 これらの鎖状有機基におけるアルキレン基としては、分子直線性が高いことから、アルキレン基の炭素の一部が不飽和結合になっていてもよく、また、アルキレン基に含まれる一つまたはそれ以上のメチレン基が上述の基によって置き換えられた(displace)構造とされていてもよい、炭素数1~25の直鎖状のアルキレン基であることが好ましい。 The alkylene group in these chain organic groups is preferably a straight-chain alkylene group having 1 to 25 carbon atoms, in which some of the carbon atoms in the alkylene group may be unsaturated, and in which one or more methylene groups contained in the alkylene group may be replaced (displaced) by the above-mentioned groups, due to their high molecular linearity.
 鎖状有機基における主鎖(鎖状有機基におけるもっとも長い鎖状部分を意味する。)の原子の数は、3~25が好ましく、5~20がより好ましく、6~20がさらに好ましい。 The number of atoms in the main chain (meaning the longest chain portion in the chain organic group) in the chain organic group is preferably 3 to 25, more preferably 5 to 20, and even more preferably 6 to 20.
 鎖状有機基としては、-(CH-CH-、-O-(CH-CH-、-(O)r1-(CHCHO)r2-(CHr3-、-(O)r1-(CHr2-(CHCHO)r3-が好ましい。なお、これらの式中のrは、1~24の整数であり、2~24の整数が好ましく、4~19の整数がより好ましく、5~19の整数がさらに好ましい。また、これらの式中のr1、r2及びr3は、それぞれ独立に、整数を表し、鎖状有機基における主鎖(鎖状有機基におけるもっとも長い鎖状部分を意味する。)の原子の数が、好ましくは3~25、より好ましくは5~20、さらに好ましくは6~20となるように適宜調整される。 As the chain organic group, -(CH 2 ) r -CH 2 -, -O-(CH 2 ) r -CH 2 -, -(O) r1 -(CH 2 CH 2 O) r2 -(CH 2 ) r3 -, -(O) r1 -(CH 2 ) r2 -(CH 2 CH 2 O) r3 - are preferred. In addition, r in these formulas is an integer of 1 to 24, preferably an integer of 2 to 24, more preferably an integer of 4 to 19, and even more preferably an integer of 5 to 19. In addition, r1, r2, and r3 in these formulas each independently represent an integer, and the number of atoms in the main chain (meaning the longest chain portion in the chain organic group) in the chain organic group is appropriately adjusted to be preferably 3 to 25, more preferably 5 to 20, and even more preferably 6 to 20.
 -R-および-R-は、それぞれ独立に、-(アルキレン基)-、-O-(アルキレン基)-であることが好ましい。ある態様として、-R-および-R-における鎖状有機基としては、-(アルキレン基)-であり、別の態様として、-O-(アルキレン基)-である。 It is preferable that -R 1 - and -R 2 - are each independently -(alkylene group)- or -O-(alkylene group)-. In one embodiment, the chain organic group in -R 1 - and -R 2 - is -(alkylene group)-, and in another embodiment, is -O-(alkylene group)-.
 前記式(1B)、式(1E)のように、-X-と-R-または-X-と-R-が結合している場合や;前記式(1B)において-A13-が単結合であるか或いは、前記式(1E)において-A11-が単結合であって、-R-もしくは-R-が-Y-または-Y-と結合している場合;には、-X-、-Y-もしくは-Y-と直接結合する-R-または-R-は、-(アルキレン基)-であることが好ましい。 When -X 1 - and -R 1 - or -X 1 - and -R 2 - are bonded to each other as in the formula (1B) or (1E), or when -A 13 - in the formula (1B) is a single bond or when -A 11 - in the formula (1E) is a single bond and -R 1 - or -R 2 - is bonded to -Y 1 - or -Y 2 -, it is preferable that -R 1 - or -R 2 - which is directly bonded to -X 1 -, -Y 1 - or -Y 2 - is -(alkylene group)-.
 上記以外で、-X-、-Y-もしくは-Y-と直接結合しない-R-または-R-は、-O-(アルキレン基)-であることが好ましい。 In addition to the above, -R 1 - or -R 2 - which is not directly bonded to -X 1 -, -Y 1 - or -Y 2 - is preferably -O-(alkylene group)-.
 -A11-、-A12-および-A13-における2価有機基は、下記式(3)で表される基であることが好ましい。 The divalent organic group in -A 11 -, -A 12 - and -A 13 - is preferably a group represented by the following formula (3).
  -Q-  …(3)
(式(3)中、Qは、炭化水素環基または複素環基を表す。)
-Q 3 - ... (3)
(In formula (3), Q3 represents a hydrocarbon ring group or a heterocyclic group.)
 -Q-における炭化水素環基は、芳香族炭化水素環基と非芳香族炭化水素環基とを含む。 The hydrocarbon ring group in -Q 3 - includes an aromatic hydrocarbon ring group and a non-aromatic hydrocarbon ring group.
 芳香族炭化水素環基は、非連結芳香族炭化水素環基と連結芳香族炭化水素環基とを含む。 Aromatic hydrocarbon ring groups include unlinked aromatic hydrocarbon ring groups and linked aromatic hydrocarbon ring groups.
 非連結芳香族炭化水素環基は、単環もしくは縮合した芳香族炭化水素環の2価基であり、その炭素数は6~20であることが適切なコアの大きさにより分子配向性が良好となる理由で好ましい。非連結芳香族炭化水素環基の炭素数は6~15がより好ましい。芳香族炭化水素環としては、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、ペリレン環、テトラセン環、ピレン環、ベンズピレン環、クリセン環、トリフェニレン環、アセナフテン環、フルオランテン環、フルオレン環等が挙げられる。 The non-linked aromatic hydrocarbon ring group is a divalent group of a monocyclic or condensed aromatic hydrocarbon ring, and preferably has 6 to 20 carbon atoms because the appropriate core size provides good molecular orientation. The non-linked aromatic hydrocarbon ring group more preferably has 6 to 15 carbon atoms. Examples of aromatic hydrocarbon rings include a benzene ring, a naphthalene ring, an anthracene ring, a phenanthrene ring, a perylene ring, a tetracene ring, a pyrene ring, a benzpyrene ring, a chrysene ring, a triphenylene ring, an acenaphthene ring, a fluoranthene ring, and a fluorene ring.
 連結芳香族炭化水素環基は、単環もしくは縮合した芳香族炭化水素環の複数が単結合で結合し、環を構成する原子上に結合手を有する2価基である。単環もしくは縮合環の炭素数は6~20であることが、適切なコアの大きさにより配向性が良好となる理由で好ましい。連結芳香族炭化水素環基の炭素数は6~15がより好ましい。連結芳香族炭化水素環基としては、たとえば、第1の炭素数6~20の単環もしくは縮合した芳香族炭化水素環と第2の炭素数6~20の単環もしくは縮合した芳香族炭化水素環とが単結合で結合し、第1の炭素数6~20の単環もしくは縮合した芳香族炭化水素環の環を構成する原子上に第1の結合手を有し、第2の炭素数6~20の単環もしくは縮合した芳香族炭化水素環の環を構成する原子上に第2の結合手を有する2価基が挙げられる。連結芳香族炭化水素環基としては、具体的には、ビフェニル-4,4’-ジイル基が挙げられる。  The linked aromatic hydrocarbon ring group is a divalent group in which a plurality of monocyclic or condensed aromatic hydrocarbon rings are bonded by single bonds and have a bond on an atom constituting the ring. The number of carbon atoms in the monocyclic or condensed ring is preferably 6 to 20 because the appropriate core size provides good orientation. The number of carbon atoms in the linked aromatic hydrocarbon ring group is more preferably 6 to 15. Examples of the linked aromatic hydrocarbon ring group include a divalent group in which a first monocyclic or condensed aromatic hydrocarbon ring having 6 to 20 carbon atoms is bonded by a single bond to a second monocyclic or condensed aromatic hydrocarbon ring having 6 to 20 carbon atoms, which has a first bond on an atom constituting the ring of the first monocyclic or condensed aromatic hydrocarbon ring having 6 to 20 carbon atoms, and a second bond on an atom constituting the ring of the second monocyclic or condensed aromatic hydrocarbon ring having 6 to 20 carbon atoms. Specific examples of the linked aromatic hydrocarbon ring group include biphenyl-4,4'-diyl groups.
 芳香族炭化水素環基としては、非連結芳香族炭化水素環基が液晶化合物の間に働く分子間相互作用を最適とすることで分子配向性が良好となる理由で好ましい。
 これらのうち、芳香族炭化水素環基としては、ベンゼン環の2価基、ナフタレン環の2価基が好ましく、ベンゼン環の2価基(フェニレン基)がより好ましい。フェニレン基としては、1,4-フェニレン基が好ましい。-Q-がこれらの基であることで液晶分子の直線性が高まり、分子配向性向上の効果が得られる傾向にある。
As the aromatic hydrocarbon ring group, a non-linked aromatic hydrocarbon ring group is preferable because it optimizes the intermolecular interaction acting between liquid crystal compounds, thereby improving the molecular alignment.
Of these, the aromatic hydrocarbon ring group is preferably a divalent group of a benzene ring or a divalent group of a naphthalene ring, and more preferably a divalent group of a benzene ring (phenylene group). As the phenylene group, a 1,4-phenylene group is preferable. When -Q 3 - is one of these groups, the linearity of the liquid crystal molecules is increased, and the effect of improving molecular alignment tends to be obtained.
 非芳香族炭化水素環基は、非連結非芳香族炭化水素環基と連結非芳香族炭化水素環基とを含む。 Non-aromatic hydrocarbon ring groups include unlinked non-aromatic hydrocarbon ring groups and linked non-aromatic hydrocarbon ring groups.
 非連結非芳香族炭化水素環基は、単環もしくは縮合した非芳香族炭化水素環の2価基であり、その炭素数は3~20であることが、適切なコアの大きさにより分子配向性が良好となる理由で好ましい。非連結非芳香族炭化水素環基の炭素数は3~15がより好ましい。非芳香族炭化水素環としては、シクロプロパン環、シクロブタン環、シクロペンタン環、シクロヘキサン環、シクロヘプタン環、シクロオクタン環、シクロヘキセン環、ノルボルナン環、ボルナン環、アダマンタン環、テトラヒドロナフタレン環、ビシクロ[2.2.2]オクタン環等が挙げられる。 The non-linked non-aromatic hydrocarbon ring group is a divalent group of a monocyclic or condensed non-aromatic hydrocarbon ring, and preferably has 3 to 20 carbon atoms because the appropriate core size provides good molecular orientation. The non-linked non-aromatic hydrocarbon ring group more preferably has 3 to 15 carbon atoms. Examples of non-aromatic hydrocarbon rings include a cyclopropane ring, a cyclobutane ring, a cyclopentane ring, a cyclohexane ring, a cycloheptane ring, a cyclooctane ring, a cyclohexene ring, a norbornane ring, a bornane ring, an adamantane ring, a tetrahydronaphthalene ring, and a bicyclo[2.2.2]octane ring.
 非連結非芳香族炭化水素環基は、非芳香族炭化水素環の環を構成する原子間結合として不飽和結合を有さない脂環式炭化水素環基と、非芳香族炭化水素環の環を構成する原子間結合として不飽和結合を有する不飽和非芳香族炭化水素環基とを含む。非連結非芳香族炭化水素環基としては、生産性の観点から脂環式炭化水素環基が好ましい。  The non-linked non-aromatic hydrocarbon ring group includes an alicyclic hydrocarbon ring group that does not have an unsaturated bond between the atoms that constitute the ring of the non-aromatic hydrocarbon ring, and an unsaturated non-aromatic hydrocarbon ring group that has an unsaturated bond between the atoms that constitute the ring of the non-aromatic hydrocarbon ring. From the viewpoint of productivity, the non-linked non-aromatic hydrocarbon ring group is preferably an alicyclic hydrocarbon ring group.
 連結非芳香族炭化水素環基は、単環もしくは縮合した非芳香族炭化水素環の複数が単結合で結合し、環を構成する原子上に結合手を有する2価基;あるいは、単環の芳香族炭化水素環、縮合した芳香族炭化水素環、単環の非芳香族炭化水素環、および縮合した非芳香族炭化水素環からなる群より選択される1つ以上の環と、単環もしくは縮合した非芳香族炭化水素環とが単結合で結合し、環を構成する原子上に結合手を有する2価基である。
 単環もしくは縮合環の炭素数は適切なコアの大きさにより分子配向性が良好となる理由で3~20であることが好ましい。
The linked non-aromatic hydrocarbon ring group is a divalent group in which a plurality of monocyclic or condensed non-aromatic hydrocarbon rings are bonded together with single bonds and has a bond on an atom constituting the ring; or a divalent group in which one or more rings selected from the group consisting of monocyclic aromatic hydrocarbon rings, condensed aromatic hydrocarbon rings, monocyclic non-aromatic hydrocarbon rings, and condensed non-aromatic hydrocarbon rings are bonded together with a monocyclic or condensed non-aromatic hydrocarbon ring with a single bond and has a bond on an atom constituting the ring.
The number of carbon atoms in the single ring or condensed ring is preferably 3 to 20 because an appropriate core size provides good molecular orientation.
 連結非芳香族炭化水素環基としてはたとえば、第1の炭素数3~20の単環もしくは縮合した非芳香族炭化水素環と第2の炭素数3~20の単環もしくは縮合した非芳香族炭化水素環とが単結合で結合し、第1の炭素数3~20の単環もしくは縮合した非芳香族炭化水素環の環を構成する原子上に第1の結合手を有し、第2の炭素数3~20の単環もしくは縮合した非芳香族炭化水素環の環を構成する原子上に第2の結合手を有する2価基が挙げられる。さらに、たとえば、炭素数3~20の単環もしくは縮合した芳香族炭化水素環と炭素数3~20の単環もしくは縮合した非芳香族炭化水素環とが単結合で結合し、炭素数3~20の単環もしくは縮合した芳香族炭化水素環の環を構成する原子上に第1の結合手を有し、炭素数3~20の単環もしくは縮合した非芳香族炭化水素環の環を構成する原子上に第2の結合手を有する2価基が挙げられる。 Examples of the linked non-aromatic hydrocarbon ring group include a divalent group in which a first monocyclic or condensed non-aromatic hydrocarbon ring having 3 to 20 carbon atoms is bonded to a second monocyclic or condensed non-aromatic hydrocarbon ring having 3 to 20 carbon atoms by a single bond, the divalent group having a first bond on an atom constituting the first monocyclic or condensed non-aromatic hydrocarbon ring having 3 to 20 carbon atoms, and a second bond on an atom constituting the second monocyclic or condensed non-aromatic hydrocarbon ring having 3 to 20 carbon atoms. Further examples include a divalent group in which a monocyclic or condensed aromatic hydrocarbon ring having 3 to 20 carbon atoms is bonded to a monocyclic or condensed non-aromatic hydrocarbon ring having 3 to 20 carbon atoms by a single bond, the divalent group having a first bond on an atom constituting the monocyclic or condensed aromatic hydrocarbon ring having 3 to 20 carbon atoms, and a second bond on an atom constituting the monocyclic or condensed non-aromatic hydrocarbon ring having 3 to 20 carbon atoms.
 連結非芳香族炭化水素環基としては、具体的には、ビス(シクロヘキサン)-4,4’-ジイル基、1-シクロヘキシルベンゼン-4,4’-ジイル基が挙げられる。 Specific examples of linking non-aromatic hydrocarbon ring groups include bis(cyclohexane)-4,4'-diyl and 1-cyclohexylbenzene-4,4'-diyl groups.
 非芳香族炭化水素環基としては、液晶化合物の間に働く分子間相互作用を最適とすることで分子配向性が良好となる理由で非連結非芳香族炭化水素環基が好ましい。 As the non-aromatic hydrocarbon ring group, a non-linked non-aromatic hydrocarbon ring group is preferred because it optimizes the intermolecular interactions that act between liquid crystal compounds, thereby improving molecular orientation.
 非連結非芳香族炭化水素環基としては、シクロヘキサンの2価基(シクロヘキサンジイル基)が好ましい。シクロヘキサンジイル基としては、シクロヘキサン-1,4-ジイル基が好ましい。 As an unlinked non-aromatic hydrocarbon ring group, a divalent group of cyclohexane (cyclohexanediyl group) is preferred. As a cyclohexanediyl group, a cyclohexane-1,4-diyl group is preferred.
 -Q-における複素環基は、芳香族複素環基と非芳香族複素環基とを含む。 The heterocyclic group in -Q 3 - includes an aromatic heterocyclic group and a non-aromatic heterocyclic group.
 該芳香族複素環基は、非連結芳香族複素環基と連結芳香族複素環基とを含む。 The aromatic heterocyclic group includes an unlinked aromatic heterocyclic group and a linked aromatic heterocyclic group.
 非連結芳香族複素環基は、単環もしくは縮合した芳香族複素環の2価基であり、その炭素数は4~20であることが、適切なコアの大きさにより分子配向性が良好となる理由で好ましい。非連結芳香族複素環基の炭素数は4~15がより好ましい。 The non-linked aromatic heterocyclic group is a divalent group of a monocyclic or condensed aromatic heterocyclic ring, and preferably has 4 to 20 carbon atoms because the appropriate core size provides good molecular orientation. The non-linked aromatic heterocyclic group more preferably has 4 to 15 carbon atoms.
 芳香族複素環としては、フラン環、ベンゾフラン環、チオフェン環、ベンゾチオフェン環、ピロール環、ピラゾール環、イミダゾール環、チアゾール環、オキサジアゾール環、インドール環、カルバゾール環、ピロロイミダゾール環、ピロロピラゾール環、ピロロピロール環、チエノピロール環、チエノチオフェン環、フロピロール環、フロフラン環、チエノフラン環、チエノチアゾール環、ベンゾイソオキサゾール環、ベンゾイソチアゾール環、ベンゾイミダゾール環、ピリジン環、ピラジン環、ピリダジン環、ピリミジン環、トリアジン環、キノリン環、イソキノリン環、シノリン環、キノキサリン環、フェナントリジン環、キナゾリン環、キナゾリノン環、アズレン環等が挙げられる。 Aromatic heterocycles include a furan ring, a benzofuran ring, a thiophene ring, a benzothiophene ring, a pyrrole ring, a pyrazole ring, an imidazole ring, a thiazole ring, an oxadiazole ring, an indole ring, a carbazole ring, a pyrroloimidazole ring, a pyrrolopyrazole ring, a pyrrolopyrrole ring, a thienopyrrole ring, a thienothiophene ring, a furopyrrole ring, a furofuran ring, a thienofuran ring, a thienothiazole ring, a benzisoxazole ring, a benzisothiazole ring, a benzimidazole ring, a pyridine ring, a pyrazine ring, a pyridazine ring, a pyrimidine ring, a triazine ring, a quinoline ring, an isoquinoline ring, a cinnoline ring, a quinoxaline ring, a phenanthridine ring, a quinazoline ring, a quinazolinone ring, and an azulene ring.
 連結芳香族複素環基は、単環もしくは縮合した芳香族複素環の複数が単結合で結合し、環を構成する原子上に結合手を有する2価基である。単環もしくは縮合環の炭素数は4~20であることが、適切なコアの大きさにより分子配向性が良好となる理由で好ましい。連結芳香族複素環基の炭素数は4~15がより好ましい。 The linked aromatic heterocyclic group is a divalent group in which multiple monocyclic or condensed aromatic heterocyclic rings are bonded with single bonds and have bonds on the atoms that make up the ring. The number of carbon atoms in the monocyclic or condensed ring is preferably 4 to 20, because the appropriate core size provides good molecular orientation. The number of carbon atoms in the linked aromatic heterocyclic group is more preferably 4 to 15.
 連結芳香族複素環基としては、たとえば、第1の炭素数4~20の単環もしくは縮合した芳香族複素環と第2の炭素数4~20の単環もしくは縮合した芳香族複素環とが単結合で結合し、第1の炭素数4~20の単環もしくは縮合した芳香族複素環の環を構成する原子上に第1の結合手を有し、第2の炭素数4~20の単環もしくは縮合した芳香族複素環の環を構成する原子上に第2の結合手を有する2価基が挙げられる。 Examples of linked aromatic heterocyclic groups include divalent groups in which a first monocyclic or condensed aromatic heterocyclic ring having 4 to 20 carbon atoms is bonded to a second monocyclic or condensed aromatic heterocyclic ring having 4 to 20 carbon atoms by a single bond, the divalent group having a first bond on an atom constituting the ring of the first monocyclic or condensed aromatic heterocyclic ring having 4 to 20 carbon atoms, and a second bond on an atom constituting the ring of the second monocyclic or condensed aromatic heterocyclic ring having 4 to 20 carbon atoms.
 非芳香族複素環基は、非連結非芳香族複素環基と連結非芳香族複素環基とを含む。 Non-aromatic heterocyclic groups include unlinked non-aromatic heterocyclic groups and linked non-aromatic heterocyclic groups.
 非連結非芳香族複素環基は、単環もしくは縮合した非芳香族複素環の2価基であり、その炭素数は4~20であることが、適切なコアの大きさにより分子配向性が良好となる理由で好ましい。非連結非芳香族複素環基の炭素数は4~15がより好ましい。 The non-linked non-aromatic heterocyclic group is a divalent group of a monocyclic or condensed non-aromatic heterocyclic ring, and preferably has 4 to 20 carbon atoms because the appropriate core size provides good molecular orientation. The non-linked non-aromatic heterocyclic group more preferably has 4 to 15 carbon atoms.
 炭素数4~20の単環もしくは縮合した非芳香族複素環の2価基の非芳香族複素環としては、テトラヒドロフラン環、テトラヒドロピラン環、ジオキサン環、テトラヒドロチオフェン環、テトラヒドロチオピラン環、ピロリジン環、ピペリジン環、ジヒドロピリジン環、ピペラジン環、テトラヒドロチアゾール環、テトラヒドロオキサゾール環、オクタヒドロキノリン環、テトラヒドロキノリン環、オクタヒドロキナゾリン環、テトラヒドロキナゾリン環、テトラヒドロイミダゾール環、テトラヒドロベンゾイミダゾール環、キヌクリジン環等が挙げられる。 Examples of non-aromatic heterocycles that are divalent groups of monocyclic or condensed non-aromatic heterocycles having 4 to 20 carbon atoms include a tetrahydrofuran ring, a tetrahydropyran ring, a dioxane ring, a tetrahydrothiophene ring, a tetrahydrothiopyran ring, a pyrrolidine ring, a piperidine ring, a dihydropyridine ring, a piperazine ring, a tetrahydrothiazole ring, a tetrahydrooxazole ring, an octahydroquinoline ring, a tetrahydroquinoline ring, an octahydroquinazoline ring, a tetrahydroquinazoline ring, a tetrahydroimidazole ring, a tetrahydrobenzimidazole ring, and a quinuclidine ring.
 連結非芳香族複素環基は、単環もしくは縮合した非芳香族複素環の複数が単結合で結合し、環を構成する原子上に結合手を有する2価基である。単環もしくは縮合環の炭素数は4~20であることが、適切なコアの大きさにより分子配向性が良好となる理由で好ましい。連結非芳香族複素環基の炭素数は4~15がより好ましい。  A linked non-aromatic heterocyclic group is a divalent group in which multiple monocyclic or condensed non-aromatic heterocyclic rings are bonded with single bonds and have bonds on the atoms that make up the ring. The number of carbon atoms in the monocyclic or condensed ring is preferably 4 to 20, because the appropriate core size provides good molecular orientation. The number of carbon atoms in the linked non-aromatic heterocyclic group is more preferably 4 to 15.
 連結芳香族複素環基としては、たとえば、第1の炭素数4~20の単環もしくは縮合した非芳香族複素環と第2の炭素数4~20の単環もしくは縮合した非芳香族複素環とが単結合で結合し、第1の炭素数4~20の単環もしくは縮合した非芳香族複素環の環を構成する原子上に第1の結合手を有し、第2の炭素数4~20の単環もしくは縮合した非芳香族複素環の環を構成する原子上に第2の結合手を有する2価基が挙げられる。 Examples of linked aromatic heterocyclic groups include divalent groups in which a first monocyclic or condensed non-aromatic heterocyclic ring having 4 to 20 carbon atoms is bonded to a second monocyclic or condensed non-aromatic heterocyclic ring having 4 to 20 carbon atoms by a single bond, the divalent group having a first bond on an atom constituting the ring of the first monocyclic or condensed non-aromatic heterocyclic ring having 4 to 20 carbon atoms, and a second bond on an atom constituting the ring of the second monocyclic or condensed non-aromatic heterocyclic ring having 4 to 20 carbon atoms.
 -Q-における芳香族炭化水素環基、非芳香族炭化水素環基、芳香族複素環基、非芳香族複素環基は、それぞれ、-R、-OH、-O-R、-O-C(=O)-R、-NH、-NH-R、-N(Rn’)-R、-C(=O)-R、-C(=O)-O-R、-C(=O)-NH、-C(=O)-NH-R、-C(=O)-N(Rn’)-R、-SH、-S-R、トリフルオロメチル基、スルファモイル基、カルボキシ基、スルホ基、シアノ基、ニトロ基、およびハロゲンからなる群より選択される1以上の基で置換されていてもよい。ここで、-Rおよび-Rn’は、それぞれ独立に、炭素数1~6の直鎖状もしくは分枝状のアルキル基を表す。 The aromatic hydrocarbon ring group, non-aromatic hydrocarbon ring group, aromatic heterocyclic group and non-aromatic heterocyclic group in -Q 3 - may each be substituted with one or more groups selected from the group consisting of -R n , -OH, -O-R n , -O-C(═O)-R n , -NH 2 , -NH-R n , -N(R n' )-R n , -C(═O)-R n , -C( ═O )-O-R n , -C(═O)-NH 2 , -C(═O)-NH-R n, -C(═O)-N(R n' )-R n , -SH, -S-R n , trifluoromethyl group, sulfamoyl group, carboxy group, sulfo group, cyano group, nitro group and halogen. Here, -Rn and -Rn ' each independently represent a linear or branched alkyl group having 1 to 6 carbon atoms.
 -Q-における芳香族炭化水素環基、非芳香族炭化水素環基、芳香族複素環基、非芳香族複素環基は、分子構造の直線性が高く、重合性液晶化合物(1)同士が会合しやすく液晶状態を発現しやすい点から、それぞれ独立に、無置換であるか、メチル基、メトキシ基、フッ素原子、塩素原子、臭素原子が置換していることが好ましく、無置換であることがより好ましい。 The aromatic hydrocarbon ring group, non-aromatic hydrocarbon ring group, aromatic heterocyclic group and non-aromatic heterocyclic group in -Q 3 - are each preferably independently unsubstituted or substituted with a methyl group, a methoxy group, a fluorine atom, a chlorine atom or a bromine atom, and more preferably unsubstituted, in terms of high linearity of the molecular structure, and ease of association of the polymerizable liquid crystal compounds (1) with each other to exhibit a liquid crystal state.
 -Q-における芳香族炭化水素環基、非芳香族炭化水素環基、芳香族複素環基、非芳香族複素環基が有する置換基は、同一でも異なっていてもよく、また、芳香族炭化水素環基、非芳香族炭化水素環基、芳香族複素環基、非芳香族複素環基の全部が置換されていてもよく、全部が無置換であってもよく、一部が置換されていて一部が無置換であってもよい。 The substituents possessed by the aromatic hydrocarbon ring group, non-aromatic hydrocarbon ring group, aromatic heterocyclic group and non-aromatic heterocyclic group in -Q 3 - may be the same or different, and the aromatic hydrocarbon ring group, non-aromatic hydrocarbon ring group, aromatic heterocyclic group and non-aromatic heterocyclic group may be entirely substituted, entirely unsubstituted, or partially substituted and partially unsubstituted.
 -A11-、-A12-および-A13-における2価有機基が有する置換基は、同一でも異なっていてもよく、-A11-、-A12-および-A13-における2価有機基の全部が置換されていてもよく、全部が無置換であってもよく、一部が置換されていて一部が無置換であってもよい。 The substituents possessed by the divalent organic groups in -A 11 -, -A 12 - and -A 13 - may be the same or different, and all of the divalent organic groups in -A 11 -, -A 12 - and -A 13 - may be substituted, all of them may be unsubstituted, or some of them may be substituted and some of them may be unsubstituted.
 -Q-としては、炭化水素環基が好ましく、フェニレン基、シクロヘキサンジイル基がより好ましい。重合性液晶化合物(1)の分子構造の直線性を高くすることができることから、-Q-としては、1,4-フェニレン基、シクロヘキサン-1,4-ジイル基がさらに好ましい。 -Q 3 - is preferably a hydrocarbon ring group, more preferably a phenylene group or a cyclohexanediyl group, and further preferably a 1,4-phenylene group or a cyclohexane-1,4-diyl group, since the linearity of the molecular structure of the polymerizable liquid crystal compound (1) can be increased.
 -A11-、-A12-および-A13-の2価有機基としては、-Q-が炭化水素環基であること、すなわち、2価有機基として炭化水素環基であることが好ましい。2価有機基としては、フェニレン基、シクロヘキサンジイル基がより好ましく、重合性液晶化合物(1)の分子構造の直線性を高くすることができることから、1,4-フェニレン基、シクロヘキサン-1,4-ジイル基がさらに好ましい。 As the divalent organic group of -A 11 -, -A 12 - and -A 13 -, -Q 3 - is preferably a hydrocarbon ring group, i.e., the divalent organic group is preferably a hydrocarbon ring group. As the divalent organic group, a phenylene group or a cyclohexanediyl group is more preferable, and a 1,4-phenylene group or a cyclohexane-1,4-diyl group is even more preferable because the linearity of the molecular structure of the polymerizable liquid crystal compound (1) can be increased.
 重合性液晶化合物(1)としては、-A11-、-A12-および-A13-のうち、一つが、式(2)で表される部分構造であり、それ以外の二つが、それぞれ独立に、2価有機基であることが好ましい。-A11-、-A12-および-A13-のうち、式(2)で表される部分構造の-Cy-が炭化水素環基であることが好ましく、2価有機基が炭化水素環基であることが特に好ましい。さらに、該炭化水素環基が、1,4-フェニレン基またはシクロヘキサン-1,4-ジイル基であることが好ましい。また、-A11-および-A13-の一方が、シクロヘキサン-1,4-ジイル基であることが好ましい。 In the polymerizable liquid crystal compound (1), it is preferable that one of -A 11 -, -A 12 -, and -A 13 - is a partial structure represented by formula (2), and the other two are each independently a divalent organic group. Of -A 11 -, -A 12 -, and -A 13 -, it is preferable that -Cy- in the partial structure represented by formula (2) is a hydrocarbon ring group, and it is particularly preferable that the divalent organic group is a hydrocarbon ring group. Furthermore, it is preferable that the hydrocarbon ring group is a 1,4-phenylene group or a cyclohexane-1,4-diyl group. It is also preferable that one of -A 11 - and -A 13 - is a cyclohexane-1,4-diyl group.
 -A11-および-A13-のうち、一つが、式(2)で表される部分構造であり、それ以外の一つおよび-A12-が2価有機基であることがより好ましい。この場合、-A11-および-A13-のうち、2価有機基である一方は、シクロヘキサン-1,4-ジイル基であることが好ましく、-A12-が1,4-フェニレン基であることが特に好ましい。 It is more preferable that one of -A 11 - and -A 13 - is a partial structure represented by formula (2), and the remaining one and -A 12 - are divalent organic groups. In this case, it is preferable that one of -A 11 - and -A 13 - which is a divalent organic group is a cyclohexane-1,4-diyl group, and it is particularly preferable that -A 12 - is a 1,4-phenylene group.
 -Y-および-Y-は、それぞれ独立に、単結合、-C(=O)O-、-OC(=O)-、-C(=S)O-、-OC(=S)-、-C(=O)S-、-SC(=O)-、-CHCH-、-CH=CH-、-C≡C-、-C(=O)NH-、-NHC(=O)-、-CHO-、-OCH-、-CHS-または-SCH-を表す。重合性液晶化合物(1)の直線性や分子短軸周りの回転運動がしやすい傾向にあることから、-Y-および-Y-としては、それぞれ独立に、π結合性の小さい、単結合、-C(=O)O-、-OC(=O)-、-C(=S)O-、-OC(=S)-、-C(=O)S-、-SC(=O)-、-CHCH-、-CH=CH-、-C(=O)NH-、-NHC(=O)-、-CHO-、-OCH-、-CHS-または-SCH-が好ましく、単結合、-C(=O)O-、-OC(=O)-、-CHCH-、-CHO-または-OCH-がより好ましい。 Each of -Y 1 - and -Y 2 - independently represents a single bond, -C(=O)O-, -OC(=O)-, -C(=S)O-, -OC(=S)-, -C(=O)S-, -SC(=O)-, -CH 2 CH 2 -, -CH=CH-, -C≡C-, -C(=O)NH-, -NHC(=O)-, -CH 2 O-, -OCH 2 -, -CH 2 S- or -SCH 2 -. Since the polymerizable liquid crystal compound (1) tends to have linearity and easy rotational motion around the molecular short axis, -Y 1 - and -Y 2 - are each independently preferably a single bond, -C(=O)O-, -OC(=O)-, -C(=S)O-, -OC(=S)-, -C(=O)S-, -SC(=O)-, -CH 2 CH 2 -, -CH=CH-, -C(=O)NH-, -NHC(=O)-, -CH 2 O-, -OCH 2 -, -CH 2 S- or -SCH 2 -, which have small π-bonding property, and more preferably a single bond, -C(=O)O-, -OC(=O)-, -CH 2 CH 2 -, -CH 2 O- or -OCH 2 -.
 前記式(1A)、式(1C)、式(1D)、式(1F)のように、-X-と-Y-または-X-と-Y-が結合している場合には、-X-と結合する-Y-、または-X-と結合する-Y-は単結合であることが好ましい。-X-と-Y-および-Y-の他方は、-C(=O)O-または-OC(=O)-であることが好ましい。 When -X 1 - and -Y 1 - or -X 1 - and -Y 2 - are bonded as in the formulae (1A), (1C), (1D) and (1F), -Y 1 - bonded to -X 1 - or -Y 2 - bonded to -X 1 - is preferably a single bond. The other of -X 1 -, -Y 1 - and -Y 2 - is preferably -C(═O)O- or -OC(═O)-.
 前記式(1B)、式(1E)のように、-X-が-Y-および-Y-のいずれとも結合していない場合には、-X-は、-CHCH-、-CHO-または-OCH-であることが好ましく、-Y-および-Y-はいずれも、-C(=O)O-または-OC(=O)-であることが好ましい。 When -X 1 - is not bonded to either -Y 1 - or -Y 2 - as in the above formula (1B) and formula (1E), -X 1 - is preferably -CH 2 CH 2 -, -CH 2 O- or -OCH 2 -, and both -Y 1 - and -Y 2 - are preferably -C(=O)O- or -OC(=O)-.
 kは1または2である。ある態様としては、kは1であることが好ましい。別の態様としては、kは2であることが好ましい。
 kが2である場合、それぞれの-Y-は互いに同一でも異なっていてもよく、それぞれの-A13-は互いに同一でも異なっていてもよい。
k is 1 or 2. In one embodiment, k is preferably 1. In another embodiment, k is preferably 2.
When k is 2, each -Y 2 - may be the same or different, and each -A 13 - may be the same or different.
 重合性液晶化合物(1)としては、前記式(1A)、(1B)、(1E)または(1F)で表される化合物であることが液晶化合物の間に働く分子間相互作用を最適とし、かつ適切なコアの大きさとなり分子配向性が良好となる理由で好ましい。 As the polymerizable liquid crystal compound (1), it is preferable that the compound be represented by the above formula (1A), (1B), (1E) or (1F) because it optimizes the intermolecular interactions acting between the liquid crystal compounds and has an appropriate core size, resulting in good molecular orientation.
 重合性液晶化合物(1)としては、前述の通り、液晶性を示すユニットを含む繰り返し構造を有さない低分子量化合物であることが好ましいことから、前記式(1)で示される化合物構造であることが好ましい。ここで、「液晶性を示すユニットを含む繰り返し構造を有さない」とは、高分子液晶化合物で表されるような液晶性を示すユニットが2以上繰り返された構造ではないことを指す。 As described above, the polymerizable liquid crystal compound (1) is preferably a low molecular weight compound that does not have a repeating structure containing a unit that exhibits liquid crystallinity, and therefore preferably has the compound structure represented by the formula (1). Here, "does not have a repeating structure containing a unit that exhibits liquid crystallinity" refers to a structure that does not have two or more repeating units that exhibit liquid crystallinity, as represented by a polymer liquid crystal compound.
 重合性液晶化合物(1)の分子量は、2000以下が好ましく、1500以下がより好ましく、1000以下がさらに好ましい。下限は特に限定されないが、400以上が好ましく、500以上がより好ましい。重合性液晶化合物(1)の分子量は、例えば、400~2000が好ましく、400~1500がより好ましく、特に500~1000であることが好ましい。重合性液晶化合物の分子量は、重合性液晶化合物分子に含まれる原子量の総和である。 The molecular weight of the polymerizable liquid crystal compound (1) is preferably 2000 or less, more preferably 1500 or less, and even more preferably 1000 or less. There is no particular lower limit, but it is preferably 400 or more, and more preferably 500 or more. The molecular weight of the polymerizable liquid crystal compound (1) is, for example, preferably 400 to 2000, more preferably 400 to 1500, and particularly preferably 500 to 1000. The molecular weight of the polymerizable liquid crystal compound is the sum of the atomic weights contained in the polymerizable liquid crystal compound molecule.
(重合性液晶化合物の具体例)
 本発明の異方性色素膜に含まれる重合性液晶化合物として、具体的には、以下に記載の重合性液晶化合物が挙げられるが、これらに限定されるものではない。以下の例示式中、C13は、n-ヘキシル基を意味する。C11はn-ペンチル基を意味する。
(Specific Examples of Polymerizable Liquid Crystal Compounds)
Specific examples of the polymerizable liquid crystal compound contained in the anisotropic dye film of the present invention include, but are not limited to, the polymerizable liquid crystal compounds described below. In the following exemplary formulae, C 6 H 13 represents an n-hexyl group. C 5 H 11 represents an n-pentyl group.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 本発明の異方性色素膜形成用組成物に含有される液晶化合物は、重合性液晶化合物(1)からなることが好ましい。本発明の異方性色素膜形成用組成物には、重合性液晶化合物の1種のみが単独で含まれていてもよく、2種以上が任意の組み合わせおよび比率で含まれていてもよい。 The liquid crystal compound contained in the composition for forming an anisotropic dye film of the present invention is preferably a polymerizable liquid crystal compound (1). The composition for forming an anisotropic dye film of the present invention may contain only one type of polymerizable liquid crystal compound alone, or may contain two or more types in any combination and ratio.
 本発明の異方性色素膜形成用組成物における液晶化合物の含有量(2種以上の液晶化合物を併用する場合は、それぞれの含有量の総和)は、異方性色素膜形成用組成物の固形分(100質量部)に対して、50質量部以上が好ましく、55質量部以上がより好ましく、99質量部以下が好ましく、98質量部以下がより好ましい。液晶化合物の含有量が上記範囲内であれば液晶分子の配向性が高くなる傾向にある。 The content of the liquid crystal compound in the anisotropic dye film-forming composition of the present invention (when two or more liquid crystal compounds are used in combination, the sum of the respective contents) is preferably 50 parts by mass or more, more preferably 55 parts by mass or more, and preferably 99 parts by mass or less, and more preferably 98 parts by mass or less, relative to the solid content (100 parts by mass) of the anisotropic dye film-forming composition. If the content of the liquid crystal compound is within the above range, the alignment of the liquid crystal molecules tends to be high.
 本発明の異方性色素膜形成用組成物は、重合性液晶化合物(1)以外の他の重合性または非重合性の液晶化合物の1種または2種以上を含むものであってもよい。ただし、重合性液晶化合物(1)を用いることによる本発明の効果をより一層有効に得る観点から、本発明の異方性色素膜形成用組成物に含まれる液晶化合物の総量100質量%中の重合性液晶化合物(1)の割合は、5質量%以上であることが好ましく、10質量%以上であることがより好ましく、特に15~100質量%であることが好ましい。 The anisotropic dye film-forming composition of the present invention may contain one or more polymerizable or non-polymerizable liquid crystal compounds other than the polymerizable liquid crystal compound (1). However, from the viewpoint of more effectively obtaining the effects of the present invention by using the polymerizable liquid crystal compound (1), the proportion of the polymerizable liquid crystal compound (1) in the total amount of liquid crystal compounds contained in the anisotropic dye film-forming composition of the present invention (100% by mass) is preferably 5% by mass or more, more preferably 10% by mass or more, and particularly preferably 15 to 100% by mass.
 本発明の異方性色素膜形成用組成物に含有される重合性液晶化合物は、プロセスの観点から、その等方相出現温度が、160℃以下であることが好ましく、140℃以下がより好ましく、115℃以下がさらに好ましく、110℃以下がよりさらに好ましく、105℃以下が特に好ましい。
 ここで等方相出現温度とは、液晶から液体への相転移温度および液体から液晶への相転移温度を意味する。本発明においては、これらの相転移温度の少なくとも一方が上記上限以下であることが好ましく、これらの相転移温度の両方が上記上限以下であることがより好ましい。
From the viewpoint of processing, the polymerizable liquid crystal compound contained in the composition for forming an anisotropic dye film of the present invention preferably has an isotropic phase appearance temperature of 160° C. or less, more preferably 140° C. or less, even more preferably 115° C. or less, even more preferably 110° C. or less, and particularly preferably 105° C. or less.
Here, the isotropic phase appearance temperature means the phase transition temperature from liquid crystal to liquid and the phase transition temperature from liquid to liquid crystal. In the present invention, it is preferable that at least one of these phase transition temperatures is equal to or lower than the above upper limit, and it is more preferable that both of these phase transition temperatures are equal to or lower than the above upper limit.
(重合性液晶化合物と色素との関係)
 本発明の異方性色素膜形成用組成物に含まれる重合性液晶化合物が有する環構造の数(rn1)と、色素が有する環構造の数(rn2)との比(rn1/rn2)は特に限定されないが、0.7~1.5であることが好ましい。これは、異方性色素膜の配向性を向上させやすいとの観点で、重合性液晶化合物の分子長と色素の分子長との差が小さいほうが、液晶分子と色素分子の分子間相互作用が強く、色素分子が液晶分子同士の会合を阻害し難いため好ましいことによる。
 なお、2つ以上の環が縮合する縮合環は、環構造としては1つとして数える。
(Relationship between polymerizable liquid crystal compound and dye)
The ratio (r n1 /r n2 ) of the number of ring structures (r n1 ) of the polymerizable liquid crystal compound contained in the anisotropic dye film-forming composition of the present invention to the number of ring structures (r n2 ) of the dye is not particularly limited, but is preferably 0.7 to 1.5. This is because, from the viewpoint of facilitating improvement of the alignment of the anisotropic dye film, it is preferable that the difference between the molecular length of the polymerizable liquid crystal compound and the molecular length of the dye is smaller, since this leads to stronger intermolecular interaction between the liquid crystal molecules and the dye molecules and makes it difficult for the dye molecules to inhibit association between the liquid crystal molecules.
In addition, a fused ring in which two or more rings are fused is counted as one ring structure.
 ここで、上述した式(A)で表される化合物を例とし、環構造の数(rn2)を説明する。環構造の数とは、式(A)中のD、DおよびDの総和であり、具体的には、pが0の場合、rn2が2;pが1の場合、rn2が3;pが4の場合、rn2は6である。
 なお、-R11及び-R12がピロリジニル基やピペリジニル基のような環状の官能基であっても、-R11及び-R12に含まれる環構造は式(A)で表される化合物が有する環構造の数(rn2)には含めない。
 また、重合性液晶化合物が有する環構造の数(rn1)には、重合性液晶化合物における重合性基に含まれる環構造(たとえば、オキシラン環やオキセタン環など。)は含めない。
Here, the number of ring structures ( rn2 ) will be explained using the compound represented by the above formula (A) as an example. The number of ring structures is the sum of D1 , D2 , and D3 in formula (A), and specifically, when p is 0, rn2 is 2; when p is 1, rn2 is 3; and when p is 4, rn2 is 6.
Even if -R 11 and -R 12 are cyclic functional groups such as a pyrrolidinyl group or a piperidinyl group, the ring structures contained in -R 11 and -R 12 are not included in the number (r n2 ) of ring structures possessed by the compound represented by formula (A).
The number of ring structures (r n1 ) contained in the polymerizable liquid crystal compound does not include ring structures (such as oxirane rings and oxetane rings) contained in the polymerizable group in the polymerizable liquid crystal compound.
(重合性液晶化合物の製造方法)
 本発明の異方性色素膜形成用組成物に含有される重合性液晶化合物は、アルキル化反応、エステル化反応、アミド化反応、エーテル化反応、イプソ置換反応、金属触媒を用いたカップリング反応等の公知の化学反応を組み合わせることにより製造することができる。
 たとえば、本発明の異方性色素膜形成用組成物に含有される重合性液晶化合物は、後掲の実施例に記載の方法や、「液晶便覧」(丸善株式会社、平成12年10月30日発行)の449~468ページに記載の方法にしたがって合成することができる。
(Method for producing polymerizable liquid crystal compound)
The polymerizable liquid crystal compound contained in the composition for forming an anisotropic dye film of the present invention can be produced by combining known chemical reactions such as an alkylation reaction, an esterification reaction, an amidation reaction, an etherification reaction, an ipso substitution reaction, and a coupling reaction using a metal catalyst.
For example, the polymerizable liquid crystal compound contained in the composition for forming an anisotropic dye film of the present invention can be synthesized according to the method described in the Examples below or the method described on pages 449 to 468 of "Liquid Crystal Handbook" (Maruzen Co., Ltd., published on October 30, 2000).
<光重合開始剤>
 本発明における光重合開始剤は、光の作用により活性ラジカルを発生する重合開始剤であり、重合性液晶化合物の重合反応を開始し得る化合物である。
<Photopolymerization initiator>
The photopolymerization initiator in the present invention is a polymerization initiator that generates active radicals by the action of light, and is a compound that can initiate the polymerization reaction of a polymerizable liquid crystal compound.
 光重合開始剤の極大吸収波長は、260nm以上であることが好ましく、280nm以上であることがより好ましく、300nm以上であることがさらに好ましい。光重合開始剤の極大吸収波長は、440nm以下であることが好ましく、420nm以下であることがより好ましく、400nm以下であることがさらに好ましく、380nm以下であることがさらにより好ましい。極大吸収波長がこの範囲であることで光重合反応が十分に進行し、硬化度の良好な異方性色素膜が得られる効果がある。 The maximum absorption wavelength of the photopolymerization initiator is preferably 260 nm or more, more preferably 280 nm or more, and even more preferably 300 nm or more. The maximum absorption wavelength of the photopolymerization initiator is preferably 440 nm or less, more preferably 420 nm or less, even more preferably 400 nm or less, and even more preferably 380 nm or less. Having a maximum absorption wavelength in this range allows the photopolymerization reaction to proceed sufficiently, and has the effect of obtaining an anisotropic dye film with a good degree of hardening.
 使用しうる光重合開始剤としては、たとえば、チタノセン誘導体類;ビイミダゾ-ル誘導体類;ハロメチル化オキサジアゾ-ル誘導体類;ハロメチル-s-トリアジン誘導体類;アルキルフェノン誘導体類;オキシムエステル誘導体類;ベンゾイン類;ベンゾフェノン誘導体類;アシルホスフィンオキサイド誘導体類;ヨ-ドニウム塩類;スルホニウム塩類;アントラキノン誘導体類;チオキサントン誘導体類;アクリジン誘導体類;フェナジン誘導体類;アンスロン誘導体類;フェニルグリオキシレート誘導体類;ケトスルフォン誘導体類、有機過酸化物類等が挙げられる。 Usable photopolymerization initiators include, for example, titanocene derivatives; biimidazole derivatives; halomethylated oxadiazole derivatives; halomethyl-s-triazine derivatives; alkylphenone derivatives; oxime ester derivatives; benzoins; benzophenone derivatives; acylphosphine oxide derivatives; iodonium salts; sulfonium salts; anthraquinone derivatives; thioxanthone derivatives; acridine derivatives; phenazine derivatives; anthrone derivatives; phenylglyoxylate derivatives; ketosulfone derivatives, organic peroxides, etc.
 これら光重合開始剤の中では、アルキルフェノン誘導体類、オキシムエステル誘導体類、ビイミダゾ-ル誘導体類およびチオキサントン誘導体類が、光重合反応が十分に進行し、高い硬化度がもつ膜が得られる理由でより好ましい。 Among these photopolymerization initiators, alkylphenone derivatives, oxime ester derivatives, biimidazole derivatives, and thioxanthone derivatives are more preferred because they allow the photopolymerization reaction to proceed sufficiently and produce a film with a high degree of hardening.
 具体的には、チタノセン誘導体類としては、ジクロロビス(シクロペンタジエニル)チタン、ビス(シクロペンタジエニル)ジフェニルチタン、ビス(シクロペンタジエニル)ビス(2,3,4,5,6-ペンタフルオロフェニル)チタン、ビス(メチルシクロペンタジエニル)ビス(2,3,5,6-テトラフルオロフェニル)チタン、ビス(シクロペンタジエニル)ビス(2,4,6-トリフルオロフェニル)チタン、ビス(シクロペンタジエニル)ビス(2,6-ジフルオロフェニル)チタン、ビス(シクロペンタジエニル)ビス(2,4-ジフルオロフェニル)チタン、ビス(メチルシクロペンタジエニル)ビス(2,3,4,5,6-ペンタフルオロフェニル)チタン、ビス(メチルシクロペンタジエニル)ビス(2,6-ジフルオロフェニル)チタン、ビス(シクロペンタジエニル)ビス〔2,6-ジフルオロー3-(ピロール-1-イル)フェニル〕チタン等が挙げられる。 Specific examples of titanocene derivatives include dichlorobis(cyclopentadienyl)titanium, bis(cyclopentadienyl)diphenyltitanium, bis(cyclopentadienyl)bis(2,3,4,5,6-pentafluorophenyl)titanium, bis(methylcyclopentadienyl)bis(2,3,5,6-tetrafluorophenyl)titanium, bis(cyclopentadienyl)bis(2,4,6-trifluorophenyl)titanium, bis(cyclopentadienyl)bis(2,6-difluorophenyl)titanium, bis(cyclopentadienyl)bis(2,4-difluorophenyl)titanium, bis(methylcyclopentadienyl)bis(2,3,4,5,6-pentafluorophenyl)titanium, bis(methylcyclopentadienyl)bis(2,6-difluorophenyl)titanium, and bis(cyclopentadienyl)bis[2,6-difluoro-3-(pyrrol-1-yl)phenyl]titanium.
 ビイミダゾ-ル誘導体類としては、2-(2’-クロロフェニル)-4,5-ジフェニルイミダゾ-ル2量体、2-(2’-クロロフェニル)-4,5-ビス(3’-メトキシフェニル)イミダゾ-ル2量体、2-(2’-フルオロフェニル)-4,5-ジフェニルイミダゾ-ル2量体、2-(2’-メトキシフェニル)-4,5-ジフェニルイミダゾ-ル2量体、2-(4’-メトキシフェニル)-4,5-ジフェニルイミダゾ-ル2量体等が挙げられる。 Biimidazole derivatives include 2-(2'-chlorophenyl)-4,5-diphenylimidazole dimer, 2-(2'-chlorophenyl)-4,5-bis(3'-methoxyphenyl)imidazole dimer, 2-(2'-fluorophenyl)-4,5-diphenylimidazole dimer, 2-(2'-methoxyphenyl)-4,5-diphenylimidazole dimer, 2-(4'-methoxyphenyl)-4,5-diphenylimidazole dimer, etc.
 ハロメチル化オキサジアゾ-ル誘導体類としては、2-(2-ベンゾフラニル)-5-トリクロロメチル-1,3,4-オキサジアゾ-ル、2-〔2-(2-ベンゾフラニル)エテニル〕-5-トリクロロメチル-1,3,4-オキサジアゾ-ル、2-トリクロロメチル-5-フリル-1,3,4-オキサジアゾ-ル、2-フェニル-5-トリクロロメチル-1,3,4-オキサジアゾール、2-(1-ナフチル)-5-トリクロロメチル-1,3,4-オキサジアゾール、2-(2-ナフチル)-5-トリクロロメチル-1,3,4-オキサジアゾール、2-スチリル-5-トリクロロメチル-1,3,4-オキサジアゾール、2-(4-メトキシスチリル)-5-トリクロロメチル-1,3,4-オキサジアゾール等が挙げられる。 Halomethylated oxadiazole derivatives include 2-(2-benzofuranyl)-5-trichloromethyl-1,3,4-oxadiazole, 2-[2-(2-benzofuranyl)ethenyl]-5-trichloromethyl-1,3,4-oxadiazole, 2-trichloromethyl-5-furyl-1,3,4-oxadiazole, 2-phenyl-5-trichloromethyl-1,3,4-oxadiazole, 2-(1-naphthyl)-5-trichloromethyl-1,3,4-oxadiazole, 2-(2-naphthyl)-5-trichloromethyl-1,3,4-oxadiazole, 2-styryl-5-trichloromethyl-1,3,4-oxadiazole, and 2-(4-methoxystyryl)-5-trichloromethyl-1,3,4-oxadiazole.
 ハロメチル-s-トリアジン誘導体類としては、2-(4-メトキシフェニル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(4-メトキシナフチル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(4-エトキシナフチル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(4-エトキシカルボニルナフチル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-[2-(4-メトキシフェニル)エテニル]-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(3,4-ジメトキシフェニル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-[2-(2-フラニル)エテニル]-4,6-ビス(トリクロロメチル)-s-トリアジン等が挙げられる。 Halomethyl-s-triazine derivatives include 2-(4-methoxyphenyl)-4,6-bis(trichloromethyl)-s-triazine, 2-(4-methoxynaphthyl)-4,6-bis(trichloromethyl)-s-triazine, 2-(4-ethoxynaphthyl)-4,6-bis(trichloromethyl)-s-triazine, 2-(4-ethoxycarbonylnaphthyl)-4,6-bis(trichloromethyl)-s-triazine, 2-[2-(4-methoxyphenyl)ethenyl]-4,6-bis(trichloromethyl)-s-triazine, 2-(3,4-dimethoxyphenyl)-4,6-bis(trichloromethyl)-s-triazine, and 2-[2-(2-furanyl)ethenyl]-4,6-bis(trichloromethyl)-s-triazine.
 アルキルフェノン誘導体類としては、2,2-ジエトキシアセトフェノン、2-メチル-1-〔4-(メチルチオ)フェニル〕-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)ブタンー1-オン、2-ジメチルアミノ-2-(4-メチルベンジル)-1-(4-モルフォリノフェニル)ブタン-1-オン、3,6-ビス(2-メチル-2-モルフォリノプロピオニル)-9-オクチルカルバゾール、ベンジルジメチルケタール、2-ヒドロキシ-2-メチルプロピオフェノン、1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-4’-(2-ヒドロキシエトキシ)-2-メチルプロピオフェノン、2-ヒドロキシ-1-{4-[4-(2-ヒドロキシ-2-メチルプロピオニル)ベンジル]フェニル}-2-メチルプロパン-1-オン、2-ヒドロキシー2-メチル-1-(4-イソプロピルフェニル)プロパノン、2-ヒドロキシー2-メチル-1-(4-ドデシルフェニル)プロパノン等が挙げられる。 Alkylphenone derivatives include 2,2-diethoxyacetophenone, 2-methyl-1-[4-(methylthio)phenyl]-2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)butan-1-one, 2-dimethylamino-2-(4-methylbenzyl)-1-(4-morpholinophenyl)butan-1-one, 3,6-bis(2-methyl-2-morpholinopropionyl)-9-octylcarbazole, benzyl dimethyl ketal, Examples include 2-hydroxy-2-methylpropiophenone, 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-4'-(2-hydroxyethoxy)-2-methylpropiophenone, 2-hydroxy-1-{4-[4-(2-hydroxy-2-methylpropionyl)benzyl]phenyl}-2-methylpropan-1-one, 2-hydroxy-2-methyl-1-(4-isopropylphenyl)propanone, and 2-hydroxy-2-methyl-1-(4-dodecylphenyl)propanone.
 オキシムエステル系誘導体類としては、2-(ベンゾイルオキシイミノ)-1-[4-(フェニルチオ)フェニル]-1-オクタノン、O-アセチル-1-[6-(2-メチルベンゾイル)-9-エチル-9H-カルバゾ-ル-3-イル]エタノンオキシム、(9-エチルー6-ニトロカルバゾールー3-イル)-〔2-メチルー4-(3-メトキシプロピー2-イロキシ)フェニル〕-メチリデンアミノアセテート、特開2000-80068号公報、特開2006-36750号公報、特開2008-179611号公報、特開2011-132215号公報、特表2012-526185号公報、国際公開第2008/078678号、国際公開第2009/131189号、国際公開第2012/045736号、国際公開第2012/068879号、国際公開第2013/165207号、国際公開第2014/121701号、国際公開第2016/036910号、国際公開第2017/030005号、国際公開第2018/097580号等に記載されているオキシムエステル誘導体等が挙げられる。 Oxime ester derivatives include 2-(benzoyloxyimino)-1-[4-(phenylthio)phenyl]-1-octanone, O-acetyl-1-[6-(2-methylbenzoyl)-9-ethyl-9H-carbazol-3-yl]ethanone oxime, (9-ethyl-6-nitrocarbazol-3-yl)-[2-methyl-4-(3-methoxypropyl-2-yloxy)phenyl]-methylideneaminoacetate, JP 2000-80068 A, JP 2006-36750 A, JP 2008-17 Examples of such oxime ester derivatives include those described in Japanese Patent Publication No. 9611, Japanese Patent Application Laid-Open No. 2011-132215, Japanese Patent Publication No. 2012-526185, International Publication No. 2008/078678, International Publication No. 2009/131189, International Publication No. 2012/045736, International Publication No. 2012/068879, International Publication No. 2013/165207, International Publication No. 2014/121701, International Publication No. 2016/036910, International Publication No. 2017/030005, and International Publication No. 2018/097580.
 ベンゾイン類としては、ベンゾイン、ベンゾインメチルエ-テル、ベンゾインエチルエ-テル、ベンゾインフェニルエ-テル、ベンゾインイソブチルエ-テル、ベンゾインイソプロピルエ-テル等が挙げられる。 Examples of benzoins include benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin phenyl ether, benzoin isobutyl ether, and benzoin isopropyl ether.
 ベンゾフェノン誘導体類としては、ベンゾフェノン、ミヒラ-ズケトン、4,4’-ビス(ジエチルアミノ)ベンゾフェノン、4,4’-ビス(メチルエチルアミノ)ベンゾフェノン、2-メチルベンゾフェノン、3-メチルベンゾフェノン、4-メチルベンゾフェノン、2-クロロベンゾフェノン、4-ブロモベンゾフェノン、2-カルボキシベンゾフェノン、o-ベンゾイル安息香酸メチル、4-フェニルベンゾフェノン、4-ベンゾイル-4’-メチルジフェニルサルファイドおよび2,4,6-トリメチルベンゾフェノン等が挙げられる。 Examples of benzophenone derivatives include benzophenone, Michler's ketone, 4,4'-bis(diethylamino)benzophenone, 4,4'-bis(methylethylamino)benzophenone, 2-methylbenzophenone, 3-methylbenzophenone, 4-methylbenzophenone, 2-chlorobenzophenone, 4-bromobenzophenone, 2-carboxybenzophenone, o-methylbenzoate, 4-phenylbenzophenone, 4-benzoyl-4'-methyldiphenyl sulfide, and 2,4,6-trimethylbenzophenone.
 アシルホスフィンオキサイド誘導体類としては、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルホスフィンオキサイドおよびビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキサイド、エチル (2,4,6-トリメチルベンゾイル)フェニルホスフィネート等が挙げられる。 Acylphosphine oxide derivatives include 2,4,6-trimethylbenzoyldiphenylphosphine oxide, bis(2,6-dimethoxybenzoyl)-2,4,4-trimethylpentylphosphine oxide, bis(2,4,6-trimethylbenzoyl)phenylphosphine oxide, and ethyl (2,4,6-trimethylbenzoyl)phenylphosphineate.
 ヨ-ドニウム塩類としては、ジフェニルヨードニウム・テトラキス(ペンタフルオロフェニル)ボレート、ジフェニルヨードニウム・ヘキサフルオロホスフェート、ジフェニルヨードニウム・ヘキサフルオロアンチモネート、ジ(4-ノニルフェニル)ヨードニウム・ヘキサフルオロホスフェート、4-(メチルフェニル)〔4-(2-メチルプロピル)フェニル〕ヨードニウム・ヘキサフルオロホスフェート等が挙げられる。 Iodonium salts include diphenyliodonium tetrakis(pentafluorophenyl)borate, diphenyliodonium hexafluorophosphate, diphenyliodonium hexafluoroantimonate, di(4-nonylphenyl)iodonium hexafluorophosphate, 4-(methylphenyl)[4-(2-methylpropyl)phenyl]iodonium hexafluorophosphate, etc.
 スルホニウム塩類としては、トリフェニルスルホニウム・ヘキサフルオロホスフェート、トリフェニルスルホニウム・ヘキサフルオロアンチモネート、トリフェニルスルホニウム・テトラキス(ペンタフルオロフェニル)ボレート、ジフェニル〔4-(フェニルチオ)フェニル〕スルホニウム・ヘキサフルオロホスフェート、4,4’-ビス〔ジフェニルスルホニオ〕ジフェニルスルフィド・ビスヘキサフルオロホスフェート、4,4’-ビス〔ジ(β-ヒドロキシエトキシ)フェニルスルホニオ〕ジフェニルスルフィド・ビスヘキサフルオロアンチモネート、4,4’-ビス〔ジ(β-ヒドロキシエトキシ)フェニルスルホニオ〕ジフェニルスルフィド・ビスヘキサフルオロホスフェート、7-〔ジ(p-トルイル)スルホニオ〕-2-イソプロピルチオキサントン・ヘキサフルオロアンチモネート、7-〔ジ(p-トルイル)スルホニオ〕-2-イソプロピルチオキサントン・テトラキス(ペンタフルオロフェニル)ボレート、4-フェニルカルボニル-4’-ジフェニルスルホニオ-ジフェニルスルフィド・ヘキサフルオロホスフェート、4-(p-tert-ブチルフェニルカルボニル)-4’-ジフェニルスルホニオージフェニルスルフィド・ヘキサフルオロアンチモネート、4-(p-tert-ブチルフェニルカルボニル)-4’-ジ(p-トルイル)スルホニオ-ジフェニルスルフィド・テトラキス(ペンタフルオロフェニル)ボレート、トリス〔4-(4-アセチルフェニル)スルファニルフェニル〕スルホニウム・ヘキサフルオロホスフェート、トリス〔4-(4-アセチルフェニル)スルファニルフェニル〕スルホニウム・テトラキス(ペンタフルオロフェニル)ボレート等が挙げられる。 Sulfonium salts include triphenylsulfonium hexafluorophosphate, triphenylsulfonium hexafluoroantimonate, triphenylsulfonium tetrakis(pentafluorophenyl)borate, diphenyl[4-(phenylthio)phenyl]sulfonium hexafluorophosphate, 4,4'-bis[diphenylsulfonio]diphenylsulfide bishexafluorophosphate, 4,4'-bis[di(β-hydroxyethoxy)phenylsulfonio]diphenylsulfide bishexafluoroantimonate, 4,4'-bis[di(β-hydroxyethoxy)phenylsulfonio]diphenylsulfide bishexafluorophosphate, 7-[di(p-toluyl)sulfonio]-2-isopropylthioxanthone hexafluoroantimonate, 7 -[di(p-toluyl)sulfonio]-2-isopropylthioxanthone tetrakis(pentafluorophenyl)borate, 4-phenylcarbonyl-4'-diphenylsulfonio-diphenylsulfide hexafluorophosphate, 4-(p-tert-butylphenylcarbonyl)-4'-diphenylsulfonio-diphenylsulfide hexafluoroantimonate, 4-(p-tert-butylphenylcarbonyl)-4'-di(p-toluyl)sulfonio-diphenylsulfide tetrakis(pentafluorophenyl)borate, tris[4-(4-acetylphenyl)sulfanylphenyl]sulfonium hexafluorophosphate, tris[4-(4-acetylphenyl)sulfanylphenyl]sulfonium tetrakis(pentafluorophenyl)borate, etc.
 アントラキノン誘導体類としては、2-メチルアントラキノン、2-エチルアントラキノン、2-t-ブチルアントラキノン、1-クロロアントラキノン等が挙げられる。 Anthraquinone derivatives include 2-methylanthraquinone, 2-ethylanthraquinone, 2-t-butylanthraquinone, 1-chloroanthraquinone, etc.
 チオキサントン誘導体類としては、チオキサントン、2-エチルチオキサントン、4-エチルチオキサントン、2-イソプロピルチオキサントン、4-イソプロピルチオキサントン、2-クロロチオキサントン、2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン、2,4-ジイソプロピルチオキサントン、1-クロロー4-プロポキシチオキサントン、1-メトキシカルボニルチオキサントン、2-エトキシカルボニルチオキサントン等が挙げられる。 Thioxanthone derivatives include thioxanthone, 2-ethylthioxanthone, 4-ethylthioxanthone, 2-isopropylthioxanthone, 4-isopropylthioxanthone, 2-chlorothioxanthone, 2,4-dimethylthioxanthone, 2,4-diethylthioxanthone, 2,4-diisopropylthioxanthone, 1-chloro-4-propoxythioxanthone, 1-methoxycarbonylthioxanthone, 2-ethoxycarbonylthioxanthone, etc.
 アクリジン誘導体類としては、9-フェニルアクリジン、9-(p-メトキシフェニル)アクリジン、1,5-ビス(9-アクリジニル)ペンタン、1,7-ビス(9-アクリジニル)ヘプタン等が挙げられる。 Acridine derivatives include 9-phenylacridine, 9-(p-methoxyphenyl)acridine, 1,5-bis(9-acridinyl)pentane, 1,7-bis(9-acridinyl)heptane, etc.
 フェナジン誘導体類としては、9,10-ジメチルベンズフェナジン等が挙げられる。 Phenazine derivatives include 9,10-dimethylbenzphenazine, etc.
 アンスロン誘導体類としては、ベンズアンスロン等が挙げられる。 Anthrone derivatives include benzanthrone, etc.
 フェニルグリオキシレート誘導体類としては、メチルベンゾイルホルメート等が挙げられる。 Phenyl glyoxylate derivatives include methyl benzoyl formate, etc.
 ケトスルフォン誘導体類としては、1-〔4-〔(4-ベンゾイルフェニル)チオ〕フェニル〕-2-メチル-2-〔(4-メチルフェニル)スルホニル〕-1-プロパノン等が挙げられる。 Ketosulfone derivatives include 1-[4-[(4-benzoylphenyl)thio]phenyl]-2-methyl-2-[(4-methylphenyl)sulfonyl]-1-propanone, etc.
 有機過酸化物類としては、3,3’,4,4’-テトラキス(tert-ブチルパ-オキシカルボニル)ベンゾフェノン、2-(1-tert-ブチルパーオキシ-1-メチルエチル)-9H-チオキサンテン-9-オン、トリアジンペルオキシド誘導体等が挙げられる。 Organic peroxides include 3,3',4,4'-tetrakis(tert-butylperoxycarbonyl)benzophenone, 2-(1-tert-butylperoxy-1-methylethyl)-9H-thioxanthen-9-one, triazine peroxide derivatives, etc.
 光重合開始剤は、1種を単独で用いてもよく、2種以上を併用してもよい。 The photopolymerization initiator may be used alone or in combination with two or more types.
 光重合開始剤として、市販品を用いることもできる。
 市販品としては、例えば、Omnicat(登録商標。以下同様。)250、Omnicat 270、Omnirad(登録商標)651、Omnirad 184、Omnirad 1173、Omnirad 2959、Omnirad 127、Omnirad 907、Omnirad 369、Omnirad 379EG、Omnirad TPO H、Omnirad 819、Omnirad 784、Omnirad MBF、Omnirad 754(IGM Resins)、IRGACURE(登録商標)OXE01、IRGACURE OXE02、IRGACURE OXE03、IRGACURE OXE04、IRGACURE 290、IRGACURE 369(BASF社製);セイクオ-ル(登録商標)BZ、Z、およびBEE(精工化学株式会社製);カヤキュア-(kayacure)(登録商標)BP100、DETX-S;UVI-6992(ダウ・ケミカル株式会社製);アデカアークルズ(ADEKA ARKLS)(登録商標)SP-150、SP-152、およびSP-170、N-1414、N-1717、N-1919、NCI-100、NCI-730、NCI-831およびNCI-930(株式会社ADEKA製);TAZ-A、およびTAZ-PP(DKSHジャパン株式会社製);並びに、TAZ-104(株式会社三和ケミカル製);TRONLYTR-PBG-304、TRONLYTR-PBG-309、TRONLYTR-PBG-305、TRONLYTR-PBG-3057、TRONLYTR-PBG-314、TRONLYTR-PBG-326、TRONLYTR-PBG-345(常州強力電子新材料有限公司社(CHANGZHOU TRONLY NEW ELECTRONIC MATERIALS CO.LTD)製);パーデュアル(登録商標)TA-30G、TA-70H、TX(日油株式会社製)が挙げられる。
As the photopolymerization initiator, a commercially available product can also be used.
Examples of commercially available products include Omnicat (registered trademark, the same applies below) 250, Omnicat 270, Omnirad (registered trademark) 651, Omnirad 184, Omnirad 1173, Omnirad 2959, Omnirad 127, Omnirad 907, Omnirad 369, Omnirad 379EG, Omnirad TPO H, Omnirad 819, Omnirad 784, Omnirad MBF, Omnirad 754 (IGM Resins), IRGACURE (registered trademark) OXE01, IRGACURE OXE02, IRGACURE OXE03, IRGACURE OXE04, IRGACURE 290, IRGACURE 369 (manufactured by BASF); SEIKUOR (registered trademark) BZ, Z, and BEE (manufactured by Seiko Chemical Co., Ltd.); Kayacure (registered trademark) BP100, DETX-S; UVI-6992 (manufactured by The Dow Chemical Company); ADEKA Arcles (registered trademark) ARKLS) (registered trademark) SP-150, SP-152, and SP-170, N-1414, N-1717, N-1919, NCI-100, NCI-730, NCI-831, and NCI-930 (manufactured by ADEKA Corporation); TAZ-A, and TAZ-PP (manufactured by DKSH Japan Co., Ltd.); and TAZ-104 (manufactured by Sanyo Denki Co., Ltd. TRONLYTR-PBG-304, TRONLYTR-PBG-309, TRONLYTR-PBG-305, TRONLYTR-PBG-3057, TRONLYTR-PBG-314, TRONLYTR-PBG-326, TRONLYTR-PBG-345 (manufactured by Changzhou TRONLY NEW ELECTRONIC MATERIALS CO. LTD.); Perdual (registered trademark) TA-30G, TA-70H, TX (manufactured by NOF Corporation).
 本発明の異方性色素膜形成用組成物における光重合開始剤の含有量は、十分に重合した異方性色素膜を得る観点から、重合性液晶化合物100質量部に対して、0.1質量部以上が好ましく、0.5質量部以上がより好ましい。また、重合性液晶化合物の配向を乱し難いという観点から、光重合開始剤の含有量は、重合性液晶化合物100質量部に対して、30質量部以下が好ましく、10質量部以下がより好ましく、さらに8質量部以下が好ましく、特に3質量部以下が好ましい。 The content of the photopolymerization initiator in the composition for forming an anisotropic dye film of the present invention is preferably 0.1 parts by mass or more, and more preferably 0.5 parts by mass or more, relative to 100 parts by mass of the polymerizable liquid crystal compound, from the viewpoint of obtaining a sufficiently polymerized anisotropic dye film. Furthermore, from the viewpoint of preventing the orientation of the polymerizable liquid crystal compound from being disturbed, the content of the photopolymerization initiator is preferably 30 parts by mass or less, and more preferably 10 parts by mass or less, further preferably 8 parts by mass or less, and particularly preferably 3 parts by mass or less, relative to 100 parts by mass of the polymerizable liquid crystal compound.
 本発明の異方性色素膜形成用組成物は、必要に応じて光重合開始剤に重合促進剤、重合助剤等を併用するべく、これらを含有していてもよい。 The anisotropic dye film-forming composition of the present invention may contain a polymerization accelerator, a polymerization aid, etc., in order to use them in combination with the photopolymerization initiator as necessary.
 用いられる重合促進剤及び重合助剤としては、例えば、トリエタノールアミン、N-メチルジエタノールアミン、エチル-4-ジメチルアミノベンゾエート、2-(ジメチルアミノ)エチルベンゾエート、2-エチルヘキシル-4-ジメチルアミノベンゾエート、オクチル-4-ジメチルアミノベンゾエート、N-(2-ヒドロキシエチル)-N-メチル-p-トルイジン等のアミン化合物類;2-メルカプトベンゾチアゾ-ル、2-メルカプトベンゾオキサゾ-ル、2-メルカプトベンゾイミダゾ-ル等の複素環を有するメルカプト化合物;ペンタエリスリトールテトラキス(3-メルカプトブチレート)、1,4-ビス(3-メルカプトブチリルオキシ)ブタン、1,3,5-トリス(3-メルカプトブチリルオキシエチル)-1,3,5-トリアジン-2,4,6(1H、3H、5H)-トリオン、トリメリロールプロパントリス(3-メルカプトブチレート)等の脂肪族多官能メルカプト化合物等のメルカプト化合物類等が挙げられる。 The polymerization accelerators and polymerization aids used include, for example, amine compounds such as triethanolamine, N-methyldiethanolamine, ethyl-4-dimethylaminobenzoate, 2-(dimethylamino)ethyl benzoate, 2-ethylhexyl-4-dimethylaminobenzoate, octyl-4-dimethylaminobenzoate, and N-(2-hydroxyethyl)-N-methyl-p-toluidine; 2-mercaptobenzothiazole, 2-mercaptobenzoxazole, and 2- Examples of mercapto compounds include mercapto compounds having a heterocyclic ring such as mercaptobenzimidazole; mercapto compounds such as aliphatic polyfunctional mercapto compounds such as pentaerythritol tetrakis(3-mercaptobutyrate), 1,4-bis(3-mercaptobutyryloxy)butane, 1,3,5-tris(3-mercaptobutyryloxyethyl)-1,3,5-triazine-2,4,6(1H,3H,5H)-trione, and trimellilolpropane tris(3-mercaptobutyrate).
 重合促進剤及び重合助剤は、1種を単独で用いてもよく、2種以上を併用してもよい。 The polymerization accelerator and polymerization aid may be used alone or in combination of two or more.
 本発明の異方性色素膜形成用組成物は、必要に応じて感応感度を高める目的で、増感色素、その他増感剤等を含有していてもよい。 The anisotropic dye film-forming composition of the present invention may contain a sensitizing dye or other sensitizers, etc., for the purpose of increasing sensitivity, as necessary.
 増感色素は、露光光源の波長に応じて、適切なものが用いられる。例えば特開平4-221958号公報、特開平4-219756号公報等に記載のキサンテン系色素;特開平3-239703号公報、特開平5-289335号公報等に記載の複素環を有するクマリン系色素;特開平3-239703号公報、特開平5-289335号公報等に記載の3-ケトクマリン系色素;特開平6-19240号公報等に記載のピロメテン系色素;特開昭47-2528号公報、特開昭54-155292号公報、特公昭45-37377号公報、特開昭48-84183号公報、特開昭52-112681号公報、特開昭58-15503号公報、特開昭60-88005号公報、特開昭59-56403号公報、特開平2-69号公報、特開昭57-168088号公報、特開平5-107761号公報、特開平5-210240号公報、特開平4-288818号公報等に記載のジアルキルアミノベンゼン骨格を有する色素等が挙げられる。 Sensitizing dyes that are appropriate for the wavelength of the exposure light source are used. For example, xanthene dyes described in JP-A-4-221958 and JP-A-4-219756; coumarin dyes having a heterocycle described in JP-A-3-239703 and JP-A-5-289335; 3-ketocoumarin dyes described in JP-A-3-239703 and JP-A-5-289335; pyrromethene dyes described in JP-A-6-19240; JP-A-47-2528 and JP-A-54-155292. , and dyes having a dialkylaminobenzene skeleton described in JP-B-37377, JP-A-48-84183, JP-A-52-112681, JP-A-58-15503, JP-A-60-88005, JP-A-59-56403, JP-A-2-69, JP-A-57-168088, JP-A-5-107761, JP-A-5-210240, and JP-A-4-288818.
 その他増感剤としては、上述のベンゾフェノン誘導体類、チオキサントン誘導体類が挙げられる。さらに、その他増感剤として、アントラセン誘導体類、フェノチアジン誘導体類、ペリレン誘導体類等が挙げられる。 Other sensitizers include the above-mentioned benzophenone derivatives and thioxanthone derivatives. Further sensitizers include anthracene derivatives, phenothiazine derivatives, perylene derivatives, etc.
 アントラセン誘導体類としては、アントラセン、9,10-ジエトキシアントラセン、9,10-ジブトキシアントラセン等が挙げられる。 Anthracene derivatives include anthracene, 9,10-diethoxyanthracene, 9,10-dibutoxyanthracene, etc.
 フェノチアジン誘導体類としては、フェノチアジン、10-メチルフェノチアジン、10-フェニルフェノチアジン、2-メトキシフェノチアジン、2-クロロフェノチアジン、2-アセチルフェノチアジン等が挙げられる。 Phenothiazine derivatives include phenothiazine, 10-methylphenothiazine, 10-phenylphenothiazine, 2-methoxyphenothiazine, 2-chlorophenothiazine, 2-acetylphenothiazine, etc.
 ペリレン誘導体類としては、ペリレン、2,5,8,11-テトラーtert-ブチルペリレン等が挙げられる。 Perylene derivatives include perylene, 2,5,8,11-tetra-tert-butylperylene, etc.
 増感色素及びその他増感剤は、1種を単独で用いてもよく、2種以上を併用してもよい。 The sensitizing dyes and other sensitizers may be used alone or in combination of two or more.
<その他の添加剤>
 本発明の異方性色素膜形成用組成物は、さらに必要に応じて、非重合性液晶化合物、熱重合開始剤、重合禁止剤、重合助剤、重合性非液晶化合物、非重合性非液晶化合物、界面活性剤、レベリング剤、カップリング剤、pH調整剤、分散剤、酸化防止剤、有機・無機フィラー、有機・無機ナノシート、有機・無機ナノファイバー、金属酸化物等を含んでいてもよい。
<Other additives>
The anisotropic dye film-forming composition of the present invention may further contain, as necessary, a non-polymerizable liquid crystal compound, a thermal polymerization initiator, a polymerization inhibitor, a polymerization aid, a polymerizable non-liquid crystal compound, a non-polymerizable non-liquid crystal compound, a surfactant, a leveling agent, a coupling agent, a pH adjuster, a dispersant, an antioxidant, an organic or inorganic filler, an organic or inorganic nanosheet, an organic or inorganic nanofiber, a metal oxide, or the like.
<溶剤>
 本発明の異方性色素膜形成用組成物は、必要に応じて、溶剤を含有してもよい。
<Solvent>
The anisotropic dye film-forming composition of the present invention may contain a solvent, if necessary.
 使用しうる溶剤としては、異方性色素膜形成用組成物中に重合性液晶化合物、色素及びその他添加剤を十分に分散または溶解させ得るものであれば特に限定されない。たとえば、メタノール、エタノール、エチレングリコール、イソプロピルアルコール、プロピレングリコール、エチレングリコールメチルエーテル、エチレングリコールブチルエーテル、プロピレングリコールモノメチルエーテル等のアルコール溶剤;酢酸エチル、酢酸ブチル、エチレングリコールメチルエーテルアセテート、γ-ブチロラクトン、プロピレングリコールメチルエーテルアセテート、乳酸エチル等のエステル溶剤;アセトン、メチルエチルケトン、シクロペンタノン、シクロヘキサノン、2-ヘプタノン、メチルイソブチルケトン等のケトン溶剤;ペンタン、ヘキサン、ヘプタン等の脂肪族炭化水素溶剤;トルエン、キシレン等の芳香族炭化水素溶剤;アセトニトリル等のニトリル溶剤;テトラヒドロフラン、ジメトキシエタン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル等のエーテル溶剤;ペルフルオロベンゼン、ペルフルオロトルエン、ペルフルオロデカリン、ペルフルオロメチルシクロヘキサン、ヘキサフルオロ-2-プロパノール等のフッ素含有溶剤;および、クロロホルム、ジクロロメタン、クロロベンゼン、ジクロロベンゼン等の塩素含有溶剤;が挙げられる。
 これら溶剤は、1種のみを用いてもよく、2種以上を組み合わせて用いてもよい。
The solvent that can be used is not particularly limited as long as it can sufficiently disperse or dissolve the polymerizable liquid crystal compound, the dye, and other additives in the composition for forming an anisotropic dye film. Examples of the solvent include alcohol solvents such as methanol, ethanol, ethylene glycol, isopropyl alcohol, propylene glycol, ethylene glycol methyl ether, ethylene glycol butyl ether, and propylene glycol monomethyl ether; ester solvents such as ethyl acetate, butyl acetate, ethylene glycol methyl ether acetate, γ-butyrolactone, propylene glycol methyl ether acetate, and ethyl lactate; ketone solvents such as acetone, methyl ethyl ketone, cyclopentanone, cyclohexanone, 2-heptanone, and methyl isobutyl ketone; aliphatic hydrocarbon solvents such as pentane, hexane, and heptane; aromatic hydrocarbon solvents such as toluene and xylene; nitrile solvents such as acetonitrile; ether solvents such as tetrahydrofuran, dimethoxyethane, ethylene glycol dimethyl ether, and ethylene glycol diethyl ether; fluorine-containing solvents such as perfluorobenzene, perfluorotoluene, perfluorodecalin, perfluoromethylcyclohexane, and hexafluoro-2-propanol; and chlorine-containing solvents such as chloroform, dichloromethane, chlorobenzene, and dichlorobenzene.
These solvents may be used alone or in combination of two or more.
 溶剤は、重合性液晶化合物および色素を溶解し得る溶剤であることが好ましく、重合性液晶化合物および色素が完全に溶解する溶剤であることがさらに好ましい。また、溶剤は、重合性液晶化合物の重合反応に不活性な溶剤であることが好ましい。また、本発明の異方性色素膜形成用組成物を後述の通り塗布する観点から、沸点が50~200℃の範囲である溶剤が好ましい。 The solvent is preferably one that can dissolve the polymerizable liquid crystal compound and the dye, and more preferably one that completely dissolves the polymerizable liquid crystal compound and the dye. In addition, the solvent is preferably one that is inactive in the polymerization reaction of the polymerizable liquid crystal compound. In addition, from the viewpoint of applying the anisotropic dye film-forming composition of the present invention as described below, a solvent having a boiling point in the range of 50 to 200°C is preferable.
 本発明の異方性色素膜形成用組成物が溶剤を含む場合において、異方性色素膜形成用組成物において溶剤が占める含有割合は、本発明の異方性色素膜形成用組成物の総量(100質量%)に対して、50~98質量%が好ましい。換言すると、本発明の異方性色素膜形成用組成物における固形分含有量は、2~50質量%が好ましい。
 異方性色素膜形成用組成物における固形分含有量が前記上限値以下であれば、異方性色素膜形成用組成物の粘度が高くなりすぎず、得られる異方性色素膜の厚みが均一になり、異方性色素膜にムラが生じにくくなる傾向がある。
 異方性色素膜形成用組成物の固形分含有量は、製造しようとする異方性色素膜の厚さを考慮して定めることができる。
When the anisotropic dye film-forming composition of the present invention contains a solvent, the content ratio of the solvent in the anisotropic dye film-forming composition of the present invention is preferably 50 to 98 mass % relative to the total amount (100 mass %) of the anisotropic dye film-forming composition of the present invention. In other words, the solid content in the anisotropic dye film-forming composition of the present invention is preferably 2 to 50 mass %.
When the solid content in the composition for forming an anisotropic dye film is equal to or less than the upper limit, the viscosity of the composition for forming an anisotropic dye film does not become too high, the thickness of the anisotropic dye film obtained becomes uniform, and unevenness in the anisotropic dye film tends to be less likely to occur.
The solid content of the composition for forming an anisotropic dye film can be determined taking into consideration the thickness of the anisotropic dye film to be produced.
<異方性色素膜形成用組成物の粘度>
 本発明の異方性色素膜形成用組成物の粘度は、後述の塗布方法により、厚みムラのない均一な膜が作製されれば特に問わない。大面積での厚み均一性、塗布速度などの生産性、光学特性の面内均一性を得る観点からは、本発明の異方性色素膜形成用組成物の粘度は、0.1mPa・s以上が好ましく、500mPa・s以下が好ましく、100mPa・s以下がより好ましく、50mPa・s以下がさらに好ましい。
<Viscosity of the composition for forming anisotropic dye film>
The viscosity of the anisotropic dye film-forming composition of the present invention is not particularly limited as long as a uniform film without thickness unevenness can be formed by the coating method described below. From the viewpoint of obtaining thickness uniformity over a large area, productivity such as coating speed, and in-plane uniformity of optical properties, the viscosity of the anisotropic dye film-forming composition of the present invention is preferably 0.1 mPa·s or more, and preferably 500 mPa·s or less, more preferably 100 mPa·s or less, and even more preferably 50 mPa·s or less.
<異方性色素膜形成用組成物の製造方法>
 本発明の異方性色素膜形成用組成物を製造する方法は特に限定されない。たとえば、色素、重合性液晶化合物、光重合開始剤、必要に応じて溶剤、その他の添加剤等を混合し、0~80℃で攪拌、振盪して色素を溶解させる。これらが難溶性の場合は、ホモジナイザー、ビーズミル分散機等を用いてもよい。
<Method of producing anisotropic dye film-forming composition>
The method for producing the composition for forming an anisotropic dye film of the present invention is not particularly limited. For example, a dye, a polymerizable liquid crystal compound, a photopolymerization initiator, and optionally a solvent and other additives are mixed, and the mixture is stirred and shaken at 0 to 80° C. to dissolve the dye. If these are poorly soluble, a homogenizer, a bead mill disperser, or the like may be used.
 本発明の異方性色素膜形成用組成物を製造する方法として、組成物中の異物等を除去する目的で、濾過工程を有していてもよい。 The method for producing the anisotropic dye film-forming composition of the present invention may include a filtration step for the purpose of removing foreign matter, etc., from the composition.
 本発明の異方性色素膜形成用組成物は、異方性色素膜形成用組成物から溶剤を除いた組成物が、任意の温度で液晶であってもなくてもよいが、任意の温度で液晶性を示すことが好ましい。 The anisotropic dye film-forming composition of the present invention, when the solvent is removed from the anisotropic dye film-forming composition, may or may not be liquid crystal at any temperature, but it is preferable that the composition exhibits liquid crystallinity at any temperature.
 異方性色素膜形成用組成物から溶剤を除いた組成物は、下記に記載の塗工プロセスの観点からその等方相出現温度が、一般的には200℃未満で、160℃未満であることが好ましく、140℃未満がより好ましく、115℃未満がさらに好ましく、110℃未満がよりさらに好ましく、105℃未満が特に好ましい The composition obtained by removing the solvent from the anisotropic dye film forming composition generally has an isotropic phase appearance temperature of less than 200°C, preferably less than 160°C, more preferably less than 140°C, even more preferably less than 115°C, even more preferably less than 110°C, and particularly preferably less than 105°C, from the viewpoint of the coating process described below.
[異方性色素膜の製造方法]
 本発明の異方性色素膜は、本発明の異方性色素膜形成用組成物を用いて、湿式成膜法により作製することが好ましい。
[Method of manufacturing anisotropic dye film]
The anisotropic dye film of the present invention is preferably produced by a wet film-forming method using the anisotropic dye film-forming composition of the present invention.
 本発明で言う湿式成膜法とは、異方性色素膜形成用組成物を基板上に何らかの手法により塗布、配向させる方法である。そのため、異方性色素膜形成用組成物は流動性を持てばよく、溶剤を含んでいても、含んでいなくてもよい。塗布する際の粘度や膜均一性の観点から、溶剤を含んでいることが好ましい。 The wet film-forming method referred to in this invention is a method in which an anisotropic dye film-forming composition is applied and oriented on a substrate by some method. Therefore, the anisotropic dye film-forming composition only needs to have fluidity, and may or may not contain a solvent. From the viewpoint of viscosity during application and film uniformity, it is preferable for the composition to contain a solvent.
 異方性色素膜中の液晶化合物や色素は、塗布過程で剪断などにより配向させてもよいし、溶剤が乾燥する過程で配向させてもよい。また、塗布、乾燥後に加熱し、液晶化合物や色素等を再配向させるプロセスを経て、液晶化合物や色素等を基板上で配向、積層させてもよい。湿式成膜法では、異方性色素膜形成用組成物を基板上に付与すると、すでに異方性色素膜形成用組成物中で、または溶剤が乾燥する過程で、または溶剤が完全に除去された後で、色素や液晶化合物が自己会合(液晶状態等の分子会合状態)を取ることにより微小面積での配向が起こる。この状態に外場を与えることにより、マクロな領域で一定方向に配向させ、所望の性能を有する異方性色素膜を得ることができる。この点で、ポリビニルアルコール(PVA)フィルム等を、色素を含む溶液で染色して延伸し、延伸工程だけで色素を配向させることを原理とする方法とは異なる。ここで、外場とは、あらかじめ基板上に施された配向処理層の影響、せん断力、磁場、電場、熱等が挙げられる。これらを単独で用いてもよく、複数組み合わせて用いてもよい。必要があれば、加熱工程を経てもよい。 The liquid crystal compounds and dyes in the anisotropic dye film may be oriented by shear during the coating process, or may be oriented during the drying process of the solvent. In addition, the liquid crystal compounds and dyes may be oriented and laminated on the substrate through a process of heating after coating and drying to re-align the liquid crystal compounds and dyes. In the wet film formation method, when the composition for forming an anisotropic dye film is applied to the substrate, the dyes and liquid crystal compounds self-associate (a molecular association state such as a liquid crystal state) already in the composition for forming an anisotropic dye film, or during the drying process of the solvent, or after the solvent has been completely removed, and orientation occurs in a small area. By applying an external field to this state, orientation can be achieved in a certain direction in a macroscopic region, and an anisotropic dye film with the desired performance can be obtained. In this respect, it differs from the method in which a polyvinyl alcohol (PVA) film or the like is dyed with a solution containing a dye and stretched, and the dye is oriented only in the stretching process. Here, the external field includes the influence of an orientation treatment layer previously applied to the substrate, shear force, magnetic field, electric field, heat, etc. These may be used alone or in combination. If necessary, a heating process may be performed.
 異方性色素膜形成用組成物を基板上に付与し成膜する過程、外場を与えて配向させる過程、溶剤を乾燥させる過程は、逐次行ってもよいし、同時に行ってもよい。 The process of applying the anisotropic dye film-forming composition onto a substrate to form a film, the process of applying an external field to orient the film, and the process of drying the solvent may be performed sequentially or simultaneously.
 湿式成膜法において異方性色素膜形成用組成物を基板上へ付与する方法としては、たとえば、塗布法、ディップコート法、LB膜形成法、公知の印刷法等が挙げられる。また、このようにして得た異方性色素膜を別の基板に転写する方法もある。 In the wet film formation method, examples of methods for applying the composition for forming an anisotropic dye film onto a substrate include a coating method, a dip coating method, an LB film formation method, and a known printing method. There is also a method of transferring the anisotropic dye film thus obtained onto another substrate.
 これらのなかでも、塗布法を用いて異方性色素膜形成用組成物を基板上に付与することが好ましい。 Among these, it is preferable to apply the composition for forming an anisotropic dye film onto the substrate using a coating method.
 異方性色素膜の配向方向は塗布方向と異なっていてもよい。本発明において異方性色素膜の配向方向とは、たとえば、偏光膜であれば、偏光の透過軸(偏光軸)または吸収軸のことである。位相差膜であれば、配向方向は進相軸または遅相軸のことである。 The orientation direction of the anisotropic dye film may be different from the coating direction. In the present invention, the orientation direction of the anisotropic dye film refers to, for example, the transmission axis (polarization axis) or absorption axis of polarized light in the case of a polarizing film. In the case of a retardation film, the orientation direction refers to the fast axis or slow axis.
 異方性色素膜形成用組成物を塗布し、異方性色素膜を得る方法としては、特に限定されないが、たとえば、原崎勇次著「コーティング工学」(株式会社朝倉書店、1971年3月20日発行)の253~277ページに記載の方法、市村國宏監修「分子協調材料の創製と応用」(株式会社シーエムシー出版、1998年3月3日発行)の118~149ページに記載の方法、段差構造を有する基板(予め配向処理を施してもよい)上にスロットダイコート法、スピンコート法、スプレーコート法、バーコート法、ロールコート法、ブレードコート法、カーテンコート法、ファウンテン法、ディップ法等で塗布する方法が挙げられる。なかでも、スロットダイコート法やバーコート法を採用すると、均一性の高い異方性色素膜が得られるため好適である。 The method of applying the composition for forming an anisotropic dye film to obtain an anisotropic dye film is not particularly limited, but examples include the method described in "Coating Engineering" by Harasaki Yuji (published by Asakura Publishing Co., Ltd. on March 20, 1971) on pages 253-277, the method described in "Creation and Application of Molecular Cooperative Materials" edited by Ichimura Kunihiro (published by CMC Publishing Co., Ltd. on March 3, 1998) on pages 118-149, and the method of applying the composition to a substrate having a stepped structure (which may be pre-treated for orientation) by slot die coating, spin coating, spray coating, bar coating, roll coating, blade coating, curtain coating, fountain coating, dip coating, etc. Among these, the slot die coating and bar coating methods are preferred because they can obtain a highly uniform anisotropic dye film.
 スロットダイコート法に用いるダイコーターは、一般的に塗布液を吐出する塗布機、いわゆるスリットダイを備えている。スリットダイは、たとえば、特開平2-164480号公報、特開平6-154687号公報、特開平9-131559号公報、「分散・塗布・乾燥の基礎と応用」(2014年、株式会社テクノシステ、ISBN9784924728707 C 305)、「ディスプレイ・光学部材における湿式コーティング技術」(2007年、情報機構、ISBN9784901677752)、「エレクトロニクス分野における精密塗布・乾燥技術」(2007年、技術情報協会、ISBN9784861041389)等に開示されている。これら公知のスリットダイは、フィルムやテープなどの可撓性を有した部材やガラス基板のような硬い部材であっても塗布が実施できる。 The die coater used in the slot die coating method is generally equipped with a coating machine that ejects the coating liquid, a so-called slit die. Slit dies are disclosed, for example, in JP-A-2-164480, JP-A-6-154687, JP-A-9-131559, "Fundamentals and Applications of Dispersion, Coating, and Drying" (2014, Techno System Co., Ltd., ISBN 9784924728707 C 305), "Wet Coating Technology for Displays and Optical Components" (2007, Information Organization, ISBN 9784901677752), and "Precision Coating and Drying Technology in the Electronics Field" (2007, Technical Information Association, ISBN 9784861041389). These known slit dies can be used to coat flexible materials such as films and tapes, as well as hard materials such as glass substrates.
 本発明の異方性色素膜形成に使用される基板として、ガラスや、トリアセテート、アクリル、ポリエステル、ポリイミド、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリカーボネート、シクロオレフィンポリマー、ポリオレフィン、ポリ塩化ビニル、トリアセチルセルロースまたはウレタン系のフィルム等が挙げられる。 Substrates used in the formation of the anisotropic dye film of the present invention include glass, triacetate, acrylic, polyester, polyimide, polyetherimide, polyetheretherketone, polycarbonate, cycloolefin polymer, polyolefin, polyvinyl chloride, triacetyl cellulose, or urethane-based films.
 基板表面には、色素の配向方向を制御するために、「液晶便覧」(丸善株式会社、平成12年10月30日発行)の226~239ページ等に記載の公知の方法(ラビング法、配向膜表面上にグルーブ(微細な溝構造)を形成する方法、偏光紫外光・偏光レーザーを用いる方法(光配向法)、LB膜形成による配向方法、無機物の斜め蒸着による配向方法等)により、配向処理(配向膜)を施していてもよい。特に、ラビング法、光配向法による配向処理を好ましく挙げることができる。ラビング法に用いる材料としては、ポリビニルアルコール(PVA)、ポリイミド(PI)、エポキシ樹脂、アクリル樹脂等が挙げられる。光配向法に用いる材料としては、ポリシンナメート系、ポリアミック酸・ポリイミド系、アゾベンゼン系等が挙げられる。配向処理層を設けた場合、配向処理層の配向処理の影響と、塗布時に異方性色素膜形成用組成物にかかるせん断力によって、液晶化合物や色素が配向すると考えられる。 In order to control the orientation direction of the dye, the substrate surface may be subjected to an orientation treatment (orientation film) by a known method (rubbing method, method of forming grooves (fine groove structure) on the surface of the orientation film, method of using polarized ultraviolet light/polarized laser (photo-orientation method), orientation method by forming an LB film, orientation method by oblique deposition of inorganic material, etc.) described on pages 226-239 of "Liquid Crystal Handbook" (Maruzen Co., Ltd., published October 30, 2000). In particular, orientation treatment by rubbing method and photo-orientation method are preferred. Materials used in the rubbing method include polyvinyl alcohol (PVA), polyimide (PI), epoxy resin, acrylic resin, etc. Materials used in the photo-orientation method include polycinnamate, polyamic acid/polyimide, azobenzene, etc. When an orientation treatment layer is provided, it is thought that the liquid crystal compound and the dye are oriented by the influence of the orientation treatment of the orientation treatment layer and the shear force applied to the anisotropic dye film forming composition during application.
 異方性色素膜形成用組成物を塗布する際の、異方性色素膜形成用組成物の供給方法、供給間隔は特に限定されない。塗布液の供給操作が繁雑になったり、塗布液の開始時と停止時に塗布膜厚の変動を生じたりする場合があるため、異方性色素膜の膜厚が薄い時には、連続的に異方性色素膜形成用組成物を供給しながら塗布することが望ましい。 When applying the anisotropic dye film-forming composition, there are no particular limitations on the method or interval for supplying the anisotropic dye film-forming composition. If the operation for supplying the coating liquid becomes complicated, or the coating film thickness fluctuates when the coating liquid is started and stopped, it is desirable to apply the anisotropic dye film-forming composition while continuously supplying it when the anisotropic dye film is thin.
 異方性色素膜形成用組成物を塗布する速度は、通常0.001m/分以上であり、好ましくは0.01m/分以上であり、より好ましくは0.1m/分以上であり、さらに好ましくは1.0m/分以上であり、特に好ましくは5.0m/分以上である。異方性色素膜形成用組成物を塗布する速度は、通常400m/分以下であり、好ましくは200m/分以下であり、より好ましくは100m/分以下であり、さらに好ましくは50m/分以下である。塗布速度が上記範囲であることで、異方性色素膜の異方性が得られ、均一に塗布できる傾向にある。 The speed at which the composition for forming an anisotropic dye film is applied is usually 0.001 m/min or more, preferably 0.01 m/min or more, more preferably 0.1 m/min or more, even more preferably 1.0 m/min or more, and particularly preferably 5.0 m/min or more. The speed at which the composition for forming an anisotropic dye film is applied is usually 400 m/min or less, preferably 200 m/min or less, more preferably 100 m/min or less, and even more preferably 50 m/min or less. By having the application speed in the above range, the anisotropy of the anisotropic dye film is obtained, and it tends to be possible to apply it uniformly.
 異方性色素膜形成用組成物の塗布温度は、通常0℃以上100℃以下、好ましくは80℃以下、さらに好ましくは60℃以下である。 The application temperature of the composition for forming anisotropic dye film is usually 0°C or higher and 100°C or lower, preferably 80°C or lower, and more preferably 60°C or lower.
 異方性色素膜形成用組成物の塗布時の湿度は、好ましくは10%RH以上であり、好ましくは80RH%以下である。 The humidity during application of the anisotropic dye film forming composition is preferably 10% RH or higher, and preferably 80% RH or lower.
 異方性色素膜には、不溶化処理を行ってもよい。不溶化とは、異方性色素膜中の化合物の溶解性を低下させることにより、化合物の異方性色素膜からの溶出を制御し、膜の安定性を高める処理を意味する。
 具体的には、膜の重合やオーバーコートなどが、後工程の容易さ、異方性色素膜の耐久性等の点から好ましい。
The anisotropic dye film may be subjected to an insolubilization treatment. Insolubilization refers to a treatment for reducing the solubility of a compound in the anisotropic dye film, thereby controlling the elution of the compound from the anisotropic dye film and increasing the stability of the film.
Specifically, film polymerization or overcoating is preferred from the standpoint of ease of post-processing and durability of the anisotropic dye film.
 膜の重合を行う場合、液晶分子と色素分子が配向した膜に対して、光および/または放射線を用いて重合を行う。 When polymerizing the film, the film in which the liquid crystal molecules and dye molecules are oriented is polymerized using light and/or radiation.
 光または放射線を用いて重合を行う場合、波長が190~450nmの範囲にある活性エネルギー線を照射することが好ましい。 When polymerization is carried out using light or radiation, it is preferable to irradiate with active energy rays having a wavelength in the range of 190 to 450 nm.
 波長190~450nmの活性エネルギー線の光源は、特に限定されるものではない。例えば、キセノンランプ、ハロゲンランプ、タングステンランプ、高圧水銀灯、超高圧水銀灯、メタルハライドランプ、中圧水銀灯、低圧水銀灯、カーボンアーク、蛍光ランプ等のランプ光源;アルゴンイオンレーザー、YAGレーザー、エキシマレーザー、窒素レーザー、ヘリウムカドミニウムレーザー、半導体レーザー等のレーザー光源等が挙げられる。特定の波長の光を照射して使用する場合には、光学フィルターを利用することもできる。
 活性エネルギー線の露光量は、1~100,000J/mが好ましく、10~10,000J/mがより好ましい。
The light source of the active energy ray having a wavelength of 190 to 450 nm is not particularly limited. Examples of the light source include lamp light sources such as xenon lamps, halogen lamps, tungsten lamps, high-pressure mercury lamps, ultra-high-pressure mercury lamps, metal halide lamps, medium-pressure mercury lamps, low-pressure mercury lamps, carbon arcs, and fluorescent lamps; and laser light sources such as argon ion lasers, YAG lasers, excimer lasers, nitrogen lasers, helium cadmium lasers, and semiconductor lasers. When light of a specific wavelength is irradiated, an optical filter can also be used.
The exposure dose of the active energy rays is preferably from 1 to 100,000 J/ m2 , and more preferably from 10 to 10,000 J/ m2 .
 光および/または放射線を用いて重合を行ってもよいが、光重合を用いる、または、光重合と熱重合を併用するのが膜形成プロセスの時間が短く、装置も簡易であることから好ましい。熱重合を行う場合は、50~200℃の範囲で行うことが好ましく、60~150℃の範囲で行うことがさらに好ましい。 Polymerization may be performed using light and/or radiation, but photopolymerization or a combination of photopolymerization and thermal polymerization is preferred because it shortens the film formation process time and requires simple equipment. When thermal polymerization is performed, it is preferred to perform it in the range of 50 to 200°C, and more preferably in the range of 60 to 150°C.
[保護層]
 保護層は、異方性色素膜を保護(例えば、耐摩耗性、耐擦傷性、耐応力緩和、耐薬品性、耐ガス性、耐水性、耐腐食性の付与ないしは向上)するための膜であり、好ましくは、保護層は光硬化性膜である。
[Protective Layer]
The protective layer is a film for protecting the anisotropic dye film (for example, imparting or improving abrasion resistance, scratch resistance, stress relaxation resistance, chemical resistance, gas resistance, water resistance, and corrosion resistance), and preferably, the protective layer is a photocurable film.
 保護層は、ブリーディング防止(低分子成分のブリードアウト防止)、平坦化、易接着化、離型化、光学特性調整等の機能を有するオーバーコート膜を兼ねるものであってもよい。保護層は異方性膜を保護する機能を発現できれば、異方性色素膜との積層位置は限定されない。保護層は異方性色素膜を有効に保護する観点から、本発明の異方性色素膜に隣接した積層構造となっていることが好ましく、異方性色素膜の基板と反対側の面に隣接した積層構造となっていることがより好ましい。 The protective layer may also serve as an overcoat film having functions such as bleeding prevention (prevention of bleeding out of low molecular weight components), flattening, easy adhesion, release, and optical property adjustment. As long as the protective layer can exhibit the function of protecting the anisotropic film, there are no limitations on the lamination position with respect to the anisotropic dye film. From the viewpoint of effectively protecting the anisotropic dye film, the protective layer preferably has a laminated structure adjacent to the anisotropic dye film of the present invention, and more preferably has a laminated structure adjacent to the surface of the anisotropic dye film opposite the substrate.
 第1の発明の保護層は、後述の保護層形成用組成物を用いて形成されることが好ましい。
 第2の発明の保護層は、硬化性樹脂を含有する保護層形成用組成物を用いて形成される。
 第3の発明の保護層は、光硬化性樹脂を含有する後述の保護層形成用組成物を用いて形成される。
The protective layer of the first invention is preferably formed using a composition for forming a protective layer, which will be described later.
The protective layer of the second invention is formed using a protective layer-forming composition containing a curable resin.
The protective layer of the third invention is formed using a composition for forming a protective layer, which contains a photocurable resin and will be described later.
 本発明の保護層の厚みは、機械強度を強くできる、および保護効果を十分に発現させる観点から、0.1μm以上が好ましく、0.3μm以上がより好ましく、0.5μm以上がさらに好ましく、1μm以上がさらにより好ましい。また、得られる光学異方性積層体の厚みを薄くできる観点から、本発明の保護層の厚みは、175μm以下が好ましく、120μm以下がより好ましく、100μm以下がさらに好ましく、80μm以下がより更に好ましく、60μm以下が特に好ましく、50μm以下がとりわけ好ましく、20μm以下が中でも好ましく、10μm以下が最も好ましい。 The thickness of the protective layer of the present invention is preferably 0.1 μm or more, more preferably 0.3 μm or more, even more preferably 0.5 μm or more, and even more preferably 1 μm or more, from the viewpoint of increasing the mechanical strength and fully exerting the protective effect. Also, from the viewpoint of reducing the thickness of the obtained optically anisotropic laminate, the thickness of the protective layer of the present invention is preferably 175 μm or less, more preferably 120 μm or less, even more preferably 100 μm or less, even more preferably 80 μm or less, particularly preferably 60 μm or less, especially preferably 50 μm or less, most preferably 20 μm or less, and most preferably 10 μm or less.
 本発明の保護層は、保護層の光による劣化を抑制する観点から、波長380nm以下における光線透過率が50%未満であることが好ましく、30%未満であることがより好ましく、20%未満であることがさらに好ましい。一方で、光学素子の光による劣化を抑制する観点からは、波長400nm以下における光線透過率が30%未満であることが好ましく、25%未満であることがより好ましく、22%未満であることがさらに好ましく、20%未満であることが特に好ましい。 From the viewpoint of suppressing deterioration of the protective layer due to light, the protective layer of the present invention preferably has a light transmittance at wavelengths of 380 nm or less of less than 50%, more preferably less than 30%, and even more preferably less than 20%. On the other hand, from the viewpoint of suppressing deterioration of optical elements due to light, the light transmittance at wavelengths of 400 nm or less is preferably less than 30%, more preferably less than 25%, even more preferably less than 22%, and especially preferably less than 20%.
 本発明の保護層は、画像表示装置に用いた際の視認性の観点から、波長430nmにおける光線透過率が60%以上であることが好ましく、70%以上であることがより好ましく、75%以上であることがさらに好ましく、80%以上であることが特に好ましい。 From the viewpoint of visibility when used in an image display device, the protective layer of the present invention preferably has a light transmittance at a wavelength of 430 nm of 60% or more, more preferably 70% or more, even more preferably 75% or more, and particularly preferably 80% or more.
[保護層形成用組成物]
 第1の発明の保護層の形成に用いられる保護層形成用組成物(以下、「第1の発明の保護層形成用組成物」と称す場合がある。)は、光硬化性樹脂を少なくとも含むものが好ましく、より好ましくは更に光重合開始剤を含み、更にその他の成分を含有していてもよい。
 第2の発明の保護層の形成に用いられる第2の発明の保護層形成用組成物は、硬化性樹脂を少なくとも含み、好ましくは更に光重合開始剤を含み、更にその他の成分を含有していてもよい。
 第3の発明の保護層の形成に用いられる保護層形成用組成物(以下、「第3の発明の保護層形成用組成物」と称す場合がある。)は、光硬化性シリコーン樹脂を少なくとも含み、好ましくは更に光重合開始剤を含み、更にその他の成分を含有していてもよい。
 以下において、「第1の発明の保護層形成用組成物」、「第2の発明の保護層形成用組成物」及び「第3の発明の保護層形成用組成物」を「本発明の保護層形成用組成物」と総称する場合がある。
[Protective layer forming composition]
The protective layer forming composition used to form the protective layer of the first invention (hereinafter, sometimes referred to as the "protective layer forming composition of the first invention") preferably contains at least a photocurable resin, more preferably further contains a photopolymerization initiator, and may further contain other components.
The composition for forming the protective layer of the second invention used to form the protective layer of the second invention contains at least a curable resin, and preferably further contains a photopolymerization initiator, and may further contain other components.
The protective layer forming composition used to form the protective layer of the third invention (hereinafter, sometimes referred to as the "protective layer forming composition of the third invention") contains at least a photocurable silicone resin, preferably further contains a photopolymerization initiator, and may further contain other components.
Hereinafter, the "composition for forming a protective layer of the first invention," the "composition for forming a protective layer of the second invention," and the "composition for forming a protective layer of the third invention" may be collectively referred to as the "composition for forming a protective layer of the present invention."
<硬化性樹脂>
 第1の発明の保護層形成用組成物の光硬化性樹脂としては従来公知の各種の樹脂を使用することができ、例えば、アクリル樹脂、ポリエステル樹脂、ウレタン樹脂、ポリビニル樹脂、エポキシ樹脂、シリコーン樹脂、酢酸ビニル樹脂、フッ素系樹脂、ニトリルゴム、クロロプレンゴム、スチレンブタジエンゴム等が挙げられる。
 第1の発明の保護層形成用組成物は、光硬化性樹脂として光硬化性シリコーン樹脂を含むことが好ましい。
<Curable Resin>
As the photocurable resin of the protective layer-forming composition of the first invention, various resins known in the art can be used, such as acrylic resin, polyester resin, urethane resin, polyvinyl resin, epoxy resin, silicone resin, vinyl acetate resin, fluorine-based resin, nitrile rubber, chloroprene rubber, and styrene-butadiene rubber.
The composition for forming a protective layer according to the first invention preferably contains a photocurable silicone resin as the photocurable resin.
 第2の発明の保護層形成用組成物の硬化性樹脂としては従来公知の各種の樹脂を使用することができる。例えば、アクリル樹脂、ポリエステル樹脂、ウレタン樹脂、ポリビニル樹脂、エポキシ樹脂、シリコーン樹脂、酢酸ビニル樹脂、フッ素系樹脂、ニトリルゴム、クロロプレンゴム、スチレンブタジエンゴム等が挙げられる。
 第2の発明の保護層形成用組成物は、硬化性樹脂として光硬化性樹脂を含むことが好ましく、光硬化性シリコーン樹脂を含むことがさらに好ましい。
 第3の発明の保護層形成用組成物は、光硬化性樹脂として光硬化性シリコーン樹脂を含む。
As the curable resin of the protective layer-forming composition of the second invention, various resins known in the art can be used, such as acrylic resin, polyester resin, urethane resin, polyvinyl resin, epoxy resin, silicone resin, vinyl acetate resin, fluorine-based resin, nitrile rubber, chloroprene rubber, and styrene-butadiene rubber.
The composition for forming a protective layer according to the second invention preferably contains a photocurable resin as the curable resin, and more preferably contains a photocurable silicone resin.
The composition for forming a protective layer according to the third invention contains a photocurable silicone resin as the photocurable resin.
 本発明の保護層形成用組成物が、光硬化性シリコーン樹脂を含むことで良好な硬化性が得られ、保護層として十分な保護性能を発現することができる。
 以下に、光硬化性シリコーン樹脂について説明する。
When the composition for forming a protective layer of the present invention contains a photocurable silicone resin, good curability can be obtained, and sufficient protective performance as a protective layer can be achieved.
The photocurable silicone resin will be described below.
<光硬化性シリコーン樹脂>
 光硬化性シリコーン樹脂は、異方性色素層と保護層との相溶を抑制し、加熱によっても両層が混合せずに良好な耐熱性を示しえる観点から、主鎖骨格にシロキサン単位を含有することが好ましく、ジメチルシロキサン単位を含有することがより好ましい。
 光硬化性シリコーン樹脂は、異方性色素層と保護層との相溶を抑制し、加熱によっても両層が混合せずに良好な耐熱性を奏し得る観点から、フッ素原子を含有することが好ましい。
<Photocurable silicone resin>
From the viewpoint of suppressing compatibility between the anisotropic dye layer and the protective layer and exhibiting good heat resistance without mixing the two layers even when heated, the photocurable silicone resin preferably contains a siloxane unit in the main chain skeleton, and more preferably contains a dimethylsiloxane unit.
The photocurable silicone resin preferably contains fluorine atoms, from the viewpoint of suppressing compatibility between the anisotropic dye layer and the protective layer, preventing the two layers from mixing even when heated, and exhibiting good heat resistance.
 本発明で用いる光硬化性シリコーン樹脂は、異方性色素層と保護層との相溶を抑制し、加熱によっても両層が混合せずに良好な耐熱性を示し得る観点から、下記式(B)で表されるシロキサン単位を有することがさらに好ましい。
 (R212223SiO1/2n1(R2425SiO2/2n2(R26SiO3/2n3(SiO4/2n4(O1/227n5   (B)
(式中、R21~R26は各々独立に、置換基を有してもよい一価の脂肪族炭化水素基、又は置換基を有してもよい一価の芳香族炭化水素基であり、R21~R26のいずれかは置換基として重合性基を有する。
 R27は水素原子又はアルキル基である。
 n1~n5は各々独立に、平均0以上1以下であって、n1、n2、n3及びn4の合計が1である。)
It is further preferable that the photocurable silicone resin used in the present invention has a siloxane unit represented by the following formula (B) from the viewpoint of suppressing compatibility between the anisotropic dye layer and the protective layer, preventing the two layers from mixing even when heated, and exhibiting good heat resistance.
( R21R22R23SiO1 / 2 ) n1 ( R24R25SiO2 / 2 ) n2 ( R26SiO3 / 2 ) n3 ( SiO4/ 2 ) n4 ( O1 / 2R27 ) n5 (B)
(In the formula, R 21 to R 26 each independently represent a monovalent aliphatic hydrocarbon group which may have a substituent, or a monovalent aromatic hydrocarbon group which may have a substituent, and any of R 21 to R 26 has a polymerizable group as a substituent.
R27 is a hydrogen atom or an alkyl group.
n1 to n5 each independently represent an average of 0 to 1, and the sum of n1, n2, n3 and n4 is 1.
 R21~R26において、一価の脂肪族炭化水素基としては、炭素数1~6の一価の脂肪族炭化水素基が好ましい。例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基が挙げられ、アルキル構造である場合は、直鎖構造でも分岐鎖構造であってもよい。
 一価の芳香族炭化水素基としては、炭素数6~10の一価の芳香族炭化水素基が好ましい。例えば、フェニル基、トリル基、フェニルエチル基、キシリル基、ナフチル基が挙げられる。
In R to R , the monovalent aliphatic hydrocarbon group is preferably a monovalent aliphatic hydrocarbon group having 1 to 6 carbon atoms. Examples include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, and a cyclohexyl group. When the alkyl group has an alkyl structure, it may have a linear or branched structure.
The monovalent aromatic hydrocarbon group is preferably a monovalent aromatic hydrocarbon group having 6 to 10 carbon atoms, such as a phenyl group, a tolyl group, a phenylethyl group, a xylyl group, and a naphthyl group.
 R27において、アルキル基としては、炭素数1~4のアルキル基が好ましい。例えば、メチル基、エチル基、プロピル基、ブチル基が挙げられ、直鎖構造でも分岐鎖構造であってもよい。 In R 27 , the alkyl group is preferably an alkyl group having a carbon number of 1 to 4. Examples include a methyl group, an ethyl group, a propyl group, and a butyl group, and the alkyl group may have a straight chain structure or a branched chain structure.
 R21~R26のいずれかが有する前記重合性基としては、たとえば、(メタ)アクリロイル基、(メタ)アクリロイルオキシ基、(メタ)アクリロイルアミノ基、ビニル基、ビニルオキシ基、エポキシ構造含有基、メルカプト基、イソシアネート基、エチニル基、エチニルオキシ基、1,3-ブタジエニル基、1,3-ブタジエニルオキシ基、オキシラニル基、オキセタニル基、グリシジル基、グリシジルオキシ基、スチリル基、スチリルオキシ基等が挙げられる。これらの中でも、良好な硬化性が得られることから、(メタ)アクリロイル基、(メタ)アクリロイルオキシ基が好ましく、(メタ)アクリロイルオキシ基がより好ましい。 Examples of the polymerizable group possessed by any of R 21 to R 26 include a (meth)acryloyl group, a (meth)acryloyloxy group, a (meth)acryloylamino group, a vinyl group, a vinyloxy group, an epoxy structure-containing group, a mercapto group, an isocyanate group, an ethynyl group, an ethynyloxy group, a 1,3-butadienyl group, a 1,3-butadienyloxy group, an oxiranyl group, an oxetanyl group, a glycidyl group, a glycidyloxy group, a styryl group, a styryloxy group, etc. Among these, the (meth)acryloyl group and the (meth)acryloyloxy group are preferred, and the (meth)acryloyloxy group is more preferred, since good curability can be obtained.
 重合性基を含有する置換基を有するシロキサン単位は、保護層が保護機能を発現させる観点から、全シロキサン単位に対して0.01mol%以上が好ましく、0.05mol%以上がより好ましく、0.1mol%以上がさらに好ましい。また、硬化収縮等の変形を避ける観点から、重合性基を含有する置換基を有するシロキサン単位は、全シロキサン単位に対して95mol%以下が好ましく、90mol%以下がより好ましく、85mol%以下がさらに好ましい。 From the viewpoint of enabling the protective layer to exert its protective function, the siloxane units having a substituent containing a polymerizable group are preferably 0.01 mol% or more of the total siloxane units, more preferably 0.05 mol% or more, and even more preferably 0.1 mol% or more. From the viewpoint of avoiding deformation such as cure shrinkage, the siloxane units having a substituent containing a polymerizable group are preferably 95 mol% or less of the total siloxane units, more preferably 90 mol% or less, and even more preferably 85 mol% or less.
 R21~R26が有していてもよい前記重合性基以外の置換基としては、たとえば、フッ素原子、塩素原子、臭素原子、フェニル基、アミノ官能性基、パーフルオロアルキル基、ポリ(ヘキサフルオロプロピレンオキサイド)構造含有基等のフッ素原子を含有する置換基が挙げられる。これらの中でも、異方性色素層と保護層との相溶を抑制する観点から、フッ素原子、フッ素原子を含有する置換基が好ましく、フッ素原子がより好ましい。 Examples of the substituent other than the polymerizable group that R to R may have include a fluorine atom, a chlorine atom, a bromine atom, a phenyl group, an amino functional group, a perfluoroalkyl group, a poly(hexafluoropropylene oxide) structure-containing group, and other substituents containing a fluorine atom. Among these, from the viewpoint of suppressing compatibility between the anisotropic dye layer and the protective layer, a fluorine atom or a substituent containing a fluorine atom is preferred, and a fluorine atom is more preferred.
 前記式(B)のフッ素原子、又はフッ素原子を含有する置換基を有するシロキサン単位は、異方性色素層と保護層との相溶を抑制し、加熱によっても両層が混合せずに良好な耐熱性を示しえる観点から、全シロキサン単位に対して0.01mol%以上が好ましく、0.05mol%以上がより好ましい。また、保護層上に他の機能層を設けやすくする観点から、前記式(B)のフッ素原子、又はフッ素原子を含有する置換基を有するシロキサン単位は、全シロキサン単位に対して90mol%以下が好ましく、80mol%以下がより好ましく、70mol%以下がさらに好ましい。 The siloxane units having the fluorine atom or a substituent containing a fluorine atom of the formula (B) suppress the compatibility between the anisotropic dye layer and the protective layer, and from the viewpoint of exhibiting good heat resistance without mixing of the two layers even when heated, the content of the siloxane units is preferably 0.01 mol% or more, and more preferably 0.05 mol% or more, based on the total siloxane units. In addition, from the viewpoint of making it easier to provide other functional layers on the protective layer, the content of the siloxane units having the fluorine atom or a substituent containing a fluorine atom of the formula (B) is preferably 90 mol% or less, more preferably 80 mol% or less, and even more preferably 70 mol% or less, based on the total siloxane units.
 第1の発明及び第3の発明において、ジメチルシロキサン単位は、全シロキサン単位に対して0.5mol%以上95mol%以下が好ましく、1mol%以上90mol%以下がより好ましい。
 第2の発明において、ジメチルシロキサン単位は、全シロキサン単位に対して0.5mol%以上60mol%以下が好ましく、1mol%以上50mol%以下がより好ましい。
In the first and third inventions, the dimethylsiloxane units preferably account for 0.5 mol % or more and 95 mol % or less, and more preferably 1 mol % or more and 90 mol % or less, of the total siloxane units.
In the second invention, the dimethylsiloxane unit preferably accounts for 0.5 mol % or more and 60 mol % or less, and more preferably 1 mol % or more and 50 mol % or less, of the total siloxane units.
 光硬化性シリコーン樹脂で用いる光硬化性シリコーン樹脂としては、市販品を用いることもできる。
 フッ素原子を含まない光硬化性シリコーン樹脂の市販品としては、X-40-2761(信越化学工業社製)が挙げられる。フッ素原子を含む光硬化性シリコーン樹脂の市販品としてはX-12-2430C(信越化学工業社製)が挙げられる。
As the photocurable silicone resin used in the photocurable silicone resin composition, a commercially available product can also be used.
A commercially available photocurable silicone resin that does not contain fluorine atoms is X-40-2761 (manufactured by Shin-Etsu Chemical Co., Ltd.), and a commercially available photocurable silicone resin that contains fluorine atoms is X-12-2430C (manufactured by Shin-Etsu Chemical Co., Ltd.).
 第1及び第3の発明で用いる光硬化性シリコーン樹脂の分子量Mは、好ましくは5000以上であり、より好ましくは10000以上であり、更に好ましくは12000以上であり、特に好ましくは15000以上であり、好ましくは500000以下であり、より好ましくは300000以下であり、更に好ましくは100000以下である。光硬化性シリコーン樹脂の分子量Mが上記下限以上であれば、硬化収縮を低減でき、光学異方性積層体の光学性能を高めることができる。一方、光硬化性シリコーン樹脂の分子量Mが上記上限以下であれば膜形成が容易な傾向となる。 The molecular weight M of the photocurable silicone resin used in the first and third inventions is preferably 5,000 or more, more preferably 10,000 or more, even more preferably 12,000 or more, particularly preferably 15,000 or more, preferably 500,000 or less, more preferably 300,000 or less, and even more preferably 100,000 or less. If the molecular weight M of the photocurable silicone resin is equal to or greater than the lower limit, the cure shrinkage can be reduced and the optical performance of the optically anisotropic laminate can be improved. On the other hand, if the molecular weight M of the photocurable silicone resin is equal to or less than the upper limit, film formation tends to be easier.
 第2の発明で用いる光硬化性シリコーン樹脂の分子量Mは、好ましくは1000以上であり、より好ましくは5000以上であり、更に好ましくは10000以上であり、特に好ましくは15000以上であり、好ましくは500000以下であり、より好ましくは300000以下であり、更に好ましくは100000以下である。光硬化性シリコーン樹脂の分子量Mが上記下限以上であれば、硬化収縮を低減でき、光学異方性積層体の光学性能を高めることができる。一方、光硬化性シリコーン樹脂の分子量Mが上記上限以下であれば膜形成が容易な傾向となる。 The molecular weight M of the photocurable silicone resin used in the second invention is preferably 1000 or more, more preferably 5000 or more, even more preferably 10,000 or more, particularly preferably 15,000 or more, preferably 500,000 or less, more preferably 300,000 or less, and even more preferably 100,000 or less. If the molecular weight M of the photocurable silicone resin is equal to or greater than the lower limit, the cure shrinkage can be reduced and the optical performance of the optically anisotropic laminate can be improved. On the other hand, if the molecular weight M of the photocurable silicone resin is equal to or less than the upper limit, film formation tends to be easier.
 光硬化性シリコーン樹脂等の樹脂の分子量Mは、動的粘度の値を用いて決定することができる。具体的な測定条件は後掲の実施例に示す。 The molecular weight M of a resin such as a photocurable silicone resin can be determined using the dynamic viscosity value. Specific measurement conditions are shown in the examples below.
 これらの硬化性シリコーン樹脂は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。 These curable silicone resins may be used alone or in combination of two or more.
 本発明の保護層形成用組成物は、光硬化性樹脂又は硬化性樹脂として光硬化性シリコーン樹脂以外の光硬化性樹脂を含有してもよい。光硬化性シリコーン樹脂以外の光硬化性樹脂としては、例えば、(メタ)アクリロイル基等の硬化性の炭素-炭素二重結合の導入のしやすさに優れるという点において、アクリル樹脂が挙げられる。 The protective layer forming composition of the present invention may contain a photocurable resin other than a photocurable silicone resin as the photocurable resin or curable resin. Examples of photocurable resins other than a photocurable silicone resin include acrylic resins, which are excellent in terms of ease of introduction of curable carbon-carbon double bonds such as (meth)acryloyl groups.
 当該(メタ)アクリロイル基等の硬化性の炭素-炭素二重結合の量をコントロールすることで、架橋度をコントロールすることができ、低分子成分のブリードアウトの調整がしやすくなる。さらに、このような光硬化性樹脂は折り曲げ特性にも優れる。これは樹脂成分に適度な量の架橋基を含有させることで、柔軟性と硬化性の両立が成し遂げられるためと推測される。 By controlling the amount of curable carbon-carbon double bonds such as the (meth)acryloyl group, the degree of crosslinking can be controlled, making it easier to adjust the bleed-out of low molecular weight components. Furthermore, such photocurable resins also have excellent bending properties. This is presumably because the inclusion of an appropriate amount of crosslinking groups in the resin component makes it possible to achieve both flexibility and curability.
 光硬化性樹脂に含有される硬化性の官能基としては、炭素-炭素二重結合等の活性エネルギー線硬化性の官能基が挙げられる。例えば(メタ)アクリロイル基や、ビニルエーテル化合物が挙げられる。これらの中でも導入のしやすさや反応性を考慮すると(メタ)アクリロイル基、特にアクリロイル基が好ましい。 Curable functional groups contained in photocurable resins include active energy ray-curable functional groups such as carbon-carbon double bonds. Examples include (meth)acryloyl groups and vinyl ether compounds. Among these, (meth)acryloyl groups, and especially acryloyl groups, are preferred in terms of ease of introduction and reactivity.
 樹脂の原料の重合反応は通常、ラジカル重合であり、従来公知の条件で重合することができる。 The polymerization reaction of the resin raw materials is usually radical polymerization, and can be carried out under conventionally known conditions.
 原料として併用することのできるモノマーとしては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、フェニル(メタ)アクリレート、メトキシ(ポリ)エチレングリコール(メタ)アクリレート、メトキシ(ポリ)プロピレングリコール(メタ)アクリレート、メトキシ(ポリ)エチレングリコール(ポリ)プロピレングリコール(メタ)アクリレート、オクトキシ(ポリ)エチレングリコール(メタ)アクリレート、オクトキシ(ポリ)プロピレングリコール(メタ)アクリレート、オクトキシテトラメチレングリコール(メタ)アクリレート、ラウロキシ(ポリ)エチレングリコール(メタ)アクリレート、ステアロキシ(ポリ)エチレングリコール(メタ)アクリレート等の(メタ)アクリレート;エチル(メタ)アクリルアミド、n-ブチル(メタ)アクリルアミド、i-ブチル(メタ)アクリルアミド、t-ブチル(メタ)アクリルアミド、N-ヒドロキシエチル(メタ)アクリルアミド、N-ヒドロキシプロピル(メタ)アクリルアミド、N,N-ジヒドロキシエチル(メタ)アクリルアミド等のアクリルアミド;スチレン、p-クロロスチレン、p-ブロモスチレン等のスチレン系モノマー等が挙げられる。これらは1種のみを用いてもよいし、2種以上を組み合わせてもよい。  Monomers that can be used in combination as raw materials include methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, butyl (meth)acrylate, pentyl (meth)acrylate, hexyl (meth)acrylate, cyclohexyl (meth)acrylate, phenyl (meth)acrylate, methoxy (poly)ethylene glycol (meth)acrylate, methoxy (poly)propylene glycol (meth)acrylate, methoxy (poly)ethylene glycol (poly)propylene glycol (meth)acrylate, octoxy (poly)ethylene glycol (meth)acrylate, octoxy (poly)propylene glycol (meth)acrylate, Examples of such methacrylates include (meth)acrylates such as t-butyl (meth)acrylamide, octoxytetramethylene glycol (meth)acrylate, lauroxy (poly)ethylene glycol (meth)acrylate, and stearoxy (poly)ethylene glycol (meth)acrylate; acrylamides such as ethyl (meth)acrylamide, n-butyl (meth)acrylamide, i-butyl (meth)acrylamide, t-butyl (meth)acrylamide, N-hydroxyethyl (meth)acrylamide, N-hydroxypropyl (meth)acrylamide, and N,N-dihydroxyethyl (meth)acrylamide; and styrene-based monomers such as styrene, p-chlorostyrene, and p-bromostyrene. These may be used alone or in combination of two or more.
 アクリル樹脂は、上記の原料ビニルモノマーを用いてラジカル重合反応により製造することができる。ラジカル重合反応は、有機溶媒中でラジカル重合開始剤の存在下で実施することが好ましい。 Acrylic resins can be produced by radical polymerization using the above-mentioned raw vinyl monomers. The radical polymerization reaction is preferably carried out in an organic solvent in the presence of a radical polymerization initiator.
 保護層における光硬化性樹脂の含有量は、保護層の機能を発現させる観点、または平滑な保護層を得る観点から、保護層100質量%中に50質量%以上が好ましく、60質量%以上がより好ましく、さらに70質量%以上が好ましい。また、保護層における光硬化性樹脂の含有量は、保護層100質量%中に99.99質量%以下が好ましく、99.9質量%以下がより好ましい。 The content of the photocurable resin in the protective layer is preferably 50% by mass or more, more preferably 60% by mass or more, and even more preferably 70% by mass or more, based on 100% by mass of the protective layer, from the viewpoint of expressing the function of the protective layer or obtaining a smooth protective layer. The content of the photocurable resin in the protective layer is preferably 99.99% by mass or less, more preferably 99.9% by mass or less, based on 100% by mass of the protective layer.
 従って、保護層の形成に用いる保護層形成用組成物における光硬化性樹脂の含有量は、保護層の機能を発現させる観点、または平滑な保護層を得る観点から、保護層形成用組成物の固形分100質量部に対して、50質量部以上が好ましく、60質量部以上がより好ましく、さらに70質量部以上が好ましい。また、保護層形成用組成物における光硬化性樹脂の含有量は、保護層形成用組成物の固形分100質量部に対して、99.99質量部以下が好ましく、99.9質量部以下がより好ましい。
 ここで保護層形成用組成物中の固形分とは、保護層形成用組成物における溶剤以外の全成分の合計に相当し、保護層形成用組成物により形成される保護層質量に相当する。
Therefore, the content of the photocurable resin in the composition for forming a protective layer used for forming the protective layer is preferably 50 parts by mass or more, more preferably 60 parts by mass or more, and even more preferably 70 parts by mass or more, relative to 100 parts by mass of the solid content of the composition for forming a protective layer, from the viewpoint of expressing the function of the protective layer or from the viewpoint of obtaining a smooth protective layer. Also, the content of the photocurable resin in the composition for forming a protective layer is preferably 99.99 parts by mass or less, more preferably 99.9 parts by mass or less, relative to 100 parts by mass of the solid content of the composition for forming a protective layer.
Here, the solid content in the composition for forming a protective layer corresponds to the total of all components other than the solvent in the composition for forming a protective layer, and corresponds to the mass of the protective layer formed by the composition for forming a protective layer.
 保護層の形成に用いる保護層形成用組成物における光硬化性シリコーン樹脂の含有量は、保護層の機能を発現させる観点、または平滑な保護層を得る観点から、保護層形成用組成物の固形分100質量部に対して、20質量部以上が好ましく、30質量部以上がより好ましく、さらに35質量部以上が好ましい。また、光硬化性シリコーン樹脂の含有量は、保護層形成用組成物の固形分100質量部に対して、99.5質量部以下が好ましく、99質量部以下がより好ましい。 The content of the photocurable silicone resin in the protective layer forming composition used to form the protective layer is preferably 20 parts by mass or more, more preferably 30 parts by mass or more, and even more preferably 35 parts by mass or more, per 100 parts by mass of the solid content of the protective layer forming composition, from the viewpoint of expressing the function of the protective layer or obtaining a smooth protective layer. The content of the photocurable silicone resin is preferably 99.5 parts by mass or less, more preferably 99 parts by mass or less, per 100 parts by mass of the solid content of the protective layer forming composition.
<光重合開始剤>
 本発明の保護層形成用組成物は、好ましくは光重合開始剤を含有する。
<Photopolymerization initiator>
The composition for forming a protective layer of the present invention preferably contains a photopolymerization initiator.
 本発明の保護層形成用組成物に含まれる光重合開始剤の極大吸収波長は、300nm以上であることが好ましく、320nm以上であることがより好ましく、340nm以上であることがさらに好ましい。また、光重合開始剤の極大吸収波長は、450nm以下であることが好ましく、430nm以下であることがより好ましく、410nm以下であることがさらに好ましい。この範囲であることで光重合反応が十分に進行し、硬化度の良好な保護層が得られる効果がある。
 光重合開始剤としては、前記異方性色素膜形成用組成物で挙げられた光重合開始剤を用いることができる。
The maximum absorption wavelength of the photopolymerization initiator contained in the protective layer forming composition of the present invention is preferably 300 nm or more, more preferably 320 nm or more, and even more preferably 340 nm or more. The maximum absorption wavelength of the photopolymerization initiator is preferably 450 nm or less, more preferably 430 nm or less, and even more preferably 410 nm or less. By being in this range, the photopolymerization reaction proceeds sufficiently, and there is an effect that a protective layer with a good degree of hardening can be obtained.
As the photopolymerization initiator, the photopolymerization initiators exemplified in the composition for forming an anisotropic dye film can be used.
 保護層における光重合開始剤の含有量は、硬化度の良好な保護層を得る観点から、保護層100質量%中に0.1質量%以上が好ましく、0.5質量%以上がより好ましい。また、光重合開始剤の含有量は、保護層100質量%中に30質量%以下が好ましく、10質量%以下がより好ましく、さらに8質量%以下が好ましく、特に5質量%以下が好ましく、とりわけ3質量%以下が好ましい。 From the viewpoint of obtaining a protective layer with a good degree of hardening, the content of the photopolymerization initiator in the protective layer is preferably 0.1% by mass or more, and more preferably 0.5% by mass or more, based on 100% by mass of the protective layer. The content of the photopolymerization initiator is preferably 30% by mass or less, more preferably 10% by mass or less, even more preferably 8% by mass or less, particularly preferably 5% by mass or less, and especially preferably 3% by mass or less, based on 100% by mass of the protective layer.
 従って、保護層の形成に用いる保護層形成用組成物における光重合開始剤の含有量は、硬化度の良好な保護層を得る観点から、保護層形成用組成物の固形分100質量部に対して、0.1質量部以上が好ましく、0.5質量部以上がより好ましい。また、光重合開始剤の含有量は、保護層形成用組成物の固形分100質量部に対して、30質量部以下が好ましく、10質量部以下がより好ましく、さらに8質量部以下が好ましく、特に3質量部以下が好ましい。 Therefore, from the viewpoint of obtaining a protective layer with a good degree of hardening, the content of the photopolymerization initiator in the protective layer forming composition used to form the protective layer is preferably 0.1 parts by mass or more, and more preferably 0.5 parts by mass or more, per 100 parts by mass of the solid content of the protective layer forming composition. Furthermore, the content of the photopolymerization initiator is preferably 30 parts by mass or less, more preferably 10 parts by mass or less, even more preferably 8 parts by mass or less, and particularly preferably 3 parts by mass or less, per 100 parts by mass of the solid content of the protective layer forming composition.
<その他の成分>
 本発明の保護層形成用組成物は、光重合により硬化される重合性成分として光硬化性樹脂の他、重合性液晶化合物等を有してもよい。
<Other ingredients>
The composition for forming a protective layer of the present invention may contain a polymerizable liquid crystal compound and the like in addition to a photocurable resin as a polymerizable component that is cured by photopolymerization.
 重合性液晶化合物としては、従来公知の各種重合性液晶化合物を使用することができる。例えば、前記異方性色素膜形成用組成物で挙げられた重合性液晶化合物、「液晶便覧」(丸善株式会社、平成12年10月30日発行)の408~410ページ、521~524ページ、562~563ページ等に記載が挙げられる。 As the polymerizable liquid crystal compound, various conventionally known polymerizable liquid crystal compounds can be used. For example, the polymerizable liquid crystal compounds mentioned in the above-mentioned anisotropic dye film forming composition are described on pages 408-410, 521-524, 562-563, etc. of "Liquid Crystal Handbook" (Maruzen Co., Ltd., published October 30, 2000).
 本発明の保護層形成用組成物は、さらに非重合性樹脂、非重合性液晶化合物、熱重合開始剤、重合禁止剤、重合助剤、界面活性剤、レベリング剤、カップリング剤、pH調整剤、分散剤、酸化防止剤、帯電防止剤、紫外線吸収剤、光安定化剤、増粘剤、消泡剤、色素、有機・無機フィラー、有機・無機ナノシート、有機・無機ナノファイバー、金属酸化物等を含んでもよい。 The protective layer forming composition of the present invention may further contain a non-polymerizable resin, a non-polymerizable liquid crystal compound, a thermal polymerization initiator, a polymerization inhibitor, a polymerization aid, a surfactant, a leveling agent, a coupling agent, a pH adjuster, a dispersant, an antioxidant, an antistatic agent, an ultraviolet absorber, a light stabilizer, a thickener, an antifoaming agent, a dye, an organic or inorganic filler, an organic or inorganic nanosheet, an organic or inorganic nanofiber, a metal oxide, etc.
 本発明の保護層形成用組成物が含有していてもよい紫外線吸収剤としては、例えば、ベンゾフェノン系紫外線吸収剤、ベンゾトリアゾール系紫外線吸収剤、トリアジン系紫外線吸収剤、サリチル酸系紫外線吸収剤、シアノアクリレート系紫外線吸収剤等が挙げられる。これらの中で、紫外線吸収の効果が得られやすい観点から、ベンゾフェノン系紫外線吸収剤、ベンゾトリアゾール系紫外線吸収剤、及びトリアジン系紫外線吸収剤が好ましい。中でも、耐黄変性に優れる観点から、ベンゾフェノン系紫外線吸収剤がより好ましい。 Examples of ultraviolet absorbers that may be contained in the protective layer-forming composition of the present invention include benzophenone-based ultraviolet absorbers, benzotriazole-based ultraviolet absorbers, triazine-based ultraviolet absorbers, salicylic acid-based ultraviolet absorbers, and cyanoacrylate-based ultraviolet absorbers. Among these, benzophenone-based ultraviolet absorbers, benzotriazole-based ultraviolet absorbers, and triazine-based ultraviolet absorbers are preferred from the viewpoint of the ease with which the ultraviolet absorption effect can be obtained. Among these, benzophenone-based ultraviolet absorbers are more preferred from the viewpoint of excellent yellowing resistance.
 これらの紫外線吸収剤は、1種を単独で、または2種以上を組み合わせて使用することができる。 These UV absorbents can be used alone or in combination of two or more.
<溶剤>
 本発明の保護層形成用組成物は、必要に応じて、溶剤を含有してもよい。
<Solvent>
The composition for forming a protective layer of the present invention may contain a solvent, if necessary.
 使用しうる溶剤としては、保護層形成用組成物に含有される光硬化性樹脂及び光重合開始剤、その他の成分を十分に分散または溶解させ得るものであれば特に限定されない。溶剤としては、たとえば、水、メタノール、エタノール、エチレングリコール、イソプロピルアルコール、プロピレングリコール、エチレングリコールメチルエーテル、エチレングリコールブチルエーテル、プロピレングリコールモノメチルエーテル等のアルコール溶剤;酢酸エチル、酢酸ブチル、エチレングリコールメチルエーテルアセテート、γ-ブチロラクトン、プロピレングリコールメチルエーテルアセテート、乳酸エチル等のエステル溶剤;アセトン、メチルエチルケトン、シクロペンタノン、シクロヘキサノン、2-ヘプタノン、メチルイソブチルケトン等のケトン溶剤;ペンタン、ヘキサン、ヘプタン等の脂肪族炭化水素溶剤;トルエン、キシレン等の芳香族炭化水素溶剤;アセトニトリル等のニトリル溶剤;テトラヒドロフラン、ジメトキシエタン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル等のエーテル溶剤;ペルフルオロベンゼン、ペルフルオロトルエン、ペルフルオロデカリン、ペルフルオロメチルシクロヘキサン、ヘキサフルオロ-2-プロパノール等のフッ素含有溶剤;および、クロロホルム、ジクロロメタン、クロロベンゼン、ジクロロベンゼン等の塩素含有溶剤;が挙げられる。 There are no particular limitations on the solvent that can be used, so long as it can sufficiently disperse or dissolve the photocurable resin, photopolymerization initiator, and other components contained in the composition for forming the protective layer. Examples of the solvent include alcohol solvents such as water, methanol, ethanol, ethylene glycol, isopropyl alcohol, propylene glycol, ethylene glycol methyl ether, ethylene glycol butyl ether, and propylene glycol monomethyl ether; ester solvents such as ethyl acetate, butyl acetate, ethylene glycol methyl ether acetate, γ-butyrolactone, propylene glycol methyl ether acetate, and ethyl lactate; ketone solvents such as acetone, methyl ethyl ketone, cyclopentanone, cyclohexanone, 2-heptanone, and methyl isobutyl ketone; aliphatic hydrocarbon solvents such as pentane, hexane, and heptane; aromatic hydrocarbon solvents such as toluene and xylene; nitrile solvents such as acetonitrile; ether solvents such as tetrahydrofuran, dimethoxyethane, ethylene glycol dimethyl ether, and ethylene glycol diethyl ether; fluorine-containing solvents such as perfluorobenzene, perfluorotoluene, perfluorodecalin, perfluoromethylcyclohexane, and hexafluoro-2-propanol; and chlorine-containing solvents such as chloroform, dichloromethane, chlorobenzene, and dichlorobenzene.
 異方性色素膜への保護機能を十分付与できる観点から、溶剤としては、水、メタノール、エタノール、エチレングリコール、イソプロピルアルコール、プロピレングリコール、エチレングリコールメチルエーテル、エチレングリコールブチルエーテル、プロピレングリコールモノメチルエーテル等のアルコール溶剤;酢酸エチル、酢酸ブチル、エチレングリコールメチルエーテルアセテート、γ-ブチロラクトン、プロピレングリコールメチルエーテルアセテート、乳酸エチル等のエステル溶剤が好ましく、水、メタノール、エタノール、エチレングリコール、イソプロピルアルコール、プロピレングリコール、エチレングリコールメチルエーテル、エチレングリコールブチルエーテル、プロピレングリコールモノメチルエーテル等のアルコール溶剤がより好ましい。 From the viewpoint of being able to provide sufficient protective function to the anisotropic dye film, preferred solvents are alcohol solvents such as water, methanol, ethanol, ethylene glycol, isopropyl alcohol, propylene glycol, ethylene glycol methyl ether, ethylene glycol butyl ether, and propylene glycol monomethyl ether; and ester solvents such as ethyl acetate, butyl acetate, ethylene glycol methyl ether acetate, γ-butyrolactone, propylene glycol methyl ether acetate, and ethyl lactate, and more preferred are alcohol solvents such as water, methanol, ethanol, ethylene glycol, isopropyl alcohol, propylene glycol, ethylene glycol methyl ether, ethylene glycol butyl ether, and propylene glycol monomethyl ether.
 さらに、溶剤としては、異方性色素膜との相溶性の観点から、極性溶媒が好ましい。極性溶媒の中でも、比誘電率が10以上の極性溶媒がより好ましく、比誘電率が15以上の極性溶媒がさらに好ましく、比誘電率が20以上の極性溶媒が特に好ましい。 Furthermore, from the viewpoint of compatibility with the anisotropic dye film, polar solvents are preferred as the solvent. Among polar solvents, polar solvents with a relative dielectric constant of 10 or more are more preferred, polar solvents with a relative dielectric constant of 15 or more are even more preferred, and polar solvents with a relative dielectric constant of 20 or more are particularly preferred.
 これら溶剤は、1種のみを用いてもよく、2種以上を組み合わせて用いてもよい。 These solvents may be used alone or in combination of two or more.
 溶剤は、保護層形成用組成物を塗布する観点から、沸点が50~200℃の範囲である溶剤が好ましい。 From the viewpoint of applying the protective layer-forming composition, it is preferable for the solvent to have a boiling point in the range of 50 to 200°C.
 本発明の保護層形成用組成物が溶剤を含む場合において、保護層形成用組成物において溶剤が占める含有割合は、本発明の保護層形成用組成物の総量(100質量%)に対して、50~98質量%が好ましい。換言すると、本発明の保護層形成用組成物における固形分の含有量は、2~50質量%が好ましい。
 保護層形成用組成物における固形分含有量が前記上限値以下であれば、保護層形成用組成物の粘度が高くなりすぎず、得られる保護層の厚みが均一になり、保護層にムラが生じにくくなる傾向がある。
 かかる固形分含有量は、製造しようとする保護層の厚さを考慮して定めることができる。
When the composition for forming a protective layer of the present invention contains a solvent, the content ratio of the solvent in the composition for forming a protective layer of the present invention is preferably 50 to 98 mass % relative to the total amount (100 mass %) of the composition for forming a protective layer of the present invention. In other words, the content of the solid content in the composition for forming a protective layer of the present invention is preferably 2 to 50 mass %.
When the solid content in the composition for forming a protective layer is equal to or less than the upper limit, the viscosity of the composition for forming a protective layer does not become too high, the thickness of the obtained protective layer becomes uniform, and unevenness in the protective layer tends to be less likely to occur.
The solid content can be determined taking into consideration the thickness of the protective layer to be produced.
<保護層形成用組成物の粘度>
 本発明の保護層形成用組成物の粘度は、厚みムラのない均一な保護層が作製されれば特に問わない。後述の塗布方法により、大面積での厚み均一性、塗布速度などの生産性を得る観点からは、本発明の保護層形成用組成物の粘度は、0.1mPa・s以上が好ましく、500mPa・s以下が好ましく、100mPa・s以下がより好ましく、50mPa・s以下がさらに好ましい。
<Viscosity of the composition for forming the protective layer>
The viscosity of the protective layer forming composition of the present invention is not particularly limited as long as a uniform protective layer without thickness unevenness is formed. From the viewpoint of obtaining a thickness uniformity over a large area and productivity such as coating speed by the coating method described later, the viscosity of the protective layer forming composition of the present invention is preferably 0.1 mPa·s or more, preferably 500 mPa·s or less, more preferably 100 mPa·s or less, and even more preferably 50 mPa·s or less.
<保護層形成用組成物の製造方法>
 本発明の保護層形成用組成物を製造する方法は特に限定されない。たとえば、光硬化性樹脂、光重合開始剤、必要に応じて溶剤、その他の構成成分等を混合する。組成物中の異物等を除去する目的で、濾過工程を有していてもよい。
<Method of producing composition for forming protective layer>
The method for producing the composition for forming a protective layer of the present invention is not particularly limited. For example, a photocurable resin, a photopolymerization initiator, and optionally a solvent and other components are mixed. A filtration step may be included for the purpose of removing foreign matter from the composition.
[保護層の製造方法]
 本発明の保護層の製造方法は特に限定されない。例えば、本発明の保護層形成用組成物を用いて、シート状に成形する方法、湿式成膜法により作製する方法が挙げられる。
[Method of manufacturing protective layer]
The method for producing the protective layer of the present invention is not particularly limited. For example, the protective layer may be produced by forming the composition for forming a protective layer of the present invention into a sheet or by a wet film-forming method.
 本発明で言うシート状に成形する方法は、保護層形成用組成物を何らかの手法により成形体、例えばシート体に成形したものに、熱および/または活性エネルギー線を照射し、保護層形成用組成物を硬化させる方法である。 The method of forming into a sheet as referred to in the present invention is a method in which the protective layer forming composition is formed into a molded body, for example a sheet body, by some method, and then irradiated with heat and/or active energy rays to harden the protective layer forming composition.
 シート状に成形する方法としては、公知の方法、例えばウェットラミネーション法、ドライラミネート法、Tダイを用いる押出キャスト法、押出ラミネート法、カレンダー法やインフレーション法、射出成形、注液硬化法等を採用することができる。中でも、ウェットラミネーション法、押出キャスト法、押出ラミネート法が好適である。  Methods for forming into a sheet include known methods such as wet lamination, dry lamination, extrusion casting using a T-die, extrusion lamination, calendaring, inflation, injection molding, and liquid injection curing. Among these, the wet lamination, extrusion casting, and extrusion lamination methods are preferred.
 本発明で言う湿式成膜法とは、保護層形成用組成物を何らかの手法により基材に塗布した後に、活性エネルギー線を用いた重合で保護層形成用組成物を硬化させる方法である。活性エネルギー線を用いた重合において、熱重合を併用してもよい。 The wet film-forming method referred to in the present invention is a method in which the composition for forming a protective layer is applied to a substrate by some method, and then the composition for forming a protective layer is cured by polymerization using active energy rays. Thermal polymerization may be used in combination with polymerization using active energy rays.
 前記基材としては、異方性色素膜を含む基材でもよく、異方性色素膜を含まない基材でもよい。異方性色素膜を含まない基材の場合は、基材に塗布した保護層形成用組成物を異方性色素膜を含む基材に転写、または基材に塗布した異方性色素膜を保護層形成用組成物を含む基材に転写して、活性エネルギー線を照射して硬化させることで、保護層を製造できる。 The substrate may be a substrate containing an anisotropic dye film, or a substrate not containing an anisotropic dye film. In the case of a substrate not containing an anisotropic dye film, the protective layer can be produced by transferring the protective layer forming composition applied to the substrate to a substrate containing an anisotropic dye film, or by transferring the anisotropic dye film applied to the substrate to a substrate containing a protective layer forming composition, and then curing the composition by irradiating it with active energy rays.
 本発明の保護層形成用組成物を基材上に塗布する方法としては、例えば、リバースコート法、グラビアコート法、ロッドコート法、バーコート法、マイヤーバーコート法、ダイコート法、スプレーコート法等が挙げられる。 Methods for applying the protective layer-forming composition of the present invention onto a substrate include, for example, reverse coating, gravure coating, rod coating, bar coating, Mayer bar coating, die coating, spray coating, etc.
 本発明の保護層形成用組成物は、活性エネルギー線を照射して重合する前に、必要に応じて30℃以上150℃以下で乾燥させてもよい。
 前記活性エネルギー線としては、光、放射線が挙げられる。これらの中でも、重合制御が容易である観点から、紫外線及び可視光が好ましい。
The composition for forming a protective layer of the present invention may be dried at 30° C. or more and 150° C. or less, if necessary, before being polymerized by irradiation with active energy rays.
The active energy rays include light and radiation, of which ultraviolet light and visible light are preferred from the viewpoint of easy polymerization control.
 紫外線照射により硬化させる場合には、紫外線照射装置の光源としてキセノンランプ、高圧水銀灯、メタルハライドランプ、LED-UVランプ等を使用することができる。紫外線の照射量は、保護層形成用組成物に応じて適宜決定されるが、通常10mJ/cm以上10000mJ/cm以下である。紫外線の照射量は、硬化度の観点から、15mJ/cm以上5000mJ/cm以下が好ましく、20mJ/cm以上3000mJ/cm以下がより好ましい。 When curing by ultraviolet irradiation, a xenon lamp, a high pressure mercury lamp, a metal halide lamp, an LED-UV lamp, or the like can be used as the light source of the ultraviolet irradiation device. The amount of ultraviolet irradiation is appropriately determined depending on the composition for forming a protective layer, but is usually 10 mJ/cm 2 or more and 10,000 mJ/cm 2 or less. From the viewpoint of the degree of curing, the amount of ultraviolet irradiation is preferably 15 mJ/cm 2 or more and 5,000 mJ/cm 2 or less, and more preferably 20 mJ/cm 2 or more and 3,000 mJ/cm 2 or less.
[その他の機能性膜]
 本発明の光学異方性積層体は、上記の異方性色素膜及び保護層の他、粘着および/または接着性を有する粘接着膜、反射防止膜、位相差膜、光を吸収や反射または散乱する光制御膜、低屈折膜、高屈折膜、電気絶縁膜、電気導電膜、配向膜等の機能性膜を有していてもよい。これらの機能性膜は光重合性を有する光硬化性膜であることが好ましいが、光重合性を有さない膜であってもよい。
 これらのうち、特に光学異方性積層体を用いた光学素子を形成しやすい観点から粘接着膜が好ましい。
 粘接着膜と保護層とを有する光学異方性積層体は、異方性色素膜/保護層/粘接着膜の積層構造であることが好ましい。異方性色素膜、保護層、粘接着膜の間には他の層が積層されていてもよい。
[Other functional films]
In addition to the anisotropic dye film and protective layer, the optically anisotropic laminate of the present invention may have a functional film such as a pressure-sensitive adhesive film having tackiness and/or adhesion, an antireflection film, a retardation film, a light control film that absorbs, reflects or scatters light, a low refractive film, a high refractive film, an electrically insulating film, an electrically conductive film, an alignment film, etc. These functional films are preferably photocurable films having photopolymerizability, but may also be films having no photopolymerizability.
Among these, a pressure-sensitive adhesive film is preferred from the viewpoint of facilitating the formation of an optical element using the optically anisotropic laminate.
The optically anisotropic laminate having a tacky adhesive film and a protective layer preferably has a laminate structure of anisotropic dye film/protective layer/tacky adhesive film. Other layers may be laminated between the anisotropic dye film, the protective layer and the tacky adhesive film.
(粘接着膜)
 粘接着膜は、粘接着膜形成用組成物を用いて製造することができる。
(Adhesive film)
The adhesive film can be produced using a composition for forming an adhesive film.
 粘接着膜は、粘接着膜の光による劣化を抑制する観点から、波長380nm以下における光線透過率が50%未満であるのが好ましく、30%未満であることがより好ましく、20%未満であることがさらに好ましい。一方で、光学素子の光による劣化を抑制する観点からは、波長400nm以下における光線透過率が30%未満であることが好ましく、25%未満であることがより好ましく、22%未満であることがさらに好ましく、20%未満であることが特に好ましい。 From the viewpoint of suppressing deterioration of the adhesive film due to light, the adhesive film preferably has a light transmittance at wavelengths of 380 nm or less of less than 50%, more preferably less than 30%, and even more preferably less than 20%. On the other hand, from the viewpoint of suppressing deterioration of optical elements due to light, the adhesive film preferably has a light transmittance at wavelengths of 400 nm or less of less than 30%, more preferably less than 25%, even more preferably less than 22%, and especially preferably less than 20%.
 また、粘接着膜は、画像表示装置に用いた際の視認性の観点から、波長430nmにおける光線透過率が60%以上であることが好ましく、70%以上であることがより好ましく、75%以上であることがさらに好ましく、80%以上であることが特に好ましい。 In addition, from the viewpoint of visibility when used in an image display device, the adhesive film preferably has a light transmittance at a wavelength of 430 nm of 60% or more, more preferably 70% or more, even more preferably 75% or more, and particularly preferably 80% or more.
 粘接着膜の厚みは、粘接着性を担保する観点から3μm以上が好ましく、10μm以上がより好ましく、20μm以上がさらに好ましく、30μm以上が特に好ましく、とりわけ40μm以上が好ましい。一方、粘接着膜の厚さの上限値は、光学異方性積層体の薄肉化に寄与する観点から175μm以下が好ましく、120μm以下がより好ましく、80μm以下がさらに好ましく、60μm以下が特に好ましい。 The thickness of the adhesive film is preferably 3 μm or more from the viewpoint of ensuring adhesiveness, more preferably 10 μm or more, even more preferably 20 μm or more, particularly preferably 30 μm or more, and especially preferably 40 μm or more. On the other hand, the upper limit of the thickness of the adhesive film is preferably 175 μm or less from the viewpoint of contributing to the thinning of the optically anisotropic laminate, more preferably 120 μm or less, even more preferably 80 μm or less, and especially preferably 60 μm or less.
 粘接着膜形成用組成物は、硬化性樹脂と光重合開始剤を含む。粘接着膜形成用組成物の光重合開始剤は、前記保護層形成用組成物で挙げられた光重合開始剤を用いることができる。 The adhesive film-forming composition contains a curable resin and a photopolymerization initiator. The photopolymerization initiator of the adhesive film-forming composition can be any of the photopolymerization initiators listed for the protective layer-forming composition.
 粘接着膜形成用組成物の光重合開始剤の含有量は特に制限されるものではない。重合反応を十分に進行させて、粘接着膜としての形状安定性を向上させる観点から、粘接着膜形成用組成物の光重合開始剤の含有量は硬化性樹脂100質量部に対して0.1質量部以上が好ましく、0.5質量部以上がより好ましく、1質量部以上がさらに好ましく、2質量部以上が特に好ましい。また、粘接着膜形成用組成物の光重合開始剤の含有量の上限値は、粘着性を担保する観点から、硬化性樹脂100質量部に対して、15質量部以下が好ましく、10質量部以下がより好ましく、6質量部以下がさらに好ましく、4質量部以下が特に好ましい。 The content of the photopolymerization initiator in the composition for forming a tacky adhesive film is not particularly limited. From the viewpoint of sufficiently progressing the polymerization reaction and improving the shape stability of the tacky adhesive film, the content of the photopolymerization initiator in the composition for forming a tacky adhesive film is preferably 0.1 parts by mass or more, more preferably 0.5 parts by mass or more, even more preferably 1 part by mass or more, and particularly preferably 2 parts by mass or more, relative to 100 parts by mass of the curable resin. In addition, the upper limit of the content of the photopolymerization initiator in the composition for forming a tacky adhesive film is preferably 15 parts by mass or less, more preferably 10 parts by mass or less, even more preferably 6 parts by mass or less, and particularly preferably 4 parts by mass or less, relative to 100 parts by mass of the curable resin, from the viewpoint of ensuring adhesion.
 粘接着膜形成用組成物に含まれる硬化性樹脂は、粘着および/または接着性の機能を有する。硬化性樹脂としては、従来公知の各種の樹脂を使用することができる。例えば、アクリル樹脂、エポキシ樹脂、ウレタン樹脂、シリコーン樹脂、酢酸ビニル樹脂、ニトリルゴム、クロロプレンゴム、スチレンブタジエンゴム等が挙げられる。なかでも、粘接着性に優れている点から、アクリル樹脂が好ましい。 The curable resin contained in the adhesive film-forming composition has adhesive and/or bonding properties. As the curable resin, various resins that are conventionally known can be used. Examples include acrylic resin, epoxy resin, urethane resin, silicone resin, vinyl acetate resin, nitrile rubber, chloroprene rubber, and styrene butadiene rubber. Among these, acrylic resin is preferred because of its excellent adhesive properties.
 粘接着膜は、紫外線吸収剤を含有してもよい。紫外線吸収剤を含有することで、光による光学異方性積層体の劣化を低減することができる。
 紫外線吸収剤としては、保護層形成用組成物に挙げられた紫外線吸収剤を用いることができる。
The adhesive film may contain an ultraviolet absorbing agent. By containing an ultraviolet absorbing agent, deterioration of the optically anisotropic laminate caused by light can be reduced.
As the ultraviolet absorbing agent, the ultraviolet absorbing agents exemplified in the composition for forming the protective layer can be used.
[光学異方性積層体の製造法]
 本発明の光学異方性積層体の製造法は特に限定されないが、以下の(1)~(4)の方法などが挙げられる。
(1) 異方性色素膜が形成された基材に保護層形成用組成物を塗布、活性エネルギー線を用いて重合させることで保護層を形成して光学異方性積層体を製造する方法
(2) 異方性色素膜が形成された基材に保護層形成用組成物をシート状に形成、活性エネルギー線を用いて重合させることで保護層を製造して光学異方性積層体を製造する方法
(3) 異方性色素膜が形成されていない基材に塗布、またはシート状に形成した保護層形成用組成物を、異方性色素膜が製造された基材に転写した後、活性エネルギー線を用いて硬化させることで保護層を形成して光学異方性積層体を製造する方法
(4) 異方性色素膜が製造されていない基材に塗布、またはシート状に形成した保護層形成用組成物へ、異方性色素膜が製造された基材から異方性色素膜を転写した後、活性エネルギー線を用いて硬化させることで保護層を形成して光学異方性積層体を製造する方法
[Method for producing optically anisotropic laminate]
The method for producing the optically anisotropic laminate of the present invention is not particularly limited, but the following methods (1) to (4) can be mentioned.
(1) A method for producing an optically anisotropic laminate by applying a composition for forming a protective layer to a substrate on which an anisotropic dye film has been formed, and polymerizing the composition using active energy rays to form a protective layer. (2) A method for producing an optically anisotropic laminate by forming a composition for forming a protective layer in a sheet form on a substrate on which an anisotropic dye film has been formed, and polymerizing the composition using active energy rays to form a protective layer. (3) A method for producing an optically anisotropic laminate by transferring a composition for forming a protective layer that has been applied to a substrate on which an anisotropic dye film has not been formed, or formed into a sheet form, to a substrate on which an anisotropic dye film has been formed, and then curing the composition using active energy rays to form a protective layer. (4) A method for producing an optically anisotropic laminate by transferring an anisotropic dye film from a substrate on which an anisotropic dye film has been formed to a composition for forming a protective layer that has been applied to a substrate on which an anisotropic dye film has not been formed, or formed into a sheet form, and then curing the composition using active energy rays to form a protective layer.
 工程を短くする観点から、異方性色素膜が製造された基材に保護層形成用組成物を塗布またはシート状に形成、活性エネルギー線を用いて重合させることで保護層を形成して光学異方性積層体を製造する方法が好ましい。
 保護層以外の機能性膜についても、保護層と同様に形成することができる。
From the viewpoint of shortening the process, a method of producing an optically anisotropic laminate is preferred in which a composition for forming a protective layer is applied or formed into a sheet on a substrate on which an anisotropic dye film has been produced, and then polymerized using active energy rays to form a protective layer.
Functional films other than the protective layer can be formed in the same manner as the protective layer.
[光学素子]
 本発明の光学素子は、本発明の光学異方性積層体を含む。
[Optical elements]
The optical element of the present invention includes the optically anisotropic laminate of the present invention.
 本発明における光学素子とは、光吸収の異方性を利用して、直線偏光、円偏光、楕円偏光等を得る偏光素子、位相差素子、光学補償素子、反射、輝度向上、屈折異方性や伝導異方性等の機能を有する素子を表す。光学素子の有する機能は単独でも複数でもよい。これらの機能は、異方性色素膜形成プロセスと、基板や有機化合物(色素や透明材料)を含有する組成物の選択により、適宜調整することができる。 In the present invention, the optical element refers to a polarizing element that utilizes the anisotropy of light absorption to obtain linearly polarized light, circularly polarized light, elliptically polarized light, etc., a phase difference element, an optical compensation element, and an element that has functions such as reflection, brightness improvement, refractive anisotropy, and conductive anisotropy. An optical element may have one or more functions. These functions can be appropriately adjusted by selecting the anisotropic dye film formation process and the composition containing the substrate and organic compound (dye or transparent material).
 本発明の光学素子は、偏光素子、他の機能を組み合わせた偏光素子として用いることが好ましく、偏光素子として用いることがより好ましい。
 本発明の光学素子は、基板上に塗布等により異方性色素膜を形成することで偏光素子を得ることができるという点から、フレキシブルディスプレイ等の用途にも好適に使用することができる。
The optical element of the present invention is preferably used as a polarizing element or a polarizing element combined with other functions, and is more preferably used as a polarizing element.
The optical element of the present invention can be suitably used for applications such as flexible displays because a polarizing element can be obtained by forming an anisotropic dye film on a substrate by coating or the like.
[偏光素子]
 本発明の光学素子を偏光素子として用いる場合、偏光素子は、本発明の光学異方性積層体を有するものであれば他の如何なる層を有するものであってもよい。
[Polarizing element]
When the optical element of the present invention is used as a polarizing element, the polarizing element may have any other layer as long as it has the optically anisotropic laminate of the present invention.
 偏光素子に併用できる層は、製造プロセス、特性および機能に合わせ適宜設けることができ、その積層の位置、順番等は特に限定されない。
 光学機能を有する層は、以下の様な方法により形成することができる。
The layers that can be used in combination with the polarizing element can be provided appropriately in accordance with the manufacturing process, characteristics, and functions, and the positions and order of lamination thereof are not particularly limited.
The layer having an optical function can be formed by the following method.
 位相差フィルムとしての機能を有する層は、位相差フィルムを、偏光素子を構成する他の層に塗布や貼合等を行うことにより形成することができる。位相差フィルムは、たとえば、特開平2-59703号公報、特開平4-230704号公報等に記載の延伸処理を施したり、特開平7-230007号公報等に記載された処理を施したりすることにより形成することができる。 The layer that functions as a retardation film can be formed by coating or laminating a retardation film onto other layers that make up the polarizing element. The retardation film can be formed, for example, by carrying out the stretching treatment described in JP-A-2-59703 and JP-A-4-230704, or the treatment described in JP-A-7-230007.
 輝度向上フィルムとしての機能を有する層は、輝度向上フィルムを、偏光素子を構成する他の層に塗布や貼合等を行うことにより形成することができる。輝度向上フィルムは、たとえば、特開2002-169025号公報および特開2003-29030号公報に記載されるような方法で微細孔を形成することにより、または、選択反射の中心波長が異なる2層以上のコレステリック液晶層を重畳することにより形成することができる。 The layer that functions as a brightness enhancement film can be formed by coating or laminating the brightness enhancement film onto other layers that make up the polarizing element. The brightness enhancement film can be formed, for example, by forming micropores using the methods described in JP-A-2002-169025 and JP-A-2003-29030, or by superimposing two or more cholesteric liquid crystal layers that have different central wavelengths of selective reflection.
 反射フィルムまたは半透過反射フィルムとしての機能を有する層は、たとえば、蒸着やスパッタリングなどで得られた金属薄膜を、偏光素子を構成する他の層に塗布や貼合等を行うことにより形成することができる。 A layer that functions as a reflective film or semi-transparent reflective film can be formed, for example, by coating or laminating a thin metal film obtained by vapor deposition or sputtering onto other layers that make up the polarizing element.
 拡散フィルムとしての機能を有する層は、たとえば、偏光素子を構成する他の層に微粒子を含む樹脂溶液をコーティングすることにより形成することができる。 The layer that functions as a diffusion film can be formed, for example, by coating the other layers that make up the polarizing element with a resin solution that contains fine particles.
 本発明の光学素子を、LCDやOLED等の各種の表示素子に用いる場合には、これらの表示素子を構成する電極基板等の表面に直接、本発明の光学素子を形成してもよいし、本発明の光学素子を、これら表示素子の構成部材として用いてもよい。 When the optical element of the present invention is used in various display elements such as LCDs and OLEDs, the optical element of the present invention may be formed directly on the surface of the electrode substrate or the like that constitutes these display elements, or the optical element of the present invention may be used as a component of these display elements.
 以下、実施例により本発明をさらに具体的に説明する。本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。
 以下の記載において、「部」は「質量部」を意味する。
The present invention will be described in more detail below with reference to examples. The present invention is not limited to the following examples as long as it does not depart from the gist of the present invention.
In the following description, "parts" means "parts by mass".
[測定・評価方法]
 以下の実施例及び比較例における各種の測定・評価方法は以下の通りである。
[Measurement and evaluation method]
Various measurement and evaluation methods in the following examples and comparative examples are as follows.
<分子量M>
 シリコーン樹脂の動粘度ηをA.J.Barryの式(下記式(4))に代入して、ジメチルシロキサン近似の分子量Mを求めた。(参考文献:A.J.Barry,J.Appl.physics.,17,1020,[1946])
  logη=1.00+0.0123M0.5 (4)
 粘度μから動粘度ηを算出する場合には、下記式(5)を用いる(密度:ρ)。
  η=μ/ρ               (5)
<Molecular weight M>
The kinetic viscosity η of the silicone resin was substituted into the A. J. Barry formula (the following formula (4)) to determine the molecular weight M of dimethylsiloxane. (Reference: A. J. Barry, J. Appl. physics, 17, 1020, [1946])
log η = 1.00 + 0.0123M 0.5 (4)
When calculating the kinetic viscosity η from the viscosity μ, the following formula (5) is used (density: ρ).
η = μ / ρ (5)
<表面自由エネルギー>
 表面自由エネルギーγは対象面に対して、水、ジヨードメタンの25℃での静的接触角を求め、D.K.Owens and R.C.Wendt,J.Appl.Polym.Sci.,13,1741(1969)に記載の理論式を用いることによって算出することができる。
 静的接触角は、協和界面科学株式会社製の接触角計「DropMaster500」を用いて測定した。測定温度は25℃、滴下量は2μLとし、液滴着滴1秒後の蒸留水およびジヨードメタンの接触角を評価した。それぞれ5点ずつ測定し平均値を算出した。算出した静的接触角の平均値を使い、上記非特許文献に記載の理論式を用いて表面自由エネルギーを算出した。
 γは表面自由エネルギーの分散成分(分散項)を、γは表面自由エネルギーの極性成分(極性項)をそれぞれ示す。
<Surface free energy>
The surface free energy γ can be calculated by determining the static contact angle of water or diiodomethane at 25° C. with respect to the target surface and using the theoretical formula described in D. K. Owens and R. C. Wendt, J. Appl. Polym. Sci., 13, 1741 (1969).
The static contact angle was measured using a contact angle meter "DropMaster 500" manufactured by Kyowa Interface Science Co., Ltd. The measurement temperature was 25°C, the amount of droplet was 2 μL, and the contact angles of distilled water and diiodomethane were evaluated 1 second after the droplet landed. Five points were measured for each and the average value was calculated. The surface free energy was calculated using the theoretical formula described in the above non-patent document using the average static contact angle calculated.
γ d represents the dispersion component (dispersion term) of the surface free energy, and γ h represents the polar component (polar term) of the surface free energy.
<耐熱性評価>
 耐熱試験として、光学異方性積層体を80℃のホットプレート上に5分間加熱した後に、ホットプレートから移動させて室温環境下に置いた。試験後の光学異方性積層体の外観を観察し、下記基準で評価した。
(評価基準)
 ○:良好な外観を維持していた。
 ×:白濁が認められた。
<Heat resistance evaluation>
In the heat resistance test, the optically anisotropic laminate was heated on a hot plate at 80° C. for 5 minutes, and then removed from the hot plate and placed in a room temperature environment. The appearance of the optically anisotropic laminate after the test was observed and evaluated according to the following criteria.
(Evaluation criteria)
A: Good appearance was maintained.
×: Cloudiness was observed.
<耐溶剤性評価>
 耐溶剤(エタノール)試験として、光学異方性積層体の上にエタノールを滴下した1分後に、綿棒でふき取りを行った。試験後の光学異方性積層体の外観を観察し、下記基準で評価した。
(評価基準)
 ○:良好な外観を維持していた。
 ×:綿棒のふき取り跡が認められた。
<Solvent resistance evaluation>
In a solvent resistance (ethanol) test, ethanol was dropped onto the optically anisotropic laminate, and one minute later, the laminate was wiped off with a cotton swab. After the test, the appearance of the optically anisotropic laminate was observed and evaluated according to the following criteria.
(Evaluation criteria)
A: Good appearance was maintained.
×: Traces of the cotton swab were observed.
[重合性液晶化合物・色素]
 以下の実施例及び比較例で用いた異方性色素膜に含有される重合性液晶化合物および色素の詳細については、以下の通りである。
[Polymerizable liquid crystal compounds/dyes]
Details of the polymerizable liquid crystal compounds and dyes contained in the anisotropic dye films used in the following Examples and Comparative Examples are as follows.
[重合性液晶化合物]
 以下の構造式に示す重合性液晶化合物(I-1)(分子量:828)を特開2020-042305号公報の記載に従い合成した。以下の構造式中、C1122はメチレン鎖が直鎖状に11個結合していることを意味する。
[Polymerizable Liquid Crystal Compound]
A polymerizable liquid crystal compound (I-1) (molecular weight: 828) represented by the following structural formula was synthesized according to the description of JP2020-042305A. In the following structural formula, C11H22 means that 11 methylene chains are bonded in a linear chain.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
<色素>
 色素(II-1)、(II-2)の化学構造を以下に示す。
<Dye>
The chemical structures of the dyes (II-1) and (II-2) are shown below.
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
〔第1の発明の実施例と比較例〕
[実施例I-1]
<異方性色素膜形成用組成物の調製>
 シクロペンタノン69.31部に、重合性液晶化合物(I-1)の28.57部、色素(II-1)(株式会社林原製)の0.34部、色素(II-2)(昭和化工株式会社製)の0.84部、IRGACURE(登録商標)369(BASF社製)(極大吸収波長319nm)の0.29部、BYK-361N(BYK-Chemie社製)の0.34部を加え、80℃で加熱攪拌後、シリンジフィルター(Membrane Solutions社製、PTFE13045、口径0.45μm)を備えたシリンジを用いて濾過することで異方性色素膜形成用組成物を得た。
[Examples of the first invention and comparative examples]
[Example I-1]
<Preparation of composition for forming anisotropic dye film>
To 69.31 parts of cyclopentanone, 28.57 parts of polymerizable liquid crystal compound (I-1), 0.34 parts of dye (II-1) (manufactured by Hayashibara Co., Ltd.), 0.84 parts of dye (II-2) (manufactured by Showa Kako Co., Ltd.), 0.29 parts of IRGACURE (registered trademark) 369 (manufactured by BASF) (maximum absorption wavelength 319 nm), and 0.34 parts of BYK-361N (manufactured by BYK-Chemie) were added, and the mixture was heated and stirred at 80° C., and then filtered using a syringe equipped with a syringe filter (manufactured by Membrane Solutions, PTFE13045, aperture 0.45 μm) to obtain a composition for forming an anisotropic dye film.
<異方性色素膜の形成>
 異方性色素膜形成用組成物をスピンコート法により、ガラス上にポリイミドの配向膜(LX1400、日立化成デュポンマイクロシステムズ社製、ラビング法で配向膜を形成)が形成された基板に成膜し、120℃で2分間加熱乾燥した後、液晶相まで冷却し露光量500mj/cm(365nm基準)で重合し、膜厚3μmの異方性色素膜を得た。
 得られた異方性色素膜は、異方性色素膜側に偏光板をかざして観察すると、偏光板を90度回転させるたびに明確な明暗が現れることから、良好な偏光性能を有しているものであった。
 この異方性色素膜について測定した表面自由エネルギーは、下記表1に示す通りである。
<Formation of anisotropic dye film>
The composition for forming an anisotropic dye film was applied by spin coating to a substrate on which a polyimide alignment film (LX1400, Hitachi Chemical DuPont Microsystems, the alignment film was formed by rubbing) had been formed on glass. The substrate was then dried by heating at 120°C for 2 minutes, cooled to the liquid crystal phase, and polymerized at an exposure dose of 500 mJ/ cm2 (based on 365 nm) to obtain an anisotropic dye film with a thickness of 3 μm.
When the obtained anisotropic dye film was observed by holding a polarizing plate over the anisotropic dye film, clear light and dark appeared every time the polarizing plate was rotated by 90 degrees, indicating that the film had good polarizing performance.
The surface free energy measured for this anisotropic dye film is shown in Table 1 below.
<保護層形成用組成物の調製>
 光硬化性シリコーン樹脂として、以下のフッ素含有光硬化性シリコーン樹脂X-12-2430C(信越化学工業社製)(R-1)を用いた。このフッ素含有光硬化性シリコーン樹脂の分子量Mは24000である。
<Preparation of protective layer forming composition>
As the photocurable silicone resin, the following fluorine-containing photocurable silicone resin X-12-2430C (manufactured by Shin-Etsu Chemical Co., Ltd.) (R-1) was used. This fluorine-containing photocurable silicone resin has a molecular weight M of 24,000.
 フッ素含有光硬化性シリコーン樹脂(R-1)の40部、光重合開始剤Omnirad 369(IGMRESINS社製)の0.40部、BYK-3550(BYK-Chemie社製)の1.20部、エタノールの60部を混合、攪拌し、シリンジフィルター(Membrane Solutions社製、PTFE13045、口径0.45μm)を備えたシリンジを用いて濾過することで保護層形成用組成物I-1を得た。 40 parts of fluorine-containing photocurable silicone resin (R-1), 0.40 parts of photopolymerization initiator Omnirad 369 (manufactured by IGMRESINS), 1.20 parts of BYK-3550 (manufactured by BYK-Chemie), and 60 parts of ethanol were mixed and stirred, and filtered using a syringe equipped with a syringe filter (manufactured by Membrane Solutions, PTFE13045, aperture 0.45 μm) to obtain protective layer forming composition I-1.
<保護層の形成>
 保護層形成用組成物I-1をスピンコート法により、異方性色素膜の上に製膜し、50℃で2分間加熱乾燥した後、露光量500mj/cm(365nm基準)で重合し、膜厚2μmの保護層I-1を形成して光学異方性積層体I-1を得た。
 形成された保護層I-1の表面自由エネルギーは表1に示す通りであった。
<Formation of protective layer>
The protective layer-forming composition I-1 was applied onto the anisotropic dye film by spin coating, and the film was dried by heating at 50°C for 2 minutes. The film was then polymerized at an exposure dose of 500 mj/ cm2 (based on 365 nm) to form a protective layer I-1 having a thickness of 2 μm, thereby obtaining an optically anisotropic laminate I-1.
The surface free energy of the protective layer I-1 thus formed is shown in Table 1.
[実施例I-2]
 フッ素含有光硬化性シリコーン樹脂(R-1)の40部を50部に、光重合開始剤Omnirad 369の0.40部を0.50部としたこと以外は、実施例I-1と同様にして形成した異方性色素膜の上に保護層I-2を形成して光学異方性積層体I-2を得た。形成された保護層I-2の表面自由エネルギーは表1に示す通りであった。
[Example I-2]
A protective layer I-2 was formed on the anisotropic dye film formed in the same manner as in Example I-1, except that the amount of the fluorine-containing photocurable silicone resin (R-1) was changed from 40 parts to 50 parts, and the amount of the photopolymerization initiator Omnirad 369 was changed from 0.40 parts to 0.50 parts, to obtain an optically anisotropic laminate I-2. The surface free energy of the protective layer I-2 formed was as shown in Table 1.
[実施例I-3]
 保護層形成用組成物の光硬化性シリコーン樹脂として、フッ素非含有光硬化性シリコーン樹脂X-40-2761(信越化学工業社製)(R-2)を用いたこと以外は、実施例I-1と同様にして異方性色素膜の上に保護層I-3を形成して光学異方性積層体I-3を得た。このフッ素非含有光硬化性シリコーン樹脂(R-2)の分子量Mは19000である。形成された保護層I-3の表面自由エネルギーは表1に示す通りであった。
[Example I-3]
A protective layer I-3 was formed on the anisotropic dye film in the same manner as in Example I-1, except that fluorine-free photocurable silicone resin X-40-2761 (manufactured by Shin-Etsu Chemical Co., Ltd.) (R-2) was used as the photocurable silicone resin of the protective layer-forming composition, to obtain an optically anisotropic laminate I-3. The molecular weight M of this fluorine-free photocurable silicone resin (R-2) is 19,000. The surface free energy of the formed protective layer I-3 is as shown in Table 1.
[比較例I-1]
 保護層形成用組成物の光硬化性樹脂として、以下の光硬化性ウレタンアクリレート樹脂 紫光UV-7600B(三菱ケミカル社製)(R-3)を用いたこと以外は、実施例I-1と同様にして異方性色素膜の上に保護層I-4を形成して光学異方性積層体I-4を得た。この光硬化性ウレタンアクリレート樹脂(R-3)の重量平均分子量(Mw)は2000である。形成された保護層I-4の表面自由エネルギーは表1に示す通りであった。
[Comparative Example I-1]
A protective layer I-4 was formed on the anisotropic dye film in the same manner as in Example I-1, except that the following photocurable urethane acrylate resin Shikoh UV-7600B (manufactured by Mitsubishi Chemical Corporation) (R-3) was used as the photocurable resin of the protective layer-forming composition, to obtain an optically anisotropic laminate I-4. The weight average molecular weight (Mw) of this photocurable urethane acrylate resin (R-3) was 2000. The surface free energy of the formed protective layer I-4 was as shown in Table 1.
[評価結果]
 実施例I-1~3及び比較例I-1で製造された光学異方性積層体I-1~4について、耐熱性と耐溶剤性の評価を行い、結果を表1に示した。
[Evaluation results]
The optically anisotropic laminates I-1 to I-4 produced in Examples I-1 to I-3 and Comparative Example I-1 were evaluated for heat resistance and solvent resistance. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
 表1より、異方性色素層と保護層の表面自由エネルギー差の絶対値が3mN/m以上の第1の発明の光学異方性積層体は、耐熱性、耐溶剤性に優れ、偏光子等の用途において、外観及び性能を良好に維持できることが分かる。 From Table 1, it can be seen that the optically anisotropic laminate of the first invention, in which the absolute value of the surface free energy difference between the anisotropic dye layer and the protective layer is 3 mN/ m2 or more, is excellent in heat resistance and solvent resistance, and can maintain good appearance and performance in applications such as polarizers.
〔第2の発明の実施例と比較例〕
[実施例II-1]
<異方性色素膜形成用組成物の調製>
 シクロペンタノン69.31部に、重合性液晶化合物(I-1)の28.57部、色素(II-1)(株式会社林原製)の0.34部、色素(II-2)(昭和化工株式会社製)の0.84部、IRGACURE(登録商標)369(BASF社製)(極大吸収波長319nm)の0.29部、BYK-361N(BYK-Chemie社製)の0.34部を加え、80℃で加熱攪拌後、シリンジフィルター(Membrane Solutions社製、PTFE13045、口径0.45μm)を備えたシリンジを用いて濾過することで異方性色素膜形成用組成物を得た。
[Examples of the second invention and comparative examples]
[Example II-1]
<Preparation of composition for forming anisotropic dye film>
To 69.31 parts of cyclopentanone, 28.57 parts of polymerizable liquid crystal compound (I-1), 0.34 parts of dye (II-1) (manufactured by Hayashibara Co., Ltd.), 0.84 parts of dye (II-2) (manufactured by Showa Kako Co., Ltd.), 0.29 parts of IRGACURE (registered trademark) 369 (manufactured by BASF) (maximum absorption wavelength 319 nm), and 0.34 parts of BYK-361N (manufactured by BYK-Chemie) were added, and the mixture was heated and stirred at 80° C., and then filtered using a syringe equipped with a syringe filter (manufactured by Membrane Solutions, PTFE13045, aperture 0.45 μm) to obtain a composition for forming an anisotropic dye film.
<異方性色素膜の形成>
 異方性色素膜形成用組成物をスピンコート法により、ガラス上にポリイミドの配向膜(LX1400、日立化成デュポンマイクロシステムズ社製、ラビング法で配向膜を形成)が形成された基板に成膜し、120℃で2分間加熱乾燥した後、液晶相まで冷却し露光量500mj/cm(365nm基準)で重合し、膜厚3μmの異方性色素膜を得た。
 得られた異方性色素膜は、異方性色素膜側に偏光板をかざして観察すると、偏光板を90度回転させるたびに明確な明暗が現れることから、良好な偏光性能を有しているものであった。
<Formation of anisotropic dye film>
The composition for forming an anisotropic dye film was applied by spin coating to a substrate on which a polyimide alignment film (LX1400, Hitachi Chemical DuPont Microsystems, the alignment film was formed by rubbing) had been formed on glass. The substrate was then dried by heating at 120°C for 2 minutes, cooled to the liquid crystal phase, and polymerized at an exposure dose of 500 mJ/ cm2 (based on 365 nm) to obtain an anisotropic dye film with a thickness of 3 μm.
When the obtained anisotropic dye film was observed by holding a polarizing plate over the anisotropic dye film, clear light and dark appeared every time the polarizing plate was rotated by 90 degrees, indicating that the film had good polarizing performance.
<保護層形成用組成物の調製>
 光硬化性シリコーン樹脂として、以下のフッ素含有光硬化性シリコーン樹脂X-12-2430C(信越化学工業社製)(R-1)を用いた。このフッ素含有光硬化性シリコーン樹脂の分子量Mは24000である。
<Preparation of protective layer forming composition>
As the photocurable silicone resin, the following fluorine-containing photocurable silicone resin X-12-2430C (manufactured by Shin-Etsu Chemical Co., Ltd.) (R-1) was used. This fluorine-containing photocurable silicone resin has a molecular weight M of 24,000.
 フッ素含有光硬化性シリコーン樹脂(R-1)の40部、光重合開始剤Omnirad 369(IGMRESINS社製)の0.40部、BYK-3550(BYK-Chemie社製)の1.20部、エタノールの60部を混合、攪拌し、シリンジフィルター(Membrane Solutions社製、PTFE13045、口径0.45μm)を備えたシリンジを用いて濾過することで保護層形成用組成物II-1を得た。 40 parts of fluorine-containing photocurable silicone resin (R-1), 0.40 parts of photopolymerization initiator Omnirad 369 (manufactured by IGMRESINS), 1.20 parts of BYK-3550 (manufactured by BYK-Chemie), and 60 parts of ethanol were mixed and stirred, and filtered using a syringe equipped with a syringe filter (manufactured by Membrane Solutions, PTFE13045, aperture 0.45 μm) to obtain protective layer forming composition II-1.
<保護層の形成>
 保護層形成用組成物II-1をスピンコート法により、異方性色素膜の上に製膜し、50℃で2分間加熱乾燥した後、露光量500mj/cm(365nm基準)で重合し、膜厚2μmの保護層II-1を形成して光学異方性積層体II-1を得た。
<Formation of protective layer>
The protective layer-forming composition II-1 was applied onto the anisotropic dye film by spin coating, and the film was dried by heating at 50°C for 2 minutes. The film was then polymerized at an exposure dose of 500 mj/ cm2 (based on 365 nm) to form a protective layer II-1 having a thickness of 2 μm, thereby obtaining an optically anisotropic laminate II-1.
<保護層形成用組成物に含有される樹脂を硬化して得られる膜の表面自由エネルギー>
 BYK-3550の1.20部を0部にしたこと以外は、保護層形成用組成物II-1と同様にして得られたR-1樹脂含有組成物をスピンコート法により、ガラス上に製膜し、50℃で2分間加熱乾燥した後、露光量500mj/cm(365nm基準)で重合することでR-1樹脂層を得た。フッ素含有光硬化性シリコーン樹脂(R-1)の表面自由エネルギーはR-1樹脂層の表面自由エネルギーとして求められ、表2に示す通りであった。
<Surface Free Energy of Film Obtained by Curing Resin Contained in Composition for Forming Protective Layer>
The R-1 resin-containing composition obtained in the same manner as in protective layer-forming composition II-1, except that 1.20 parts of BYK-3550 was changed to 0 parts, was formed into a film on glass by spin coating, and the film was dried by heating at 50°C for 2 minutes, and then polymerized at an exposure dose of 500 mj/ cm2 (based on 365 nm) to obtain an R-1 resin layer. The surface free energy of the fluorine-containing photocurable silicone resin (R-1) was determined as the surface free energy of the R-1 resin layer, and is shown in Table 2.
[実施例II-2]
 フッ素含有光硬化性シリコーン樹脂(R-1)の40部を50部に、光重合開始剤Omnirad 369の0.40部を0.50部としたこと以外は、実施例II-1と同様にして形成した異方性色素膜の上に保護層II-2を形成して光学異方性積層体II-2を得た。
[Example II-2]
A protective layer II-2 was formed on the anisotropic dye film formed in the same manner as in Example II-1, except that the amount of the fluorine-containing photocurable silicone resin (R-1) was changed from 40 parts to 50 parts, and the amount of the photopolymerization initiator Omnirad 369 was changed from 0.40 parts to 0.50 parts, to obtain an optically anisotropic laminate II-2.
[実施例II-3]
 保護層形成用組成物の光硬化性シリコーン樹脂として、フッ素非含有光硬化性シリコーン樹脂X-40-2761(信越化学工業社製)(R-2)を用いたこと以外は、実施例II-1と同様にして異方性色素膜の上に保護層II-3を形成して光学異方性積層体II-3を得た。このフッ素非含有光硬化性シリコーン樹脂(R-2)の分子量Mは19000である。
 光硬化性シリコーン樹脂(R-1)をフッ素非含有光硬化性シリコーン樹脂(R-2)にしたこと以外は実施例II-1と同様にしてR-2樹脂層を得た。フッ素非含有光硬化性シリコーン樹脂(R-2)の表面自由エネルギーはR-2樹脂層の表面自由エネルギーとして求められ、表2に示す通りであった。
[Example II-3]
A protective layer II-3 was formed on the anisotropic dye film in the same manner as in Example II-1, except that a fluorine-free photocurable silicone resin X-40-2761 (manufactured by Shin-Etsu Chemical Co., Ltd.) (R-2) was used as the photocurable silicone resin of the protective layer-forming composition, to obtain an optically anisotropic laminate II-3. The molecular weight M of this fluorine-free photocurable silicone resin (R-2) is 19,000.
The R-2 resin layer was obtained in the same manner as in Example II-1, except that the photocurable silicone resin (R-1) was replaced with the fluorine-free photocurable silicone resin (R-2). The surface free energy of the fluorine-free photocurable silicone resin (R-2) was determined as the surface free energy of the R-2 resin layer, and is shown in Table 2.
[比較例II-1]
 保護層形成用組成物の光硬化性樹脂として、以下の光硬化性ウレタンアクリレート樹脂紫光UV-7600B(三菱ケミカル社製)(R-3)を用いたこと以外は、実施例II-1と同様にして異方性色素膜の上に保護層II-4を形成して光学異方性積層体II-4を得た。この光硬化性ウレタンアクリレート樹脂(R-3)の重量平均分子量(Mw)は2000である。
 光硬化性シリコーン樹脂(R-1)を光硬化性ウレタンアクリレート樹脂(R-3)にしたこと以外は実施例II-1と同様にしてR-3樹脂層を得た。光硬化性ウレタンアクリレート樹脂(R-3)の表面自由エネルギーはR-3樹脂層の表面自由エネルギーとして求められ、表2に示す通りであった。
[Comparative Example II-1]
A protective layer II-4 was formed on the anisotropic dye film in the same manner as in Example II-1, except that the photocurable urethane acrylate resin Shikoh UV-7600B (manufactured by Mitsubishi Chemical Corporation) (R-3) was used as the photocurable resin of the protective layer-forming composition, to obtain an optically anisotropic laminate II-4. The weight average molecular weight (Mw) of this photocurable urethane acrylate resin (R-3) is 2000.
The R-3 resin layer was obtained in the same manner as in Example II-1, except that the photocurable silicone resin (R-1) was replaced with the photocurable urethane acrylate resin (R-3). The surface free energy of the photocurable urethane acrylate resin (R-3) was determined as the surface free energy of the R-3 resin layer, and is shown in Table 2.
[評価結果]
 実施例II-1~3及び比較例II-1で製造された光学異方性積層体II-1~4について、耐熱性と耐溶剤性の評価を行い、結果を表2に示した。
[Evaluation results]
The optically anisotropic laminates II-1 to II-4 produced in Examples II-1 to II-3 and Comparative Example II-1 were evaluated for heat resistance and solvent resistance. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000023
 表2より、保護層形成用組成物に含有される硬化性樹脂を硬化して得られる膜の表面自由エネルギーが45mN/m以下の第2の発明の光学異方性積層体は、耐熱性、耐溶剤性に優れ、偏光子等の用途において、外観及び性能を良好に維持できることが分かる。 From Table 2, it can be seen that the optically anisotropic laminate of the second invention, in which the surface free energy of the film obtained by curing the curable resin contained in the composition for forming a protective layer is 45 mN/ m2 or less, has excellent heat resistance and solvent resistance, and can maintain good appearance and performance in applications such as polarizers.
〔第3の発明の実施例と比較例〕
[実施例III-1]
<異方性色素膜形成用組成物の調製>
 シクロペンタノン69.31部に、重合性液晶化合物(I-1)の28.57部、色素(II-1)(株式会社林原製)の0.34部、色素(II-2)(昭和化工株式会社製)の0.84部、IRGACURE(登録商標)369(BASF社製)(極大吸収波長319nm)の0.29部、BYK-361N(BYK-Chemie社製)の0.34部を加え、80℃で加熱攪拌後、シリンジフィルター(Membrane Solutions社製、PTFE13045、口径0.45μm)を備えたシリンジを用いて濾過することで異方性色素膜形成用組成物を得た。
[Examples of the third invention and comparative examples]
[Example III-1]
<Preparation of composition for forming anisotropic dye film>
To 69.31 parts of cyclopentanone, 28.57 parts of polymerizable liquid crystal compound (I-1), 0.34 parts of dye (II-1) (manufactured by Hayashibara Co., Ltd.), 0.84 parts of dye (II-2) (manufactured by Showa Kako Co., Ltd.), 0.29 parts of IRGACURE (registered trademark) 369 (manufactured by BASF) (maximum absorption wavelength 319 nm), and 0.34 parts of BYK-361N (manufactured by BYK-Chemie) were added, and the mixture was heated and stirred at 80° C., and then filtered using a syringe equipped with a syringe filter (manufactured by Membrane Solutions, PTFE13045, aperture 0.45 μm) to obtain a composition for forming an anisotropic dye film.
<異方性色素膜の形成>
 異方性色素膜形成用組成物をスピンコート法により、ガラス上にポリイミドの配向膜(LX1400、日立化成デュポンマイクロシステムズ社製、ラビング法で配向膜を形成)が形成された基板に成膜し、120℃で2分間加熱乾燥した後、液晶相まで冷却し露光量500mj/cm(365nm基準)で重合し、膜厚3μmの異方性色素膜を得た。
 得られた異方性色素膜は、異方性色素膜側に偏光板をかざして観察すると、偏光板を90度回転させるたびに明確な明暗が現れることから、良好な偏光性能を有しているものであった。
<Formation of anisotropic dye film>
The composition for forming an anisotropic dye film was applied by spin coating to a substrate on which a polyimide alignment film (LX1400, Hitachi Chemical DuPont Microsystems, the alignment film was formed by rubbing) had been formed on glass. The substrate was then dried by heating at 120°C for 2 minutes, cooled to the liquid crystal phase, and polymerized at an exposure dose of 500 mJ/ cm2 (based on 365 nm) to obtain an anisotropic dye film with a thickness of 3 μm.
When the obtained anisotropic dye film was observed by holding a polarizing plate over the anisotropic dye film, clear light and dark appeared every time the polarizing plate was rotated by 90 degrees, indicating that the film had good polarizing performance.
<保護層形成用組成物の調製>
 光硬化性シリコーン樹脂として、以下のフッ素含有光硬化性シリコーン樹脂X-12-2430C(信越化学工業社製)(R-1)を用いた。このフッ素含有光硬化性シリコーン樹脂の分子量Mは24000である。
<Preparation of protective layer forming composition>
As the photocurable silicone resin, the following fluorine-containing photocurable silicone resin X-12-2430C (manufactured by Shin-Etsu Chemical Co., Ltd.) (R-1) was used. This fluorine-containing photocurable silicone resin has a molecular weight M of 24,000.
 フッ素含有光硬化性シリコーン樹脂(R-1)の40部、光重合開始剤Omnirad 369(IGMRESINS社製)の0.40部、BYK-3550(BYK-Chemie社製)の1.20部、エタノールの60部を混合、攪拌し、シリンジフィルター(Membrane Solutions社製、PTFE13045、口径0.45μm)を備えたシリンジを用いて濾過することで保護層形成用組成物III-1を得た。 40 parts of fluorine-containing photocurable silicone resin (R-1), 0.40 parts of photopolymerization initiator Omnirad 369 (manufactured by IGMRESINS), 1.20 parts of BYK-3550 (manufactured by BYK-Chemie), and 60 parts of ethanol were mixed and stirred, and filtered using a syringe equipped with a syringe filter (manufactured by Membrane Solutions, PTFE13045, aperture 0.45 μm) to obtain protective layer forming composition III-1.
<保護層の形成>
 保護層形成用組成物III-1をスピンコート法により、異方性色素膜の上に製膜し、50℃で2分間加熱乾燥した後、露光量500mj/cm(365nm基準)で重合し、膜厚2μmの保護層III-1を形成して光学異方性積層体III-1を得た。
<Formation of protective layer>
The protective layer-forming composition III-1 was applied onto the anisotropic dye film by spin coating, and the film was dried by heating at 50°C for 2 minutes. The film was then polymerized at an exposure dose of 500 mj/ cm2 (based on 365 nm) to form a protective layer III-1 having a thickness of 2 μm, thereby obtaining an optically anisotropic laminate III-1.
[実施例III-2]
 フッ素含有光硬化性シリコーン樹脂(R-1)の40部を50部に、光重合開始剤Omnirad 369の0.40部を0.50部としたこと以外は、実施例III-1と同様にして形成した異方性色素膜の上に保護層III-2を形成して光学異方性積層体III-2を得た。
[Example III-2]
A protective layer III-2 was formed on the anisotropic dye film formed in the same manner as in Example III-1, except that the amount of the fluorine-containing photocurable silicone resin (R-1) was changed from 40 parts to 50 parts, and the amount of the photopolymerization initiator Omnirad 369 was changed from 0.40 parts to 0.50 parts, to obtain an optically anisotropic laminate III-2.
[実施例III-3]
 保護層形成用組成物の光硬化性シリコーン樹脂として、フッ素非含有光硬化性シリコーン樹脂X-40-2761(信越化学工業社製)(R-2)を用いたこと以外は、実施例III-1と同様にして異方性色素膜の上に保護層III-3を形成して光学異方性積層体III-3を得た。このフッ素非含有光硬化性シリコーン樹脂(R-2)の分子量Mは19000である。
[Example III-3]
A protective layer III-3 was formed on the anisotropic dye film in the same manner as in Example III-1, except that a fluorine-free photocurable silicone resin X-40-2761 (manufactured by Shin-Etsu Chemical Co., Ltd.) (R-2) was used as the photocurable silicone resin of the protective layer-forming composition, to obtain an optically anisotropic laminate III-3. The molecular weight M of this fluorine-free photocurable silicone resin (R-2) is 19,000.
[比較例III-1]
 保護層形成用組成物の光硬化性樹脂として、以下の光硬化性ウレタンアクリレート樹脂 紫光UV-7600B(三菱ケミカル社製)(R-3)を用いたこと以外は、実施例III-1と同様にして異方性色素膜の上に保護層III-4を形成して光学異方性積層体III-4を得た。この光硬化性ウレタンアクリレート樹脂(R-3)の重量平均分子量(Mw)は2000である。
[Comparative Example III-1]
A protective layer III-4 was formed on the anisotropic dye film in the same manner as in Example III-1, except that the photocurable urethane acrylate resin SHIKO UV-7600B (manufactured by Mitsubishi Chemical Corporation) (R-3) was used as the photocurable resin of the protective layer-forming composition, to obtain an optically anisotropic laminate III-4. The weight average molecular weight (Mw) of this photocurable urethane acrylate resin (R-3) is 2000.
[評価結果]
 実施例III-1~3及び比較例III-1で製造された光学異方性積層体III-1~4について、耐熱性と耐溶剤性の評価を行い、結果を表3に示した。
[Evaluation results]
The optically anisotropic laminates III-1 to III-4 produced in Examples III-1 to III-3 and Comparative Example III-1 were evaluated for heat resistance and solvent resistance. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000024
 表3より、保護層が光硬化性シリコーン樹脂を含有する保護層形成用組成物から形成されている第3の発明の光学異方性積層体は、耐熱性、耐溶剤性に優れ、偏光子等の用途において、外観及び性能を良好に維持できることが分かる。 From Table 3, it can be seen that the optically anisotropic laminate of the third invention, in which the protective layer is formed from a protective layer-forming composition containing a photocurable silicone resin, has excellent heat resistance and solvent resistance, and can maintain good appearance and performance in applications such as polarizers.
 本発明を特定の態様を用いて詳細に説明したが、発明の効果が奏される範囲内で様々な変更が可能であることは当業者に明らかである。
 本出願は、2022年9月27日付で出願された日本特許出願2022-153906、日本特許出願2022-153907及び日本特許出願2022-153908に基づいており、その全体が引用により援用される。

 
Although the present invention has been described in detail using specific embodiments, it will be apparent to those skilled in the art that various modifications are possible within the scope of the invention.
This application is based on Japanese Patent Application No. 2022-153906, Japanese Patent Application No. 2022-153907, and Japanese Patent Application No. 2022-153908 filed on September 27, 2022, and is incorporated by reference in its entirety.

Claims (16)

  1.  異方性色素層に保護層が積層された光学異方性積層体であって、
     前記異方性色素層は色素、重合性液晶化合物及び光重合開始剤を含有する異方性色素膜形成用組成物から形成された層であり、
     前記異方性色素層と前記保護層の表面自由エネルギー差の絶対値が3mN/m以上である、光学異方性積層体。
    An optically anisotropic laminate in which a protective layer is laminated on an anisotropic dye layer,
    the anisotropic dye layer is a layer formed from a composition for forming an anisotropic dye film, which contains a dye, a polymerizable liquid crystal compound, and a photopolymerization initiator;
    An optically anisotropic laminate, wherein the absolute value of the difference in surface free energy between the anisotropic dye layer and the protective layer is 3 mN/ m2 or more.
  2.  前記保護層は光硬化性シリコーン樹脂を含有する保護層形成用組成物から形成された層である、請求項1に記載の光学異方性積層体。 The optically anisotropic laminate according to claim 1, wherein the protective layer is a layer formed from a protective layer-forming composition containing a photocurable silicone resin.
  3.  前記光硬化性シリコーン樹脂がフッ素原子を有する、請求項2に記載の光学異方性積層体。 The optically anisotropic laminate according to claim 2, wherein the photocurable silicone resin contains fluorine atoms.
  4.  前記重合性液晶化合物が繰り返し構造を有さない低分子重合性液晶化合物である、請求項1に記載の光学異方性積層体。 The optically anisotropic laminate according to claim 1, wherein the polymerizable liquid crystal compound is a low molecular weight polymerizable liquid crystal compound that does not have a repeating structure.
  5.  前記重合性液晶化合物が、下記式(1)で表される化合物である、請求項1に記載の光学異方性積層体。
     Q-R-A11-Y-A12-(Y-A13-R-Q  …(1)
    (式(1)中、
     -Qは、水素原子または重合性基を表し;
     -Qは、重合性基を表し;
     -R-および-R-は、それぞれ独立に、鎖状有機基を表し;
     -A11-および-A13-は、それぞれ独立に、下記式(2)で表される部分構造、2価有機基または単結合を表し;
     -A12-は、下記式(2)で表される部分構造または2価有機基を表し;
     -Y-および-Y-は、それぞれ独立に、単結合、-C(=O)O-、-OC(=O)-、-C(=S)O-、-OC(=S)-、-C(=O)S-、-SC(=O)-、-CHCH-、-CH=CH-、-C≡C-、-C(=O)NH-、-NHC(=O)-、-CHO-、-OCH-、-CHS-、または-SCH-を表し;
     -A11-および-A13-の一方は、下記式(2)で表される部分構造または2価有機基であり;
     kは1または2である。
     kが2の場合、2つの-Y-A13-は互いに同一でも異なっていてもよい。)
     -Cy-X-C≡C-X-  …(2)
    (式(2)中、
     -Cy-は、炭化水素環基または複素環基を表し;
     -X-は、-C(=O)O-、-OC(=O)-、-C(=S)O-、-OC(=S)-、-C(=O)S-、-SC(=O)-、-CHCH-、-CH=CH-、-C(=O)NH-、-NHC(=O)-、-CHO-、-OCH-、-CHS-、または-SCH-を表し;
     -X-は、単結合、-C(=O)O-、-OC(=O)-、-C(=S)O-、-OC(=S)-、-C(=O)S-、-SC(=O)-、-CHCH-、-CH=CH-、-C(=O)NH-、-NHC(=O)-、-CHO-、-OCH-、-CHS-、または-SCH-を表す。)
    2. The optically anisotropic laminate according to claim 1, wherein the polymerizable liquid crystal compound is a compound represented by the following formula (1):
    Q 1 -R 1 -A 11 -Y 1 -A 12 -(Y 2 -A 13 ) k -R 2 -Q 2 ... (1)
    (In formula (1),
    -Q1 represents a hydrogen atom or a polymerizable group;
    -Q2 represents a polymerizable group;
    -R 1 - and -R 2 - each independently represent a chain organic group;
    -A 11 - and -A 13 - each independently represent a partial structure represented by the following formula (2), a divalent organic group, or a single bond;
    -A 12 - represents a partial structure represented by the following formula (2) or a divalent organic group;
    Each of -Y 1 - and -Y 2 - independently represents a single bond, -C(=O)O-, -OC(=O)-, -C(=S)O-, -OC(=S)-, -C(=O)S-, -SC(=O)-, -CH 2 CH 2 -, -CH=CH-, -C≡C-, -C(=O)NH-, -NHC(=O)-, -CH 2 O-, -OCH 2 -, -CH 2 S-, or -SCH 2 -;
    One of -A 11 - and -A 13 - is a partial structure represented by the following formula (2) or a divalent organic group:
    k is 1 or 2.
    When k is 2, two -Y 2 -A 13 - may be the same or different.
    -Cy-X 2 -C≡C-X 1 - ... (2)
    (In formula (2),
    -Cy- represents a hydrocarbon ring group or a heterocyclic group;
    -X 1 - represents -C(=O)O-, -OC(=O)-, -C(=S)O-, -OC(=S)-, -C(=O)S-, -SC(=O)-, -CH 2 CH 2 -, -CH=CH-, -C(=O)NH-, -NHC(=O)-, -CH 2 O-, -OCH 2 -, -CH 2 S-, or -SCH 2 -;
    -X 2 - represents a single bond, -C(=O)O-, -OC(=O)-, -C(=S)O-, -OC(=S)-, -C(=O)S-, -SC(=O)-, -CH 2 CH 2 -, -CH=CH-, -C(=O)NH-, -NHC(=O)-, -CH 2 O-, -OCH 2 -, -CH 2 S-, or -SCH 2 -.
  6.  異方性色素層に保護層が積層された光学異方性積層体であって、
     前記異方性色素層は色素、重合性液晶化合物及び光重合開始剤を含有する異方性色素膜形成用組成物から形成された層であり、
     前記保護層は硬化性樹脂を含有する保護層形成用組成物から形成された層であり、
     前記硬化性樹脂を硬化して得られる膜の表面自由エネルギーが45mN/m以下である、光学異方性積層体。
    An optically anisotropic laminate in which a protective layer is laminated on an anisotropic dye layer,
    the anisotropic dye layer is a layer formed from a composition for forming an anisotropic dye film, which contains a dye, a polymerizable liquid crystal compound, and a photopolymerization initiator;
    the protective layer is a layer formed from a protective layer-forming composition containing a curable resin,
    An optically anisotropic laminate, wherein the surface free energy of a film obtained by curing the curable resin is 45 mN/ m2 or less.
  7.  前記硬化性樹脂は光硬化性シリコーン樹脂である、請求項1に記載の光学異方性積層体。 The optically anisotropic laminate according to claim 1, wherein the curable resin is a photocurable silicone resin.
  8.  前記光硬化性シリコーン樹脂がフッ素原子を有する、請求項2に記載の光学異方性積層体。 The optically anisotropic laminate according to claim 2, wherein the photocurable silicone resin contains fluorine atoms.
  9.  前記重合性液晶化合物が繰り返し構造を有さない低分子重合性液晶化合物である、請求項1に記載の光学異方性積層体。 The optically anisotropic laminate according to claim 1, wherein the polymerizable liquid crystal compound is a low molecular weight polymerizable liquid crystal compound that does not have a repeating structure.
  10.  前記重合性液晶化合物が、下記式(1)で表される化合物である、請求項1に記載の光学異方性積層体。
     Q-R-A11-Y-A12-(Y-A13-R-Q  …(1)
    (式(1)中、
     -Qは、水素原子または重合性基を表し;
     -Qは、重合性基を表し;
     -R-および-R-は、それぞれ独立に、鎖状有機基を表し;
     -A11-および-A13-は、それぞれ独立に、下記式(2)で表される部分構造、2価有機基または単結合を表し;
     -A12-は、下記式(2)で表される部分構造または2価有機基を表し;
     -Y-および-Y-は、それぞれ独立に、単結合、-C(=O)O-、-OC(=O)-、-C(=S)O-、-OC(=S)-、-C(=O)S-、-SC(=O)-、-CHCH-、-CH=CH-、-C≡C-、-C(=O)NH-、-NHC(=O)-、-CHO-、-OCH-、-CHS-、または-SCH-を表し;
     -A11-および-A13-の一方は、下記式(2)で表される部分構造または2価有機基であり;
     kは1または2である。
     kが2の場合、2つの-Y-A13-は互いに同一でも異なっていてもよい。)
     -Cy-X-C≡C-X-  …(2)
    (式(2)中、
     -Cy-は、炭化水素環基または複素環基を表し;
     -X-は、-C(=O)O-、-OC(=O)-、-C(=S)O-、-OC(=S)-、-C(=O)S-、-SC(=O)-、-CHCH-、-CH=CH-、-C(=O)NH-、-NHC(=O)-、-CHO-、-OCH-、-CHS-、または-SCH-を表し;
     -X-は、単結合、-C(=O)O-、-OC(=O)-、-C(=S)O-、-OC(=S)-、-C(=O)S-、-SC(=O)-、-CHCH-、-CH=CH-、-C(=O)NH-、-NHC(=O)-、-CHO-、-OCH-、-CHS-、または-SCH-を表す。)
    2. The optically anisotropic laminate according to claim 1, wherein the polymerizable liquid crystal compound is a compound represented by the following formula (1):
    Q 1 -R 1 -A 11 -Y 1 -A 12 -(Y 2 -A 13 ) k -R 2 -Q 2 ... (1)
    (In formula (1),
    -Q1 represents a hydrogen atom or a polymerizable group;
    -Q2 represents a polymerizable group;
    -R 1 - and -R 2 - each independently represent a chain organic group;
    -A 11 - and -A 13 - each independently represent a partial structure represented by the following formula (2), a divalent organic group, or a single bond;
    -A 12 - represents a partial structure represented by the following formula (2) or a divalent organic group;
    Each of -Y 1 - and -Y 2 - independently represents a single bond, -C(=O)O-, -OC(=O)-, -C(=S)O-, -OC(=S)-, -C(=O)S-, -SC(=O)-, -CH 2 CH 2 -, -CH=CH-, -C≡C-, -C(=O)NH-, -NHC(=O)-, -CH 2 O-, -OCH 2 -, -CH 2 S-, or -SCH 2 -;
    One of -A 11 - and -A 13 - is a partial structure represented by the following formula (2) or a divalent organic group:
    k is 1 or 2.
    When k is 2, two -Y 2 -A 13 - may be the same or different.
    -Cy-X 2 -C≡C-X 1 - ... (2)
    (In formula (2),
    -Cy- represents a hydrocarbon ring group or a heterocyclic group;
    -X 1 - represents -C(=O)O-, -OC(=O)-, -C(=S)O-, -OC(=S)-, -C(=O)S-, -SC(=O)-, -CH 2 CH 2 -, -CH=CH-, -C(=O)NH-, -NHC(=O)-, -CH 2 O-, -OCH 2 -, -CH 2 S-, or -SCH 2 -;
    -X 2 - represents a single bond, -C(=O)O-, -OC(=O)-, -C(=S)O-, -OC(=S)-, -C(=O)S-, -SC(=O)-, -CH 2 CH 2 -, -CH=CH-, -C(=O)NH-, -NHC(=O)-, -CH 2 O-, -OCH 2 -, -CH 2 S-, or -SCH 2 -.
  11.  異方性色素層に保護層が積層された光学異方性積層体であって、
     前記異方性色素層は色素、重合性液晶化合物及び光重合開始剤を含有する異方性色素膜形成用組成物から形成された層であり、
     前記保護層は光硬化性樹脂を含有する保護層形成用組成物から形成された層であり、
     前記光硬化性樹脂が光硬化性シリコーン樹脂を含む、光学異方性積層体。
    An optically anisotropic laminate in which a protective layer is laminated on an anisotropic dye layer,
    the anisotropic dye layer is a layer formed from a composition for forming an anisotropic dye film, which contains a dye, a polymerizable liquid crystal compound, and a photopolymerization initiator;
    the protective layer is a layer formed from a protective layer-forming composition containing a photocurable resin,
    The optically anisotropic laminate, wherein the photocurable resin comprises a photocurable silicone resin.
  12.  前記光硬化性シリコーン樹脂の分子量Mが5000以上である、請求項1に記載の光学異方性積層体。 The optically anisotropic laminate according to claim 1, wherein the molecular weight M of the photocurable silicone resin is 5000 or more.
  13.  前記光硬化性シリコーン樹脂がフッ素原子を有する、請求項1に記載の光学異方性積層体。 The optically anisotropic laminate according to claim 1, wherein the photocurable silicone resin contains fluorine atoms.
  14.  前記重合性液晶化合物が繰り返し構造を有さない低分子重合性液晶化合物である、請求項1に記載の光学異方性積層体。 The optically anisotropic laminate according to claim 1, wherein the polymerizable liquid crystal compound is a low molecular weight polymerizable liquid crystal compound that does not have a repeating structure.
  15.  前記重合性液晶化合物が、下記式(1)で表される化合物である、請求項1に記載の光学異方性積層体。
     Q-R-A11-Y-A12-(Y-A13-R-Q  …(1)
    (式(1)中、
     -Qは、水素原子または重合性基を表し;
     -Qは、重合性基を表し;
     -R-および-R-は、それぞれ独立に、鎖状有機基を表し;
     -A11-および-A13-は、それぞれ独立に、下記式(2)で表される部分構造、2価有機基または単結合を表し;
     -A12-は、下記式(2)で表される部分構造または2価有機基を表し;
     -Y-および-Y-は、それぞれ独立に、単結合、-C(=O)O-、-OC(=O)-、-C(=S)O-、-OC(=S)-、-C(=O)S-、-SC(=O)-、-CHCH-、-CH=CH-、-C≡C-、-C(=O)NH-、-NHC(=O)-、-CHO-、-OCH-、-CHS-、または-SCH-を表し;
     -A11-および-A13-の一方は、下記式(2)で表される部分構造または2価有機基であり;
     kは1または2である。
     kが2の場合、2つの-Y-A13-は互いに同一でも異なっていてもよい。)
     -Cy-X-C≡C-X-  …(2)
    (式(2)中、
     -Cy-は、炭化水素環基または複素環基を表し;
     -X-は、-C(=O)O-、-OC(=O)-、-C(=S)O-、-OC(=S)-、-C(=O)S-、-SC(=O)-、-CHCH-、-CH=CH-、-C(=O)NH-、-NHC(=O)-、-CHO-、-OCH-、-CHS-、または-SCH-を表し;
     -X-は、単結合、-C(=O)O-、-OC(=O)-、-C(=S)O-、-OC(=S)-、-C(=O)S-、-SC(=O)-、-CHCH-、-CH=CH-、-C(=O)NH-、-NHC(=O)-、-CHO-、-OCH-、-CHS-、または-SCH-を表す。)
    2. The optically anisotropic laminate according to claim 1, wherein the polymerizable liquid crystal compound is a compound represented by the following formula (1):
    Q 1 -R 1 -A 11 -Y 1 -A 12 -(Y 2 -A 13 ) k -R 2 -Q 2 ... (1)
    (In formula (1),
    -Q1 represents a hydrogen atom or a polymerizable group;
    -Q2 represents a polymerizable group;
    -R 1 - and -R 2 - each independently represent a chain organic group;
    -A 11 - and -A 13 - each independently represent a partial structure represented by the following formula (2), a divalent organic group, or a single bond;
    -A 12 - represents a partial structure represented by the following formula (2) or a divalent organic group;
    Each of -Y 1 - and -Y 2 - independently represents a single bond, -C(=O)O-, -OC(=O)-, -C(=S)O-, -OC(=S)-, -C(=O)S-, -SC(=O)-, -CH 2 CH 2 -, -CH=CH-, -C≡C-, -C(=O)NH-, -NHC(=O)-, -CH 2 O-, -OCH 2 -, -CH 2 S-, or -SCH 2 -;
    One of -A 11 - and -A 13 - is a partial structure represented by the following formula (2) or a divalent organic group:
    k is 1 or 2.
    When k is 2, two -Y 2 -A 13 - may be the same or different.
    -Cy-X 2 -C≡C-X 1 - ... (2)
    (In formula (2),
    -Cy- represents a hydrocarbon ring group or a heterocyclic group;
    -X 1 - represents -C(=O)O-, -OC(=O)-, -C(=S)O-, -OC(=S)-, -C(=O)S-, -SC(=O)-, -CH 2 CH 2 -, -CH=CH-, -C(=O)NH-, -NHC(=O)-, -CH 2 O-, -OCH 2 -, -CH 2 S-, or -SCH 2 -;
    -X 2 - represents a single bond, -C(=O)O-, -OC(=O)-, -C(=S)O-, -OC(=S)-, -C(=O)S-, -SC(=O)-, -CH 2 CH 2 -, -CH=CH-, -C(=O)NH-, -NHC(=O)-, -CH 2 O-, -OCH 2 -, -CH 2 S-, or -SCH 2 -.
  16.  請求項1~15のいずれか一項に記載の光学異方性積層体を有する、光学素子。

     
    An optical element comprising the optically anisotropic laminate according to any one of claims 1 to 15.

PCT/JP2023/035064 2022-09-27 2023-09-27 Optically anisotropic laminate and optical element WO2024071162A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2022-153908 2022-09-27
JP2022153906 2022-09-27
JP2022-153907 2022-09-27
JP2022153907 2022-09-27
JP2022-153906 2022-09-27
JP2022153908 2022-09-27

Publications (1)

Publication Number Publication Date
WO2024071162A1 true WO2024071162A1 (en) 2024-04-04

Family

ID=90477807

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/035064 WO2024071162A1 (en) 2022-09-27 2023-09-27 Optically anisotropic laminate and optical element

Country Status (1)

Country Link
WO (1) WO2024071162A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019181888A1 (en) * 2018-03-19 2019-09-26 三菱ケミカル株式会社 Composition for forming anisotropic dye film, anisotropic dye film and optical element
JP2021047248A (en) * 2019-09-17 2021-03-25 三菱ケミカル株式会社 Anisotropic dye film forming composition, anisotropic dye film, and optical element
JP2022028423A (en) * 2020-08-03 2022-02-16 三菱ケミカル株式会社 Anisotropic dye film-forming composition, anisotropic dye film, and optical element
WO2022114100A1 (en) * 2020-11-27 2022-06-02 三菱ケミカル株式会社 Optically anisotropic laminate and optical element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019181888A1 (en) * 2018-03-19 2019-09-26 三菱ケミカル株式会社 Composition for forming anisotropic dye film, anisotropic dye film and optical element
JP2021047248A (en) * 2019-09-17 2021-03-25 三菱ケミカル株式会社 Anisotropic dye film forming composition, anisotropic dye film, and optical element
JP2022028423A (en) * 2020-08-03 2022-02-16 三菱ケミカル株式会社 Anisotropic dye film-forming composition, anisotropic dye film, and optical element
WO2022114100A1 (en) * 2020-11-27 2022-06-02 三菱ケミカル株式会社 Optically anisotropic laminate and optical element

Similar Documents

Publication Publication Date Title
CN116736426A (en) Polarizing plate, display device provided with same, and method for manufacturing same
CN114375418B (en) Laminate and elliptical polarizing plate comprising same
CN113302528B (en) Circularly polarizing plate and organic EL display device using same
JP2023165718A (en) Polarizing film and method for manufacturing the same, polarizing plate, and display
TWI821401B (en) Polarizing film, polarizing plate containing same and display device
JP2023143910A (en) Polymerizable liquid crystal composition, polarizing film and method for manufacturing the same, polarizing plate and display device
JP6089512B2 (en) Laminate and optical film
CN111684326A (en) Laminate and method for producing same
CN114051586A (en) Long film
JP6394592B2 (en) Alignment layer for optically anisotropic film
WO2022114100A1 (en) Optically anisotropic laminate and optical element
WO2024071162A1 (en) Optically anisotropic laminate and optical element
KR102142223B1 (en) Substrate and optical film
JP7467850B2 (en) Composition for forming anisotropic dye film, anisotropic dye film, and optical element
CN112585513B (en) Laminate comprising horizontally aligned liquid crystal cured film
JP6010910B2 (en) Composition and optical film
JP5971039B2 (en) Substrate and optical film
JP7363887B2 (en) Composition for forming an anisotropic pigment film, anisotropic pigment film, and optical element
WO2023063249A1 (en) Compound, composition for anisotropic dye film comprising said compound, anisotropic dye film, and optical element
WO2024075762A1 (en) Compound, composition, anisotropic pigment film, and optical element
JP2022127209A (en) Polarizing plate and image display device
JP5998768B2 (en) Substrate and optical film
KR20230136734A (en) Polymerizable liquid crystal composition, polarizing film, polarizing film, circular polarizer, and display device
CN113150791A (en) Polymerizable liquid crystal composition, polarizing film, and polarizing plate
CN111971597A (en) Polymerizable liquid crystal composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23872384

Country of ref document: EP

Kind code of ref document: A1