WO2024075762A1 - Compound, composition, anisotropic pigment film, and optical element - Google Patents

Compound, composition, anisotropic pigment film, and optical element Download PDF

Info

Publication number
WO2024075762A1
WO2024075762A1 PCT/JP2023/036161 JP2023036161W WO2024075762A1 WO 2024075762 A1 WO2024075762 A1 WO 2024075762A1 JP 2023036161 W JP2023036161 W JP 2023036161W WO 2024075762 A1 WO2024075762 A1 WO 2024075762A1
Authority
WO
WIPO (PCT)
Prior art keywords
ring
group
dye
composition
substituent
Prior art date
Application number
PCT/JP2023/036161
Other languages
French (fr)
Japanese (ja)
Inventor
奏也 小島
靖 志賀
芳恵 ▲高▼見
良輔 朝戸
輝恒 大澤
淳一 大泉
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Publication of WO2024075762A1 publication Critical patent/WO2024075762A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/40Esters of unsaturated alcohols, e.g. allyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B29/00Monoazo dyes prepared by diazotising and coupling
    • C09B29/0003Monoazo dyes prepared by diazotising and coupling from diazotized anilines
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B31/00Disazo and polyazo dyes of the type A->B->C, A->B->C->D, or the like, prepared by diazotising and coupling
    • C09B31/02Disazo dyes
    • C09B31/04Disazo dyes from a coupling component "C" containing a directive amino group
    • C09B31/043Amino-benzenes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B31/00Disazo and polyazo dyes of the type A->B->C, A->B->C->D, or the like, prepared by diazotising and coupling
    • C09B31/16Trisazo dyes
    • C09B31/18Trisazo dyes from a coupling component "D" containing a directive amine group
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B67/00Influencing the physical, e.g. the dyeing or printing properties of dyestuffs without chemical reactions, e.g. by treating with solvents grinding or grinding assistants, coating of pigments or dyes; Process features in the making of dyestuff preparations; Dyestuff preparations of a special physical nature, e.g. tablets, films
    • C09B67/006Preparation of organic pigments
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]

Definitions

  • the present invention relates to compounds and compositions that are useful for polarizing films and the like provided in display elements such as light control elements, liquid crystal elements (LCDs), and organic electroluminescence elements (OLEDs).
  • display elements such as light control elements, liquid crystal elements (LCDs), and organic electroluminescence elements (OLEDs).
  • the present invention also relates to anisotropic dye films and optical elements that use the compositions.
  • linear and circular polarizing films are used to control the optical rotation and birefringence of the display.
  • Circular polarizing films are also used in OLEDs to prevent reflection of external light in bright places.
  • polarizing films include a polarizing film made of polyvinyl alcohol (PVA) dyed with low concentration of iodine (iodine-PVA polarizing film) (Patent Document 1).
  • PVA polyvinyl alcohol
  • iodine-PVA polarizing film low-concentration iodine-PVA polarizing plates have problems such as the iodine sublimating or deteriorating, causing a change in color, and warping due to relaxation of the stretching of the PVA, depending on the usage environment.
  • Patent Document 2 an anisotropic dye film formed by applying a liquid crystal composition containing a dye functions as a polarizing film
  • anisotropic dye film When using an anisotropic dye film as a polarizer, it is important that the anisotropic dye film has excellent optical performance, particularly a good dichroic ratio, and light resistance, and there is a demand for the development of an anisotropic dye film that has both high optical performance and high light resistance.
  • the present invention aims to provide a compound and composition that produces an anisotropic dye film that exhibits a high dichroic ratio and has excellent light resistance, an anisotropic dye film obtained from the composition, and an optical element that includes the anisotropic dye film.
  • the present inventors have discovered that a compound having a specific structure can solve the above problems.
  • the first aspect of the present invention has the following aspects.
  • -XA represents a monovalent organic group.
  • -RA1 and -RA2 each independently represent an alkyl group which may have a substituent.
  • -RA1 and -RA2 may be joined together to form a ring, but the -RA1 and -RA2 portions of the ring formed by -RA1 and -RA2 are formed only by a hydrocarbon chain.
  • -A 1 -, -A 2 -, -A 3 - and -A 4 - each independently represent a 1,4-phenylene group which may have a substituent.
  • n represents 0, 1, or 2. When n is 2, multiple -A 3 - may be the same or different.
  • -Ra and -Rb may together form a ring having 2 to 15 carbon atoms, and the ring may have a substituent.
  • a composition containing a compound represented by the following formula (2) and a polymerizable liquid crystal compound containing a compound represented by the following formula (2) and a polymerizable liquid crystal compound.
  • -XB represents a monovalent organic group.
  • Each of -RB1 and -RB2 independently represents an alkyl group which may have a substituent, and -RB1 and -RB2 may combine together to form a ring.
  • -B 1 - and -B 2 - each independently represents a 1,4-phenylene group which may have a substituent.
  • Each of -B 3 - and -B 4 - independently represents a divalent aromatic hydrocarbon ring group which may have a substituent.
  • n represents 0, 1, or 2. When n is 2, multiple -B 3 - may be the same or different.
  • -Ra and -Rb may together form a ring having 2 to 15 carbon atoms, and the ring may have a substituent.
  • the present inventors have found that the above-mentioned problems can be solved by a composition containing a polymerizable liquid crystal compound and a dye exhibiting specific maximum absorption wavelength characteristics.
  • the second aspect of the present invention has the following aspects.
  • [2-1] A composition containing a polymerizable liquid crystal compound and a dye, A composition in which the maximum absorption wavelength of the dye satisfies the following relation (11): ⁇ max2 ⁇ max1 ⁇ 0 (11) (In formula (11), ⁇ max1 represents the maximum absorption wavelength of the dye in a solvent, and ⁇ max2 represents the maximum absorption wavelength of the dye in a dye film formed using the composition.)
  • the compounds and compositions of the present invention can provide an anisotropic dye film that exhibits a high dichroic ratio and has excellent light resistance.
  • the present invention will be described in detail below with reference to the embodiments.
  • the present invention is not limited to the following embodiments, and can be modified in various ways within the scope of the present invention.
  • the "first invention” and the “second invention” will be collectively referred to as "the present invention.”
  • the anisotropic dye film in the present invention is a dye film having anisotropy in electromagnetic properties in any two directions selected from a total of three directions in a three-dimensional coordinate system including the thickness direction of the anisotropic dye film and any two orthogonal in-plane directions.
  • the electromagnetic properties include optical properties such as absorption and refraction, and electrical properties such as resistance and capacitance.
  • films having optical anisotropy such as absorption and refraction include polarizing films such as linear polarizing films and circular polarizing films, retardation films, and conductive anisotropic dye films.
  • the anisotropic dye film using the compound and composition of the present invention is preferably used as a polarizing film or a conductive anisotropic dye film, and more preferably used as a polarizing film.
  • the dye is a substance or compound that absorbs at least a part of the wavelengths in the visible light region (350 nm to 800 nm).
  • Dyes that can be used in the present invention include dichroic dyes.
  • the dichroic dye refers to a dye that has different absorbance in the long axis direction of the molecule and absorbance in the short axis direction.
  • the dye may or may not have liquid crystallinity.
  • liquid crystallinity refers to the ability to exhibit a liquid crystal phase at any temperature.
  • the compound of the first invention is a compound represented by the following formula (1) (hereinafter, sometimes referred to as "compound (1)").
  • -XA represents a monovalent organic group.
  • -RA1 and -RA2 each independently represent an alkyl group which may have a substituent.
  • -RA1 and -RA2 may be joined together to form a ring, but the -RA1 and -RA2 portions of the ring formed by -RA1 and -RA2 are formed only by a hydrocarbon chain.
  • -A 1 -, -A 2 -, -A 3 - and -A 4 - each independently represent a 1,4-phenylene group which may have a substituent.
  • n represents 0, 1, or 2. When n is 2, multiple -A 3 - may be the same or different.
  • ⁇ -XA> -XA represents a monovalent organic group.
  • the monovalent organic group in -XA does not have a polymerizable group, which will be described later.
  • the monovalent organic group in -XA has a polymerizable group, which will be described later.
  • the alkyl group having 1 to 15 carbon atoms which may have a branch, the cycloalkyl group having 5 to 14 ring-constituting atoms, and the aryl group having 5 to 14 ring-constituting atoms in -Ra and -Rb each may have a substituent.
  • one or more methylene groups contained in an alkyl group having 1 to 15 carbon atoms which may have a branch, a cycloalkyl group having 5 to 14 ring atoms, or a ring formed by combining -Ra and -Rb may have a structure in which they are replaced (displaced) by -O-, -S-, -NH-, -N(R z )-, -C( ⁇ O)-, -C( ⁇ O)-O-, -C( ⁇ O)-NH-, -CHF-, -CF 2 -, -CHCl-, or -CCl 2 -, or may have a structure in which they are replaced by a polymerizable group such as an acryloyloxy group, a methacryloyloxy group, or a glycidyloxy group.
  • R z represents a straight-chain or branched alkyl group having 1 to 6 carbon atoms.
  • -R f and -R g each independently represent a straight-chain or branched alkyl group having 1 to 15 carbon atoms, preferably 1 to 10 carbon atoms.
  • One or more methylene groups contained in the linear or branched alkyl group having 1 to 15 carbon atoms may be displaced by -O-, -S-, -NH-, -N(R h )-, -C( ⁇ O)-, -C( ⁇ O)-O-, -C( ⁇ O)-NH-, -CHF-, -CF 2 -, -CHCl-, or -CCl 2 -, or may be replaced by a polymerizable group such as an acryloyloxy group, a methacryloyloxy group, or a glycidyloxy group.
  • R h represents a linear or branched alkyl group having 1 to 6 carbon atoms.
  • the substituent permitted for the branched alkyl group having 1 to 15 carbon atoms in -Ra and -Rb is preferably -O- Rf , and examples thereof include methoxy, ethoxy, n-propoxy, n-butoxy, n-pentoxy, n-hexoxy, n-heptoxy, n-octoxy, acryloyloxy, methacryloyloxy, and glycidyloxy.
  • -R i and -R j each independently represent a straight-chain or
  • substituents for the cycloalkyl group or aryl group having 5 to 14 ring-constituting atoms in -Ra and -Rb are -R i and -O-R i , and examples thereof include methyl, ethyl, n-propyl, n-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, 2-ethylhexyl, methoxy, ethoxy, n-propoxy, n-butoxy, n-pentoxy, n-hexoxy, n-heptoxy, n-octoxy, 2-ethylhexyloxy, 5,5-dimethyl-3-methylhexyloxy, and the like.
  • Cycloalkane rings of cycloalkyl groups with 5 to 14 ring-constituting atoms of -Ra and -Rb include a cyclopropane ring, a cyclobutane ring, a cyclopentane ring, a cyclohexane ring, a cycloheptane ring, a cyclooctane ring, a cyclohexene ring, a norbornane ring, a bornane ring, an adamantane ring, a tetrahydronaphthalene ring, and a bicyclo[2.2.2]octane ring.
  • the aryl group having 5 to 14 ring-constituting atoms of -Ra and -Rb includes a monovalent group of an aromatic hydrocarbon ring or an aromatic heterocyclic ring.
  • the aromatic hydrocarbon ring of the monovalent group of the aromatic hydrocarbon ring include a benzene ring, a naphthalene ring, an anthracene ring, a phenanthrene ring, a perylene ring, a tetracene ring, a pyrene ring, a benzpyrene ring, a chrysene ring, a triphenylene ring, an acenaphthene ring, a fluoranthene ring, and a fluorene ring.
  • Examples of the aromatic heterocycle of the monovalent group of the aromatic heterocycle include a furan ring, a benzofuran ring, a thiophene ring, a benzothiophene ring, a pyrrole ring, a pyrazole ring, an imidazole ring, a thiazole ring, an isothiazole ring, an oxadiazole ring, a thiadiazole ring, a triazole ring, an indole ring, a carbazole ring, a pyrroloimidazole ring, a pyrrolopyrazole ring, a pyrrolopyrrole ring, a thienopyrrole ring, a thienothiophene ring, a furopyrrole ring, a furofuran ring, a furothiazole ring, a thienofuran ring, a thienothiazole
  • -Ra and -Rb are preferably alkyl groups having 1 to 15 carbon atoms which may be branched, or -Ra and -Rb together form a ring having 2 to 15 carbon atoms which may be substituted.
  • -Ra and -Rb are more preferably alkyl groups having 1 to 9 carbon atoms which may be branched, or -Ra and -Rb together form a ring having 2 to 10 carbon atoms; more preferably alkyl groups having 1 to 5 carbon atoms which may be branched, or -Ra and -Rb together form a ring having 2 to 6 carbon atoms; and particularly preferably alkyl groups having 1 to 3 carbon atoms which do not have a branch, or -Ra and -Rb together form a ring having 2 to 6 carbon atoms.
  • the above tends to improve the molecular orientation of compound (1).
  • ⁇ -RA1 and -RA2 > -RA1 and -RA2 each independently represent an alkyl group which may have a substituent.
  • -RA1 and -RA2 may be joined together to form a ring, but the -RA1 and -RA2 portions of the ring formed by -RA1 and -RA2 are formed only by a hydrocarbon chain.
  • the alkyl group of the alkyl group which may have a substituent of -RA1 and -RA2 may be linear or branched, and examples thereof include those exemplified as -Ra and -Rb, and the same applies to preferred examples.
  • a fluorine atom is preferred.
  • the ring When -RA1 and -RA2 combine together to form a ring, the ring preferably has 3 to 8 carbon atoms, and more preferably 4 or 5 carbon atoms.
  • substituents which may be possessed by the alkyl groups of -RA1 and -RA2 or the ring which -RA1 and -RA2 together form there may be mentioned those exemplified as the substituents which -Ra and -Rb may have.
  • -RA1 and -RA2 are preferably alkyl groups having 1 to 10 carbon atoms, which may have a substituent, more preferably alkyl groups having 1 to 6 carbon atoms, and even more preferably alkyl groups having 1 to 4 carbon atoms.
  • -N(-RA 1 )RA 2 include dimethylamino, diethylamino, dipropylamino, dibutylamino, ethylmethylamino, methylpropylamino, methylbutylamino, ethylpropylamino, ethylbutyl, azetidinyl, pyrrolidinyl, piperidinyl, azepanyl, and the above group having a fluorine atom.
  • diethylamino, isopropyl(methyl)amino, ethyl(isopropyl)amino, pyrrolidinyl, piperidinyl, and the above group having a fluorine atom are more preferred.
  • di(fluoroethyl)amino, di(fluoropropyl)amino, fluoroethyl(isopropyl)amino, and ethyl(fluoroisopropyl)amino are more preferred.
  • ⁇ -A 1 -, -A 2 -, -A 3 - and -A 4 -> -A 1 -, -A 2 -, -A 3 - and -A 4 - each independently represent a 1,4-phenylene group which may have a substituent.
  • examples of the substituent include -R A , -OH, -O-R A , -O-C( ⁇ O)-R A , -NH 2 , -NH-R A , -N(-R B )-R A , -C( ⁇ O)-R A , -C( ⁇ O)-O-R A , -C( ⁇ O)-NH 2 , -C( ⁇ O)-NH-R A , -C( ⁇ O)-N(-R B )-R A , -SH, -S-R A , trifluoromethyl group, sulfamoyl group, carboxy group, cyano group, nitro group and halogen.
  • -R A and -R B each independently represent a linear or branched alkyl group having 1 to 15 carbon atoms.
  • the number of carbon atoms in -R A and -R B is preferably 1 to 12, more preferably 1 to 9, from the viewpoint of improving molecular orientation with the polymerizable liquid crystal compound used in the first invention.
  • One or more methylene groups contained in the linear or branched alkyl group may be replaced by an ether oxygen atom, a thioether sulfur atom, an aminic nitrogen atom (-NH-, -N( Rz )-: here, Rz represents a linear or branched alkyl group having 1 to 6 carbon atoms, preferably 1 to 4 carbon atoms), a carbonyl group, an ester bond, an amide bond, -CHF-, -CF2- , -CHCl- or -CCl2- , or may be substituted by a polymerizable group such as an acryloyloxy group, a methacryloyloxy group or a glycidyloxy group.
  • substituents for the 1,4-phenylene group are -R A , -O-R A , a trifluoromethyl group, and a fluoro group.
  • -R A include n-propyl, n-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, and 5,5-dimethyl-3-methylhexyl.
  • the presence of the above-mentioned substituents tends to improve the molecular orientation of the dye of compound (1).
  • -A 1 -, -A 2 -, -A 3 - and -A 4 - are all unsubstituted 1,4-phenylene groups, since the absorption transition moment of compound (1) tends to coincide with the long axis direction of the compound, thereby increasing the dichroic ratio.
  • n represents 0, 1, or 2.
  • n is preferably 0 or 1, and more preferably 1. This tends to improve the molecular orientation of compound (1).
  • each -A 3 - may be the same or different.
  • the molecular weight of compound (1) is preferably 300 or more, more preferably 350 or more, and even more preferably 380 or more, and is preferably 1500 or less, more preferably 1200 or less, and even more preferably 1000 or less. Specifically, the molecular weight of compound (1) is preferably 300 to 1500, more preferably 350 to 1200, and even more preferably 380 to 1000. When the molecular weight is within the above range, appropriate molecular length and bulkiness are obtained, and therefore the molecular orientation as a dye tends to be good.
  • Specific examples of compound (1) include the following compounds, but are not limited to these.
  • Compound (1) can be produced by combining known chemical reactions such as alkylation reaction, esterification reaction, amidation reaction, etherification reaction, ipso substitution reaction, diazo coupling reaction, and coupling reaction using a metal catalyst.
  • compound (1) can be synthesized according to the methods described in the Examples below, or in “New Dye Chemistry” (Hosoda Yutaka, December 21, 1973, Gihodo), “General Overview of Synthetic Dyes” (Horiguchi Hiroshi, 1968, Sankyo Publishing), and “Theoretical Manufacturing Dye Chemistry” (Hosoda Yutaka, 1957, Gihodo).
  • composition of the first invention is a composition containing a compound represented by the following formula (2) (hereinafter, sometimes referred to as "compound (2)”) and a polymerizable liquid crystal compound.
  • -XB represents a monovalent organic group.
  • Each of -RB1 and -RB2 independently represents an alkyl group which may have a substituent, and -RB1 and -RB2 may combine together to form a ring.
  • -B 1 - and -B 2 - each independently represents a 1,4-phenylene group which may have a substituent.
  • Each of -B 3 - and -B 4 - independently represents a divalent aromatic hydrocarbon ring group which may have a substituent.
  • n represents 0, 1, or 2. When n is 2, multiple -B 3 - may be the same or different.
  • the composition of the first invention may be in a solution, liquid crystal, or dispersion state, so long as it does not cause phase separation.
  • the composition for forming an anisotropic dye film is preferably in a solution from the viewpoint of ease of application to a substrate.
  • the solid components remaining after removing the solvent from the composition for forming an anisotropic dye film are preferably in a liquid crystal phase state at any temperature from the viewpoint of alignment on a substrate as described below.
  • the liquid crystal phase state specifically refers to a liquid crystal state that exhibits both liquid and crystalline properties or intermediate properties, such as a nematic phase, smectic phase, cholesteric phase, or discotic phase, as described on pages 1-16 of "Basics and Applications of Liquid Crystals” (by Shoichi Matsumoto and Ichiro Tsunoda; 1991).
  • composition of the first invention contains compound (2) as a dye. It is presumed that by containing compound (2) having the specific structure represented by the above formula (2) as a dye, the dye association state in the anisotropic dye film is optimized, and an anisotropic dye film having good optical properties such as a dichroic ratio when used as a polarizer and high light resistance can be obtained.
  • composition of the first invention may contain only one type of compound (2), or may contain two or more types.
  • (-XB) -XB represents a monovalent organic group.
  • -XB the same groups as -XA in the above formula (1) can be mentioned, and preferred groups are also the same.
  • Each of --RB1 and --RB2 independently represents an alkyl group which may have a substituent, and --RB1 and --RB2 may combine together to form a ring.
  • Examples of --RB1 and --RB2 include the same as --RA1 and --RA2 in the above formula (1), and preferred examples are also the same.
  • (-B 1 - and -B 2 -) -B 1 - and -B 2 - each independently represent a 1,4-phenylene group which may have a substituent, and examples of the substituent which the 1,4-phenylene group may have include those exemplified as the substituent which the 1,4-phenylene groups of -A 1 -, -A 2 -, -A 3 - and -A 4 - in formula (1) may have, and preferred examples thereof are also the same.
  • -B 1 - and -B 2 - are preferably unsubstituted 1,4-phenylene groups.
  • Each of -B 3 - and -B 4 - independently represents a divalent aromatic hydrocarbon ring group which may have a substituent.
  • Aromatic hydrocarbon rings of divalent groups of aromatic hydrocarbon rings which may have a substituent include a benzene ring, a naphthalene ring, an anthracene ring, a phenanthrene ring, a perylene ring, a tetracene ring, a pyrene ring, a benzpyrene ring, a chrysene ring, a triphenylene ring, an acenaphthene ring, a fluoranthene ring, and a fluorene ring.
  • the absorption transition moment of compound (2) tends to coincide with the long axis direction of the dye, and the dichroic ratio can be increased, so a divalent group of a benzene ring (phenylene group) or a divalent group of a naphthalene ring (naphthylene group) is preferred, and a divalent group of a benzene ring (phenylene group) is more preferred.
  • a 1,4-phenylene group, a 1,4-naphthylene group, or a 2,6-naphthylene group is more preferred, a 1,4-phenylene group is even more preferred, and a 1,4-phenylene group having no substituent is particularly preferred.
  • Examples of the substituent permitted for the divalent group of the aromatic hydrocarbon ring include those exemplified as the substituent which the 1,4-phenylene group of -A 1 -, -A 2 -, -A 3 - and -A 4 - may have, and the preferred ones are also the same.
  • n 0, 1, or 2.
  • n is preferably 0 or 1, and more preferably 1. In this case, the molecular orientation of compound (2) tends to be good.
  • each --B 3 -- may be the same or different.
  • a suitable example of the compound (2) is the above-mentioned compound (1).
  • Specific examples of compound (2) include the following compounds in addition to the specific examples of compound (1) described above, but are not limited thereto.
  • composition of the second invention contains a dye whose maximum absorption wavelength satisfies the following relational expression (11) (hereinafter, may be referred to as "the dye of the second invention") and a polymerizable liquid crystal compound.
  • the composition of the second invention may contain only one type of the dye of the second invention, or may contain two or more types.
  • ⁇ max2 ⁇ max1 ⁇ 0 (11) In formula (11), ⁇ max1 represents the maximum absorption wavelength of the dye in a solvent, and ⁇ max2 represents the maximum absorption wavelength of the dye in a dye film formed using the composition.
  • the composition of the second invention may be in a solution, liquid crystal, or dispersion state, so long as it does not cause phase separation.
  • the composition for forming an anisotropic dye film is preferably in a solution from the viewpoint of ease of application to a substrate.
  • the solid components remaining after removing the solvent from the composition for forming an anisotropic dye film are preferably in a liquid crystal phase state at any temperature from the viewpoint of alignment on a substrate as described below.
  • the liquid crystal phase state specifically refers to a liquid crystal state that exhibits both liquid and crystalline properties or intermediate properties, such as a nematic phase, smectic phase, cholesteric phase, or discotic phase, as described on pages 1-16 of "Basics and Applications of Liquid Crystals” (by Shoichi Matsumoto and Ichiro Tsunoda; 1991).
  • the dye of the second invention satisfies ⁇ max2 - ⁇ max1 ⁇ 0, that is, ⁇ max2 is smaller than ⁇ max1 , and there is no particular restriction on the difference between ⁇ max1 and ⁇ max2 .
  • the dye of the second invention satisfies the following relational formula (11A).
  • ⁇ max1 and ⁇ max2 satisfy the following relational expression (11B), and it is even more preferable that they satisfy the following relational expression (11C).
  • the solvent in which the maximum absorption wavelength ⁇ max1 of the dye is measured is not particularly limited, and any solvent may be used as long as the dye dissolves to form a homogeneous solution.
  • the maximum absorption wavelength ⁇ max1 of the dye i.e., the wavelength ⁇ max1 at which the absorbance of the dye is maximized
  • the maximum absorption wavelength ⁇ max2 of the dye in the dye film is the wavelength ⁇ max2 at which the orthogonal absorbance of the dye in the dye film is maximized.
  • the maximum absorption wavelengths ⁇ max1 and ⁇ max2 are specifically measured by a spectrophotometer.
  • the values of the maximum absorption wavelengths ⁇ max1 and ⁇ max2 of the dye of the second invention are not particularly limited as long as they satisfy the above-mentioned relational formula (11).
  • the maximum absorption wavelength ⁇ max1 of the dye of the second invention is preferably in the range of 380 to 800 nm, more preferably in the range of 400 to 750 nm, and even more preferably in the range of 410 to 700 nm.
  • the maximum absorption wavelength ⁇ max2 of the dye of the second invention is preferably in the range of 350 to 800 nm, more preferably in the range of 380 to 750 nm, and further preferably in the range of 400 to 700 nm.
  • the dye of the second invention is not particularly limited as long as it satisfies the above relational formula (11), preferably the above relational formula (11A), more preferably the above relational formula (11B), and even more preferably the above relational formula (11C), but is preferably an azo dye from the viewpoint of optical performance such as dichroic ratio.
  • azo dyes a compound represented by the following formula (12) (hereinafter sometimes referred to as "compound (12)”) tends to have better optical performance such as dichroic ratio, and is therefore preferred.
  • -A 21 -, -A 22 -, and -A 23 - each independently represent a divalent group of an aromatic hydrocarbon ring which may have a substituent, or an aromatic heterocycle which may have a substituent
  • -X 20 and -Y 20 each independently represent an arbitrary monovalent substituent
  • m1 represents 1 or 2
  • n1 represents 0, 1, 2, or 3.
  • a divalent group of an aromatic hydrocarbon ring which may have a substituent examples include a benzene ring, a naphthalene ring, an anthracene ring, a phenanthrene ring, a perylene ring, a tetracene ring, a pyrene ring, a benzpyrene ring, a chrysene ring, a triphenylene ring, an acenaphthene ring, a fluoranthene ring, and a fluorene ring.
  • the absorption transition moment of compound (12) tends to coincide with the long axis direction of the dye, and the dichroic ratio can be increased, so a divalent group of a benzene ring (phenylene group) or a divalent group of a naphthalene ring (naphthylene group) is preferred, and a divalent group of a benzene ring (phenylene group) is more preferred.
  • a 1,4-phenylene group, a 1,4-naphthylene group, or a 2,6-naphthylene group is more preferred, a 1,4-phenylene group is even more preferred, and a 1,4-phenylene group having no substituent is particularly preferred.
  • substituents permitted for the divalent group of the aromatic hydrocarbon ring include -R A , -OH, -O-R A , -O-C( ⁇ O)-R A , -NH 2 , -NH-R A , -N(-R B )-R A , -C( ⁇ O)-R A , -C( ⁇ O)-O-R A , -C( ⁇ O)-NH 2 , -C( ⁇ O)-NH-R A , -C( ⁇ O)-N(-R B )-R A , -SH, -S-R A , trifluoromethyl group, sulfamoyl group, carboxy group, cyano group, nitro group, and halogen.
  • -R A and -R B each independently represent a straight-chain or branched alkyl group having 1 to 15 carbon atoms.
  • the number of carbon atoms in -R A and -R B is preferably 1 or more and 12 or less, and more preferably 1 or more and 9 or less, from the viewpoint of improving molecular alignment with the polymerizable liquid crystal compound used in the present invention.
  • One or more methylene groups contained in the linear or branched alkyl group may be replaced by an ether oxygen atom, a thioether sulfur atom, an aminic nitrogen atom (-NH-, -N( Rz )-: here, Rz represents a linear or branched alkyl group having 1 to 6 carbon atoms, preferably 1 to 4 carbon atoms), a carbonyl group, an ester bond, an amide bond, -CHF-, -CF2- , -CHCl- or -CCl2- , or may be substituted by a polymerizable group such as an acryloyloxy group, a methacryloyloxy group or a glycidyloxy group.
  • substituent permitted for the divalent group of the aromatic hydrocarbon ring are -R A , -O-R A , a trifluoromethyl group, and a fluoro group.
  • substituents permitted for the divalent group of the aromatic hydrocarbon ring are -R A , -O-R A , a trifluoromethyl group, and a fluoro group.
  • -R A include n-propyl, n-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, and 5,5-dimethyl-3-methylhexyl.
  • the presence of the above-mentioned substituents tends to improve the molecular orientation of the dye of compound (2).
  • a divalent group of an aromatic heterocycle which may have a substituent examples include a furan ring, a benzofuran ring, a thiophene ring, a benzothiophene ring, a pyrrole ring, a pyrazole ring, an imidazole ring, a thiazole ring, an isothiazole ring, an oxadiazole ring, a thiadiazole ring, a triazole ring, an indole ring, a carbazole ring, a pyrroloimidazole ring, a pyrrolopyrazole ring, a pyrrolopyrrole ring, a thienopyrrole ring, a thienothiophene ring, a furopyrrole ring, a furofuran ring, a furothiazole
  • Permissible substituents for the divalent group of the aromatic heterocycle include the same as those that may be possessed by the divalent group of the aromatic hydrocarbon ring, and the preferred substituents are also the same.
  • -A 21 - and -A 23 - are preferably each independently a divalent group of an aromatic hydrocarbon ring which may have a substituent, more preferably each independently a phenylene group which may have a substituent, particularly preferably a 1,4-phenylene group which may have a substituent, and particularly preferably an unsubstituted 1,4-phenylene group.
  • -A 22 - from the viewpoint of optical performance such as dichroic ratio, it is preferable that it is a divalent group of an aromatic hydrocarbon ring which may have a substituent, it is more preferable that it is a phenylene group which may have a substituent, it is particularly preferable that it is a 1,4-phenylene group which may have a substituent, and it is particularly preferable that it is a 1,4-phenylene group which has no substituent.
  • Each of -X 20 and -Y 20 independently represents any monovalent substituent.
  • -R x and -R y each independently represent an alkyl group, a cycloalkyl group, or an aryl group which may have a branch, and these may have a substituent.
  • the alkyl group preferably has 1 to 15 carbon atoms
  • the cycloalkyl group preferably has 5 to 14 ring atoms
  • the aryl group preferably has 5 to 14 ring atoms.
  • --R x and --R y may join together to form a ring preferably having 2 to 15 carbon atoms, more preferably 2 to 10 carbon atoms.
  • the monovalent substituents in -X 20 and -Y 20 do not have a polymerizable group as described below, while from the viewpoint of improving the mechanical strength of the anisotropic dye film, it is preferable that the monovalent substituents in -X 20 and -Y 20 have a polymerizable group as described below.
  • An alkyl group having 1 to 15 carbon atoms which may be branched, preferably has 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms.
  • a cycloalkyl group having 5 to 14 ring atoms preferably has 5 to 10 ring atoms, more preferably 5 to 6 ring atoms, and even more preferably 6 ring atoms.
  • An aryl group having 5 to 14 ring atoms preferably has 5 to 10 ring atoms, more preferably 5 to 6 ring atoms, and even more preferably 6 ring atoms. The above tends to result in good optical performance such as dichroic ratio and optimal dye association state.
  • An alkyl group having 1 to 15 carbon atoms, which may be branched, a cycloalkyl group having 5 to 14 atoms constituting a ring, and an aryl group having 5 to 14 atoms constituting a ring may each have a substituent.
  • one or more methylene groups contained in an alkyl group having 1 to 15 carbon atoms which may have a branch, a cycloalkyl group having 5 to 14 ring atoms, or a ring formed by combining -R x and -R y may have a structure in which they are replaced (displaced) by -O-, -S-, -NH-, -N(R z )-, -C( ⁇ O)-, -C( ⁇ O)-O-, -C( ⁇ O)-NH-, -CHF-, -CF 2 -, -CHCl-, or -CCl 2 -, or may have a structure in which they are replaced by a polymerizable group such as an acryloyloxy group, a methacryloyloxy group, or a glycidyloxy group.
  • R z represents a straight-chain or branched alkyl group having 1 to 6 carbon atoms.
  • -R f and -R g each independently represent a straight-chain or branched alkyl group having 1 to 15 carbon atoms, preferably 1 to 10 carbon atoms.
  • One or more methylene groups contained in the linear or branched alkyl group having 1 to 15 carbon atoms may be displaced by -O-, -S-, -NH-, -N(R h )-, -C( ⁇ O)-, -C( ⁇ O)-O-, -C( ⁇ O)-NH-, -CHF-, -CF 2 -, -CHCl-, or -CCl 2 -, or may be replaced by a polymerizable group such as an acryloyloxy group, a methacryloyloxy group, or a glycidyloxy group.
  • R h represents a linear or branched alkyl group having 1 to 6 carbon atoms.
  • the substituent permitted for the branched alkyl group having 1 to 15 carbon atoms in -R x and -R y is preferably -O-R f , and examples thereof include methoxy, ethoxy, n-propoxy, n-butoxy, n-pentoxy, n-hexoxy, n-heptoxy, n-octoxy, acryloyloxy, methacryloyloxy, and glycidyloxy.
  • -R i and -R j each independently represent a straight-
  • substituents for the cycloalkyl group or aryl group having 5 to 14 ring-constituting atoms in -R x and -R y are -R i and -O-R i , and examples thereof include methyl, ethyl, n-propyl, n-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, 2-ethylhexyl, methoxy, ethoxy, n-propoxy, n-butoxy, n-pentoxy, n-hexoxy, n-heptoxy, n-octoxy, 2-ethylhexyloxy, 5,5-dimethyl-3-methylhexyloxy, and the like.
  • Examples of the cycloalkane ring of the cycloalkyl group having 5 to 14 ring-constituting atoms of -R x and -R y include a cyclopropane ring, a cyclobutane ring, a cyclopentane ring, a cyclohexane ring, a cycloheptane ring, a cyclooctane ring, a cyclohexene ring, a norbornane ring, a bornane ring, an adamantane ring, a tetrahydronaphthalene ring, and a bicyclo[2.2.2]octane ring.
  • Examples of the aryl group having 5 to 14 ring-constituting atoms of -R x and -R y include the monovalent groups of the rings exemplified as the aromatic heterocycle and aromatic hydrocarbon ring in -A 21 -, -A 22 -, and -A 23 -.
  • -R x and -R y it is preferable that they are an alkyl group having 1 to 15 carbon atoms which may have a branch, or -R x and -R y together form a ring having 2 to 15 carbon atoms which may have a substituent.
  • the molecular orientation of the compound (12) tends to be good.
  • -R x is preferably a cycloalkyl group having 5 to 8 carbon atoms constituting the ring, which has no substituent or has an alkyl group having 1 to 10 carbon atoms as a substituent at the p-position, more preferably a cyclohexyl group having no substituent or has an alkyl group having 1 to 10 carbon atoms as a substituent at the p-position, and even more preferably a cyclohexyl group having an alkyl group having 3 to 6 carbon atoms as a substituent at the p-position.
  • -R x is preferably an alkyl group having 3 to 12 carbon atoms which may have a branch, and more preferably -R x is an alkyl group having 3 to 10 carbon atoms which may have a branch.
  • -R x , -O-R x , -O-C( ⁇ O)-R x , -C( ⁇ O)-O-R x , and -N(-R y )-R x are preferable, -O-R x , -O-C( ⁇ O)-R x , and -N(-R y )-R x are more preferable, -O-R x , -N(-R y )-R x , and -NH-R x are even more preferable, and a group represented by the following formula (12a) is particularly preferable.
  • -R x and -R y each independently represent an alkyl group or an aryl group which may have a branch, and the alkyl group or aryl group may have a substituent.
  • -R x and -R y may together form a ring having 2 to 15 carbon atoms together with N, and the ring may have a substituent.
  • Specific examples of the group represented by formula (12a) include preferred dimethylamino, diethylamino, di-n-propylamino, ethylmethylamino, methylpropylamino, ethylpropylamino, methylbutylamino, ethylbutylamino, azetidinyl, pyrrolidinyl, piperidinyl, azepanyl, morpholinyl, piperazinyl, and thiomorpholinyl groups, with diethylamino, pyrrolidinyl, and piperidinyl groups being more preferred.
  • the absorption transition moment of compound (12) coincides with the long axis direction of the compound, and therefore the dichroism tends to be good.
  • -R x and/or -R y in formula ( 12a ) are preferably a branched alkyl group, more preferably an isopropyl group or an isobutyl group.
  • -R x and -R y preferably have a substituent when it is necessary to adjust the absorption wavelength of the dye, and as the substituent, -OH, -O-R f , -O-C( ⁇ O)-R f , -C( ⁇ O)-R f , -C( ⁇ O)-O-R f , or a halogen atom is more preferable, and a fluorine atom is even more preferable.
  • -R f represents a linear or branched alkyl group having 1 to 15 carbon atoms, preferably 1 to 10 carbon atoms.
  • m1 represents 1 or 2. m1 is preferably 2. This tends to result in an optimal dye association state.
  • m1 is 2, each -A 21 - may be the same or different, but is preferably the same since this tends to result in an optimal dye association state.
  • n1 represents 0, 1, 2, or 3.
  • n1 is preferably 1 or 2 since this tends to result in an optimal dye association state, and more preferably 1 since this tends to result in better molecular orientation of compound (12).
  • each -A 22 - may be the same or different, but is preferably the same since this tends to result in an optimal dye association state.
  • m1 and n1 is not particularly limited as long as m1 and n1 are within the above range, but is preferably 2 or 3, and more preferably 3. This tends to improve the molecular orientation of compound (12).
  • Specific examples of compound (12) include the following compounds, but are not limited thereto.
  • the composition of the first invention contains compound (2).
  • the composition of the first invention may contain a dye other than compound (2).
  • the dye other than compound (2) contained in the composition of the first invention include azo dyes other than compound (2), quinone dyes (including naphthoquinone dyes, anthraquinone dyes, etc.), stilbene dyes, cyanine dyes, phthalocyanine dyes, indigo dyes, and condensed polycyclic dyes (including perylene dyes, oxazine dyes, acridine dyes, etc.).
  • the composition of the first invention may contain only one type of dye other than compound (2) alone, or may contain two or more types in any combination and ratio.
  • the composition of the second invention preferably contains compound (12) as the dye of the second invention.
  • the composition of the second invention may contain a dye other than the dye of the second invention.
  • Examples of the dye other than the dye of the second invention contained in the composition of the second invention that do not satisfy the above relational formula (11) include azo dyes, quinone dyes (including naphthoquinone dyes, anthraquinone dyes, etc.), stilbene dyes, cyanine dyes, phthalocyanine dyes, indigo dyes, and condensed polycyclic dyes (including perylene dyes, oxazine dyes, acridine dyes, etc.).
  • the composition of the present invention i.e., the composition of the first invention and the composition of the second invention, preferably contains a dye other than compound (2) or the dye of the second invention, whose wavelength showing a maximum value in the absorption curve in the wavelength range of 350 nm to 800 nm is 5 nm or more different from the wavelength showing a maximum value in the absorption curve in the wavelength range of 350 nm to 800 nm of compound (2) or the dye of the second invention contained in the composition, and more preferably contains a compound whose wavelength showing a maximum value in the absorption curve in the wavelength range of 350 nm to 800 nm is 10 nm or more different from the wavelength showing a maximum value in the absorption curve in the wavelength range of 350 nm to 800 nm of compound (2) or the dye of the second invention contained in the composition.
  • a dye other than compound (2) or the dye of the second invention whose wavelength showing a maximum value in the absorption curve in the wavelength range of 350 nm to 800 nm is 5 nm
  • the molecular weight of the dye contained in the composition of the present invention (when two or more dyes are used in combination, the molecular weight of each dye) is preferably 300 or more, more preferably 350 or more, and even more preferably 380 or more, and is preferably 1500 or less, more preferably 1200 or less, and even more preferably 1000 or less.
  • the molecular weight of the dye contained in the composition of the present invention is preferably 300 to 1500, more preferably 350 to 1200, and even more preferably 380 to 1000.
  • the molecular weight of the dye is the sum of the atomic weights contained in the dye molecule.
  • the content of the dye in the composition of the present invention (when two or more dyes are used in combination, the total content of each dye) is, for example, preferably 0.01 parts by mass or more, more preferably 0.05 parts by mass or more, and preferably 30 parts by mass or less, more preferably 10 parts by mass or less, relative to the solid content (100 parts by mass) of the composition.
  • the content of the dye in the composition is, for example, preferably 0.01 to 30 parts by mass, more preferably 0.05 to 10 parts by mass, relative to the solid content (100 parts by mass) of the composition.
  • the content of the dye is within the above range, the polymerizable liquid crystal compound contained in the composition of the present invention tends to be polymerized without disturbing the alignment of the liquid crystal compound contained in the composition of the present invention. If the content of the dye is equal to or greater than the above lower limit, sufficient light absorption and sufficient polarization performance tend to be obtained. If the content of the dye is equal to or less than the above upper limit, inhibition of the alignment of the liquid crystal molecules tends to be suppressed.
  • the solids content of the composition corresponds to the sum of all components in the composition other than the solvent.
  • the composition of the present invention may contain, as an essential component, compound (2) or the dye of the second invention as a dye, and may also contain the above-mentioned other dyes together with compound (2) or the dye of the second invention.
  • the proportion of compound (2) or the dye of the second invention in 100% by mass of the total amount of dyes in the composition of the present invention is preferably 5% by mass or more, more preferably 10% by mass or more, and particularly preferably 15 to 100% by mass.
  • Compound (2) contained in the composition of the present invention and dyes such as the dye of the second invention can be produced by combining known chemical reactions such as an alkylation reaction, an esterification reaction, an amidation reaction, an etherification reaction, an ipso substitution reaction, a diazo coupling reaction, and a coupling reaction using a metal catalyst.
  • compound (2) the dye of the second invention
  • compound (2) can be synthesized according to the method described in the Examples below, or in “New Dye Chemistry” (Hosoda Yutaka, December 21, 1973, Gihodo), “General Synthetic Dyes” (Horiguchi Hiroshi, 1968, Sankyo Publishing), and “Theoretical Manufacturing Dye Chemistry” (Hosoda Yutaka, 1957, Gihodo).
  • the liquid crystal compound refers to a substance that exhibits a liquid crystal state, and specifically refers to a compound that does not directly transition from a crystal to a liquid state but becomes a liquid state via an intermediate state that exhibits properties of both a crystal and a liquid, as described on pages 1 to 28 of "Liquid Crystal Handbook" (Maruzen Co., Ltd., published on October 30, 2000).
  • the polymerizable liquid crystal compound contained in the composition of the present invention is a liquid crystal compound having a polymerizable group, which will be described later.
  • the polymerizable group can be located at any position in the liquid crystal compound molecule.
  • the polymerizable group is preferably substituted at the terminal of the liquid crystal compound molecule from the viewpoint of ease of polymerization.
  • one or more polymerizable groups may be present in the liquid crystal compound molecule. When two or more polymerizable groups are present, it is preferable that they are present at both ends of the liquid crystal compound molecule from the viewpoint of ease of polymerization.
  • the polymerizable liquid crystal compound is preferably a compound having a carbon-carbon triple bond in the liquid crystal compound molecule.
  • the carbon-carbon triple bond is capable of rotational motion while also being able to become the core of the liquid crystal molecule, and the molecular mobility is high, and there is strong intermolecular interaction between the liquid crystal molecules and with compounds having a ⁇ -conjugated system such as dye molecules, which tends to result in high molecular orientation.
  • the polymerizable liquid crystal compound contained in the composition of the present invention is not particularly limited, and any liquid crystal compound having a polymerizable group can be used.
  • the polymerizable liquid crystal compound contained in the composition of the present invention may be a compound represented by the following formula (3) (hereinafter, sometimes referred to as "polymerizable liquid crystal compound (3)").
  • -Q1 represents a hydrogen atom or a polymerizable group
  • -Q2 represents a polymerizable group
  • -R 1 - and -R 2 - each independently represent a chain organic group
  • -A 11 - and -A 13 - each independently represent a partial structure represented by the following formula (4), a divalent organic group, or a single bond
  • -A 12 - represents a partial structure represented by the following formula (4) or a divalent organic group:
  • -C y - represents a hydrocarbon ring group or a heterocyclic group
  • formula (3) may be the following formula (3A) or the following formula (3B).
  • formula (3) may be the following formula (3C) or the following formula (3D).
  • formula (3) may be the following formula (3E) or the following formula (3F).
  • Q 1 -R 1 -A 11 -Y 1 -A 12 -(Y 2 -X 1 -C ⁇ C-X 2 -C y ) k -R 2 -Q 2 (3F)
  • -A 11 -, -A 12 - and -A 13 - are each independently a partial structure or a divalent organic group represented by formula (4).
  • -A 11 - and -A 13 - may be a single bond, but -A 11 - and -A 13 - are not both single bonds.
  • the hydrocarbon ring group in -C y - includes an aromatic hydrocarbon ring group and a non-aromatic hydrocarbon ring group.
  • the aromatic hydrocarbon ring group includes an unlinked aromatic hydrocarbon ring group and a linked aromatic hydrocarbon ring group.
  • the non-linked aromatic hydrocarbon ring group is a divalent group of a monocyclic or condensed aromatic hydrocarbon ring, and preferably has 6 to 20 carbon atoms, because the appropriate core size provides good molecular orientation.
  • the non-linked aromatic hydrocarbon ring group more preferably has 6 to 15 carbon atoms.
  • aromatic hydrocarbon rings examples include a benzene ring, a naphthalene ring, an anthracene ring, a phenanthrene ring, a perylene ring, a tetracene ring, a pyrene ring, a benzpyrene ring, a chrysene ring, a triphenylene ring, an acenaphthene ring, a fluoranthene ring, and a fluorene ring.
  • the linked aromatic hydrocarbon ring group is a divalent group in which a plurality of monocyclic or condensed aromatic hydrocarbon rings are bonded by single bonds and have a bond on an atom constituting the ring.
  • the number of carbon atoms in the monocyclic or condensed ring is preferably 6 to 20 because the molecular orientation is good due to the appropriate core size.
  • the number of carbon atoms in the monocyclic or condensed ring is more preferably 6 to 15.
  • Examples of the linked aromatic hydrocarbon ring group include a divalent group in which a first monocyclic or condensed aromatic hydrocarbon ring having 6 to 20 carbon atoms is bonded by a single bond to a second monocyclic or condensed aromatic hydrocarbon ring having 6 to 20 carbon atoms, which has a first bond on an atom constituting the ring of the first monocyclic or condensed aromatic hydrocarbon ring having 6 to 20 carbon atoms, and a second bond on an atom constituting the ring of the second monocyclic or condensed aromatic hydrocarbon ring having 6 to 20 carbon atoms.
  • Specific examples of the linked aromatic hydrocarbon ring group include a biphenyl-4,4'-diyl group.
  • the aromatic hydrocarbon ring group a non-linked aromatic hydrocarbon ring group is preferable because it optimizes the intermolecular interaction acting between liquid crystal compounds, thereby improving the molecular alignment.
  • the aromatic hydrocarbon ring group is preferably a divalent group of a benzene ring or a divalent group of a naphthalene ring, and more preferably a divalent group of a benzene ring (phenylene group).
  • phenylene group a 1,4-phenylene group is preferable.
  • -C y - is one of these groups, the linearity of the liquid crystal molecules is increased, and the effect of improving molecular alignment tends to be obtained.
  • Non-aromatic hydrocarbon ring groups include unlinked non-aromatic hydrocarbon ring groups and linked non-aromatic hydrocarbon ring groups.
  • the non-linked non-aromatic hydrocarbon ring group is a divalent group of a monocyclic or condensed non-aromatic hydrocarbon ring, and preferably has 3 to 20 carbon atoms because the appropriate core size provides good molecular orientation.
  • the non-linked non-aromatic hydrocarbon ring group more preferably has 3 to 15 carbon atoms.
  • non-aromatic hydrocarbon rings examples include a cyclopropane ring, a cyclobutane ring, a cyclopentane ring, a cyclohexane ring, a cycloheptane ring, a cyclooctane ring, a cyclohexene ring, a norbornane ring, a bornane ring, an adamantane ring, a tetrahydronaphthalene ring, and a bicyclo[2.2.2]octane ring.
  • the non-linked non-aromatic hydrocarbon ring group includes an alicyclic hydrocarbon ring group that does not have an unsaturated bond between the atoms that constitute the ring of the non-aromatic hydrocarbon ring, and an unsaturated non-aromatic hydrocarbon ring group that has an unsaturated bond between the atoms that constitute the ring of the non-aromatic hydrocarbon ring.
  • the non-linked non-aromatic hydrocarbon ring group is preferably an alicyclic hydrocarbon ring group.
  • the linked non-aromatic hydrocarbon ring group is a divalent group in which a plurality of monocyclic or condensed non-aromatic hydrocarbon rings are bonded together with single bonds and has a bond on an atom constituting the ring; or a divalent group in which one or more rings selected from the group consisting of monocyclic aromatic hydrocarbon rings, condensed aromatic hydrocarbon rings, monocyclic non-aromatic hydrocarbon rings, and condensed non-aromatic hydrocarbon rings are bonded together with a monocyclic or condensed non-aromatic hydrocarbon ring with a single bond and has a bond on an atom constituting the ring.
  • the number of carbon atoms in the single ring or condensed ring is preferably 3 to 20 because an appropriate core size provides good molecular orientation.
  • Examples of the linked non-aromatic hydrocarbon ring group include a divalent group in which a first monocyclic or condensed non-aromatic hydrocarbon ring having 3 to 20 carbon atoms is bonded to a second monocyclic or condensed non-aromatic hydrocarbon ring having 3 to 20 carbon atoms by a single bond, the divalent group having a first bond on an atom constituting the first monocyclic or condensed non-aromatic hydrocarbon ring having 3 to 20 carbon atoms, and a second bond on an atom constituting the second monocyclic or condensed non-aromatic hydrocarbon ring having 3 to 20 carbon atoms.
  • Further examples include a divalent group in which a monocyclic or condensed aromatic hydrocarbon ring having 3 to 20 carbon atoms is bonded to a monocyclic or condensed non-aromatic hydrocarbon ring having 3 to 20 carbon atoms by a single bond, the divalent group having a first bond on an atom constituting the monocyclic or condensed aromatic hydrocarbon ring having 3 to 20 carbon atoms, and a second bond on an atom constituting the monocyclic or condensed non-aromatic hydrocarbon ring having 3 to 20 carbon atoms.
  • linking non-aromatic hydrocarbon ring groups include bis(cyclohexane)-4,4'-diyl and 1-cyclohexylbenzene-4,4'-diyl groups.
  • non-aromatic hydrocarbon ring group a non-linked non-aromatic hydrocarbon ring group is preferred because it optimizes the intermolecular interactions that act between liquid crystal compounds, thereby improving molecular orientation.
  • non-linked non-aromatic hydrocarbon ring group a divalent group of cyclohexane (cyclohexanediyl group) is preferable.
  • cyclohexanediyl group a cyclohexane-1,4-diyl group is preferable.
  • -C y - is one of these groups, the linearity of the liquid crystal molecules is increased, and the effect of improving molecular alignment tends to be obtained.
  • the heterocyclic group in -C y - includes an aromatic heterocyclic group and a non-aromatic heterocyclic group.
  • Aromatic heterocyclic groups include unlinked aromatic heterocyclic groups and linked aromatic heterocyclic groups.
  • the non-linked aromatic heterocyclic group is a divalent group of a monocyclic or condensed aromatic heterocyclic ring, and preferably has 4 to 20 carbon atoms because the appropriate core size provides good molecular orientation.
  • the non-linked aromatic heterocyclic group more preferably has 4 to 15 carbon atoms.
  • Aromatic heterocycles include furan ring, benzofuran ring, thiophene ring, benzothiophene ring, pyrrole ring, pyrazole ring, imidazole ring, thiazole ring, isothiazole ring, oxadiazole ring, thiadiazole ring, triazole ring, indole ring, carbazole ring, pyrroloimidazole ring, pyrrolopyrazole ring, pyrrolopyrrole ring, thienopyrrole ring, thienothiophene ring, furopyrrole ring, furofuran ring, thienofuran ring, thienothiazole ring, benzoisoxazole ring, benzoisothiazole ring, benzimidazole ring, pyridine ring, pyrazine ring, pyridazine ring, pyrimidine ring, tri
  • the linked aromatic heterocyclic group is a divalent group in which multiple monocyclic or condensed aromatic heterocyclic rings are bonded with single bonds and have bonds on the atoms that make up the ring.
  • the number of carbon atoms in the monocyclic or condensed ring is preferably 4 to 20, because the appropriate core size provides good molecular orientation.
  • the number of carbon atoms in the linked aromatic heterocyclic group is more preferably 4 to 15.
  • linked aromatic heterocyclic groups include divalent groups in which a first monocyclic or condensed aromatic heterocyclic ring having 4 to 20 carbon atoms is bonded to a second monocyclic or condensed aromatic heterocyclic ring having 4 to 20 carbon atoms by a single bond, the divalent group having a first bond on an atom constituting the ring of the first monocyclic or condensed aromatic heterocyclic ring having 4 to 20 carbon atoms, and a second bond on an atom constituting the ring of the second monocyclic or condensed aromatic heterocyclic ring having 4 to 20 carbon atoms.
  • Non-aromatic heterocyclic groups include unlinked non-aromatic heterocyclic groups and linked non-aromatic heterocyclic groups.
  • the non-linked non-aromatic heterocyclic group is a divalent group of a monocyclic or condensed non-aromatic heterocyclic ring, and preferably has 4 to 20 carbon atoms because the appropriate core size provides good molecular orientation.
  • the non-linked non-aromatic heterocyclic group more preferably has 4 to 15 carbon atoms.
  • non-aromatic heterocycles that are divalent groups of monocyclic or condensed non-aromatic heterocycles having 4 to 20 carbon atoms include a tetrahydrofuran ring, a tetrahydropyran ring, a dioxane ring, a tetrahydrothiophene ring, a tetrahydrothiopyran ring, a pyrrolidine ring, a piperidine ring, a dihydropyridine ring, a piperazine ring, a tetrahydrothiazole ring, a tetrahydrooxazole ring, an octahydroquinoline ring, a tetrahydroquinoline ring, an octahydroquinazoline ring, a tetrahydroquinazoline ring, a tetrahydroimidazole ring, a tetrahydrobenzimidazole ring
  • a linked non-aromatic heterocyclic group is a divalent group in which multiple monocyclic or condensed non-aromatic heterocyclic rings are bonded with single bonds and have bonds on the atoms that make up the ring.
  • the number of carbon atoms in the monocyclic or condensed ring is preferably 4 to 20, because the appropriate core size provides good molecular orientation.
  • the number of carbon atoms in the linked non-aromatic heterocyclic group is more preferably 4 to 15.
  • linked aromatic heterocyclic groups include divalent groups in which a first monocyclic or condensed non-aromatic heterocyclic ring having 4 to 20 carbon atoms is bonded to a second monocyclic or condensed non-aromatic heterocyclic ring having 4 to 20 carbon atoms by a single bond, the divalent group having a first bond on an atom constituting the ring of the first monocyclic or condensed non-aromatic heterocyclic ring having 4 to 20 carbon atoms, and a second bond on an atom constituting the ring of the second monocyclic or condensed non-aromatic heterocyclic ring having 4 to 20 carbon atoms.
  • the aromatic hydrocarbon ring group, non-aromatic hydrocarbon ring group, aromatic heterocyclic group and non-aromatic heterocyclic group in -C y - may each be substituted with one or more groups selected from the group consisting of -R k , -OH, -O-R k , -O-C( ⁇ O)-R k , -NH 2 , -NH-R k , -N(R k' )-R k , -C( ⁇ O)-R k , -C( ⁇ O)-O-R k , -C( ⁇ O)-NH 2 , -C( ⁇ O)-NH-R k , -C( ⁇ O)-N(R k' )-R k , -SH, -S-R k , trifluoromethyl group, sulfamoyl group, carboxy group, sulfo group, cyano group, nitro group, and
  • the aromatic hydrocarbon ring group, non-aromatic hydrocarbon ring group, aromatic heterocyclic group and non-aromatic heterocyclic group in -C y - are each preferably independently unsubstituted or substituted with a methyl group, a methoxy group, a fluorine atom, a chlorine atom or a bromine atom, and more preferably unsubstituted, in terms of high linearity of the molecular structure, and ease of association of the polymerizable liquid crystal compounds (3) with each other to exhibit a liquid crystal state.
  • the substituents possessed by the aromatic hydrocarbon ring group, non-aromatic hydrocarbon ring group, aromatic heterocyclic group and non-aromatic heterocyclic group in -C y - may be the same or different.
  • the aromatic hydrocarbon ring group, non-aromatic hydrocarbon ring group, aromatic heterocyclic group and non-aromatic heterocyclic group may be entirely substituted, entirely unsubstituted, or partly substituted and partly unsubstituted.
  • a hydrocarbon ring group is preferable, and a phenylene group or a cyclohexanediyl group is more preferable, because the molecular alignment of the polymerizable liquid crystal compound (3) is improved.
  • a 1,4-phenylene group or a cyclohexane-1,4-diyl group is further preferable, and a 1,4-phenylene group is particularly preferable, because the linearity of the molecular structure of the polymerizable liquid crystal compound (3) can be improved.
  • -X 1 - is preferably -C( ⁇ O)O-, -OC( ⁇ O)-, -C( ⁇ S)O-, -OC( ⁇ S)-, -C( ⁇ O)S-, -SC( ⁇ O)-, -CH 2 CH 2 -, -CH 2 O-, -OCH 2 -, -CH 2 S-, -SCH 2 -, etc., which have small ⁇ bonding property, because the polymerizable liquid crystal compound (3) tends to have linearity and easy rotational motion around the molecular short axis.
  • —X 1 — is preferably —CH 2 CH 2 —, —CH 2 O—, or —OCH 2 —.
  • -X 2 - is preferably a single bond, or -C( ⁇ O)O-, -OC( ⁇ O)-, -C( ⁇ S)O-, -OC( ⁇ S)-, -C( ⁇ O)S-, -SC( ⁇ O)-, -CH ⁇ CH-, -C( ⁇ O)NH-, or -NHC( ⁇ O)- having ⁇ -bonding properties, and is more preferably a single bond due to its higher linearity.
  • the polymerizable group in -Q1 and -Q2 is a group having a partial structure capable of being polymerized by light, heat, and/or radiation, and is a functional group or atomic group necessary for ensuring the function of polymerization. From the viewpoint of producing an anisotropic dye film, the polymerizable group is preferably a photopolymerizable group.
  • the polymerizable group includes, for example, an acryloyl group, a methacryloyl group, an acryloyloxy group, a methacryloyloxy group, an acryloylamino group, a methacryloylamino group, a vinyl group, a vinyloxy group, an ethynyl group, an ethynyloxy group, a 1,3-butadienyl group, a 1,3-butadienyloxy group, an oxiranyl group, an oxetanyl group, a glycidyl group, a glycidyloxy group, a styryl group, a styryloxy group, and the like, and an acryloyl group, a methacryloyl group, , acryloyloxy group, methacryloyloxy group, acryloylamino group, methacryloylamino group, oxiranyl
  • the chain organic group in -R 1 - and -R 2 - is a divalent organic group that does not contain a cyclic structure such as the above-mentioned aromatic hydrocarbon ring, non-aromatic hydrocarbon ring, aromatic heterocycle, or non-aromatic heterocycle.
  • alkylene group in these chain organic groups examples include linear or branched alkylene groups having 1 to 25 carbon atoms.
  • the carbon-carbon bond of the alkylene group may be partially unsaturated.
  • One or more methylene groups contained in the alkylene group may be displaced by -O-, -S-, -NH-, -N(R m )-, -C( ⁇ O)-, -C( ⁇ O)-O-, -C( ⁇ O)-NH-, -CHF-, -CF 2 -, -CHCl-, or -CCl 2 -.
  • R m represents a linear or branched alkyl group having 1 to 6 carbon atoms.
  • the alkylene group in these chain organic groups is preferably a straight-chain alkylene group having 1 to 25 carbon atoms, in which some of the carbon atoms may be unsaturated, and in which one or more methylene groups contained in the alkylene group may be replaced (displaced) by the above-mentioned groups, due to their high molecular linearity.
  • the number of atoms in the main chain (meaning the longest chain portion in the chain organic group) in the chain organic group is preferably 3 to 25, more preferably 5 to 20, and even more preferably 6 to 20.
  • r is an integer of 1 to 24, preferably an integer of 2 to 24, more preferably an integer of 4 to 19, and even more preferably an integer of 5 to 19.
  • r1, r2, and r3 each independently represent an integer, and the number of atoms in the main chain (meaning the longest chain portion in the chain organic group) in the chain organic group is appropriately adjusted to be preferably 3 to 25, more preferably 5 to 20, and even more preferably 6 to 20.
  • Each of -R 1 - and -R 2 - is preferably independently -(alkylene group)- or -O-(alkylene group)-, and more preferably -(alkylene group)- or -O-(alkylene group)-.
  • the chain organic group in -R 1 - and -R 2 - is -(alkylene group)-, and in another embodiment, it is -O-(alkylene group)-.
  • -R 1 - or -R 2 - which is not directly bonded to -X 1 -, -Y 1 - or -Y 2 - is preferably -O-(alkylene group)-.
  • the divalent organic group in -A 11 -, -A 12 - and -A 13 - is preferably a group represented by the following formula (5).
  • Q3 represents a hydrocarbon ring group or a heterocyclic group.
  • the hydrocarbon ring group in -Q 3 - includes an aromatic hydrocarbon ring group and a non-aromatic hydrocarbon ring group.
  • the aromatic hydrocarbon ring group includes an unlinked aromatic hydrocarbon ring group and a linked aromatic hydrocarbon ring group.
  • the non-linked aromatic hydrocarbon ring group is a divalent group of a monocyclic or condensed aromatic hydrocarbon ring, and preferably has 6 to 20 carbon atoms because the appropriate core size provides good molecular orientation.
  • the non-linked aromatic hydrocarbon ring group more preferably has 6 to 15 carbon atoms.
  • aromatic hydrocarbon rings examples include a benzene ring, a naphthalene ring, an anthracene ring, a phenanthrene ring, a perylene ring, a tetracene ring, a pyrene ring, a benzpyrene ring, a chrysene ring, a triphenylene ring, an acenaphthene ring, a fluoranthene ring, and a fluorene ring.
  • the linked aromatic hydrocarbon ring group is a divalent group in which a plurality of monocyclic or condensed aromatic hydrocarbon rings are bonded by single bonds and have a bond on an atom constituting the ring.
  • the number of carbon atoms in the monocyclic or condensed ring is preferably 6 to 20 because the appropriate core size provides good orientation.
  • the number of carbon atoms in the linked aromatic hydrocarbon ring group is more preferably 6 to 15.
  • Examples of the linked aromatic hydrocarbon ring group include a divalent group in which a first monocyclic or condensed aromatic hydrocarbon ring having 6 to 20 carbon atoms is bonded by a single bond to a second monocyclic or condensed aromatic hydrocarbon ring having 6 to 20 carbon atoms, which has a first bond on an atom constituting the ring of the first monocyclic or condensed aromatic hydrocarbon ring having 6 to 20 carbon atoms, and a second bond on an atom constituting the ring of the second monocyclic or condensed aromatic hydrocarbon ring having 6 to 20 carbon atoms.
  • Specific examples of the linked aromatic hydrocarbon ring group include biphenyl-4,4'-diyl groups.
  • the aromatic hydrocarbon ring group a non-linked aromatic hydrocarbon ring group is preferable because it optimizes the intermolecular interaction acting between liquid crystal compounds, thereby improving the molecular alignment.
  • the aromatic hydrocarbon ring group is preferably a divalent group of a benzene ring or a divalent group of a naphthalene ring, and more preferably a divalent group of a benzene ring (phenylene group).
  • phenylene group a 1,4-phenylene group is preferable. When -Q 3 - is one of these groups, the linearity of the liquid crystal molecules is increased, and the effect of improving molecular alignment tends to be obtained.
  • Non-aromatic hydrocarbon ring groups include unlinked non-aromatic hydrocarbon ring groups and linked non-aromatic hydrocarbon ring groups.
  • the non-linked non-aromatic hydrocarbon ring group is a divalent group of a monocyclic or condensed non-aromatic hydrocarbon ring, and preferably has 3 to 20 carbon atoms because the appropriate core size provides good molecular orientation.
  • the non-linked non-aromatic hydrocarbon ring group more preferably has 3 to 15 carbon atoms.
  • non-aromatic hydrocarbon rings examples include a cyclopropane ring, a cyclobutane ring, a cyclopentane ring, a cyclohexane ring, a cycloheptane ring, a cyclooctane ring, a cyclohexene ring, a norbornane ring, a bornane ring, an adamantane ring, a tetrahydronaphthalene ring, and a bicyclo[2.2.2]octane ring.
  • the non-linked non-aromatic hydrocarbon ring group includes an alicyclic hydrocarbon ring group that does not have an unsaturated bond between the atoms that constitute the ring of the non-aromatic hydrocarbon ring, and an unsaturated non-aromatic hydrocarbon ring group that has an unsaturated bond between the atoms that constitute the ring of the non-aromatic hydrocarbon ring.
  • the non-linked non-aromatic hydrocarbon ring group is preferably an alicyclic hydrocarbon ring group.
  • the linked non-aromatic hydrocarbon ring group is a divalent group in which a plurality of monocyclic or condensed non-aromatic hydrocarbon rings are bonded together with single bonds and has a bond on an atom constituting the ring; or a divalent group in which one or more rings selected from the group consisting of monocyclic aromatic hydrocarbon rings, condensed aromatic hydrocarbon rings, monocyclic non-aromatic hydrocarbon rings, and condensed non-aromatic hydrocarbon rings are bonded together with a monocyclic or condensed non-aromatic hydrocarbon ring with a single bond and has a bond on an atom constituting the ring.
  • the number of carbon atoms in the single ring or condensed ring is preferably 3 to 20 because an appropriate core size provides good molecular orientation.
  • Examples of the linked non-aromatic hydrocarbon ring group include a divalent group in which a first monocyclic or condensed non-aromatic hydrocarbon ring having 3 to 20 carbon atoms is bonded to a second monocyclic or condensed non-aromatic hydrocarbon ring having 3 to 20 carbon atoms by a single bond, the divalent group having a first bond on an atom constituting the first monocyclic or condensed non-aromatic hydrocarbon ring having 3 to 20 carbon atoms, and a second bond on an atom constituting the second monocyclic or condensed non-aromatic hydrocarbon ring having 3 to 20 carbon atoms.
  • Further examples include a divalent group in which a monocyclic or condensed aromatic hydrocarbon ring having 3 to 20 carbon atoms is bonded to a monocyclic or condensed non-aromatic hydrocarbon ring having 3 to 20 carbon atoms by a single bond, the divalent group having a first bond on an atom constituting the monocyclic or condensed aromatic hydrocarbon ring having 3 to 20 carbon atoms, and a second bond on an atom constituting the monocyclic or condensed non-aromatic hydrocarbon ring having 3 to 20 carbon atoms.
  • linking non-aromatic hydrocarbon ring groups include bis(cyclohexane)-4,4'-diyl and 1-cyclohexylbenzene-4,4'-diyl groups.
  • non-aromatic hydrocarbon ring group a non-linked non-aromatic hydrocarbon ring group is preferred because it optimizes the intermolecular interactions that act between liquid crystal compounds, thereby improving molecular orientation.
  • cyclohexanediyl group a divalent group of cyclohexane (cyclohexanediyl group) is preferred.
  • cyclohexanediyl group a cyclohexane-1,4-diyl group is preferred.
  • the heterocyclic group in -Q 3 - includes an aromatic heterocyclic group and a non-aromatic heterocyclic group.
  • Aromatic heterocyclic groups include unlinked aromatic heterocyclic groups and linked aromatic heterocyclic groups.
  • the non-linked aromatic heterocyclic group is a divalent group of a monocyclic or condensed aromatic heterocyclic ring, and preferably has 4 to 20 carbon atoms because the appropriate core size provides good molecular orientation.
  • the non-linked aromatic heterocyclic group more preferably has 4 to 15 carbon atoms.
  • Aromatic heterocycles include a furan ring, a benzofuran ring, a thiophene ring, a benzothiophene ring, a pyrrole ring, a pyrazole ring, an imidazole ring, a thiazole ring, an oxadiazole ring, an indole ring, a carbazole ring, a pyrroloimidazole ring, a pyrrolopyrazole ring, a pyrrolopyrrole ring, a thienopyrrole ring, a thienothiophene ring, a furopyrrole ring, a furofuran ring, a thienofuran ring, a thienothiazole ring, a benzisoxazole ring, a benzisothiazole ring, a benzimidazole ring, a pyridine ring, a
  • the linked aromatic heterocyclic group is a divalent group in which multiple monocyclic or condensed aromatic heterocyclic rings are bonded with single bonds and have bonds on the atoms that make up the ring.
  • the number of carbon atoms in the monocyclic or condensed ring is preferably 4 to 20, because the appropriate core size provides good molecular orientation.
  • the number of carbon atoms in the linked aromatic heterocyclic group is more preferably 4 to 15.
  • linked aromatic heterocyclic groups include divalent groups in which a first monocyclic or condensed aromatic heterocyclic ring having 4 to 20 carbon atoms is bonded to a second monocyclic or condensed aromatic heterocyclic ring having 4 to 20 carbon atoms by a single bond, the divalent group having a first bond on an atom constituting the ring of the first monocyclic or condensed aromatic heterocyclic ring having 4 to 20 carbon atoms, and a second bond on an atom constituting the ring of the second monocyclic or condensed aromatic heterocyclic ring having 4 to 20 carbon atoms.
  • Non-aromatic heterocyclic groups include unlinked non-aromatic heterocyclic groups and linked non-aromatic heterocyclic groups.
  • the non-linked non-aromatic heterocyclic group is a divalent group of a monocyclic or condensed non-aromatic heterocyclic ring, and preferably has 4 to 20 carbon atoms because the appropriate core size provides good molecular orientation.
  • the non-linked non-aromatic heterocyclic group more preferably has 4 to 15 carbon atoms.
  • non-aromatic heterocycles that are divalent groups of monocyclic or condensed non-aromatic heterocycles having 4 to 20 carbon atoms include a tetrahydrofuran ring, a tetrahydropyran ring, a dioxane ring, a tetrahydrothiophene ring, a tetrahydrothiopyran ring, a pyrrolidine ring, a piperidine ring, a dihydropyridine ring, a piperazine ring, a tetrahydrothiazole ring, a tetrahydrooxazole ring, an octahydroquinoline ring, a tetrahydroquinoline ring, an octahydroquinazoline ring, a tetrahydroquinazoline ring, a tetrahydroimidazole ring, a tetrahydrobenzimidazole ring
  • a linked non-aromatic heterocyclic group is a divalent group in which multiple monocyclic or condensed non-aromatic heterocyclic rings are bonded with single bonds and have bonds on the atoms that make up the ring.
  • the number of carbon atoms in the monocyclic or condensed ring is preferably 4 to 20, because the appropriate core size provides good molecular orientation.
  • the number of carbon atoms in the linked non-aromatic heterocyclic group is more preferably 4 to 15.
  • linked aromatic heterocyclic groups include divalent groups in which a first monocyclic or condensed non-aromatic heterocyclic ring having 4 to 20 carbon atoms is bonded to a second monocyclic or condensed non-aromatic heterocyclic ring having 4 to 20 carbon atoms by a single bond, the divalent group having a first bond on an atom constituting the ring of the first monocyclic or condensed non-aromatic heterocyclic ring having 4 to 20 carbon atoms, and a second bond on an atom constituting the ring of the second monocyclic or condensed non-aromatic heterocyclic ring having 4 to 20 carbon atoms.
  • the aromatic hydrocarbon ring group, non-aromatic hydrocarbon ring group, aromatic heterocyclic group and non-aromatic heterocyclic group in -Q 3 - may each be substituted with one or more groups selected from the group consisting of -R n , -OH, -O-R n , -O-C( ⁇ O)-R n , -NH 2 , -NH-R n , -N(R n' )-R n , -C( ⁇ O)-R n , -C( ⁇ O )-O-R n , -C( ⁇ O)-NH 2 , -C( ⁇ O)-NH-R n, -C( ⁇ O)-N(R n' )-R n , -SH, -S-R n , trifluoromethyl group, sulfamoyl group, carboxy group, sulfo group, cyano group, nitro group and hal
  • the aromatic hydrocarbon ring group, non-aromatic hydrocarbon ring group, aromatic heterocyclic group and non-aromatic heterocyclic group in -Q 3 - are each preferably independently unsubstituted or substituted with a methyl group, a methoxy group, a fluorine atom, a chlorine atom or a bromine atom, and more preferably unsubstituted, in terms of high linearity of the molecular structure, and ease of association of the polymerizable liquid crystal compounds (3) with each other to exhibit a liquid crystal state.
  • the substituents possessed by the aromatic hydrocarbon ring group, non-aromatic hydrocarbon ring group, aromatic heterocyclic group and non-aromatic heterocyclic group in -Q 3 - may be the same or different, and the aromatic hydrocarbon ring group, non-aromatic hydrocarbon ring group, aromatic heterocyclic group and non-aromatic heterocyclic group may be entirely substituted, entirely unsubstituted, or partially substituted and partially unsubstituted.
  • the substituents possessed by the divalent organic groups in -A 11 -, -A 12 -, and -A 13 - may be the same or different, and all of the divalent organic groups in -A 11 -, -A 12 -, and -A 13 - may be substituted, all of them may be unsubstituted, or some of them may be substituted and some of them may be unsubstituted.
  • -Q 3 - is preferably a hydrocarbon ring group, more preferably a phenylene group or a cyclohexanediyl group, and further preferably a 1,4-phenylene group or a cyclohexane-1,4-diyl group, since the linearity of the molecular structure of the polymerizable liquid crystal compound (3) can be increased.
  • the divalent organic group of -A 11 -, -A 12 - and -A 13 -, -Q 3 - is preferably a hydrocarbon ring group, i.e., the divalent organic group is preferably a hydrocarbon ring group.
  • the divalent organic group a phenylene group or a cyclohexanediyl group is more preferable, and a 1,4-phenylene group or a cyclohexane-1,4-diyl group is even more preferable because the linearity of the molecular structure of the polymerizable liquid crystal compound (3) can be increased.
  • one of -A 11 -, -A 12 -, and -A 13 - is a partial structure represented by formula (4), and the other two are each independently a divalent organic group.
  • -C y - of the partial structure represented by formula (4) is a hydrocarbon ring group, and it is particularly preferable that the divalent organic group is a hydrocarbon ring group.
  • the hydrocarbon ring group is a 1,4-phenylene group or a cyclohexane-1,4-diyl group.
  • one of -A 11 - and -A 13 - is a cyclohexane-1,4-diyl group.
  • one of -A 11 - and -A 13 - is a partial structure represented by formula (4), and the remaining one and -A 12 - are divalent organic groups.
  • one of -A 11 - and -A 13 - which is a divalent organic group is a cyclohexane-1,4-diyl group, and it is particularly preferable that -A 12 - is a 1,4-phenylene group.
  • -X 1 - and -Y 1 - or -X 1 - and -Y 2 - are bonded to each other as in the formulae (3A), (3C), (3D) and (3F), -Y 1 - bonded to -X 1 - or -Y 2 - bonded to -X 1 - is preferably a single bond.
  • the other of -X 1 -, -Y 1 - and -Y 2 - is preferably -C( ⁇ O)O- or -OC( ⁇ O)-.
  • (k) k is 1 or 2. In one embodiment, k is preferably 1. In another embodiment, k is preferably 2. When k is 2, each -Y 2 - may be the same or different, and each -A 13 - may be the same or different.
  • a compound represented by the above formula (3A), (3B), (3E) or (3F) is preferable because it optimizes the intermolecular interaction acting between the liquid crystal compounds and has an appropriate core size, resulting in good molecular orientation.
  • the polymerizable liquid crystal compound used in the present invention is preferably a low molecular weight polymerizable liquid crystal compound, since it tends to provide good molecular orientation, and is particularly preferably a low molecular weight polymerizable liquid crystal compound that does not have a copolymer structure.
  • the molecular weight of the low molecular weight polymerizable liquid crystal compound is preferably 2000 or less, more preferably 1500 or less, and even more preferably 1000 or less. There is no particular lower limit, but 400 or more is preferable, and 500 or more is more preferable.
  • the molecular weight range is preferably 400 to 2000, more preferably 400 to 1500, and particularly preferably 500 to 1000.
  • the molecular weight of the polymerizable liquid crystal compound is the sum of the atomic weights contained in the polymerizable liquid crystal compound molecule.
  • polymerizable liquid crystal compound contained in the composition of the present invention include, but are not limited to, the polymerizable liquid crystal compounds described below.
  • C 6 H 13 represents an n-hexyl group
  • C 5 H 11 represents an n-pentyl group.
  • the liquid crystal compound contained in the composition of the present invention is preferably a polymerizable liquid crystal compound (3).
  • the composition of the present invention may contain only one type of polymerizable liquid crystal compound alone, or may contain two or more types in any combination and ratio.
  • the content of the liquid crystal compound in the composition of the present invention (when two or more liquid crystal compounds are used in combination, the total content of each compound) is preferably 50 parts by mass or more, more preferably 55 parts by mass or more, and preferably 99 parts by mass or less, and more preferably 98 parts by mass or less, relative to the solid content (100 parts by mass) of the composition. If the content of the liquid crystal compound in the composition is between the above lower limit and the above upper limit, the alignment of the liquid crystal molecules tends to be high.
  • the composition of the present invention may contain one or more polymerizable or non-polymerizable liquid crystal compounds other than the polymerizable liquid crystal compound (3).
  • the proportion of the polymerizable liquid crystal compound (3) in the total amount of the liquid crystal compounds contained in the composition of the present invention (100% by mass) is preferably 5% by mass or more, more preferably 10% by mass or more, and particularly preferably 15 to 100% by mass.
  • the polymerizable liquid crystal compound contained in the composition of the present invention preferably has an isotropic phase appearance temperature of 160° C. or lower, more preferably 140° C. or lower, even more preferably 115° C. or lower, even more preferably 110° C. or lower, and particularly preferably 105° C. or lower.
  • the isotropic phase appearance temperature means the phase transition temperature from liquid crystal to liquid and the phase transition temperature from liquid to liquid crystal.
  • it is preferable that at least one of these phase transition temperatures is equal to or lower than the above upper limit, and it is more preferable that both of these phase transition temperatures are equal to or lower than the above upper limit.
  • the polymerizable liquid crystal compound contained in the composition of the present invention can be produced by combining known chemical reactions such as an alkylation reaction, an esterification reaction, an amidation reaction, an etherification reaction, an ipso substitution reaction, and a coupling reaction using a metal catalyst.
  • the polymerizable liquid crystal compound contained in the composition of the present invention can be synthesized according to the method described in the Examples below or the method described on pages 449 to 468 of "Liquid Crystal Handbook" (Maruzen Co., Ltd., published on October 30, 2000).
  • the ratio (r n1 /r n2 ) of the number of ring structures (r n1 ) possessed by the polymerizable liquid crystal compound contained in the composition to the number of ring structures (r n2 ) possessed by the dye contained in the composition is 0.6 to 1.5.
  • a fused ring in which two or more rings are fused is counted as one ring structure.
  • the number of ring structures (r n2 ) possessed by compound (2) represented by formula (2) is the sum of B 1 , B 2 , B 3 and B 4 in the formula, and specifically, when n is 0, r n2 is 4; when n is 1, r n2 is 5; and when n is 2, r n2 is 6. Even if N(-RB 1 )RB 2 is a cyclic functional group such as a pyrrolidinyl group or a piperidinyl group, the ring structure contained in N(-RB 1 )RB 2 is not included in the number (r n2 ) of ring structures contained in compound (2) represented by formula (2).
  • r n2 when n is 0, r n2 is 4, so r n1 is 3, 4, 5, or 6; when n is 1, r n2 is 5, so r n1 is preferably 4, 5, 6, or 7, since the ratio (r n1 /r n2 ) of the number of ring structures (r n1 ) possessed by the polymerizable liquid crystal compound contained in the composition for forming an anisotropic dye film to the number of ring structures (r n2 ) possessed by compound ( 2 ) contained in the composition for forming an anisotropic dye film is 0.6 to 1.5.
  • the number of ring structures (r n2 ) contained in compound (12) represented by formula (12) is the sum of the ring structures contained in A 21 , A 22 , A 23 and -X 20 in the formula, and specifically, when n1 is 1 and m1 is 1, r n2 is 3; when n1 is 1 and m1 is 2, r n2 is 4; when n1 is 2 and m1 is 1, r n2 is 4; when n1 is 2 and m1 is 2, r n2 is 5; and when n1 is 3 and m1 is 1, r n2 is 5.
  • -Y 20 is a cyclic functional group such as a pyrrolidinyl group or a piperidinyl group, the ring structure contained in -Y 20 is not included in the number (r n2 ) of ring structures contained in compound (12) represented by formula (12).
  • the ratio (r n1 /r n2 ) of the number of ring structures possessed by the polymerizable liquid crystal compound contained in the composition for forming an anisotropic dye film to the number of ring structures possessed by the compound of the second invention contained in the composition for forming an anisotropic dye film is ) is preferably 0.6 to 1.5.
  • the number (r n1 ) of ring structures in the polymerizable liquid crystal compound contained in the composition of the present invention does not include ring structures (such as oxirane rings and oxetane rings) contained in the polymerizable groups in the polymerizable liquid crystal compound.
  • composition of the present invention may contain a polymerization initiator, if necessary.
  • the polymerization initiator is a compound that can initiate the polymerization reaction of a polymerizable liquid crystal compound.
  • a photopolymerization initiator that generates active radicals by the action of light is preferable.
  • Usable polymerization initiators include, for example, titanocene derivatives; biimidazole derivatives; halomethylated oxadiazole derivatives; halomethyl-s-triazine derivatives; alkylphenone derivatives; oxime ester derivatives; benzoins; benzophenone derivatives; acylphosphine oxide derivatives; iodonium salts; sulfonium salts; anthraquinone derivatives; acetophenone derivatives; thioxanthone derivatives; benzoic acid ester derivatives; acridine derivatives; phenazine derivatives; anthrone derivatives, etc.
  • alkylphenone derivatives alkylphenone derivatives, oxime ester derivatives, biimidazole derivatives, acetophenone derivatives, and thioxanthone derivatives are more preferred.
  • titanocene derivatives include dicyclopentadienyltitanium dichloride, dicyclopentadienyltitanium bisphenyl, dicyclopentadienyltitanium bis(2,3,4,5,6-pentafluorophenyl-1-yl), dicyclopentadienyltitanium bis(2,3,5,6-tetrafluorophenyl-1-yl), dicyclopentadienyltitanium bis(2,4,6-trifluorophenyl-1-yl), dicyclopentadienyltitanium Examples include titanium di(2,6-difluorophenyl-1-yl), dicyclopentadienyltitanium di(2,4-difluorophenyl-1-yl), di(methylcyclopentadienyl)titanium bis(2,3,4,5,6-pentafluorophenyl-1-yl), di(methylcyclopent
  • Biimidazole derivatives include 2-(2'-chlorophenyl)-4,5-diphenylimidazole dimer, 2-(2'-chlorophenyl)-4,5-bis(3'-methoxyphenyl)imidazole dimer, 2-(2'-fluorophenyl)-4,5-diphenylimidazole dimer, 2-(2'-methoxyphenyl)-4,5-diphenylimidazole dimer, (4'-methoxyphenyl)-4,5-diphenylimidazole dimer, etc.
  • Halomethylated oxadiazole derivatives include 2-trichloromethyl-5-(2'-benzofuryl)-1,3,4-oxadiazole, 2-trichloromethyl-5-[ ⁇ -(2'-benzofuryl)vinyl]-1,3,4-oxadiazole, 2-trichloromethyl-5-[ ⁇ -(2'-(6''-benzofuryl)vinyl)]-1,3,4-oxadiazole, and 2-trichloromethyl-5-furyl-1,3,4-oxadiazole.
  • Halomethyl-s-triazine derivatives include 2-(4-methoxyphenyl)-4,6-bis(trichloromethyl)-s-triazine, 2-(4-methoxynaphthyl)-4,6-bis(trichloromethyl)-s-triazine, 2-(4-ethoxynaphthyl)-4,6-bis(trichloromethyl)-s-triazine, and 2-(4-ethoxycarbonylnaphthyl)-4,6-bis(trichloromethyl)-s-triazine.
  • Alkylphenone derivatives include diethoxyacetophenone, 2-methyl-1-[4-(methylthio)phenyl]-2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)-butanone-1, 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)butan-1-one, 4-dimethylaminoethyl benzoate, 4-dimethylaminoisoamyl benzoate, 4-diethylaminoacetophenone, 4-dimethylaminopropiophenone, 2-ethylhexyl-1,4-dimethylaminobenzoate, 2,5-bis(4-diethylaminobenzal)cyclohexanone, 7-diethylamino-3-(4-diethylaminobenzoyl)coumarin, and 4-(diethylamino)chalcone.
  • Oxime ester derivatives include 2-(benzoyloxyimino)-1-[4-(phenylthio)phenyl]-1-octanone, O-acetyl-1-[6-(2-methylbenzoyl)-9-ethyl-9H-carbazol-3-yl]ethanone oxime, and the oxime ester derivatives described in JP 2000-80068 A, JP 2006-36750 A, WO 2009/131189, etc.
  • benzoins examples include benzoin, benzoin methyl ether, benzoin phenyl ether, benzoin isobutyl ether, and benzoin isopropyl ether.
  • benzophenone derivatives include benzophenone, Michler's ketone, 2-methylbenzophenone, 3-methylbenzophenone, 4-methylbenzophenone, 2-chlorobenzophenone, 4-bromobenzophenone, 2-carboxybenzophenone, methyl o-benzoylbenzoate, 4-phenylbenzophenone, 4-benzoyl-4'-methyldiphenyl sulfide, 3,3',4,4'-tetra(tert-butylperoxycarbonyl)benzophenone, and 2,4,6-trimethylbenzophenone.
  • Acylphosphine oxide derivatives include 2,4,6-trimethylbenzoyldiphenylphosphine oxide, bis-(2,6-dimethoxybenzoyl)-2,4,4-trimethylpentylphosphine oxide, and bis(2,4,6-trimethylbenzoyl)phenylphosphine oxide.
  • Iodonium salts include diphenyliodonium tetrakis(pentafluorophenyl)borate, diphenyliodonium hexafluorophosphate, diphenyliodonium hexafluoroantimonate, and di(4-nonylphenyl)iodonium hexafluorophosphate.
  • Sulfonium salts include triphenylsulfonium hexafluorophosphate, triphenylsulfonium hexafluoroantimonate, triphenylsulfonium tetrakis(pentafluorophenyl)borate, diphenyl[4-(phenylthio)phenyl]sulfonium hexafluorophosphate, 4,4'-bis[diphenylsulfonio]diphenylsulfide bishexafluorophosphate, 4,4'-bis[di( ⁇ -hydroxyethoxy)phenylsulfonio]diphenylsulfide bishexafluoroantimonate, 4,4'-bis[di( ⁇ -hydroxyethoxy)phenylsulfonio]diphenylsulfide bishexafluorophosphate -, 7-[di(p-toluyl)sulfoni
  • Anthraquinone derivatives include 2-methylanthraquinone, 2-ethylanthraquinone, 2-t-butylanthraquinone, 1-chloroanthraquinone, etc.
  • Acetophenone derivatives include 2,2-dimethoxy-2-phenylacetophenone, 2,2-diethoxyacetophenone, 1-hydroxycyclohexyl phenyl ketone, ⁇ -hydroxy-2-methylphenylpropanone, 1-hydroxy-1-methylethyl-(p-isopropylphenyl)ketone, 1-hydroxy-1-(p-dodecylphenyl)ketone, 2-methyl-(4'-methylthiophenyl)-2-morpholino-1-propanone, 1,1,1-trichloromethyl-(p-butylphenyl)ketone, etc.
  • Thioxanthone derivatives include thioxanthone, 2-ethylthioxanthone, 2-isopropylthioxanthone, 2-chlorothioxanthone, 2,4-dimethylthioxanthone, 2,4-diethylthioxanthone, 2,4-diisopropylthioxanthone, etc.
  • Benzoic acid ester derivatives examples include ethyl p-dimethylaminobenzoate, ethyl p-diethylaminobenzoate, etc.
  • Acridine derivatives include 9-phenylacridine, 9-(p-methoxyphenyl)acridine, etc.
  • Phenazine derivatives include 9,10-dimethylbenzphenazine, etc.
  • Anthrone derivatives include benzanthrone, etc.
  • the polymerization initiator may be used alone or in combination with two or more types.
  • a commercially available product can also be used.
  • examples of commercially available products include IRGACURE (registered trademark, the same applies below) 250, IRGACURE 651, IRGACURE 184, DAROCURE 1173, IRGACURE 2959, IRGACURE 127, IRGACURE 907, IRGACURE 369, IRGACURE 379EG, LUCIRIN TPO, IRGACURE 819, and IRGACURE 784, OXE-01, OXE-02 (all manufactured by BASF); Seikuol (registered trademark) BZ, Z, and BEE (manufactured by Seiko Chemical Co., Ltd.); Kayacure (registered trademark) BP100, and UVI-6992 (manufactured by The Dow Chemical Company); ADEKA OPTOMER SP-152, and SP-170 (manufactured by ADEK Corporation).
  • TAZ-A, and TAZ-PP manufactured by Nippon SiberHegner Co., Ltd.
  • TAZ-104 manufactured by Sanwa Chemical Co., Ltd.
  • TRONLYTR-PBG-304, TRONLYTR-PBG-309, TRONLYTR-PBG-305, and TRONLYTR-PBG-314 manufactured by CHANGZHOU TRONLY NEW ELECTRONIC MATERIALS CO., LTD.
  • the content of the polymerization initiator in the composition of the present invention is usually 0.1 to 30 parts by mass, preferably 0.5 to 10 parts by mass, and more preferably 0.5 to 8 parts by mass, relative to 100 parts by mass of the polymerizable liquid crystal compound, from the viewpoint of not easily disturbing the orientation of the polymerizable liquid crystal compound.
  • a polymerization accelerator may be used in combination with the polymerization initiator.
  • the polymerization accelerator to be used include N,N-dialkylaminobenzoic acid alkyl esters such as N,N-dimethylaminobenzoic acid ethyl ester, mercapto compounds having a heterocycle such as 2-mercaptobenzothiazole, 2-mercaptobenzoxazole, and 2-mercaptobenzimidazole, and mercapto compounds such as aliphatic polyfunctional mercapto compounds.
  • the polymerization accelerator may also be used alone or in combination of two or more kinds.
  • Sensitizing dyes may be used in combination for the purpose of increasing the sensitivity as required. Sensitizing dyes that are appropriate for the wavelength of the exposure light source are used. For example, xanthene dyes described in JP-A-4-221958 and JP-A-4-219756, etc.; coumarin dyes having a heterocycle described in JP-A-3-239703 and JP-A-5-289335, etc.; 3-ketocoumarin dyes described in JP-A-3-239703 and JP-A-5-289335, etc.; pyrromethene dyes described in JP-A-6-19240, etc.; and JP-A-47-2528 and JP-A-54-155292, etc.
  • sensitizing dyes may also be used alone or in combination of two or more kinds.
  • composition of the present invention may contain a solvent, if necessary.
  • the solvent that can be used in the composition of the present invention is not particularly limited as long as it can sufficiently disperse or dissolve the dye or other additives in the polymerizable liquid crystal compound.
  • the solvent include alcohol solvents such as methanol, ethanol, ethylene glycol, isopropyl alcohol, propylene glycol, ethylene glycol methyl ether, ethylene glycol butyl ether, and propylene glycol monomethyl ether; ester solvents such as ethyl acetate, butyl acetate, ethylene glycol methyl ether acetate, ⁇ -butyrolactone, propylene glycol methyl ether acetate, and ethyl lactate; ketone solvents such as acetone, methyl ethyl ketone, cyclopentanone, cyclohexanone, 2-heptanone, and methyl isobutyl ketone; aliphatic hydrocarbon solvents such as pentane, hexane, and hept
  • the solvent is preferably one that can dissolve the polymerizable liquid crystal compound and the dye, and more preferably one that completely dissolves the polymerizable liquid crystal compound and the dye.
  • the solvent is also preferably one that is inactive in the polymerization reaction of the polymerizable liquid crystal compound. From the viewpoint of applying the composition of the present invention described later, the solvent is also preferably one that has a boiling point in the range of 50 to 200°C.
  • the content of the solvent in the composition of the present invention is preferably 50 to 98 mass% relative to the total amount (100 mass%) of the composition of the present invention.
  • the solid content in the composition of the present invention is preferably 2 to 50 mass%.
  • the solid content of the composition of the present invention can be determined taking into consideration the thickness of the polarizing film to be produced.
  • the viscosity of the composition of the present invention is not particularly important as long as a uniform film without uneven thickness is produced by the coating method described below. From the viewpoint of obtaining uniformity of thickness over a large area, productivity such as coating speed, and in-plane uniformity of optical properties, the viscosity of the composition of the present invention is preferably 0.1 mPa ⁇ s or more, and preferably 500 mPa ⁇ s or less, more preferably 100 mPa ⁇ s or less, and even more preferably 50 mPa ⁇ s or less.
  • the composition of the present invention may further contain, as necessary, other additives such as a polymerization inhibitor, a polymerization aid, a polymerizable non-liquid crystal compound, a surfactant, a leveling agent, a coupling agent, a pH adjuster, a dispersant, an antioxidant, an organic or inorganic filler, an organic or inorganic nanosheet, an organic or inorganic nanofiber, or a metal oxide, in addition to the above-mentioned polymerization initiator, as components other than the dye and the polymerizable liquid crystal compound.
  • additives such as a polymerization inhibitor, a polymerization aid, a polymerizable non-liquid crystal compound, a surfactant, a leveling agent, a coupling agent, a pH adjuster, a dispersant, an antioxidant, an organic or inorganic filler, an organic or inorganic nanosheet, an organic or inorganic nanofiber, or a metal oxide, in addition to the above-mentioned polymerization initi
  • the method for producing the composition of the present invention is not particularly limited.
  • a dye containing compound (2) or the dye of the second invention, a polymerizable liquid crystal compound, a solvent and other additives as necessary are mixed, and the mixture is stirred and shaken at 0 to 80° C. to dissolve the dye. If these are poorly soluble, a homogenizer, a bead mill disperser, or the like may be used.
  • the method for producing the composition of the present invention may include a filtration step for the purpose of removing foreign matter from the composition.
  • composition of the present invention may or may not be liquid crystal at any temperature after the solvent has been removed from the composition, but it is preferable that the composition exhibits liquid crystallinity at any temperature.
  • the composition of the present invention from which the solvent has been removed preferably has an isotropic phase appearance temperature of less than 160°C, more preferably less than 140°C, even more preferably less than 115°C, even more preferably less than 110°C, and particularly preferably less than 105°C.
  • the anisotropic dye film of the present invention is formed using the composition of the present invention. Therefore, the anisotropic dye film of the first invention contains a dye and one or both of a polymerizable liquid crystal compound and a polymer having a unit based on a polymerizable liquid crystal compound, and the dye contains compound (2).
  • the anisotropic dye film of the second invention includes a dye and one or both of a polymerizable liquid crystal compound and a polymer having a unit based on a polymerizable liquid crystal compound, and the dye includes the dye of the second invention.
  • anisotropic dye film of the first invention and the “anisotropic dye film of the second invention” will be collectively referred to as the "anisotropic dye film of the present invention.”
  • the composition of the present invention for forming the anisotropic dye film of the present invention may be referred to as an "anisotropic dye film-forming composition”.
  • the anisotropic dye film of the present invention may contain other components such as non-polymerizable liquid crystal compounds, polymerization initiators, polymerization inhibitors, polymerization aids, polymerizable non-liquid crystal compounds, non-polymerizable non-liquid crystal compounds, surfactants, leveling agents, coupling agents, pH adjusters, dispersants, antioxidants, organic/inorganic fillers, organic/inorganic nanosheets, organic/inorganic nanofibers, metal oxides, etc.
  • other components such as non-polymerizable liquid crystal compounds, polymerization initiators, polymerization inhibitors, polymerization aids, polymerizable non-liquid crystal compounds, non-polymerizable non-liquid crystal compounds, surfactants, leveling agents, coupling agents, pH adjusters, dispersants, antioxidants, organic/inorganic fillers, organic/inorganic nanosheets, organic/inorganic nanofibers, metal oxides, etc.
  • the anisotropic dye film of the present invention can function as a polarizing film that uses the anisotropy of light absorption to obtain linearly polarized light, circularly polarized light, elliptically polarized light, etc., and can also function as various anisotropic dye films with refractive anisotropy, conductive anisotropy, etc., depending on the film formation process and the selection of the composition containing the substrate and organic compound (dye or transparent material).
  • the orientation characteristics of the anisotropic dye film can be expressed by the dichroic ratio.
  • a dichroic ratio of 8 or more will enable the element to function as a polarizing element, but in the first invention, the dichroic ratio is preferably 23 or more, more preferably 25 or more, further preferably 30 or more, and particularly preferably 40 or more.
  • the dichroic ratio is preferably 13 or more, and more preferably 20 or more. The higher the dichroic ratio of the anisotropic dye film, the more preferable it is.
  • the dichroic ratio is equal to or more than the lower limit, the film is useful as an optical element, particularly a polarizing element, as described below.
  • the dichroic ratio (D) in the present invention is expressed by the following formula when the dyes are uniformly oriented.
  • D Az/Ay
  • Az is the absorbance observed when the polarization direction of light incident on the anisotropic dye film is parallel to the orientation direction of the anisotropic dye
  • Ay is the absorbance observed when the polarization direction of light incident on the anisotropic dye film is perpendicular to the orientation direction of the anisotropic dye.
  • the absorbance (Az, Ay) there are no particular limitations on the absorbance (Az, Ay) as long as they are of the same wavelength, and any wavelength may be selected depending on the purpose.
  • the degree of orientation of an anisotropic dye film it is preferable to use a value corrected for visual sensitivity in a specific wavelength range of 350 nm to 800 nm for the anisotropic dye film, or a value at the maximum absorption wavelength in the visible range.
  • the transmittance of the anisotropic dye film of the present invention is preferably 25% or more, more preferably 35% or more, and particularly preferably 40% or more, at the wavelength of the intended use.
  • the transmittance of the anisotropic dye film in the visible light wavelength range is preferably 25% or more, more preferably 35% or more, and particularly preferably 40% or more.
  • the transmittance of the anisotropic dye film of the present invention may be an upper limit according to the application. For example, when the degree of polarization is to be increased, the transmittance is preferably 50% or less.
  • the transmittance is in the above range, it is useful as an optical element described later, and is particularly useful as an optical element for liquid crystal displays used for color display and for antireflection films combining an anisotropic dye film and a retardation film.
  • the anisotropic dye film has a dry thickness of preferably 10 nm or more, more preferably 100 nm or more, and even more preferably 500 nm or more.
  • the anisotropic dye film has a dry thickness of preferably 30 ⁇ m or less, more preferably 10 ⁇ m or less, even more preferably 5 ⁇ m or less, and especially preferably 3 ⁇ m or less.
  • the anisotropic dye film of the present invention is preferably produced by a wet film-forming method using the composition of the present invention.
  • the wet film-forming method referred to in this invention is a method in which an anisotropic dye film composition is applied and oriented on a substrate by some method. Therefore, the anisotropic dye film composition only needs to have fluidity, and may or may not contain a solvent. From the viewpoint of viscosity during application and film uniformity, it is more preferable for the composition to contain a solvent.
  • the liquid crystals and dyes in the anisotropic dye film may be oriented by shear during the coating process, or may be oriented during the drying process of the solvent.
  • the liquid crystals and dyes may be oriented and laminated on the substrate through a process of heating after coating and drying to re-align the liquid crystals and dyes.
  • the dyes and liquid crystal compounds self-associate (a molecular association state such as a liquid crystal state) already in the composition for anisotropic dye film, or during the drying process of the solvent, or after the solvent has been completely removed, and orientation occurs in a small area.
  • orientation can be achieved in a certain direction in a macroscopic region, and an anisotropic dye film with the desired performance can be obtained.
  • the external field includes the influence of an orientation treatment layer previously applied to the substrate, shear force, magnetic field, electric field, heat, etc. These may be used alone or in combination. If necessary, a heating process may be performed.
  • the process of applying the anisotropic dye film composition onto a substrate to form a film, the process of applying an external field to orient the film, and the process of drying the solvent may be performed sequentially or simultaneously.
  • examples of methods for applying the composition for forming an anisotropic dye film onto a substrate include a coating method, a dip coating method, an LB film formation method, and a known printing method. There is also a method of transferring the anisotropic dye film thus obtained onto another substrate.
  • composition for forming an anisotropic dye film onto the substrate using a coating method.
  • the orientation direction of the anisotropic dye film may be different from the coating direction.
  • the orientation direction of the anisotropic dye film refers to, for example, the transmission axis (polarization axis) or absorption axis of polarized light in the case of a polarizing film.
  • the orientation direction refers to the fast axis or slow axis.
  • the method of applying the composition for anisotropic dye film to obtain an anisotropic dye film is not particularly limited, but examples include the method described in "Coating Engineering” by Harasaki Yuji (published by Asakura Publishing Co., Ltd. on March 20, 1971) on pages 253-277, the method described in "Creation and Application of Molecular Cooperative Materials” edited by Ichimura Kunihiro (published by CMC Publishing Co., Ltd. on March 3, 1998) on pages 118-149, and the method of applying the composition to a substrate having a stepped structure (which may be pre-treated for orientation) by slot die coating, spin coating, spray coating, bar coating, roll coating, blade coating, curtain coating, fountain coating, dip coating, etc.
  • the slot die coating and bar coating methods are preferable because they can obtain an anisotropic dye film with high uniformity.
  • the die coater used in the slot die coating method is generally equipped with a coating machine that ejects the coating liquid, a so-called slit die.
  • Slit dies are disclosed, for example, in JP-A-2-164480, JP-A-6-154687, JP-A-9-131559, “Fundamentals and Applications of Dispersion, Coating, and Drying” (2014, Techno System Co., Ltd., ISBN 9784924728707 C 305), “Wet Coating Technology for Displays and Optical Components” (2007, Information Organization, ISBN 9784901677752), and “Precision Coating and Drying Technology in the Electronics Field” (2007, Technical Information Association, ISBN 9784861041389).
  • These known slit dies can be used to coat flexible materials such as films and tapes, as well as hard materials such as glass substrates.
  • Substrates used in the formation of the anisotropic dye film of the present invention include glass, triacetate, acrylic, polyester, polyimide, polyetherimide, polyetheretherketone, polycarbonate, cycloolefin polymer, polyolefin, polyvinyl chloride, triacetyl cellulose, or urethane-based films.
  • the substrate surface may be subjected to an orientation treatment (orientation film) by a known method (rubbing method, method of forming grooves (fine groove structure) on the surface of the orientation film, method of using polarized ultraviolet light/polarized laser (photo-orientation method), orientation method by forming an LB film, orientation method by oblique deposition of inorganic material, etc.) described on pages 226-239 of "Liquid Crystal Handbook” (Maruzen Co., Ltd., published October 30, 2000).
  • orientation treatment by rubbing method and photo-orientation method are preferable.
  • Materials used in the rubbing method include polyvinyl alcohol (PVA), polyimide (PI), epoxy resin, acrylic resin, etc.
  • Materials used in the photo-orientation method include polycinnamate, polyamic acid/polyimide, azobenzene, etc.
  • orientation treatment layer it is thought that the liquid crystal compound and the dye are oriented by the influence of the orientation treatment of the orientation treatment layer and the shear force applied to the anisotropic dye film composition during application.
  • composition for anisotropic dye film there are no particular limitations on the method of supplying the composition for anisotropic dye film or the supply interval. If the operation of supplying the coating liquid becomes complicated or the coating film thickness fluctuates when the coating liquid is started and stopped, it is desirable to apply the composition for anisotropic dye film while continuously supplying it when the anisotropic dye film is thin.
  • the speed at which the composition for anisotropic dye film is applied is usually 0.001 m/min or more, preferably 0.01 m/min or more, more preferably 0.1 m/min or more, even more preferably 1.0 m/min or more, and particularly preferably 5.0 m/min or more.
  • the speed at which the composition for anisotropic dye film is applied is usually 400 m/min or less, preferably 200 m/min or less, more preferably 100 m/min or less, and even more preferably 50 m/min or less.
  • the coating temperature for the anisotropic dye film composition is usually 0°C or higher and 100°C or lower, preferably 80°C or lower, and more preferably 60°C or lower.
  • the humidity during application of the anisotropic dye film composition is preferably 10% RH or higher, and preferably 80% RH or lower.
  • the anisotropic dye film may be subjected to an insolubilization treatment.
  • Insolubilization refers to a treatment for reducing the solubility of a compound in the anisotropic dye film, thereby controlling the elution of the compound from the anisotropic dye film and increasing the stability of the film.
  • film polymerization or overcoating is preferred from the standpoint of ease of post-processing and durability of the anisotropic dye film.
  • the film in which the liquid crystal molecules and dye molecules are oriented is polymerized using light, heat, and/or radiation.
  • the light source of the active energy ray having a wavelength of 190 to 450 nm is not particularly limited.
  • the light source include lamp light sources such as xenon lamps, halogen lamps, tungsten lamps, high-pressure mercury lamps, ultra-high-pressure mercury lamps, metal halide lamps, medium-pressure mercury lamps, low-pressure mercury lamps, carbon arcs, and fluorescent lamps; and laser light sources such as argon ion lasers, YAG lasers, excimer lasers, nitrogen lasers, helium cadmium lasers, and semiconductor lasers.
  • an optical filter can also be used.
  • the exposure dose of the active energy rays is preferably 10 to 10,000 J/ m2 .
  • Polymerization may be carried out using light, heat, and/or radiation, but photopolymerization or a combination of photopolymerization and thermal polymerization is preferred because the film formation process takes a short time and requires simple equipment.
  • optical elements The optical element of the present invention includes the anisotropic dye film of the present invention.
  • the optical element in this invention refers to a polarizing element that utilizes the anisotropy of light absorption to obtain linearly polarized light, circularly polarized light, elliptically polarized light, etc., a phase difference element, and an element that has functions such as refractive anisotropy and conductive anisotropy. These functions can be appropriately adjusted by selecting the anisotropic dye film formation process and the composition containing the substrate and organic compound (dye or transparent material).
  • the optical element of the present invention is most preferably used as a polarizing element.
  • the optical element of the present invention can be suitably used for applications such as flexible displays because a polarizing element can be obtained by forming an anisotropic dye film on a substrate by coating or the like.
  • the optical element may be provided with other layers to maintain or improve the functionality of the anisotropic dye film.
  • layers include layers that have the function of blocking specific wavelengths or layers that have the function of blocking specific substances (e.g., barrier films such as oxygen barrier films and water vapor barrier films) that are used to improve durability such as light resistance, heat resistance, and water resistance; wavelength cut filters or layers containing materials that absorb specific wavelengths that are used to change the color gamut or improve optical properties; etc.
  • a polarizing element (hereinafter, sometimes referred to as "the polarizing element of the present invention") can be produced using the anisotropic dye film of the present invention.
  • the polarizing element of the present invention may have any other film (layer) as long as it has the anisotropic dye film of the present invention.
  • it can be manufactured by providing an alignment film on a substrate and forming the anisotropic dye film of the present invention on the surface of the alignment film.
  • the polarizing element is not limited to anisotropic dye films, and may be used in combination with an overcoat layer having functions such as improving polarization performance and mechanical strength; an adhesive layer or anti-reflection layer; an alignment film; a layer having optical functions such as a phase difference film, a brightness enhancement film, a reflective or anti-reflection film, a semi-transparent reflective film, or a diffusion film; etc.
  • the layers having the various functions described above may be laminated by coating or lamination, etc., and used as a laminate.
  • each layer can be formed on the anisotropic dye film, or on the opposite side of the substrate on which the anisotropic dye film is provided.
  • the order in which each layer is formed may be either before or after the anisotropic dye film is formed.
  • the layer that functions as a retardation film can be formed by coating or laminating a retardation film onto other layers that make up the polarizing element.
  • the retardation film can be formed, for example, by carrying out the stretching treatment described in JP-A-2-59703 and JP-A-4-230704, or the treatment described in JP-A-7-230007.
  • the layer that functions as a brightness enhancement film can be formed by coating or laminating the brightness enhancement film onto other layers that make up the polarizing element.
  • the brightness enhancement film can be formed, for example, by forming micropores using the methods described in JP-A-2002-169025 and JP-A-2003-29030, or by superimposing two or more cholesteric liquid crystal layers that have different central wavelengths of selective reflection.
  • a layer that functions as a reflective film or semi-transparent reflective film can be formed, for example, by coating or laminating a thin metal film obtained by vapor deposition or sputtering onto other layers that make up the polarizing element.
  • the layer that functions as a diffusion film can be formed, for example, by coating the other layers that make up the polarizing element with a resin solution that contains fine particles.
  • Layers that function as retardation films or optical compensation films can be formed by applying liquid crystal compounds such as discotic liquid crystal compounds, nematic liquid crystal compounds, smectic liquid crystal compounds, and cholesteric liquid crystal compounds to other layers that make up the polarizing element and orienting them.
  • liquid crystal compounds such as discotic liquid crystal compounds, nematic liquid crystal compounds, smectic liquid crystal compounds, and cholesteric liquid crystal compounds
  • an orientation film may be provided on the substrate, and the retardation film or optical compensation film may be formed on the surface of the orientation film.
  • the anisotropic dye film of the present invention When the anisotropic dye film of the present invention is used as an anisotropic dye film in various display elements such as liquid crystal elements (LCDs) and organic electroluminescence elements (OLEDs), the anisotropic dye film of the present invention may be formed directly on the surface of an electrode substrate or the like that constitutes these display elements, or a substrate on which the anisotropic dye film of the present invention is formed may be used as a component of these display elements.
  • LCDs liquid crystal elements
  • OLEDs organic electroluminescence elements
  • the composition was injected in an isotropic phase into a sandwich cell (cell gap: 8.0 ⁇ m or 10.0 ⁇ m, polyimide film previously rubbed with cloth) with a polyimide alignment film (LX1400, Hitachi Chemical DuPont Microsystems) formed on a glass substrate, and an anisotropic dye film was obtained by cooling to 80°C at 10°C/min.
  • the dichroic ratio was then measured at each temperature while further cooling to 40°C at 10°C/min. The dichroic ratio at the temperature and wavelength that showed the maximum dichroic ratio was determined to be the dichroic ratio of the anisotropic dye film.
  • the dichroic ratio of the anisotropic dye film measured as described above is preferably 23 or more.
  • the dichroic ratio of the anisotropic dye film measured as described above is preferably 13 or more, and more preferably 20 or more.
  • the composition was injected into the sandwich cell in an isotropic phase, cooled to 40°C at 10°C/min, and then photopolymerized under a nitrogen atmosphere with a high pressure mercury lamp (500mJ/ cm2 ) to obtain a polymerized anisotropic dye film, and Tz was measured at 5 nm intervals in the wavelength range of 400 to 800 nm with the above spectrophotometer to obtain Az before the light resistance test.
  • a high pressure mercury lamp 500mJ/ cm2
  • the film was placed in a weather resistance tester (manufactured by Atlas, product name "Atlas Weatherometer CI4000", black panel temperature 58.0°C, test chamber temperature 33.0°C, relative humidity 50%, irradiance 0.55W/ m2 (340nm), total exposure 79.2kJ/ m2 ) for 40 hours to perform a light resistance test.
  • a weather resistance tester manufactured by Atlas, product name "Atlas Weatherometer CI4000", black panel temperature 58.0°C, test chamber temperature 33.0°C, relative humidity 50%, irradiance 0.55W/ m2 (340nm), total exposure 79.2kJ/ m2 ) for 40 hours to perform a light resistance test.
  • Tz was measured with the above spectrophotometer, and Az after the light resistance test was measured. Az and Tz are as described above.
  • the isotropic phase appearance temperature (phase transition temperature from liquid crystal to liquid and from liquid to liquid crystal) of the polymerizable liquid crystal compound (I-1) was determined by differential scanning calorimetry. For the differential scanning calorimetry, 0.2 parts by mass of 4-methoxyphenol was added as a polymerization inhibitor to 100 parts by mass of the polymerizable liquid crystal compound (I-1).
  • the phase transition temperature of this polymerizable liquid crystal compound (I-1) from liquid crystal to liquid was 111.0°C, and the phase transition temperature from liquid crystal to liquid crystal was 109.4°C. It should be noted that it was confirmed by observation with a polarizing microscope and X-ray structural analysis that this temperature was the isotropic phase appearance temperature.
  • Dye (II-1) was synthesized according to the synthesis method described below: Compound (II-1-a) was synthesized according to the method described in JP-A-2010-155924.
  • compound (II-1-a) (1.61 g, 5.0 mmol) was dissolved in N-methylpyrrolidone (30 mL) under a nitrogen atmosphere at room temperature, and then concentrated hydrochloric acid (2.1 mL, 4.2 eq.) was added and cooled to an internal temperature of 5°C.
  • An aqueous solution of sodium nitrite (40% by mass, 0.40 g, 1.2 eq.) was added and stirred at an internal temperature of 0 to 5°C for 1.5 hours to obtain a diazonium salt solution.
  • diethylaniline (1.49 g, 2.0 eq.) was dissolved in N-methylpyrrolidone (10 mL) under a nitrogen atmosphere at room temperature, and then cooled to an internal temperature of 0°C.
  • the diazonium salt solution was added to this at an internal temperature of 0 to 5°C, and then sodium acetate (5.0 g, 12 eq.) was added and stirred for 1 hour while returning to room temperature.
  • Purified water 40 mL was added dropwise, and the precipitate was collected by suction filtration and washed with purified water (20 mL) to obtain a brown wet solid.
  • compound (II-1-a) (0.64 g, 2.0 mmol) was dissolved in N-methylpyrrolidone (10 mL), and concentrated hydrochloric acid (0.84 mL, 5.0 eq.) was added and cooled to an internal temperature of 5°C.
  • sodium nitrite (0.145 g, 1.05 eq.) was dissolved in a small amount of water and added, and the mixture was stirred at an internal temperature of 0 to 5°C for 1.5 hours to obtain a diazonium salt solution.
  • 1-phenylpyrrolidine (0.59 g, 2.0 eq.) was dissolved in methanol (10 mL) and cooled to an internal temperature of 0°C.
  • the diazonium salt solution was added to this at an internal temperature of 0 to 5°C, and then sodium acetate (2.0 g, 12 eq.) was added and the mixture was stirred for 1 hour while returning to room temperature.
  • Purified water was added dropwise, and the precipitate was collected by suction filtration and washed with purified water to obtain a brown wet solid.
  • This crude product was separated, purified, and concentrated by silica gel column chromatography (toluene). The resulting yellow solid was dispersed in methanol and stirred at room temperature for 1 hour, after which the solid was filtered to obtain 0.49 g of dye (II-2).
  • Dye (II-3) was synthesized according to the synthesis method described below.
  • compound (II-1-a) (0.64 g, 2.0 mmol) was dissolved in N-methylpyrrolidone (10 mL) under a nitrogen atmosphere at room temperature, and then concentrated hydrochloric acid (0.99 mL, 5.0 eq.) was added and cooled to an internal temperature of 5°C.
  • An aqueous solution of sodium nitrite (40% by mass, 0.145 g, 1.05 eq.) was added, and the mixture was stirred at an internal temperature of 0 to 5°C for 1.5 hours, and then sulfamic acid (10% by mass, 0.3 mL) was added to obtain a diazonium salt solution.
  • N-phenylpiperidine (0.645 g, 2.0 eq.) was dissolved in methanol (10 mL) under a nitrogen atmosphere at room temperature, and then cooled to an internal temperature of 0°C.
  • the diazonium salt solution was added here at an internal temperature of 0 to 5°C, and then sodium acetate (2.0 g, 12 eq.) was added, and the mixture was stirred for 1 hour while being returned to room temperature.
  • Purified water 40 mL was added dropwise, and the precipitate was collected by suction filtration and washed with purified water (20 mL) to obtain a brown wet solid.
  • diethylaniline (1.05 g, 1.5 eq.) and sulfamic acid (0.138 g, 1.4 mmol) were dissolved in methanol (50 mL) at room temperature under a nitrogen atmosphere, and the mixture was cooled to an internal temperature of 5° C.
  • the diazonium salt solution was added thereto at an internal temperature of 0 to 5° C., and the mixture was stirred for 4 hours at an internal temperature of 0 to 5° C. for 1 hour while returning to room temperature.
  • Sodium acetate (0.85 g, 14 mmol) was added and the mixture was stirred at room temperature for 1 hour.
  • the maximum absorption wavelength ( ⁇ max1 ) of dye (II-4) in a 10 ppm chloroform solution was 495 nm.
  • compound (II-5-a) 0.42 g, 2.0 eq.
  • sulfamic acid 1.0 g, 10.5 mmol
  • methanol (12 mL) and tetrahydrofuran (2 mL) were dissolved in methanol (12 mL) and tetrahydrofuran (2 mL), and then cooled to an internal temperature of 0° C.
  • the diazonium salt solution was added thereto over 20 minutes at an internal temperature of 0 to 5° C., and stirring was continued for 4 hours at an internal temperature of 0 to 5° C., and for 1 hour while returning to room temperature.
  • Sodium acetate (0.85 g, 14 mmol) was added and stirred at room temperature for 1 hour.
  • the maximum absorption wavelength ( ⁇ max1 ) of dye (II-5) in a 10 ppm chloroform solution was 497 nm.
  • Dye (II-6) was synthesized according to the synthesis method described below.
  • the maximum absorption wavelength ( ⁇ max1 ) of dye (II-6) in a 10 ppm chloroform solution was 491 nm.
  • the structure of dye (II-6) was confirmed by NMR spectrum measurement, and the results are shown below.
  • Dye (II-7) was synthesized according to the synthesis method described below.
  • the maximum absorption wavelength ( ⁇ max1 ) of dye (II-7) in a 10 ppm chloroform solution was 470 nm.
  • the structure of dye (II-7) was confirmed by NMR spectrum measurement, and the results are shown below.
  • the aqueous layer was extracted with dichloromethane (1.3 L), combined with the original organic layer, washed successively with purified water (1.3 L), saturated sodium bicarbonate water (1.3 L), and saturated saline (500 mL), dried over anhydrous magnesium sulfate, filtered, and the filtrate was concentrated to obtain a reddish brown solid.
  • the maximum absorption wavelength ( ⁇ max1 ) of this dye (III-2) in a 10 ppm chloroform solution was 454 nm.
  • Example 1 20.05 parts of the polymerizable liquid crystal compound (I-1) and 0.40 parts of the dye (II-1) were added to 4016.05 parts of chloroform, and the mixture was stirred to dissolve, and then the solvent was removed to obtain a composition 1A.
  • the r n1 /r n2 ratio of the composition 1A was 0.75. It was confirmed that Composition 1A exhibited liquid crystallinity by observing birefringence at 40° C. using a polarizing microscope equipped with a hot stage.
  • an anisotropic dye film 1A was prepared using the obtained composition 1A in a sandwich cell having a cell gap of 8.0 ⁇ m, and the dichroic ratio of the anisotropic dye film 1A was determined. Furthermore, 24.15 parts of the polymerizable liquid crystal compound (I-1), 0.48 parts of the dye (II-1), 0.48 parts of a polymerization initiator (Irgacure 369 manufactured by IGM Resins B.V.), and 0.36 parts of a surfactant (BYK-361N manufactured by BYK) were added to 6013.38 parts of chloroform, and the mixture was stirred to dissolve, and then the solvent was removed to obtain composition 1B.
  • a polymerization initiator Irgacure 369 manufactured by IGM Resins B.V.
  • BYK-361N manufactured by BYK
  • an anisotropic dye film 1B was prepared using the obtained composition 1B in a sandwich cell having a cell gap of 8.0 ⁇ m, and the light resistance of the anisotropic dye film 1B was determined.
  • the evaluation results of the dichroic ratio and the light fastness are shown in Table 1.
  • composition 2A and anisotropic dye film 2A were obtained in the same manner as composition 1A and anisotropic dye film 1A in Example 1.
  • r n1 /r n2 of composition 2A was 0.75. It was confirmed that Composition 2A exhibited liquid crystallinity by observing birefringence at 40° C. using a polarizing microscope equipped with a hot stage. The dichroic ratio of the anisotropic dye film 2A was also determined.
  • composition 2B and anisotropic dye film 2B were obtained in the same manner as composition 1B and anisotropic dye film 1B in Example 1, except that 0.48 parts of dye (II-2) was added instead of 0.48 parts of dye (II-1).
  • the light resistance of the anisotropic dye film 2B was also determined.
  • the evaluation results of the dichroic ratio and the light fastness are shown in Table 1.
  • composition 3A and anisotropic dye film 3A were obtained in the same manner as composition 1A and anisotropic dye film 1A in Example 1.
  • r n1 /r n2 of composition 3A was 0.75. It was confirmed that Composition 3A exhibited liquid crystallinity by observing birefringence at 40° C. using a polarizing microscope equipped with a hot stage. The dichroic ratio of the anisotropic dye film 3A was also determined.
  • composition 3B and anisotropic dye film 3B were obtained in the same manner as composition 1B and anisotropic dye film 1B in Example 1, except that 0.61 parts of dye (II-3) was added instead of 0.48 parts of dye (II-1).
  • the light resistance of the anisotropic dye film 3B was determined.
  • the evaluation results of the dichroic ratio and the light fastness are shown in Table 1.
  • composition 4 and anisotropic dye film 4A were obtained in the same manner as composition 1A and anisotropic dye film 1A in Example 1.
  • r n1 /r n2 of composition 4A was 0.6. It was confirmed that Composition 4A exhibited liquid crystallinity by observing birefringence at 40° C. using a polarizing microscope equipped with a hot stage. The dichroic ratio of the anisotropic dye film 4A was also determined.
  • composition 4B and anisotropic dye film 4B were obtained in the same manner as composition 1B and anisotropic dye film 1B in Example 1, except that 0.47 part of dye (II-4) was added instead of 0.48 part of dye (II-1).
  • the light resistance of the anisotropic dye film 4B was also determined.
  • the evaluation results of the dichroic ratio and the light fastness are shown in Table 1.
  • composition 5A and anisotropic dye film 5A were obtained in the same manner as composition 1A and anisotropic dye film 1A in Example 1.
  • r n1 /r n2 of composition 5A was 0.6. It was confirmed that Composition 5A exhibited liquid crystallinity by observing birefringence at 40° C. using a polarizing microscope equipped with a hot stage. The dichroic ratio of the anisotropic dye film 5A was also determined.
  • composition 5B and anisotropic dye film 5B were obtained in the same manner as composition 1B and anisotropic dye film 1B in Example 1, except that 0.48 parts of dye (II-1) was replaced with 0.48 parts of dye (II-5).
  • the light resistance of the anisotropic dye film 5B was also determined.
  • the evaluation results of the dichroic ratio and the light fastness are shown in Table 1.
  • composition 6A and anisotropic dye film 6A were obtained in the same manner as composition 1A and anisotropic dye film 1A in Example 1.
  • r n1 /r n2 of composition 6A was 0.6. It was confirmed that Composition 6A exhibited liquid crystallinity by observing birefringence at 40° C. using a polarizing microscope equipped with a hot stage. The dichroic ratio of the anisotropic dye film 6A was also determined.
  • composition 6B and anisotropic dye film 6B were obtained in the same manner as composition 1B and anisotropic dye film 1B in Example 1, except that 0.48 parts of dye (II-1) was replaced with 0.48 parts of dye (II-6).
  • the light resistance of the anisotropic dye film 6B was also determined.
  • the evaluation results of the dichroic ratio and the light fastness are shown in Table 1.
  • composition 7A and anisotropic dye film 7A were obtained in the same manner as composition 1A and anisotropic dye film 1A in Example 1.
  • r n1 /r n2 of composition 7A was 0.6. It was confirmed that Composition 7A exhibited liquid crystallinity by observing birefringence at 40° C. using a polarizing microscope equipped with a hot stage. The dichroic ratio of the anisotropic dye film 7A was also determined.
  • composition 7B and anisotropic dye film 7B were obtained in the same manner as composition 1B and anisotropic dye film 1B in Example 1, except that 0.52 parts of dye (II-7) was added instead of 0.48 parts of dye (II-1).
  • the light resistance of the anisotropic dye film 7B was also determined.
  • the evaluation results of the dichroic ratio and the light fastness are shown in Table 1.
  • composition 8A and anisotropic dye film 8A were obtained in the same manner as composition 1A and anisotropic dye film 1A in Example 1, except that 0.35 parts of dye (III-1) was used instead of 0.40 parts of dye ( II -1). It was confirmed that Composition 8A exhibited liquid crystallinity by observing birefringence at 40° C. using a polarizing microscope equipped with a hot stage. The dichroic ratio of the anisotropic dye film 8A was also determined.
  • Composition 8B and anisotropic dye film 8B were obtained in the same manner as composition 1B and anisotropic dye film 1B in Example 1, except that 0.42 parts of dye (III-1) was added instead of 0.48 parts of dye (II-1). The light resistance of the anisotropic dye film 8B was also determined. The evaluation results of the dichroic ratio and the light fastness are shown in Table 1.
  • Example 8 20.05 parts of the polymerizable liquid crystal compound (I-1) and 0.39 parts of the dye (II-4) were added to 4016.05 parts of chloroform, and the mixture was stirred to dissolve, and then the solvent was removed to obtain a composition 9A.
  • the r n1 /r n2 ratio of the composition 9A was 0.6. It was confirmed that Composition 9A exhibited liquid crystallinity by observing birefringence at 40° C. using a polarizing microscope equipped with a hot stage.
  • an anisotropic dye film 9A was prepared using a sandwich cell with a cell gap of 8.0 ⁇ m, and the wavelength ( ⁇ max2 ) at which the dichroic ratio and orthogonal absorbance of the anisotropic dye film 8A were maximized was determined.
  • composition 9B 24.15 parts of the polymerizable liquid crystal compound (I-1), 0.47 parts of the dye (II-4), 0.48 parts of a polymerization initiator (Irgacure 369 manufactured by IGM Resins B.V.), and 0.36 parts of a surfactant (BYK-361N manufactured by BYK) were added to 6013.38 parts of chloroform, and the mixture was stirred to dissolve, and then the solvent was removed to obtain composition 9B.
  • an anisotropic dye film 9B was prepared using a sandwich cell having a cell gap of 8.0 ⁇ m, and the light resistance of the anisotropic dye film 9B was determined.
  • the evaluation results of the dichroic ratio and light fastness are shown in Table 3 together with the values of ⁇ max1 , ⁇ max2 and ⁇ max2 - ⁇ max1 of dye (II-4).
  • Example 9 A composition 10A and an anisotropic dye film 10A were obtained in the same manner as in the composition 9A and anisotropic dye film 9A of Example 8, except that 0.39 parts of dye (II-5) was added instead of 0.39 parts of dye (II-4).
  • the r n1 /r n2 of the composition 10A was 0.6. It was confirmed that Composition 10A exhibited liquid crystallinity by observing birefringence at 40° C. using a polarizing microscope equipped with a hot stage. In addition, the dichroic ratio and the wavelength ( ⁇ max2 ) at which the orthogonal absorbance of the anisotropic dye film 10A is maximized were determined.
  • composition 10B and anisotropic dye film 10B were obtained in the same manner as composition 9B and anisotropic dye film 9B in Example 8, except that 0.48 parts of dye (II-5) was added instead of 0.48 parts of dye (II-4), and the light resistance of anisotropic dye film 10B was determined.
  • the evaluation results of the dichroic ratio and light fastness are shown in Table 3 together with the values of ⁇ max1 , ⁇ max2 and ⁇ max2 - ⁇ max1 of dye (II-5).
  • composition 11A and anisotropic dye film 11A were obtained in the same manner as composition 9A and anisotropic dye film 9A in Example 8, except that 0.40 parts of dye (II-6) was added instead of 0.39 parts of dye (II-4).
  • r n1 /r n2 of composition 11A was 0.6. It was confirmed that Composition 11A exhibited liquid crystallinity by observing birefringence at 40° C. using a polarizing microscope equipped with a hot stage. In addition, the dichroic ratio and the wavelength ( ⁇ max2 ) at which the orthogonal absorbance of the anisotropic dye film 11A is maximized were determined.
  • Composition 11B and anisotropic dye film 11B were obtained in the same manner as in Composition 9B and Anisotropic Dye Film 9B in Example 8, except that 0.48 parts of dye (II-4) was replaced with 0.48 parts of dye (II-6).
  • the light resistance of the anisotropic dye film 11B was determined.
  • the evaluation results of the dichroic ratio and light fastness are shown in Table 3 together with the values of ⁇ max1 , ⁇ max2 and ⁇ max2 - ⁇ max1 of dye (II-6).
  • composition 12A and anisotropic dye film 12A were obtained in the same manner as composition 9A and anisotropic dye film 9A in Example 8, except that 0.42 parts of dye (II-7) was added instead of 0.39 parts of dye (II-4).
  • r n1 /r n2 of composition 12A was 0.6. It was confirmed that Composition 12A exhibited liquid crystallinity by observing birefringence at 40° C. using a polarizing microscope equipped with a hot stage. In addition, the dichroic ratio and the wavelength ( ⁇ max2 ) at which the orthogonal absorbance of the anisotropic dye film 12A is maximized were determined.
  • composition 12B and anisotropic dye film 12B were obtained in the same manner as in composition 9B and anisotropic dye film 9B of Example 8, except that 0.52 parts of dye (II-7) was added instead of 0.48 parts of dye (II-4).
  • the light resistance of anisotropic dye film 12B was determined.
  • the evaluation results of the dichroic ratio and lightfastness are shown in Table 3 together with the values of ⁇ max1 , ⁇ max2 and ⁇ max2 - ⁇ max1 of dye (II-7).
  • composition 13A and anisotropic dye film 13A were obtained in the same manner as composition 9A and anisotropic dye film 9A in Example 8, except that 0.27 parts of dye (II-8) was added instead of 0.39 parts of dye (II-4). r n1 /r n2 of composition 13A was 0.75. It was confirmed that Composition 13A exhibited liquid crystallinity by observing birefringence at 40° C. using a polarizing microscope equipped with a hot stage. Further, the dichroic ratio of the anisotropic dye film 13A and the wavelength ( ⁇ max2 ) at which the orthogonal absorbance is maximized were determined.
  • composition 13B and anisotropic dye film 13B were obtained in the same manner as composition 9B and anisotropic dye film 9B in Example 8, except that 0.39 parts of dye (II-8) was added instead of 0.48 parts of dye (II-4), and the light resistance of anisotropic dye film 13B was determined.
  • the evaluation results of the dichroic ratio and light fastness are shown in Table 3 together with the values of ⁇ max1 , ⁇ max2 and ⁇ max2 - ⁇ max1 of dye (II-8).
  • composition 14A and anisotropic dye film 14A were obtained in the same manner as composition 9A and anisotropic dye film 9A in Example 8, except that 0.55 parts of dye (III-2) was used instead of 0.39 parts of dye (II-4). r n1 /r n2 of composition 14A was 0.6. It was confirmed that Composition 14A exhibited liquid crystallinity by observing birefringence at 40° C. using a polarizing microscope equipped with a hot stage. In addition, the dichroic ratio and the wavelength ( ⁇ max2 ) at which the orthogonal absorbance of the anisotropic dye film 14A is maximized were determined.
  • composition 14B and anisotropic dye film 14B were obtained in the same manner as composition 9B and anisotropic dye film 9B in Example 8, except that 0.66 parts of dye (III-2) was added instead of 0.48 parts of dye (II-4), and the light resistance of anisotropic dye film 14B was determined.
  • the evaluation results of the dichroic ratio and light fastness are shown in Table 3 together with the values of ⁇ max1 , ⁇ max2 and ⁇ max2 - ⁇ max1 of dye (III-2).
  • the dyes in the compositions used in Examples 8 to 12 satisfied ⁇ max2 - ⁇ max1 ⁇ 0, the anisotropic dye films showed high maximum dichroic ratios, and good lightfastness.
  • the dyes in the composition used in Comparative Example 2 did not satisfy ⁇ max2 - ⁇ max1 ⁇ 0, and the anisotropic dye films showed lower maximum dichroic ratios and lightfastness than the examples.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Physics & Mathematics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

This compound is represented by formula (1). (In formula (1), -XA represents a monovalent organic group. -RA1 and -RA2 each independently represent an alkyl group optionally having a substituent group. -RA1 and -RA2 may be integrated and may form a ring, but moieties -RA1 and -RA2 of the ring formed by -RA1 and -RA2 are formed only of a hydrocarbon chain. -A1-, -A2-, -A3-, and -A4- each independently represent a 1,4-phenylene group optionally having a substituent group. n represents 0, 1, or 2. When n represents 2, the multiple occurrences of -A3- may be the same or may be different from each other.)

Description

化合物、組成物、異方性色素膜及び光学素子Compound, composition, anisotropic dye film and optical element
 本発明は、調光素子、液晶素子(LCD)及び有機エレクトロルミネッセンス素子(OLED)の表示素子に具備される偏光膜等に有用な化合物及び組成物に関する。本発明はまた、この組成物を用いた異方性色素膜及び光学素子に関する。 The present invention relates to compounds and compositions that are useful for polarizing films and the like provided in display elements such as light control elements, liquid crystal elements (LCDs), and organic electroluminescence elements (OLEDs). The present invention also relates to anisotropic dye films and optical elements that use the compositions.
 LCDでは、表示における旋光性や複屈折性を制御するために、直線偏光膜及び円偏光膜が用いられている。OLEDにおいても、明所での外光の反射防止のために円偏光膜が用いられている。 In LCDs, linear and circular polarizing films are used to control the optical rotation and birefringence of the display. Circular polarizing films are also used in OLEDs to prevent reflection of external light in bright places.
 従来、このような偏光膜として、例えば、ポリビニルアルコール(PVA)を低濃度のヨウ素で染色した偏光膜(ヨウ素-PVA偏光膜)を含むものが知られている(特許文献1)。
 しかし、低濃度としたヨウ素-PVA偏光板は、使用環境によっては、ヨウ素が昇華したり、変質したりして、色目が変わってしまうといった問題や、PVAの延伸が緩和されることによる反りが発生するといった問題がある。
Conventionally, examples of such polarizing films include a polarizing film made of polyvinyl alcohol (PVA) dyed with low concentration of iodine (iodine-PVA polarizing film) (Patent Document 1).
However, low-concentration iodine-PVA polarizing plates have problems such as the iodine sublimating or deteriorating, causing a change in color, and warping due to relaxation of the stretching of the PVA, depending on the usage environment.
 これに対し、色素を含有した液晶組成物を塗布して形成される異方性色素膜が偏光膜として機能することも知られている(特許文献2)。 In response to this, it is also known that an anisotropic dye film formed by applying a liquid crystal composition containing a dye functions as a polarizing film (Patent Document 2).
特開平1-105204号公報Japanese Patent Application Laid-Open No. 1-105204 特開2013-210624号公報JP 2013-210624 A
 異方性色素膜を偏光子として用いる場合、異方性色素膜には、優れた光学性能、特に良好な二色比を有すること、および耐光性を有することが重要となり、これら光学性能と耐光性が共に高い異方性色素膜の開発が望まれている。 When using an anisotropic dye film as a polarizer, it is important that the anisotropic dye film has excellent optical performance, particularly a good dichroic ratio, and light resistance, and there is a demand for the development of an anisotropic dye film that has both high optical performance and high light resistance.
 本発明は、得られる異方性色素膜が高い二色比を発現し、かつ耐光性に優れる化合物及び組成物と、その組成物から得られる異方性色素膜及びこの異方性色素膜を含む光学素子を提供することを目的とする。 The present invention aims to provide a compound and composition that produces an anisotropic dye film that exhibits a high dichroic ratio and has excellent light resistance, an anisotropic dye film obtained from the composition, and an optical element that includes the anisotropic dye film.
 本発明者は、特定構造を有する化合物が前記課題を解決できることを見出した。
 本発明の第1の発明は、以下の態様を有する。
The present inventors have discovered that a compound having a specific structure can solve the above problems.
The first aspect of the present invention has the following aspects.
[1-1] 下記式(1)で示される化合物。 [1-1] A compound represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
(式(1)中、
 -XAは1価の有機基を表す。
 -RA及び-RAは、それぞれ独立に、置換基を有していてもよいアルキル基を表す。-RA及び-RAは一体となって環を形成してもよいが、-RA及び-RAが形成する環の-RA及び-RA部分は炭化水素鎖のみで形成される。
 -A-、-A-、-A-及び-A-は、それぞれ独立に、置換基を有していてもよい1,4-フェニレン基を表す。
 nは0、1、又は2を表す。
 nが2の場合、複数の-A-は互いに同一でも異なっていてもよい。)
(In formula (1),
-XA represents a monovalent organic group.
-RA1 and -RA2 each independently represent an alkyl group which may have a substituent. -RA1 and -RA2 may be joined together to form a ring, but the -RA1 and -RA2 portions of the ring formed by -RA1 and -RA2 are formed only by a hydrocarbon chain.
-A 1 -, -A 2 -, -A 3 - and -A 4 - each independently represent a 1,4-phenylene group which may have a substituent.
n represents 0, 1, or 2.
When n is 2, multiple -A 3 - may be the same or different.
[1-2] 前記式(1)における-XAが、水素原子、-Ra、-O-Ra、-NH-Ra、-C(=O)-Ra、-C(=O)-O-Ra、-C(=O)-NH-Ra、-C(=O)-N(-Rb)-Ra、-O-C(=O)-Ra、-NH-C(=O)-Ra、-N(-Rb)-C(=O)-Ra、又は-S-Ra(-Ra及び-Rbは、それぞれ独立に、分岐を有していてもよい炭素数1~15のアルキル基、環を構成する原子の数が5~14のシクロアルキル基、又は環を構成する原子の数が5~14のアリール基を表し、前記アルキル基、シクロアルキル基及びアリール基は、それぞれ置換基を有していてもよい。また、-Ra及び-Rbは、一体となって炭素数2~15の環を形成していてもよく、該環は置換基を有していてもよい。)である、[1-1]に記載の化合物。 [1-2] In the formula (1), -XA is a hydrogen atom, -Ra, -O-Ra, -NH-Ra, -C(=O)-Ra, -C(=O)-O-Ra, -C(=O)-NH-Ra, -C(=O)-N(-Rb)-Ra, -O-C(=O)-Ra, -NH-C(=O)-Ra, -N(-Rb)-C(=O)-Ra, or -S-Ra (-Ra and -Rb each independently represent a number of carbon atoms which may have a branch). The compound according to [1-1], which represents an alkyl group having 1 to 15 carbon atoms, a cycloalkyl group having 5 to 14 ring atoms, or an aryl group having 5 to 14 ring atoms, and the alkyl group, cycloalkyl group, and aryl group may each have a substituent. In addition, -Ra and -Rb may together form a ring having 2 to 15 carbon atoms, and the ring may have a substituent.
[1-3] 前記式(1)における-RA及び-RAが、それぞれ独立に、置換基を有していてもよい、炭素数が1~10のアルキル基である、[1-1]又は[1-2]に記載の化合物。 [1-3] The compound according to [1-1] or [1-2], wherein -RA 1 and -RA 2 in the formula (1) each independently represent an alkyl group having 1 to 10 carbon atoms which may have a substituent.
[1-4] 下記式(2)で示される化合物と重合性液晶化合物とを含む組成物。 [1-4] A composition containing a compound represented by the following formula (2) and a polymerizable liquid crystal compound.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
(式(2)中、
 -XBは1価の有機基を表す。
 -RB及び-RBは、それぞれ独立に、置換基を有していてもよいアルキル基を表す。-RB及び-RBは一体となって環を形成してもよい。
 -B-及び-B-は、それぞれ独立に、置換基を有していてもよい1,4-フェニレン基を表す。
 -B-及び-B-は、それぞれ独立に、置換基を有していてもよい芳香族炭素水素環の2価基を表す。
 nは0、1、又は2を表す。
 nが2の場合、複数の-B-は互いに同一でも異なっていてもよい。)
(In formula (2),
-XB represents a monovalent organic group.
Each of -RB1 and -RB2 independently represents an alkyl group which may have a substituent, and -RB1 and -RB2 may combine together to form a ring.
-B 1 - and -B 2 - each independently represents a 1,4-phenylene group which may have a substituent.
Each of -B 3 - and -B 4 - independently represents a divalent aromatic hydrocarbon ring group which may have a substituent.
n represents 0, 1, or 2.
When n is 2, multiple -B 3 - may be the same or different.
[1-5] 前記式(2)における-B-が、置換基を有していてもよい1,4-フェニレン基である、[1-4]に記載の組成物。 [1-5] The composition according to [1-4], in which -B 4 - in the formula (2) is a 1,4-phenylene group which may have a substituent.
[1-6] 前記式(2)における-B-が、置換基を有していてもよい1,4-フェニレン基である、[1-4]又は[1-5]に記載の組成物。 [1-6] The composition according to [1-4] or [1-5], wherein -B 3 - in the formula (2) is a 1,4-phenylene group which may have a substituent.
[1-7] 前記式(2)における-XBが、水素原子、-Ra、-O-Ra、-NH-Ra、-C(=O)-Ra、-C(=O)-O-Ra、-C(=O)-NH-Ra、-C(=O)-N(-Rb)-Ra、-O-C(=O)-Ra、-NH-C(=O)-Ra、-N(-Rb)-C(=O)-Ra、又は-S-Ra(-Ra及び-Rbは、それぞれ独立に、分岐を有していてもよい炭素数1~15のアルキル基、環を構成する原子の数が5~14のシクロアルキル基、又は環を構成する原子の数が5~14のアリール基を表し、前記アルキル基、シクロアルキル基及びアリール基は、それぞれ置換基を有していてもよい。また、-Ra及び-Rbは、一体となって炭素数2~15の環を形成していてもよく、該環は置換基を有していてもよい。)である、[1-4]~[1-6]のいずれかに記載の組成物。 [1-7] In the formula (2), -XB is a hydrogen atom, -Ra, -O-Ra, -NH-Ra, -C(=O)-Ra, -C(=O)-O-Ra, -C(=O)-NH-Ra, -C(=O)-N(-Rb)-Ra, -O-C(=O)-Ra, -NH-C(=O)-Ra, -N(-Rb)-C(=O)-Ra, or -S-Ra (-Ra and -Rb each independently represent an optionally branched alkyl group having 1 to 15 carbon atoms). The composition according to any one of [1-4] to [1-6], wherein -Ra represents an alkyl group, a cycloalkyl group having 5 to 14 atoms constituting the ring, or an aryl group having 5 to 14 atoms constituting the ring, and the alkyl group, cycloalkyl group, and aryl group may each have a substituent. In addition, -Ra and -Rb may together form a ring having 2 to 15 carbon atoms, and the ring may have a substituent.
[1-8] 前記式(2)における-RB及び-RBが、それぞれ独立に、置換基を有していてもよい、炭素数が1~10のアルキル基である、[1-4]~[1-7]のいずれかに記載の組成物。 [1-8] The composition according to any one of [1-4] to [1-7], wherein in the formula (2), -RB1 and -RB2 each independently represent an alkyl group having 1 to 10 carbon atoms which may have a substituent.
[1-9] [1-4]~[1-8]のいずれかに記載の組成物を用いて形成された異方性色素膜。 [1-9] An anisotropic dye film formed using a composition described in any one of [1-4] to [1-8].
[1-10] [1-9]に記載の異方性色素膜を有する光学素子。 [1-10] An optical element having the anisotropic dye film described in [1-9].
 本発明者は、重合性液晶化合物と、特定の極大吸収波長特性を示す色素とを含む組成物が前記課題を解決できることを見出した。
 本発明の第2の発明は、以下の態様を有する。
The present inventors have found that the above-mentioned problems can be solved by a composition containing a polymerizable liquid crystal compound and a dye exhibiting specific maximum absorption wavelength characteristics.
The second aspect of the present invention has the following aspects.
[2-1] 重合性液晶化合物と色素とを含む組成物であって、
 前記色素の極大吸収波長が次の関係式(11)を満たす組成物。
  λmax2-λmax1<0  (11)
(式(11)中、λmax1は溶媒中の前記色素の極大吸収波長、λmax2は前記組成物を用いて形成された色素膜中の前記色素の極大吸収波長を表す。)
[2-1] A composition containing a polymerizable liquid crystal compound and a dye,
A composition in which the maximum absorption wavelength of the dye satisfies the following relation (11):
λ max2 −λ max1 <0 (11)
(In formula (11), λ max1 represents the maximum absorption wavelength of the dye in a solvent, and λ max2 represents the maximum absorption wavelength of the dye in a dye film formed using the composition.)
[2-2] 前記色素がアゾ系色素である、[2-1]に記載の組成物。 [2-2] The composition described in [2-1], in which the dye is an azo dye.
[2-3] 前記色素が下記式(12)で表される化合物である、[2-2]に記載の組成物。
 X20(-A21m1(-N=N-A22n1-N=N-A23-Y20  (12)
(式(12)中、
 -A21-、-A22-、-A23-は、それぞれ独立に、置換基を有していてもよい芳香族炭化水素環、又は置換基を有していてもよい芳香族複素環の2価基を表し、
 -X20、-Y20は、それぞれ独立に、1価の任意の置換基を表し、
 m1は1又は2を表し、
 n1は0、1、2、又は3を表す。
 m1が2の場合、-A21-は互いに同一でも異なっていてもよい。
 n1が2又は3の場合、-A22-は互いに同一でも異なっていてもよい。)
[2-3] The composition according to [2-2], wherein the dye is a compound represented by the following formula (12):
X 20 (-A 21 ) m1 (-N=N-A 22 ) n1 -N=N-A 23 -Y 20 (12)
(In formula (12),
-A 21 -, -A 22 -, and -A 23 - each independently represent a divalent group of an aromatic hydrocarbon ring which may have a substituent, or an aromatic heterocycle which may have a substituent;
-X 20 and -Y 20 each independently represent an arbitrary monovalent substituent;
m1 represents 1 or 2;
n1 represents 0, 1, 2, or 3.
When m1 is 2, -A 21 - may be the same or different.
When n1 is 2 or 3, -A 22 - may be the same or different.
[2-4] 前記式(12)において-A21-、-A23-がそれぞれ独立に、置換基を有していてもよい芳香族炭化水素環の2価基である、[2-3]に記載の組成物。 [2-4] The composition according to [2-3], wherein in the formula (12), -A 21 - and -A 23 - each independently represent a divalent group of an aromatic hydrocarbon ring which may have a substituent.
[2-5] 前記式(12)において-A22-が置換基を有していてもよい芳香族炭化水素環の2価基である、[2-3]又は[2-4]に記載の組成物。 [2-5] The composition according to [2-3] or [2-4], wherein in the formula (12), -A 22 - is a divalent group of an aromatic hydrocarbon ring which may have a substituent.
[2-6] 前記式(12)において-Y20が下記式(12a)で表される、[2-3]~[2-5]のいずれかに記載の組成物。
  -N-(R)-R   (12a)
(式(12a)中、-R、-Rは、それぞれ独立に、分岐を有していてもよいアルキル基又はアリール基を表し、該アルキル基又はアリール基は置換基を有していてもよい。-R及び-Rは、一体となってNと共に炭素数2~15の環を形成していてもよく、該環は置換基を有していてもよい。)
[2-6] The composition according to any one of [2-3] to [2-5], wherein in the formula (12), -Y 20 is represented by the following formula (12a):
-N-(R y )-R x (12a)
(In formula (12a), -R x and -R y each independently represent an alkyl group or an aryl group which may have a branch, and the alkyl group or aryl group may have a substituent. -R x and -R y may together form a ring having 2 to 15 carbon atoms together with N, and the ring may have a substituent.)
[2-7] 前記重合性液晶化合物が共重合構造を有さない低分子重合性液晶化合物である、[2-1]~[2-6]のいずれかに記載の組成物。 [2-7] The composition according to any one of [2-1] to [2-6], wherein the polymerizable liquid crystal compound is a low molecular weight polymerizable liquid crystal compound that does not have a copolymer structure.
[2-8] [2-1]~[2-7]いずれかに記載の組成物を用いて形成された異方性色素膜。 [2-8] An anisotropic dye film formed using a composition described in any one of [2-1] to [2-7].
[2-9] [2-8]に記載の異方性色素膜を有する光学素子。 [2-9] An optical element having the anisotropic dye film described in [2-8].
 本発明の化合物及び組成物によれば、高い二色比を発現し、かつ耐光性に優れた異方性色素膜を提供することができる。 The compounds and compositions of the present invention can provide an anisotropic dye film that exhibits a high dichroic ratio and has excellent light resistance.
 以下、本発明の実施の形態を具体的に説明する。本発明は、以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々に変更して実施することができる。
 以下において、「第1の発明」と「第2の発明」を「本発明」と総称する。
The present invention will be described in detail below with reference to the embodiments. The present invention is not limited to the following embodiments, and can be modified in various ways within the scope of the present invention.
Hereinafter, the "first invention" and the "second invention" will be collectively referred to as "the present invention."
 本発明でいう異方性色素膜とは、異方性色素膜の厚み方向および任意の直交する面内2方向の立体座標系における合計3方向から選ばれる、任意の2方向における電磁気的性質に異方性を有する色素膜である。電磁気学的性質としては、たとえば、吸収、屈折等の光学的性質、抵抗、容量等の電気的性質が挙げられる。
 吸収、屈折等の光学的異方性を有する膜としては、たとえば、直線偏光膜、円偏光膜等の偏光膜、位相差膜、導電異方性色素膜が挙げられる。本発明の化合物及び本発明の組成物を用いた異方性色素膜は、偏光膜、又は導電異方性色素膜として用いられることが好ましく、偏光膜に用いられることがより好ましい。
The anisotropic dye film in the present invention is a dye film having anisotropy in electromagnetic properties in any two directions selected from a total of three directions in a three-dimensional coordinate system including the thickness direction of the anisotropic dye film and any two orthogonal in-plane directions. Examples of the electromagnetic properties include optical properties such as absorption and refraction, and electrical properties such as resistance and capacitance.
Examples of films having optical anisotropy such as absorption and refraction include polarizing films such as linear polarizing films and circular polarizing films, retardation films, and conductive anisotropic dye films. The anisotropic dye film using the compound and composition of the present invention is preferably used as a polarizing film or a conductive anisotropic dye film, and more preferably used as a polarizing film.
 本発明において色素とは、可視光領域(350nm~800nm)の波長の少なくとも一部を吸収する物質又は化合物である。
 本発明に用いることができる色素としては、二色性色素が挙げられる。なお、二色性色素とは、分子の長軸方向における吸光度と、短軸方向における吸光度とが異なる性質を有する色素を言う。また、色素は、液晶性を有する色素であってもよいし、液晶性を有さなくてもよい。なお、液晶性を有するとは、任意の温度で液晶相を発現することを言う。
In the present invention, the dye is a substance or compound that absorbs at least a part of the wavelengths in the visible light region (350 nm to 800 nm).
Dyes that can be used in the present invention include dichroic dyes. The dichroic dye refers to a dye that has different absorbance in the long axis direction of the molecule and absorbance in the short axis direction. The dye may or may not have liquid crystallinity. The term "liquid crystallinity" refers to the ability to exhibit a liquid crystal phase at any temperature.
[第1の発明の化合物]
 第1の発明の化合物は、下記式(1)で示される化合物(以下、「化合物(1)」と称す場合がある。)である。
[Compound of the first invention]
The compound of the first invention is a compound represented by the following formula (1) (hereinafter, sometimes referred to as "compound (1)").
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
(式(1)中、
 -XAは1価の有機基を表す。
 -RA及び-RAは、それぞれ独立に、置換基を有していてもよいアルキル基を表す。-RA及び-RAは一体となって環を形成してもよいが、-RA及び-RAが形成する環の-RA及び-RA部分は炭化水素鎖のみで形成される。
 -A-、-A-、-A-及び-A-は、それぞれ独立に、置換基を有していてもよい1,4-フェニレン基を表す。
 nは0、1、又は2を表す。
 nが2の場合、複数の-A-は互いに同一でも異なっていてもよい。)
(In formula (1),
-XA represents a monovalent organic group.
-RA1 and -RA2 each independently represent an alkyl group which may have a substituent. -RA1 and -RA2 may be joined together to form a ring, but the -RA1 and -RA2 portions of the ring formed by -RA1 and -RA2 are formed only by a hydrocarbon chain.
-A 1 -, -A 2 -, -A 3 - and -A 4 - each independently represent a 1,4-phenylene group which may have a substituent.
n represents 0, 1, or 2.
When n is 2, multiple -A 3 - may be the same or different.
<化合物(1)の構造と効果との関係>
 化合物(1)により第1の発明の効果が奏されるメカニズムの詳細については明らかではないが、以下の通り推測される。
 式(1)で表される特定の構造を有する上記化合物(1)を色素として含むことにより、異方性色素膜中での色素会合状態が最適化され、偏光子として用いる際の二色比等の光学性能が良好かつ、高い耐光性を有する異方性色素膜が得られる。
<Relationship between the structure and effect of compound (1)>
Although the details of the mechanism by which compound (1) exhibits the effects of the first invention are not clear, it is speculated as follows.
By containing the compound (1) having the specific structure represented by formula (1) as a dye, the dye association state in the anisotropic dye film is optimized, and an anisotropic dye film having good optical performance such as a dichroic ratio when used as a polarizer and high light resistance can be obtained.
<-XA>
 -XAは、一価の有機基を表す。
<-XA>
-XA represents a monovalent organic group.
 -XAの有機基としては、好ましくは、水素原子、ハロゲン原子、シアノ基、ニトロ基、ヒドロキシ基、カルバモイル基、-Ra、-O-Ra、-NH-Ra、-C(=O)-Ra、-C(=O)-O-Ra、-C(=O)-NH-Ra、-C(=O)-N(-Rb)-Ra、-O-C(=O)-Ra、-NH-C(=O)-Ra、-N(-Rb)-C(=O)-Ra、又は-S-Ra(-Ra及び-Rbは、それぞれ独立に、分岐を有していてもよい炭素数1~15のアルキル基、環を構成する原子の数が5~14のシクロアルキル基、又は環を構成する原子の数が5~14のアリール基を表し、前記アルキル基、シクロアルキル基及びアリール基は、それぞれ置換基を有していてもよい。-Ra及び-Rbは、一体となって炭素数2~15の環を形成していてもよく、該環は置換基を有していてもよい。)が挙げられる。 The organic group of -XA is preferably a hydrogen atom, a halogen atom, a cyano group, a nitro group, a hydroxy group, a carbamoyl group, -Ra, -O-Ra, -NH-Ra, -C(=O)-Ra, -C(=O)-O-Ra, -C(=O)-NH-Ra, -C(=O)-N(-Rb)-Ra, -O-C(=O)-Ra, -NH-C(=O)-Ra, -N(-Rb)-C(=O)-Ra, or -S-Ra (-Ra and -Rb are each independently Each independently represents an alkyl group having 1 to 15 carbon atoms, which may be branched, a cycloalkyl group having 5 to 14 atoms constituting a ring, or an aryl group having 5 to 14 atoms constituting a ring, and the alkyl group, cycloalkyl group, and aryl group may each have a substituent. -Ra and -Rb may together form a ring having 2 to 15 carbon atoms, and the ring may have a substituent.)
 -XAにおける1価の有機基としては、重合性液晶化合物との分子配向を良好にさせる観点の場合には、後述する重合性基を有していない方が好ましい。一方、-XAにおける1価の有機基としては、異方性色素膜の機械強度を向上させる観点の場合には、後述する重合性基を有することが好ましい。 In terms of improving the molecular alignment with the polymerizable liquid crystal compound, it is preferable that the monovalent organic group in -XA does not have a polymerizable group, which will be described later. On the other hand, in terms of improving the mechanical strength of the anisotropic dye film, it is preferable that the monovalent organic group in -XA has a polymerizable group, which will be described later.
 -Ra及び-Rbにおける分岐を有していてもよい炭素数1~15のアルキル基、環を構成する原子の数が5~14のシクロアルキル基および環を構成する原子の数が5~14のアリ-ル基は、それぞれ置換基を有していてもよい。
 また、分岐を有していてもよい炭素数1~15のアルキル基、環を構成する原子の数が5~14のシクロアルキル基、又は-Ra及び-Rbが一体となって形成した環に含まれる一つ又はそれ以上のメチレン基は、-O-、-S-、-NH-、-N(R)-、-C(=O)-、-C(=O)-O-、-C(=O)-NH-、-CHF-、-CF-、-CHCl-、-CCl-によって置き換えられた(displace)構造であってもよく、アクリロイルオキシ基、メタクリロイルオキシ基、グリシジルオキシ基の重合性基に置き換えられた構造であってもよい。ここで、Rは、炭素数1~6の直鎖状又は分枝状のアルキル基を表す。
The alkyl group having 1 to 15 carbon atoms, which may have a branch, the cycloalkyl group having 5 to 14 ring-constituting atoms, and the aryl group having 5 to 14 ring-constituting atoms in -Ra and -Rb each may have a substituent.
Furthermore, one or more methylene groups contained in an alkyl group having 1 to 15 carbon atoms which may have a branch, a cycloalkyl group having 5 to 14 ring atoms, or a ring formed by combining -Ra and -Rb may have a structure in which they are replaced (displaced) by -O-, -S-, -NH-, -N(R z )-, -C(═O)-, -C(═O)-O-, -C(═O)-NH-, -CHF-, -CF 2 -, -CHCl-, or -CCl 2 -, or may have a structure in which they are replaced by a polymerizable group such as an acryloyloxy group, a methacryloyloxy group, or a glycidyloxy group. Here, R z represents a straight-chain or branched alkyl group having 1 to 6 carbon atoms.
 -Ra及び-Rbにおける分岐を有していてもよい炭素数1~15のアルキル基に許容される置換基としては、-OH、-O-R、-O-C(=O)-R、-NH、-NH-R、-N(-R)-R、-C(=O)-R、-C(=O)-O-R、-C(=O)-NH、-C(=O)-NH-R、-C(=O)-N(-R)-R、-SH、-S-R、スルファモイル基、カルボキシ基、シアノ基、ニトロ基、ハロゲン等が挙げられる。ここで、-Rおよび-Rは、それぞれ独立に、炭素数1~15、好ましくは1~10の直鎖状もしくは分枝状のアルキル基を表す。
 前記炭素数1~15の直鎖状もしくは分枝状のアルキル基に含まれる一つ又はそれ以上のメチレン基は、-O-、-S-、-NH-、-N(R)-、-C(=O)-、-C(=O)-O-、-C(=O)-NH-、-CHF-、-CF-、-CHCl-、-CCl-によって置き換えられた(displace)構造であってもよく、アクリロイルオキシ基、メタクリロイルオキシ基、グリシジルオキシ基の重合性基に置き換えられた構造であってもよい。なお、Rは、炭素数1~6の直鎖状又は分枝状のアルキル基を表す。
 これらのうち、-Ra及び-Rbにおける分岐を有していてもよい炭素数1~15のアルキル基に許容される置換基としては、-O-Rが好ましく、たとえば、メトキシ、エトキシ、n-プロポキシ、n-ブトキシ、n-ペントキシ、n-ヘキソキシ、n-ヘプトキシ、n-オクトキシ、アクリロイルオキシ、メタクリロイルオキシ、グリシジルオキシ等が挙げられる。
Examples of the substituents permitted for the branched alkyl group having 1 to 15 carbon atoms in -Ra and -Rb include -OH, -O-R f , -O-C(=O)-R f , -NH 2 , -NH-R f , -N(-R g )-R f , -C(=O)-R f , -C(=O)-O-R f , -C(=O)-NH 2 , -C(=O)-NH-R f , -C(=O)-N(-R g )-R f , -SH, -S-R f , a sulfamoyl group, a carboxy group, a cyano group, a nitro group, a halogen, etc. Here, -R f and -R g each independently represent a straight-chain or branched alkyl group having 1 to 15 carbon atoms, preferably 1 to 10 carbon atoms.
One or more methylene groups contained in the linear or branched alkyl group having 1 to 15 carbon atoms may be displaced by -O-, -S-, -NH-, -N(R h )-, -C(═O)-, -C(═O)-O-, -C(═O)-NH-, -CHF-, -CF 2 -, -CHCl-, or -CCl 2 -, or may be replaced by a polymerizable group such as an acryloyloxy group, a methacryloyloxy group, or a glycidyloxy group. R h represents a linear or branched alkyl group having 1 to 6 carbon atoms.
Among these, the substituent permitted for the branched alkyl group having 1 to 15 carbon atoms in -Ra and -Rb is preferably -O- Rf , and examples thereof include methoxy, ethoxy, n-propoxy, n-butoxy, n-pentoxy, n-hexoxy, n-heptoxy, n-octoxy, acryloyloxy, methacryloyloxy, and glycidyloxy.
 -Ra及び-Rbにおける環を構成する原子の数が5~14のシクロアルキル基又はアリ-ル基に許容される置換基としては、-R、-OH、-O-R、-O-C(=O)-R、-NH、-NH-R、-N(-R)-R、-C(=O)-R、-C(=O)-O-R、-C(=O)-NH、-C(=O)-NH-R、-C(=O)-N(-R)-R、-SH、-S-R、トリフルオロメチル基、スルファモイル基、カルボキシ基、シアノ基、ニトロ基、ハロゲンが挙げられる。-Rおよび-Rは、それぞれ独立に、炭素数1~10、好ましくは1~5の直鎖状又は分枝状のアルキル基を表す。 Examples of the substituents permitted for the cycloalkyl group or aryl group having 5 to 14 ring atoms in -Ra and -Rb include -R i , -OH, -O-R i , -O-C(=O)-R i , -NH 2 , -NH-R i , -N(-R j )-R i , -C(=O)-R i , -C(=O)-O-R i , -C(=O)-NH 2 , -C(=O)-NH-R i , -C(=O)-N(-R j )-R i , -SH, -S-R i , trifluoromethyl group, sulfamoyl group, carboxy group, cyano group, nitro group, and halogen. -R i and -R j each independently represent a straight-chain or branched alkyl group having 1 to 10 carbon atoms, preferably 1 to 5 carbon atoms.
 これらのうち、-Ra及び-Rbにおける環を構成する原子の数が5~14のシクロアルキル基又はアリ-ル基に許容される置換基としては、-R、-O-Rが好ましく、たとえば、メチル、エチル、n-プロピル、n-ブチル、n-ペンチル、n-ヘキシル、n-ヘプチル、n-オクチル、2-エチルヘキシル、メトキシ、エトキシ、n-プロポキシ、n-ブトキシ、n-ペントキシ、n-ヘキソキシ、n-ヘプトキシ、n-オクトキシ、2-エチルヘキシルオキシ、5,5-ジメチル-3-メチルヘキシルオキシ等が挙げられる。 Among these, preferred substituents for the cycloalkyl group or aryl group having 5 to 14 ring-constituting atoms in -Ra and -Rb are -R i and -O-R i , and examples thereof include methyl, ethyl, n-propyl, n-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, 2-ethylhexyl, methoxy, ethoxy, n-propoxy, n-butoxy, n-pentoxy, n-hexoxy, n-heptoxy, n-octoxy, 2-ethylhexyloxy, 5,5-dimethyl-3-methylhexyloxy, and the like.
 -Ra及び-Rbの環を構成する原子の数が5~14のシクロアルキル基のシクロアルカン環としては、シクロプロパン環、シクロブタン環、シクロペンタン環、シクロヘキサン環、シクロヘプタン環、シクロオクタン環、シクロヘキセン環、ノルボルナン環、ボルナン環、アダマンタン環、テトラヒドロナフタレン環、ビシクロ[2.2.2]オクタン環等が挙げられる。 Cycloalkane rings of cycloalkyl groups with 5 to 14 ring-constituting atoms of -Ra and -Rb include a cyclopropane ring, a cyclobutane ring, a cyclopentane ring, a cyclohexane ring, a cycloheptane ring, a cyclooctane ring, a cyclohexene ring, a norbornane ring, a bornane ring, an adamantane ring, a tetrahydronaphthalene ring, and a bicyclo[2.2.2]octane ring.
 -Ra及び-Rbの環を構成する原子の数が5~14のアリール基としては、芳香族炭化水素環、又は芳香族複素環の1価基が挙げられる。
 該芳香族炭化水素環の1価基の芳香族炭化水素環としては、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、ペリレン環、テトラセン環、ピレン環、ベンズピレン環、クリセン環、トリフェニレン環、アセナフテン環、フルオランテン環、フルオレン環等が挙げられる。
The aryl group having 5 to 14 ring-constituting atoms of -Ra and -Rb includes a monovalent group of an aromatic hydrocarbon ring or an aromatic heterocyclic ring.
Examples of the aromatic hydrocarbon ring of the monovalent group of the aromatic hydrocarbon ring include a benzene ring, a naphthalene ring, an anthracene ring, a phenanthrene ring, a perylene ring, a tetracene ring, a pyrene ring, a benzpyrene ring, a chrysene ring, a triphenylene ring, an acenaphthene ring, a fluoranthene ring, and a fluorene ring.
 該芳香族複素環の1価基の芳香族複素環としては、フラン環、ベンゾフラン環、チオフェン環、ベンゾチオフェン環、ピロール環、ピラゾール環、イミダゾール環、チアゾール環、イソチアゾール環、オキサジアゾール環、チアジアゾール環、トリアゾール環、インドール環、カルバゾール環、ピロロイミダゾール環、ピロロピラゾール環、ピロロピロール環、チエノピロール環、チエノチオフェン環、フロピロール環、フロフラン環、フロチアゾール環、チエノフラン環、チエノチアゾール環、ベンゾイソオキサゾール環、ベンゾイソチアゾール環、ベンゾイミダゾール環、ピリジン環、ピラジン環、ピリダジン環、ピリミジン環、トリアジン環、キノリン環、イソキノリン環、シノリン環、キノキサリン環、フェナントリジン環、キナゾリン環、アズレン環等が挙げられる。  Examples of the aromatic heterocycle of the monovalent group of the aromatic heterocycle include a furan ring, a benzofuran ring, a thiophene ring, a benzothiophene ring, a pyrrole ring, a pyrazole ring, an imidazole ring, a thiazole ring, an isothiazole ring, an oxadiazole ring, a thiadiazole ring, a triazole ring, an indole ring, a carbazole ring, a pyrroloimidazole ring, a pyrrolopyrazole ring, a pyrrolopyrrole ring, a thienopyrrole ring, a thienothiophene ring, a furopyrrole ring, a furofuran ring, a furothiazole ring, a thienofuran ring, a thienothiazole ring, a benzisoxazole ring, a benzisothiazole ring, a benzimidazole ring, a pyridine ring, a pyrazine ring, a pyridazine ring, a pyrimidine ring, a triazine ring, a quinoline ring, an isoquinoline ring, a cinnoline ring, a quinoxaline ring, a phenanthridine ring, a quinazoline ring, an azulene ring, and the like.
 -Ra及び-Rbとしては、分岐を有していてもよい炭素数1~15のアルキル基であるか、又は-Ra及び-Rbが一体となって、置換基を有していてもよい炭素数2~15の環を形成していることが好ましい。さらに、-Ra及び-Rbとしては、分岐を有していてもよい炭素数1~9のアルキル基であるか、又は-Ra及び-Rbが一体となって炭素数2~10の環を形成していることがより好ましく;分岐を有していてもよい炭素数1~5のアルキル基であるか、又は-Ra及び-Rbが一体となって炭素数2~6の環を形成していることがさらに好ましく;分岐を有さない炭素数1~3のアルキル基であるか、又は-Ra及び-Rbが一体となって炭素数2~6の環を形成していることが特に好ましい。上記であることで化合物(1)の分子配向が良好になる傾向にある。 -Ra and -Rb are preferably alkyl groups having 1 to 15 carbon atoms which may be branched, or -Ra and -Rb together form a ring having 2 to 15 carbon atoms which may be substituted. Furthermore, -Ra and -Rb are more preferably alkyl groups having 1 to 9 carbon atoms which may be branched, or -Ra and -Rb together form a ring having 2 to 10 carbon atoms; more preferably alkyl groups having 1 to 5 carbon atoms which may be branched, or -Ra and -Rb together form a ring having 2 to 6 carbon atoms; and particularly preferably alkyl groups having 1 to 3 carbon atoms which do not have a branch, or -Ra and -Rb together form a ring having 2 to 6 carbon atoms. The above tends to improve the molecular orientation of compound (1).
 -XAは、-Ra、-O-Ra、-C(=O)-O-Raであることが好ましく、-Ra、-O-Raがより好ましく、-Raがさらに好ましい。 -XA is preferably -Ra, -O-Ra, or -C(=O)-O-Ra, more preferably -Ra or -O-Ra, and even more preferably -Ra.
<-RA及び-RA
 -RA及び-RAは、それぞれ独立に、置換基を有していてもよいアルキル基を表す。-RA及び-RAは一体となって環を形成してもよいが、-RA及び-RAが形成する環の-RA及び-RA部分は炭化水素鎖のみで形成される。
< -RA1 and -RA2 >
-RA1 and -RA2 each independently represent an alkyl group which may have a substituent. -RA1 and -RA2 may be joined together to form a ring, but the -RA1 and -RA2 portions of the ring formed by -RA1 and -RA2 are formed only by a hydrocarbon chain.
 -RA及び-RAの置換基を有していてもよいアルキル基のアルキル基は直鎖でも分岐を有していてもよく、-Ra及び-Rbとして例示したものが挙げられ、好ましいものも同様である。置換基を有する場合は、フッ素原子が好ましい。 The alkyl group of the alkyl group which may have a substituent of -RA1 and -RA2 may be linear or branched, and examples thereof include those exemplified as -Ra and -Rb, and the same applies to preferred examples. When the alkyl group has a substituent, a fluorine atom is preferred.
 -RA及び-RAが一体となって環を形成する場合、該環の炭素数は3~8であることが好ましく、より好ましくは4~5である。
 -RA及び-RAのアルキル基或いは-RA及び-RAが一体となって形成する環が有する置換基としては、-Ra及び-Rbが有する置換基として例示したものが挙げられる。
 -RA及び-RAとしては、分子配向性の観点から、置換基を有していてもよい、炭素原子数1~10のアルキル基であることが好ましく、炭素原子数1~6のアルキル基であることがより好ましく、炭素原子数1~4のアルキル基であることがさらに好ましい。
When -RA1 and -RA2 combine together to form a ring, the ring preferably has 3 to 8 carbon atoms, and more preferably 4 or 5 carbon atoms.
As the substituent which may be possessed by the alkyl groups of -RA1 and -RA2 or the ring which -RA1 and -RA2 together form, there may be mentioned those exemplified as the substituents which -Ra and -Rb may have.
From the viewpoint of molecular orientation, -RA1 and -RA2 are preferably alkyl groups having 1 to 10 carbon atoms, which may have a substituent, more preferably alkyl groups having 1 to 6 carbon atoms, and even more preferably alkyl groups having 1 to 4 carbon atoms.
 -N(-RA)RAとしては、具体的には、ジメチルアミノ基、ジエチルアミノ基、ジプロピルアミノ基、ジブチルアミノ基、エチルメチルアミノ基、メチルプロピルアミノ基、メチルブチルアミノ基、エチルプロピルアミノ基、エチルブチル基、アゼチジニル基、ピロリジニル基、ピペリジニル基、アゼパニル基、またはフッ素原子を有する前記基が好ましいものとして挙げられる。中でも、ジエチルアミノ基、イソプロピル(メチル)アミノ基、エチル(イソプロピル)アミノ基、ピロリジニル基、ピペリジニル基、またはフッ素原子を有する前記基がより好ましい。フッ素原子を有する前記基の中でも、ジ(フルオロエチル)アミノ基、ジ(フルオロプロピル)アミノ基、フルオロエチル(イソプロピル)アミノ基、エチル(フルオロイソプロピル)アミノ基がより好ましい。
 上記であることで化合物(1)の分子配向性が良好となる傾向にある。
Specific examples of -N(-RA 1 )RA 2 include dimethylamino, diethylamino, dipropylamino, dibutylamino, ethylmethylamino, methylpropylamino, methylbutylamino, ethylpropylamino, ethylbutyl, azetidinyl, pyrrolidinyl, piperidinyl, azepanyl, and the above group having a fluorine atom. Among these, diethylamino, isopropyl(methyl)amino, ethyl(isopropyl)amino, pyrrolidinyl, piperidinyl, and the above group having a fluorine atom are more preferred. Among the above group having a fluorine atom, di(fluoroethyl)amino, di(fluoropropyl)amino, fluoroethyl(isopropyl)amino, and ethyl(fluoroisopropyl)amino are more preferred.
By satisfying the above, the molecular orientation of compound (1) tends to be good.
<-A-、-A-、-A-及び-A->
 -A-、-A-、-A-及び-A-は、それぞれ独立に、置換基を有していてもよい1,4-フェニレン基を表す。
<-A 1 -, -A 2 -, -A 3 - and -A 4 ->
-A 1 -, -A 2 -, -A 3 - and -A 4 - each independently represent a 1,4-phenylene group which may have a substituent.
 -A-、-A-、-A-及び-A-の1,4-フェニレン基が置換基を有する場合、該置換基としては、-R、-OH、-O-R、-O-C(=O)-R、-NH、-NH-R、-N(-R)-R、-C(=O)-R、-C(=O)-O-R、-C(=O)-NH、-C(=O)-NH-R、-C(=O)-N(-R)-R、-SH、-S-R、トリフルオロメチル基、スルファモイル基、カルボキシ基、シアノ基、ニトロ基、ハロゲンが挙げられる。ここで、-R及び-Rは、それぞれ独立に、炭素数1~15の直鎖状もしくは分枝状のアルキル基を表す。-R及び-Rの炭素数としては、第1の発明で用いる重合性液晶化合物との分子配向が良好になる観点で、1以上12以下が好ましく、1以上9以下がさらに好ましい。 When the 1,4-phenylene group of -A 1 -, -A 2 -, -A 3 - and -A 4 - has a substituent, examples of the substituent include -R A , -OH, -O-R A , -O-C(═O)-R A , -NH 2 , -NH-R A , -N(-R B )-R A , -C(═O)-R A , -C(═O)-O-R A , -C(═O)-NH 2 , -C(═O)-NH-R A , -C(═O)-N(-R B )-R A , -SH, -S-R A , trifluoromethyl group, sulfamoyl group, carboxy group, cyano group, nitro group and halogen. Here, -R A and -R B each independently represent a linear or branched alkyl group having 1 to 15 carbon atoms. The number of carbon atoms in -R A and -R B is preferably 1 to 12, more preferably 1 to 9, from the viewpoint of improving molecular orientation with the polymerizable liquid crystal compound used in the first invention.
 該直鎖状もしくは分枝状のアルキル基に含まれる一つ又はそれ以上のメチレン基は、エーテル性酸素原子、チオエーテル性硫黄原子、アミン性窒素原子(-NH-、-N(R)-:ここで、Rは、炭素数1~6、好ましくは1~4の直鎖状もしくは分枝状のアルキル基を表す。)、カルボニル基、エステル結合、アミド結合、-CHF-、-CF-、-CHCl-、-CCl-によって置き換えられた構造とされていてもよく、アクリロイルオキシ基、メタクリロイルオキシ基、グリシジルオキシ基の重合性基が置換していてもよい。 One or more methylene groups contained in the linear or branched alkyl group may be replaced by an ether oxygen atom, a thioether sulfur atom, an aminic nitrogen atom (-NH-, -N( Rz )-: here, Rz represents a linear or branched alkyl group having 1 to 6 carbon atoms, preferably 1 to 4 carbon atoms), a carbonyl group, an ester bond, an amide bond, -CHF-, -CF2- , -CHCl- or -CCl2- , or may be substituted by a polymerizable group such as an acryloyloxy group, a methacryloyloxy group or a glycidyloxy group.
 これらのうち、1,4-フェニレン基に許容される置換基としては、-R、-O-R、トリフルオロメチル基、フルオロ基が好ましい。-Rとしては例えば、n-プロピル、n-ブチル、n-ペンチル、n-ヘキシル、n-ヘプチル、n-オクチル、5,5-ジメチル-3-メチルヘキシル等が挙げられる。上記置換基を有することで化合物(1)の色素の分子配向が良好になる傾向にある。 Among these, preferred substituents for the 1,4-phenylene group are -R A , -O-R A , a trifluoromethyl group, and a fluoro group. Examples of -R A include n-propyl, n-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, and 5,5-dimethyl-3-methylhexyl. The presence of the above-mentioned substituents tends to improve the molecular orientation of the dye of compound (1).
 化合物(1)の吸収の遷移モ-メントが化合物の長軸方向に一致する傾向となり、二色比を高くできることから、-A-、-A-、-A-及び-A-はいずれも置換基を有さない1,4-フェニレン基であることが好ましい。 It is preferable that -A 1 -, -A 2 -, -A 3 - and -A 4 - are all unsubstituted 1,4-phenylene groups, since the absorption transition moment of compound (1) tends to coincide with the long axis direction of the compound, thereby increasing the dichroic ratio.
(n)
 nは0、1、又は2を表す。
 nは0又は1であることが好ましく、1であることがより好ましい。上記であることで化合物(1)の分子配向が良好となる傾向にある。
 nが2である場合、それぞれの-A-は、同一であっても異なっていてもよい。
(n)
n represents 0, 1, or 2.
n is preferably 0 or 1, and more preferably 1. This tends to improve the molecular orientation of compound (1).
When n is 2, each -A 3 - may be the same or different.
(-N=N-)
 式(1)中の-N=N-は、トランス型であることが化合物(1)の直線性を高める観点で好ましい。
(-N=N-)
In terms of improving the linearity of compound (1), -N=N- in formula (1) is preferably in a trans form.
(化合物(1)の分子量)
 化合物(1)の分子量は、300以上が好ましく、350以上がより好ましく、380以上がさらに好ましく、1500以下が好ましく、1200以下がより好ましく、1000以下がさらに好ましい。具体的には、化合物(1)の分子量は、300~1500が好ましく、350~1200がより好ましく、380~1000がさらに好ましい。上記範囲であることで適切な分子長、嵩高さとなるため、色素としての分子配向が良好になる傾向にある。
(Molecular Weight of Compound (1))
The molecular weight of compound (1) is preferably 300 or more, more preferably 350 or more, and even more preferably 380 or more, and is preferably 1500 or less, more preferably 1200 or less, and even more preferably 1000 or less. Specifically, the molecular weight of compound (1) is preferably 300 to 1500, more preferably 350 to 1200, and even more preferably 380 to 1000. When the molecular weight is within the above range, appropriate molecular length and bulkiness are obtained, and therefore the molecular orientation as a dye tends to be good.
(化合物(1)の具体例)
 化合物(1)の具体例としては、以下の化合物が挙げられるが、これらに限定されるものではない。
(Specific examples of compound (1))
Specific examples of compound (1) include the following compounds, but are not limited to these.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
(化合物(1)の製造方法)
 化合物(1)は、アルキル化反応、エステル化反応、アミド化反応、エーテル化反応、イプソ置換反応、ジアゾカップリング反応、金属触媒を用いたカップリング反応等の公知の化学反応を組み合わせることにより製造することができる。
(Method for producing compound (1))
Compound (1) can be produced by combining known chemical reactions such as alkylation reaction, esterification reaction, amidation reaction, etherification reaction, ipso substitution reaction, diazo coupling reaction, and coupling reaction using a metal catalyst.
 たとえば、化合物(1)は、後掲の実施例に記載の方法や、「新染料化学」(細田豊著、昭和48年12月21日、技報堂)、「総説合成染料」(堀口博著、1968年、三共出版)、「理論製造 染料化学」(細田豊著、1957年、技報堂)に記載の方法にしたがって合成することができる。 For example, compound (1) can be synthesized according to the methods described in the Examples below, or in "New Dye Chemistry" (Hosoda Yutaka, December 21, 1973, Gihodo), "General Overview of Synthetic Dyes" (Horiguchi Hiroshi, 1968, Sankyo Publishing), and "Theoretical Manufacturing Dye Chemistry" (Hosoda Yutaka, 1957, Gihodo).
[第1の発明の組成物]
 第1の発明の組成物は、下記式(2)で示される化合物(以下、「化合物(2)」と称す場合がある。)と重合性液晶化合物とを含む組成物である。
[Composition of the first invention]
The composition of the first invention is a composition containing a compound represented by the following formula (2) (hereinafter, sometimes referred to as "compound (2)") and a polymerizable liquid crystal compound.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
(式(2)中、
 -XBは1価の有機基を表す。
 -RB及び-RBは、それぞれ独立に、置換基を有していてもよいアルキル基を表す。-RB及び-RBは一体となって環を形成してもよい。
 -B-及び-B-は、それぞれ独立に、置換基を有していてもよい1,4-フェニレン基を表す。
 -B-及び-B-は、それぞれ独立に、置換基を有していてもよい芳香族炭素水素環の2価基を表す。
 nは0、1、又は2を表す。
 nが2の場合、複数の-B-は互いに同一でも異なっていてもよい。)
(In formula (2),
-XB represents a monovalent organic group.
Each of -RB1 and -RB2 independently represents an alkyl group which may have a substituent, and -RB1 and -RB2 may combine together to form a ring.
-B 1 - and -B 2 - each independently represents a 1,4-phenylene group which may have a substituent.
Each of -B 3 - and -B 4 - independently represents a divalent aromatic hydrocarbon ring group which may have a substituent.
n represents 0, 1, or 2.
When n is 2, multiple -B 3 - may be the same or different.
 第1の発明の組成物は、相分離を引き起こさない状態であれば、溶液であっても、液晶であっても、分散状態であってもよい。異方性色素膜形成用組成物としては、基材への塗布が容易である観点から、溶液であることが好ましい。一方、異方性色素膜形成用組成物から溶剤を除いた固形分成分は、後述のように基板上に配向させる観点から、任意の温度で液晶相の状態であることが好ましい。 The composition of the first invention may be in a solution, liquid crystal, or dispersion state, so long as it does not cause phase separation. The composition for forming an anisotropic dye film is preferably in a solution from the viewpoint of ease of application to a substrate. On the other hand, the solid components remaining after removing the solvent from the composition for forming an anisotropic dye film are preferably in a liquid crystal phase state at any temperature from the viewpoint of alignment on a substrate as described below.
 本発明において、液晶相の状態であるとは、具体的には、「液晶の基礎と応用」(松本正一、角田市良著;1991年)の1~16ページに記載されているように、液体と結晶の双方又は中間の性質を示す液晶状態であり、ネマティック相、スメクチック相、コレステリック相、又はディスコティック相であることを言う。 In the present invention, the liquid crystal phase state specifically refers to a liquid crystal state that exhibits both liquid and crystalline properties or intermediate properties, such as a nematic phase, smectic phase, cholesteric phase, or discotic phase, as described on pages 1-16 of "Basics and Applications of Liquid Crystals" (by Shoichi Matsumoto and Ichiro Tsunoda; 1991).
<化合物(2)>
 第1の発明の組成物は、化合物(2)を色素として含むものであり、上記式(2)で表される特定の構造を有する化合物(2)を色素として含むことにより、異方性色素膜中での色素会合状態が最適化され、偏光子として用いる際の二色比等の光学性能が良好かつ、高い耐光性を有する異方性色素膜が得られると推測される。
<Compound (2)>
The composition of the first invention contains compound (2) as a dye. It is presumed that by containing compound (2) having the specific structure represented by the above formula (2) as a dye, the dye association state in the anisotropic dye film is optimized, and an anisotropic dye film having good optical properties such as a dichroic ratio when used as a polarizer and high light resistance can be obtained.
 第1の発明の組成物は、化合物(2)の1種のみを含むものであってもよく、2種以上を含むものであってもよい。 The composition of the first invention may contain only one type of compound (2), or may contain two or more types.
(-XB)
 -XBは1価の有機基を表し、-XBとしては、前述の式(1)における-XAと同様のものが挙げられ、好ましいものも同様である。
(-XB)
-XB represents a monovalent organic group. As -XB, the same groups as -XA in the above formula (1) can be mentioned, and preferred groups are also the same.
(-RB及び-RB
 -RB及び-RBは、それぞれ独立に、置換基を有していてもよいアルキル基を表し、-RB及び-RBは一体となって環を形成していてもよい。
 -RB及び-RBとしては、前述の式(1)における-RA及び-RAと同様のものが挙げられ、好ましいものも同様である。
( -RB1 and -RB2 )
Each of --RB1 and --RB2 independently represents an alkyl group which may have a substituent, and --RB1 and --RB2 may combine together to form a ring.
Examples of --RB1 and --RB2 include the same as --RA1 and --RA2 in the above formula (1), and preferred examples are also the same.
(-B-及び-B-)
 -B-及び-B-は、それぞれ独立に、置換基を有していてもよい1,4-フェニレン基を表し、該1,4-フェニレン基が有していてもよい置換基としては、式(1)における-A-、-A-、-A-及び-A-の1,4-フェニレン基が有していてもよい置換基として例示したものが挙げられ、好ましいものも同様である。
 化合物(1)におけると同様の理由から、-B-及び-B-としては置換基を有さない1,4-フェニレン基が好ましい。
(-B 1 - and -B 2 -)
-B 1 - and -B 2 - each independently represent a 1,4-phenylene group which may have a substituent, and examples of the substituent which the 1,4-phenylene group may have include those exemplified as the substituent which the 1,4-phenylene groups of -A 1 -, -A 2 -, -A 3 - and -A 4 - in formula (1) may have, and preferred examples thereof are also the same.
For the same reasons as in compound (1), -B 1 - and -B 2 - are preferably unsubstituted 1,4-phenylene groups.
(-B-及び-B-)
 -B-及び-B-は、それぞれ独立に、置換基を有していてもよい芳香族炭素水素環の2価基を表す。
(-B 3 - and -B 4 -)
Each of -B 3 - and -B 4 - independently represents a divalent aromatic hydrocarbon ring group which may have a substituent.
 置換基を有していてもよい芳香族炭化水素環の2価基の芳香族炭化水素環としては、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、ペリレン環、テトラセン環、ピレン環、ベンズピレン環、クリセン環、トリフェニレン環、アセナフテン環、フルオランテン環、フルオレン環等が挙げられる。 Aromatic hydrocarbon rings of divalent groups of aromatic hydrocarbon rings which may have a substituent include a benzene ring, a naphthalene ring, an anthracene ring, a phenanthrene ring, a perylene ring, a tetracene ring, a pyrene ring, a benzpyrene ring, a chrysene ring, a triphenylene ring, an acenaphthene ring, a fluoranthene ring, and a fluorene ring.
 芳香族炭化水素環の2価基としては、化合物(2)の吸収遷移モ-メントが色素の長軸方向に一致する傾向となり、二色比を高くできることから、ベンゼン環の2価基(フェニレン基)、ナフタレン環の2価基(ナフチレン基)が好ましく、ベンゼン環の2価基(フェニレン基)がより好ましい。特に、芳香族炭化水素環の2価基としては、1,4-フェニレン基、1,4-ナフチレン基、2,6-ナフチレン基がより好ましく、1,4-フェニレン基がさらに好ましく、置換基を有さない1,4-フェニレン基が特に好ましい。上記であることで化合物(2)の吸収の遷移モ-メントが化合物の長軸方向に一致する傾向となり、二色比を高くできる。 As the divalent group of the aromatic hydrocarbon ring, the absorption transition moment of compound (2) tends to coincide with the long axis direction of the dye, and the dichroic ratio can be increased, so a divalent group of a benzene ring (phenylene group) or a divalent group of a naphthalene ring (naphthylene group) is preferred, and a divalent group of a benzene ring (phenylene group) is more preferred. In particular, as the divalent group of the aromatic hydrocarbon ring, a 1,4-phenylene group, a 1,4-naphthylene group, or a 2,6-naphthylene group is more preferred, a 1,4-phenylene group is even more preferred, and a 1,4-phenylene group having no substituent is particularly preferred. As a result of the above, the absorption transition moment of compound (2) tends to coincide with the long axis direction of the compound, and the dichroic ratio can be increased.
 芳香族炭化水素環の2価基に許容される置換基としては、-A-、-A-、-A-及び-A-の1,4-フェニレン基が有していてもよい置換基として例示したものが挙げられ、好ましいものも同様である。 Examples of the substituent permitted for the divalent group of the aromatic hydrocarbon ring include those exemplified as the substituent which the 1,4-phenylene group of -A 1 -, -A 2 -, -A 3 - and -A 4 - may have, and the preferred ones are also the same.
(n)
 nは0、1、又は2を表す。
 nは0又は1であることが好ましく、1であることがより好ましい。上記であることで化合物(2)の分子配向が良好となる傾向にある。
 nが2である場合、それぞれの-B-は、同一であっても異なっていてもよい。
(n)
n represents 0, 1, or 2.
n is preferably 0 or 1, and more preferably 1. In this case, the molecular orientation of compound (2) tends to be good.
When n is 2, each --B 3 -- may be the same or different.
(-N=N-)
 式(2)中の-N=N-は、トランス型であることが化合物(2)の直線性を高める観点で好ましい。
(-N=N-)
In terms of improving the linearity of compound (2), -N=N- in formula (2) is preferably in a trans form.
(化合物(2)の好適例)
 化合物(2)の好適例としては、前述の化合物(1)が挙げられる。
(Preferred examples of compound (2))
A suitable example of the compound (2) is the above-mentioned compound (1).
(化合物(2)の具体例)
 化合物(2)の具体例としては、前述の化合物(1)の具体例の他、以下の化合物が挙げられるが、これらに限定されるものではない。
(Specific examples of compound (2))
Specific examples of compound (2) include the following compounds in addition to the specific examples of compound (1) described above, but are not limited thereto.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
[第2の発明の組成物]
 第2の発明の組成物は、極大吸収波長が次の関係式(11)を満たす色素(以下、「第2の発明の色素」と称す場合がある。)と重合性液晶化合物とを含む。
 第2の発明の組成物は、第2の発明の色素の1種のみを含むものであってもよく、2種以上を含むものであってもよい。
  λmax2-λmax1<0  (11)
(式(11)中、λmax1は溶媒中の前記色素の極大吸収波長、λmax2は前記組成物を用いて形成された色素膜中の前記色素の極大吸収波長を表す。)
[Composition of the second invention]
The composition of the second invention contains a dye whose maximum absorption wavelength satisfies the following relational expression (11) (hereinafter, may be referred to as "the dye of the second invention") and a polymerizable liquid crystal compound.
The composition of the second invention may contain only one type of the dye of the second invention, or may contain two or more types.
λ max2 −λ max1 <0 (11)
(In formula (11), λ max1 represents the maximum absorption wavelength of the dye in a solvent, and λ max2 represents the maximum absorption wavelength of the dye in a dye film formed using the composition.)
 第2の発明の組成物は、相分離を引き起こさない状態であれば、溶液であっても、液晶であっても、分散状態であってもよい。異方性色素膜形成用組成物としては、基材への塗布が容易である観点から、溶液であることが好ましい。一方、異方性色素膜形成用組成物から溶剤を除いた固形分成分は、後述のように基板上に配向させる観点から、任意の温度で液晶相の状態であることが好ましい。 The composition of the second invention may be in a solution, liquid crystal, or dispersion state, so long as it does not cause phase separation. The composition for forming an anisotropic dye film is preferably in a solution from the viewpoint of ease of application to a substrate. On the other hand, the solid components remaining after removing the solvent from the composition for forming an anisotropic dye film are preferably in a liquid crystal phase state at any temperature from the viewpoint of alignment on a substrate as described below.
 本発明において、液晶相の状態であるとは、具体的には、「液晶の基礎と応用」(松本正一、角田市良著;1991年)の1~16ページに記載されているように、液体と結晶の双方又は中間の性質を示す液晶状態であり、ネマティック相、スメクチック相、コレステリック相、又はディスコティック相であることを言う。 In the present invention, the liquid crystal phase state specifically refers to a liquid crystal state that exhibits both liquid and crystalline properties or intermediate properties, such as a nematic phase, smectic phase, cholesteric phase, or discotic phase, as described on pages 1-16 of "Basics and Applications of Liquid Crystals" (by Shoichi Matsumoto and Ichiro Tsunoda; 1991).
<色素の極大吸収波長λmax1及び極大吸収波長λmax2と効果との関係>
 第2の発明の組成物が、前記関係式(11)を満たす色素を含むことにより、即ち、溶媒中の色素の極大吸収波長λmax1と、第2の発明の組成物を用いて形成された色素膜中の色素の極大吸収波長λmax2とが、λmax2-λmax1<0を満たすような色素を含むことにより、得られる異方性色素膜中での色素会合状態が最適化され、偏光子として用いる際の二色比等の光学性能が良好かつ、高い耐光性を有する異方性色素膜が得られると推測される。
<Relationship between maximum absorption wavelength λ max1 and maximum absorption wavelength λ max2 of dye and effect>
It is presumed that by containing a dye that satisfies the above-mentioned relational formula (11) in the composition of the second invention, that is, by containing a dye such that the maximum absorption wavelength λ max1 of the dye in a solvent and the maximum absorption wavelength λ max2 of the dye in a dye film formed using the composition of the second invention satisfy λ max2 - λ max1 < 0, the dye association state in the obtained anisotropic dye film is optimized, and an anisotropic dye film having good optical properties such as the dichroic ratio when used as a polarizer and high light resistance can be obtained.
 第2の発明の色素は、λmax2-λmax1<0を満たすこと、即ち、λmax2がλmax1より小さいものであればよく、λmax1とλmax2との差異については特に制限はない。形成される異方性色素膜の二色比等の光学性能及び耐光性の観点から、第2の発明の色素は、下記関係式(11A)を満たすことが好ましい。
 また、二色比等の光学性能がより良好な傾向であることから、λmax1とλmax2は、下記関係式(11B)を満たすことがより好ましく、下記関係式(11C)を満たすことがさらに好ましい。
  λmax2-λmax1≦-1   (11A)
  λmax2-λmax1≦-10   (11B)
  λmax2-λmax1≦-20   (11C)
The dye of the second invention satisfies λ max2 - λ max1 < 0, that is, λ max2 is smaller than λ max1 , and there is no particular restriction on the difference between λ max1 and λ max2 . From the viewpoints of the optical performance such as the dichroic ratio and light fastness of the anisotropic dye film to be formed, it is preferable that the dye of the second invention satisfies the following relational formula (11A).
Furthermore, since optical performance such as the dichroic ratio tends to be better, it is more preferable that λ max1 and λ max2 satisfy the following relational expression (11B), and it is even more preferable that they satisfy the following relational expression (11C).
λ max2 −λ max1 ≦−1 (11A)
λ max2 −λ max1 ≦−10 (11B)
λ max2 −λ max1 ≦−20 (11C)
 色素の極大吸収波長λmax1が測定される溶媒については特に制限はなく、色素が溶解して均一な溶液となるような溶媒であればよい。クロロホルムに溶解する色素の場合は、クロロホルムを溶媒として用いて、第2の発明の色素を3~30ppm程度の濃度に溶解させた溶液について、当該色素の極大吸収波長λmax1、即ち、色素の吸光度が極大となる波長λmax1が測定される。
 色素膜中の色素の極大吸収波長λmax2とは、色素膜中の色素の直交位吸光度が極大となる波長λmax2である。
The solvent in which the maximum absorption wavelength λ max1 of the dye is measured is not particularly limited, and any solvent may be used as long as the dye dissolves to form a homogeneous solution. In the case of a dye that dissolves in chloroform, the maximum absorption wavelength λ max1 of the dye, i.e., the wavelength λ max1 at which the absorbance of the dye is maximized, is measured for a solution in which the dye of the second invention is dissolved in chloroform as a solvent to a concentration of about 3 to 30 ppm.
The maximum absorption wavelength λ max2 of the dye in the dye film is the wavelength λ max2 at which the orthogonal absorbance of the dye in the dye film is maximized.
 第2の発明において、極大吸収波長λmax1、λmax2は、具体的には、分光光度計により測定される。 In the second invention, the maximum absorption wavelengths λ max1 and λ max2 are specifically measured by a spectrophotometer.
 第2の発明の色素の極大吸収波長λmax1、λmax2のそれぞれの値については、前記関係式(11)を満たすものであれば特に制限はないが、第2の発明の色素の極大吸収波長λmax1は380~800nmの範囲にあることが好ましく、400~750nmの範囲にあることがより好ましく、410~700nmの範囲の範囲にあることが更に好ましい。
 また、第2の発明の色素の極大吸収波長λmax2は、350~800nmの範囲にあることが好ましく、380~750nmの範囲にあることがより好ましく、400~700nmの範囲の範囲にあることが更に好ましい。
The values of the maximum absorption wavelengths λ max1 and λ max2 of the dye of the second invention are not particularly limited as long as they satisfy the above-mentioned relational formula (11). However, the maximum absorption wavelength λ max1 of the dye of the second invention is preferably in the range of 380 to 800 nm, more preferably in the range of 400 to 750 nm, and even more preferably in the range of 410 to 700 nm.
The maximum absorption wavelength λ max2 of the dye of the second invention is preferably in the range of 350 to 800 nm, more preferably in the range of 380 to 750 nm, and further preferably in the range of 400 to 700 nm.
[第2の発明の色素]
 第2の発明の色素は、上記関係式(11)、好ましくは上記関係式(11A)、より好ましくは上記関係式(11B)、さらに好ましくは上記関係式(11C)を満たすものであればよく、特に制限はないが、二色比等の光学性能の観点からアゾ系色素であることが好ましい。アゾ系色素の中でも下記式(12)で表される化合物(以下、「化合物(12)」と称す場合がある。)が二色比等の光学性能がより良好な傾向であり、好ましい。
 X20(-A21m1(-N=N-A22n1-N=N-A23-Y20  (12)
(式(12)中、
 -A21-、-A22-、-A23-は、それぞれ独立に、置換基を有していてもよい芳香族炭化水素環、又は置換基を有していてもよい芳香族複素環の2価基を表し、
 -X20、-Y20は、それぞれ独立に、1価の任意の置換基を表し、
 m1は、1又は2を表し、
 n1は0、1、2、又は3を表す。
 m1が2の場合、-A21-は互いに同一でも異なっていてもよい。
 n1が2又は3の場合、-A22-は互いに同一でも異なっていてもよい。)
[Dye of the second invention]
The dye of the second invention is not particularly limited as long as it satisfies the above relational formula (11), preferably the above relational formula (11A), more preferably the above relational formula (11B), and even more preferably the above relational formula (11C), but is preferably an azo dye from the viewpoint of optical performance such as dichroic ratio. Among azo dyes, a compound represented by the following formula (12) (hereinafter sometimes referred to as "compound (12)") tends to have better optical performance such as dichroic ratio, and is therefore preferred.
X 20 (-A 21 ) m1 (-N=N-A 22 ) n1 -N=N-A 23 -Y 20 (12)
(In formula (12),
-A 21 -, -A 22 -, and -A 23 - each independently represent a divalent group of an aromatic hydrocarbon ring which may have a substituent, or an aromatic heterocycle which may have a substituent;
-X 20 and -Y 20 each independently represent an arbitrary monovalent substituent;
m1 represents 1 or 2;
n1 represents 0, 1, 2, or 3.
When m1 is 2, -A 21 - may be the same or different.
When n1 is 2 or 3, -A 22 - may be the same or different.
 以下、化合物(12)について説明する。 Compound (12) is described below.
(-A21-、-A22-、-A23-)
 -A21-、-A22-、-A23-は、それぞれ独立に、置換基を有していてもよい芳香族炭化水素環、又は置換基を有していてもよい芳香族複素環の2価基を表す。
( -A21- , -A22- , -A23- )
-A 21 -, -A 22 - and -A 23 - each independently represent a divalent group of an aromatic hydrocarbon ring which may have a substituent, or an aromatic heterocycle which may have a substituent.
置換基を有していてもよい芳香族炭化水素環の2価基:
 置換基を有していてもよい芳香族炭化水素環の2価基の芳香族炭化水素環としては、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、ペリレン環、テトラセン環、ピレン環、ベンズピレン環、クリセン環、トリフェニレン環、アセナフテン環、フルオランテン環、フルオレン環等が挙げられる。
A divalent group of an aromatic hydrocarbon ring which may have a substituent:
Examples of the aromatic hydrocarbon ring of the divalent group of the aromatic hydrocarbon ring which may have a substituent include a benzene ring, a naphthalene ring, an anthracene ring, a phenanthrene ring, a perylene ring, a tetracene ring, a pyrene ring, a benzpyrene ring, a chrysene ring, a triphenylene ring, an acenaphthene ring, a fluoranthene ring, and a fluorene ring.
 芳香族炭化水素環の2価基としては、化合物(12)の吸収遷移モ-メントが色素の長軸方向に一致する傾向となり、二色比を高くできることから、ベンゼン環の2価基(フェニレン基)、ナフタレン環の2価基(ナフチレン基)が好ましく、ベンゼン環の2価基(フェニレン基)がより好ましい。特に、1,4-フェニレン基、1,4-ナフチレン基、2,6-ナフチレン基がより好ましく、1,4-フェニレン基がさらに好ましく、置換基を有さない1,4-フェニレン基が特に好ましい。上記であることで化合物(12)の吸収の遷移モ-メントが化合物の長軸方向に一致する傾向となり、二色比を高くできる。 As the divalent group of the aromatic hydrocarbon ring, the absorption transition moment of compound (12) tends to coincide with the long axis direction of the dye, and the dichroic ratio can be increased, so a divalent group of a benzene ring (phenylene group) or a divalent group of a naphthalene ring (naphthylene group) is preferred, and a divalent group of a benzene ring (phenylene group) is more preferred. In particular, a 1,4-phenylene group, a 1,4-naphthylene group, or a 2,6-naphthylene group is more preferred, a 1,4-phenylene group is even more preferred, and a 1,4-phenylene group having no substituent is particularly preferred. As a result of the above, the absorption transition moment of compound (12) tends to coincide with the long axis direction of the compound, and the dichroic ratio can be increased.
 芳香族炭化水素環の2価基に許容される置換基としては、-R、-OH、-O-R、-O-C(=O)-R、-NH、-NH-R、-N(-R)-R、-C(=O)-R、-C(=O)-O-R、-C(=O)-NH、-C(=O)-NH-R、-C(=O)-N(-R)-R、-SH、-S-R、トリフルオロメチル基、スルファモイル基、カルボキシ基、シアノ基、ニトロ基、ハロゲンが挙げられる。ここで、-Rおよび-Rは、それぞれ独立に、炭素数1~15の直鎖状もしくは分枝状のアルキル基を表す。-Rおよび-Rの炭素数としては、本発明で用いる重合性液晶化合物との分子配向が良好になる観点で、1以上12以下が好ましく、1以上9以下がさらに好ましい。 Examples of substituents permitted for the divalent group of the aromatic hydrocarbon ring include -R A , -OH, -O-R A , -O-C(═O)-R A , -NH 2 , -NH-R A , -N(-R B )-R A , -C(═O)-R A , -C(═O)-O-R A , -C(═O)-NH 2 , -C(═O)-NH-R A , -C(═O)-N(-R B )-R A , -SH, -S-R A , trifluoromethyl group, sulfamoyl group, carboxy group, cyano group, nitro group, and halogen. Here, -R A and -R B each independently represent a straight-chain or branched alkyl group having 1 to 15 carbon atoms. The number of carbon atoms in -R A and -R B is preferably 1 or more and 12 or less, and more preferably 1 or more and 9 or less, from the viewpoint of improving molecular alignment with the polymerizable liquid crystal compound used in the present invention.
 該直鎖状もしくは分枝状のアルキル基に含まれる一つ又はそれ以上のメチレン基は、エーテル性酸素原子、チオエーテル性硫黄原子、アミン性窒素原子(-NH-、-N(R)-:ここで、Rは、炭素数1~6、好ましくは1~4の直鎖状もしくは分枝状のアルキル基を表す。)、カルボニル基、エステル結合、アミド結合、-CHF-、-CF-、-CHCl-、-CCl-によって置き換えられた構造とされていてもよく、アクリロイルオキシ基、メタクリロイルオキシ基、グリシジルオキシ基の重合性基が置換していてもよい。 One or more methylene groups contained in the linear or branched alkyl group may be replaced by an ether oxygen atom, a thioether sulfur atom, an aminic nitrogen atom (-NH-, -N( Rz )-: here, Rz represents a linear or branched alkyl group having 1 to 6 carbon atoms, preferably 1 to 4 carbon atoms), a carbonyl group, an ester bond, an amide bond, -CHF-, -CF2- , -CHCl- or -CCl2- , or may be substituted by a polymerizable group such as an acryloyloxy group, a methacryloyloxy group or a glycidyloxy group.
 これらのうち、芳香族炭化水素環の2価基に許容される置換基としては、-R、-O-R、トリフルオロメチル基、フルオロ基が好ましい。-Rとしては例えば、n-プロピル、n-ブチル、n-ペンチル、n-ヘキシル、n-ヘプチル、n-オクチル、5,5-ジメチル-3-メチルヘキシル等が挙げられる。上記置換基を有することで化合物(2)の色素の分子配向が良好になる傾向にある。 Among these, preferred examples of the substituent permitted for the divalent group of the aromatic hydrocarbon ring are -R A , -O-R A , a trifluoromethyl group, and a fluoro group. Examples of -R A include n-propyl, n-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, and 5,5-dimethyl-3-methylhexyl. The presence of the above-mentioned substituents tends to improve the molecular orientation of the dye of compound (2).
置換基を有していてもよい芳香族複素環の2価基:
 置換基を有していてもよい芳香族複素環の2価基の芳香族複素環としては、フラン環、ベンゾフラン環、チオフェン環、ベンゾチオフェン環、ピロール環、ピラゾール環、イミダゾール環、チアゾール環、イソチアゾール環、オキサジアゾール環、チアジアゾール環、トリアゾール環、インドール環、カルバゾール環、ピロロイミダゾール環、ピロロピラゾール環、ピロロピロール環、チエノピロール環、チエノチオフェン環、フロピロール環、フロフラン環、フロチアゾール環、チエノフラン環、チエノチアゾール環、ベンゾイソオキサゾール環、ベンゾイソチアゾール環、ベンゾイミダゾール環、ピリジン環、ピラジン環、ピリダジン環、ピリミジン環、トリアジン環、キノリン環、イソキノリン環、シノリン環、キノキサリン環、フェナントリジン環、キナゾリン環、アズレン環等が挙げられる。
A divalent group of an aromatic heterocycle which may have a substituent:
Examples of the aromatic heterocycle of the divalent group of the aromatic heterocycle which may have a substituent include a furan ring, a benzofuran ring, a thiophene ring, a benzothiophene ring, a pyrrole ring, a pyrazole ring, an imidazole ring, a thiazole ring, an isothiazole ring, an oxadiazole ring, a thiadiazole ring, a triazole ring, an indole ring, a carbazole ring, a pyrroloimidazole ring, a pyrrolopyrazole ring, a pyrrolopyrrole ring, a thienopyrrole ring, a thienothiophene ring, a furopyrrole ring, a furofuran ring, a furothiazole ring, a thienofuran ring, a thienothiazole ring, a benzisoxazole ring, a benzisothiazole ring, a benzimidazole ring, a pyridine ring, a pyrazine ring, a pyridazine ring, a pyrimidine ring, a triazine ring, a quinoline ring, an isoquinoline ring, a cinnoline ring, a quinoxaline ring, a phenanthridine ring, a quinazoline ring, and an azulene ring.
 芳香族複素環の2価基に許容される置換基としては、上記芳香族炭化水素環の2価基が有していてもよい置換基と同様のものが挙げられ、好ましいものも同様である。 Permissible substituents for the divalent group of the aromatic heterocycle include the same as those that may be possessed by the divalent group of the aromatic hydrocarbon ring, and the preferred substituents are also the same.
(-A21-、-A22-、-A23-の好適態様)
 -A21-、-A22-、-A23-のうち、-A21-、-A23-は、二色比等の光学性能および最適な色素会合状態の観点から、それぞれ独立に、置換基を有していてもよい芳香族炭化水素環の2価基であることが好ましく、それぞれ独立に、置換基を有していてもよいフェニレン基であることがより好ましく、特に置換基を有していてもよい、1,4-フェニレン基であることが好ましく、とりわけ置換基を有さない1,4-フェニレン基が好ましい。
(Preferred embodiments of -A 21 -, -A 22 -, -A 23 -)
Of -A 21 -, -A 22 -, and -A 23 -, from the viewpoints of optical performance such as dichroic ratio and the optimal dye association state, -A 21 - and -A 23 - are preferably each independently a divalent group of an aromatic hydrocarbon ring which may have a substituent, more preferably each independently a phenylene group which may have a substituent, particularly preferably a 1,4-phenylene group which may have a substituent, and particularly preferably an unsubstituted 1,4-phenylene group.
 -A22-についても、二色比等の光学性能の観点から置換基を有していてもよい芳香族炭化水素環の2価基であることが好ましく、置換基を有していてもよいフェニレン基であることがより好ましく、特に置換基を有していてもよい、1,4-フェニレン基であることが好ましく、とりわけ置換基を有さない1,4-フェニレン基が好ましい。 With respect to -A 22 -, from the viewpoint of optical performance such as dichroic ratio, it is preferable that it is a divalent group of an aromatic hydrocarbon ring which may have a substituent, it is more preferable that it is a phenylene group which may have a substituent, it is particularly preferable that it is a 1,4-phenylene group which may have a substituent, and it is particularly preferable that it is a 1,4-phenylene group which has no substituent.
(-X20、-Y20
 -X20、-Y20は、それぞれ独立に、1価の任意の置換基を表す。
 -X20、-Y20における1価の置換基としては、例えば、ヒドロキシ基、アミノ基、シアノ基、カルバモイル基、ニトロ基、ハロゲン原子、-R、-O-R、-NH-R、-N(-R)-R、-C(=O)-R、-C(=O)-O-R、-C(=O)-NH-R、-C(=O)-N(-R)-R、-O-C(=O)-R、-NH-C(=O)-R、-N(-R)-C(=O)-Rが挙げられる。-Rおよび-Rは、それぞれ独立に、分岐を有していてもよいアルキル基、シクロアルキル基又はアリ-ル基を表し、これらは置換基を有していてもよい。該アルキル基の炭素数は1~15であることが好ましく、該シクロアルキル基の環を構成する原子数は5~14が好ましく、該アリール基の環を構成する原子数は5~14が好ましい。
 -Rおよび-Rは、一体となって、好ましくは炭素数2~15、より好ましくは2~10の環を形成していてもよい。
(-X 20 , -Y 20 )
Each of -X 20 and -Y 20 independently represents any monovalent substituent.
Examples of the monovalent substituent in -X 20 and -Y 20 include a hydroxy group, an amino group, a cyano group, a carbamoyl group, a nitro group, a halogen atom, -R x , -O-R x , -NH-R x , -N(-R y )-R x , -C(=O)-R x , -C(=O)-O-R x , -C(=O)-NH-R x , -C(=O)-N(-R y )-R x , -O-C(=O)-R x , -NH-C(=O)-R x , and -N(-R y )-C(=O)-R x . -R x and -R y each independently represent an alkyl group, a cycloalkyl group, or an aryl group which may have a branch, and these may have a substituent. The alkyl group preferably has 1 to 15 carbon atoms, the cycloalkyl group preferably has 5 to 14 ring atoms, and the aryl group preferably has 5 to 14 ring atoms.
--R x and --R y may join together to form a ring preferably having 2 to 15 carbon atoms, more preferably 2 to 10 carbon atoms.
 -X20、-Y20における1価の置換基としては、第2の発明で用いる重合性液晶化合物との分子配向を良好にさせる観点の場合には、後述する重合性基を有していない方が好ましい。一方、-X20、-Y20における1価の置換基としては、異方性色素膜の機械強度を向上させる観点の場合には、後述する重合性基を有することが好ましい。 From the viewpoint of improving molecular alignment with the polymerizable liquid crystal compound used in the second invention, it is preferable that the monovalent substituents in -X 20 and -Y 20 do not have a polymerizable group as described below, while from the viewpoint of improving the mechanical strength of the anisotropic dye film, it is preferable that the monovalent substituents in -X 20 and -Y 20 have a polymerizable group as described below.
 分岐を有していてもよい炭素数1~15のアルキル基は、好ましくは炭素数1~10であり、より好ましくは炭素数1~6である。環を構成する原子の数が5~14のシクロアルキル基は、好ましくは環を構成する原子の数が5~10であり、より好ましくは5~6であり、さらに好ましくは6である。環を構成する原子の数が5~14のアリール基は、好ましくは環を構成する原子の数が5~10であり、より好ましくは5~6であり、さらに好ましくは6である。上記であることで二色比等の光学性能が良好および色素会合状態が最適となる傾向である。 An alkyl group having 1 to 15 carbon atoms, which may be branched, preferably has 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms. A cycloalkyl group having 5 to 14 ring atoms preferably has 5 to 10 ring atoms, more preferably 5 to 6 ring atoms, and even more preferably 6 ring atoms. An aryl group having 5 to 14 ring atoms preferably has 5 to 10 ring atoms, more preferably 5 to 6 ring atoms, and even more preferably 6 ring atoms. The above tends to result in good optical performance such as dichroic ratio and optimal dye association state.
 分岐を有していてもよい炭素数1~15のアルキル基、環を構成する原子の数が5~14のシクロアルキル基および環を構成する原子の数が5~14のアリ-ル基は、それぞれ置換基を有していてもよい。 An alkyl group having 1 to 15 carbon atoms, which may be branched, a cycloalkyl group having 5 to 14 atoms constituting a ring, and an aryl group having 5 to 14 atoms constituting a ring may each have a substituent.
 また、分岐を有していてもよい炭素数1~15のアルキル基、環を構成する原子の数が5~14のシクロアルキル基、又は-Rおよび-Rが一体となって形成した環に含まれる一つ又はそれ以上のメチレン基は、-O-、-S-、-NH-、-N(R)-、-C(=O)-、-C(=O)-O-、-C(=O)-NH-、-CHF-、-CF-、-CHCl-、-CCl-によって置き換えられた(displace)構造であってもよく、アクリロイルオキシ基、メタクリロイルオキシ基、グリシジルオキシ基の重合性基に置き換えられた構造であってもよい。ここで、Rは、炭素数1~6の直鎖状又は分枝状のアルキル基を表す。 Furthermore, one or more methylene groups contained in an alkyl group having 1 to 15 carbon atoms which may have a branch, a cycloalkyl group having 5 to 14 ring atoms, or a ring formed by combining -R x and -R y may have a structure in which they are replaced (displaced) by -O-, -S-, -NH-, -N(R z )-, -C(═O)-, -C(═O)-O-, -C(═O)-NH-, -CHF-, -CF 2 -, -CHCl-, or -CCl 2 -, or may have a structure in which they are replaced by a polymerizable group such as an acryloyloxy group, a methacryloyloxy group, or a glycidyloxy group. Here, R z represents a straight-chain or branched alkyl group having 1 to 6 carbon atoms.
 -Rおよび-Rにおける分岐を有していてもよい炭素数1~15のアルキル基に許容される置換基としては、-OH、-O-R、-O-C(=O)-R、-NH、-NH-R、-N(-R)-R、-C(=O)-R、-C(=O)-O-R、-C(=O)-NH、-C(=O)-NH-R、-C(=O)-N(-R)-R、-SH、-S-R、スルファモイル基、カルボキシ基、シアノ基、ニトロ基、ハロゲン等が挙げられる。ここで、-Rおよび-Rは、それぞれ独立に、炭素数1~15、好ましくは1~10の直鎖状もしくは分枝状のアルキル基を表す。
 前記炭素数1~15の直鎖状もしくは分枝状のアルキル基に含まれる一つ又はそれ以上のメチレン基は、-O-、-S-、-NH-、-N(R)-、-C(=O)-、-C(=O)-O-、-C(=O)-NH-、-CHF-、-CF-、-CHCl-、-CCl-によって置き換えられた(displace)構造であってもよく、アクリロイルオキシ基、メタクリロイルオキシ基、グリシジルオキシ基の重合性基に置き換えられた構造であってもよい。なお、Rは、炭素数1~6の直鎖状又は分枝状のアルキル基を表す。
 これらのうち、-Rおよび-Rにおける分岐を有していてもよい炭素数1~15のアルキル基に許容される置換基としては、-O-Rが好ましく、たとえば、メトキシ、エトキシ、n-プロポキシ、n-ブトキシ、n-ペントキシ、n-ヘキソキシ、n-ヘプトキシ、n-オクトキシ、アクリロイルオキシ、メタクリロイルオキシ、グリシジルオキシ等が挙げられる。
Examples of the substituents permitted for the branched alkyl group having 1 to 15 carbon atoms in -R x and -R y include -OH, -O-R f , -O-C(=O)-R f , -NH 2 , -NH-R f , -N(-R g )-R f , -C(=O)-R f , -C(=O)-O-R f , -C(=O)-NH 2 , -C(=O)-NH-R f , -C(=O)-N(-R g )-R f , -SH, -S-R f , a sulfamoyl group, a carboxy group, a cyano group, a nitro group, a halogen, etc. Here, -R f and -R g each independently represent a straight-chain or branched alkyl group having 1 to 15 carbon atoms, preferably 1 to 10 carbon atoms.
One or more methylene groups contained in the linear or branched alkyl group having 1 to 15 carbon atoms may be displaced by -O-, -S-, -NH-, -N(R h )-, -C(═O)-, -C(═O)-O-, -C(═O)-NH-, -CHF-, -CF 2 -, -CHCl-, or -CCl 2 -, or may be replaced by a polymerizable group such as an acryloyloxy group, a methacryloyloxy group, or a glycidyloxy group. R h represents a linear or branched alkyl group having 1 to 6 carbon atoms.
Among these, the substituent permitted for the branched alkyl group having 1 to 15 carbon atoms in -R x and -R y is preferably -O-R f , and examples thereof include methoxy, ethoxy, n-propoxy, n-butoxy, n-pentoxy, n-hexoxy, n-heptoxy, n-octoxy, acryloyloxy, methacryloyloxy, and glycidyloxy.
 -Rおよび-Rにおける環を構成する原子の数が5~14のシクロアルキル基又はアリ-ル基に許容される置換基としては、-R、-OH、-O-R、-O-C(=O)-R、-NH、-NH-R、-N(-R)-R、-C(=O)-R、-C(=O)-O-R、-C(=O)-NH、-C(=O)-NH-R、-C(=O)-N(-R)-R、-SH、-S-R、トリフルオロメチル基、スルファモイル基、カルボキシ基、シアノ基、ニトロ基、ハロゲンが挙げられる。-Rおよび-Rは、それぞれ独立に、炭素数1~10、好ましくは1~5の直鎖状又は分枝状のアルキル基を表す。 Examples of the substituents permitted for the cycloalkyl group or aryl group having 5 to 14 ring atoms in -R x and -R y include -R i , -OH, -O-R i , -O-C(=O)-R i , -NH 2 , -NH-R i , -N(-R j )-R i , -C(=O)-R i , -C(=O)-O-R i , -C(=O)-NH 2 , -C(=O)-NH-R i , -C(=O)-N(-R j )-R i , -SH, -S-R i , trifluoromethyl group, sulfamoyl group, carboxy group, cyano group, nitro group, and halogen. -R i and -R j each independently represent a straight-chain or branched alkyl group having 1 to 10 carbon atoms, preferably 1 to 5 carbon atoms.
 これらのうち、-Rおよび-Rにおける環を構成する原子の数が5~14のシクロアルキル基又はアリ-ル基に許容される置換基としては、-R、-O-Rが好ましく、たとえば、メチル、エチル、n-プロピル、n-ブチル、n-ペンチル、n-ヘキシル、n-ヘプチル、n-オクチル、2-エチルヘキシル、メトキシ、エトキシ、n-プロポキシ、n-ブトキシ、n-ペントキシ、n-ヘキソキシ、n-ヘプトキシ、n-オクトキシ、2-エチルヘキシルオキシ、5,5-ジメチル-3-メチルヘキシルオキシ等が挙げられる。 Among these, preferred substituents for the cycloalkyl group or aryl group having 5 to 14 ring-constituting atoms in -R x and -R y are -R i and -O-R i , and examples thereof include methyl, ethyl, n-propyl, n-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, 2-ethylhexyl, methoxy, ethoxy, n-propoxy, n-butoxy, n-pentoxy, n-hexoxy, n-heptoxy, n-octoxy, 2-ethylhexyloxy, 5,5-dimethyl-3-methylhexyloxy, and the like.
 -Rおよび-Rの環を構成する原子の数が5~14のシクロアルキル基のシクロアルカン環としては、シクロプロパン環、シクロブタン環、シクロペンタン環、シクロヘキサン環、シクロヘプタン環、シクロオクタン環、シクロヘキセン環、ノルボルナン環、ボルナン環、アダマンタン環、テトラヒドロナフタレン環、ビシクロ[2.2.2]オクタン環等が挙げられる。 Examples of the cycloalkane ring of the cycloalkyl group having 5 to 14 ring-constituting atoms of -R x and -R y include a cyclopropane ring, a cyclobutane ring, a cyclopentane ring, a cyclohexane ring, a cycloheptane ring, a cyclooctane ring, a cyclohexene ring, a norbornane ring, a bornane ring, an adamantane ring, a tetrahydronaphthalene ring, and a bicyclo[2.2.2]octane ring.
 -Rおよび-Rの環を構成する原子の数が5~14のアリール基としては、-A21-、-A22-、-A23-における芳香族複素環及び芳香族炭化水素環として例示した環の1価基を挙げることができる。 Examples of the aryl group having 5 to 14 ring-constituting atoms of -R x and -R y include the monovalent groups of the rings exemplified as the aromatic heterocycle and aromatic hydrocarbon ring in -A 21 -, -A 22 -, and -A 23 -.
 -Rおよび-Rとしては、分岐を有していてもよい炭素数1~15のアルキル基であるか、又は-Rおよび-Rが一体となって、置換基を有していてもよい炭素数2~15の環を形成していることが好ましい。さらに、分岐を有していてもよい炭素数1~6のアルキル基であるか、又は-Rおよび-Rが一体となって炭素数2~10の環を形成していることがより好ましく;分岐を有していてもよい炭素数1~3のアルキル基であるか、又は-Rおよび-Rが一体となって炭素数2~6の環を形成していることがさらに好ましく;分岐を有さない炭素数1~3のアルキル基であるか、又は-Rおよび-Rが一体となって炭素数2~6の環を形成していることが特に好ましい。上記であることで化合物(12)の分子配向が良好になる傾向にある。 As -R x and -R y , it is preferable that they are an alkyl group having 1 to 15 carbon atoms which may have a branch, or -R x and -R y together form a ring having 2 to 15 carbon atoms which may have a substituent. Furthermore, it is more preferable that they are an alkyl group having 1 to 6 carbon atoms which may have a branch, or -R x and -R y together form a ring having 2 to 10 carbon atoms; it is more preferable that they are an alkyl group having 1 to 3 carbon atoms which may have a branch, or -R x and -R y together form a ring having 2 to 6 carbon atoms; it is particularly preferable that they are an alkyl group having 1 to 3 carbon atoms which does not have a branch, or -R x and -R y together form a ring having 2 to 6 carbon atoms. By being as described above, the molecular orientation of the compound (12) tends to be good.
 -X20、-Y20における1価の置換基のうち、-X20は、-R、-O-R、-O-C(=O)-R、-C(=O)-O-R、-N(-R)-R、-NH-Rが好ましく、-R、-O-R、-O-C(=O)-R、-C(=O)-O-Rがより好ましく、-R、-O-Rが特に好ましい。-Rとしては、具体的には、置換基を有さないかp位に炭素数1~10のアルキル基を置換基として有する、環を構成する炭素原子数が5~8のシクロアルキル基が好ましく、置換基を有さないかp位に炭素数1~10のアルキル基を置換基として有する、シクロヘキシル基がより好ましく、p位に炭素数3~6のアルキル基を置換基として有する、シクロヘキシル基がさらに好ましい。-O-Rとしては、-Rが炭素数3~12の分岐を有していてもよいアルキル基が好ましく、-Rが炭素数3~10の分岐を有していてもよいアルキル基がより好ましい。
 また、-Y20としては、-R、-O-R、-O-C(=O)-R、-C(=O)-O-R、-N(-R)-Rが好ましく、-O-R、-O-C(=O)-R、-N(-R)-Rがより好ましく、-O-R、-N(-R)-R、-NH-Rがさらに好ましく、特に下記式(12a)で表される基であることが特に好ましい。
  -N-(R)-R   (12a)
(式(12a)中、-R、-Rは、それぞれ独立に、分岐を有していてもよいアルキル基又はアリール基を表し、該アルキル基又はアリール基は置換基を有していてもよい。-R及び-Rは、一体となってNと共に炭素数2~15の環を形成していてもよく、該環は置換基を有していてもよい。)
Of the monovalent substituents in -X 20 and -Y 20 , -X 20 is preferably -R x , -O-R x , -O-C(=O)-R x , -C(=O)-O-R x , -N(-R y )-R x or -NH-R x , more preferably -R x , -O-R x , -O-C(=O)-R x or -C(=O)-O-R x , and particularly preferably -R x or -O-R x . Specifically, -R x is preferably a cycloalkyl group having 5 to 8 carbon atoms constituting the ring, which has no substituent or has an alkyl group having 1 to 10 carbon atoms as a substituent at the p-position, more preferably a cyclohexyl group having no substituent or has an alkyl group having 1 to 10 carbon atoms as a substituent at the p-position, and even more preferably a cyclohexyl group having an alkyl group having 3 to 6 carbon atoms as a substituent at the p-position. As -O-R x , -R x is preferably an alkyl group having 3 to 12 carbon atoms which may have a branch, and more preferably -R x is an alkyl group having 3 to 10 carbon atoms which may have a branch.
As -Y 20 , -R x , -O-R x , -O-C(═O)-R x , -C(═O)-O-R x , and -N(-R y )-R x are preferable, -O-R x , -O-C(═O)-R x , and -N(-R y )-R x are more preferable, -O-R x , -N(-R y )-R x , and -NH-R x are even more preferable, and a group represented by the following formula (12a) is particularly preferable.
-N-(R y )-R x (12a)
(In formula (12a), -R x and -R y each independently represent an alkyl group or an aryl group which may have a branch, and the alkyl group or aryl group may have a substituent. -R x and -R y may together form a ring having 2 to 15 carbon atoms together with N, and the ring may have a substituent.)
 式(12a)で表される基としては、具体的には、ジメチルアミノ基、ジエチルアミノ基、ジ-n-プロピルアミノ基、エチルメチルアミノ基、メチルプロピルアミノ基、エチルプロピルアミノ基、メチルブチルアミノ基、エチルブチルアミノ基、アゼチジニル基、ピロリジニル基、ピペリジニル基、アゼパニル基、モルホリニル基、ピペラジニル基、チオモルホリニル基が好ましいものとして挙げられ、ジエチルアミノ基、ピロリジニル基、ピペリジニル基がより好ましい。
 上記であることで化合物(12)の吸収の遷移モーメントが化合物の長軸方向に一致するため二色性が良好となる傾向にある。
Specific examples of the group represented by formula (12a) include preferred dimethylamino, diethylamino, di-n-propylamino, ethylmethylamino, methylpropylamino, ethylpropylamino, methylbutylamino, ethylbutylamino, azetidinyl, pyrrolidinyl, piperidinyl, azepanyl, morpholinyl, piperazinyl, and thiomorpholinyl groups, with diethylamino, pyrrolidinyl, and piperidinyl groups being more preferred.
In the above case, the absorption transition moment of compound (12) coincides with the long axis direction of the compound, and therefore the dichroism tends to be good.
 式(12a)における-R、-Rは、色素の高い溶解性が必要となる場合に、-Rおよび/または-Rが分岐を有するアルキル基であることが好ましく、イソプロピル基、イソブチル基がより好ましい。
 式(12a)における-R、-Rは、色素の吸収波長を調整する必要がある場合には、置換基を有していることが好ましく、置換基として-OH、-O-R、-O-C(=O)-R、-C(=O)-R、-C(=O)-O-R、ハロゲン原子を有することがより好ましく、フッ素原子を有することがさらに好ましい。ここで-Rは、炭素数1~15、好ましくは1~10の直鎖状もしくは分枝状のアルキル基を表す。
When high solubility of the dye is required, -R x and/or -R y in formula ( 12a ) are preferably a branched alkyl group, more preferably an isopropyl group or an isobutyl group.
In the formula (12a), -R x and -R y preferably have a substituent when it is necessary to adjust the absorption wavelength of the dye, and as the substituent, -OH, -O-R f , -O-C(═O)-R f , -C(═O)-R f , -C(═O)-O-R f , or a halogen atom is more preferable, and a fluorine atom is even more preferable. Here, -R f represents a linear or branched alkyl group having 1 to 15 carbon atoms, preferably 1 to 10 carbon atoms.
(m1)
 m1は1又は2を表す。
 m1は2であることが好ましい。上記であることで色素会合状態が最適となる傾向にある。
 m1が2である場合、それぞれの-A21-は、同一であっても異なっていてもよいが、最適な色素会合状態となる傾向にあることから同一であることが好ましい。
(m1)
m1 represents 1 or 2.
m1 is preferably 2. This tends to result in an optimal dye association state.
When m1 is 2, each -A 21 - may be the same or different, but is preferably the same since this tends to result in an optimal dye association state.
(n1)
 n1は0、1、2、又は3を表す。
 n1は1又は2であることが最適な色素会合状態となる傾向にあることから好ましく、1であることがさらに化合物(12)の分子配向が良好となる傾向にあることから、より好ましい。
 n1が2又は3である場合、それぞれの-A22-は、同一であっても異なっていてもよいが、最適な色素会合状態となる傾向にあることから同一であることが好ましい。
(n1)
n1 represents 0, 1, 2, or 3.
n1 is preferably 1 or 2 since this tends to result in an optimal dye association state, and more preferably 1 since this tends to result in better molecular orientation of compound (12).
When n1 is 2 or 3, each -A 22 - may be the same or different, but is preferably the same since this tends to result in an optimal dye association state.
 m1とn1の和はm1とn1が上記範囲にあれば特に限定されないが、2又は3が好ましく、3であることが好ましい。上記であることで化合物(12)の分子配向が良好となる傾向にある。 The sum of m1 and n1 is not particularly limited as long as m1 and n1 are within the above range, but is preferably 2 or 3, and more preferably 3. This tends to improve the molecular orientation of compound (12).
(-N=N-)
 式(12)中の-N=N-は、トランス型であることが化合物(12)の直線性を高める観点で好ましい。
(-N=N-)
In terms of improving the linearity of compound (12), -N=N- in formula (12) is preferably a trans type.
(化合物(12)の具体例)
 化合物(12)の具体例としては、以下の化合物が挙げられるが、これらに限定されるものではない。
(Specific examples of compound (12))
Specific examples of compound (12) include the following compounds, but are not limited thereto.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
[本発明の組成物中の色素]
 第1の発明の組成物は、化合物(2)を含む。第1の発明の組成物は、化合物(2)以外の色素を含んでいてもよい。第1の発明の組成物に含まれる化合物(2)以外の色素としては、化合物(2)以外のアゾ系色素、キノン系色素(ナフトキノン系色素、アントラキノン系色素等を含む。)、スチルベン系色素、シアニン系色素、フタロシアニン系色素、インジゴ系色素、縮合多環系色素(ペリレン系色素、オキサジン系色素、アクリジン系色素等を含む。)等が挙げられる。
 第1の発明の組成物には、化合物(2)以外の色素の1種のみが単独で含まれていてもよく、2種以上が任意の組み合わせおよび比率で含まれていてもよい。
[Dye in the composition of the present invention]
The composition of the first invention contains compound (2). The composition of the first invention may contain a dye other than compound (2). Examples of the dye other than compound (2) contained in the composition of the first invention include azo dyes other than compound (2), quinone dyes (including naphthoquinone dyes, anthraquinone dyes, etc.), stilbene dyes, cyanine dyes, phthalocyanine dyes, indigo dyes, and condensed polycyclic dyes (including perylene dyes, oxazine dyes, acridine dyes, etc.).
The composition of the first invention may contain only one type of dye other than compound (2) alone, or may contain two or more types in any combination and ratio.
 第2の発明の組成物は、第2の発明の色素として好ましくは化合物(12)を含む。第2の発明の組成物は、第2の発明の色素以外の色素を含んでいてもよい。第2の発明の組成物に含まれる第2の発明の色素以外の色素としては、前記関係式(11)を満たさないアゾ系色素、キノン系色素(ナフトキノン系色素、アントラキノン系色素等を含む。)、スチルベン系色素、シアニン系色素、フタロシアニン系色素、インジゴ系色素、縮合多環系色素(ペリレン系色素、オキサジン系色素、アクリジン系色素等を含む。)等が挙げられる。 The composition of the second invention preferably contains compound (12) as the dye of the second invention. The composition of the second invention may contain a dye other than the dye of the second invention. Examples of the dye other than the dye of the second invention contained in the composition of the second invention that do not satisfy the above relational formula (11) include azo dyes, quinone dyes (including naphthoquinone dyes, anthraquinone dyes, etc.), stilbene dyes, cyanine dyes, phthalocyanine dyes, indigo dyes, and condensed polycyclic dyes (including perylene dyes, oxazine dyes, acridine dyes, etc.).
 本発明の組成物、即ち、第1の発明の組成物及び第2の発明の組成物に含まれる、化合物(2)又は第2の発明の色素以外の色素としては、350nm~800nmの波長域の吸収曲線における極大値を示す波長が、組成物に含まれる、化合物(2)又は第2の発明の色素の350nm~800nmの波長域の吸収曲線における最大値を示す波長に比べ5nm以上差がある化合物であることが好ましく、350nm~800nmの波長域の吸収曲線における極大値を示す波長が、組成物に含まれる、化合物(2)又は第2の発明の色素の350nm~800nmの波長域の吸収曲線における最大値を示す波長に比べ10nm以上差がある化合物であることがさらに好ましい。上記であることで、本発明の組成物を用いて異方性色素膜をディスプレイ等の偏光素子を形成する場合には、可視領域の広い範囲で偏光特性を発現する点で好ましい。 The composition of the present invention, i.e., the composition of the first invention and the composition of the second invention, preferably contains a dye other than compound (2) or the dye of the second invention, whose wavelength showing a maximum value in the absorption curve in the wavelength range of 350 nm to 800 nm is 5 nm or more different from the wavelength showing a maximum value in the absorption curve in the wavelength range of 350 nm to 800 nm of compound (2) or the dye of the second invention contained in the composition, and more preferably contains a compound whose wavelength showing a maximum value in the absorption curve in the wavelength range of 350 nm to 800 nm is 10 nm or more different from the wavelength showing a maximum value in the absorption curve in the wavelength range of 350 nm to 800 nm of compound (2) or the dye of the second invention contained in the composition. As described above, when the composition of the present invention is used to form an anisotropic dye film into a polarizing element such as a display, it is preferable in that it expresses polarization characteristics in a wide range of the visible region.
(色素の分子量)
 本発明の組成物に含まれる色素の分子量(2種以上の色素を併用する場合には、それぞれの分子量)は、300以上が好ましく、350以上がより好ましく、380以上がさらに好ましく、1500以下が好ましく、1200以下がより好ましく、1000以下がさらに好ましい。具体的には、本発明の組成物に含まれる色素の分子量は、300~1500が好ましく、350~1200がより好ましく、380~1000がさらに好ましい。上記範囲であることで適切な分子長、嵩高さとなるため、色素の分子配向が良好になる傾向にある。色素の分子量は、色素分子に含まれる原子量の総和である。
(Molecular weight of dye)
The molecular weight of the dye contained in the composition of the present invention (when two or more dyes are used in combination, the molecular weight of each dye) is preferably 300 or more, more preferably 350 or more, and even more preferably 380 or more, and is preferably 1500 or less, more preferably 1200 or less, and even more preferably 1000 or less. Specifically, the molecular weight of the dye contained in the composition of the present invention is preferably 300 to 1500, more preferably 350 to 1200, and even more preferably 380 to 1000. By being in the above range, the molecular length and bulkiness are appropriate, and therefore the molecular orientation of the dye tends to be good. The molecular weight of the dye is the sum of the atomic weights contained in the dye molecule.
(色素の含有量)
 本発明の組成物における色素が占める含有量(2種以上の色素を併用する場合は、それぞれの含有量の総和)は、例えば、組成物の固形分(100質量部)に対して、0.01質量部以上が好ましく、0.05質量部以上がより好ましく、30質量部以下が好ましく、10質量部以下がより好ましい。具体的には、組成物における色素が占める含有量は、例えば、組成物の固形分(100質量部)に対して、好ましくは0.01~30質量部であり、より好ましくは0.05~10質量部である。
(Pigment content)
The content of the dye in the composition of the present invention (when two or more dyes are used in combination, the total content of each dye) is, for example, preferably 0.01 parts by mass or more, more preferably 0.05 parts by mass or more, and preferably 30 parts by mass or less, more preferably 10 parts by mass or less, relative to the solid content (100 parts by mass) of the composition. Specifically, the content of the dye in the composition is, for example, preferably 0.01 to 30 parts by mass, more preferably 0.05 to 10 parts by mass, relative to the solid content (100 parts by mass) of the composition.
 色素が占める含有量が前記範囲内であれば、本発明の組成物に含まれる液晶化合物の配向を乱すことなく、本発明の組成物に含まれる重合性液晶化合物を重合させることができる傾向にある。色素が占める含有量が前記下限値以上であれば、十分な光吸収が得られ、十分な偏光性能が得られる傾向にある。色素が占める含有量が前記上限値以下であれば、液晶分子の配向の阻害が抑制されやすい傾向にある。 If the content of the dye is within the above range, the polymerizable liquid crystal compound contained in the composition of the present invention tends to be polymerized without disturbing the alignment of the liquid crystal compound contained in the composition of the present invention. If the content of the dye is equal to or greater than the above lower limit, sufficient light absorption and sufficient polarization performance tend to be obtained. If the content of the dye is equal to or less than the above upper limit, inhibition of the alignment of the liquid crystal molecules tends to be suppressed.
 ここで、組成物の固形分とは組成物中の溶剤以外のすべての成分の合計に相当する。 Here, the solids content of the composition corresponds to the sum of all components in the composition other than the solvent.
 本発明の組成物は、色素として化合物(2)又は第2の発明の色素を必須成分として含有していればよく、前述のその他の色素を化合物(2)又は第2の発明の色素と共に含有するものであってもよい。
 本発明の組成物がその他の色素を含有する場合、化合物(2)又は第2の発明の色素を用いることによる本発明の効果をより有効に得る観点から、本発明の組成物中の色素の総量100質量%中の化合物(2)又は第2の発明の色素の割合は、5質量%以上であることが好ましく、10質量%以上であることがより好ましく、特に15~100質量%であることが好ましい。
The composition of the present invention may contain, as an essential component, compound (2) or the dye of the second invention as a dye, and may also contain the above-mentioned other dyes together with compound (2) or the dye of the second invention.
When the composition of the present invention contains another dye, from the viewpoint of more effectively obtaining the effects of the present invention by using compound (2) or the dye of the second invention, the proportion of compound (2) or the dye of the second invention in 100% by mass of the total amount of dyes in the composition of the present invention is preferably 5% by mass or more, more preferably 10% by mass or more, and particularly preferably 15 to 100% by mass.
(色素の製造方法)
 本発明の組成物に含有される化合物(2)、第2の発明の色素等の色素は、アルキル化反応、エステル化反応、アミド化反応、エーテル化反応、イプソ置換反応、ジアゾカップリング反応、金属触媒を用いたカップリング反応等の公知の化学反応を組み合わせることにより製造することができる。
(Method of producing dye)
Compound (2) contained in the composition of the present invention and dyes such as the dye of the second invention can be produced by combining known chemical reactions such as an alkylation reaction, an esterification reaction, an amidation reaction, an etherification reaction, an ipso substitution reaction, a diazo coupling reaction, and a coupling reaction using a metal catalyst.
 たとえば、化合物(2)、第2の発明の色素は、後掲の実施例に記載の方法や、「新染料化学」(細田豊著、昭和48年12月21日、技報堂)、「総説合成染料」(堀口博著、1968年、三共出版)、「理論製造 染料化学」(細田豊著、1957年、技報堂)に記載の方法にしたがって合成することができる。 For example, compound (2), the dye of the second invention, can be synthesized according to the method described in the Examples below, or in "New Dye Chemistry" (Hosoda Yutaka, December 21, 1973, Gihodo), "General Synthetic Dyes" (Horiguchi Hiroshi, 1968, Sankyo Publishing), and "Theoretical Manufacturing Dye Chemistry" (Hosoda Yutaka, 1957, Gihodo).
[重合性液晶化合物]
 本発明において、液晶化合物とは、液晶状態を示す物質を指し、具体的には、「液晶便覧」(丸善株式会社、平成12年10月30日発行)の1~28ページに記載されているように、結晶から液体には直接転移せず、結晶と液体の両方の性質を示す中間の状態を経て液体になる化合物をいう。
[Polymerizable Liquid Crystal Compound]
In the present invention, the liquid crystal compound refers to a substance that exhibits a liquid crystal state, and specifically refers to a compound that does not directly transition from a crystal to a liquid state but becomes a liquid state via an intermediate state that exhibits properties of both a crystal and a liquid, as described on pages 1 to 28 of "Liquid Crystal Handbook" (Maruzen Co., Ltd., published on October 30, 2000).
 本発明の組成物に含まれる重合性液晶化合物は、後述する重合性基を有する液晶化合物である。 The polymerizable liquid crystal compound contained in the composition of the present invention is a liquid crystal compound having a polymerizable group, which will be described later.
 重合性液晶化合物において、重合性基は液晶化合物分子内の任意の位置に配置することができる。重合性液晶化合物において、重合性基は液晶化合物分子の末端に置換していることが重合しやすさの観点から好ましい。
 重合性液晶化合物において、重合性基は液晶化合物分子内に1つ以上存在することができる。重合性基が2つ以上存在する場合は、液晶化合物分子の両末端にそれぞれ存在していることが重合しやすさの観点から好ましい。
In the polymerizable liquid crystal compound, the polymerizable group can be located at any position in the liquid crystal compound molecule. In the polymerizable liquid crystal compound, the polymerizable group is preferably substituted at the terminal of the liquid crystal compound molecule from the viewpoint of ease of polymerization.
In the polymerizable liquid crystal compound, one or more polymerizable groups may be present in the liquid crystal compound molecule. When two or more polymerizable groups are present, it is preferable that they are present at both ends of the liquid crystal compound molecule from the viewpoint of ease of polymerization.
 重合性液晶化合物は、液晶化合物分子内に炭素-炭素三重結合を有する化合物であることが好ましい。炭素-炭素三重結合を有する化合物であると、該炭素-炭素三重結合が、回転運動が可能でありながら、液晶分子のコアとなることが可能で、分子の運動性が高く、かつ液晶分子同士や色素分子などのπ共役系を有する化合物と分子間相互作用が強く、分子配向が高くなる傾向にある。 The polymerizable liquid crystal compound is preferably a compound having a carbon-carbon triple bond in the liquid crystal compound molecule. In a compound having a carbon-carbon triple bond, the carbon-carbon triple bond is capable of rotational motion while also being able to become the core of the liquid crystal molecule, and the molecular mobility is high, and there is strong intermolecular interaction between the liquid crystal molecules and with compounds having a π-conjugated system such as dye molecules, which tends to result in high molecular orientation.
 本発明の組成物に含まれる重合性液晶化合物としては、特に限定されることなく重合性基を有する液晶化合物を用いることができる。 The polymerizable liquid crystal compound contained in the composition of the present invention is not particularly limited, and any liquid crystal compound having a polymerizable group can be used.
 たとえば、本発明の組成物に含まれる重合性液晶化合物としては、下記式(3)で表される化合物(以下、「重合性液晶化合物(3)」と称す場合がある。)を挙げることができる。 For example, the polymerizable liquid crystal compound contained in the composition of the present invention may be a compound represented by the following formula (3) (hereinafter, sometimes referred to as "polymerizable liquid crystal compound (3)").
  Q-R-A11-Y-A12-(Y-A13-R-Q   (3) Q 1 -R 1 -A 11 -Y 1 -A 12 -(Y 2 -A 13 ) k -R 2 -Q 2 (3)
(式(3)中、
 -Qは、水素原子又は重合性基を表し、
 -Qは、重合性基を表し、
 -R-及び-R-は、それぞれ独立に、鎖状有機基を表し、
 -A11-及び-A13-は、それぞれ独立に、下記式(4)で表される部分構造、2価有機基、又は単結合を表し、
 -A12-は、下記式(4)で表される部分構造又は2価有機基を表し、
 -Y-及び-Y-は、それぞれ独立に、単結合、-C(=O)O-、-OC(=O)-、-C(=S)O-、-OC(=S)-、-C(=O)S-、-SC(=O)-、-CHCH-、-CH=CH-、-C≡C-、-C(=O)NH-、-NHC(=O)-、-CHO-、-OCH-、-CHS-、又は-SCH-を表し、
 -A11-及び-A13-の一方は、下記式(4)で表される部分構造又は2価有機基であり;
 kは1又は2である。
 kが2の場合、2つの-Y-A13-は互いに同一でも異なっていてもよい。)
(In formula (3),
-Q1 represents a hydrogen atom or a polymerizable group;
-Q2 represents a polymerizable group;
-R 1 - and -R 2 - each independently represent a chain organic group;
-A 11 - and -A 13 - each independently represent a partial structure represented by the following formula (4), a divalent organic group, or a single bond:
-A 12 - represents a partial structure represented by the following formula (4) or a divalent organic group:
-Y 1 - and -Y 2 - each independently represent a single bond, -C(=O)O-, -OC(=O)-, -C(=S)O-, -OC(=S)-, -C(=O)S-, -SC(=O)-, -CH 2 CH 2 -, -CH=CH-, -C≡C-, -C(=O)NH-, -NHC(=O)-, -CH 2 O-, -OCH 2 -, -CH 2 S-, or -SCH 2 -;
One of -A 11 - and -A 13 - is a partial structure represented by the following formula (4) or a divalent organic group:
k is 1 or 2.
When k is 2, two -Y 2 -A 13 - may be the same or different.
  -C-X-C≡C-X-   (4)
(式(4)中、
 -C-は、炭化水素環基又は複素環基を表し、
 -X-は、-C(=O)O-、-OC(=O)-、-C(=S)O-、-OC(=S)-、-C(=O)S-、-SC(=O)-、-CHCH-、-CH=CH-、-C(=O)NH-、-NHC(=O)-、-CHO-、-OCH-、-CHS-、又は-SCH-を表し、
 -X-は、単結合、-C(=O)O-、-OC(=O)-、-C(=S)O-、-OC(=S)-、-C(=O)S-、-SC(=O)-、-CHCH-、-CH=CH-、-C(=O)NH-、-NHC(=O)-、-CHO-、-OCH-、-CHS-、又は-SCH-を表す。)
-C y -X 2 -C≡C-X 1 - (4)
(In formula (4),
-C y - represents a hydrocarbon ring group or a heterocyclic group;
-X 1 - represents -C(=O)O-, -OC(=O)-, -C(=S)O-, -OC(=S)-, -C(=O)S-, -SC(=O)-, -CH 2 CH 2 -, -CH=CH-, -C(=O)NH-, -NHC(=O)-, -CH 2 O-, -OCH 2 -, -CH 2 S-, or -SCH 2 -;
-X 2 - represents a single bond, -C(=O)O-, -OC(=O)-, -C(=S)O-, -OC(=S)-, -C(=O)S-, -SC(=O)-, -CH 2 CH 2 -, -CH=CH-, -C(=O)NH-, -NHC(=O)-, -CH 2 O-, -OCH 2 -, -CH 2 S-, or -SCH 2 -.
 なお、-A11-が、式(4)で表される部分構造である場合、式(3)は、下記式(3A)であってもよく、下記式(3B)であってもよい。
 Q-R-C-X-C≡C-X-Y-A12-(Y-A13-R-Q    (3A)
 Q-R-X-C≡C-X-C-Y-A12-(Y-A13-R-Q    (3B)
When -A 11 - is a partial structure represented by formula (4), formula (3) may be the following formula (3A) or the following formula (3B).
Q 1 -R 1 -C y -X 2 -C≡C-X 1 -Y 1 -A 12 -(Y 2 -A 13 ) k -R 2 -Q 2 (3A)
Q 1 -R 1 -X 1 -C≡C-X 2 -C y -Y 1 -A 12 -(Y 2 -A 13 ) k -R 2 -Q 2 (3B)
 また、-A12-が、式(4)で表される部分構造である場合、式(3)は、下記式(3C)であってもよく、下記式(3D)であってもよい。
 Q-R-A11-Y-C-X-C≡C-X-(Y-A13-R-Q    (3C)
 Q-R-A11-Y-X-C≡C-X-C-(Y-A13-R-Q    (3D)
Furthermore, when -A 12 - is a partial structure represented by formula (4), formula (3) may be the following formula (3C) or the following formula (3D).
Q 1 -R 1 -A 11 -Y 1 -C y -X 2 -C≡C-X 1 -(Y 2 -A 13 ) k -R 2 -Q 2 (3C)
Q 1 -R 1 -A 11 -Y 1 -X 1 -C≡C-X 2 -C y -(Y 2 -A 13 ) k -R 2 -Q 2 (3D)
 また、-A13-が、式(4)で表される部分構造である場合、式(3)は、下記式(3E)であってもよく、下記式(3F)であってもよい。
 Q-R-A11-Y-A12-(Y-C-X-C≡C-X-R-Q    (3E)
 Q-R-A11-Y-A12-(Y-X-C≡C-X-C-R-Q    (3F)
Furthermore, when -A 13 - is a partial structure represented by formula (4), formula (3) may be the following formula (3E) or the following formula (3F).
Q 1 -R 1 -A 11 -Y 1 -A 12 -(Y 2 -C y -X 2 -C≡C-X 1 ) k -R 2 -Q 2 (3E)
Q 1 -R 1 -A 11 -Y 1 -A 12 -(Y 2 -X 1 -C≡C-X 2 -C y ) k -R 2 -Q 2 (3F)
 同様に、-A11-、-A12-及び-A13-のうち、二つ以上が式(4)で表される部分構造である場合、それぞれ独立に、式(4)で表される部分構造の向きが反転していてもよい。 Similarly, when two or more of -A 11 -, -A 12 - and -A 13 - are partial structures represented by formula (4), the orientation of the partial structures represented by formula (4) may be inverted, each independently.
 上記のように、-A11-、-A12-及び-A13-は、それぞれ独立に、式(4)で表される部分構造又は2価有機基である。加えて、-A11-及び-A13-は、単結合であってもよいが、-A11-及び-A13-が、ともに単結合であることはない。 As described above, -A 11 -, -A 12 - and -A 13 - are each independently a partial structure or a divalent organic group represented by formula (4). In addition, -A 11 - and -A 13 - may be a single bond, but -A 11 - and -A 13 - are not both single bonds.
(-C-)
 -C-における炭化水素環基は、芳香族炭化水素環基と非芳香族炭化水素環基とを含む。
 芳香族炭化水素環基は、非連結芳香族炭化水素環基と連結芳香族炭化水素環基とを含む。
(-C y -)
The hydrocarbon ring group in -C y - includes an aromatic hydrocarbon ring group and a non-aromatic hydrocarbon ring group.
The aromatic hydrocarbon ring group includes an unlinked aromatic hydrocarbon ring group and a linked aromatic hydrocarbon ring group.
 非連結芳香族炭化水素環基は、単環もしくは縮合した芳香族炭化水素環の2価基であり、その炭素数は6~20であることが、適切なコアの大きさにより分子配向性が良好となる理由で好ましい。非連結芳香族炭化水素環基の炭素数は6~15がより好ましい。芳香族炭化水素環としては、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、ペリレン環、テトラセン環、ピレン環、ベンズピレン環、クリセン環、トリフェニレン環、アセナフテン環、フルオランテン環、フルオレン環等が挙げられる。 The non-linked aromatic hydrocarbon ring group is a divalent group of a monocyclic or condensed aromatic hydrocarbon ring, and preferably has 6 to 20 carbon atoms, because the appropriate core size provides good molecular orientation. The non-linked aromatic hydrocarbon ring group more preferably has 6 to 15 carbon atoms. Examples of aromatic hydrocarbon rings include a benzene ring, a naphthalene ring, an anthracene ring, a phenanthrene ring, a perylene ring, a tetracene ring, a pyrene ring, a benzpyrene ring, a chrysene ring, a triphenylene ring, an acenaphthene ring, a fluoranthene ring, and a fluorene ring.
 連結芳香族炭化水素環基は、単環もしくは縮合した芳香族炭化水素環の複数が単結合で結合し、環を構成する原子上に結合手を有する2価基である。単環もしくは縮合環の炭素数は6~20であることが、適切なコアの大きさにより分子配向性が良好となる理由で好ましい。単環もしくは縮合環の炭素数は6~15がより好ましい。連結芳香族炭化水素環基としては、たとえば、第1の炭素数6~20の単環もしくは縮合した芳香族炭化水素環と第2の炭素数6~20の単環もしくは縮合した芳香族炭化水素環とが単結合で結合し、第1の炭素数6~20の単環もしくは縮合した芳香族炭化水素環の環を構成する原子上に第1の結合手を有し、第2の炭素数6~20の単環もしくは縮合した芳香族炭化水素環の環を構成する原子上に第2の結合手を有する2価基が挙げられる。連結芳香族炭化水素環基としては、具体的には、ビフェニル-4,4’-ジイル基が挙げられる。 The linked aromatic hydrocarbon ring group is a divalent group in which a plurality of monocyclic or condensed aromatic hydrocarbon rings are bonded by single bonds and have a bond on an atom constituting the ring. The number of carbon atoms in the monocyclic or condensed ring is preferably 6 to 20 because the molecular orientation is good due to the appropriate core size. The number of carbon atoms in the monocyclic or condensed ring is more preferably 6 to 15. Examples of the linked aromatic hydrocarbon ring group include a divalent group in which a first monocyclic or condensed aromatic hydrocarbon ring having 6 to 20 carbon atoms is bonded by a single bond to a second monocyclic or condensed aromatic hydrocarbon ring having 6 to 20 carbon atoms, which has a first bond on an atom constituting the ring of the first monocyclic or condensed aromatic hydrocarbon ring having 6 to 20 carbon atoms, and a second bond on an atom constituting the ring of the second monocyclic or condensed aromatic hydrocarbon ring having 6 to 20 carbon atoms. Specific examples of the linked aromatic hydrocarbon ring group include a biphenyl-4,4'-diyl group.
 芳香族炭化水素環基としては、非連結芳香族炭化水素環基が液晶化合物の間に働く分子間相互作用を最適とすることで分子配向性が良好となる理由で好ましい。
 これらのうち、芳香族炭化水素環基としては、ベンゼン環の2価基、ナフタレン環の2価基が好ましく、ベンゼン環の2価基(フェニレン基)がより好ましい。フェニレン基としては、1,4-フェニレン基が好ましい。-C-がこれらの基であることで液晶分子の直線性が高まり、分子配向性向上の効果が得られる傾向にある。
As the aromatic hydrocarbon ring group, a non-linked aromatic hydrocarbon ring group is preferable because it optimizes the intermolecular interaction acting between liquid crystal compounds, thereby improving the molecular alignment.
Of these, the aromatic hydrocarbon ring group is preferably a divalent group of a benzene ring or a divalent group of a naphthalene ring, and more preferably a divalent group of a benzene ring (phenylene group). As the phenylene group, a 1,4-phenylene group is preferable. When -C y - is one of these groups, the linearity of the liquid crystal molecules is increased, and the effect of improving molecular alignment tends to be obtained.
 非芳香族炭化水素環基は、非連結非芳香族炭化水素環基と連結非芳香族炭化水素環基とを含む。 Non-aromatic hydrocarbon ring groups include unlinked non-aromatic hydrocarbon ring groups and linked non-aromatic hydrocarbon ring groups.
 非連結非芳香族炭化水素環基は、単環もしくは縮合した非芳香族炭化水素環の2価基であり、その炭素数は3~20であることが、適切なコアの大きさにより分子配向性が良好となる理由で好ましい。非連結非芳香族炭化水素環基の炭素数は3~15がより好ましい。非芳香族炭化水素環としては、シクロプロパン環、シクロブタン環、シクロペンタン環、シクロヘキサン環、シクロヘプタン環、シクロオクタン環、シクロヘキセン環、ノルボルナン環、ボルナン環、アダマンタン環、テトラヒドロナフタレン環、ビシクロ[2.2.2]オクタン環等が挙げられる。 The non-linked non-aromatic hydrocarbon ring group is a divalent group of a monocyclic or condensed non-aromatic hydrocarbon ring, and preferably has 3 to 20 carbon atoms because the appropriate core size provides good molecular orientation. The non-linked non-aromatic hydrocarbon ring group more preferably has 3 to 15 carbon atoms. Examples of non-aromatic hydrocarbon rings include a cyclopropane ring, a cyclobutane ring, a cyclopentane ring, a cyclohexane ring, a cycloheptane ring, a cyclooctane ring, a cyclohexene ring, a norbornane ring, a bornane ring, an adamantane ring, a tetrahydronaphthalene ring, and a bicyclo[2.2.2]octane ring.
 非連結非芳香族炭化水素環基は、非芳香族炭化水素環の環を構成する原子間結合として不飽和結合を有さない脂環式炭化水素環基と、非芳香族炭化水素環の環を構成する原子間結合として不飽和結合を有する不飽和非芳香族炭化水素環基とを含む。非連結非芳香族炭化水素環基としては、生産性の観点から脂環式炭化水素環基が好ましい。  The non-linked non-aromatic hydrocarbon ring group includes an alicyclic hydrocarbon ring group that does not have an unsaturated bond between the atoms that constitute the ring of the non-aromatic hydrocarbon ring, and an unsaturated non-aromatic hydrocarbon ring group that has an unsaturated bond between the atoms that constitute the ring of the non-aromatic hydrocarbon ring. From the viewpoint of productivity, the non-linked non-aromatic hydrocarbon ring group is preferably an alicyclic hydrocarbon ring group.
 連結非芳香族炭化水素環基は、単環もしくは縮合した非芳香族炭化水素環の複数が単結合で結合し、環を構成する原子上に結合手を有する2価基;あるいは、単環の芳香族炭化水素環、縮合した芳香族炭化水素環、単環の非芳香族炭化水素環、および縮合した非芳香族炭化水素環からなる群より選択される1つ以上の環と、単環もしくは縮合した非芳香族炭化水素環とが単結合で結合し、環を構成する原子上に結合手を有する2価基である。
 単環もしくは縮合環の炭素数は適切なコアの大きさにより分子配向性が良好となる理由で3~20であることが好ましい。
The linked non-aromatic hydrocarbon ring group is a divalent group in which a plurality of monocyclic or condensed non-aromatic hydrocarbon rings are bonded together with single bonds and has a bond on an atom constituting the ring; or a divalent group in which one or more rings selected from the group consisting of monocyclic aromatic hydrocarbon rings, condensed aromatic hydrocarbon rings, monocyclic non-aromatic hydrocarbon rings, and condensed non-aromatic hydrocarbon rings are bonded together with a monocyclic or condensed non-aromatic hydrocarbon ring with a single bond and has a bond on an atom constituting the ring.
The number of carbon atoms in the single ring or condensed ring is preferably 3 to 20 because an appropriate core size provides good molecular orientation.
 連結非芳香族炭化水素環基としてはたとえば、第1の炭素数3~20の単環もしくは縮合した非芳香族炭化水素環と第2の炭素数3~20の単環もしくは縮合した非芳香族炭化水素環とが単結合で結合し、第1の炭素数3~20の単環もしくは縮合した非芳香族炭化水素環の環を構成する原子上に第1の結合手を有し、第2の炭素数3~20の単環もしくは縮合した非芳香族炭化水素環の環を構成する原子上に第2の結合手を有する2価基が挙げられる。さらに、たとえば、炭素数3~20の単環もしくは縮合した芳香族炭化水素環と炭素数3~20の単環もしくは縮合した非芳香族炭化水素環とが単結合で結合し、炭素数3~20の単環もしくは縮合した芳香族炭化水素環の環を構成する原子上に第1の結合手を有し、炭素数3~20の単環もしくは縮合した非芳香族炭化水素環の環を構成する原子上に第2の結合手を有する2価基が挙げられる。 Examples of the linked non-aromatic hydrocarbon ring group include a divalent group in which a first monocyclic or condensed non-aromatic hydrocarbon ring having 3 to 20 carbon atoms is bonded to a second monocyclic or condensed non-aromatic hydrocarbon ring having 3 to 20 carbon atoms by a single bond, the divalent group having a first bond on an atom constituting the first monocyclic or condensed non-aromatic hydrocarbon ring having 3 to 20 carbon atoms, and a second bond on an atom constituting the second monocyclic or condensed non-aromatic hydrocarbon ring having 3 to 20 carbon atoms. Further examples include a divalent group in which a monocyclic or condensed aromatic hydrocarbon ring having 3 to 20 carbon atoms is bonded to a monocyclic or condensed non-aromatic hydrocarbon ring having 3 to 20 carbon atoms by a single bond, the divalent group having a first bond on an atom constituting the monocyclic or condensed aromatic hydrocarbon ring having 3 to 20 carbon atoms, and a second bond on an atom constituting the monocyclic or condensed non-aromatic hydrocarbon ring having 3 to 20 carbon atoms.
 連結非芳香族炭化水素環基としては、具体的には、ビス(シクロヘキサン)-4,4’-ジイル基、1-シクロヘキシルベンゼン-4,4’-ジイル基が挙げられる。 Specific examples of linking non-aromatic hydrocarbon ring groups include bis(cyclohexane)-4,4'-diyl and 1-cyclohexylbenzene-4,4'-diyl groups.
 非芳香族炭化水素環基としては、液晶化合物の間に働く分子間相互作用を最適とすることで分子配向性が良好となる理由で非連結非芳香族炭化水素環基が好ましい。 As the non-aromatic hydrocarbon ring group, a non-linked non-aromatic hydrocarbon ring group is preferred because it optimizes the intermolecular interactions that act between liquid crystal compounds, thereby improving molecular orientation.
 非連結非芳香族炭化水素環基としては、シクロヘキサンの2価基(シクロヘキサンジイル基)が好ましい。シクロヘキサンジイル基としては、シクロヘキサン-1,4-ジイル基が好ましい。-C-がこれらの基であることで液晶分子の直線性が高まり、分子配向性向上の効果が得られる傾向にある。 As the non-linked non-aromatic hydrocarbon ring group, a divalent group of cyclohexane (cyclohexanediyl group) is preferable. As the cyclohexanediyl group, a cyclohexane-1,4-diyl group is preferable. When -C y - is one of these groups, the linearity of the liquid crystal molecules is increased, and the effect of improving molecular alignment tends to be obtained.
 -C-における複素環基は、芳香族複素環基と非芳香族複素環基とを含む。 The heterocyclic group in -C y - includes an aromatic heterocyclic group and a non-aromatic heterocyclic group.
 芳香族複素環基は、非連結芳香族複素環基と連結芳香族複素環基とを含む。 Aromatic heterocyclic groups include unlinked aromatic heterocyclic groups and linked aromatic heterocyclic groups.
 非連結芳香族複素環基は、単環もしくは縮合した芳香族複素環の2価基であり、その炭素数は4~20であることが、適切なコアの大きさにより分子配向性が良好となる理由で好ましい。非連結芳香族複素環基の炭素数は4~15がより好ましい。 The non-linked aromatic heterocyclic group is a divalent group of a monocyclic or condensed aromatic heterocyclic ring, and preferably has 4 to 20 carbon atoms because the appropriate core size provides good molecular orientation. The non-linked aromatic heterocyclic group more preferably has 4 to 15 carbon atoms.
 芳香族複素環としては、フラン環、ベンゾフラン環、チオフェン環、ベンゾチオフェン環、ピロ-ル環、ピラゾ-ル環、イミダゾ-ル環、チアゾール環、イソチアゾール環、オキサジアゾ-ル環、チアジアゾール環、トリアゾール環、インド-ル環、カルバゾ-ル環、ピロロイミダゾ-ル環、ピロロピラゾ-ル環、ピロロピロ-ル環、チエノピロ-ル環、チエノチオフェン環、フロピロ-ル環、フロフラン環、チエノフラン環、チエノチアゾ-ル環、ベンゾイソオキサゾ-ル環、ベンゾイソチアゾ-ル環、ベンゾイミダゾ-ル環、ピリジン環、ピラジン環、ピリダジン環、ピリミジン環、トリアジン環、キノリン環、イソキノリン環、シノリン環、キノキサリン環、フェナントリジン環、キナゾリン環、キナゾリノン環、アズレン環等が挙げられる。 Aromatic heterocycles include furan ring, benzofuran ring, thiophene ring, benzothiophene ring, pyrrole ring, pyrazole ring, imidazole ring, thiazole ring, isothiazole ring, oxadiazole ring, thiadiazole ring, triazole ring, indole ring, carbazole ring, pyrroloimidazole ring, pyrrolopyrazole ring, pyrrolopyrrole ring, thienopyrrole ring, thienothiophene ring, furopyrrole ring, furofuran ring, thienofuran ring, thienothiazole ring, benzoisoxazole ring, benzoisothiazole ring, benzimidazole ring, pyridine ring, pyrazine ring, pyridazine ring, pyrimidine ring, triazine ring, quinoline ring, isoquinoline ring, cinnoline ring, quinoxaline ring, phenanthridine ring, quinazoline ring, quinazolinone ring, azulene ring, etc.
 連結芳香族複素環基は、単環もしくは縮合した芳香族複素環の複数が単結合で結合し、環を構成する原子上に結合手を有する2価基である。単環もしくは縮合環の炭素数は4~20であることが、適切なコアの大きさにより分子配向性が良好となる理由で好ましい。連結芳香族複素環基の炭素数は4~15がより好ましい。 The linked aromatic heterocyclic group is a divalent group in which multiple monocyclic or condensed aromatic heterocyclic rings are bonded with single bonds and have bonds on the atoms that make up the ring. The number of carbon atoms in the monocyclic or condensed ring is preferably 4 to 20, because the appropriate core size provides good molecular orientation. The number of carbon atoms in the linked aromatic heterocyclic group is more preferably 4 to 15.
 連結芳香族複素環基としては、たとえば、第1の炭素数4~20の単環もしくは縮合した芳香族複素環と第2の炭素数4~20の単環もしくは縮合した芳香族複素環とが単結合で結合し、第1の炭素数4~20の単環もしくは縮合した芳香族複素環の環を構成する原子上に第1の結合手を有し、第2の炭素数4~20の単環もしくは縮合した芳香族複素環の環を構成する原子上に第2の結合手を有する2価基が挙げられる。 Examples of linked aromatic heterocyclic groups include divalent groups in which a first monocyclic or condensed aromatic heterocyclic ring having 4 to 20 carbon atoms is bonded to a second monocyclic or condensed aromatic heterocyclic ring having 4 to 20 carbon atoms by a single bond, the divalent group having a first bond on an atom constituting the ring of the first monocyclic or condensed aromatic heterocyclic ring having 4 to 20 carbon atoms, and a second bond on an atom constituting the ring of the second monocyclic or condensed aromatic heterocyclic ring having 4 to 20 carbon atoms.
 非芳香族複素環基は、非連結非芳香族複素環基と連結非芳香族複素環基とを含む。 Non-aromatic heterocyclic groups include unlinked non-aromatic heterocyclic groups and linked non-aromatic heterocyclic groups.
 非連結非芳香族複素環基は、単環もしくは縮合した非芳香族複素環の2価基であり、その炭素数は4~20であることが、適切なコアの大きさにより分子配向性が良好となる理由で好ましい。非連結非芳香族複素環基の炭素数は4~15がより好ましい。 The non-linked non-aromatic heterocyclic group is a divalent group of a monocyclic or condensed non-aromatic heterocyclic ring, and preferably has 4 to 20 carbon atoms because the appropriate core size provides good molecular orientation. The non-linked non-aromatic heterocyclic group more preferably has 4 to 15 carbon atoms.
 炭素数4~20の単環もしくは縮合した非芳香族複素環の2価基の非芳香族複素環としては、テトラヒドロフラン環、テトラヒドロピラン環、ジオキサン環、テトラヒドロチオフェン環、テトラヒドロチオピラン環、ピロリジン環、ピペリジン環、ジヒドロピリジン環、ピペラジン環、テトラヒドロチアゾール環、テトラヒドロオキサゾール環、オクタヒドロキノリン環、テトラヒドロキノリン環、オクタヒドロキナゾリン環、テトラヒドロキナゾリン環、テトラヒドロイミダゾール環、テトラヒドロベンゾイミダゾール環、キヌクリジン環等が挙げられる。 Examples of non-aromatic heterocycles that are divalent groups of monocyclic or condensed non-aromatic heterocycles having 4 to 20 carbon atoms include a tetrahydrofuran ring, a tetrahydropyran ring, a dioxane ring, a tetrahydrothiophene ring, a tetrahydrothiopyran ring, a pyrrolidine ring, a piperidine ring, a dihydropyridine ring, a piperazine ring, a tetrahydrothiazole ring, a tetrahydrooxazole ring, an octahydroquinoline ring, a tetrahydroquinoline ring, an octahydroquinazoline ring, a tetrahydroquinazoline ring, a tetrahydroimidazole ring, a tetrahydrobenzimidazole ring, and a quinuclidine ring.
 連結非芳香族複素環基は、単環もしくは縮合した非芳香族複素環の複数が単結合で結合し、環を構成する原子上に結合手を有する2価基である。単環もしくは縮合環の炭素数は4~20であることが、適切なコアの大きさにより分子配向性が良好となる理由で好ましい。連結非芳香族複素環基の炭素数は4~15がより好ましい。  A linked non-aromatic heterocyclic group is a divalent group in which multiple monocyclic or condensed non-aromatic heterocyclic rings are bonded with single bonds and have bonds on the atoms that make up the ring. The number of carbon atoms in the monocyclic or condensed ring is preferably 4 to 20, because the appropriate core size provides good molecular orientation. The number of carbon atoms in the linked non-aromatic heterocyclic group is more preferably 4 to 15.
 連結芳香族複素環基としては、たとえば、第1の炭素数4~20の単環もしくは縮合した非芳香族複素環と第2の炭素数4~20の単環もしくは縮合した非芳香族複素環とが単結合で結合し、第1の炭素数4~20の単環もしくは縮合した非芳香族複素環の環を構成する原子上に第1の結合手を有し、第2の炭素数4~20の単環もしくは縮合した非芳香族複素環の環を構成する原子上に第2の結合手を有する2価基が挙げられる。 Examples of linked aromatic heterocyclic groups include divalent groups in which a first monocyclic or condensed non-aromatic heterocyclic ring having 4 to 20 carbon atoms is bonded to a second monocyclic or condensed non-aromatic heterocyclic ring having 4 to 20 carbon atoms by a single bond, the divalent group having a first bond on an atom constituting the ring of the first monocyclic or condensed non-aromatic heterocyclic ring having 4 to 20 carbon atoms, and a second bond on an atom constituting the ring of the second monocyclic or condensed non-aromatic heterocyclic ring having 4 to 20 carbon atoms.
 -C-における芳香族炭化水素環基、非芳香族炭化水素環基、芳香族複素環基、非芳香族複素環基は、それぞれ、-R、-OH、-O-R、-O-C(=O)-R、-NH、-NH-R、-N(Rk’)-R、-C(=O)-R、-C(=O)-O-R、-C(=O)-NH、-C(=O)-NH-R、-C(=O)-N(Rk’)-R、-SH、-S-R、トリフルオロメチル基、スルファモイル基、カルボキシ基、スルホ基、シアノ基、ニトロ基、およびハロゲンからなる群より選択される1以上の基で置換されていてもよい。-Rおよび-Rk’は、それぞれ独立に、炭素数1~6の直鎖状もしくは分枝状のアルキル基を表す。 The aromatic hydrocarbon ring group, non-aromatic hydrocarbon ring group, aromatic heterocyclic group and non-aromatic heterocyclic group in -C y - may each be substituted with one or more groups selected from the group consisting of -R k , -OH, -O-R k , -O-C(═O)-R k , -NH 2 , -NH-R k , -N(R k' )-R k , -C(═O)-R k , -C(═O)-O-R k , -C(═O)-NH 2 , -C(═O)-NH-R k , -C(═O)-N(R k' )-R k , -SH, -S-R k , trifluoromethyl group, sulfamoyl group, carboxy group, sulfo group, cyano group, nitro group, and halogen. Each of --R k and --R k' independently represents a linear or branched alkyl group having 1 to 6 carbon atoms.
 -C-における芳香族炭化水素環基、非芳香族炭化水素環基、芳香族複素環基、非芳香族複素環基は、分子構造の直線性が高く、重合性液晶化合物(3)同士が会合しやすく液晶状態を発現しやすい点から、それぞれ独立に、無置換であるか、メチル基、メトキシ基、フッ素原子、塩素原子、臭素原子が置換していることが好ましく、無置換であることがより好ましい。 The aromatic hydrocarbon ring group, non-aromatic hydrocarbon ring group, aromatic heterocyclic group and non-aromatic heterocyclic group in -C y - are each preferably independently unsubstituted or substituted with a methyl group, a methoxy group, a fluorine atom, a chlorine atom or a bromine atom, and more preferably unsubstituted, in terms of high linearity of the molecular structure, and ease of association of the polymerizable liquid crystal compounds (3) with each other to exhibit a liquid crystal state.
 -C-における芳香族炭化水素環基、非芳香族炭化水素環基、芳香族複素環基、非芳香族複素環基が有する置換基は、同一でも異なっていてもよい。また、芳香族炭化水素環基、非芳香族炭化水素環基、芳香族複素環基、非芳香族複素環基の全部が置換されていてもよく、全部が無置換であってもよく、一部が置換されていて一部が無置換であってもよい。 The substituents possessed by the aromatic hydrocarbon ring group, non-aromatic hydrocarbon ring group, aromatic heterocyclic group and non-aromatic heterocyclic group in -C y - may be the same or different. In addition, the aromatic hydrocarbon ring group, non-aromatic hydrocarbon ring group, aromatic heterocyclic group and non-aromatic heterocyclic group may be entirely substituted, entirely unsubstituted, or partly substituted and partly unsubstituted.
 -C-としては、重合性液晶化合物(3)の分子配向性が良好となることから炭化水素環基が好ましく、フェニレン基、シクロヘキサンジイル基がより好ましい。重合性液晶化合物(3)の分子構造の直線性を高くすることができることから、-C-としては、1,4-フェニレン基、シクロヘキサン-1,4-ジイル基がさらに好ましく、1,4-フェニレン基がとりわけ好ましい。 As -C y -, a hydrocarbon ring group is preferable, and a phenylene group or a cyclohexanediyl group is more preferable, because the molecular alignment of the polymerizable liquid crystal compound (3) is improved. As -C y -, a 1,4-phenylene group or a cyclohexane-1,4-diyl group is further preferable, and a 1,4-phenylene group is particularly preferable, because the linearity of the molecular structure of the polymerizable liquid crystal compound (3) can be improved.
(-X-)
 -X-は、-C(=O)O-、-OC(=O)-、-C(=S)O-、-OC(=S)-、-C(=O)S-、-SC(=O)-、-CHCH-、-CH=CH-、-C(=O)NH-、-NHC(=O)-、-CHO-、-OCH-、-CHS-又は-SCH-を表す。このうち、重合性液晶化合物(3)の直線性や分子短軸周りの回転運動がしやすい傾向にあることから、-X-としては、π結合性の小さい、-C(=O)O-、-OC(=O)-、-C(=S)O-、-OC(=S)-、-C(=O)S-、-SC(=O)-、-CHCH-、-CHO-、-OCH-、-CHS-、-SCH-等が好ましいものとして挙げられる。これらの中でもより好ましくは、-C(=O)O-、-OC(=O)-、-CHCH-、-CHO-、-OCH-であり、さらに好ましくは、-X-は、-C(=O)O-又は-OC(=O)-である。別の態様として、-X-は、-CHCH-、-CHO-、又は-OCH-であることが好ましい。
( -X1- )
-X 1 - represents -C(=O)O-, -OC(=O)-, -C(=S)O-, -OC(=S)-, -C(=O)S-, -SC(=O)-, -CH 2 CH 2 -, -CH=CH-, -C(=O)NH-, -NHC(=O)-, -CH 2 O-, -OCH 2 -, -CH 2 S- or -SCH 2 -. Among these, -X 1 - is preferably -C(═O)O-, -OC(═O)-, -C(═S)O-, -OC(═S)-, -C(═O)S-, -SC(═O)-, -CH 2 CH 2 -, -CH 2 O-, -OCH 2 -, -CH 2 S-, -SCH 2 -, etc., which have small π bonding property, because the polymerizable liquid crystal compound (3) tends to have linearity and easy rotational motion around the molecular short axis. Among these, -C(═O)O-, -OC ( ═O)-, -CH 2 CH 2 -, -CH 2 O-, -OCH 2 -, are more preferable, and -X 1 - is still more preferably -C(═O)O- or -OC(═O)-. In another embodiment, —X 1 — is preferably —CH 2 CH 2 —, —CH 2 O—, or —OCH 2 —.
(-X-)
 -X-は、単結合、-C(=O)O-、-OC(=O)-、-C(=S)O-、-OC(=S)-、-C(=O)S-、-SC(=O)-、-CHCH-、-CH=CH-、-C(=O)NH-、-NHC(=O)-、-CHO-、-OCH-、-CHS-、又は-SCH-を表す。
( -X2- )
-X 2 - represents a single bond, -C(=O)O-, -OC(=O)-, -C(=S)O-, -OC(=S)-, -C(=O)S-, -SC(=O)-, -CH 2 CH 2 -, -CH=CH-, -C(=O)NH-, -NHC(=O)-, -CH 2 O-, -OCH 2 -, -CH 2 S-, or -SCH 2 -.
 重合性液晶化合物(3)のコアを大きくし、異方性色素膜形成用組成物から形成される異方性色素膜の二色性を大きくする観点から直線性が高い基で-C-と-C≡C-を連結することが好ましい。具体的には、-X-としては、単結合、又はπ結合性を有する-C(=O)O-、-OC(=O)-、-C(=S)O-、-OC(=S)-、-C(=O)S-、-SC(=O)-、-CH=CH-、-C(=O)NH-、-NHC(=O)-であることが好ましく、より直線性が高いことから単結合であることがさらに好ましい。 From the viewpoint of enlarging the core of the polymerizable liquid crystal compound (3) and increasing the dichroism of the anisotropic dye film formed from the anisotropic dye film-forming composition, it is preferable that -C y - and -C≡C- are linked by a group with high linearity. Specifically, -X 2 - is preferably a single bond, or -C(═O)O-, -OC(═O)-, -C(═S)O-, -OC(═S)-, -C(═O)S-, -SC(═O)-, -CH═CH-, -C(═O)NH-, or -NHC(═O)- having π-bonding properties, and is more preferably a single bond due to its higher linearity.
(-Q及び-Q
 -Q及び-Qにおける重合性基は、光、熱、および/又は放射線によって重合することが可能な部分構造を有する基であり、重合の機能を担保するために必要な官能基ないし原子団である。該重合性基は、光重合性基であることが異方性色素膜の製造の観点から好ましい。
( -Q1 and -Q2 )
The polymerizable group in -Q1 and -Q2 is a group having a partial structure capable of being polymerized by light, heat, and/or radiation, and is a functional group or atomic group necessary for ensuring the function of polymerization. From the viewpoint of producing an anisotropic dye film, the polymerizable group is preferably a photopolymerizable group.
 該重合性基としては、たとえば、アクリロイル基、メタクリロイル基、アクリロイルオキシ基、メタクリロイルオキシ基、アクリロイルアミノ基、メタクリロイルアミノ基、ビニル基、ビニルオキシ基、エチニル基、エチニルオキシ基、1,3-ブタジエニル基、1,3-ブタジエニルオキシ基、オキシラニル基、オキセタニル基、グリシジル基、グリシジルオキシ基、スチリル基、スチリルオキシ基等が挙げられ、アクリロイル基、メタクリロイル基、アクリロイルオキシ基、メタクリロイルオキシ基、アクリロイルアミノ基、メタクリロイルアミノ基、オキシラニル基、グリシジル基、グリシジルオキシ基が好ましく、アクリロイル基、メタクリロイル基、アクリロイルオキシ基、メタクリロイルオキシ基、アクリロイルアミノ基、メタクリロイルアミノ基、グリシジル基、グリシジルオキシ基がより好ましく、アクリロイルオキシ基、メタクリロイルオキシ基、グリシジルオキシ基がさらに好ましい。 The polymerizable group includes, for example, an acryloyl group, a methacryloyl group, an acryloyloxy group, a methacryloyloxy group, an acryloylamino group, a methacryloylamino group, a vinyl group, a vinyloxy group, an ethynyl group, an ethynyloxy group, a 1,3-butadienyl group, a 1,3-butadienyloxy group, an oxiranyl group, an oxetanyl group, a glycidyl group, a glycidyloxy group, a styryl group, a styryloxy group, and the like, and an acryloyl group, a methacryloyl group, , acryloyloxy group, methacryloyloxy group, acryloylamino group, methacryloylamino group, oxiranyl group, glycidyl group, and glycidyloxy group are preferred, acryloyl group, methacryloyl group, acryloyloxy group, methacryloyloxy group, acryloylamino group, methacryloylamino group, glycidyl group, and glycidyloxy group are more preferred, and acryloyloxy group, methacryloyloxy group, and glycidyloxy group are even more preferred.
(-R-及び-R-)
 -R-及び-R-における鎖状有機基は、前述の芳香族炭化水素環、非芳香族炭化水素環、芳香族複素環、非芳香族複素環等の環状構造を含まない2価の有機基である。
 このような鎖状有機基としては、-(アルキレン基)-、-O-(アルキレン基)-、-S-(アルキレン基)-、-NH-(アルキレン基)-、-N(アルキル基)-(アルキレン基)-、-OC(=O)-(アルキレン基)-、-C(=O)O-(アルキレン基)-が挙げられる。
(-R 1 - and -R 2 -)
The chain organic group in -R 1 - and -R 2 - is a divalent organic group that does not contain a cyclic structure such as the above-mentioned aromatic hydrocarbon ring, non-aromatic hydrocarbon ring, aromatic heterocycle, or non-aromatic heterocycle.
Examples of such a chain organic group include -(alkylene group)-, -O-(alkylene group)-, -S-(alkylene group)-, -NH-(alkylene group)-, -N(alkyl)-(alkylene group)-, -OC(=O)-(alkylene group)-, and -C(=O)O-(alkylene group)-.
 これらの鎖状有機基におけるアルキレン基としては、炭素数1~25の直鎖状もしくは分枝状のアルキレン基が挙げられる。アルキレン基の炭素-炭素結合は、一部が不飽和結合になっていてもよい。アルキレン基に含まれる一つ又はそれ以上のメチレン基は、-O-、-S-、-NH-、-N(R)-、-C(=O)-、-C(=O)-O-、-C(=O)-NH-、-CHF-、-CF-、-CHCl-、-CCl-によって置き換えられた(displace)構造とされていてもよい。Rは、炭素数1~6の直鎖状又は分枝状のアルキル基を表す。 Examples of the alkylene group in these chain organic groups include linear or branched alkylene groups having 1 to 25 carbon atoms. The carbon-carbon bond of the alkylene group may be partially unsaturated. One or more methylene groups contained in the alkylene group may be displaced by -O-, -S-, -NH-, -N(R m )-, -C(═O)-, -C(═O)-O-, -C(═O)-NH-, -CHF-, -CF 2 -, -CHCl-, or -CCl 2 -. R m represents a linear or branched alkyl group having 1 to 6 carbon atoms.
 これらの鎖状有機基におけるアルキレン基としては、分子直線性が高いことから、アルキレン基の炭素の一部が不飽和結合になっていてもよく、また、アルキレン基に含まれる一つ又はそれ以上のメチレン基が上述の基によって置き換えられた(displace)構造とされていてもよい、炭素数1~25の直鎖状のアルキレン基であることが好ましい。 The alkylene group in these chain organic groups is preferably a straight-chain alkylene group having 1 to 25 carbon atoms, in which some of the carbon atoms may be unsaturated, and in which one or more methylene groups contained in the alkylene group may be replaced (displaced) by the above-mentioned groups, due to their high molecular linearity.
 鎖状有機基における主鎖(鎖状有機基におけるもっとも長い鎖状部分を意味する。)の原子の数は、3~25が好ましく、5~20がより好ましく、6~20がさらに好ましい。 The number of atoms in the main chain (meaning the longest chain portion in the chain organic group) in the chain organic group is preferably 3 to 25, more preferably 5 to 20, and even more preferably 6 to 20.
 鎖状有機基としては、-(CH-CH-、-O-(CH-CH-、-(O)r1-(CHCHO)r2-(CHr3-、-(O)r1-(CHr2-(CHCHO)r3-が好ましい。これらの式中のrは、1~24の整数であり、2~24の整数が好ましく、4~19の整数がより好ましく、5~19の整数がさらに好ましい。また、これらの式中のr1、r2、r3は、それぞれ独立に、整数を表し、鎖状有機基における主鎖(鎖状有機基におけるもっとも長い鎖状部分を意味する。)の原子の数が、好ましくは3~25、より好ましくは5~20、さらに好ましくは6~20となるように適宜調整される。 As the chain organic group, -(CH 2 ) r -CH 2 -, -O-(CH 2 ) r -CH 2 -, -(O) r1 -(CH 2 CH 2 O) r2 -(CH 2 ) r3 -, -(O) r1 -(CH 2 ) r2 -(CH 2 CH 2 O) r3 - are preferred. In these formulas, r is an integer of 1 to 24, preferably an integer of 2 to 24, more preferably an integer of 4 to 19, and even more preferably an integer of 5 to 19. In addition, in these formulas, r1, r2, and r3 each independently represent an integer, and the number of atoms in the main chain (meaning the longest chain portion in the chain organic group) in the chain organic group is appropriately adjusted to be preferably 3 to 25, more preferably 5 to 20, and even more preferably 6 to 20.
 -R-及び-R-は、それぞれ独立に、-(アルキレン基)-、-O-(アルキレン基)-であることが好ましく、-(アルキレン基)-、-O-(アルキレン基)-であることがより好ましい。ある態様として、-R-及び-R-における鎖状有機基としては、-(アルキレン基)-であり、別の態様として、-O-(アルキレン基)-である。 Each of -R 1 - and -R 2 - is preferably independently -(alkylene group)- or -O-(alkylene group)-, and more preferably -(alkylene group)- or -O-(alkylene group)-. In one embodiment, the chain organic group in -R 1 - and -R 2 - is -(alkylene group)-, and in another embodiment, it is -O-(alkylene group)-.
 前記式(3B)、式(3E)のように、-X-と-R-又は-X-と-R-が結合している場合や;前記式(3B)において-A13-が単結合であるか或いは、前記式(3E)において-A11-が単結合であって、-R-もしくは-R-が、-Y-又は-Y-と結合している場合;には、-X-、-Y-もしくは-Y-と直接結合する-R-又は-R-は、-(アルキレン基)-であることが好ましい。 When -X 1 - and -R 1 - or -X 1 - and -R 2 - are bonded to each other as in the formula (3B) or (3E), or when -A 13 - in the formula (3B) is a single bond or when -A 11 - in the formula (3E) is a single bond and -R 1 - or -R 2 - is bonded to -Y 1 - or -Y 2 -, it is preferable that -R 1 - or -R 2 - which is directly bonded to -X 1 -, -Y 1 - or -Y 2 - is -(alkylene group)-.
 上記以外で、-X-、-Y-もしくは-Y-と直接結合しない-R-又は-R-は、-O-(アルキレン基)-であることが好ましい。 In addition to the above, -R 1 - or -R 2 - which is not directly bonded to -X 1 -, -Y 1 - or -Y 2 - is preferably -O-(alkylene group)-.
(-A11-、-A12-及び-A13-における2価有機基)
 -A11-、-A12-及び-A13-における2価有機基は、下記式(5)で表される基であることが好ましい。
(Divalent Organic Groups in -A 11 -, -A 12 - and -A 13 -)
The divalent organic group in -A 11 -, -A 12 - and -A 13 - is preferably a group represented by the following formula (5).
  -Q-   (5)
(式(6)中、Qは、炭化水素環基又は複素環基を表す。)
-Q3- (5)
(In formula (6), Q3 represents a hydrocarbon ring group or a heterocyclic group.)
 -Q-における炭化水素環基は、芳香族炭化水素環基と非芳香族炭化水素環基とを含む。
 芳香族炭化水素環基は、非連結芳香族炭化水素環基と連結芳香族炭化水素環基とを含む。
The hydrocarbon ring group in -Q 3 - includes an aromatic hydrocarbon ring group and a non-aromatic hydrocarbon ring group.
The aromatic hydrocarbon ring group includes an unlinked aromatic hydrocarbon ring group and a linked aromatic hydrocarbon ring group.
 非連結芳香族炭化水素環基は、単環もしくは縮合した芳香族炭化水素環の2価基であり、その炭素数は6~20であることが適切なコアの大きさにより分子配向性が良好となる理由で好ましい。非連結芳香族炭化水素環基の炭素数は6~15がより好ましい。芳香族炭化水素環としては、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、ペリレン環、テトラセン環、ピレン環、ベンズピレン環、クリセン環、トリフェニレン環、アセナフテン環、フルオランテン環、フルオレン環等が挙げられる。 The non-linked aromatic hydrocarbon ring group is a divalent group of a monocyclic or condensed aromatic hydrocarbon ring, and preferably has 6 to 20 carbon atoms because the appropriate core size provides good molecular orientation. The non-linked aromatic hydrocarbon ring group more preferably has 6 to 15 carbon atoms. Examples of aromatic hydrocarbon rings include a benzene ring, a naphthalene ring, an anthracene ring, a phenanthrene ring, a perylene ring, a tetracene ring, a pyrene ring, a benzpyrene ring, a chrysene ring, a triphenylene ring, an acenaphthene ring, a fluoranthene ring, and a fluorene ring.
 連結芳香族炭化水素環基は、単環もしくは縮合した芳香族炭化水素環の複数が単結合で結合し、環を構成する原子上に結合手を有する2価基である。単環もしくは縮合環の炭素数は6~20であることが、適切なコアの大きさにより配向性が良好となる理由で好ましい。連結芳香族炭化水素環基の炭素数は6~15がより好ましい。連結芳香族炭化水素環基としては、たとえば、第1の炭素数6~20の単環もしくは縮合した芳香族炭化水素環と第2の炭素数6~20の単環もしくは縮合した芳香族炭化水素環とが単結合で結合し、第1の炭素数6~20の単環もしくは縮合した芳香族炭化水素環の環を構成する原子上に第1の結合手を有し、第2の炭素数6~20の単環もしくは縮合した芳香族炭化水素環の環を構成する原子上に第2の結合手を有する2価基が挙げられる。連結芳香族炭化水素環基としては、具体的には、ビフェニル-4,4’-ジイル基が挙げられる。  The linked aromatic hydrocarbon ring group is a divalent group in which a plurality of monocyclic or condensed aromatic hydrocarbon rings are bonded by single bonds and have a bond on an atom constituting the ring. The number of carbon atoms in the monocyclic or condensed ring is preferably 6 to 20 because the appropriate core size provides good orientation. The number of carbon atoms in the linked aromatic hydrocarbon ring group is more preferably 6 to 15. Examples of the linked aromatic hydrocarbon ring group include a divalent group in which a first monocyclic or condensed aromatic hydrocarbon ring having 6 to 20 carbon atoms is bonded by a single bond to a second monocyclic or condensed aromatic hydrocarbon ring having 6 to 20 carbon atoms, which has a first bond on an atom constituting the ring of the first monocyclic or condensed aromatic hydrocarbon ring having 6 to 20 carbon atoms, and a second bond on an atom constituting the ring of the second monocyclic or condensed aromatic hydrocarbon ring having 6 to 20 carbon atoms. Specific examples of the linked aromatic hydrocarbon ring group include biphenyl-4,4'-diyl groups.
 芳香族炭化水素環基としては、非連結芳香族炭化水素環基が液晶化合物の間に働く分子間相互作用を最適とすることで分子配向性が良好となる理由で好ましい。
 これらのうち、芳香族炭化水素環基としては、ベンゼン環の2価基、ナフタレン環の2価基が好ましく、ベンゼン環の2価基(フェニレン基)がより好ましい。フェニレン基としては、1,4-フェニレン基が好ましい。-Q-がこれらの基であることで液晶分子の直線性が高まり、分子配向性向上の効果が得られる傾向にある。
As the aromatic hydrocarbon ring group, a non-linked aromatic hydrocarbon ring group is preferable because it optimizes the intermolecular interaction acting between liquid crystal compounds, thereby improving the molecular alignment.
Of these, the aromatic hydrocarbon ring group is preferably a divalent group of a benzene ring or a divalent group of a naphthalene ring, and more preferably a divalent group of a benzene ring (phenylene group). As the phenylene group, a 1,4-phenylene group is preferable. When -Q 3 - is one of these groups, the linearity of the liquid crystal molecules is increased, and the effect of improving molecular alignment tends to be obtained.
 非芳香族炭化水素環基は、非連結非芳香族炭化水素環基と連結非芳香族炭化水素環基とを含む。 Non-aromatic hydrocarbon ring groups include unlinked non-aromatic hydrocarbon ring groups and linked non-aromatic hydrocarbon ring groups.
 非連結非芳香族炭化水素環基は、単環もしくは縮合した非芳香族炭化水素環の2価基であり、その炭素数は3~20であることが、適切なコアの大きさにより分子配向性が良好となる理由で好ましい。非連結非芳香族炭化水素環基の炭素数は3~15がより好ましい。非芳香族炭化水素環としては、シクロプロパン環、シクロブタン環、シクロペンタン環、シクロヘキサン環、シクロヘプタン環、シクロオクタン環、シクロヘキセン環、ノルボルナン環、ボルナン環、アダマンタン環、テトラヒドロナフタレン環、ビシクロ[2.2.2]オクタン環等が挙げられる。 The non-linked non-aromatic hydrocarbon ring group is a divalent group of a monocyclic or condensed non-aromatic hydrocarbon ring, and preferably has 3 to 20 carbon atoms because the appropriate core size provides good molecular orientation. The non-linked non-aromatic hydrocarbon ring group more preferably has 3 to 15 carbon atoms. Examples of non-aromatic hydrocarbon rings include a cyclopropane ring, a cyclobutane ring, a cyclopentane ring, a cyclohexane ring, a cycloheptane ring, a cyclooctane ring, a cyclohexene ring, a norbornane ring, a bornane ring, an adamantane ring, a tetrahydronaphthalene ring, and a bicyclo[2.2.2]octane ring.
 非連結非芳香族炭化水素環基は、非芳香族炭化水素環の環を構成する原子間結合として不飽和結合を有さない脂環式炭化水素環基と、非芳香族炭化水素環の環を構成する原子間結合として不飽和結合を有する不飽和非芳香族炭化水素環基とを含む。非連結非芳香族炭化水素環基としては、生産性の観点から脂環式炭化水素環基が好ましい。  The non-linked non-aromatic hydrocarbon ring group includes an alicyclic hydrocarbon ring group that does not have an unsaturated bond between the atoms that constitute the ring of the non-aromatic hydrocarbon ring, and an unsaturated non-aromatic hydrocarbon ring group that has an unsaturated bond between the atoms that constitute the ring of the non-aromatic hydrocarbon ring. From the viewpoint of productivity, the non-linked non-aromatic hydrocarbon ring group is preferably an alicyclic hydrocarbon ring group.
 連結非芳香族炭化水素環基は、単環もしくは縮合した非芳香族炭化水素環の複数が単結合で結合し、環を構成する原子上に結合手を有する2価基;あるいは、単環の芳香族炭化水素環、縮合した芳香族炭化水素環、単環の非芳香族炭化水素環、および縮合した非芳香族炭化水素環からなる群より選択される1つ以上の環と、単環もしくは縮合した非芳香族炭化水素環とが単結合で結合し、環を構成する原子上に結合手を有する2価基である。
 単環もしくは縮合環の炭素数は適切なコアの大きさにより分子配向性が良好となる理由で3~20であることが好ましい。
The linked non-aromatic hydrocarbon ring group is a divalent group in which a plurality of monocyclic or condensed non-aromatic hydrocarbon rings are bonded together with single bonds and has a bond on an atom constituting the ring; or a divalent group in which one or more rings selected from the group consisting of monocyclic aromatic hydrocarbon rings, condensed aromatic hydrocarbon rings, monocyclic non-aromatic hydrocarbon rings, and condensed non-aromatic hydrocarbon rings are bonded together with a monocyclic or condensed non-aromatic hydrocarbon ring with a single bond and has a bond on an atom constituting the ring.
The number of carbon atoms in the single ring or condensed ring is preferably 3 to 20 because an appropriate core size provides good molecular orientation.
 連結非芳香族炭化水素環基としてはたとえば、第1の炭素数3~20の単環もしくは縮合した非芳香族炭化水素環と第2の炭素数3~20の単環もしくは縮合した非芳香族炭化水素環とが単結合で結合し、第1の炭素数3~20の単環もしくは縮合した非芳香族炭化水素環の環を構成する原子上に第1の結合手を有し、第2の炭素数3~20の単環もしくは縮合した非芳香族炭化水素環の環を構成する原子上に第2の結合手を有する2価基が挙げられる。さらに、たとえば、炭素数3~20の単環もしくは縮合した芳香族炭化水素環と炭素数3~20の単環もしくは縮合した非芳香族炭化水素環とが単結合で結合し、炭素数3~20の単環もしくは縮合した芳香族炭化水素環の環を構成する原子上に第1の結合手を有し、炭素数3~20の単環もしくは縮合した非芳香族炭化水素環の環を構成する原子上に第2の結合手を有する2価基が挙げられる。 Examples of the linked non-aromatic hydrocarbon ring group include a divalent group in which a first monocyclic or condensed non-aromatic hydrocarbon ring having 3 to 20 carbon atoms is bonded to a second monocyclic or condensed non-aromatic hydrocarbon ring having 3 to 20 carbon atoms by a single bond, the divalent group having a first bond on an atom constituting the first monocyclic or condensed non-aromatic hydrocarbon ring having 3 to 20 carbon atoms, and a second bond on an atom constituting the second monocyclic or condensed non-aromatic hydrocarbon ring having 3 to 20 carbon atoms. Further examples include a divalent group in which a monocyclic or condensed aromatic hydrocarbon ring having 3 to 20 carbon atoms is bonded to a monocyclic or condensed non-aromatic hydrocarbon ring having 3 to 20 carbon atoms by a single bond, the divalent group having a first bond on an atom constituting the monocyclic or condensed aromatic hydrocarbon ring having 3 to 20 carbon atoms, and a second bond on an atom constituting the monocyclic or condensed non-aromatic hydrocarbon ring having 3 to 20 carbon atoms.
 連結非芳香族炭化水素環基としては、具体的には、ビス(シクロヘキサン)-4,4’-ジイル基、1-シクロヘキシルベンゼン-4,4’-ジイル基が挙げられる。 Specific examples of linking non-aromatic hydrocarbon ring groups include bis(cyclohexane)-4,4'-diyl and 1-cyclohexylbenzene-4,4'-diyl groups.
 非芳香族炭化水素環基としては、液晶化合物の間に働く分子間相互作用を最適とすることで分子配向性が良好となる理由で非連結非芳香族炭化水素環基が好ましい。 As the non-aromatic hydrocarbon ring group, a non-linked non-aromatic hydrocarbon ring group is preferred because it optimizes the intermolecular interactions that act between liquid crystal compounds, thereby improving molecular orientation.
 非連結非芳香族炭化水素環基としては、シクロヘキサンの2価基(シクロヘキサンジイル基)が好ましい。シクロヘキサンジイル基としては、シクロヘキサン-1,4-ジイル基が好ましい。 As an unlinked non-aromatic hydrocarbon ring group, a divalent group of cyclohexane (cyclohexanediyl group) is preferred. As a cyclohexanediyl group, a cyclohexane-1,4-diyl group is preferred.
 -Q-における複素環基は、芳香族複素環基と非芳香族複素環基とを含む。 The heterocyclic group in -Q 3 - includes an aromatic heterocyclic group and a non-aromatic heterocyclic group.
 芳香族複素環基は、非連結芳香族複素環基と連結芳香族複素環基とを含む。 Aromatic heterocyclic groups include unlinked aromatic heterocyclic groups and linked aromatic heterocyclic groups.
 非連結芳香族複素環基は、単環もしくは縮合した芳香族複素環の2価基であり、その炭素数は4~20であることが、適切なコアの大きさにより分子配向性が良好となる理由で好ましい。非連結芳香族複素環基の炭素数は4~15がより好ましい。 The non-linked aromatic heterocyclic group is a divalent group of a monocyclic or condensed aromatic heterocyclic ring, and preferably has 4 to 20 carbon atoms because the appropriate core size provides good molecular orientation. The non-linked aromatic heterocyclic group more preferably has 4 to 15 carbon atoms.
 芳香族複素環としては、フラン環、ベンゾフラン環、チオフェン環、ベンゾチオフェン環、ピロール環、ピラゾール環、イミダゾール環、チアゾール環、オキサジアゾール環、インドール環、カルバゾール環、ピロロイミダゾール環、ピロロピラゾール環、ピロロピロール環、チエノピロール環、チエノチオフェン環、フロピロール環、フロフラン環、チエノフラン環、チエノチアゾール環、ベンゾイソオキサゾール環、ベンゾイソチアゾール環、ベンゾイミダゾール環、ピリジン環、ピラジン環、ピリダジン環、ピリミジン環、トリアジン環、キノリン環、イソキノリン環、シノリン環、キノキサリン環、フェナントリジン環、キナゾリン環、キナゾリノン環、アズレン環等が挙げられる。 Aromatic heterocycles include a furan ring, a benzofuran ring, a thiophene ring, a benzothiophene ring, a pyrrole ring, a pyrazole ring, an imidazole ring, a thiazole ring, an oxadiazole ring, an indole ring, a carbazole ring, a pyrroloimidazole ring, a pyrrolopyrazole ring, a pyrrolopyrrole ring, a thienopyrrole ring, a thienothiophene ring, a furopyrrole ring, a furofuran ring, a thienofuran ring, a thienothiazole ring, a benzisoxazole ring, a benzisothiazole ring, a benzimidazole ring, a pyridine ring, a pyrazine ring, a pyridazine ring, a pyrimidine ring, a triazine ring, a quinoline ring, an isoquinoline ring, a cinnoline ring, a quinoxaline ring, a phenanthridine ring, a quinazoline ring, a quinazolinone ring, and an azulene ring.
 連結芳香族複素環基は、単環もしくは縮合した芳香族複素環の複数が単結合で結合し、環を構成する原子上に結合手を有する2価基である。単環もしくは縮合環の炭素数は4~20であることが、適切なコアの大きさにより分子配向性が良好となる理由で好ましい。連結芳香族複素環基の炭素数は4~15がより好ましい。 The linked aromatic heterocyclic group is a divalent group in which multiple monocyclic or condensed aromatic heterocyclic rings are bonded with single bonds and have bonds on the atoms that make up the ring. The number of carbon atoms in the monocyclic or condensed ring is preferably 4 to 20, because the appropriate core size provides good molecular orientation. The number of carbon atoms in the linked aromatic heterocyclic group is more preferably 4 to 15.
 連結芳香族複素環基としては、たとえば、第1の炭素数4~20の単環もしくは縮合した芳香族複素環と第2の炭素数4~20の単環もしくは縮合した芳香族複素環とが単結合で結合し、第1の炭素数4~20の単環もしくは縮合した芳香族複素環の環を構成する原子上に第1の結合手を有し、第2の炭素数4~20の単環もしくは縮合した芳香族複素環の環を構成する原子上に第2の結合手を有する2価基が挙げられる。 Examples of linked aromatic heterocyclic groups include divalent groups in which a first monocyclic or condensed aromatic heterocyclic ring having 4 to 20 carbon atoms is bonded to a second monocyclic or condensed aromatic heterocyclic ring having 4 to 20 carbon atoms by a single bond, the divalent group having a first bond on an atom constituting the ring of the first monocyclic or condensed aromatic heterocyclic ring having 4 to 20 carbon atoms, and a second bond on an atom constituting the ring of the second monocyclic or condensed aromatic heterocyclic ring having 4 to 20 carbon atoms.
 非芳香族複素環基は、非連結非芳香族複素環基と連結非芳香族複素環基とを含む。 Non-aromatic heterocyclic groups include unlinked non-aromatic heterocyclic groups and linked non-aromatic heterocyclic groups.
 非連結非芳香族複素環基は、単環もしくは縮合した非芳香族複素環の2価基であり、その炭素数は4~20であることが、適切なコアの大きさにより分子配向性が良好となる理由で好ましい。非連結非芳香族複素環基の炭素数は4~15がより好ましい。 The non-linked non-aromatic heterocyclic group is a divalent group of a monocyclic or condensed non-aromatic heterocyclic ring, and preferably has 4 to 20 carbon atoms because the appropriate core size provides good molecular orientation. The non-linked non-aromatic heterocyclic group more preferably has 4 to 15 carbon atoms.
 炭素数4~20の単環もしくは縮合した非芳香族複素環の2価基の非芳香族複素環としては、テトラヒドロフラン環、テトラヒドロピラン環、ジオキサン環、テトラヒドロチオフェン環、テトラヒドロチオピラン環、ピロリジン環、ピペリジン環、ジヒドロピリジン環、ピペラジン環、テトラヒドロチアゾール環、テトラヒドロオキサゾール環、オクタヒドロキノリン環、テトラヒドロキノリン環、オクタヒドロキナゾリン環、テトラヒドロキナゾリン環、テトラヒドロイミダゾール環、テトラヒドロベンゾイミダゾール環、キヌクリジン環等が挙げられる。 Examples of non-aromatic heterocycles that are divalent groups of monocyclic or condensed non-aromatic heterocycles having 4 to 20 carbon atoms include a tetrahydrofuran ring, a tetrahydropyran ring, a dioxane ring, a tetrahydrothiophene ring, a tetrahydrothiopyran ring, a pyrrolidine ring, a piperidine ring, a dihydropyridine ring, a piperazine ring, a tetrahydrothiazole ring, a tetrahydrooxazole ring, an octahydroquinoline ring, a tetrahydroquinoline ring, an octahydroquinazoline ring, a tetrahydroquinazoline ring, a tetrahydroimidazole ring, a tetrahydrobenzimidazole ring, and a quinuclidine ring.
 連結非芳香族複素環基は、単環もしくは縮合した非芳香族複素環の複数が単結合で結合し、環を構成する原子上に結合手を有する2価基である。単環もしくは縮合環の炭素数は4~20であることが、適切なコアの大きさにより分子配向性が良好となる理由で好ましい。連結非芳香族複素環基の炭素数は4~15がより好ましい。  A linked non-aromatic heterocyclic group is a divalent group in which multiple monocyclic or condensed non-aromatic heterocyclic rings are bonded with single bonds and have bonds on the atoms that make up the ring. The number of carbon atoms in the monocyclic or condensed ring is preferably 4 to 20, because the appropriate core size provides good molecular orientation. The number of carbon atoms in the linked non-aromatic heterocyclic group is more preferably 4 to 15.
 連結芳香族複素環基としては、たとえば、第1の炭素数4~20の単環もしくは縮合した非芳香族複素環と第2の炭素数4~20の単環もしくは縮合した非芳香族複素環とが単結合で結合し、第1の炭素数4~20の単環もしくは縮合した非芳香族複素環の環を構成する原子上に第1の結合手を有し、第2の炭素数4~20の単環もしくは縮合した非芳香族複素環の環を構成する原子上に第2の結合手を有する2価基が挙げられる。 Examples of linked aromatic heterocyclic groups include divalent groups in which a first monocyclic or condensed non-aromatic heterocyclic ring having 4 to 20 carbon atoms is bonded to a second monocyclic or condensed non-aromatic heterocyclic ring having 4 to 20 carbon atoms by a single bond, the divalent group having a first bond on an atom constituting the ring of the first monocyclic or condensed non-aromatic heterocyclic ring having 4 to 20 carbon atoms, and a second bond on an atom constituting the ring of the second monocyclic or condensed non-aromatic heterocyclic ring having 4 to 20 carbon atoms.
 -Q-における芳香族炭化水素環基、非芳香族炭化水素環基、芳香族複素環基、非芳香族複素環基は、それぞれ、-R、-OH、-O-R、-O-C(=O)-R、-NH、-NH-R、-N(Rn’)-R、-C(=O)-R、-C(=O)-O-R、-C(=O)-NH、-C(=O)-NH-R、-C(=O)-N(Rn’)-R、-SH、-S-R、トリフルオロメチル基、スルファモイル基、カルボキシ基、スルホ基、シアノ基、ニトロ基、およびハロゲンからなる群より選択される1以上の基で置換されていてもよい。-Rおよび-Rn’は、それぞれ独立に、炭素数1~6の直鎖状もしくは分枝状のアルキル基を表す。 The aromatic hydrocarbon ring group, non-aromatic hydrocarbon ring group, aromatic heterocyclic group and non-aromatic heterocyclic group in -Q 3 - may each be substituted with one or more groups selected from the group consisting of -R n , -OH, -O-R n , -O-C(═O)-R n , -NH 2 , -NH-R n , -N(R n' )-R n , -C(═O)-R n , -C( ═O )-O-R n , -C(═O)-NH 2 , -C(═O)-NH-R n, -C(═O)-N(R n' )-R n , -SH, -S-R n , trifluoromethyl group, sulfamoyl group, carboxy group, sulfo group, cyano group, nitro group and halogen. Each of --R n and --R n' independently represents a linear or branched alkyl group having 1 to 6 carbon atoms.
 -Q-における芳香族炭化水素環基、非芳香族炭化水素環基、芳香族複素環基、非芳香族複素環基は、分子構造の直線性が高く、重合性液晶化合物(3)同士が会合しやすく液晶状態を発現しやすい点から、それぞれ独立に、無置換であるか、メチル基、メトキシ基、フッ素原子、塩素原子、臭素原子が置換していることが好ましく、無置換であることがより好ましい。 The aromatic hydrocarbon ring group, non-aromatic hydrocarbon ring group, aromatic heterocyclic group and non-aromatic heterocyclic group in -Q 3 - are each preferably independently unsubstituted or substituted with a methyl group, a methoxy group, a fluorine atom, a chlorine atom or a bromine atom, and more preferably unsubstituted, in terms of high linearity of the molecular structure, and ease of association of the polymerizable liquid crystal compounds (3) with each other to exhibit a liquid crystal state.
 -Q-における芳香族炭化水素環基、非芳香族炭化水素環基、芳香族複素環基、非芳香族複素環基が有する置換基は、同一でも異なっていてもよく、また、芳香族炭化水素環基、非芳香族炭化水素環基、芳香族複素環基、非芳香族複素環基の全部が置換されていてもよく、全部が無置換であってもよく、一部が置換されていて一部が無置換であってもよい。 The substituents possessed by the aromatic hydrocarbon ring group, non-aromatic hydrocarbon ring group, aromatic heterocyclic group and non-aromatic heterocyclic group in -Q 3 - may be the same or different, and the aromatic hydrocarbon ring group, non-aromatic hydrocarbon ring group, aromatic heterocyclic group and non-aromatic heterocyclic group may be entirely substituted, entirely unsubstituted, or partially substituted and partially unsubstituted.
 -A11-、-A12-及び-A13-における2価有機基が有する置換基は、同一でも異なっていてもよく、-A11-、-A12-及び-A13-における2価有機基の全部が置換されていてもよく、全部が無置換であってもよく、一部が置換されていて一部が無置換であってもよい。 The substituents possessed by the divalent organic groups in -A 11 -, -A 12 -, and -A 13 - may be the same or different, and all of the divalent organic groups in -A 11 -, -A 12 -, and -A 13 - may be substituted, all of them may be unsubstituted, or some of them may be substituted and some of them may be unsubstituted.
 -Q-としては、炭化水素環基が好ましく、フェニレン基、シクロヘキサンジイル基がより好ましい。重合性液晶化合物(3)の分子構造の直線性を高くすることができることから、-Q-としては、1,4-フェニレン基、シクロヘキサン-1,4-ジイル基がさらに好ましい。 -Q 3 - is preferably a hydrocarbon ring group, more preferably a phenylene group or a cyclohexanediyl group, and further preferably a 1,4-phenylene group or a cyclohexane-1,4-diyl group, since the linearity of the molecular structure of the polymerizable liquid crystal compound (3) can be increased.
 -A11-、-A12-及び-A13-の2価有機基としては、-Q-が炭化水素環基であること、すなわち、2価有機基として炭化水素環基であることが好ましい。2価有機基としては、フェニレン基、シクロヘキサンジイル基がより好ましく、重合性液晶化合物(3)の分子構造の直線性を高くすることができることから、1,4-フェニレン基、シクロヘキサン-1,4-ジイル基がさらに好ましい。 As the divalent organic group of -A 11 -, -A 12 - and -A 13 -, -Q 3 - is preferably a hydrocarbon ring group, i.e., the divalent organic group is preferably a hydrocarbon ring group. As the divalent organic group, a phenylene group or a cyclohexanediyl group is more preferable, and a 1,4-phenylene group or a cyclohexane-1,4-diyl group is even more preferable because the linearity of the molecular structure of the polymerizable liquid crystal compound (3) can be increased.
 重合性液晶化合物(3)としては、-A11-、-A12-及び-A13-のうち、一つが、式(4)で表される部分構造であり、それ以外の二つが、それぞれ独立に、2価有機基であることが好ましい。また、-A11-、-A12-及び-A13-のうち、式(4)で表される部分構造の-C-が炭化水素環基であることが好ましく、2価有機基が炭化水素環基であることが特に好ましい。さらに、該炭化水素環基が、1,4-フェニレン基又はシクロヘキサン-1,4-ジイル基であることが好ましい。また、-A11-及び-A13-の一方が、シクロヘキサン-1,4-ジイル基であることが好ましい。 In the polymerizable liquid crystal compound (3), it is preferable that one of -A 11 -, -A 12 -, and -A 13 - is a partial structure represented by formula (4), and the other two are each independently a divalent organic group. Furthermore, among -A 11 -, -A 12 -, and -A 13 -, it is preferable that -C y - of the partial structure represented by formula (4) is a hydrocarbon ring group, and it is particularly preferable that the divalent organic group is a hydrocarbon ring group. Furthermore, it is preferable that the hydrocarbon ring group is a 1,4-phenylene group or a cyclohexane-1,4-diyl group. Furthermore, it is preferable that one of -A 11 - and -A 13 - is a cyclohexane-1,4-diyl group.
 -A11-及び-A13-のうち、一つが、式(4)で表される部分構造であり、それ以外の一つ及び-A12-が2価有機基であることがより好ましい。この場合、-A11-及び-A13-のうち、2価有機基である一方は、シクロヘキサン-1,4-ジイル基であることが好ましく、-A12-が1,4-フェニレン基であることが特に好ましい。 It is more preferable that one of -A 11 - and -A 13 - is a partial structure represented by formula (4), and the remaining one and -A 12 - are divalent organic groups. In this case, it is preferable that one of -A 11 - and -A 13 - which is a divalent organic group is a cyclohexane-1,4-diyl group, and it is particularly preferable that -A 12 - is a 1,4-phenylene group.
(-Y-及び-Y-)
 -Y-及び-Y-は、それぞれ独立に、単結合、-C(=O)O-、-OC(=O)-、-C(=S)O-、-OC(=S)-、-C(=O)S-、-SC(=O)-、-CHCH-、-CH=CH-、-C≡C-、-C(=O)NH-、-NHC(=O)-、-CHO-、-OCH-、-CHS-、又は-SCH-を表す。重合性液晶化合物(3)の直線性や分子短軸周りの回転運動がしやすい傾向にあることから、-Y-及び-Y-としては、それぞれ独立に、π結合性の小さい、単結合、-C(=O)O-、-OC(=O)-、-C(=S)O-、-OC(=S)-、-C(=O)S-、-SC(=O)-、-CHCH-、-CH=CH-、-C(=O)NH-、-NHC(=O)-、-CHO-、-OCH-、-CHS-、又は-SCH-が好ましく、単結合、-C(=O)O-、-OC(=O)-、-CHCH-、-CHO-、-OCH-がより好ましい。
(-Y 1 - and -Y 2 -)
Each of -Y 1 - and -Y 2 - independently represents a single bond, -C(=O)O-, -OC(=O)-, -C(=S)O-, -OC(=S)-, -C(=O)S-, -SC(=O)-, -CH 2 CH 2 -, -CH=CH-, -C≡C-, -C(=O)NH-, -NHC(=O)-, -CH 2 O-, -OCH 2 -, -CH 2 S-, or -SCH 2 -. Since the polymerizable liquid crystal compound (3) tends to have linearity and easy rotational motion around the molecular short axis, -Y 1 - and -Y 2 - are each independently preferably a single bond, -C(=O)O-, -OC(=O)-, -C(=S)O-, -OC(=S)-, -C(=O)S-, -SC(=O)-, -CH 2 CH 2 -, -CH=CH-, -C(=O)NH-, -NHC(=O)-, -CH 2 O-, -OCH 2 -, -CH 2 S- or -SCH 2 -, which have small π-bonding property, and more preferably a single bond, -C(=O)O-, -OC(=O)-, -CH 2 CH 2 -, -CH 2 O- or -OCH 2 -.
 前記式(3A)、式(3C)、式(3D)、式(3F)のように、-X-と-Y-又は-X-と-Y-が結合している場合には、-X-と結合する-Y-又は-X-と結合する-Y-は単結合であることが好ましい。-X-と-Y-及び-Y-の他方は、-C(=O)O-又は-OC(=O)-であることが好ましい。 When -X 1 - and -Y 1 - or -X 1 - and -Y 2 - are bonded to each other as in the formulae (3A), (3C), (3D) and (3F), -Y 1 - bonded to -X 1 - or -Y 2 - bonded to -X 1 - is preferably a single bond. The other of -X 1 -, -Y 1 - and -Y 2 - is preferably -C(═O)O- or -OC(═O)-.
 前記式(3B)、式(3E)のように、-X-が-Y-及び-Y-のいずれとも結合していない場合には、-X-は、-CHCH-、-CHO-、又は-OCH-であることが好ましく、-Y-及び-Y-はいずれも、-C(=O)O-又は-OC(=O)-であることが好ましい。 When -X 1 - is not bonded to either -Y 1 - or -Y 2 - as in the formula (3B) or (3E), -X 1 - is preferably -CH 2 CH 2 -, -CH 2 O-, or -OCH 2 -, and both -Y 1 - and -Y 2 - are preferably -C(=O)O- or -OC(=O)-.
(k)
 kは1又は2である。ある態様としては、kは1であることが好ましい。別の態様としては、kは2であることが好ましい。
 kが2である場合、それぞれの-Y-は互いに同一でも異なっていてもよく、それぞれの-A13-は互いに同一でも異なっていてもよい。
(k)
k is 1 or 2. In one embodiment, k is preferably 1. In another embodiment, k is preferably 2.
When k is 2, each -Y 2 - may be the same or different, and each -A 13 - may be the same or different.
(好適構造)
 重合性液晶化合物(3)としては、前記式(3A)、(3B)、(3E)又は(3F)で表される化合物であることが液晶化合物の間に働く分子間相互作用を最適とし、かつ適切なコアの大きさとなり分子配向性が良好となる理由で好ましい。
(Preferred Structure)
As the polymerizable liquid crystal compound (3), a compound represented by the above formula (3A), (3B), (3E) or (3F) is preferable because it optimizes the intermolecular interaction acting between the liquid crystal compounds and has an appropriate core size, resulting in good molecular orientation.
 また、本発明で用いる重合性液晶化合物は、良好な分子配向性を得られる傾向があることから、低分子重合性液晶化合物であることが好ましく、特に共重合構造を有さない低分子重合性液晶化合物であることが好ましい。 In addition, the polymerizable liquid crystal compound used in the present invention is preferably a low molecular weight polymerizable liquid crystal compound, since it tends to provide good molecular orientation, and is particularly preferably a low molecular weight polymerizable liquid crystal compound that does not have a copolymer structure.
 低分子重合性液晶化合物における分子量としては2000以下であることが好ましく、1500以下がより好ましく、1000以下がさらに好ましい。下限は特に限定されないが、400以上が好ましく、500以上がより好ましい。分子量範囲としては、400~2000が好ましく、400~1500がより好ましく、特に500~1000が好ましい。重合性液晶化合物の分子量は、重合性液晶化合物分子に含まれる原子量の総和である。 The molecular weight of the low molecular weight polymerizable liquid crystal compound is preferably 2000 or less, more preferably 1500 or less, and even more preferably 1000 or less. There is no particular lower limit, but 400 or more is preferable, and 500 or more is more preferable. The molecular weight range is preferably 400 to 2000, more preferably 400 to 1500, and particularly preferably 500 to 1000. The molecular weight of the polymerizable liquid crystal compound is the sum of the atomic weights contained in the polymerizable liquid crystal compound molecule.
(重合性液晶化合物の具体例)
 本発明の組成物に含まれる重合性液晶化合物として、具体的には、以下に記載の重合性液晶化合物が挙げられるが、これらに限定されるものではない。以下の例示式中、C13は、n-ヘキシル基を、C11は、n-ペンチル基を意味する。
(Specific Examples of Polymerizable Liquid Crystal Compounds)
Specific examples of the polymerizable liquid crystal compound contained in the composition of the present invention include, but are not limited to, the polymerizable liquid crystal compounds described below. In the following exemplary formulas, C 6 H 13 represents an n-hexyl group, and C 5 H 11 represents an n-pentyl group.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
(液晶化合物の含有量)
 本発明の組成物に含有される液晶化合物は、重合性液晶化合物(3)からなることが好ましい。本発明の組成物には、重合性液晶化合物の1種のみが単独で含まれていてもよく、2種以上が任意の組み合わせおよび比率で含まれていてもよい。
(Liquid Crystal Compound Content)
The liquid crystal compound contained in the composition of the present invention is preferably a polymerizable liquid crystal compound (3). The composition of the present invention may contain only one type of polymerizable liquid crystal compound alone, or may contain two or more types in any combination and ratio.
 本発明の組成物における液晶化合物の含有量(2種以上の液晶化合物を併用する場合は、それぞれの含有量の総和)は、組成物の固形分(100質量部)に対して、50質量部以上が好ましく、55質量部以上がより好ましく、99質量部以下が好ましく、98質量部以下がより好ましい。組成物の液晶化合物の含有量が上記下限以上上限以下であれば液晶分子の配向性が高くなる傾向にある。 The content of the liquid crystal compound in the composition of the present invention (when two or more liquid crystal compounds are used in combination, the total content of each compound) is preferably 50 parts by mass or more, more preferably 55 parts by mass or more, and preferably 99 parts by mass or less, and more preferably 98 parts by mass or less, relative to the solid content (100 parts by mass) of the composition. If the content of the liquid crystal compound in the composition is between the above lower limit and the above upper limit, the alignment of the liquid crystal molecules tends to be high.
 本発明の組成物は、重合性液晶化合物(3)以外の他の重合性又は非重合性の液晶化合物の1種又は2種以上を含むものであってもよいが、重合性液晶化合物(3)を用いることによる本発明の効果をより一層有効に得る観点から、本発明の組成物に含まれる液晶化合物の総量100質量%中の重合性液晶化合物(3)の割合は、5質量%以上であることが好ましく、10質量%以上であることがより好ましく、特に15~100質量%であることが好ましい。 The composition of the present invention may contain one or more polymerizable or non-polymerizable liquid crystal compounds other than the polymerizable liquid crystal compound (3). However, from the viewpoint of obtaining the effect of the present invention more effectively by using the polymerizable liquid crystal compound (3), the proportion of the polymerizable liquid crystal compound (3) in the total amount of the liquid crystal compounds contained in the composition of the present invention (100% by mass) is preferably 5% by mass or more, more preferably 10% by mass or more, and particularly preferably 15 to 100% by mass.
(等方相出現温度)
 本発明の組成物に含有される重合性液晶化合物は、プロセスの観点から、その等方相出現温度が、160℃以下であることが好ましく、140℃以下がより好ましく、115℃以下がさらに好ましく、110℃以下がよりさらに好ましく、105℃以下が特に好ましい。
 ここで等方相出現温度とは、液晶から液体への相転移温度および液体から液晶への相転移温度を意味する。本発明においては、これらの相転移温度の少なくとも一方が上記上限以下であることが好ましく、これらの相転移温度の両方が上記上限以下であることがより好ましい。
(Isotropic phase appearance temperature)
From the viewpoint of processing, the polymerizable liquid crystal compound contained in the composition of the present invention preferably has an isotropic phase appearance temperature of 160° C. or lower, more preferably 140° C. or lower, even more preferably 115° C. or lower, even more preferably 110° C. or lower, and particularly preferably 105° C. or lower.
Here, the isotropic phase appearance temperature means the phase transition temperature from liquid crystal to liquid and the phase transition temperature from liquid to liquid crystal. In the present invention, it is preferable that at least one of these phase transition temperatures is equal to or lower than the above upper limit, and it is more preferable that both of these phase transition temperatures are equal to or lower than the above upper limit.
(重合性液晶化合物の製造方法)
 本発明の組成物に含有される重合性液晶化合物は、アルキル化反応、エステル化反応、アミド化反応、エーテル化反応、イプソ置換反応、金属触媒を用いたカップリング反応等の公知の化学反応を組み合わせることにより製造することができる。
 たとえば、本発明の組成物に含有される重合性液晶化合物は、後掲の実施例に記載の方法や、「液晶便覧」(丸善株式会社、平成12年10月30日発行)の449~468ページに記載の方法にしたがって合成することができる。
(Method for producing polymerizable liquid crystal compound)
The polymerizable liquid crystal compound contained in the composition of the present invention can be produced by combining known chemical reactions such as an alkylation reaction, an esterification reaction, an amidation reaction, an etherification reaction, an ipso substitution reaction, and a coupling reaction using a metal catalyst.
For example, the polymerizable liquid crystal compound contained in the composition of the present invention can be synthesized according to the method described in the Examples below or the method described on pages 449 to 468 of "Liquid Crystal Handbook" (Maruzen Co., Ltd., published on October 30, 2000).
(重合性液晶化合物と色素との関係)
 本発明の組成物を用いて形成される異方性色素膜の配向性を向上させやすいとの観点で、本発明の組成物においては、重合性液晶化合物の分子長と色素の分子長との差が小さいほうが液晶分子と色素分子の分子間相互作用が強く、色素分子が液晶分子同士の会合を阻害し難いため好ましい。
(Relationship between polymerizable liquid crystal compound and dye)
From the viewpoint of facilitating improvement in the orientation of an anisotropic dye film formed using the composition of the present invention, in the composition of the present invention, it is preferable that the difference between the molecular length of the polymerizable liquid crystal compound and the molecular length of the dye is small, since this leads to stronger intermolecular interaction between the liquid crystal molecules and the dye molecules and makes it difficult for the dye molecules to inhibit association between the liquid crystal molecules.
 したがって、本発明の組成物においては、組成物に含まれる重合性液晶化合物が有する環構造の数(rn1)と、組成物に含まれる色素が有する環構造の数(rn2)との比(rn1/rn2)が、0.6~1.5であることが好ましい。
 なお、2つ以上の環が縮合する縮合環は、環構造としては1つとして数える。
Therefore, in the composition of the present invention, it is preferable that the ratio (r n1 /r n2 ) of the number of ring structures (r n1 ) possessed by the polymerizable liquid crystal compound contained in the composition to the number of ring structures (r n2 ) possessed by the dye contained in the composition is 0.6 to 1.5.
In addition, a fused ring in which two or more rings are fused is counted as one ring structure.
 ここで、式(2)で表される化合物(2)が有する環構造の数(rn2)とは、式中のB、B、B及びBの総和であり、具体的には、nが0の場合、rn2は4;nが1の場合、rn2は5;nが2の場合、rn2は6である。
 なお、N(-RB)RBがピロリジニル基やピペリジニル基のような環状の官能基であっても、N(-RB)RBに含まれる環構造は式(2)で表される化合物(2)が有する環構造の数(rn2)には含めない。
Here, the number of ring structures (r n2 ) possessed by compound (2) represented by formula (2) is the sum of B 1 , B 2 , B 3 and B 4 in the formula, and specifically, when n is 0, r n2 is 4; when n is 1, r n2 is 5; and when n is 2, r n2 is 6.
Even if N(-RB 1 )RB 2 is a cyclic functional group such as a pyrrolidinyl group or a piperidinyl group, the ring structure contained in N(-RB 1 )RB 2 is not included in the number (r n2 ) of ring structures contained in compound (2) represented by formula (2).
 より具体的には、nが0の場合、rn2は4であるので、rn1は3、4、5、又は6であり;nが1の場合、rn2は5であるので、rn1は4、5、6又は7であれば、異方性色素膜形成用組成物に含まれる重合性液晶化合物が有する環構造の数(rn1)と、異方性色素膜形成用組成物に含まれる化合物(2)が有する環構造の数(rn2)との比(rn1/rn2)が0.6~1.5となるため好ましい。 More specifically, when n is 0, r n2 is 4, so r n1 is 3, 4, 5, or 6; when n is 1, r n2 is 5, so r n1 is preferably 4, 5, 6, or 7, since the ratio (r n1 /r n2 ) of the number of ring structures (r n1 ) possessed by the polymerizable liquid crystal compound contained in the composition for forming an anisotropic dye film to the number of ring structures (r n2 ) possessed by compound ( 2 ) contained in the composition for forming an anisotropic dye film is 0.6 to 1.5.
 また、式(12)で表される化合物(12)が有する環構造の数(rn2)とは、式中のA21、A22、A23及び-X20に含有される環構造の総和であり、具体的には、n1が1かつm1が1の場合、rn2は3;n1が1かつm1が2の場合、rn2は4;n1が2かつm1が1の場合、rn2は4;n1が2かつm1が2の場合、rn2は5;n1が3かつm1が1の場合、rn2は5である。
 なお、-Y20がピロリジニル基やピペリジニル基のような環状の官能基であっても、-Y20に含まれる環構造は式(12)で表される化合物(12)が有する環構造の数(rn2)には含めない。
The number of ring structures (r n2 ) contained in compound (12) represented by formula (12) is the sum of the ring structures contained in A 21 , A 22 , A 23 and -X 20 in the formula, and specifically, when n1 is 1 and m1 is 1, r n2 is 3; when n1 is 1 and m1 is 2, r n2 is 4; when n1 is 2 and m1 is 1, r n2 is 4; when n1 is 2 and m1 is 2, r n2 is 5; and when n1 is 3 and m1 is 1, r n2 is 5.
Even if -Y 20 is a cyclic functional group such as a pyrrolidinyl group or a piperidinyl group, the ring structure contained in -Y 20 is not included in the number (r n2 ) of ring structures contained in compound (12) represented by formula (12).
 より具体的には、n1が1かつm1が1の場合、rn2は3であるので、rn1は2、3又は4であり;n1が1かつm1が2の場合、rn2は4であるので、rn1は3、4、5又は6であり;n1が2かつm1が1の場合、rn2は4であるので、rn1は3、4、5又は6であり;n1が2かつm1が2の場合、rn2は5であるので、rn1は3、4,5、6又は7であり;n1が3かつm1が1の場合、rn2は5であるので、rn1は3、4、5、6、又は7であれば、異方性色素膜形成用組成物に含まれる重合性液晶化合物が有する環構造の数(rn1)と、異方性色素膜形成用組成物に含まれる第2の発明の化合物が有する環構造の数(rn2)との比(rn1/rn2)が0.6~1.5となるため好ましい。 More specifically, when n1 is 1 and m1 is 1, r n2 is 3, so r n1 is 2, 3, or 4; when n1 is 1 and m1 is 2, r n2 is 4, so r n1 is 3, 4, 5, or 6; when n1 is 2 and m1 is 1, r n2 is 4, so r n1 is 3, 4, 5, or 6; when n1 is 2 and m1 is 2, r n2 is 5, so r n1 is 3, 4, 5, 6, or 7; when n1 is 3 and m1 is 1, r n2 is 5, so r n1 is 3, 4, 5, 6, or 7, then the ratio (r n1 /r n2 ) of the number of ring structures possessed by the polymerizable liquid crystal compound contained in the composition for forming an anisotropic dye film to the number of ring structures possessed by the compound of the second invention contained in the composition for forming an anisotropic dye film is ) is preferably 0.6 to 1.5.
 本発明の組成物に含まれる重合性液晶化合物が有する環構造の数(rn1)には、重合性液晶化合物における重合性基に含まれる環構造(たとえば、オキシラン環やオキセタン環など。)は含めない。 The number (r n1 ) of ring structures in the polymerizable liquid crystal compound contained in the composition of the present invention does not include ring structures (such as oxirane rings and oxetane rings) contained in the polymerizable groups in the polymerizable liquid crystal compound.
[重合開始剤]
 本発明の組成物は、必要に応じて、重合開始剤を含んでもよい。
[Polymerization initiator]
The composition of the present invention may contain a polymerization initiator, if necessary.
 重合開始剤は、重合性液晶化合物の重合反応を開始し得る化合物である。重合開始剤としては、光の作用により活性ラジカルを発生する光重合開始剤が好ましい。 The polymerization initiator is a compound that can initiate the polymerization reaction of a polymerizable liquid crystal compound. As the polymerization initiator, a photopolymerization initiator that generates active radicals by the action of light is preferable.
 使用しうる重合開始剤としては、たとえば、チタノセン誘導体類;ビイミダゾ-ル誘導体類;ハロメチル化オキサジアゾ-ル誘導体類;ハロメチル-s-トリアジン誘導体類;アルキルフェノン誘導体類;オキシムエステル系誘導体類;ベンゾイン類;ベンゾフェノン誘導体類;アシルホスフィンオキサイド誘導体類;ヨ-ドニウム塩類;スルホニウム塩類;アントラキノン誘導体類;アセトフェノン誘導体類;チオキサントン誘導体類;安息香酸エステル誘導体類;アクリジン誘導体類;フェナジン誘導体類;アンスロン誘導体類等が挙げられる。 Usable polymerization initiators include, for example, titanocene derivatives; biimidazole derivatives; halomethylated oxadiazole derivatives; halomethyl-s-triazine derivatives; alkylphenone derivatives; oxime ester derivatives; benzoins; benzophenone derivatives; acylphosphine oxide derivatives; iodonium salts; sulfonium salts; anthraquinone derivatives; acetophenone derivatives; thioxanthone derivatives; benzoic acid ester derivatives; acridine derivatives; phenazine derivatives; anthrone derivatives, etc.
 これらの光重合開始剤の中では、アルキルフェノン誘導体類、オキシムエステル系誘導体類、ビイミダゾ-ル誘導体類、アセトフェノン誘導体類、チオキサントン誘導体類がより好ましい。 Among these photopolymerization initiators, alkylphenone derivatives, oxime ester derivatives, biimidazole derivatives, acetophenone derivatives, and thioxanthone derivatives are more preferred.
 具体的には、チタノセン誘導体類としては、ジシクロペンタジエニルチタニウムジクロライド、ジシクロペンタジエニルチタニウムビスフェニル、ジシクロペンタジエニルチタニウムビス(2,3,4,5,6-ペンタフルオロフェニ-1-イル)、ジシクロペンタジエニルチタニウムビス(2,3,5,6-テトラフルオロフェニ-1-イル)、ジシクロペンタジエニルチタニウムビス(2,4,6-トリフルオロフェニ-1-イル)、ジシクロペンタジエニルチタニウムジ(2,6-ジフルオロフェニ-1-イル)、ジシクロペンタジエニルチタニウムジ(2,4-ジフルオロフェニ-1-イル)、ジ(メチルシクロペンタジエニル)チタニウムビス(2,3,4,5,6-ペンタフルオロフェニ-1-イル)、ジ(メチルシクロペンタジエニル)チタニウムビス(2,6-ジフルオロフェニ-1-イル)、ジシクロペンタジエニルチタニウム〔2,6-ジ-フルオロ-3-(ピロ-1-イル)-フェニ-1-イル〕等が挙げられる。 Specific examples of titanocene derivatives include dicyclopentadienyltitanium dichloride, dicyclopentadienyltitanium bisphenyl, dicyclopentadienyltitanium bis(2,3,4,5,6-pentafluorophenyl-1-yl), dicyclopentadienyltitanium bis(2,3,5,6-tetrafluorophenyl-1-yl), dicyclopentadienyltitanium bis(2,4,6-trifluorophenyl-1-yl), dicyclopentadienyltitanium Examples include titanium di(2,6-difluorophenyl-1-yl), dicyclopentadienyltitanium di(2,4-difluorophenyl-1-yl), di(methylcyclopentadienyl)titanium bis(2,3,4,5,6-pentafluorophenyl-1-yl), di(methylcyclopentadienyl)titanium bis(2,6-difluorophenyl-1-yl), and dicyclopentadienyltitanium [2,6-difluoro-3-(pyrro-1-yl)-phenyl-1-yl].
 ビイミダゾ-ル誘導体類としては、2-(2’-クロロフェニル)-4,5-ジフェニルイミダゾ-ル2量体、2-(2’-クロロフェニル)-4,5-ビス(3’-メトキシフェニル)イミダゾ-ル2量体、2-(2’-フルオロフェニル)-4,5-ジフェニルイミダゾ-ル2量体、2-(2’-メトキシフェニル)-4,5-ジフェニルイミダゾ-ル2量体、(4’-メトキシフェニル)-4,5-ジフェニルイミダゾ-ル2量体等が挙げられる。 Biimidazole derivatives include 2-(2'-chlorophenyl)-4,5-diphenylimidazole dimer, 2-(2'-chlorophenyl)-4,5-bis(3'-methoxyphenyl)imidazole dimer, 2-(2'-fluorophenyl)-4,5-diphenylimidazole dimer, 2-(2'-methoxyphenyl)-4,5-diphenylimidazole dimer, (4'-methoxyphenyl)-4,5-diphenylimidazole dimer, etc.
 ハロメチル化オキサジアゾ-ル誘導体類としては、2-トリクロロメチル-5-(2’-ベンゾフリル)-1,3,4-オキサジアゾ-ル、2-トリクロロメチル-5-〔β-(2’-ベンゾフリル)ビニル〕-1,3,4-オキサジアゾ-ル、2-トリクロロメチル-5-〔β-(2’-(6’’-ベンゾフリル)ビニル)〕-1,3,4-オキサジアゾ-ル、2-トリクロロメチル-5-フリル-1,3,4-オキサジアゾ-ル等が挙げられる。 Halomethylated oxadiazole derivatives include 2-trichloromethyl-5-(2'-benzofuryl)-1,3,4-oxadiazole, 2-trichloromethyl-5-[β-(2'-benzofuryl)vinyl]-1,3,4-oxadiazole, 2-trichloromethyl-5-[β-(2'-(6''-benzofuryl)vinyl)]-1,3,4-oxadiazole, and 2-trichloromethyl-5-furyl-1,3,4-oxadiazole.
 ハロメチル-s-トリアジン誘導体類としては、2-(4-メトキシフェニル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(4-メトキシナフチル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(4-エトキシナフチル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(4-エトキシカルボニルナフチル)-4,6-ビス(トリクロロメチル)-s-トリアジン等が挙げられる。 Halomethyl-s-triazine derivatives include 2-(4-methoxyphenyl)-4,6-bis(trichloromethyl)-s-triazine, 2-(4-methoxynaphthyl)-4,6-bis(trichloromethyl)-s-triazine, 2-(4-ethoxynaphthyl)-4,6-bis(trichloromethyl)-s-triazine, and 2-(4-ethoxycarbonylnaphthyl)-4,6-bis(trichloromethyl)-s-triazine.
 アルキルフェノン誘導体類としては、ジエトキシアセトフェノン、2-メチル-1-〔4-(メチルチオ)フェニル〕-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)ブタン-1-オン、4-ジメチルアミノエチルベンゾエ-ト、4-ジメチルアミノイソアミルベンゾエ-ト、4-ジエチルアミノアセトフェノン、4-ジメチルアミノプロピオフェノン、2-エチルヘキシル-1,4-ジメチルアミノベンゾエ-ト、2,5-ビス(4-ジエチルアミノベンザル)シクロヘキサノン、7-ジエチルアミノ-3-(4-ジエチルアミノベンゾイル)クマリン、4-(ジエチルアミノ)カルコン等が挙げられる。 Alkylphenone derivatives include diethoxyacetophenone, 2-methyl-1-[4-(methylthio)phenyl]-2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)-butanone-1, 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)butan-1-one, 4-dimethylaminoethyl benzoate, 4-dimethylaminoisoamyl benzoate, 4-diethylaminoacetophenone, 4-dimethylaminopropiophenone, 2-ethylhexyl-1,4-dimethylaminobenzoate, 2,5-bis(4-diethylaminobenzal)cyclohexanone, 7-diethylamino-3-(4-diethylaminobenzoyl)coumarin, and 4-(diethylamino)chalcone.
 オキシムエステル系誘導体類としては、2-(ベンゾイルオキシイミノ)-1-[4-(フェニルチオ)フェニル]-1-オクタノン、O-アセチル-1-[6-(2-メチルベンゾイル)-9-エチル-9H-カルバゾ-ル-3-イル]エタノンオキシム、特開2000-80068号公報、特開2006-36750号公報、国際公開第2009/131189号等に記載されているオキシムエステル誘導体等が挙げられる。 Oxime ester derivatives include 2-(benzoyloxyimino)-1-[4-(phenylthio)phenyl]-1-octanone, O-acetyl-1-[6-(2-methylbenzoyl)-9-ethyl-9H-carbazol-3-yl]ethanone oxime, and the oxime ester derivatives described in JP 2000-80068 A, JP 2006-36750 A, WO 2009/131189, etc.
 ベンゾイン類としては、ベンゾイン、ベンゾインメチルエ-テル、ベンゾインフェニルエ-テル、ベンゾインイソブチルエ-テル、ベンゾインイソプロピルエ-テル等が挙げられる。 Examples of benzoins include benzoin, benzoin methyl ether, benzoin phenyl ether, benzoin isobutyl ether, and benzoin isopropyl ether.
 ベンゾフェノン誘導体類としては、ベンゾフェノン、ミヒラ-ズケトン、2-メチルベンゾフェノン、3-メチルベンゾフェノン、4-メチルベンゾフェノン、2-クロロベンゾフェノン、4-ブロモベンゾフェノン、2-カルボキシベンゾフェノン、o-ベンゾイル安息香酸メチル、4-フェニルベンゾフェノン、4-ベンゾイル-4’-メチルジフェニルサルファイド、3,3’,4,4’-テトラ(tert-ブチルパ-オキシカルボニル)ベンゾフェノン、および2,4,6-トリメチルベンゾフェノン等が挙げられる。 Examples of benzophenone derivatives include benzophenone, Michler's ketone, 2-methylbenzophenone, 3-methylbenzophenone, 4-methylbenzophenone, 2-chlorobenzophenone, 4-bromobenzophenone, 2-carboxybenzophenone, methyl o-benzoylbenzoate, 4-phenylbenzophenone, 4-benzoyl-4'-methyldiphenyl sulfide, 3,3',4,4'-tetra(tert-butylperoxycarbonyl)benzophenone, and 2,4,6-trimethylbenzophenone.
 アシルホスフィンオキサイド誘導体類としては、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド、ビス-(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルホスフィンオキサイドおよびビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキサイド等が挙げられる。 Acylphosphine oxide derivatives include 2,4,6-trimethylbenzoyldiphenylphosphine oxide, bis-(2,6-dimethoxybenzoyl)-2,4,4-trimethylpentylphosphine oxide, and bis(2,4,6-trimethylbenzoyl)phenylphosphine oxide.
 ヨ-ドニウム塩類としては、ジフェニルヨ-ドニウム・テトラキス(ペンタフルオロフェニル)ボレ-ト、ジフェニルヨ-ドニウム・ヘキサフルオロホスフェ-ト、ジフェニルヨ-ドニウム・ヘキサフルオロアンチモネ-ト、ジ(4-ノニルフェニル)ヨ-ドニウム・ヘキサフルオロホスフェ-ト等が挙げられる。 Iodonium salts include diphenyliodonium tetrakis(pentafluorophenyl)borate, diphenyliodonium hexafluorophosphate, diphenyliodonium hexafluoroantimonate, and di(4-nonylphenyl)iodonium hexafluorophosphate.
 スルホニウム塩類としては、トリフェニルスルホニウム・ヘキサフルオロホスフェ-ト、トリフェニルスルホニウム・ヘキサフルオロアンチモネ-ト、トリフェニルスルホニウム・テトラキス(ペンタフルオロフェニル)ボレ-ト、ジフェニル〔4-(フェニルチオ)フェニル〕スルホニウム・ヘキサフルオロホスフェ-ト、4,4’-ビス〔ジフェニルスルホニオ〕ジフェニルスルフィド・ビスヘキサフルオロホスフェ-ト、4,4’-ビス〔ジ(β-ヒドロキシエトキシ)フェニルスルホニオ〕ジフェニルスルフィド・ビスヘキサフルオロアンチモネ-ト、4,4’-ビス〔ジ(β-ヒドロキシエトキシ)フェニルスルホニオ〕ジフェニルスルフィド・ビスヘキサフルオロホスフェ-ト、7-〔ジ(p-トルイル)スルホニオ〕-2-イソプロピルチオキサントン・ヘキサフルオロアンチモネ-ト、7-〔ジ(p-トルイル)スルホニオ〕-2-イソプロピルチオキサントン・テトラキス(ペンタフルオロフェニル)ボレ-ト、4-フェニルカルボニル-4’-ジフェニルスルホニオ-ジフェニルスルフィド・ヘキサフルオロホスフェ-ト、4-(p-tert-ブチルフェニルカルボニル)-4’-ジフェニルスルホニオ-ジフェニルスルフィド・ヘキサフルオロアンチモネ-ト、4-(p-tert-ブチルフェニルカルボニル)-4’-ジ(p-トルイル)スルホニオ-ジフェニルスルフィド・テトラキス(ペンタフルオロフェニル)ボレ-ト等が挙げられる。 Sulfonium salts include triphenylsulfonium hexafluorophosphate, triphenylsulfonium hexafluoroantimonate, triphenylsulfonium tetrakis(pentafluorophenyl)borate, diphenyl[4-(phenylthio)phenyl]sulfonium hexafluorophosphate, 4,4'-bis[diphenylsulfonio]diphenylsulfide bishexafluorophosphate, 4,4'-bis[di(β-hydroxyethoxy)phenylsulfonio]diphenylsulfide bishexafluoroantimonate, 4,4'-bis[di(β-hydroxyethoxy)phenylsulfonio]diphenylsulfide bishexafluorophosphate -, 7-[di(p-toluyl)sulfonio]-2-isopropylthioxanthone hexafluoroantimonate, 7-[di(p-toluyl)sulfonio]-2-isopropylthioxanthone tetrakis(pentafluorophenyl)borate, 4-phenylcarbonyl-4'-diphenylsulfonio-diphenylsulfide hexafluorophosphate, 4-(p-tert-butylphenylcarbonyl)-4'-diphenylsulfonio-diphenylsulfide hexafluoroantimonate, 4-(p-tert-butylphenylcarbonyl)-4'-di(p-toluyl)sulfonio-diphenylsulfide tetrakis(pentafluorophenyl)borate, etc.
 アントラキノン誘導体類としては、2-メチルアントラキノン、2-エチルアントラキノン、2-t-ブチルアントラキノン、1-クロロアントラキノン等が挙げられる。 Anthraquinone derivatives include 2-methylanthraquinone, 2-ethylanthraquinone, 2-t-butylanthraquinone, 1-chloroanthraquinone, etc.
 アセトフェノン誘導体類としては、2,2-ジメトキシ-2-フェニルアセトフェノン、2,2-ジエトキシアセトフェノン、1-ヒドロキシシクロへキシルフェニルケトン、α-ヒドロキシ-2-メチルフェニルプロパノン、1-ヒドロキシ-1-メチルエチル-(p-イソプロピルフェニル)ケトン、1-ヒドロキシ-1-(p-ドデシルフェニル)ケトン、2-メチル-(4’-メチルチオフェニル)-2-モルホリノ-1-プロパノン、1,1,1-トリクロロメチル-(p-ブチルフェニル)ケトン等が挙げられる。 Acetophenone derivatives include 2,2-dimethoxy-2-phenylacetophenone, 2,2-diethoxyacetophenone, 1-hydroxycyclohexyl phenyl ketone, α-hydroxy-2-methylphenylpropanone, 1-hydroxy-1-methylethyl-(p-isopropylphenyl)ketone, 1-hydroxy-1-(p-dodecylphenyl)ketone, 2-methyl-(4'-methylthiophenyl)-2-morpholino-1-propanone, 1,1,1-trichloromethyl-(p-butylphenyl)ketone, etc.
 チオキサントン誘導体類としては、チオキサントン、2-エチルチオキサントン、2-イソプロピルチオキサントン、2-クロロチオキサントン、2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン、2,4-ジイソプロピルチオキサントン等が挙げられる。 Thioxanthone derivatives include thioxanthone, 2-ethylthioxanthone, 2-isopropylthioxanthone, 2-chlorothioxanthone, 2,4-dimethylthioxanthone, 2,4-diethylthioxanthone, 2,4-diisopropylthioxanthone, etc.
 安息香酸エステル誘導体類;p-ジメチルアミノ安息香酸エチル、p-ジエチルアミノ安息香酸エチル等が挙げられる。 Benzoic acid ester derivatives: Examples include ethyl p-dimethylaminobenzoate, ethyl p-diethylaminobenzoate, etc.
 アクリジン誘導体類としては、9-フェニルアクリジン、9-(p-メトキシフェニル)アクリジン等が挙げられる。 Acridine derivatives include 9-phenylacridine, 9-(p-methoxyphenyl)acridine, etc.
 フェナジン誘導体類としては、9,10-ジメチルベンズフェナジン等が挙げられる。 Phenazine derivatives include 9,10-dimethylbenzphenazine, etc.
 アンスロン誘導体類としては、ベンズアンスロン等が挙げられる。 Anthrone derivatives include benzanthrone, etc.
 重合開始剤は、1種を単独で用いてもよく、2種以上を併用してもよい。 The polymerization initiator may be used alone or in combination with two or more types.
 重合開始剤として、市販品を用いることもできる。
 市販品としては、例えば、IRGACURE(登録商標。以下同様。) 250、IRGACURE 651、IRGACURE 184、DAROCURE 1173、IRGACURE 2959、IRGACURE 127、IRGACURE 907、IRGACURE 369、IRGACURE 379EG、LUCIRIN TPO、IRGACURE 819、IRGACURE 784、OXE-01、OXE-02(いずれも、BASF社製);セイクオ-ル(登録商標)BZ、Z、およびBEE(精工化学株式会社製);カヤキュア-(kayacure)(登録商標)BP100、およびUVI-6992(ダウ・ケミカル株式会社製);アデカオプトマ-SP-152、およびSP-170(株式会社ADEKA製);TAZ-A、およびTAZ-PP(日本シイベルヘグナ-株式会社製);並びに、TAZ-104(株式会社三和ケミカル製);TRONLYTR-PBG-304、TRONLYTR-PBG-309、TRONLYTR-PBG-305、TRONLYTR-PBG-314(常州強力電子新材料有限公司社(CHANGZHOU TRONLY NEW ELECTRONIC MATERIALS CO.,LTD)製)が挙げられる。
As the polymerization initiator, a commercially available product can also be used.
Examples of commercially available products include IRGACURE (registered trademark, the same applies below) 250, IRGACURE 651, IRGACURE 184, DAROCURE 1173, IRGACURE 2959, IRGACURE 127, IRGACURE 907, IRGACURE 369, IRGACURE 379EG, LUCIRIN TPO, IRGACURE 819, and IRGACURE 784, OXE-01, OXE-02 (all manufactured by BASF); Seikuol (registered trademark) BZ, Z, and BEE (manufactured by Seiko Chemical Co., Ltd.); Kayacure (registered trademark) BP100, and UVI-6992 (manufactured by The Dow Chemical Company); ADEKA OPTOMER SP-152, and SP-170 (manufactured by ADEK Corporation). A); TAZ-A, and TAZ-PP (manufactured by Nippon SiberHegner Co., Ltd.); and TAZ-104 (manufactured by Sanwa Chemical Co., Ltd.); TRONLYTR-PBG-304, TRONLYTR-PBG-309, TRONLYTR-PBG-305, and TRONLYTR-PBG-314 (manufactured by CHANGZHOU TRONLY NEW ELECTRONIC MATERIALS CO., LTD.).
 本発明の組成物が重合開始剤を含む場合、本発明の組成物における重合開始剤の含有量は、重合性液晶化合物の配向を乱し難いという観点から、重合性液晶化合物100質量部に対して、通常0.1~30質量部であり、好ましくは0.5~10質量部であり、より好ましくは0.5~8質量部である。 When the composition of the present invention contains a polymerization initiator, the content of the polymerization initiator in the composition of the present invention is usually 0.1 to 30 parts by mass, preferably 0.5 to 10 parts by mass, and more preferably 0.5 to 8 parts by mass, relative to 100 parts by mass of the polymerizable liquid crystal compound, from the viewpoint of not easily disturbing the orientation of the polymerizable liquid crystal compound.
 必要に応じて重合開始剤に重合加速剤を併用してもよい。用いられる重合加速剤としては、例えば、N,N-ジメチルアミノ安息香酸エチルエステル等のN,N-ジアルキルアミノ安息香酸アルキルエステル類;2-メルカプトベンゾチアゾ-ル、2-メルカプトベンゾオキサゾ-ル、2-メルカプトベンゾイミダゾ-ル等の複素環を有するメルカプト化合物;脂肪族多官能メルカプト化合物等のメルカプト化合物類等が挙げられる。
 重合加速剤もまた、1種を単独で用いてもよく、2種以上を併用してもよい。
If necessary, a polymerization accelerator may be used in combination with the polymerization initiator. Examples of the polymerization accelerator to be used include N,N-dialkylaminobenzoic acid alkyl esters such as N,N-dimethylaminobenzoic acid ethyl ester, mercapto compounds having a heterocycle such as 2-mercaptobenzothiazole, 2-mercaptobenzoxazole, and 2-mercaptobenzimidazole, and mercapto compounds such as aliphatic polyfunctional mercapto compounds.
The polymerization accelerator may also be used alone or in combination of two or more kinds.
 必要に応じて感応感度を高める目的で、増感色素を併用してもよい。増感色素は、露光光源の波長に応じて、適切なものが用いられる。例えば特開平4-221958号公報、特開平4-219756号公報等に記載のキサンテン系色素;特開平3-239703号公報、特開平5-289335号公報等に記載の複素環を有するクマリン系色素;特開平3-239703号公報、特開平5-289335号公報等に記載の3-ケトクマリン系色素;特開平6-19240号公報等に記載のピロメテン系色素;特開昭47-2528号公報、特開昭54-155292号公報、特公昭45-37377号公報、特開昭48-84183号公報、特開昭52-112681号公報、特開昭58-15503号公報、特開昭60-88005号公報、特開昭59-56403号公報、特開平2-69号公報、特開昭57-168088号公報、特開平5-107761号公報、特開平5-210240号公報、特開平4-288818号公報等に記載のジアルキルアミノベンゼン骨格を有する色素等が挙げられる。
 増感色素もまた、1種を単独で用いてもよく、2種以上を併用してもよい。
Sensitizing dyes may be used in combination for the purpose of increasing the sensitivity as required. Sensitizing dyes that are appropriate for the wavelength of the exposure light source are used. For example, xanthene dyes described in JP-A-4-221958 and JP-A-4-219756, etc.; coumarin dyes having a heterocycle described in JP-A-3-239703 and JP-A-5-289335, etc.; 3-ketocoumarin dyes described in JP-A-3-239703 and JP-A-5-289335, etc.; pyrromethene dyes described in JP-A-6-19240, etc.; and JP-A-47-2528 and JP-A-54-155292, etc. and dyes having a dialkylaminobenzene skeleton described in JP-B-45-37377, JP-A-48-84183, JP-A-52-112681, JP-A-58-15503, JP-A-60-88005, JP-A-59-56403, JP-A-2-69, JP-A-57-168088, JP-A-5-107761, JP-A-5-210240, and JP-A-4-288818.
The sensitizing dyes may also be used alone or in combination of two or more kinds.
[溶剤]
 本発明の組成物は、必要に応じて、溶剤を含有してもよい。
[solvent]
The composition of the present invention may contain a solvent, if necessary.
 本発明の組成物に使用しうる溶剤としては、重合性液晶化合物中に色素又はその他の添加剤を十分に分散又は溶解させ得るものであれば特に限定されない。たとえば、メタノール、エタノール、エチレングリコール、イソプロピルアルコール、プロピレングリコール、エチレングリコールメチルエーテル、エチレングリコールブチルエーテル、プロピレングリコールモノメチルエーテル等のアルコール溶剤;酢酸エチル、酢酸ブチル、エチレングリコールメチルエーテルアセテート、γ-ブチロラクトン、プロピレングリコールメチルエーテルアセテート、乳酸エチル等のエステル溶剤;アセトン、メチルエチルケトン、シクロペンタノン、シクロヘキサノン、2-ヘプタノン、メチルイソブチルケトン等のケトン溶剤;ペンタン、ヘキサン、ヘプタン等の脂肪族炭化水素溶剤;トルエン、キシレン等の芳香族炭化水素溶剤;アセトニトリル等のニトリル溶剤;テトラヒドロフラン、ジメトキシエタン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル等のエーテル溶剤;ペルフルオロベンゼン、ペルフルオロトルエン、ペルフルオロデカリン、ペルフルオロメチルシクロヘキサン、ヘキサフルオロ-2-プロパノール等のフッ素含有溶剤;および、クロロホルム、ジクロロメタン、クロロベンゼン、ジクロロベンゼン等の塩素含有溶剤;が挙げられる。
 これら溶剤は、一種類のみを用いてもよく、二種類以上を組み合わせて用いてもよい。
The solvent that can be used in the composition of the present invention is not particularly limited as long as it can sufficiently disperse or dissolve the dye or other additives in the polymerizable liquid crystal compound. Examples of the solvent include alcohol solvents such as methanol, ethanol, ethylene glycol, isopropyl alcohol, propylene glycol, ethylene glycol methyl ether, ethylene glycol butyl ether, and propylene glycol monomethyl ether; ester solvents such as ethyl acetate, butyl acetate, ethylene glycol methyl ether acetate, γ-butyrolactone, propylene glycol methyl ether acetate, and ethyl lactate; ketone solvents such as acetone, methyl ethyl ketone, cyclopentanone, cyclohexanone, 2-heptanone, and methyl isobutyl ketone; aliphatic hydrocarbon solvents such as pentane, hexane, and heptane; aromatic hydrocarbon solvents such as toluene and xylene; nitrile solvents such as acetonitrile; ether solvents such as tetrahydrofuran, dimethoxyethane, ethylene glycol dimethyl ether, and ethylene glycol diethyl ether; fluorine-containing solvents such as perfluorobenzene, perfluorotoluene, perfluorodecalin, perfluoromethylcyclohexane, and hexafluoro-2-propanol; and chlorine-containing solvents such as chloroform, dichloromethane, chlorobenzene, and dichlorobenzene.
These solvents may be used alone or in combination of two or more.
 溶剤は、重合性液晶化合物および色素を溶解し得る溶剤であることが好ましく、重合性液晶化合物および色素が完全に溶解する溶剤であることがさらに好ましい。溶剤はまた、重合性液晶化合物の重合反応に不活性な溶剤であることが好ましい。溶剤はまた、後述する本発明の組成物を塗布する観点から、沸点が50~200℃の範囲である溶剤が好ましい。 The solvent is preferably one that can dissolve the polymerizable liquid crystal compound and the dye, and more preferably one that completely dissolves the polymerizable liquid crystal compound and the dye. The solvent is also preferably one that is inactive in the polymerization reaction of the polymerizable liquid crystal compound. From the viewpoint of applying the composition of the present invention described later, the solvent is also preferably one that has a boiling point in the range of 50 to 200°C.
 本発明の組成物が溶剤を含む場合において、本発明の組成物において溶剤が占める含有割合は、本発明の組成物の総量(100質量%)に対して、50~98質量%が好ましい。換言すると、本発明の組成物における固形分は、2~50質量%が好ましい。
 本発明の組成物における固形分含有量が前記上限値以下であれば、本発明の組成物の粘度が高くなりすぎず、得られる偏光膜の厚みが均一になり、偏光膜にムラが生じにくくなる傾向がある。
When the composition of the present invention contains a solvent, the content of the solvent in the composition of the present invention is preferably 50 to 98 mass% relative to the total amount (100 mass%) of the composition of the present invention. In other words, the solid content in the composition of the present invention is preferably 2 to 50 mass%.
When the solid content in the composition of the present invention is equal to or less than the upper limit, the viscosity of the composition of the present invention does not become too high, the thickness of the obtained polarizing film becomes uniform, and unevenness in the polarizing film tends to be less likely to occur.
 本発明の組成物の固形分含有量は、製造しようとする偏光膜の厚さを考慮して定めることができる。 The solid content of the composition of the present invention can be determined taking into consideration the thickness of the polarizing film to be produced.
 本発明の組成物の粘度は、後述の塗布方法により、厚みムラのない均一な膜が作製されれば特に問わない。大面積での厚み均一性、塗布速度などの生産性、光学特性の面内均一性を得る観点からは、本発明の組成物の粘度は、0.1mPa・s以上が好ましく、500mPa・s以下が好ましく、100mPa・s以下がより好ましく、50mPa・s以下がさらに好ましい。 The viscosity of the composition of the present invention is not particularly important as long as a uniform film without uneven thickness is produced by the coating method described below. From the viewpoint of obtaining uniformity of thickness over a large area, productivity such as coating speed, and in-plane uniformity of optical properties, the viscosity of the composition of the present invention is preferably 0.1 mPa·s or more, and preferably 500 mPa·s or less, more preferably 100 mPa·s or less, and even more preferably 50 mPa·s or less.
[その他の添加剤]
 本発明の組成物は、さらに必要に応じて、色素および重合性液晶化合物以外の成分として、前述の重合開始剤等の他に、重合禁止剤、重合助剤、重合性非液晶化合物、界面活性剤、レベリング剤、カップリング剤、pH調整剤、分散剤、酸化防止剤、有機・無機フィラー、有機・無機ナノシート、有機・無機ナノファイバー、金属酸化物等のその他の添加剤を含有してもよい。
 これらの添加剤を含有することにより、本発明の組成物の塗布性や安定性等を向上させたり、本発明の組成物から形成される異方性色素膜の安定性を向上させたりし得る場合がある。
[Other additives]
The composition of the present invention may further contain, as necessary, other additives such as a polymerization inhibitor, a polymerization aid, a polymerizable non-liquid crystal compound, a surfactant, a leveling agent, a coupling agent, a pH adjuster, a dispersant, an antioxidant, an organic or inorganic filler, an organic or inorganic nanosheet, an organic or inorganic nanofiber, or a metal oxide, in addition to the above-mentioned polymerization initiator, as components other than the dye and the polymerizable liquid crystal compound.
The inclusion of these additives may improve the coatability, stability, etc. of the composition of the present invention, and may also improve the stability of the anisotropic dye film formed from the composition of the present invention.
[組成物の製造方法]
 本発明の組成物を製造する方法は特に限定されない。たとえば、化合物(2)又は第2の発明の色素を含む色素、重合性液晶化合物、必要に応じて溶剤、その他の添加剤等を混合し、0~80℃で撹拌、振盪して色素を溶解させる。これらが難溶性の場合は、ホモジナイザー、ビーズミル分散機等を用いてもよい。
[Production method of the composition]
The method for producing the composition of the present invention is not particularly limited. For example, a dye containing compound (2) or the dye of the second invention, a polymerizable liquid crystal compound, a solvent and other additives as necessary are mixed, and the mixture is stirred and shaken at 0 to 80° C. to dissolve the dye. If these are poorly soluble, a homogenizer, a bead mill disperser, or the like may be used.
 本発明の組成物を製造する方法として、組成物中の異物等を除去する目的で、濾過工程を有していてもよい。 The method for producing the composition of the present invention may include a filtration step for the purpose of removing foreign matter from the composition.
 本発明の組成物は、組成物から溶剤の除いた組成物が、任意の温度で液晶であってもなくてもよいが、任意の温度で液晶性を示すことが好ましい。 The composition of the present invention may or may not be liquid crystal at any temperature after the solvent has been removed from the composition, but it is preferable that the composition exhibits liquid crystallinity at any temperature.
 本発明の組成物から溶剤を除いた組成物は、下記に記載の塗工プロセスの観点からその等方相出現温度が、160℃未満であることが好ましく、140℃未満がより好ましく、115℃未満がさらに好ましく、110℃未満がよりさらに好ましく、105℃未満が特に好ましい。 From the viewpoint of the coating process described below, the composition of the present invention from which the solvent has been removed preferably has an isotropic phase appearance temperature of less than 160°C, more preferably less than 140°C, even more preferably less than 115°C, even more preferably less than 110°C, and particularly preferably less than 105°C.
[異方性色素膜]
 本発明の異方性色素膜は、本発明の組成物を用いて形成される。
 したがって、第1の発明の異方性色素膜は、色素と、重合性液晶化合物および重合性液晶化合物に基づく単位を有する重合物の一方又は両方とを含み、色素は、化合物(2)を含む。
 また、第2の発明の異方性色素膜は、色素と、重合性液晶化合物および重合性液晶化合物に基づく単位を有する重合物の一方又は両方とを含み、色素は、第2の発明の色素を含む。
 以下、「第1の発明の異方性色素膜」と「第2の発明の異方性色素膜」を「本発明の異方性色素膜」と総称する。
 また、本発明の異方性色素膜を形成するための本発明の組成物を「異方性色素膜形成用組成物」と称す場合がある。
[Anisotropic dye film]
The anisotropic dye film of the present invention is formed using the composition of the present invention.
Therefore, the anisotropic dye film of the first invention contains a dye and one or both of a polymerizable liquid crystal compound and a polymer having a unit based on a polymerizable liquid crystal compound, and the dye contains compound (2).
The anisotropic dye film of the second invention includes a dye and one or both of a polymerizable liquid crystal compound and a polymer having a unit based on a polymerizable liquid crystal compound, and the dye includes the dye of the second invention.
Hereinafter, the "anisotropic dye film of the first invention" and the "anisotropic dye film of the second invention" will be collectively referred to as the "anisotropic dye film of the present invention."
The composition of the present invention for forming the anisotropic dye film of the present invention may be referred to as an "anisotropic dye film-forming composition".
 本発明の異方性色素膜は、その他の成分として非重合性液晶化合物、重合開始剤、重合禁止剤、重合助剤、重合性非液晶化合物、非重合性非液晶化合物、界面活性剤、レベリング剤、カップリング剤、pH調整剤、分散剤、酸化防止剤、有機・無機フィラ-、有機・無機ナノシ-ト、有機・無機ナノファイバ-、金属酸化物等を含んでもよい。 The anisotropic dye film of the present invention may contain other components such as non-polymerizable liquid crystal compounds, polymerization initiators, polymerization inhibitors, polymerization aids, polymerizable non-liquid crystal compounds, non-polymerizable non-liquid crystal compounds, surfactants, leveling agents, coupling agents, pH adjusters, dispersants, antioxidants, organic/inorganic fillers, organic/inorganic nanosheets, organic/inorganic nanofibers, metal oxides, etc.
 本発明の異方性色素膜は、光吸収の異方性を利用して、直線偏光、円偏光、楕円偏光等を得る偏光膜として機能しうる他、膜形成プロセスと基板や有機化合物(色素や透明材料)を含有する組成物の選択により、屈折異方性や伝導異方性等の各種異方性色素膜として機能化が可能である。 The anisotropic dye film of the present invention can function as a polarizing film that uses the anisotropy of light absorption to obtain linearly polarized light, circularly polarized light, elliptically polarized light, etc., and can also function as various anisotropic dye films with refractive anisotropy, conductive anisotropy, etc., depending on the film formation process and the selection of the composition containing the substrate and organic compound (dye or transparent material).
 本発明の異方性色素膜を液晶ディスプレイ用や、OLED用反射防止膜の偏光素子として使う場合は、異方性色素膜の配向特性は二色比を用いて表すことができる。
 二色比は8以上あれば偏光素子として機能するが、第1の発明において、二色比は23以上が好ましく、25以上がより好ましく、30以上がさらに好ましく、40以上が特に好ましい。
 また、第2の発明において、二色比は13以上が好ましく、20以上がより好ましい。
 異方性色素膜の二色比は高いほど好ましい。
 二色比が前記下限値以上であることで、後述する光学素子、特に偏光素子として有用である。
When the anisotropic dye film of the present invention is used as a polarizing element for a liquid crystal display or an antireflection film for an OLED, the orientation characteristics of the anisotropic dye film can be expressed by the dichroic ratio.
A dichroic ratio of 8 or more will enable the element to function as a polarizing element, but in the first invention, the dichroic ratio is preferably 23 or more, more preferably 25 or more, further preferably 30 or more, and particularly preferably 40 or more.
In the second invention, the dichroic ratio is preferably 13 or more, and more preferably 20 or more.
The higher the dichroic ratio of the anisotropic dye film, the more preferable it is.
When the dichroic ratio is equal to or more than the lower limit, the film is useful as an optical element, particularly a polarizing element, as described below.
 OLED用反射防止膜の偏光素子として用いる場合、位相差膜等の周辺材料の性能が低くても、偏光素子の性能が高ければ、反射防止膜としての特性は向上する。そのため、偏光素子の性能が高ければ、層構成を簡素化させやすく、薄膜構成でも十分な機能を発現しやすくなり、折る、曲げる、を含む変形させて使用する用途にも好適に使用できる。また、コストも低く抑えることが可能となる。 When used as a polarizing element in an anti-reflection film for OLEDs, even if the performance of peripheral materials such as retardation films is low, if the performance of the polarizing element is high, the characteristics as an anti-reflection film will be improved. Therefore, if the performance of the polarizing element is high, it is easier to simplify the layer structure, and even a thin film structure can easily exhibit sufficient functionality, making it suitable for use in applications where it is used after being deformed, including folding and bending. It also makes it possible to keep costs low.
 本発明で言う二色比(D)は、色素が一様に配向している場合、以下の式で表される。
 D=Az/Ay
 ここで、Azは異方性色素膜に入射した光の偏光方向が異方性色素の配向方向に平行な場合に観測される吸光度である。Ayは異方性色素膜に入射した光の偏光方向が垂直な場合に観測される吸光度である。
The dichroic ratio (D) in the present invention is expressed by the following formula when the dyes are uniformly oriented.
D = Az/Ay
Here, Az is the absorbance observed when the polarization direction of light incident on the anisotropic dye film is parallel to the orientation direction of the anisotropic dye, and Ay is the absorbance observed when the polarization direction of light incident on the anisotropic dye film is perpendicular to the orientation direction of the anisotropic dye.
 それぞれの吸光度(Az、Ay)は同じ波長のものを用いれば特に制限はなく、目的によっていずれの波長を選択してもよい。異方性色素膜の配向の度合を表す場合は、異方性色素膜の350nm~800nmの特定波長域に視感度で補正した値や、可視域の極大吸収波長における値を用いることが好ましい。 There are no particular limitations on the absorbance (Az, Ay) as long as they are of the same wavelength, and any wavelength may be selected depending on the purpose. When expressing the degree of orientation of an anisotropic dye film, it is preferable to use a value corrected for visual sensitivity in a specific wavelength range of 350 nm to 800 nm for the anisotropic dye film, or a value at the maximum absorption wavelength in the visible range.
 本発明の異方性色素膜の透過率は、使用する目的の波長において、好ましくは25%以上であり、35%以上がさらに好ましく、40%以上が特に好ましい。本発明の異方性色素膜を可視光波長域全体において異方性を有する色素膜として用いる場合には、異方性色素膜の可視光波長域における透過率は、好ましくは25%以上であり、35%以上がさらに好ましく、40%以上が特に好ましい。本発明の異方性色素膜の透過率は用途に応じた上限であればよい。たとえば、偏光度を高くする場合には、透過率は50%以下であることが好ましい。透過率が上記範囲であることで、後述する光学素子として有用であり、特にカラー表示に用いる液晶ディスプレイ用や、異方性色素膜と位相差膜とを組み合わせた反射防止膜用の光学素子として有用である。 The transmittance of the anisotropic dye film of the present invention is preferably 25% or more, more preferably 35% or more, and particularly preferably 40% or more, at the wavelength of the intended use. When the anisotropic dye film of the present invention is used as a dye film having anisotropy over the entire visible light wavelength range, the transmittance of the anisotropic dye film in the visible light wavelength range is preferably 25% or more, more preferably 35% or more, and particularly preferably 40% or more. The transmittance of the anisotropic dye film of the present invention may be an upper limit according to the application. For example, when the degree of polarization is to be increased, the transmittance is preferably 50% or less. When the transmittance is in the above range, it is useful as an optical element described later, and is particularly useful as an optical element for liquid crystal displays used for color display and for antireflection films combining an anisotropic dye film and a retardation film.
 異方性色素膜の膜厚は、乾燥膜厚として、好ましくは10nm以上、より好ましくは100nm以上、さらに好ましくは500nm以上である。異方性色素膜の膜厚は、好ましくは30μm以下、より好ましくは10μm以下、さらに好ましくは5μm以下、とりわけ好ましくは3μm以下である。異方性色素膜の膜厚が上記範囲にあることで、膜内で色素の均一な配向および均一な膜厚を得られる傾向にある。 The anisotropic dye film has a dry thickness of preferably 10 nm or more, more preferably 100 nm or more, and even more preferably 500 nm or more. The anisotropic dye film has a dry thickness of preferably 30 μm or less, more preferably 10 μm or less, even more preferably 5 μm or less, and especially preferably 3 μm or less. By having the anisotropic dye film have a thickness in the above range, there is a tendency to obtain a uniform orientation of the dye within the film and a uniform film thickness.
[異方性色素膜の製造方法]
 本発明の異方性色素膜は、本発明の組成物を用いて、湿式成膜法により作製することが好ましい。
[Method of manufacturing anisotropic dye film]
The anisotropic dye film of the present invention is preferably produced by a wet film-forming method using the composition of the present invention.
 本発明で言う湿式成膜法とは、異方性色素膜用組成物を基板上に何らかの手法により塗布、配向させる方法である。そのため、異方性色素膜用組成物は流動性を持てばよく、溶剤を含んでいても、含んでいなくてもよい。塗布する際の粘度や膜均一性の観点から、溶剤を含んでいることがより好ましい。 The wet film-forming method referred to in this invention is a method in which an anisotropic dye film composition is applied and oriented on a substrate by some method. Therefore, the anisotropic dye film composition only needs to have fluidity, and may or may not contain a solvent. From the viewpoint of viscosity during application and film uniformity, it is more preferable for the composition to contain a solvent.
 異方性色素膜中の液晶や色素は、塗布過程で剪断などにより配向させてもよいし、溶剤が乾燥する過程で配向させてもよい。また、塗布、乾燥後に加熱し、液晶や色素等を再配向させるプロセスを経て、液晶や色素等を基板上で配向、積層させてもよい。湿式成膜法では、異方性色素膜用組成物を基板上に付与すると、すでに異方性色素膜用組成物中で、又は溶剤が乾燥する過程で、又は溶剤が完全に除去された後で、色素や液晶化合物が自己会合(液晶状態等の分子会合状態)を取ることにより微小面積での配向が起こる。この状態に外場を与えることにより、マクロな領域で一定方向に配向させ、所望の性能を有する異方性色素膜を得ることができる。この点で、ポリビニルアルコール(PVA)フィルム等を、色素を含む溶液で染色して延伸し、延伸工程だけで色素を配向させることを原理とする方法とは異なる。ここで外場とは、あらかじめ基板上に施された配向処理層の影響、せん断力、磁場、電場、熱等が挙げられる。これらを単独で用いてもよく、複数組み合わせて用いてもよい。必要があれば、加熱工程を経てもよい。 The liquid crystals and dyes in the anisotropic dye film may be oriented by shear during the coating process, or may be oriented during the drying process of the solvent. In addition, the liquid crystals and dyes may be oriented and laminated on the substrate through a process of heating after coating and drying to re-align the liquid crystals and dyes. In the wet film formation method, when the composition for anisotropic dye film is applied to the substrate, the dyes and liquid crystal compounds self-associate (a molecular association state such as a liquid crystal state) already in the composition for anisotropic dye film, or during the drying process of the solvent, or after the solvent has been completely removed, and orientation occurs in a small area. By applying an external field to this state, orientation can be achieved in a certain direction in a macroscopic region, and an anisotropic dye film with the desired performance can be obtained. In this respect, it differs from the method in which a polyvinyl alcohol (PVA) film or the like is dyed with a solution containing a dye and stretched, and the dye is oriented only in the stretching process. Here, the external field includes the influence of an orientation treatment layer previously applied to the substrate, shear force, magnetic field, electric field, heat, etc. These may be used alone or in combination. If necessary, a heating process may be performed.
 異方性色素膜用組成物を基板上に付与し成膜する過程、外場を与えて配向させる過程、溶剤を乾燥させる過程は、逐次行ってもよいし、同時に行ってもよい。 The process of applying the anisotropic dye film composition onto a substrate to form a film, the process of applying an external field to orient the film, and the process of drying the solvent may be performed sequentially or simultaneously.
 湿式成膜法において異方性色素膜形成用組成物を基板上へ付与する方法としては、たとえば、塗布法、ディップコート法、LB膜形成法、公知の印刷法等が挙げられる。このようにして得た異方性色素膜を別の基板に転写する方法もある。 In the wet film formation method, examples of methods for applying the composition for forming an anisotropic dye film onto a substrate include a coating method, a dip coating method, an LB film formation method, and a known printing method. There is also a method of transferring the anisotropic dye film thus obtained onto another substrate.
 これらのなかでも、塗布法を用いて異方性色素膜形成用組成物を基板上に付与することが好ましい。 Among these, it is preferable to apply the composition for forming an anisotropic dye film onto the substrate using a coating method.
 異方性色素膜の配向方向は塗布方向と異なっていてもよい。本発明において異方性色素膜の配向方向とは、たとえば、偏光膜であれば、偏光の透過軸(偏光軸)又は吸収軸のことである。位相差膜であれば、配向方向は進相軸又は遅相軸のことである。 The orientation direction of the anisotropic dye film may be different from the coating direction. In the present invention, the orientation direction of the anisotropic dye film refers to, for example, the transmission axis (polarization axis) or absorption axis of polarized light in the case of a polarizing film. In the case of a retardation film, the orientation direction refers to the fast axis or slow axis.
 異方性色素膜用組成物を塗布し、異方性色素膜を得る方法としては、特に限定されないが、たとえば、原崎勇次著「コーティング工学」(株式会社朝倉書店、1971年3月20日発行)の253~277ページに記載の方法、市村國宏監修「分子協調材料の創製と応用」(株式会社シーエムシー出版、1998年3月3日発行)の118~149ページに記載の方法、段差構造を有する基板(予め配向処理を施してもよい)上にスロットダイコート法、スピンコート法、スプレーコート法、バーコート法、ロールコート法、ブレードコート法、カーテンコート法、ファウンテン法、ディップ法等で塗布する方法が挙げられる。なかでも、スロットダイコート法やバーコート法を採用すると、均一性の高い異方性色素膜が得られるため好適である。 The method of applying the composition for anisotropic dye film to obtain an anisotropic dye film is not particularly limited, but examples include the method described in "Coating Engineering" by Harasaki Yuji (published by Asakura Publishing Co., Ltd. on March 20, 1971) on pages 253-277, the method described in "Creation and Application of Molecular Cooperative Materials" edited by Ichimura Kunihiro (published by CMC Publishing Co., Ltd. on March 3, 1998) on pages 118-149, and the method of applying the composition to a substrate having a stepped structure (which may be pre-treated for orientation) by slot die coating, spin coating, spray coating, bar coating, roll coating, blade coating, curtain coating, fountain coating, dip coating, etc. Among these, the slot die coating and bar coating methods are preferable because they can obtain an anisotropic dye film with high uniformity.
 スロットダイコート法に用いるダイコーターは、一般的に塗布液を吐出する塗布機、いわゆるスリットダイを備えている。スリットダイは、たとえば、特開平2-164480号公報、特開平6-154687号公報、特開平9-131559号公報、「分散・塗布・乾燥の基礎と応用」(2014年、株式会社テクノシステ、ISBN9784924728707 C 305)、「ディスプレイ・光学部材における湿式コーティング技術」(2007年、情報機構、ISBN9784901677752)、「エレクトロニクス分野における精密塗布・乾燥技術」(2007年、技術情報協会、ISBN9784861041389)等に開示されている。これら公知のスリットダイは、フィルムやテープなどの可撓性を有した部材やガラス基板のような硬い部材であっても塗布が実施できる。 The die coater used in the slot die coating method is generally equipped with a coating machine that ejects the coating liquid, a so-called slit die. Slit dies are disclosed, for example, in JP-A-2-164480, JP-A-6-154687, JP-A-9-131559, "Fundamentals and Applications of Dispersion, Coating, and Drying" (2014, Techno System Co., Ltd., ISBN 9784924728707 C 305), "Wet Coating Technology for Displays and Optical Components" (2007, Information Organization, ISBN 9784901677752), and "Precision Coating and Drying Technology in the Electronics Field" (2007, Technical Information Association, ISBN 9784861041389). These known slit dies can be used to coat flexible materials such as films and tapes, as well as hard materials such as glass substrates.
 本発明の異方性色素膜形成に使用される基板として、ガラスや、トリアセテート、アクリル、ポリエステル、ポリイミド、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリカーボネート、シクロオレフィンポリマー、ポリオレフィン、ポリ塩化ビニル、トリアセチルセルロース又はウレタン系のフィルム等が挙げられる。 Substrates used in the formation of the anisotropic dye film of the present invention include glass, triacetate, acrylic, polyester, polyimide, polyetherimide, polyetheretherketone, polycarbonate, cycloolefin polymer, polyolefin, polyvinyl chloride, triacetyl cellulose, or urethane-based films.
 基板表面には、色素の配向方向を制御するために、「液晶便覧」(丸善株式会社、平成12年10月30日発行)の226~239ページ等に記載の公知の方法(ラビング法、配向膜表面上にグルーブ(微細な溝構造)を形成する方法、偏光紫外光・偏光レーザーを用いる方法(光配向法)、LB膜形成による配向方法、無機物の斜め蒸着による配向方法等)により、配向処理(配向膜)を施していてもよい。特に、ラビング法、光配向法による配向処理を好ましく挙げることができる。ラビング法に用いる材料としては、ポリビニルアルコール(PVA)、ポリイミド(PI)、エポキシ樹脂、アクリル樹脂等が挙げられる。光配向法に用いる材料としては、ポリシンナメート系、ポリアミック酸・ポリイミド系、アゾベンゼン系等が挙げられる。配向処理層を設けた場合、配向処理層の配向処理の影響と、塗布時に異方性色素膜用組成物にかかるせん断力によって、液晶化合物や色素が配向すると考えられる。 In order to control the orientation direction of the dye, the substrate surface may be subjected to an orientation treatment (orientation film) by a known method (rubbing method, method of forming grooves (fine groove structure) on the surface of the orientation film, method of using polarized ultraviolet light/polarized laser (photo-orientation method), orientation method by forming an LB film, orientation method by oblique deposition of inorganic material, etc.) described on pages 226-239 of "Liquid Crystal Handbook" (Maruzen Co., Ltd., published October 30, 2000). In particular, orientation treatment by rubbing method and photo-orientation method are preferable. Materials used in the rubbing method include polyvinyl alcohol (PVA), polyimide (PI), epoxy resin, acrylic resin, etc. Materials used in the photo-orientation method include polycinnamate, polyamic acid/polyimide, azobenzene, etc. When an orientation treatment layer is provided, it is thought that the liquid crystal compound and the dye are oriented by the influence of the orientation treatment of the orientation treatment layer and the shear force applied to the anisotropic dye film composition during application.
 異方性色素膜用組成物を塗布する際の、異方性色素膜用組成物の供給方法、供給間隔は特に限定されない。塗布液の供給操作が繁雑になったり、塗布液の開始時と停止時に塗布膜厚の変動を生じたりする場合があるため、異方性色素膜の膜厚が薄い時には、連続的に異方性色素膜用組成物を供給しながら塗布することが望ましい。 When applying the composition for anisotropic dye film, there are no particular limitations on the method of supplying the composition for anisotropic dye film or the supply interval. If the operation of supplying the coating liquid becomes complicated or the coating film thickness fluctuates when the coating liquid is started and stopped, it is desirable to apply the composition for anisotropic dye film while continuously supplying it when the anisotropic dye film is thin.
 異方性色素膜用組成物を塗布する速度は、通常0.001m/分以上であり、好ましくは0.01m/分以上であり、より好ましくは0.1m/分以上であり、さらに好ましくは1.0m/分以上であり、特に好ましくは5.0m/分以上である。異方性色素膜用組成物を塗布する速度は、通常400m/分以下であり、好ましくは200m/分以下であり、より好ましくは100m/分以下であり、さらに好ましくは50m/分以下である。塗布速度が上記範囲であることで、異方性色素膜の異方性が得られ、均一に塗布できる傾向にある。 The speed at which the composition for anisotropic dye film is applied is usually 0.001 m/min or more, preferably 0.01 m/min or more, more preferably 0.1 m/min or more, even more preferably 1.0 m/min or more, and particularly preferably 5.0 m/min or more. The speed at which the composition for anisotropic dye film is applied is usually 400 m/min or less, preferably 200 m/min or less, more preferably 100 m/min or less, and even more preferably 50 m/min or less. When the application speed is in the above range, the anisotropy of the anisotropic dye film is obtained, and it tends to be possible to apply it uniformly.
 異方性色素膜用組成物の塗布温度は、通常0℃以上100℃以下、好ましくは80℃以下、さらに好ましくは60℃以下である。 The coating temperature for the anisotropic dye film composition is usually 0°C or higher and 100°C or lower, preferably 80°C or lower, and more preferably 60°C or lower.
 異方性色素膜用組成物の塗布時の湿度は、好ましくは10%RH以上であり、好ましくは80RH%以下である。 The humidity during application of the anisotropic dye film composition is preferably 10% RH or higher, and preferably 80% RH or lower.
 異方性色素膜には、不溶化処理を行ってもよい。不溶化とは、異方性色素膜中の化合物の溶解性を低下させることにより、化合物の異方性色素膜からの溶出を制御し、膜の安定性を高める処理を意味する。
 具体的には、膜の重合やオーバーコートなどが、後工程の容易さ、異方性色素膜の耐久性等の点から好ましい。
The anisotropic dye film may be subjected to an insolubilization treatment. Insolubilization refers to a treatment for reducing the solubility of a compound in the anisotropic dye film, thereby controlling the elution of the compound from the anisotropic dye film and increasing the stability of the film.
Specifically, film polymerization or overcoating is preferred from the standpoint of ease of post-processing and durability of the anisotropic dye film.
 膜の重合を行う場合、液晶分子と色素分子が配向した膜に対して、光、熱、および/又は放射線を用いて重合を行う。 When polymerizing the film, the film in which the liquid crystal molecules and dye molecules are oriented is polymerized using light, heat, and/or radiation.
 光又は放射線を用いて重合を行う場合、波長が190~450nmの範囲にある活性エネルギー線を照射することが好ましい。 When polymerization is carried out using light or radiation, it is preferable to irradiate with active energy rays having a wavelength in the range of 190 to 450 nm.
 波長190~450nmの活性エネルギー線の光源は、特に限定されるものではない。例えば、キセノンランプ、ハロゲンランプ、タングステンランプ、高圧水銀灯、超高圧水銀灯、メタルハライドランプ、中圧水銀灯、低圧水銀灯、カーボンアーク、蛍光ランプ等のランプ光源;アルゴンイオンレーザー、YAGレーザー、エキシマレーザー、窒素レーザー、ヘリウムカドミニウムレーザー、半導体レーザー等のレーザー光源等が挙げられる。特定の波長の光を照射して使用する場合には、光学フィルターを利用することもできる。
 活性エネルギー線の露光量は、10~10,000J/mが好ましい。
The light source of the active energy ray having a wavelength of 190 to 450 nm is not particularly limited. Examples of the light source include lamp light sources such as xenon lamps, halogen lamps, tungsten lamps, high-pressure mercury lamps, ultra-high-pressure mercury lamps, metal halide lamps, medium-pressure mercury lamps, low-pressure mercury lamps, carbon arcs, and fluorescent lamps; and laser light sources such as argon ion lasers, YAG lasers, excimer lasers, nitrogen lasers, helium cadmium lasers, and semiconductor lasers. When light of a specific wavelength is irradiated, an optical filter can also be used.
The exposure dose of the active energy rays is preferably 10 to 10,000 J/ m2 .
 熱を用いて重合を行う場合は、50~200℃の範囲で行うことが好ましく、60~150℃の範囲で行うことがさらに好ましい。 When polymerization is carried out using heat, it is preferable to carry it out in the range of 50 to 200°C, and even more preferable to carry it out in the range of 60 to 150°C.
 重合は、光、熱、および/又は放射線を用いて行ってもよいが、光重合を用いる、又は、光重合と熱重合を併用するのが膜形成プロセスの時間が短く、装置も簡易であることから好ましい。 Polymerization may be carried out using light, heat, and/or radiation, but photopolymerization or a combination of photopolymerization and thermal polymerization is preferred because the film formation process takes a short time and requires simple equipment.
[光学素子]
 本発明の光学素子は、本発明の異方性色素膜を含む。
[Optical elements]
The optical element of the present invention includes the anisotropic dye film of the present invention.
 本発明における光学素子は、光吸収の異方性を利用して、直線偏光、円偏光、楕円偏光等を得る偏光素子、位相差素子、屈折異方性や伝導異方性等の機能を有する素子を表す。これらの機能は、異方性色素膜形成プロセスと、基板や有機化合物(色素や透明材料)を含有する組成物の選択により、適宜調整することができる。 The optical element in this invention refers to a polarizing element that utilizes the anisotropy of light absorption to obtain linearly polarized light, circularly polarized light, elliptically polarized light, etc., a phase difference element, and an element that has functions such as refractive anisotropy and conductive anisotropy. These functions can be appropriately adjusted by selecting the anisotropic dye film formation process and the composition containing the substrate and organic compound (dye or transparent material).
 本発明の光学素子は、偏光素子として用いることが最も好ましい。
 本発明の光学素子は、基板上に塗布等により異方性色素膜を形成することで偏光素子を得ることができるという点から、フレキシブルディスプレイ等の用途にも好適に使用することができる。
The optical element of the present invention is most preferably used as a polarizing element.
The optical element of the present invention can be suitably used for applications such as flexible displays because a polarizing element can be obtained by forming an anisotropic dye film on a substrate by coating or the like.
 光学素子は、異方性色素膜の機能を維持、向上させるために、他の層が設けられていてもよい。他の層としては、たとえば、耐光性、耐熱性、耐水性等の耐久性を向上させるために用いる、特定の波長を遮断する機能を有する層や特定の物質を遮断する機能を有する層(酸素遮断フィルム、水蒸気遮断フィルムなどのバリアフィルム等);色域を変更したり、光学特性を向上させたりするために用いる、波長カットフィルターや特定の波長を吸収する材料を含有する層;等が挙げられる。 The optical element may be provided with other layers to maintain or improve the functionality of the anisotropic dye film. Examples of other layers include layers that have the function of blocking specific wavelengths or layers that have the function of blocking specific substances (e.g., barrier films such as oxygen barrier films and water vapor barrier films) that are used to improve durability such as light resistance, heat resistance, and water resistance; wavelength cut filters or layers containing materials that absorb specific wavelengths that are used to change the color gamut or improve optical properties; etc.
[偏光素子]
 本発明の異方性色素膜を用いて偏光素子(以下、「本発明の偏光素子」と称す場合がある。)を製造することができる。
[Polarizing element]
A polarizing element (hereinafter, sometimes referred to as "the polarizing element of the present invention") can be produced using the anisotropic dye film of the present invention.
 本発明の偏光素子は、本発明の異方性色素膜を有するものであれば他の如何なる膜(層)を有するものであってもよい。たとえば、基板上に配向膜を設け、配向膜の表面に、本発明の異方性色素膜を形成することにより製造することができる。 The polarizing element of the present invention may have any other film (layer) as long as it has the anisotropic dye film of the present invention. For example, it can be manufactured by providing an alignment film on a substrate and forming the anisotropic dye film of the present invention on the surface of the alignment film.
 偏光素子は異方性色素膜だけに限らず、偏光性能を向上させる、機械的強度を向上させる等の機能を有するオーバーコート層;粘着層又は反射防止層;配向膜;位相差フィルムとしての機能、輝度向上フィルムとしての機能、反射又は反射防止フィルムとしての機能、半透過反射フィルムとしての機能、拡散フィルムとしての機能などの光学機能を有する層;等、と組み合わせて使用してもよい。具体的には、前述の様々な機能を有する層を塗布や貼合等により積層形成し、積層体として使用してもよい。 The polarizing element is not limited to anisotropic dye films, and may be used in combination with an overcoat layer having functions such as improving polarization performance and mechanical strength; an adhesive layer or anti-reflection layer; an alignment film; a layer having optical functions such as a phase difference film, a brightness enhancement film, a reflective or anti-reflection film, a semi-transparent reflective film, or a diffusion film; etc. Specifically, the layers having the various functions described above may be laminated by coating or lamination, etc., and used as a laminate.
 これらの層は、製造プロセス、特性および機能に合わせ適宜設けることができ、その積層の位置、順番等は特に限定されない。たとえば、各層を形成する位置は、異方性色素膜の上であってもよく、異方性色素膜を設けた基板の反対面であってもよい。また、各層を形成する順番は、異方性色素膜を形成する前でも形成した後でもよい。 These layers can be provided as appropriate in accordance with the manufacturing process, characteristics, and functions, and there are no particular limitations on the position and order of lamination. For example, each layer may be formed on the anisotropic dye film, or on the opposite side of the substrate on which the anisotropic dye film is provided. Furthermore, the order in which each layer is formed may be either before or after the anisotropic dye film is formed.
 これら光学機能を有する層は、以下の様な方法により形成することができる。 These layers with optical functions can be formed by the following methods:
 位相差フィルムとしての機能を有する層は、位相差フィルムを、偏光素子を構成する他の層に塗布や貼合等を行うことにより形成することができる。位相差フィルムは、たとえば、特開平2-59703号公報、特開平4-230704号公報等に記載の延伸処理を施したり、特開平7-230007号公報等に記載された処理を施したりすることにより形成することができる。 The layer that functions as a retardation film can be formed by coating or laminating a retardation film onto other layers that make up the polarizing element. The retardation film can be formed, for example, by carrying out the stretching treatment described in JP-A-2-59703 and JP-A-4-230704, or the treatment described in JP-A-7-230007.
 輝度向上フィルムとしての機能を有する層は、輝度向上フィルムを、偏光素子を構成する他の層に塗布や貼合等を行うことにより形成することができる。輝度向上フィルムは、たとえば、特開2002-169025号公報および特開2003-29030号公報に記載されるような方法で微細孔を形成することにより、又は、選択反射の中心波長が異なる2層以上のコレステリック液晶層を重畳することにより形成することができる。 The layer that functions as a brightness enhancement film can be formed by coating or laminating the brightness enhancement film onto other layers that make up the polarizing element. The brightness enhancement film can be formed, for example, by forming micropores using the methods described in JP-A-2002-169025 and JP-A-2003-29030, or by superimposing two or more cholesteric liquid crystal layers that have different central wavelengths of selective reflection.
 反射フィルム又は半透過反射フィルムとしての機能を有する層は、たとえば、蒸着やスパッタリングなどで得られた金属薄膜を、偏光素子を構成する他の層に塗布や貼合等を行うことにより形成することができる。 A layer that functions as a reflective film or semi-transparent reflective film can be formed, for example, by coating or laminating a thin metal film obtained by vapor deposition or sputtering onto other layers that make up the polarizing element.
 拡散フィルムとしての機能を有する層は、たとえば、偏光素子を構成する他の層に微粒子を含む樹脂溶液をコーティングすることにより形成することができる。 The layer that functions as a diffusion film can be formed, for example, by coating the other layers that make up the polarizing element with a resin solution that contains fine particles.
 位相差フィルムや光学補償フィルムとしての機能を有する層は、ディスコティック液晶性化合物、ネマティック液晶性化合物、スメクチック液晶性化合物、コレステリック液晶性化合物等の液晶性化合物を、偏光素子を構成する他の層に塗布して配向させることにより形成することができる。その際に、基板上に配向膜を設け、配向膜の表面に、位相差フィルムや光学補償フィルムを形成してもよい。  Layers that function as retardation films or optical compensation films can be formed by applying liquid crystal compounds such as discotic liquid crystal compounds, nematic liquid crystal compounds, smectic liquid crystal compounds, and cholesteric liquid crystal compounds to other layers that make up the polarizing element and orienting them. In this case, an orientation film may be provided on the substrate, and the retardation film or optical compensation film may be formed on the surface of the orientation film.
 本発明の異方性色素膜を、液晶素子(LCD)や有機エレクトロルミネッセンス素子(OLED)等の各種の表示素子に異方性色素膜等として用いる場合には、これらの表示素子を構成する電極基板等の表面に直接、本発明の異方性色素膜を形成してもよいし、本発明の異方性色素膜を形成した基板を、これら表示素子の構成部材として用いてもよい。 When the anisotropic dye film of the present invention is used as an anisotropic dye film in various display elements such as liquid crystal elements (LCDs) and organic electroluminescence elements (OLEDs), the anisotropic dye film of the present invention may be formed directly on the surface of an electrode substrate or the like that constitutes these display elements, or a substrate on which the anisotropic dye film of the present invention is formed may be used as a component of these display elements.
 以下に実施例により本発明をさらに具体的に説明する。本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。
 以下の記載において、「部」は「質量部」を意味する。
The present invention will be described in more detail below with reference to examples. The present invention is not limited to the following examples as long as it does not depart from the gist of the present invention.
In the following description, "parts" means "parts by mass".
[液晶相の同定方法]
 得られた組成物の液晶性は、示差走査熱量測定(セイコーインスツルメンツ社「DSC220CU」)、X線構造解析(リガク社「NANO-Viewer」)、ホットステージ(東陽テクニカ社「HCS302-LN190」)が付属する偏光顕微鏡(ニコンインステック社「ECLIPSE LV100N POL」)にて観察し、「液晶便覧」(丸善株式会社、平成12年10月30日発行)の9~50ページ、117~176ページ等に記載の方法にしたがって、液晶であることの同定を行った。
[Method for identifying liquid crystal phase]
The liquid crystallinity of the obtained composition was observed by differential scanning calorimetry (Seiko Instruments Inc. "DSC220CU"), X-ray structural analysis (Rigaku Corporation "NANO-Viewer"), and a polarizing microscope (Nikon Instech Inc. "Eclipse LV100N POL") equipped with a hot stage (Toyo Corporation "HCS302-LN190"), and the composition was identified as being liquid crystal in accordance with the method described on pages 9 to 50 and 117 to 176 of "Liquid Crystal Handbook" (Maruzen Co., Ltd., published on October 30, 2000).
[異方性色素膜の吸収軸/偏光軸方向の偏光に対する透過率の測定及び二色比の算出]
 得られた異方性色素膜の吸収軸/偏光軸方向の偏光に対する透過率は、グラントムソン偏光子を備える分光光度計(大塚電子社製、製品名「RETS-100」)を用いて測定した。
 異方性色素膜に直線偏光の測定光を入射し、異方性色素膜の吸収軸方向の偏光に対する透過率及び異方性色素膜の偏光軸方向の偏光に対する透過率を測定し、次式により二色比(D)を算出した。
  D=Az/Ay
 (式中、
 Ay=-log(Ty)であり;
 Az=-log(Tz)であり;
 Tzは、異方性色素膜の吸収軸方向の偏光に対する透過率であり;
 Tyは、異方性色素膜の偏光軸方向の偏光に対する透過率である。)
[Measurement of transmittance for polarized light in the absorption axis/polarization axis direction of anisotropic dye film and calculation of dichroic ratio]
The transmittance of the resulting anisotropic dye film for polarized light in the absorption axis/polarization axis direction was measured using a spectrophotometer equipped with a Glan-Thompson polarizer (manufactured by Otsuka Electronics Co., Ltd., product name "RETS-100").
Linearly polarized measurement light was incident on the anisotropic dye film, and the transmittance for polarized light in the absorption axis direction of the anisotropic dye film and the transmittance for polarized light in the polarization axis direction of the anisotropic dye film were measured, and the dichroic ratio (D) was calculated by the following formula.
D = Az/Ay
(Wherein,
Ay=-log(Ty);
Az=-log(Tz);
Tz is the transmittance of the anisotropic dye film for polarized light in the absorption axis direction;
Ty is the transmittance of the anisotropic dye film for polarized light in the direction of the polarization axis.
 具体的には、基材としてガラス上にポリイミドの配向膜(LX1400、日立化成デュポンマイクロシステムズ社製)が形成されたサンドイッチセル(セルギャップ:8.0μm又は10.0μm、成膜済みのポリイミドにあらかじめ布でラビング処理を施したもの)に、組成物を等方相で注入し、10℃/minで80℃まで冷却することにより異方性色素膜を得、さらに10℃/minで40℃まで冷却しながら、各温度で二色比を測定した。その中で、最大の二色比を示した温度及び波長における二色比をその異方性色素膜の二色比と決定した。 Specifically, the composition was injected in an isotropic phase into a sandwich cell (cell gap: 8.0 μm or 10.0 μm, polyimide film previously rubbed with cloth) with a polyimide alignment film (LX1400, Hitachi Chemical DuPont Microsystems) formed on a glass substrate, and an anisotropic dye film was obtained by cooling to 80°C at 10°C/min. The dichroic ratio was then measured at each temperature while further cooling to 40°C at 10°C/min. The dichroic ratio at the temperature and wavelength that showed the maximum dichroic ratio was determined to be the dichroic ratio of the anisotropic dye film.
 第1の発明において、上記測定した異方性色素膜の二色比としては、23以上が好ましい。
 第2の発明において、上記測定した異方性色素膜の二色比としては、13以上が好ましく、20以上がより好ましい。
In the first invention, the dichroic ratio of the anisotropic dye film measured as described above is preferably 23 or more.
In the second invention, the dichroic ratio of the anisotropic dye film measured as described above is preferably 13 or more, and more preferably 20 or more.
[耐光性評価]
 以下のようにして測定されるAzから、異方性色素膜の0時間(耐光性試験前)における最大Azを基準とした最大Az維持率(耐光性試験後の最大Az/耐光性試験前の最大Az×100)より耐光性を評価した。
[Light resistance evaluation]
From Az measured as described below, lightfastness was evaluated from the maximum Az maintenance rate (maximum Az after lightfastness test/maximum Az before lightfastness test×100) based on the maximum Az of the anisotropic dye film at 0 hours (before lightfastness test).
 具体的には、上記サンドイッチセルに、組成物を等方相で注入し、10℃/minで40℃まで冷却後、窒素雰囲気下、高圧水銀ランプ(500mJ/cm)で光重合することにより重合異方性色素膜を得、上記分光光度計で波長400~800nmの範囲において5nm間隔でTzを測定し、耐光性試験前のAzを求めた。さらに、同膜を耐候性試験機(アトラス社製、製品名「アトラスウエザオメータCI4000」、ブラックパネル温度58.0℃、試験槽内温度33.0℃、相対湿度50%、放射照度0.55W/m(340nm)、総露光量79.2kJ/m)に40時間投入し、耐光性試験を行った。耐光性試験後に上記分光光度計でTzを測定し、耐光性試験後のAzを測定した。
 なお、Az、Tzについては、前述の通りである。
Specifically, the composition was injected into the sandwich cell in an isotropic phase, cooled to 40°C at 10°C/min, and then photopolymerized under a nitrogen atmosphere with a high pressure mercury lamp (500mJ/ cm2 ) to obtain a polymerized anisotropic dye film, and Tz was measured at 5 nm intervals in the wavelength range of 400 to 800 nm with the above spectrophotometer to obtain Az before the light resistance test. Furthermore, the film was placed in a weather resistance tester (manufactured by Atlas, product name "Atlas Weatherometer CI4000", black panel temperature 58.0°C, test chamber temperature 33.0°C, relative humidity 50%, irradiance 0.55W/ m2 (340nm), total exposure 79.2kJ/ m2 ) for 40 hours to perform a light resistance test. After the light resistance test, Tz was measured with the above spectrophotometer, and Az after the light resistance test was measured.
Az and Tz are as described above.
(耐光性評価の評価基準)
 ○: 最大Az維持率が80%以上
 ×: 最大Az維持率が80%未満
(Evaluation Criteria for Light Fastness Evaluation)
○: Maximum Az retention rate is 80% or more ×: Maximum Az retention rate is less than 80%
[重合性液晶化合物の合成]
<重合性液晶化合物(I-1)>
 下記構造式で表される重合性液晶化合物(I-1)を特開2020-042305号公報の記載に従い合成した。式中、C1122はメチレン鎖が直鎖状に11個結合していることを意味する。
[Synthesis of polymerizable liquid crystal compound]
<Polymerizable Liquid Crystal Compound (I-1)>
A polymerizable liquid crystal compound (I-1) represented by the following structural formula was synthesized according to the description of JP2020-042305A, in which C11H22 means that 11 methylene chains are bonded in a linear manner.
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
 重合性液晶化合物(I-1)について、等方相出現温度(液晶から液体への相転移温度及び液体から液晶への相転移温度)を示差走査熱量測定により求めた。示差走査熱量測定には、重合性液晶化合物(I-1)100質量部に対して、重合禁止剤として4-メトキシフェノールを0.2質量部添加したものを用いた。
 この重合性液晶化合物(I-1)の液晶から液体への相転移温度は111.0℃、液体から液晶への相転移温度は109.4℃であった。
 なお、この温度が等方相出現温度であることは、偏光顕微鏡観察及びX線構造解析により確認した。
The isotropic phase appearance temperature (phase transition temperature from liquid crystal to liquid and from liquid to liquid crystal) of the polymerizable liquid crystal compound (I-1) was determined by differential scanning calorimetry. For the differential scanning calorimetry, 0.2 parts by mass of 4-methoxyphenol was added as a polymerization inhibitor to 100 parts by mass of the polymerizable liquid crystal compound (I-1).
The phase transition temperature of this polymerizable liquid crystal compound (I-1) from liquid crystal to liquid was 111.0°C, and the phase transition temperature from liquid crystal to liquid crystal was 109.4°C.
It should be noted that it was confirmed by observation with a polarizing microscope and X-ray structural analysis that this temperature was the isotropic phase appearance temperature.
[色素の合成]
<色素(II-1)>
 下記に記載の合成法に従い、色素(II-1)を合成した。化合物(II-1-a)は特開2010-155924号公報に記載の方法で合成した。
[Synthesis of dyes]
<Dye (II-1)>
Dye (II-1) was synthesized according to the synthesis method described below: Compound (II-1-a) was synthesized according to the method described in JP-A-2010-155924.
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
 反応器に、窒素雰囲気下室温にて、化合物(II-1-a)(1.61g,5.0mmol)をN-メチルピロリドン(30mL)に溶解させた後、濃塩酸(2.1mL,4.2eq.)を加えて内温5℃に冷却した。亜硝酸ナトリウム水溶液(40質量%,0.40g,1.2eq.)を添加し、内温0~5℃にて1.5時間撹拌してジアゾニウム塩溶液を得た。別の反応器に、窒素雰囲気下室温にて、ジエチルアニリン(1.49g,2.0eq.)をN-メチルピロリドン(10mL)に溶解させた後、内温0℃に冷却した。ここに先のジアゾニウム塩溶液を内温0~5℃以内で添加した後、酢酸ナトリウム(5.0g,12eq.)を添加し、室温へ戻しながら1時間撹拌継続した。精製水(40mL)を滴下し沈殿を吸引濾取し、精製水(20mL)で掛け洗いし、褐色湿固体を得た。この粗体をシリカゲルカラムクロマトグラフィー(ヘキサン/ジクロロメタン)にて分離精製して濃縮した。得られた黄色固体をメタノール(40mL)へ分散して室温にて1時間撹拌した後、固形分をろ取して色素(II-1)を2.05g得た。 In a reactor, compound (II-1-a) (1.61 g, 5.0 mmol) was dissolved in N-methylpyrrolidone (30 mL) under a nitrogen atmosphere at room temperature, and then concentrated hydrochloric acid (2.1 mL, 4.2 eq.) was added and cooled to an internal temperature of 5°C. An aqueous solution of sodium nitrite (40% by mass, 0.40 g, 1.2 eq.) was added and stirred at an internal temperature of 0 to 5°C for 1.5 hours to obtain a diazonium salt solution. In a separate reactor, diethylaniline (1.49 g, 2.0 eq.) was dissolved in N-methylpyrrolidone (10 mL) under a nitrogen atmosphere at room temperature, and then cooled to an internal temperature of 0°C. The diazonium salt solution was added to this at an internal temperature of 0 to 5°C, and then sodium acetate (5.0 g, 12 eq.) was added and stirred for 1 hour while returning to room temperature. Purified water (40 mL) was added dropwise, and the precipitate was collected by suction filtration and washed with purified water (20 mL) to obtain a brown wet solid. This crude product was separated and purified by silica gel column chromatography (hexane/dichloromethane) and concentrated. The resulting yellow solid was dispersed in methanol (40 mL) and stirred at room temperature for 1 hour, after which the solid was collected by filtration to obtain 2.05 g of dye (II-1).
 色素(II-1)について、核磁気共鳴(NMR)スペクトル測定による構造確認を行った。結果を以下に示す。
H-NMR(CDCl,400MHz)δ0.93(t,3H,J=7.1Hz),δ1.10-1.18(m,2H),δ1.22-1.38(m,15H),δ1.46-1.56(m,2H),δ1.87-2.02(m,4H),δ2.50-2.60(m,1H),δ3.50(q,4H,J=6.6Hz),δ6.77(d,2H,J=8.7Hz)δ7.33(d,2H,J=8.7Hz),δ7.61(d,2H,J=8.4Hz),δ7.71(d,2H,J=8.4Hz),δ7.87-7.97(m,4H)
The structure of dye (II-1) was confirmed by nuclear magnetic resonance (NMR) spectroscopy, and the results are shown below.
1H -NMR ( CDCl3 , 400MHz) δ0.93 (t, 3H, J = 7.1Hz), δ1.10-1.18 (m, 2H), δ1.22-1.38 (m, 15H), δ1.46-1.56 (m, 2H), δ1.87-2.02 (m, 4H), δ2.50-2.60 (m, 1H), δ3.50 (q, 4H, J = 6.6Hz), δ6.77 (d, 2H, J = 8.7Hz), δ7.33 (d, 2H, J = 8.7Hz), δ7.61 (d, 2H, J = 8.4Hz), δ7.71 (d, 2H, J = 8.4Hz), δ7.87-7.97 (m, 4H)
<色素(II-2)>
 下記に記載の合成法に従い、色素(II-2)を合成した。
<Dye (II-2)>
Dye (II-2) was synthesized according to the synthesis method described below.
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
 反応器に、化合物(II-1-a)(0.64g,2.0mmol)をN-メチルピロリドン(10mL)に溶解させた後、濃塩酸(0.84mL,5.0eq.)を加えて内温5℃に冷却した。次に、亜硝酸ナトリウム(0.145g,1.05eq.)を少量の水に溶かして添加し、内温0~5℃にて1.5時間撹拌してジアゾニウム塩溶液を得た。別の反応器で、1―フェニルピロリジン(0.59g,2.0eq.)をメタノール(10mL)に溶解させた後、内温0℃に冷却した。ここに先のジアゾニウム塩溶液を内温0~5℃以内で添加した後、酢酸ナトリウム(2.0g,12eq.)を添加し、室温へ戻しながら1時間撹拌継続した。精製水を滴下し沈殿を吸引濾取し、精製水で掛け洗いし、褐色湿固体を得た。この粗体をシリカゲルカラムクロマトグラフィー(トルエン)にて分離精製して濃縮した。得られた黄色固体をメタノールへ分散して室温にて1時間撹拌した後、固形分をろ取して色素(II-2)を0.49g得た。 In a reactor, compound (II-1-a) (0.64 g, 2.0 mmol) was dissolved in N-methylpyrrolidone (10 mL), and concentrated hydrochloric acid (0.84 mL, 5.0 eq.) was added and cooled to an internal temperature of 5°C. Next, sodium nitrite (0.145 g, 1.05 eq.) was dissolved in a small amount of water and added, and the mixture was stirred at an internal temperature of 0 to 5°C for 1.5 hours to obtain a diazonium salt solution. In a separate reactor, 1-phenylpyrrolidine (0.59 g, 2.0 eq.) was dissolved in methanol (10 mL) and cooled to an internal temperature of 0°C. The diazonium salt solution was added to this at an internal temperature of 0 to 5°C, and then sodium acetate (2.0 g, 12 eq.) was added and the mixture was stirred for 1 hour while returning to room temperature. Purified water was added dropwise, and the precipitate was collected by suction filtration and washed with purified water to obtain a brown wet solid. This crude product was separated, purified, and concentrated by silica gel column chromatography (toluene). The resulting yellow solid was dispersed in methanol and stirred at room temperature for 1 hour, after which the solid was filtered to obtain 0.49 g of dye (II-2).
<色素(II-3)>
 下記に記載の合成法に従い、色素(II-3)を合成した。
<Dye (II-3)>
Dye (II-3) was synthesized according to the synthesis method described below.
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
 反応器に、窒素雰囲気下室温にて、化合物(II-1-a)(0.64g,2.0mmol)をN-メチルピロリドン(10mL)に溶解させた後、濃塩酸(0.99mL,5.0eq.)を加えて内温5℃に冷却した。亜硝酸ナトリウム水溶液(40質量%,0.145g,1.05eq.)を添加し、内温0~5℃にて1.5時間撹拌した後、スルファミン酸(10質量%、0.3mL)を添加してジアゾニウム塩溶液を得た。別の反応器に、窒素雰囲気下室温にて、N-フェニルピペリジン(0.645g,2.0eq.)をメタノール(10mL)に溶解させた後、内温0℃に冷却した。ここに先のジアゾニウム塩溶液を内温0~5℃以内で添加した後、酢酸ナトリウム(2.0g,12eq.)を添加し、室温へ戻しながら1時間撹拌継続した。精製水(40mL)を滴下し沈殿を吸引濾取し、精製水(20mL)で掛け洗いし、褐色湿固体を得た。この粗体をシリカゲルカラムクロマトグラフィー(ヘキサン/ジクロロメタン)にて分離精製して濃縮した。得られた黄色固体をメタノール(40mL)へ分散して室温にて1時間撹拌した後、固形分をろ取して色素(II-3)を0.25g得た。 In a reactor, compound (II-1-a) (0.64 g, 2.0 mmol) was dissolved in N-methylpyrrolidone (10 mL) under a nitrogen atmosphere at room temperature, and then concentrated hydrochloric acid (0.99 mL, 5.0 eq.) was added and cooled to an internal temperature of 5°C. An aqueous solution of sodium nitrite (40% by mass, 0.145 g, 1.05 eq.) was added, and the mixture was stirred at an internal temperature of 0 to 5°C for 1.5 hours, and then sulfamic acid (10% by mass, 0.3 mL) was added to obtain a diazonium salt solution. In another reactor, N-phenylpiperidine (0.645 g, 2.0 eq.) was dissolved in methanol (10 mL) under a nitrogen atmosphere at room temperature, and then cooled to an internal temperature of 0°C. The diazonium salt solution was added here at an internal temperature of 0 to 5°C, and then sodium acetate (2.0 g, 12 eq.) was added, and the mixture was stirred for 1 hour while being returned to room temperature. Purified water (40 mL) was added dropwise, and the precipitate was collected by suction filtration and washed with purified water (20 mL) to obtain a brown wet solid. This crude material was separated and purified by silica gel column chromatography (hexane/dichloromethane) and concentrated. The resulting yellow solid was dispersed in methanol (40 mL) and stirred at room temperature for 1 hour, after which the solid was collected by filtration to obtain 0.25 g of dye (II-3).
<色素(II-4)>
 下記に記載の合成法に従い、色素(II-4)を合成した。
<Dye (II-4)>
Dye (II-4) was synthesized according to the synthesis method described below.
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
化合物(II-4-a)の合成:
 窒素気流下室温にて、化合物(II-1-a)(15.0g,0.0467mol)に酢酸(500mL)を加え、35℃で撹拌溶解し、1-ニトロソ-4-ニトロベンゼン(7.8g,1.1eq.)を分割投入し、室温にて一夜撹拌継続した。反応液を精製水200mLに注ぎ、暫く室温撹拌した後、吸引濾取し、精製水(200mL)、メタノール(200mL)でリンスし、化合物(II-4-a)を15.9g得た。
Synthesis of compound (II-4-a):
Acetic acid (500 mL) was added to compound (II-1-a) (15.0 g, 0.0467 mol) at room temperature under a nitrogen stream, and the mixture was stirred and dissolved at 35° C., and 1-nitroso-4-nitrobenzene (7.8 g, 1.1 eq.) was added in portions, and the mixture was stirred at room temperature overnight. The reaction solution was poured into 200 mL of purified water, stirred at room temperature for a while, filtered by suction, and rinsed with purified water (200 mL) and methanol (200 mL) to obtain 15.9 g of compound (II-4-a).
化合物(II-4-b)の合成:
 窒素気流下室温にて、化合物(II-4-a)(15.9g,0.0348mol)、エタノール400mLを加え、撹拌溶解した。NaS・HO(11.1g,1.9eq.)を投入し、78℃で2時間攪拌した。反応液を精製水(110mL)に注ぎ、暫く室温撹拌した後、吸引濾取し、精製水(150mL)、メタノール(200mL)でリンスし、化合物(II-4-b)を13.8g得た。
Synthesis of compound (II-4-b):
Compound (II-4-a) (15.9 g, 0.0348 mol) was added to 400 mL of ethanol at room temperature under a nitrogen stream, and the mixture was stirred to dissolve. NaS·H 2 O (11.1 g, 1.9 eq.) was added, and the mixture was stirred at 78° C. for 2 hours. The reaction solution was poured into purified water (110 mL), stirred at room temperature for a while, filtered by suction, and rinsed with purified water (150 mL) and methanol (200 mL) to obtain 13.8 g of compound (II-4-b).
色素(II-4)の合成:
 反応器に、室温にて、化合物(II-4-b)(2.0g,4.70mmol)をN-メチルピロリドン(50mL)に溶解させた後、濃塩酸(1.37mL,3.8eq.)を加えて内温5℃に冷却した。亜硝酸ナトリウム(0.356g,1.1eq.)を少量の水に溶かして滴下し、内温0~5℃にて1時間撹拌してジアゾニウム塩溶液を得た。別の反応器に、窒素雰囲気下室温にて、ジエチルアニリン(1.05g,1.5eq.)、スルファミン酸(0.138g,1.4mmol)をメタノール(50mL)に溶解させた後、内温5℃に冷却した。ここに先のジアゾニウム塩溶液を内温0~5℃以内で添加し、内温0~5℃以内で4時間、室温へ戻しながら1時間撹拌継続した。酢酸ナトリウム(0.85g,14mmol)を加え室温で1時間、攪拌した。精製水(100mL)を滴下し沈殿を吸引濾取し、精製水(100mL)で掛け洗いし、褐色湿固体を得た。この粗体をシリカゲルカラムクロマトグラフィー(ヘキサン/ジクロロメタン)にて分離精製し、色素(II-4)を0.55g得た。
Synthesis of dye (II-4):
In a reactor, compound (II-4-b) (2.0 g, 4.70 mmol) was dissolved in N-methylpyrrolidone (50 mL) at room temperature, and then concentrated hydrochloric acid (1.37 mL, 3.8 eq.) was added and cooled to an internal temperature of 5° C. Sodium nitrite (0.356 g, 1.1 eq.) was dissolved in a small amount of water and added dropwise, and the mixture was stirred at an internal temperature of 0 to 5° C. for 1 hour to obtain a diazonium salt solution. In another reactor, diethylaniline (1.05 g, 1.5 eq.) and sulfamic acid (0.138 g, 1.4 mmol) were dissolved in methanol (50 mL) at room temperature under a nitrogen atmosphere, and the mixture was cooled to an internal temperature of 5° C. The diazonium salt solution was added thereto at an internal temperature of 0 to 5° C., and the mixture was stirred for 4 hours at an internal temperature of 0 to 5° C. for 1 hour while returning to room temperature. Sodium acetate (0.85 g, 14 mmol) was added and the mixture was stirred at room temperature for 1 hour. Purified water (100 mL) was added dropwise, and the precipitate was collected by suction filtration and washed with purified water (100 mL) to obtain a brown wet solid. This crude product was separated and purified by silica gel column chromatography (hexane/dichloromethane) to obtain 0.55 g of dye (II-4).
 色素(II-4)の10ppmクロロホルム溶液での極大吸収波長(λmax1)は495nmであった。 The maximum absorption wavelength (λ max1 ) of dye (II-4) in a 10 ppm chloroform solution was 495 nm.
 色素(II-4)について、NMRスペクトル測定による構造確認を行った。結果を以下に示す。
H-NMR(CDCl,400MHz)δ0.91(t,3H, J=6.9Hz),δ1.01-1.16(m,2H),δ1.24-1.35(m,14H),δ1.44-1.51(m,2H),δ1.89-1.96(m,4H),δ2.50-2.60(m,1H),δ3.45-3.52(m,4H),δ6.73-6.75(m,2H),δ7.33(d,2H,J=8.2Hz),δ7.61(d,2H,J=8.2Hz),δ7.77(d,2H,J=8.8Hz),δ7.90(d,2H,J=8.8Hz),δ7.90-8.10(m,6H)
The structure of dye (II-4) was confirmed by NMR spectrum measurement, and the results are shown below.
1H -NMR ( CDCl3 , 400MHz) δ 0.91 (t, 3H, J=6.9Hz), δ1.01-1.16(m,2H), δ1.24-1.35(m,14H), δ1.44-1.51(m,2H), δ1.89-1.96(m,4H), δ2.50-2.60(m,1H), δ3.45-3.52(m,4H), δ6.73-6.75(m,2H), δ7.33(d,2H,J=8.2Hz), δ7.61(d,2H,J=8.2Hz), δ7.77(d,2H,J=8.8Hz), δ7.90(d,2H,J=8.8Hz), δ7.90-8.10(m,6H)
<色素(II-5)>
 下記に記載の合成法に従い、色素(II-5)を合成した。
<Dye (II-5)>
Dye (II-5) was synthesized according to the synthesis method described below.
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
化合物(II-5-a)の合成:
 N-エチルアニリン(130.0g,1073mmol)、2-ヨードプロパン(200g,1080mmol)、炭酸カリウム(297g,2146mmol)、アセトニトリル(520mL)を混合し、還流状態で16時間加熱撹拌した。25℃まで冷却した後、反応液を濾過し、ろ液を濃縮した。得られた黄色油状の粗体をシリカゲルクロマトグラフィー(ヘキサン/ジクロロメタン)で精製し、化合物(II-5-a)を100g得た。
Synthesis of compound (II-5-a):
N-Ethylaniline (130.0 g, 1073 mmol), 2-iodopropane (200 g, 1080 mmol), potassium carbonate (297 g, 2146 mmol), and acetonitrile (520 mL) were mixed and heated and stirred under reflux for 16 hours. After cooling to 25°C, the reaction solution was filtered, and the filtrate was concentrated. The resulting yellow oily crude product was purified by silica gel chromatography (hexane/dichloromethane) to obtain 100 g of compound (II-5-a).
色素(II-5)の合成:
 反応器に、窒素雰囲気下室温にて、化合物(II-4-b)(1.1g,2.58mmol)をN-メチルピロリドン(20mL)に溶解させた後、濃塩酸(0.75g,3.5eq.)を加えて内温5℃に冷却した。亜硝酸ナトリウム(0.20mg,1.1eq.)を滴下し、内温0~5℃にて1時間撹拌してジアゾニウム塩溶液を得た。別の反応器に、窒素雰囲気下室温にて、化合物(II-5-a)(0.842g,2.0eq.)、スルファミン酸(1.0g,10.5mmol)をメタノール(12mL)、テトラヒドロフラン(2mL)に溶解させた後、内温0℃に冷却した。ここに先のジアゾニウム塩溶液を内温0~5℃以内で20分間かけて添加し、内温0~5℃以内で4時間、室温へ戻しながら1時間撹拌継続した。酢酸ナトリウム(0.85g,14mmol)を加え室温で1時間、攪拌した。精製水(20mL)を滴下し沈殿を吸引濾取し、精製水(20mL)で掛け洗いし、褐色湿固体を得た。この粗体をシリカゲルカラムクロマトグラフィー(ヘキサン/ジクロロメタン)にて分離精製し、色素(II-5)を0.30g得た。
Synthesis of dye (II-5):
In a reactor, under a nitrogen atmosphere at room temperature, compound (II-4-b) (1.1 g, 2.58 mmol) was dissolved in N-methylpyrrolidone (20 mL), and then concentrated hydrochloric acid (0.75 g, 3.5 eq.) was added and cooled to an internal temperature of 5° C. Sodium nitrite (0.20 mg, 1.1 eq.) was added dropwise, and the mixture was stirred at an internal temperature of 0 to 5° C. for 1 hour to obtain a diazonium salt solution. In another reactor, under a nitrogen atmosphere at room temperature, compound (II-5-a) (0.842 g, 2.0 eq.), sulfamic acid (1.0 g, 10.5 mmol) were dissolved in methanol (12 mL) and tetrahydrofuran (2 mL), and then cooled to an internal temperature of 0° C. The diazonium salt solution was added thereto over 20 minutes at an internal temperature of 0 to 5° C., and stirring was continued for 4 hours at an internal temperature of 0 to 5° C., and for 1 hour while returning to room temperature. Sodium acetate (0.85 g, 14 mmol) was added and stirred at room temperature for 1 hour. Purified water (20 mL) was added dropwise, and the precipitate was collected by suction filtration and washed with purified water (20 mL) to obtain a brown wet solid. This crude product was separated and purified by silica gel column chromatography (hexane/dichloromethane) to obtain 0.30 g of dye (II-5).
 色素(II-5)の10ppmクロロホルム溶液での極大吸収波長(λmax1)は497nmであった。 The maximum absorption wavelength (λ max1 ) of dye (II-5) in a 10 ppm chloroform solution was 497 nm.
 色素(II-5)について、NMRスペクトル測定による構造確認を行った。結果を以下に示す。
H-NMR(CDCl,400MHz)δ0.90-0.96(m,3H),δ1.02-1.17(m,2H),δ1.18-1.42(m,17H),δ1.46-1.59(m,1H),δ1.88-2.02(m,4H),δ2.52-2.59(m,1H),δ3.40-3.45(m,2H),δ4.21-4.35(m,1H),δ6.83-6.86(m,2H),δ7.35(d,2H,J=8.2Hz),δ7.64(d,2H,J=8.2Hz),δ7.77(d,2H,J=8.8Hz),δ7.90-8.10(m,8H)
The structure of dye (II-5) was confirmed by NMR spectrum measurement, and the results are shown below.
1H -NMR ( CDCl3 , 400MHz) δ0.90-0.96 (m, 3H), δ1.02-1.17 (m, 2H), δ1.18-1.42 (m, 17H), δ1.46-1.59 (m, 1H), δ1.88-2.02 (m, 4H), δ2.52-2.59 (m, 1H), δ3.40-3.45 (m, 2H), δ4.21-4.35 (m, 1H), δ6.83-6.86 (m, 2H), δ7.35 (d, 2H, J=8.2Hz), δ7.64 (d, 2H, J=8.2Hz), δ7.77 (d, 2H, J=8.8Hz), δ7.90-8.10 (m, 8H).
<色素(II-6)>
 下記に記載の合成法に従い、色素(II-6)を合成した。
<Dye (II-6)>
Dye (II-6) was synthesized according to the synthesis method described below.
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
化合物(II-6-a)の合成:
 反応器に、窒素雰囲気下室温にて、N-メチルアニリン(50g,0.47mol)をアセトニトリル(200mL)に溶解させた後、2-ヨードプロパン(87g,1.1eq)、炭酸カリウム(129g,2.0eq)を加え、外温80℃、加熱還流下14時間撹拌した。25℃まで冷却した後、反応液を濾過し、ろ液を濃縮した。得られた黄色油状の粗体をシリカゲルクロマトグラフィー(ヘキサン/ジクロロメタン)で精製し、化合物(II-6-a)を39g得た。
Synthesis of compound (II-6-a):
In a reactor, N-methylaniline (50 g, 0.47 mol) was dissolved in acetonitrile (200 mL) at room temperature under a nitrogen atmosphere, and then 2-iodopropane (87 g, 1.1 eq) and potassium carbonate (129 g, 2.0 eq) were added, and the mixture was stirred for 14 hours under heating and reflux at an external temperature of 80° C. After cooling to 25° C., the reaction solution was filtered, and the filtrate was concentrated. The resulting yellow oily crude product was purified by silica gel chromatography (hexane/dichloromethane) to obtain 39 g of compound (II-6-a).
色素(II-6)の合成:
 反応器に、窒素雰囲気下室温にて、化合物(II-4-b)(433mg,2mmol)をN-メチルピロリドン(8mL)に溶解させた後、濃塩酸(319mg,3.0eq.)を加えて内温5℃に冷却した。亜硝酸ナトリウム水溶液(20質量%,397mg,1.2eq.)を滴下し、内温0~5℃にて1時間撹拌してジアゾニウム塩溶液を得た。別の反応器に、窒素雰囲気下室温にて、化合物(II-6-a)(314mg,2.0eq.)をメタノール(8mL)、テトラヒドロフラン(1mL)に溶解させた後、内温0℃に冷却した。ここに先のジアゾニウム塩溶液を内温0~5℃以内で20分間かけて添加し、内温0~5℃以内で4時間、室温へ戻しながら1時間撹拌継続した。精製水(5mL)を滴下し沈殿を吸引濾取し、精製水(5mL)で掛け洗いし、褐色湿固体を得た。この粗体をシリカゲルカラムクロマトグラフィー(ヘキサン/ジクロロメタン)にて分離精製し、色素(II-6)を101mg得た。
Synthesis of dye (II-6):
In a reactor, under a nitrogen atmosphere at room temperature, compound (II-4-b) (433 mg, 2 mmol) was dissolved in N-methylpyrrolidone (8 mL), and then concentrated hydrochloric acid (319 mg, 3.0 eq.) was added and cooled to an internal temperature of 5 ° C. An aqueous solution of sodium nitrite (20 mass%, 397 mg, 1.2 eq.) was added dropwise, and the mixture was stirred at an internal temperature of 0 to 5 ° C. for 1 hour to obtain a diazonium salt solution. In another reactor, under a nitrogen atmosphere at room temperature, compound (II-6-a) (314 mg, 2.0 eq.) was dissolved in methanol (8 mL) and tetrahydrofuran (1 mL), and the mixture was cooled to an internal temperature of 0 ° C. The diazonium salt solution was added thereto over 20 minutes at an internal temperature of 0 to 5 ° C., and the mixture was stirred for 4 hours at an internal temperature of 0 to 5 ° C. for 1 hour while returning to room temperature. Purified water (5 mL) was added dropwise, and the precipitate was collected by suction filtration, and washed with purified water (5 mL) to obtain a brown wet solid. This crude product was separated and purified by silica gel column chromatography (hexane/dichloromethane) to obtain 101 mg of dye (II-6).
 色素(II-6)の10ppmクロロホルム溶液での極大吸収波長(λmax1)は491nmであった。
 色素(II-6)について、NMRスペクトル測定による構造確認を行った。結果を以下に示す。
H-NMR(CDCl,400MHz)δ0.93(t,3H,J=6.9Hz),δ1.02-1.17(m,2H),δ1.18-1.42(m,16H),δ1.46-1.59(m,1H),δ1.88-2.02(m,4H),δ2.50-2.60(m,1H),δ2.92(s,3H),δ4.21-4.35(m,1H),δ6.83-6.95(m,2H),δ7.35(d,2H,J=8.2Hz),δ7.64(d,2H,J=8.2Hz),δ7.77(d,2H,J=8.8Hz),δ7.90-8.10(m,8H)
The maximum absorption wavelength (λ max1 ) of dye (II-6) in a 10 ppm chloroform solution was 491 nm.
The structure of dye (II-6) was confirmed by NMR spectrum measurement, and the results are shown below.
1H -NMR ( CDCl3 , 400MHz) δ0.93 (t, 3H, J = 6.9Hz), δ1.02-1.17 (m, 2H), δ1.18-1.42 (m, 16H), δ1.46-1.59 (m, 1H), δ1.88-2.02 (m, 4H), δ2.50-2.60 (m, 1H), δ2.92 (s, 3H), δ4.21-4.35 (m, 1H), δ6.83-6.95 (m, 2H), δ7.35 (d, 2H, J = 8.2Hz), δ7.64 (d, 2H, J = 8.2Hz), δ7.77 (d, 2H, J = 8.8Hz), δ7.90-8.10 (m, 8H)
<色素(II-7)>
 下記に記載の合成法に従い、色素(II-7)を合成した。
<Dye (II-7)>
Dye (II-7) was synthesized according to the synthesis method described below.
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
化合物(II-7-a)の合成:
 反応器に、窒素雰囲気下室温にて、N-イソプロピルアニリン(19.0g,0.140mol)をN,N-ジメチルホルムアミド(76mL)に溶解させた後、1-フルオロ-2-ヨードエタン(24.4g,1.1eq)、炭酸カリウム(38.8g,2.0eq)を加え、外温95℃、加熱還流下15時間撹拌した。25℃まで冷却した後、反応液を濾過し、ろ液を濃縮した。得られた黄色油状の粗体をシリカゲルクロマトグラフィー(ヘキサン/ジクロロメタン)で精製し、化合物(II-7-a)を7.91g得た。
Synthesis of compound (II-7-a):
In a reactor, N-isopropylaniline (19.0 g, 0.140 mol) was dissolved in N,N-dimethylformamide (76 mL) at room temperature under a nitrogen atmosphere, and then 1-fluoro-2-iodoethane (24.4 g, 1.1 eq) and potassium carbonate (38.8 g, 2.0 eq) were added, and the mixture was stirred for 15 hours under heating and reflux at an external temperature of 95° C. After cooling to 25° C., the reaction solution was filtered, and the filtrate was concentrated. The resulting yellow oily crude product was purified by silica gel chromatography (hexane/dichloromethane) to obtain 7.91 g of compound (II-7-a).
色素(II-7)の合成:
 反応器に、窒素雰囲気下室温にて、化合物(II-4-b)(1.74mg,2.35mmol)をN-メチルピロリドン(100mL)に溶解させた後、濃塩酸(1.18mL,3.5eq.)を加えて内温5℃に冷却した。亜硝酸ナトリウム(0.31g,1.1eq.)を少量の水に溶かした後、滴下し、内温0~5℃にて1時間撹拌してジアゾニウム塩溶液を得た。別の反応器に、窒素雰囲気下室温にて、化合物(II-7-a)(1.48g,2.0eq.)をメタノール(17mL)に溶解させた後、内温0℃に冷却した。ここに先のジアゾニウム塩溶液を内温0~5℃以内で添加し、内温0~5℃以内で1時間攪拌した後、酢酸ナトリウム(0.75g)加えて、室温へ戻しながら1時間撹拌継続した。精製水(20mL)を滴下し沈殿を吸引濾取し、精製水(50mL)、メタノール(200mL)で掛け洗いし、褐色湿固体を得た。この粗体をシリカゲルカラムクロマトグラフィー(ヘキサン/ジクロロメタン)にて分離精製し、色素(II-7)を0.274g得た。
Synthesis of dye (II-7):
In a reactor, under a nitrogen atmosphere at room temperature, compound (II-4-b) (1.74 mg, 2.35 mmol) was dissolved in N-methylpyrrolidone (100 mL), and concentrated hydrochloric acid (1.18 mL, 3.5 eq.) was added and cooled to an internal temperature of 5° C. Sodium nitrite (0.31 g, 1.1 eq.) was dissolved in a small amount of water, and then added dropwise, and stirred at an internal temperature of 0 to 5° C. for 1 hour to obtain a diazonium salt solution. In another reactor, under a nitrogen atmosphere at room temperature, compound (II-7-a) (1.48 g, 2.0 eq.) was dissolved in methanol (17 mL), and then cooled to an internal temperature of 0° C. The diazonium salt solution was added thereto at an internal temperature of 0 to 5° C. and stirred at an internal temperature of 0 to 5° C. for 1 hour, and then sodium acetate (0.75 g) was added and stirred for 1 hour while returning to room temperature. Purified water (20 mL) was added dropwise, and the precipitate was collected by suction filtration and washed with purified water (50 mL) and methanol (200 mL) to obtain a brown wet solid. This crude product was separated and purified by silica gel column chromatography (hexane/dichloromethane) to obtain 0.274 g of dye (II-7).
 色素(II-7)の10ppmクロロホルム溶液での極大吸収波長(λmax1)は470nmであった。
 色素(II-7)について、NMRスペクトル測定による構造確認を行った。結果を以下に示す。
H-NMR(CDCl,400MHz)δ0.90-0.95(m,3H),δ1.02-1.17(m,2H),δ1.18-1.42(m,14H),δ1.46-1.59(m,1H),δ1.88-2.02(m,4H),δ2.52-2.59(m,1H),δ3.65-3.75(m,2H),δ4.21-4.30(m,1H),δ6.54-6.60(m,1H),δ6.66-6.70(m,1H),δ7.35(d,2H,J=8.2Hz),δ7.64(d,2H,J=8.2Hz),δ7.77(d,2H,J=8.8Hz),δ7.90-8.10(m,8H)
The maximum absorption wavelength (λ max1 ) of dye (II-7) in a 10 ppm chloroform solution was 470 nm.
The structure of dye (II-7) was confirmed by NMR spectrum measurement, and the results are shown below.
1H -NMR ( CDCl3 , 400MHz) δ 0.90-0.95 (m, 3H), δ 1.02-1.17 (m, 2H), δ 1.18-1.42 (m, 14H), δ 1.46-1.59 (m, 1H), δ 1.88-2.02 (m, 4H), δ 2.52-2.59 (m, 1H), δ 3.65-3.75 (m, 2H) , δ 4.21-4.30 (m, 1H), δ 6.54-6.60 (m, 1H), δ 6.66-6.70 (m, 1H), δ 7.35 (d, 2H, J = 8.2 Hz), δ 7.64 (d, 2H, J = 8.2 Hz), δ 7.77 (d, 2H, J = 8.8 Hz), δ 7.90-8.10 (m, 8H)
<色素(II-8)>
 下記に記載の合成法に従い、色素(II-8)を合成した。
<Dye (II-8)>
Dye (II-8) was synthesized according to the synthesis method described below.
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
化合物(II-8-a)の合成:
 3,5,5-トリエチル-1-ヘキサノール(76.8g,532mmol)、47%臭化水素(HBr)水溶液(100.8g,586mmol)、濃硫酸(16.6g,185mmol)を混合し、120℃で5時間撹拌した。25℃まで冷却した後、ヘキサン(1200mL)へ添加し、精製水(2400mL×3回)で洗浄した。有機層を濃縮した後、シリカゲルクロマトグラフィー(ヘキサン)で精製し、化合物(II-8-a)を71.0g得た。
Synthesis of compound (II-8-a):
3,5,5-Triethyl-1-hexanol (76.8 g, 532 mmol), 47% aqueous hydrogen bromide (HBr) solution (100.8 g, 586 mmol), and concentrated sulfuric acid (16.6 g, 185 mmol) were mixed and stirred at 120° C. for 5 hours. After cooling to 25° C., the mixture was added to hexane (1200 mL) and washed with purified water (2400 mL x 3 times). The organic layer was concentrated and then purified by silica gel chromatography (hexane) to obtain 71.0 g of compound (II-8-a).
化合物(II-8-b)の合成:
 窒素気流下、4-ニトロフェノール(65.0g,467mmol)、化合物(II-8-a)(116.2g,560mmol)、ジメチルホルムアミド(520mL)、炭酸カリウム(129.1g,934mmol)を混合し、90℃で6時間撹拌した。ここへ精製水(1000mL)を添加し、酢酸エチル/ヘキサン=1/4混合液で抽出し、油層を濃縮した。シリカゲルクロマトグラフィー(酢酸エチル/ヘキサン)で精製し、化合物(II-8-b)を113.5g得た。
Synthesis of compound (II-8-b):
Under a nitrogen stream, 4-nitrophenol (65.0 g, 467 mmol), compound (II-8-a) (116.2 g, 560 mmol), dimethylformamide (520 mL), and potassium carbonate (129.1 g, 934 mmol) were mixed and stirred at 90° C. for 6 hours. Purified water (1000 mL) was added thereto, and the mixture was extracted with a 1/4 mixture of ethyl acetate and hexane, and the oil layer was concentrated. The mixture was purified by silica gel chromatography (ethyl acetate/hexane), and 113.5 g of compound (II-8-b) was obtained.
化合物(II-8-c)の合成:
 アルゴン気流下、化合物(II-8-b)(113.5g,427.7mmol)、酢酸エチル(1100mL)を混合した後、パラジウム炭素(5%Pd/C,含水量55質量%,11.4g)を添加し、水素雰囲気下25℃で60時間撹拌した。容器内をアルゴン置換した後、触媒を濾別した。触媒をジクロロメタンで抽出し、有機層を合わせて濃縮した後、シリカゲルクロマトグラフィー(ジクロロメタン)で精製し、化合物(II-8-c)を99.5g得た。
Synthesis of compound (II-8-c):
Compound (II-8-b) (113.5 g, 427.7 mmol) and ethyl acetate (1100 mL) were mixed under an argon stream, and then palladium carbon (5% Pd/C, water content 55% by mass, 11.4 g) was added and stirred under a hydrogen atmosphere at 25° C. for 60 hours. The atmosphere in the vessel was replaced with argon, and the catalyst was filtered off. The catalyst was extracted with dichloromethane, and the organic layers were combined and concentrated, and then purified by silica gel chromatography (dichloromethane) to obtain 99.5 g of compound (II-8-c).
化合物(II-8-d)の合成:
 窒素気流下室温にて、化合物(II-8-c)(43.3g,0.184mol)、酢酸(1.3L)を加え、撹拌溶解し、1-ニトロソ-4-ニトロベンゼン(28.0g,1.0eq.)を分割投入した。4時間撹拌後、1-ニトロソ-4-ニトロベンゼン(8.4g,0.3eq.)を追加添加し、室温にて一夜撹拌継続した。ジクロロメタン(3.9L)、精製水(1.3L)を注ぎ、暫く撹拌後油水分離した。水層をジクロロメタン(1.3L)で抽出した後、元の有機層と合わせ、精製水(1.3L)、飽和重曹水(1.3L)、飽和食塩水(500mL)で順次洗浄後、無水硫酸マグネシウム乾燥、濾過、濾液を濃縮し赤茶色固体を得た。この粗体をシリカゲルカラムクロマトグラフィー(ヘキサン/ジクロロメタン=3/1)で精製し、化合物(II-8-d)を52.08g得た。
Synthesis of compound (II-8-d):
Compound (II-8-c) (43.3 g, 0.184 mol) and acetic acid (1.3 L) were added at room temperature under a nitrogen stream, stirred to dissolve, and 1-nitroso-4-nitrobenzene (28.0 g, 1.0 eq.) was added in portions. After stirring for 4 hours, 1-nitroso-4-nitrobenzene (8.4 g, 0.3 eq.) was added, and stirring was continued at room temperature overnight. Dichloromethane (3.9 L) and purified water (1.3 L) were poured, and after stirring for a while, oil and water were separated. The aqueous layer was extracted with dichloromethane (1.3 L), combined with the original organic layer, washed successively with purified water (1.3 L), saturated sodium bicarbonate water (1.3 L), and saturated saline (500 mL), dried over anhydrous magnesium sulfate, filtered, and the filtrate was concentrated to obtain a reddish brown solid. This crude product was purified by silica gel column chromatography (hexane/dichloromethane=3/1) to obtain 52.08 g of compound (II-8-d).
化合物(II-8-e)の合成:
 化合物(II-8-d)(52.0g,0.141mol)とエタノール(520mL)、精製水(52mL)と硫化ナトリウム五水和物(NaS・5HO)(47.4g,2.0eq.)を加え外温80℃で6時間撹拌した。室温まで放冷後、反応液を精製水(500mL)に注ぎ暫く撹拌後、吸引濾取し、精製水(250mL)でリンスした。得られた固体をシリカゲルカラムクロマトグラフィー(ジクロロメタン)で精製し、化合物(II-8-e)を34.40g得た。
Synthesis of compound (II-8-e):
Compound (II-8-d) (52.0 g, 0.141 mol), ethanol (520 mL), purified water (52 mL), and sodium sulfide pentahydrate (Na 2 S.5H 2 O) (47.4 g, 2.0 eq.) were added and stirred at an external temperature of 80° C. for 6 hours. After cooling to room temperature, the reaction solution was poured into purified water (500 mL) and stirred for a while, then filtered by suction and rinsed with purified water (250 mL). The obtained solid was purified by silica gel column chromatography (dichloromethane) to obtain 34.40 g of compound (II-8-e).
化合物(II-8-f)の合成:
 窒素気流下室温にて、化合物(II-8-e)(34.4g,0.101mol)、酢酸(1.0L)を加え、撹拌溶解し、1-ニトロソ-4-ニトロベンゼン(20.0g,1.3eq.)を分割投入し、室温にて一夜撹拌継続した。反応液を精製水に注ぎ、暫く室温撹拌した後、吸引濾取し、精製水でリンスした。この固体をシリカゲルカラムクロマトグラフィー(クロロホルム)で精製し、化合物(II-8-f)を38.6g得た。
Synthesis of compound (II-8-f):
Compound (II-8-e) (34.4 g, 0.101 mol) and acetic acid (1.0 L) were added at room temperature under a nitrogen stream and stirred to dissolve, and 1-nitroso-4-nitrobenzene (20.0 g, 1.3 eq.) was added in portions and stirred at room temperature overnight. The reaction solution was poured into purified water, stirred at room temperature for a while, filtered by suction, and rinsed with purified water. This solid was purified by silica gel column chromatography (chloroform) to obtain 38.6 g of compound (II-8-f).
化合物(II-8-g)の合成:
 窒素雰囲気下室温にて、化合物(II-8-f)(38.6g,81.5mmol)とエタノール(386mL)、精製水(39mL)とNaS・5HO(27.4g,2.0eq.)を加え外温80℃で6時間撹拌した。室温まで放冷後、反応液を精製水(400mL)に注ぎ暫く撹拌後、吸引濾取し、精製水(200mL)でリンスした。得られた固体をシリカゲルカラムクロマトグラフィー(ヘキサン/ジクロロメタン=1/1)で精製し、化合物(II-8-g)を30.20g得た。
Synthesis of compound (II-8-g):
Compound (II-8-f) (38.6 g, 81.5 mmol), ethanol (386 mL), purified water (39 mL) and Na 2 S.5H 2 O (27.4 g, 2.0 eq.) were added at room temperature under a nitrogen atmosphere, and the mixture was stirred at an external temperature of 80° C. for 6 hours. After cooling to room temperature, the reaction solution was poured into purified water (400 mL) and stirred for a while, then filtered by suction and rinsed with purified water (200 mL). The obtained solid was purified by silica gel column chromatography (hexane/dichloromethane=1/1) to obtain 30.20 g of compound (II-8-g).
色素(II-8)の合成:
 化合物(II-8-g)(1.5g,3.38mmol)、HCl(1.4mL)をN-メチル-2-ピロリドン(NMP)(20mL)に溶解させ、内温0℃に冷却した。硝酸ナトリウム(0.256g,3.718mmol)を5mLの精製水に溶解させ、先の溶液に内温0~3℃以内で滴下し、内温0~2℃にて1時間撹拌した。別の反応器に、窒素雰囲気下室温にて、2-[エチル(フェニル)アミノ]酢酸(1.05g,1.5eq.)をメタノール(10mL)に溶解させた後、酢酸ナトリウム(1.44g)を加え、内温0℃に冷却した。ここに先のジアゾニウム塩溶液を内温0~5℃以内で30分間掛けて添加し、内温0~5℃で1時間、室温へ戻しながら2時間撹拌した。精製水を添加し、メタノールにて濾過、洗浄を行い、得た粗体について、シリカゲルカラムクロマトグラフィー(トルエン/ジクロロメタン=1/3)にてカラム精製し、色素(II-8)を0.24g得た。
Synthesis of dye (II-8):
Compound (II-8-g) (1.5 g, 3.38 mmol) and HCl (1.4 mL) were dissolved in N-methyl-2-pyrrolidone (NMP) (20 mL) and cooled to an internal temperature of 0° C. Sodium nitrate (0.256 g, 3.718 mmol) was dissolved in 5 mL of purified water and added dropwise to the previous solution at an internal temperature of 0 to 3° C. and stirred at an internal temperature of 0 to 2° C. for 1 hour. In another reactor, 2-[ethyl(phenyl)amino]acetic acid (1.05 g, 1.5 eq.) was dissolved in methanol (10 mL) at room temperature under a nitrogen atmosphere, and then sodium acetate (1.44 g) was added and cooled to an internal temperature of 0° C. The previous diazonium salt solution was added thereto over 30 minutes at an internal temperature of 0 to 5° C., and stirred for 1 hour at an internal temperature of 0 to 5° C. and for 2 hours while returning to room temperature. Purified water was added, and the mixture was filtered and washed with methanol. The resulting crude product was purified by silica gel column chromatography (toluene/dichloromethane=1/3) to obtain 0.24 g of dye (II-8).
 色素(II-8)の10ppmクロロホルム溶液での極大吸収波長(λmax1)は491nmであった。
 また、NMRスペクトル測定による構造確認を行った。結果を以下に示す。
H-NMR(CDCl,400MHz)δ0.92(s,9H),δ1.02(d,3H,J=6.8Hz),δ1.12-1.34(m,5H),δ1.66-1.85(m,3H),δ3.54(q,2H,J=6.8Hz),δ3.698(q,2H,J=8.8Hz),δ4.09(t,2H,J=6.8Hz),δ4.31(t,2H,J=6.8Hz),δ6.83(d,2H,J=9.2Hz),δ7.03(d,2H,J=9.2Hz),δ7.92-8.10(m,12H)
The maximum absorption wavelength (λ max1 ) of dye (II-8) in a 10 ppm chloroform solution was 491 nm.
The structure was also confirmed by NMR spectroscopy, and the results are shown below.
1H -NMR ( CDCl3 , 400MHz) δ0.92 (s, 9H), δ1.02 (d, 3H, J = 6.8Hz), δ1.12-1.34 (m, 5H), δ1.66-1.85 (m, 3H), δ3.54 (q, 2H, J = 6.8Hz), δ3.698 (q, 2H, J = 8.8Hz), δ4.09 (t, 2H, J = 6.8Hz), δ4.31 (t, 2H, J = 6.8Hz), δ6.83 (d, 2H, J = 9.2Hz), δ7.03 (d, 2H, J = 9.2Hz), δ7.92-8.10 (m, 12H)
<色素(III-1)>
 下記に記載の合成法に従い、色素(III-1)を合成した。
<Dye (III-1)>
Dye (III-1) was synthesized according to the synthesis method described below.
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
化合物(III-1-a)の合成:
 4-ヨードアニリン(10mmol,2.2g)の2N HCl水溶液(15mL)とエタノール(30mL)の混合溶液を0℃に冷やした後、亜硝酸ナトリウム(11mmol,0.76g)の水溶液(10mL)を少しずつ滴下し、0℃で10分撹拌した。その後反応溶液にアミド硫酸(0.2mmol)を加えてさらに0℃で10分撹拌しジアゾニウム塩溶液を得た。一方、N,N-ジエチルアニリン(10mmol,1,49g)と酢酸ナトリウム(20mmol,1.7g)の入ったエタノール(200mL)と水(100mL)の混合溶液を0℃に冷やし、先のジアゾニウム塩溶液を少しずつ加え、室温まで昇温しながら撹拌した。得られた反応溶液にNaOHを加えてpH10~12に調整した。粗生成物をろ過、水洗したのち乾燥し、メタノールで再結晶を行うことにより、化合物(III-1-a)を2.78g得た。
Synthesis of compound (III-1-a):
A mixed solution of 4-iodoaniline (10 mmol, 2.2 g) in 2N HCl aqueous solution (15 mL) and ethanol (30 mL) was cooled to 0°C, and then an aqueous solution (10 mL) of sodium nitrite (11 mmol, 0.76 g) was added dropwise little by little, and the mixture was stirred at 0°C for 10 minutes. After that, amidosulfuric acid (0.2 mmol) was added to the reaction solution, and the mixture was further stirred at 0°C for 10 minutes to obtain a diazonium salt solution. Meanwhile, a mixed solution of N,N-diethylaniline (10 mmol, 1.49 g) and sodium acetate (20 mmol, 1.7 g) in ethanol (200 mL) and water (100 mL) was cooled to 0°C, and the diazonium salt solution was added little by little, and the mixture was stirred while being heated to room temperature. NaOH was added to the obtained reaction solution to adjust the pH to 10-12. The crude product was filtered, washed with water, dried, and recrystallized from methanol to obtain 2.78 g of compound (III-1-a).
色素(III-1)の合成:
 窒素雰囲気下、化合物(III-1-a)(2mmol,758mg)とCuI(0.3mmol,57mg)のテトラヒドロフラン(30mL)溶液にトリエチルアミン(30mL)、4-ブチルフェニルアセチレン(2.5mmol,332mg)、PdCl(PPh)2(0.1mmol,70mg)を加えた後、6時間加熱還流した。沈殿物をろ過した後、減圧下濃縮した。得られた粗生成物をメタノールで懸洗した後、シリカゲルクロマトグラフィー(展開液(ヘキサン:酢酸エチル=9:1(体積比))により精製することにより色素(III-1)を836mg得た。
Synthesis of dye (III-1):
Under a nitrogen atmosphere, triethylamine (30 mL), 4-butylphenylacetylene (2.5 mmol, 332 mg), and PdCl 2 (PPh 3 ) 2 (0.1 mmol, 70 mg) were added to a solution of compound (III-1-a) (2 mmol, 758 mg) and CuI (0.3 mmol, 57 mg) in tetrahydrofuran (30 mL), and the mixture was heated under reflux for 6 hours. The precipitate was filtered and then concentrated under reduced pressure. The obtained crude product was suspended and washed in methanol, and purified by silica gel chromatography (developing solution (hexane:ethyl acetate=9:1 (volume ratio)) to obtain 836 mg of dye (III-1).
 上記で合成した重合性液晶化合物(I-1)並びに色素(II-1)、(II-2)、(II-3)、(II-4)、(II-5)、(II-6)、(II-7)及び(II-8)と、比較のための色素(III-1)及び(III-2)の化学構造を以下に示す。
 この色素(III-2)の10ppmクロロホルム溶液での極大吸収波長(λmax1)は454nmであった。
The chemical structures of the polymerizable liquid crystal compound (I-1) and dyes (II-1), (II-2), (II-3), (II-4), (II-5), (II-6), (II-7) and (II-8) synthesized above, as well as the comparative dyes (III-1) and (III-2), are shown below.
The maximum absorption wavelength (λ max1 ) of this dye (III-2) in a 10 ppm chloroform solution was 454 nm.
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000037
〔第1の発明の実施例と比較例〕
[実施例1]
 クロロホルム4016.05部に、重合性液晶化合物(I-1)の20.05部、色素(II-1)の0.40部を加え、撹拌して相溶させた後、溶剤を除去することにより、組成物1Aを得た。組成物1Aのrn1/rn2は、0.75である。
 組成物1Aが液晶性を示すことは、ホットステージが付属する偏光顕微鏡にて、40℃で複屈折が観察されたことで確認した。
 得られた組成物1Aを用いて、上述の方法で二色比を決定するため、セルギャップ8.0μmのサンドウィッチセルを使用して異方性色素膜1Aを作製し、異方性色素膜1Aの二色比を決定した。
 また、クロロホルム6013.38部に、重合性液晶化合物(I-1)の24.15部、色素(II-1)の0.48部、重合開始剤(IGM Resins B.V.社製Irgacure 369)0.48部、界面活性剤(BYK社製BYK-361N)0.36部を加え、撹拌して相溶させた後、溶剤を除去することにより、組成物1Bを得た。
 得られた組成物1Bを用いて、上述の方法で耐光性を決定するため、セルギャップ8.0μmのサンドウィッチセルを使用して異方性色素膜1Bを作製し、異方性色素膜1Bの耐光性を決定した。
 二色比と耐光性の評価結果を表1に示す。
[Examples of the first invention and comparative examples]
[Example 1]
20.05 parts of the polymerizable liquid crystal compound (I-1) and 0.40 parts of the dye (II-1) were added to 4016.05 parts of chloroform, and the mixture was stirred to dissolve, and then the solvent was removed to obtain a composition 1A. The r n1 /r n2 ratio of the composition 1A was 0.75.
It was confirmed that Composition 1A exhibited liquid crystallinity by observing birefringence at 40° C. using a polarizing microscope equipped with a hot stage.
In order to determine the dichroic ratio by the above-mentioned method, an anisotropic dye film 1A was prepared using the obtained composition 1A in a sandwich cell having a cell gap of 8.0 μm, and the dichroic ratio of the anisotropic dye film 1A was determined.
Furthermore, 24.15 parts of the polymerizable liquid crystal compound (I-1), 0.48 parts of the dye (II-1), 0.48 parts of a polymerization initiator (Irgacure 369 manufactured by IGM Resins B.V.), and 0.36 parts of a surfactant (BYK-361N manufactured by BYK) were added to 6013.38 parts of chloroform, and the mixture was stirred to dissolve, and then the solvent was removed to obtain composition 1B.
In order to determine the light resistance by the above-mentioned method, an anisotropic dye film 1B was prepared using the obtained composition 1B in a sandwich cell having a cell gap of 8.0 μm, and the light resistance of the anisotropic dye film 1B was determined.
The evaluation results of the dichroic ratio and the light fastness are shown in Table 1.
[実施例2]
 色素(II-1)0.40部に代えて、色素(II-2)0.39部を加えた以外は実施例1の組成物1A及び異方性色素膜1Aと同様にして、組成物2A及び異方性色素膜2Aを得た。組成物2Aのrn1/rn2は、0.75である。
 組成物2Aが液晶性を示すことは、ホットステージが付属する偏光顕微鏡にて、40℃で複屈折が観察されたことで確認した。
 また、異方性色素膜2Aの二色比を決定した。
 色素(II-1)0.48部に代えて、色素(II-2)0.48部を加えた以外は実施例1の組成物1B及び異方性色素膜1Bと同様にして、組成物2B及び異方性色素膜2Bを得た。
 また、異方性色素膜2Bの耐光性を決定した。
 二色比と耐光性の評価結果を表1に示す。
[Example 2]
Except for adding 0.39 parts of dye (II-2) instead of 0.40 parts of dye (II-1), composition 2A and anisotropic dye film 2A were obtained in the same manner as composition 1A and anisotropic dye film 1A in Example 1. r n1 /r n2 of composition 2A was 0.75.
It was confirmed that Composition 2A exhibited liquid crystallinity by observing birefringence at 40° C. using a polarizing microscope equipped with a hot stage.
The dichroic ratio of the anisotropic dye film 2A was also determined.
Composition 2B and anisotropic dye film 2B were obtained in the same manner as composition 1B and anisotropic dye film 1B in Example 1, except that 0.48 parts of dye (II-2) was added instead of 0.48 parts of dye (II-1).
The light resistance of the anisotropic dye film 2B was also determined.
The evaluation results of the dichroic ratio and the light fastness are shown in Table 1.
[実施例3]
 色素(II-1)0.40部に代えて、色素(II-3)0.50部を加えた以外は実施例1の組成物1A及び異方性色素膜1Aと同様にして、組成物3A及び異方性色素膜3Aを得た。組成物3Aのrn1/rn2は、0.75である。
 組成物3Aが液晶性を示すことは、ホットステージが付属する偏光顕微鏡にて、40℃で複屈折が観察されたことで確認した。
 また、異方性色素膜3Aの二色比を決定した。
 色素(II-1)0.48部に代えて、色素(II-3)0.61部を加えた以外は実施例1の組成物1B及び異方性色素膜1Bと同様にして、組成物3B及び異方性色素膜3Bを得た。
 実施例1と同様の方法で、異方性色素膜3Bの耐光性を決定した。
 二色比と耐光性の評価結果を表1に示す。
[Example 3]
Except for adding 0.50 parts of dye (II-3) instead of 0.40 parts of dye (II-1), composition 3A and anisotropic dye film 3A were obtained in the same manner as composition 1A and anisotropic dye film 1A in Example 1. r n1 /r n2 of composition 3A was 0.75.
It was confirmed that Composition 3A exhibited liquid crystallinity by observing birefringence at 40° C. using a polarizing microscope equipped with a hot stage.
The dichroic ratio of the anisotropic dye film 3A was also determined.
Composition 3B and anisotropic dye film 3B were obtained in the same manner as composition 1B and anisotropic dye film 1B in Example 1, except that 0.61 parts of dye (II-3) was added instead of 0.48 parts of dye (II-1).
In the same manner as in Example 1, the light resistance of the anisotropic dye film 3B was determined.
The evaluation results of the dichroic ratio and the light fastness are shown in Table 1.
[実施例4]
 色素(II-1)0.40部に代えて、色素(II-4)0.39部を加えた以外は実施例1の組成物1A及び異方性色素膜1Aと同様にして、組成物4及び異方性色素膜4Aを得た。組成物4Aのrn1/rn2は、0.6である。
 組成物4Aが液晶性を示すことは、ホットステージが付属する偏光顕微鏡にて、40℃で複屈折が観察されたことで確認した。
 また、異方性色素膜4Aの二色比を決定した。
 色素(II-1)0.48部に代えて、色素(II-4)0.47部を加え、ほかは実施例1の組成物1B及び異方性色素膜1Bと同様にして、組成物4B及び異方性色素膜4Bを得た。
 また、異方性色素膜4Bの耐光性を決定した。
 二色比と耐光性の評価結果を表1に示す。
[Example 4]
Except for adding 0.39 parts of dye (II-4) instead of 0.40 parts of dye (II-1), composition 4 and anisotropic dye film 4A were obtained in the same manner as composition 1A and anisotropic dye film 1A in Example 1. r n1 /r n2 of composition 4A was 0.6.
It was confirmed that Composition 4A exhibited liquid crystallinity by observing birefringence at 40° C. using a polarizing microscope equipped with a hot stage.
The dichroic ratio of the anisotropic dye film 4A was also determined.
Composition 4B and anisotropic dye film 4B were obtained in the same manner as composition 1B and anisotropic dye film 1B in Example 1, except that 0.47 part of dye (II-4) was added instead of 0.48 part of dye (II-1).
The light resistance of the anisotropic dye film 4B was also determined.
The evaluation results of the dichroic ratio and the light fastness are shown in Table 1.
[実施例5]
 色素(II-1)0.40部に代えて、色素(II-5)0.39部を加えた以外は実施例1の組成物1A及び異方性色素膜1Aと同様にして、組成物5A及び異方性色素膜5Aを得た。組成物5Aのrn1/rn2は、0.6である。
 組成物5Aが液晶性を示すことは、ホットステージが付属する偏光顕微鏡にて、40℃で複屈折が観察されたことで確認した。
 また、異方性色素膜5Aの二色比を決定した。
 色素(II-1)0.48部に代えて、色素(II-5)0.48部を加えた以外は実施例1の組成物1B及び異方性色素膜1Bと同様にして、組成物5B及び異方性色素膜5Bを得た。
 また、異方性色素膜5Bの耐光性を決定した。
 二色比と耐光性の評価結果を表1に示す。
[Example 5]
Except for adding 0.39 parts of dye (II-5) instead of 0.40 parts of dye (II-1), composition 5A and anisotropic dye film 5A were obtained in the same manner as composition 1A and anisotropic dye film 1A in Example 1. r n1 /r n2 of composition 5A was 0.6.
It was confirmed that Composition 5A exhibited liquid crystallinity by observing birefringence at 40° C. using a polarizing microscope equipped with a hot stage.
The dichroic ratio of the anisotropic dye film 5A was also determined.
Composition 5B and anisotropic dye film 5B were obtained in the same manner as composition 1B and anisotropic dye film 1B in Example 1, except that 0.48 parts of dye (II-1) was replaced with 0.48 parts of dye (II-5).
The light resistance of the anisotropic dye film 5B was also determined.
The evaluation results of the dichroic ratio and the light fastness are shown in Table 1.
[実施例6]
 色素(II-1)0.40部に代えて、色素(II-6)0.40部を加えた以外は実施例1の組成物1A及び異方性色素膜1Aと同様にして、組成物6A及び異方性色素膜6Aを得た。組成物6Aのrn1/rn2は、0.6である。
 組成物6Aが液晶性を示すことは、ホットステージが付属する偏光顕微鏡にて、40℃で複屈折が観察されたことで確認した。
 また、異方性色素膜6Aの二色比を決定した。
 色素(II-1)0.48部に代えて、色素(II-6)0.48部を加えた以外は実施例1の組成物1B及び異方性色素膜1Bと同様にして、組成物6B及び異方性色素膜6Bを得た。
 また、異方性色素膜6Bの耐光性を決定した。
 二色比と耐光性の評価結果を表1に示す。
[Example 6]
Except for adding 0.40 parts of dye (II-6) instead of 0.40 parts of dye (II-1), composition 6A and anisotropic dye film 6A were obtained in the same manner as composition 1A and anisotropic dye film 1A in Example 1. r n1 /r n2 of composition 6A was 0.6.
It was confirmed that Composition 6A exhibited liquid crystallinity by observing birefringence at 40° C. using a polarizing microscope equipped with a hot stage.
The dichroic ratio of the anisotropic dye film 6A was also determined.
Composition 6B and anisotropic dye film 6B were obtained in the same manner as composition 1B and anisotropic dye film 1B in Example 1, except that 0.48 parts of dye (II-1) was replaced with 0.48 parts of dye (II-6).
The light resistance of the anisotropic dye film 6B was also determined.
The evaluation results of the dichroic ratio and the light fastness are shown in Table 1.
[実施例7]
 色素(II-1)0.40部に代えて、色素(II-7)0.42部を加えた以外は実施例1の組成物1A及び異方性色素膜1Aと同様にして、組成物7A及び異方性色素膜7Aを得た。組成物7Aのrn1/rn2は、0.6である。
 組成物7Aが液晶性を示すことは、ホットステージが付属する偏光顕微鏡にて、40℃で複屈折が観察されたことで確認した。
 また、異方性色素膜7Aの二色比を決定した。
 色素(II-1)0.48部に代えて、色素(II-7)0.52部を加えた以外は実施例1の組成物1B及び異方性色素膜1Bと同様にして、組成物7B及び異方性色素膜7Bを得た。
 また、異方性色素膜7Bの耐光性を決定した。
 二色比と耐光性の評価結果を表1に示す。
[Example 7]
Except for adding 0.42 parts of dye (II-7) instead of 0.40 parts of dye (II-1), composition 7A and anisotropic dye film 7A were obtained in the same manner as composition 1A and anisotropic dye film 1A in Example 1. r n1 /r n2 of composition 7A was 0.6.
It was confirmed that Composition 7A exhibited liquid crystallinity by observing birefringence at 40° C. using a polarizing microscope equipped with a hot stage.
The dichroic ratio of the anisotropic dye film 7A was also determined.
Composition 7B and anisotropic dye film 7B were obtained in the same manner as composition 1B and anisotropic dye film 1B in Example 1, except that 0.52 parts of dye (II-7) was added instead of 0.48 parts of dye (II-1).
The light resistance of the anisotropic dye film 7B was also determined.
The evaluation results of the dichroic ratio and the light fastness are shown in Table 1.
[比較例1]
 色素(II-1)0.40部に代えて、色素(III-1)0.35部を用いた以外は実施例1の組成物1A及び異方性色素膜1Aと同様にして、組成物8A及び異方性色素膜8Aを得た。組成物8Aのrn1/rn2は、1である。
 組成物8Aが液晶性を示すことは、ホットステージが付属する偏光顕微鏡にて、40℃で複屈折が観察されたことで確認した。
 また、異方性色素膜8Aの二色比を決定した。
 色素(II-1)0.48部に代えて、色素(III-1)0.42部を加えた以外は実施例1の組成物1B及び異方性色素膜1Bと同様にして、組成物8B及び異方性色素膜8Bを得た。
 また、異方性色素膜8Bの耐光性を決定した。
 二色比と耐光性の評価結果を表1に示す。
[Comparative Example 1]
Composition 8A and anisotropic dye film 8A were obtained in the same manner as composition 1A and anisotropic dye film 1A in Example 1, except that 0.35 parts of dye (III-1) was used instead of 0.40 parts of dye ( II -1).
It was confirmed that Composition 8A exhibited liquid crystallinity by observing birefringence at 40° C. using a polarizing microscope equipped with a hot stage.
The dichroic ratio of the anisotropic dye film 8A was also determined.
Composition 8B and anisotropic dye film 8B were obtained in the same manner as composition 1B and anisotropic dye film 1B in Example 1, except that 0.42 parts of dye (III-1) was added instead of 0.48 parts of dye (II-1).
The light resistance of the anisotropic dye film 8B was also determined.
The evaluation results of the dichroic ratio and the light fastness are shown in Table 1.
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000038
 表2より明らかなように、第1の発明の化合物を用いた実施例1~7では最大二色比は高い値を示し、耐光性も良好な結果であった。
 一方、比較例1では、二色比および耐光性が実施例に比較して低いことが示された。
As is clear from Table 2, in Examples 1 to 7 in which the compound of the first invention was used, the maximum dichroic ratio was high and the light resistance was also good.
On the other hand, in Comparative Example 1, the dichroic ratio and light fastness were lower than those in the Examples.
〔第2の発明の実施例と比較例〕
[実施例8]
 クロロホルム4016.05部に、重合性液晶化合物(I-1)の20.05部、色素(II-4)の0.39部を加え、撹拌して相溶させた後、溶剤を除去することにより、組成物9Aを得た。組成物9Aのrn1/rn2は0.6である。
 組成物9Aが液晶性を示すことは、ホットステージが付属する偏光顕微鏡にて、40℃で複屈折が観察されたことで確認した。
 得られた組成物9Aを用いて、上述の方法で二色比を決定するため、セルギャップ8.0μmのサンドウィッチセルを使用して異方性色素膜9Aを作製し、異方性色素膜8Aの二色比および直交位吸光度が極大となる波長(λmax2)を決定した。
 また、クロロホルム6013.38部に、重合性液晶化合物(I-1)の24.15部、色素(II-4)の0.47部、重合開始剤(IGM Resins B.V.社製Irgacure 369)0.48部、界面活性剤(BYK社製BYK-361N)0.36部を加え、撹拌して相溶させた後、溶剤を除去することにより、組成物9Bを得た。
 得られた組成物9Bを用いて、上述の方法で耐光性を決定するため、セルギャップ8.0μmのサンドウィッチセルを使用して異方性色素膜9Bを作製し、異方性色素膜9Bの耐光性を決定した。
 二色比と耐光性の評価結果を、色素(II-4)のλmax1、λmax2及びλmax2-λmax1の値と共に、表3に示す。
[Examples of the second invention and comparative examples]
[Example 8]
20.05 parts of the polymerizable liquid crystal compound (I-1) and 0.39 parts of the dye (II-4) were added to 4016.05 parts of chloroform, and the mixture was stirred to dissolve, and then the solvent was removed to obtain a composition 9A. The r n1 /r n2 ratio of the composition 9A was 0.6.
It was confirmed that Composition 9A exhibited liquid crystallinity by observing birefringence at 40° C. using a polarizing microscope equipped with a hot stage.
In order to determine the dichroic ratio by the above-mentioned method using the obtained composition 9A, an anisotropic dye film 9A was prepared using a sandwich cell with a cell gap of 8.0 μm, and the wavelength (λ max2 ) at which the dichroic ratio and orthogonal absorbance of the anisotropic dye film 8A were maximized was determined.
Furthermore, 24.15 parts of the polymerizable liquid crystal compound (I-1), 0.47 parts of the dye (II-4), 0.48 parts of a polymerization initiator (Irgacure 369 manufactured by IGM Resins B.V.), and 0.36 parts of a surfactant (BYK-361N manufactured by BYK) were added to 6013.38 parts of chloroform, and the mixture was stirred to dissolve, and then the solvent was removed to obtain composition 9B.
In order to determine the light resistance of the obtained composition 9B by the above-mentioned method, an anisotropic dye film 9B was prepared using a sandwich cell having a cell gap of 8.0 μm, and the light resistance of the anisotropic dye film 9B was determined.
The evaluation results of the dichroic ratio and light fastness are shown in Table 3 together with the values of λ max1 , λ max2 and λ max2 - λ max1 of dye (II-4).
[実施例9]
 色素(II-4)0.39部に代えて、色素(II-5)0.39部を加えた以外は実施例8の組成物9A及び異方性色素膜9Aと同様にして、組成物10A及び異方性色素膜10Aを得た。組成物10Aのrn1/rn2は0.6である。
 組成物10Aが液晶性を示すことは、ホットステージが付属する偏光顕微鏡にて、40℃で複屈折が観察されたことで確認した。
 また、異方性色素膜10Aの二色比および直交位吸光度が極大となる波長(λmax2)を決定した。
 色素(II-4)0.48部に代えて、色素(II-5)0.48部を加えた以外は実施例8の組成物9B及び異方性色素膜9Bと同様にして、組成物10B及び異方性色素膜10Bを得、異方性色素膜10Bの耐光性を決定した。
 二色比と耐光性の評価結果を、色素(II-5)のλmax1、λmax2及びλmax2-λmax1の値と共に、表3に示す。
[Example 9]
A composition 10A and an anisotropic dye film 10A were obtained in the same manner as in the composition 9A and anisotropic dye film 9A of Example 8, except that 0.39 parts of dye (II-5) was added instead of 0.39 parts of dye (II-4). The r n1 /r n2 of the composition 10A was 0.6.
It was confirmed that Composition 10A exhibited liquid crystallinity by observing birefringence at 40° C. using a polarizing microscope equipped with a hot stage.
In addition, the dichroic ratio and the wavelength (λ max2 ) at which the orthogonal absorbance of the anisotropic dye film 10A is maximized were determined.
Composition 10B and anisotropic dye film 10B were obtained in the same manner as composition 9B and anisotropic dye film 9B in Example 8, except that 0.48 parts of dye (II-5) was added instead of 0.48 parts of dye (II-4), and the light resistance of anisotropic dye film 10B was determined.
The evaluation results of the dichroic ratio and light fastness are shown in Table 3 together with the values of λ max1 , λ max2 and λ max2 - λ max1 of dye (II-5).
[実施例10]
 色素(II-4)0.39部に代えて、色素(II-6)0.40部を加えた以外は実施例8の組成物9A及び異方性色素膜9Aと同様にして、組成物11A及び異方性色素膜11Aを得た。組成物11Aのrn1/rn2は0.6である。
 組成物11Aが液晶性を示すことは、ホットステージが付属する偏光顕微鏡にて、40℃で複屈折が観察されたことで確認した。
 また、異方性色素膜11Aの二色比および直交位吸光度が極大となる波長(λmax2)を決定した。
 色素(II-4)0.48部に代えて、色素(II-6)0.48部を加え、ほかは実施例8の組成物9B及び異方性色素膜9Bと同様にして、組成物11B及び異方性色素膜11Bを得、異方性色素膜11Bの耐光性を決定した。
 二色比と耐光性の評価結果を、色素(II-6)のλmax1、λmax2及びλmax2-λmax1の値と共に、表3に示す。
[Example 10]
Composition 11A and anisotropic dye film 11A were obtained in the same manner as composition 9A and anisotropic dye film 9A in Example 8, except that 0.40 parts of dye (II-6) was added instead of 0.39 parts of dye (II-4). r n1 /r n2 of composition 11A was 0.6.
It was confirmed that Composition 11A exhibited liquid crystallinity by observing birefringence at 40° C. using a polarizing microscope equipped with a hot stage.
In addition, the dichroic ratio and the wavelength (λ max2 ) at which the orthogonal absorbance of the anisotropic dye film 11A is maximized were determined.
Composition 11B and anisotropic dye film 11B were obtained in the same manner as in Composition 9B and Anisotropic Dye Film 9B in Example 8, except that 0.48 parts of dye (II-4) was replaced with 0.48 parts of dye (II-6). The light resistance of the anisotropic dye film 11B was determined.
The evaluation results of the dichroic ratio and light fastness are shown in Table 3 together with the values of λ max1 , λ max2 and λ max2 - λ max1 of dye (II-6).
[実施例11]
 色素(II-4)0.39部に代えて、色素(II-7)0.42部を加えた以外は実施例8の組成物9A及び異方性色素膜9Aと同様にして、組成物12A及び異方性色素膜12Aを得た。組成物12Aのrn1/rn2は0.6である。
 組成物12Aが液晶性を示すことは、ホットステージが付属する偏光顕微鏡にて、40℃で複屈折が観察されたことで確認した。
 また、異方性色素膜12Aの二色比および直交位吸光度が極大となる波長(λmax2)を決定した。
 色素(II-4)0.48部に代えて、色素(II-7)0.52部を加え、ほかは実施例8の組成物9B及び異方性色素膜9Bと同様にして、組成物12B及び異方性色素膜12Bを得、異方性色素膜12Bの耐光性を決定した。
 二色比と耐光性の評価結果を、色素(II-7)のλmax1、λmax2及びλmax2-λmax1の値と共に、表3に示す。
[Example 11]
Composition 12A and anisotropic dye film 12A were obtained in the same manner as composition 9A and anisotropic dye film 9A in Example 8, except that 0.42 parts of dye (II-7) was added instead of 0.39 parts of dye (II-4). r n1 /r n2 of composition 12A was 0.6.
It was confirmed that Composition 12A exhibited liquid crystallinity by observing birefringence at 40° C. using a polarizing microscope equipped with a hot stage.
In addition, the dichroic ratio and the wavelength (λ max2 ) at which the orthogonal absorbance of the anisotropic dye film 12A is maximized were determined.
Composition 12B and anisotropic dye film 12B were obtained in the same manner as in composition 9B and anisotropic dye film 9B of Example 8, except that 0.52 parts of dye (II-7) was added instead of 0.48 parts of dye (II-4). The light resistance of anisotropic dye film 12B was determined.
The evaluation results of the dichroic ratio and lightfastness are shown in Table 3 together with the values of λ max1 , λ max2 and λ max2 - λ max1 of dye (II-7).
[実施例12]
 色素(II-4)0.39部に代えて、色素(II-8)0.27部を加えたほかは実施例8の組成物9A及び異方性色素膜9Aと同様にして、組成物13A及び異方性色素膜13Aを得た。組成物13Aのrn1/rn2は0.75である。
 組成物13Aが液晶性を示すことは、ホットステージが付属する偏光顕微鏡にて、40℃で複屈折が観察されたことで確認した。
 また、異方性色素膜13Aおよび直交位吸光度が極大となる波長(λmax2)の二色比を決定した。
 色素(II-4)0.48部に代えて、色素(II-8)0.39部を加えた以外は実施例8の組成物9B及び異方性色素膜9Bと同様にして、組成物13B及び異方性色素膜13Bを得、異方性色素膜13Bの耐光性を決定した。
 二色比と耐光性の評価結果を、色素(II-8)のλmax1、λmax2及びλmax2-λmax1の値と共に、表3に示す。
[Example 12]
Composition 13A and anisotropic dye film 13A were obtained in the same manner as composition 9A and anisotropic dye film 9A in Example 8, except that 0.27 parts of dye (II-8) was added instead of 0.39 parts of dye (II-4). r n1 /r n2 of composition 13A was 0.75.
It was confirmed that Composition 13A exhibited liquid crystallinity by observing birefringence at 40° C. using a polarizing microscope equipped with a hot stage.
Further, the dichroic ratio of the anisotropic dye film 13A and the wavelength (λ max2 ) at which the orthogonal absorbance is maximized were determined.
Composition 13B and anisotropic dye film 13B were obtained in the same manner as composition 9B and anisotropic dye film 9B in Example 8, except that 0.39 parts of dye (II-8) was added instead of 0.48 parts of dye (II-4), and the light resistance of anisotropic dye film 13B was determined.
The evaluation results of the dichroic ratio and light fastness are shown in Table 3 together with the values of λ max1 , λ max2 and λ max2 - λ max1 of dye (II-8).
[比較例2]
 色素(II-4)0.39部に代えて、色素(III-2)0.55部を用いた以外は実施例8の組成物9A及び異方性色素膜9Aと同様にして、組成物14A及び異方性色素膜14Aを得た。組成物14Aのrn1/rn2は0.6である。
 組成物14Aが液晶性を示すことは、ホットステージが付属する偏光顕微鏡にて、40℃で複屈折が観察されたことで確認した。
 また、異方性色素膜14Aの二色比および直交位吸光度が極大となる波長(λmax2)を決定した。
 色素(II-4)0.48部に代えて、色素(III-2)0.66部を加えた以外は実施例8の組成物9B及び異方性色素膜9Bと同様にして、組成物14B及び異方性色素膜14Bを得、異方性色素膜14Bの耐光性を決定した。
 二色比と耐光性の評価結果を、色素(III-2)のλmax1、λmax2及びλmax2-λmax1の値と共に、表3に示す。
[Comparative Example 2]
Composition 14A and anisotropic dye film 14A were obtained in the same manner as composition 9A and anisotropic dye film 9A in Example 8, except that 0.55 parts of dye (III-2) was used instead of 0.39 parts of dye (II-4). r n1 /r n2 of composition 14A was 0.6.
It was confirmed that Composition 14A exhibited liquid crystallinity by observing birefringence at 40° C. using a polarizing microscope equipped with a hot stage.
In addition, the dichroic ratio and the wavelength (λ max2 ) at which the orthogonal absorbance of the anisotropic dye film 14A is maximized were determined.
Composition 14B and anisotropic dye film 14B were obtained in the same manner as composition 9B and anisotropic dye film 9B in Example 8, except that 0.66 parts of dye (III-2) was added instead of 0.48 parts of dye (II-4), and the light resistance of anisotropic dye film 14B was determined.
The evaluation results of the dichroic ratio and light fastness are shown in Table 3 together with the values of λ max1 , λ max2 and λ max2 - λ max1 of dye (III-2).
Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-T000039
 表3より、実施例8~12に用いた組成物の色素は、λmax2-λmax1<0を満たしており、異方性色素膜は最大二色比が高い値を示し、耐光性も良好な結果であった。一方、比較例2に用いた組成物の色素はλmax2-λmax1<0を満たしておらず、異方性色素膜は最大二色比および耐光性が実施例に比較して低いことが示された。 As can be seen from Table 3, the dyes in the compositions used in Examples 8 to 12 satisfied λ max2 - λ max1 < 0, the anisotropic dye films showed high maximum dichroic ratios, and good lightfastness. On the other hand, the dyes in the composition used in Comparative Example 2 did not satisfy λ max2 - λ max1 < 0, and the anisotropic dye films showed lower maximum dichroic ratios and lightfastness than the examples.
 本発明を特定の態様を用いて詳細に説明したが、発明の効果が奏される範囲内で様々な変更が可能であることは当業者に明らかである。
 本出願は、2022年10月4日付で出願された日本特許出願2022-160390及び日本特許出願2022-160391に基づいており、その全体が引用により援用される。
Although the present invention has been described in detail using specific embodiments, it will be apparent to those skilled in the art that various modifications are possible within the scope of the invention.
This application is based on Japanese Patent Application No. 2022-160390 and Japanese Patent Application No. 2022-160391 filed on October 4, 2022, and is incorporated by reference in its entirety.

Claims (19)

  1.  下記式(1)で示される化合物。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、
     -XAは1価の有機基を表す。
     -RA及び-RAは、それぞれ独立に、置換基を有していてもよいアルキル基を表す。-RA及び-RAは一体となって環を形成してもよいが、-RA及び-RAが形成する環の-RA及び-RA部分は炭化水素鎖のみで形成される。
     -A-、-A-、-A-及び-A-は、それぞれ独立に、置換基を有していてもよい1,4-フェニレン基を表す。
     nは0、1、又は2を表す。
     nが2の場合、複数の-A-は互いに同一でも異なっていてもよい。)
    A compound represented by the following formula (1):
    Figure JPOXMLDOC01-appb-C000001
    (In formula (1),
    -XA represents a monovalent organic group.
    -RA1 and -RA2 each independently represent an alkyl group which may have a substituent. -RA1 and -RA2 may be joined together to form a ring, but the -RA1 and -RA2 portions of the ring formed by -RA1 and -RA2 are formed only by a hydrocarbon chain.
    -A 1 -, -A 2 -, -A 3 - and -A 4 - each independently represent a 1,4-phenylene group which may have a substituent.
    n represents 0, 1, or 2.
    When n is 2, multiple -A 3 - may be the same or different.
  2.  前記式(1)における-XAが、水素原子、-Ra、-O-Ra、-NH-Ra、-C(=O)-Ra、-C(=O)-O-Ra、-C(=O)-NH-Ra、-C(=O)-N(-Rb)-Ra、-O-C(=O)-Ra、-NH-C(=O)-Ra、-N(-Rb)-C(=O)-Ra、又は-S-Ra(-Ra及び-Rbは、それぞれ独立に、分岐を有していてもよい炭素数1~15のアルキル基、環を構成する原子の数が5~14のシクロアルキル基、又は環を構成する原子の数が5~14のアリール基を表し、前記アルキル基、シクロアルキル基及びアリール基は、それぞれ置換基を有していてもよい。また、-Ra及び-Rbは、一体となって炭素数2~15の環を形成していてもよく、該環は置換基を有していてもよい。)である、請求項1に記載の化合物。 The compound according to claim 1, wherein -XA in the formula (1) is a hydrogen atom, -Ra, -O-Ra, -NH-Ra, -C(=O)-Ra, -C(=O)-O-Ra, -C(=O)-NH-Ra, -C(=O)-N(-Rb)-Ra, -O-C(=O)-Ra, -NH-C(=O)-Ra, -N(-Rb)-C(=O)-Ra, or -S-Ra (-Ra and -Rb each independently represent an alkyl group having 1 to 15 carbon atoms, which may have a branch, a cycloalkyl group having 5 to 14 atoms constituting a ring, or an aryl group having 5 to 14 atoms constituting a ring, and the alkyl group, cycloalkyl group, and aryl group each may have a substituent. Also, -Ra and -Rb may together form a ring having 2 to 15 carbon atoms, and the ring may have a substituent).
  3.  前記式(1)における-RA及び-RAが、それぞれ独立に、置換基を有していてもよい、炭素数が1~10のアルキル基である、請求項1又は2に記載の化合物。 3. The compound according to claim 1, wherein -RA 1 and -RA 2 in the formula (1) each independently represent an alkyl group having 1 to 10 carbon atoms which may have a substituent.
  4.  下記式(2)で示される化合物と重合性液晶化合物とを含む組成物。
    Figure JPOXMLDOC01-appb-C000002
    (式(2)中、
     -XBは1価の有機基を表す。
     -RB及び-RBは、それぞれ独立に、置換基を有していてもよいアルキル基を表す。-RB及び-RBは一体となって環を形成してもよい。
     -B-及び-B-は、それぞれ独立に、置換基を有していてもよい1,4-フェニレン基を表す。
     -B-及び-B-は、それぞれ独立に、置換基を有していてもよい芳香族炭素水素環の2価基を表す。
     nは0、1、又は2を表す。
     nが2の場合、複数の-B-は互いに同一でも異なっていてもよい。)
    A composition comprising a compound represented by the following formula (2) and a polymerizable liquid crystal compound:
    Figure JPOXMLDOC01-appb-C000002
    (In formula (2),
    -XB represents a monovalent organic group.
    Each of -RB1 and -RB2 independently represents an alkyl group which may have a substituent, and -RB1 and -RB2 may combine together to form a ring.
    -B 1 - and -B 2 - each independently represents a 1,4-phenylene group which may have a substituent.
    Each of -B 3 - and -B 4 - independently represents a divalent aromatic hydrocarbon ring group which may have a substituent.
    n represents 0, 1, or 2.
    When n is 2, multiple -B 3 - may be the same or different.
  5.  前記式(2)における-B-が、置換基を有していてもよい1,4-フェニレン基である、請求項4に記載の組成物。 5. The composition according to claim 4, wherein -B 4 - in the formula (2) is a 1,4-phenylene group which may have a substituent.
  6.  前記式(2)における-B-が、置換基を有していてもよい1,4-フェニレン基である、請求項4に記載の組成物。 5. The composition according to claim 4, wherein -B 3 - in the formula (2) is a 1,4-phenylene group which may have a substituent.
  7.  前記式(2)における-XBが、水素原子、-Ra、-O-Ra、-NH-Ra、-C(=O)-Ra、-C(=O)-O-Ra、-C(=O)-NH-Ra、-C(=O)-N(-Rb)-Ra、-O-C(=O)-Ra、-NH-C(=O)-Ra、-N(-Rb)-C(=O)-Ra、又は-S-Ra(-Ra及び-Rbは、それぞれ独立に、分岐を有していてもよい炭素数1~15のアルキル基、環を構成する原子の数が5~14のシクロアルキル基、又は環を構成する原子の数が5~14のアリール基を表し、前記アルキル基、シクロアルキル基及びアリール基は、それぞれ置換基を有していてもよい。また、-Ra及び-Rbは、一体となって炭素数2~15の環を形成していてもよく、該環は置換基を有していてもよい。)である、請求項4に記載の組成物。 The composition according to claim 4, wherein -XB in the formula (2) is a hydrogen atom, -Ra, -O-Ra, -NH-Ra, -C(=O)-Ra, -C(=O)-O-Ra, -C(=O)-NH-Ra, -C(=O)-N(-Rb)-Ra, -O-C(=O)-Ra, -NH-C(=O)-Ra, -N(-Rb)-C(=O)-Ra, or -S-Ra (-Ra and -Rb each independently represent an alkyl group having 1 to 15 carbon atoms, which may be branched, a cycloalkyl group having 5 to 14 atoms constituting a ring, or an aryl group having 5 to 14 atoms constituting a ring, and the alkyl group, cycloalkyl group, and aryl group each may have a substituent. Also, -Ra and -Rb may together form a ring having 2 to 15 carbon atoms, and the ring may have a substituent).
  8.  前記式(2)における-RB及び-RBが、それぞれ独立に、置換基を有していてもよい、炭素数が1~10のアルキル基である、請求項4に記載の組成物。 5. The composition according to claim 4, wherein --RB1 and --RB2 in formula (2) each independently represent an alkyl group having 1 to 10 carbon atoms which may have a substituent.
  9.  請求項4~8のいずれか一項に記載の組成物を用いて形成された異方性色素膜。 An anisotropic dye film formed using the composition according to any one of claims 4 to 8.
  10.  請求項9に記載の異方性色素膜を有する光学素子。 An optical element having the anisotropic dye film according to claim 9.
  11.  重合性液晶化合物と色素とを含む組成物であって、
     前記色素の極大吸収波長が次の関係式(11)を満たす組成物。
      λmax2-λmax1<0  (11)
    (式(11)中、λmax1は溶媒中の前記色素の極大吸収波長、λmax2は前記組成物を用いて形成された色素膜中の前記色素の極大吸収波長を表す。)
    A composition comprising a polymerizable liquid crystal compound and a dye,
    A composition in which the maximum absorption wavelength of the dye satisfies the following relation (11):
    λ max2 −λ max1 <0 (11)
    (In formula (11), λ max1 represents the maximum absorption wavelength of the dye in a solvent, and λ max2 represents the maximum absorption wavelength of the dye in a dye film formed using the composition.)
  12.  前記色素がアゾ系色素である、請求項11に記載の組成物。 The composition according to claim 11, wherein the dye is an azo dye.
  13.  前記色素が下記式(12)で表される化合物である、請求項12に記載の組成物。
     X20(-A21m1(-N=N-A22n1-N=N-A23-Y20  (12)
    (式(12)中、
     -A21-、-A22-、-A23-は、それぞれ独立に、置換基を有していてもよい芳香族炭化水素環、又は置換基を有していてもよい芳香族複素環の2価基を表し、
     -X20、-Y20は、それぞれ独立に、1価の任意の置換基を表し、
     m1は1又は2を表し、
     n1は0、1、2、又は3を表す。
     m1が2の場合、-A21-は互いに同一でも異なっていてもよい。
     n1が2又は3の場合、-A22-は互いに同一でも異なっていてもよい。)
    The composition according to claim 12, wherein the dye is a compound represented by the following formula (12):
    X 20 (-A 21 ) m1 (-N=N-A 22 ) n1 -N=N-A 23 -Y 20 (12)
    (In formula (12),
    -A 21 -, -A 22 -, and -A 23 - each independently represent a divalent group of an aromatic hydrocarbon ring which may have a substituent, or an aromatic heterocycle which may have a substituent;
    -X 20 and -Y 20 each independently represent an arbitrary monovalent substituent;
    m1 represents 1 or 2;
    n1 represents 0, 1, 2, or 3.
    When m1 is 2, -A 21 - may be the same or different.
    When n1 is 2 or 3, -A 22 - may be the same or different.
  14.  前記式(12)において-A21-、-A23-がそれぞれ独立に、置換基を有していてもよい芳香族炭化水素環の2価基である、請求項13に記載の組成物。 The composition according to claim 13, wherein in formula (12), -A 21 - and -A 23 - each independently represent a divalent group of an aromatic hydrocarbon ring which may have a substituent.
  15.  前記式(12)において-A22-が置換基を有していてもよい芳香族炭化水素環の2価基である、請求項13に記載の組成物。 The composition according to claim 13, wherein in the formula (12), -A 22 - is a divalent group of an aromatic hydrocarbon ring which may have a substituent.
  16.  前記式(12)において-Y20が下記式(12a)で表される、請求項13に記載の組成物。
      -N-(R)-R   (12a)
    (式(12a)中、-R、-Rは、それぞれ独立に、分岐を有していてもよいアルキル基又はアリール基を表し、該アルキル基又はアリール基は置換基を有していてもよい。-R及び-Rは、一体となってNと共に炭素数2~15の環を形成していてもよく、該環は置換基を有していてもよい。)
    The composition according to claim 13, wherein in the formula (12), -Y 20 is represented by the following formula (12a):
    -N-(R y )-R x (12a)
    (In formula (12a), -R x and -R y each independently represent an alkyl group or an aryl group which may have a branch, and the alkyl group or aryl group may have a substituent. -R x and -R y may together form a ring having 2 to 15 carbon atoms together with N, and the ring may have a substituent.)
  17.  前記重合性液晶化合物が共重合構造を有さない低分子重合性液晶化合物である、請求項11に記載の組成物。 The composition according to claim 11, wherein the polymerizable liquid crystal compound is a low molecular weight polymerizable liquid crystal compound that does not have a copolymer structure.
  18.  請求項11~17いずれか一項に記載の組成物を用いて形成された異方性色素膜。 An anisotropic dye film formed using the composition according to any one of claims 11 to 17.
  19.  請求項18に記載の異方性色素膜を有する光学素子。

     
    An optical element comprising the anisotropic dye film according to claim 18.

PCT/JP2023/036161 2022-10-04 2023-10-04 Compound, composition, anisotropic pigment film, and optical element WO2024075762A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022-160390 2022-10-04
JP2022-160391 2022-10-04
JP2022160390 2022-10-04
JP2022160391 2022-10-04

Publications (1)

Publication Number Publication Date
WO2024075762A1 true WO2024075762A1 (en) 2024-04-11

Family

ID=90608066

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/036161 WO2024075762A1 (en) 2022-10-04 2023-10-04 Compound, composition, anisotropic pigment film, and optical element

Country Status (1)

Country Link
WO (1) WO2024075762A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5857488A (en) * 1981-10-02 1983-04-05 Mitsubishi Chem Ind Ltd Guest/host type liquid crystal composition
JPS59182877A (en) * 1983-04-01 1984-10-17 Hitachi Ltd Guest-host liquid crystal composition
JP2003096453A (en) * 2001-09-25 2003-04-03 Fuji Photo Film Co Ltd Liquid crystal composition and liquid crystal element using the same
JP2003129055A (en) * 2001-10-24 2003-05-08 Fuji Photo Film Co Ltd Liquid crystal composition and liquid crystal element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5857488A (en) * 1981-10-02 1983-04-05 Mitsubishi Chem Ind Ltd Guest/host type liquid crystal composition
JPS59182877A (en) * 1983-04-01 1984-10-17 Hitachi Ltd Guest-host liquid crystal composition
JP2003096453A (en) * 2001-09-25 2003-04-03 Fuji Photo Film Co Ltd Liquid crystal composition and liquid crystal element using the same
JP2003129055A (en) * 2001-10-24 2003-05-08 Fuji Photo Film Co Ltd Liquid crystal composition and liquid crystal element

Similar Documents

Publication Publication Date Title
JP6666293B2 (en) Compound, optical film and method for producing optical film
EP2913349B1 (en) Polymerizable compound, polymerizable composition, polymer, and optical anistropic body
EP2857424B1 (en) Polymerizable compound, polymerizable composition, polymer, and optically anisotropic material
TWI534183B (en) An optical film and a display device using the same
JP5613992B2 (en) Composition, film and method for producing film
JP7404411B2 (en) Light-absorbing anisotropic film, laminate, method for manufacturing laminate, and image display device
JP6616963B2 (en) Coloring composition, light absorption anisotropic film, laminate, polarizing plate, image display device and compound
JP6473537B1 (en) Polymerizable liquid crystal compound, polymerizable composition, polymer, retardation film and manufacturing method thereof, transfer laminate, optical member and manufacturing method thereof, and display device
JPWO2018186503A1 (en) Anisotropic light absorbing film and laminate
JP2010001284A (en) Compound and optical film
US20230151275A1 (en) Compound, composition for anisotropic dye films including the compound, anisotropic dye film, and optical element
JP7467850B2 (en) Composition for forming anisotropic dye film, anisotropic dye film, and optical element
WO2024075762A1 (en) Compound, composition, anisotropic pigment film, and optical element
JP2022028423A (en) Anisotropic dye film-forming composition, anisotropic dye film, and optical element
JP7363887B2 (en) Composition for forming an anisotropic pigment film, anisotropic pigment film, and optical element
JP5451261B2 (en) Dichroic dye composition, light absorption anisotropic film, polarizing element and liquid crystal display device using the same
JP7272022B2 (en) Composition for forming anisotropic dye film, anisotropic dye film, and optical element
CN116615332A (en) Optically anisotropic laminate and optical element
TWI838473B (en) Composition for forming anisotropic pigment film, anisotropic pigment film and optical element
JP7467851B2 (en) Composition for forming anisotropic dye film, anisotropic dye film, and optical element
WO2023063249A1 (en) Compound, composition for anisotropic dye film comprising said compound, anisotropic dye film, and optical element
JP7272021B2 (en) Composition for forming anisotropic dye film, anisotropic dye film, and optical element
KR20200131223A (en) Composition for anisotropic dye film formation, anisotropic dye film, and optical element
WO2023181907A1 (en) Compound, composition for forming anisotropic dye film, anisotropic dye film, and optical element
WO2024071162A1 (en) Optically anisotropic laminate and optical element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23874888

Country of ref document: EP

Kind code of ref document: A1