WO2024071155A1 - Information processing device, information processing method, and computer program - Google Patents

Information processing device, information processing method, and computer program Download PDF

Info

Publication number
WO2024071155A1
WO2024071155A1 PCT/JP2023/035050 JP2023035050W WO2024071155A1 WO 2024071155 A1 WO2024071155 A1 WO 2024071155A1 JP 2023035050 W JP2023035050 W JP 2023035050W WO 2024071155 A1 WO2024071155 A1 WO 2024071155A1
Authority
WO
WIPO (PCT)
Prior art keywords
outlier
observation data
information processing
error covariance
processing device
Prior art date
Application number
PCT/JP2023/035050
Other languages
French (fr)
Japanese (ja)
Inventor
陽滋 山田
唯眞 金
Original Assignee
国立大学法人東海国立大学機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東海国立大学機構 filed Critical 国立大学法人東海国立大学機構
Publication of WO2024071155A1 publication Critical patent/WO2024071155A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/66Radar-tracking systems; Analogous systems
    • G01S13/70Radar-tracking systems; Analogous systems for range tracking only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/28Details of pulse systems
    • G01S7/285Receivers
    • G01S7/32Shaping echo pulse signals; Deriving non-pulse signals from echo pulse signals

Definitions

  • the technology disclosed in this specification relates to an information processing device for estimating the position of an object.
  • a probabilistic filtering process using a stochastic filter such as a Kalman filter is used.
  • a prediction step and a filtering step are executed sequentially at discrete times.
  • a priori estimate and a priori error covariance of the object's state are calculated using a dynamic model of the object.
  • a posterior estimate and a posterior error covariance of the object's state are calculated based on the observation data of the object's state obtained using a sensor and the priori estimate and a priori error covariance calculated in the prediction step.
  • the stochastic filtering process reduces the effect of noise contained in the observation data and allows the state of the object to be estimated with high accuracy.
  • the position observation data from the sensor may include outliers, such as negative outliers that deviate closer to the sensor than the pre-prediction value calculated in the prediction step, and positive outliers that deviate farther from the sensor than the pre-prediction value.
  • compensation processing is performed uniformly without considering the direction of the outlier, so that the application is limited.
  • the observation data is a negative outlier that is closer to the sensor (robot)
  • the outlier is an outlier on the side where the possibility of contact with the robot is low (safety side) for the human, so there is no problem in performing the compensation processing using the above-mentioned outlier.
  • the outlier is an outlier on the side where the possibility of contact with the robot is high (danger side) for the human, so performing the compensation processing using the above-mentioned outlier may cause contact between the human and the robot. Therefore, in such a situation, it is not appropriate to apply the above conventional technology that performs compensation processing uniformly without considering the direction of the outlier. In contrast to the above example, there may be a situation where problems occur when performing compensation processing when the observation data is a negative outlier.
  • the information processing device disclosed in this specification is an information processing device for estimating the position of an object, and includes a position estimation unit.
  • the position estimation unit executes a probabilistic filtering process that sequentially performs, for each discrete time, a prediction step of calculating a prior estimate and a prior error covariance of the position of the object using a dynamic model of the object, and a filtering step of calculating a posterior estimate and a posterior error covariance of the position of the object based on observation data of the position of the object using a sensor, the prior estimate, and the prior error covariance.
  • the position estimation unit includes an outlier detection unit that determines whether the observation data is an outlier, and an outlier identification unit that identifies whether the detected outlier is a negative outlier that is closer to the sensor than the prior estimate, or a positive outlier that is farther from the sensor than the prior estimate.
  • the position estimation unit performs one of a compensation process that uses the observation data determined to be the outlier and an exclusion process that excludes the observation data determined to be the outlier in the filtering step, and when the observation data is determined to be the positive outlier, the position estimation unit performs the other of the compensation process and the exclusion process in the filtering step.
  • this information processing device if the observed data is determined to be a negative outlier, a compensation process is executed in the filtering step, and if the observed data is determined to be a positive outlier, an exclusion process is executed in the filtering step. Therefore, according to this information processing device, it is possible to suppress the decrease in estimation accuracy caused by outliers in a wider range of application scenarios compared to conventional configurations in which compensation process is executed uniformly without considering the direction in which the outliers deviate.
  • the position estimation unit may be configured to execute the compensation process when the observation data is determined to be the negative outlier, and execute the exclusion process when the observation data is determined to be the positive outlier.
  • This information processing device can effectively suppress a decrease in estimation accuracy caused by outliers in a wider range of application scenarios. For example, when this information processing device is applied to a space in which a robot and a human exist, a negative outlier is an outlier on the side (safety side) where the possibility of contact between a human and a robot is low, so by executing a compensation process that uses the negative outlier as an inaccurate measurement value, a decrease in the accuracy of human position estimation can be suppressed.
  • a positive outlier is an outlier on the side (danger side) where the possibility of contact between a human and a robot is high, so by executing an exclusion process that excludes the positive outlier, a decrease in the estimation accuracy of the human position caused by the outlier and an increase in the possibility of contact between a human and a robot can be suppressed.
  • the compensation process may include a process of calculating the posterior estimated value and the posterior error covariance based on the observation data with increased error covariance, the a priori estimated value, and the a priori error covariance.
  • the exclusion process may include a process of setting the posterior estimated value to be equal to the a priori estimated value at the current discrete time.
  • the outlier identification unit may identify whether the detected positive outlier is a temporary outlier that occurs continuously across multiple discrete times or an additive outlier that occurs in a single discrete time, and the position estimation unit may set the posterior error covariance to be the same as the posterior error covariance in the previous discrete time as the exclusion process when the observation data is determined to be the temporary outlier, and set the posterior error covariance to be the same as the prior error covariance in the current discrete time as the exclusion process when the observation data is determined to be the additive outlier.
  • the outlier detection unit may be configured to determine whether the observation data is an outlier using Mahalanobis distance. By adopting this configuration, outliers can be appropriately detected even when two-dimensional or three-dimensional position information is the target.
  • the probabilistic filtering process may be a filtering process using a Kalman filter.
  • the sensor may be a radar sensor that measures the position of the object by transmitting and receiving radio waves.
  • Radar sensors have a wider detection range (radio wave irradiation range) than other types of sensors, such as laser sensors, and can therefore detect relatively small objects such as a human hand.
  • observation data from the radar sensor may contain a relatively large amount of noise.
  • this information processing device can also obtain speed information based on the time difference of estimated position (distance) information.
  • the information processing device may further include a robot control unit that controls the operation of the robot based on the result of estimation of the position of the human as the target object by the position estimation unit.
  • the technology disclosed in this specification can be realized in various forms, such as an information processing device, an information processing method, a computer program that realizes the method, or a non-transitory recording medium on which the computer program is recorded.
  • FIG. 1 is an explanatory diagram showing a configuration of a safety monitoring system 10 according to an embodiment of the present invention.
  • a block diagram showing the configuration of a safety monitoring device 100.
  • a diagram conceptually illustrating the procedure of a typical extended Kalman filtering process.
  • An explanatory diagram conceptually illustrating the basic operation of a normal extended Kalman filtering process.
  • FIG. 1 is an explanatory diagram showing an example of an algorithm for a typical extended Kalman filtering process.
  • FIG. 1 is an explanatory diagram showing an example of a negative outlier and a positive outlier.
  • FIG. 1 is an explanatory diagram conceptually illustrating compensation processing executed when observed data z k is an outlier.
  • FIG. 1 is an explanatory diagram conceptually illustrating a result of performing a normal extended Kalman filtering process when observed data z k is an outlier.
  • FIG. 1 is an explanatory diagram conceptually illustrating the exclusion process that is executed when observed data z k is an outlier.
  • FIG. 1 is an explanatory diagram showing an example of a temporary outlier and an additional outlier.
  • FIG. 1 is an explanatory diagram showing an example of an algorithm for an extended Kalman filtering process executed in this embodiment.
  • FIG. 1 is an explanatory diagram showing the configuration of an apparatus according to the present embodiment. An illustration showing observed data at one epoch during a fast movement trial. An illustration showing observed data at one epoch during a slow movement trial.
  • FIG. 1 is an explanatory diagram showing data after applying the asymmetric extended Kalman filtering process of the present embodiment to observed data at a certain epoch during a high-speed movement trial.
  • FIG. 1 is an explanatory diagram showing data after applying the asymmetric extended Kalman filtering process of the present embodiment to observed data at a certain epoch during a slow movement trial.
  • Diagram summarizing test results FIG. 1 is an explanatory diagram showing a comparison result between an estimated value using the asymmetric extended Kalman filtering process of the present embodiment and a value calculated by generating temporary heavy-tailed Gaussian noise.
  • FIG. 1 is an explanatory diagram showing a comparison result between an estimated value using the asymmetric extended Kalman filtering process of the present embodiment and a value calculated by generating temporary heavy-tailed Gaussian noise.
  • FIG. 11 is an explanatory diagram summarizing the results of a comparison between the asymmetric extended Kalman filtering process of the present embodiment and the extended Kalman filtering process of a comparative example.
  • FIG. 11 is an explanatory diagram summarizing the ratio of erroneously adopting outliers on the dangerous side for the asymmetric extended Kalman filtering process of this embodiment and the extended Kalman filtering process of the comparative example;
  • A. Embodiments: A-1. Configuration of safety monitoring system 10: 1 is an explanatory diagram showing the configuration of a safety monitoring system 10 according to the present embodiment.
  • the safety monitoring system 10 according to the present embodiment is a system that is introduced into a space in which a robot 200 and a human HU exist (for example, a production site such as a factory or a logistics site such as a distribution center).
  • the safety monitoring system 10 includes the robot 200 and a safety monitoring device 100.
  • the robot 200 is a machine that performs various operations.
  • the robot 200 is a vertical articulated robot, but the type of the robot 200 is not limited to this.
  • the safety monitoring device 100 is a device that detects a human HU and controls the operation of the robot 200 to avoid contact between the human HU and the robot 200.
  • the safety monitoring device 100 is installed, for example, on a non-moving part of the robot 200.
  • FIG. 2 is a block diagram showing the configuration of the safety monitoring device 100.
  • the safety monitoring device 100 comprises a control unit 110, a memory unit 120, a radar sensor 130, an operation input unit 140, and an interface unit 150. These units are connected to each other via a bus 190 so that they can communicate with each other.
  • the safety monitoring device 100 is an example of an information processing device within the scope of the claims.
  • the radar sensor 130 of the safety monitoring device 100 is a device that measures the position of an object (in this embodiment, the hand of a human HU) by emitting radio waves RW (e.g., millimeter waves) and receiving reflected waves, which are radio waves RW reflected by the object.
  • the radar sensor 130 is a MIMO (Multi-Input Multi-Output) type sensor that uses multiple antennas for both emitting and receiving radio waves RW.
  • the radar sensor 130 has a wide detection range (radiation range of the radio waves RW), so it can detect relatively small objects such as the hand of a human HU.
  • the observation data obtained by the radar sensor 130 may contain a relatively large amount of noise (e.g., noise caused by reflected waves from walls and ceilings).
  • the operation input unit 140 of the safety monitoring device 100 is configured, for example, with buttons, a touch panel, etc., and accepts operations and instructions from the administrator.
  • the interface unit 150 is configured, for example, with a network interface, etc., and communicates with other devices (for example, the robot 200) via wired or wireless communication.
  • the storage unit 120 of the safety monitoring device 100 is composed of, for example, ROM, RAM, a hard disk drive (HDD), a solid state drive (SSD), etc., and is used to store various programs and data, and as a working area when executing various programs, and as a temporary storage area for data.
  • the storage unit 120 stores a safety monitoring program CP.
  • the safety monitoring program CP is provided in a state stored in a computer-readable recording medium (not shown), such as a CD-ROM, DVD-ROM, or USB memory, or is provided in a state that can be obtained from an external device (for example, a server on the cloud or other terminal device) via the interface unit 150, and is stored in the storage unit 120 in a state that can be operated on the safety monitoring device 100.
  • the storage unit 120 of the safety monitoring device 100 stores various types of data such as a dynamic model DM in the object position estimation process described below. These types of data will be explained in conjunction with the explanation of the object position estimation process described below.
  • the control unit 110 of the safety monitoring device 100 is configured with, for example, a CPU, and controls the operation of the safety monitoring device 100 by executing a computer program read from the storage unit 120.
  • the control unit 110 functions as a position estimation unit 111 that estimates the position of an object (the hand of a human HU) by reading a safety monitoring program CP from the storage unit 120 and executing it.
  • the position estimation unit 111 includes an observation data acquisition unit 112, a model acquisition unit 113, an outlier detection unit 114, and an outlier identification unit 115. The functions of each of these units will be explained in conjunction with the explanation of the object position estimation process described below.
  • the control unit 110 also functions as a robot control unit 119 that controls the operation of the robot 200 based on the estimation result of the hand position of the human HU by the position estimation unit 111, by reading and executing the safety monitoring program CP from the memory unit 120. For example, when the hand position of the human HU estimated by the position estimation unit 111 is in a position where there is a risk of contact with the robot 200, the robot control unit 119 stops (or slows down) the movement of the robot 200 or changes the direction of the movement of the robot 200 to avoid contact between the human HU and the robot 200.
  • the object position estimation process of this embodiment is a process for accurately estimating the position of the hand of the human being HU as an object by executing a probabilistic filtering process.
  • an extended Kalman filter (abbreviated as EKF), which is one of the Kalman filters, is used as the probabilistic filter.
  • EKF extended Kalman filter
  • the probabilistic filtering process using the extended Kalman filter will be referred to as the extended Kalman filtering process.
  • an asymmetric extended Kalman filtering process (hereinafter also referred to as "AS-EKF") is performed in which different processing is performed depending on the type of outlier.
  • AS-EKF asymmetric extended Kalman filtering process
  • the symbols ⁇ (tilde) and ⁇ (hat) attached to each symbol mean the measured value and estimated value, respectively, and the symbols (-) and (+) attached to each symbol mean the prior value (before the latest observation data is used) and the post-event value (after the latest observation data is used), respectively. However, for convenience, these symbols may be omitted.
  • a nonlinear dynamic model DM is set for an object (in this embodiment, the hand of a human HU) as shown in formula (1).
  • x k is an n-th order state space vector at time k
  • f is a transition function
  • w k is a process noise assumed to follow a Gaussian distribution.
  • FIG. 3 is an explanatory diagram conceptually showing the procedure of a normal extended Kalman filtering process.
  • the upper part of FIG. 3 shows the procedure of estimating the state, and the lower part of FIG. 3 shows the procedure of estimating the error covariance.
  • FIG. 4 is an explanatory diagram conceptually showing the basic operation of a normal extended Kalman filtering process.
  • a prediction step and a filtering step are executed sequentially for each discrete time.
  • a prior estimate x k (-) of the position of the object at time k and a prior error covariance P k (-) are calculated as shown in Equation (3) and Equation (4) using the dynamic model DM of the object described above.
  • Equation (3) and Equation (4) x k-1 (+) is a posterior estimate at the previous discrete time (k-1), and Q k is the process noise covariance at time k according to Equation (5). Furthermore, F k is the Jacobian (function determinant) of the nonlinear transition function f expressed by Equation (6). In the prediction step, for example, estimation is performed based on a constant velocity rectilinear motion model.
  • Equation (7) H k is the observation matrix expressed by equation (8), and R k is the measurement noise covariance according to equation (9).
  • a posterior estimate x k (+) and a posterior error covariance P k (+) of the object's position at time k are calculated based on the observation data z k of the object's position using the radar sensor 130 and the a priori estimate x k (-) and a priori error covariance P k (-) calculated in the prediction step, as shown in equations (10) and (11).
  • I is a unit matrix.
  • the prediction step and filtering step described above are repeatedly executed at discrete times.
  • the extended Kalman filtering process can reduce the effect of noise contained in the observation data of the position of the object (the hand of the human HU) observed by the radar sensor 130, and can estimate the position of the object with high accuracy.
  • Figure 5 is an explanatory diagram showing an example of an algorithm (Algorithm 1) for a typical extended Kalman filtering process.
  • FIG. 6 is a flowchart showing the object position estimation process executed by the safety monitoring device 100 of this embodiment.
  • the object position estimation process is started in response to, for example, an administrator operating the operation input unit 140 of the safety monitoring device 100 to input a start instruction.
  • the model acquisition unit 113 (FIG. 2) of the safety monitoring device 100 acquires a dynamic model DM of the target object (the hand of the human HU) (S110).
  • the dynamic model DM is, for example, a model previously set by a supervisor, acquired via the interface unit 150 and stored in the memory unit 120.
  • the position estimation unit 111 (FIG. 2) of the safety monitoring device 100 uses the dynamic model DM to calculate the a priori estimate x k (-) and a priori error covariance P k (-) of the object's position at time k according to the above-mentioned equations (3) and (4) (S120).
  • observation data acquisition unit 112 (FIG. 2) of the safety monitoring device 100 acquires observation data zk of the position of the object at time k measured by the radar sensor 130 (S130).
  • the outlier detection unit 114 (FIG. 2) of the safety monitoring device 100 calculates an outlier determination index ⁇ k according to equation (12) to determine whether the acquired observation data z k is an outlier or not (S140).
  • M k is the Mahalanobis distance
  • ⁇ k is an outlier determination index (gamma determination index) that follows a chi-square distribution with m degrees of freedom from a state space vector.
  • "z k -h(x k (-))" in equation (12) is represented as n k .
  • the concept of inclusion distance expressed by formula (13) is taken into consideration.
  • C p is the inclusion probability
  • DR is the required rate of the safety-related system
  • PFH u is the upper limit of the failure probability in one hour.
  • the probability threshold ⁇ is selected based on the inclusion distance.
  • ⁇ ⁇ is the ⁇ quantile of a predetermined chi-square distribution.
  • is set to a value greater than 1-2.5 ⁇ 10 ⁇ 7 , for example, based on the required performance level. Therefore, a chi-square distribution with two degrees of freedom having a significance level is, for example, 1-2.5 ⁇ 10 ⁇ 7 , and ⁇ ⁇ is set to, for example, 30.41.
  • the outlier detection unit 114 of the safety monitoring device 100 judges whether or not the observation data z k is an outlier based on the calculated outlier judgment index ⁇ k (S150). Specifically, when the outlier judgment index ⁇ k is equal to or smaller than the above-mentioned ⁇ ⁇ , the outlier detection unit 114 judges that the observation data z k is not an outlier (S150: NO). In this case, the position estimation unit 111 executes the filtering step of the above-mentioned normal extended Kalman filtering process (see FIG. 3 and FIG. 4) (S160).
  • the outlier detection unit 114 determines that the observed data z k is an outlier (S150: YES).
  • the outliers include negative and positive outliers.
  • FIG. 7 is an explanatory diagram showing an example of a negative and positive outlier.
  • FIG. 7 shows the estimated value PD (pre-estimated value x k ( ⁇ )) of the hand position of the human HU calculated in the prediction step, and an ellipse E1 showing the estimation error covariance.
  • the negative outlier NO is an outlier in which the observation data (the hand position of the human HU observed by the radar sensor 130) deviates from the estimated value PD in the prediction step to the side closer to the radar sensor 130 of the safety monitoring device 100.
  • the negative outlier NO is an outlier in which the hand of the human HU is mistakenly recognized as being closer to the radar sensor 130 (robot 200) than it actually is, and can be said to be an outlier on the side (safety side) where the possibility of contacting the robot 200 is low for the human HU.
  • the positive outlier PO is an outlier in which the observation data deviates from the estimated value PD in the prediction step to the side farther from the radar sensor 130, as shown on the right side of FIG. 7.
  • the positive outlier PO is an outlier in which the hand of the human being HU is mistakenly recognized as being farther from the radar sensor 130 (robot 200) than it actually is, and can be said to be an outlier on the side (danger side) where the possibility of contact between the human being HU and the robot 200 is higher for the human being HU.
  • negative outliers and positive outliers have different effects on the possibility of contact between the human being HU and the robot 200, so in this embodiment, as described below, the processing of the filtering step is made different depending on whether the observation data zk is a negative outlier or a positive outlier.
  • the position estimation unit 111 of the safety monitoring device 100 performs compensation processing using the negative outlier in the filtering step, as described below (S180).
  • the position estimation unit 111 increases the error covariance R k of the observation data by using the scaling factor ⁇ as shown in formula (15). Then, the above formula (12) for calculating the outlier determination index ⁇ k is updated to the following formula (16). Note that P k (-) (actually, there is a bar above P) in formula (16) is expressed by formula (17).
  • the position estimation unit 111 calculates the optimal value of the scaling factor ⁇ at time k using the Newton method.
  • ⁇ k is optimized as shown in formula (19).
  • i is the i-th innovation
  • "'" represents the derivative (differential coefficient) of the function.
  • the derivative of the inverse matrix is expressed as formula (20).
  • A is a random invertible matrix
  • the function of time t can be rewritten as formula (21).
  • n k in formula (21) represents z k -h(x k (-)).
  • the initial value of ⁇ k is set to 1, for example, and i is incremented until the calculated value of formula (16) is equal to or less than ⁇ ⁇ .
  • FIG. 8 is an explanatory diagram conceptually showing a compensation process executed when the observation data z k is an outlier.
  • FIG. 9 is an explanatory diagram conceptually showing a result of performing a normal extended Kalman filtering process when the observation data z k is an outlier. As shown in FIG. 9, when a normal extended Kalman filtering process is executed when the observation data z k is an outlier, the outlier observation data z k is used as is in the filtering step, so that an erroneous posterior estimate value x k (+) and a posterior error covariance P k (+) are calculated. On the other hand, as shown in FIG.
  • the posterior estimate value x k (+) and the posterior error covariance P k (+) are calculated based on the observation data z k whose error covariance R k has been increased by multiplying it by a scaling factor ⁇ , and the a priori estimate value x k (-) and a priori error covariance P k (-) calculated in the prediction step. Therefore, by using the outlier observation data z k as an inaccurate measurement value, it is possible to suppress a decrease in the estimation accuracy in the extended Kalman filtering process.
  • a negative outlier is an outlier on the side (safe side) where the possibility of contact between the human HU and the robot 200 is low. Therefore, when it is determined that the detected outlier is a negative outlier (S170: YES), a compensation process is executed that uses the outlier as an inaccurate measurement value, thereby suppressing a decrease in estimation accuracy in the extended Kalman filtering process without increasing the possibility of contact between the human HU and the robot 200.
  • the position estimation unit 111 of the safety monitoring device 100 performs an exclusion process to exclude the outlier in the filtering step, as described below (S190).
  • the position estimation unit 111 sets the posterior estimate xk (+) and the posterior error covariance Pk (+) to be equal to the a priori estimate xk (-) and the a priori error covariance Pk (-) calculated in the prediction step, respectively, as shown in equations (22) and (23).
  • the filtering step is not performed, and the observation data zk that is an outlier is not used for estimation.
  • FIG. 10 is an explanatory diagram conceptually illustrating the exclusion process executed when the observation data z k is an outlier.
  • the observation data z k that is an outlier is excluded, and the posterior estimate x k (+) and the posterior error covariance P k (+) are set to be equal to the a priori estimate x k (-) and the a priori error covariance P k (-) calculated in the prediction step, respectively.
  • This makes it possible to suppress a decrease in the estimation accuracy of the target position due to the outlier, which in turn suppresses an increase in the possibility of contact between the human HU and the robot 200.
  • FIG. 11 is an explanatory diagram showing an example of a temporary outlier and an additive outlier.
  • a temporary outlier TO is an outlier that occurs continuously across multiple discrete times and forms a trend in a specified period of time.
  • a temporary outlier TO occurs mainly due to a miss-detection by a sensor.
  • an additive outlier AO is an outlier that occurs in a single discrete time and affects the observation in a single discrete time (only).
  • An additive outlier AO occurs mainly due to heavy-tailed error distribution noise.
  • the removal process is performed.
  • the detected outlier is a temporary outlier
  • the posterior error covariance P k (+) is set to be equal to the prior error covariance P k (-) according to the above formula (23)
  • the posterior error covariance P k (+) is set to be equal to the posterior error covariance P k-1 (+) at the previous discrete time (k-1).
  • is a temporary outlier determination index represented by the number of consecutive outliers. When ⁇ is 2 or more, the outlier is a temporary outlier, and when ⁇ is less than 2, the outlier is an additional outlier.
  • ⁇ i k is the i-th repetition of formula (16).
  • the outlier identification unit 115 of the safety monitoring device 100 identifies whether a detected positive outlier is a temporary outlier or an additional outlier.
  • the position estimation unit 111 determines that the observation data is a temporary outlier, it sets the posterior error covariance P k (+) to be equal to the posterior error covariance P k-1 (+) at the previous discrete time as an exclusion process.
  • the position estimation unit 111 determines that the observation data is an additional outlier, it sets the posterior error covariance P k (+) to be equal to the a priori error covariance P k (-) at the current discrete time as an exclusion process.
  • FIG. 12 is an explanatory diagram showing an example of an algorithm (Algorithm 2) for the extended Kalman filtering process (asymmetric extended Kalman filtering process AS-EKF) executed in this embodiment.
  • Algorithm 2 for the extended Kalman filtering process (asymmetric extended Kalman filtering process AS-EKF) executed in this embodiment.
  • the safety monitoring device 100 of this embodiment is an information processing device for estimating the position of an object, and includes a position estimation unit 111.
  • the position estimation unit 111 executes a probabilistic filtering process that sequentially performs, for each discrete time, a prediction step of calculating a priori estimate x k (-) and a priori error covariance P k (-) of the object's position using a dynamic model DM of the object, and a filtering step of calculating a posteriori estimate x k (+) and a posteriori error covariance P k (+) of the object's position based on observation data z k of the object's position using the radar sensor 130, the priori estimate x k (-), and the priori error covariance P k (-).
  • the position estimation unit 111 also includes an outlier detection unit 114 that determines whether the observation data z k is an outlier, and an outlier identification unit 115 that identifies whether the detected outlier is a negative outlier that deviates from the prior estimate x k (-) on the side closer to the radar sensor 130, or a positive outlier that deviates from the prior estimate x k (-) on the side farther from the radar sensor 130.
  • the position estimation unit 111 executes a compensation process in a filtering step to perform compensation using the observation data z k determined to be an outlier, and if the observation data z k is determined to be a positive outlier, the position estimation unit 111 executes an exclusion process in a filtering step to exclude the observation data z k determined to be an outlier.
  • the safety monitoring device 100 of the present embodiment when the observation data z k is determined to be a negative outlier, a compensation process is performed in the filtering step, and when the observation data z k is determined to be a positive outlier, an exclusion process is performed in the filtering step. Therefore, according to the safety monitoring device 100 of the present embodiment, it is possible to suppress a decrease in the estimation accuracy due to the outlier in a wider range of application scenes.
  • the negative outlier is an outlier on the side (safety side) where the possibility of contact with the robot 200 is low for the human HU, so that a compensation process using the negative outlier as an inaccurate measurement value can be performed to suppress a decrease in the accuracy of the position estimation of the human HU.
  • the positive outlier is an outlier on the side (danger side) where the possibility of contact with the robot 200 is high for the human HU, so that an exclusion process for excluding the positive outlier is performed to suppress a decrease in the estimation accuracy of the position of the human HU due to the outlier, and an increase in the possibility of contact between the human HU and the robot 200.
  • the compensation process includes a process of calculating a posterior estimated value xk (+) and a posterior error covariance Pk (+) based on the observation data zk with an increased error covariance, the a priori estimated value xk (-) and the a priori error covariance Pk (-). Therefore, according to the safety monitoring device 100 of this embodiment, the compensation process uses the increased error covariance of the observation data zk , which is a negative outlier, as an inaccurate measurement value, making it possible to effectively suppress a decrease in accuracy of the object position estimation.
  • the exclusion process includes a process of setting the posterior estimated value x k (+) to be equal to the a priori estimated value x k ( ⁇ ) at the current discrete time. Therefore, according to the safety monitoring device 100 of this embodiment, it is possible to effectively suppress a decrease in the estimation accuracy of the object position caused by the positive outlier.
  • the outlier identification unit 115 identifies whether the detected positive outlier is a temporary outlier that occurs continuously across multiple discrete times or an additional outlier that occurs in a single discrete time.
  • the position estimation unit 111 sets the posterior error covariance P k (+) to be equal to the posterior error covariance P k-1 (+) in the previous discrete time as an exclusion process, and when the observation data z k is determined to be an additional outlier, sets the posterior error covariance P k (+) to be equal to the prior error covariance P k (-) in the current discrete time as an exclusion process. Therefore, according to the safety monitoring device 100 of this embodiment, when the positive outlier is a temporary outlier, it is possible to suppress a decrease in the estimation accuracy of the position of the object due to an excessively large accumulated error.
  • the outlier detection unit 114 uses the Mahalanobis distance to determine whether or not the observation data z k is an outlier. Therefore, according to the safety monitoring device 100 of this embodiment, even when two-dimensional or three-dimensional position information is the target, outliers can be appropriately detected.
  • the safety monitoring device 100 of this embodiment can estimate the position of an object efficiently and with high accuracy.
  • the safety monitoring device 100 of this embodiment uses a radar sensor 130 that measures the position of an object by transmitting and receiving radio waves.
  • the radar sensor 130 has a wide detection range (radiation range of radio waves RW) compared to other types of sensors such as laser sensors, so it can detect relatively small objects such as the hand of a human HU.
  • RW radiation range of radio waves
  • the observation data by the radar sensor 130 may contain a relatively large amount of noise.
  • the safety monitoring device 100 of this embodiment the decrease in position estimation accuracy caused by such noise (outliers) can be suppressed, so that the position of a relatively small object can be estimated with high accuracy.
  • the safety monitoring device 100 of this embodiment when the safety monitoring device 100 of this embodiment is applied to a space where a robot 200 and a human HU exist, the safety monitoring device 100 can estimate the position of the hand of the human HU with high accuracy. Therefore, compared to conventional safety monitoring methods that detect the positions of relatively large parts of the human HU, such as the torso or legs, and uniformly define the area within a specified distance (e.g., 80 cm) from the detected parts as an area where there is a risk of contact with the robot, and thus avoid contact between the robot and the human, the separation distance between the robot and the human can be reduced, improving the efficiency of space utilization and the workability of the human HU.
  • a specified distance e.g. 80 cm
  • speed information can also be obtained based on the time difference of the estimated position (distance) information.
  • the safety monitoring device 100 of this embodiment further includes a robot control unit 119 that controls the operation of the robot 200 based on the result of estimation of the position of the human being HU as an object by the position estimation unit 111. Therefore, according to the safety monitoring device 100 of this embodiment, it is possible to estimate the position of the human being HU with high accuracy in the space in which the robot 200 and the human being HU exist, and it is possible to more reliably avoid contact between the human being HU and the robot 200.
  • FIG. 13 is an explanatory diagram showing the device configuration in this embodiment. In this embodiment, a test was conducted to detect the position of a human hand entering the vicinity of a robot using a radar sensor.
  • a linear actuator 310 was used to reciprocate a hand test piece 320 (ABS, IEC 61496-3) simulating a human hand so as to repeatedly move toward and away from the radar sensor 130, the position of the hand test piece 320 was measured by the radar sensor 130, and the asymmetric extended Kalman filtering process (AS-EKF) was applied to the observation data by the radar sensor 130.
  • AS-EKF asymmetric extended Kalman filtering process
  • a mannequin 330 simulating a human (whose surface is made of a soft urethane material) was placed behind the hand test piece 320.
  • the duration of the test was 15 minutes according to IEC/TS 62998.
  • the stroke of the linear actuator 310 (LEFB25S2S-1000-S2A1, SMC) was 0.85 m.
  • the radar sensor 130 was a MIMO radar sensor (IWR68431SK, Texas Instruments, USA) with a 60 GHz standard antenna.
  • the azimuth and elevation angles of the radar sensor 130 were ⁇ 60 degrees and ⁇ 20 degrees, respectively.
  • the transmission power of the radar sensor 130 was 12 dBm, the maximum bandwidth was 4 GHz, and the frequency was 60-64 GHz.
  • the frequency slope of the chirp was 71.26 MHz/ ⁇ s, the sampling rate was 5279 ksps, and 222 samples were obtained for each frequency-modulated chirp.
  • the range resolution using a 256-size FFT was 4.34 cm (measurement rate 30 Hz).
  • the entire measurement system was managed by Melodic, a robot operating system (ROS) that runs on Linux Ubuntu 18.04 LTS (64-bit).
  • the 3D point cloud was measured by the millimeter wave ros package from Texas Instruments, which was officially provided by the manufacturer with a calibration file and a serial driver required for communication with the PC. All point clouds and the closest distance points extracted by the Euclidean clustering method were recorded with time stamp data by the rosbag package.
  • a motion capture system using 12 cameras was used to measure the relative distance and speed between the 3D position of the sensor antenna and the tip of the hand test piece. In this example, the actual measurements taken by the motion capture system were treated as true values.
  • a Gaussian mixture model is used to generate two or more complex noise signals.
  • a heavy-tailed Gaussian noise distribution can be generated as shown in Equation (25).
  • Equation (25) v k is the measurement error vector, R k is the measurement error covariance, ⁇ is the contamination ratio, and ⁇ is a scaling factor. ⁇ contributes to the frequency of occurrence of outliers, and ⁇ is related to the magnitude of the outliers.
  • Equation (26) a temporal heavy-tailed Gaussian noise is generated as shown in Equation (26) below:
  • Equation (26) z k is the observation vector of the primary target, z′ k ⁇ 1 is the observation vector of the secondary target, ⁇ is the temporal contamination rate contributing to the generation of the temporal outlier, and ⁇ k is the Bernoulli variable depending on ⁇ .
  • the effective ranges for generating a suitable noise profile by changing the parameters are different from each other, specifically, as follows: 1 ⁇ ⁇ 0 ⁇ 1 0 ⁇ 1
  • RMSE root mean square error
  • FIG. 14 is an explanatory diagram showing observation data at a certain epoch during a high-speed movement trial.
  • FIG. 14 shows the position (distance from the radar sensor 130) of the hand test piece 320 (dummy hand) measured by the motion capture system, the position of the mannequin 330 (dummy chest) measured by the motion capture system, and the observation data by the radar sensor 130. This point is similar to FIG. 15 and others.
  • the observation data by the radar sensor 130 generally indicates the true value (the true position of the dummy hand), but also includes outliers that are significantly different from the true position of the dummy hand.
  • the ratios of normal values and outliers were 97.5% and 2.5%, respectively, and the ratios of additive outliers and temporary outliers among the outliers were 1.5% and 1.0%, respectively.
  • Figure 15 is an explanatory diagram showing the observed data at a certain epoch during a slow-speed movement trial.
  • the observed data during a slow-speed movement trial contains more outliers (especially temporary outliers) than the fast-speed movement trial shown in Figure 14.
  • the ratios of normal values and outliers were 84.8% and 15.2%, respectively, and the ratios of additive outliers and temporary outliers among the outliers were 0.2% and 15.0%, respectively.
  • the frequency of outliers increased by about six times (2.5% to 15.2%) compared to the fast-speed movement trial, and the ratio of temporary outliers among the outliers increased from 40% (1.0/2.5) to 99% (15.0/15.2).
  • FIG. 16 is an explanatory diagram showing data after applying the asymmetric extended Kalman filtering process (AS-EKF) of this embodiment to observed data at a certain epoch during a high-speed movement trial.
  • AS-EKF asymmetric extended Kalman filtering process
  • FIG. 17 is an explanatory diagram showing data after applying the asymmetric extended Kalman filtering process (AS-EKF) of this embodiment to observed data at a certain epoch during a slow-speed movement trial.
  • AS-EKF asymmetric extended Kalman filtering process
  • the ratios of additive outliers and temporary outliers among the outliers were 0.0014% and 0.06%, respectively, and were reduced by 99.3% and 99.6% from the values before applying AS-EKF (0.2% and 15.0%).
  • FIG. 18 is an explanatory diagram summarizing the test results. Note that FIG. 18 also shows the test results when the comparative extended Kalman filtering process (OD-EKF) was applied.
  • O-EKF comparative extended Kalman filtering process
  • AS-EKF asymmetric extended Kalman filtering process of this embodiment can effectively reduce outliers (temporary outliers and additional outliers) in both high-speed and low-speed movements, compared to the comparative extended Kalman filtering process (OD-EKF).
  • AS-EKF asymmetric extended Kalman filtering process
  • FIG. 20 is an explanatory diagram summarizing the results of a comparison between the asymmetric extended Kalman filtering process (AS-EKF) of this embodiment and the extended Kalman filtering process (OD-EKF) of the comparative example.
  • AS-EKF asymmetric extended Kalman filtering process
  • OD-EKF extended Kalman filtering process
  • the RMSE increased as the above-mentioned scaling factor ⁇ and contamination rate ⁇ increased.
  • the temporary contamination rate ⁇ was smaller than 0.2, there was no significant difference in performance between the AS-EKF and the OD-EKF.
  • the temporary contamination rate ⁇ was larger than 0.5, the RMSE increased significantly in the OD-EKF, while the RMSE did not increase significantly in the AS-EKF.
  • FIG. 21 is an explanatory diagram summarizing the ratio of erroneously adopting outliers on the dangerous side for the asymmetric extended Kalman filtering process (AS-EKF) of this embodiment and the extended Kalman filtering process (OD-EKF) of the comparative example.
  • AS-EKF asymmetric extended Kalman filtering process
  • OD-EKF extended Kalman filtering process
  • the ratio of dangerous outliers increases as the temporary contamination rate ⁇ increases.
  • the ratio of dangerous outliers is always lower for the AS-EKF of this embodiment than for the OD-EKF of the comparative example.
  • the ratio of dangerous outliers is always lower for the AS-EKF of this embodiment than for the OD-EKF of the comparative example, regardless of the value of ⁇ .
  • the ratio of outliers is lower for the AS-EKF of this embodiment than for the OD-EKF of the comparative example, so it can be said that the AS-EKF of this embodiment can withstand temporary outliers.
  • the configuration of the safety monitoring system 10 in the above embodiment is merely an example and can be modified in various ways.
  • the safety monitoring device 100 is attached to the robot 200, but the safety monitoring device 100 may be installed in a location separate from the robot 200.
  • the safety monitoring device 100 has the radar sensor 130, but the safety monitoring device 100 may have other types of object detection sensors, such as a laser sensor, instead of or in addition to the radar sensor 130. Also, the radar sensor 130 (or other types of sensors, the same applies below) may be provided separately from the safety monitoring device 100, and the safety monitoring device 100 may acquire observation data from the radar sensor 130 via the interface unit 150.
  • a probabilistic filtering process using an extended Kalman filter is executed, but other types of probabilistic filters (for example, other Kalman filters such as an Unscented Kalman Filter (abbreviated as UKF), a particle filter, an H ⁇ filter, etc.) may be used for the probabilistic filtering process.
  • other Kalman filters such as an Unscented Kalman Filter (abbreviated as UKF), a particle filter, an H ⁇ filter, etc.
  • the Mahalanobis distance is used to determine whether or not the observed data is an outlier, but other methods may be used to determine whether or not the observed data is an outlier.
  • the method of calculating the posterior error covariance is different depending on whether the outlier is a temporary outlier or an additive outlier.
  • the posterior error covariance may be uniformly set to be the same as the a priori error covariance at the current discrete time.
  • compensation processing is performed when a negative outlier is detected, and exclusion processing is performed when a positive outlier is detected, but conversely, exclusion processing may be performed when a negative outlier is detected, and compensation processing may be performed when a positive outlier is detected.
  • a safety monitoring system 10 is described that is introduced to avoid contact between the robot 200 and the human HU in a space in which the robot 200 and the human HU exist, but the technology disclosed in this specification is not limited to this and can be similarly applied to cases in which the position of an object is estimated by probabilistic filtering processing.
  • Safety monitoring system 100 Safety monitoring device 110: Control unit 111: Position estimation unit 112: Observation data acquisition unit 113: Model acquisition unit 114: Outlier detection unit 115: Outlier identification unit 119: Robot control unit 120: Memory unit 130: Radar sensor 140: Operation input unit 150: Interface unit 190: Bus 200: Robot 310: Linear actuator 320: Hand test piece 330: Mannequin

Abstract

A position estimation unit in this information processing device for estimating the position of an object executes a stochastic filtering process in which a prediction step for calculating a preliminary estimation value and a preliminary error covariance using a dynamic model, and a filtering step for calculating a postliminary estimation value and a postliminary error covariance on the basis of observation data obtained by a sensor as well as the preliminary estimation value and the preliminary error covariance, are executed in sequence. The position estimation unit includes an outlier detection unit that assesses whether the observation data is an outlier, and an outlier identification unit that identifies whether the outlier is a negative outlier or a positive outlier. When the observation data is a negative outlier, the position estimation unit executes one of a compensation process for carrying out compensation using the observation data and an exclusion process for excluding the observation data. When the observation data is a positive outlier, the position estimation unit executes the other of the compensation process and the exclusion process.

Description

情報処理装置、情報処理方法、および、コンピュータプログラムInformation processing device, information processing method, and computer program
 本明細書に開示される技術は、対象物の位置を推定するための情報処理装置等に関する。 The technology disclosed in this specification relates to an information processing device for estimating the position of an object.
 対象物の状態(例えば、位置)を推定するために、カルマンフィルタ等の確率的(stochastic)フィルタを用いた確率的フィルタリング処理が用いられている。確率的フィルタリング処理では、予測ステップおよびフィルタリングステップが、離散時間毎に逐次的に実行される。予測ステップでは、対象物の動的モデルを用いて、対象物の状態の事前推定値および事前誤差共分散が算出される。フィルタリングステップでは、センサーを用いた対象物の状態の観測データと、予測ステップにおいて算出された事前推定値および事前誤差共分散とに基づき、対象物の状態の事後推定値および事後誤差共分散が算出される。確率的フィルタリング処理によれば、観測データに含まれるノイズの影響を低減して、対象物の状態を高精度に推定することができる。 In order to estimate the state (e.g., position) of an object, a probabilistic filtering process using a stochastic filter such as a Kalman filter is used. In the stochastic filtering process, a prediction step and a filtering step are executed sequentially at discrete times. In the prediction step, a priori estimate and a priori error covariance of the object's state are calculated using a dynamic model of the object. In the filtering step, a posterior estimate and a posterior error covariance of the object's state are calculated based on the observation data of the object's state obtained using a sensor and the priori estimate and a priori error covariance calculated in the prediction step. The stochastic filtering process reduces the effect of noise contained in the observation data and allows the state of the object to be estimated with high accuracy.
 センサーによる状態の観測データには、真値から大きく外れた外れ値が含まれ得る。従来、カルマンフィルタを用いた状態推定において、外れ値に起因する推定精度の低下を抑制するために、外れ値を不正確な測定値として利用する補償処理を行うことが提案されている(例えば、非特許文献1参照)。 Sensor observation data on states can contain outliers that deviate significantly from true values. In the past, in state estimation using a Kalman filter, a compensation process has been proposed that uses outliers as inaccurate measured values in order to suppress the deterioration of estimation accuracy caused by outliers (see, for example, Non-Patent Document 1).
 確率的フィルタリング処理により対象物の位置を推定する場合、センサーによる位置の観測データは、外れ値として、予測ステップにより算出された事前予測値に対してセンサーに近い側に外れた負外れ値と、事前予測値に対してセンサーから遠い側に外れた正外れ値とを含み得る。 When estimating the position of an object using a probabilistic filtering process, the position observation data from the sensor may include outliers, such as negative outliers that deviate closer to the sensor than the pre-prediction value calculated in the prediction step, and positive outliers that deviate farther from the sensor than the pre-prediction value.
 上記従来の技術では、外れ値の外れ方向を考慮せず、一律に補償処理を実行しているため、適用可能な場面が限られる。例えば、ロボットと人間との接触を避けるために、ロボットに設置されたセンサーによる観測データを用いて人間の位置を推定する際に、観測データが、センサー(ロボット)に近い側に外れた負外れ値である場合には、該外れ値は人間にとってロボットとの接触の可能性が低くなる側(安全側)の外れ値であるため、上述した外れ値を利用した補償処理を実行しても問題ない。一方、観測データが、センサー(ロボット)から遠い側に外れた正外れ値である場合には、該外れ値は人間にとってロボットとの接触の可能性が高くなる側(危険側)の外れ値であるため、上述した外れ値を利用した補償処理を実行すると、人間とロボットとの接触を引き起こすおそれがある。そのため、このような場面において、外れ値の外れ方向を考慮せず一律に補償処理を実行する上記従来技術を適用することは適切ではない。なお、上述した例とは反対に、観測データが負外れ値である場合に補償処理を実行すると問題が発生する場面もあり得る。 In the above conventional technology, compensation processing is performed uniformly without considering the direction of the outlier, so that the application is limited. For example, when estimating the position of a human using observation data from a sensor installed on a robot to avoid contact between the robot and a human, if the observation data is a negative outlier that is closer to the sensor (robot), the outlier is an outlier on the side where the possibility of contact with the robot is low (safety side) for the human, so there is no problem in performing the compensation processing using the above-mentioned outlier. On the other hand, if the observation data is a positive outlier that is farther from the sensor (robot), the outlier is an outlier on the side where the possibility of contact with the robot is high (danger side) for the human, so performing the compensation processing using the above-mentioned outlier may cause contact between the human and the robot. Therefore, in such a situation, it is not appropriate to apply the above conventional technology that performs compensation processing uniformly without considering the direction of the outlier. In contrast to the above example, there may be a situation where problems occur when performing compensation processing when the observation data is a negative outlier.
 このように、従来の確率的フィルタリング処理の技術は、より広い適用場面において、外れ値に起因する推定精度の低下を抑制するという点で、向上の余地がある。 In this way, there is room for improvement in conventional probabilistic filtering processing technology in terms of reducing the deterioration of estimation accuracy caused by outliers in a wider range of application scenarios.
 本明細書では、上述した課題を解決することが可能な技術を開示する。 This specification discloses technology that can solve the problems mentioned above.
 本明細書に開示される技術は、例えば、以下の形態として実現することが可能である。 The technology disclosed in this specification can be realized, for example, in the following forms:
(1)本明細書に開示される情報処理装置は、対象物の位置を推定するための情報処理装置であり、位置推定部を備える。位置推定部は、前記対象物の動的モデルを用いて、前記対象物の位置の事前推定値および事前誤差共分散を算出する予測ステップと、センサーを用いた前記対象物の位置の観測データと、前記事前推定値および前記事前誤差共分散とに基づき、前記対象物の位置の事後推定値および事後誤差共分散を算出するフィルタリングステップとを、離散時間毎に逐次的に行う確率的フィルタリング処理を実行する。前記位置推定部は、前記観測データが外れ値であるか否かを判定する外れ値検出部と、検出された前記外れ値が、前記事前推定値に対して前記センサーに近い側に外れた負外れ値であるか、前記事前推定値に対して前記センサーから遠い側に外れた正外れ値であるか、を識別する外れ値識別部と、を含む。前記位置推定部は、前記観測データが前記負外れ値であると判定された場合には、前記フィルタリングステップにおいて、前記外れ値であると判定された前記観測データを利用した補償を行う補償処理と、前記外れ値であると判定された前記観測データを除外する除外処理と、の一方を実行し、前記観測データが前記正外れ値であると判定された場合には、前記フィルタリングステップにおいて、前記補償処理と、前記除外処理と、の他方を実行する。 (1) The information processing device disclosed in this specification is an information processing device for estimating the position of an object, and includes a position estimation unit. The position estimation unit executes a probabilistic filtering process that sequentially performs, for each discrete time, a prediction step of calculating a prior estimate and a prior error covariance of the position of the object using a dynamic model of the object, and a filtering step of calculating a posterior estimate and a posterior error covariance of the position of the object based on observation data of the position of the object using a sensor, the prior estimate, and the prior error covariance. The position estimation unit includes an outlier detection unit that determines whether the observation data is an outlier, and an outlier identification unit that identifies whether the detected outlier is a negative outlier that is closer to the sensor than the prior estimate, or a positive outlier that is farther from the sensor than the prior estimate. When the observation data is determined to be the negative outlier, the position estimation unit performs one of a compensation process that uses the observation data determined to be the outlier and an exclusion process that excludes the observation data determined to be the outlier in the filtering step, and when the observation data is determined to be the positive outlier, the position estimation unit performs the other of the compensation process and the exclusion process in the filtering step.
 本情報処理装置では、観測データが負外れ値であると判定された場合には、フィルタリングステップにおいて補償処理が実行され、観測データが正外れ値であると判定された場合には、フィルタリングステップにおいて除外処理が実行される。そのため、本情報処理装置によれば、外れ値の外れ方向を考慮せず一律に補償処理が実行される従来の構成と比較して、より広い適用場面において、外れ値に起因する推定精度の低下を抑制することができる。 In this information processing device, if the observed data is determined to be a negative outlier, a compensation process is executed in the filtering step, and if the observed data is determined to be a positive outlier, an exclusion process is executed in the filtering step. Therefore, according to this information processing device, it is possible to suppress the decrease in estimation accuracy caused by outliers in a wider range of application scenarios compared to conventional configurations in which compensation process is executed uniformly without considering the direction in which the outliers deviate.
(2)上記情報処理装置において、前記位置推定部は、前記観測データが前記負外れ値であると判定された場合には、前記補償処理を実行し、前記観測データが前記正外れ値であると判定された場合には、前記除外処理を実行する構成としてもよい。本情報処理装置によれば、より広い適用場面において、外れ値に起因する推定精度の低下を効果的に抑制することができる。例えば、本情報処理装置が、ロボットと人間が存在する空間に適用された場合には、負外れ値は、人間にとってロボットとの接触の可能性が低くなる側(安全側)の外れ値であるため、該負外れ値を不正確な測定値として利用する補償処理を実行することにより、人間の位置推定の精度低下を抑制することができる。また、正外れ値は、人間にとってロボットとの接触の可能性が高くなる側(危険側)の外れ値であるため、該正外れ値を除外する除外処理を実行することにより、外れ値に起因して人間の位置の推定精度が低下し、人間とロボットとの接触の可能性が高くなることを抑制することができる。 (2) In the above information processing device, the position estimation unit may be configured to execute the compensation process when the observation data is determined to be the negative outlier, and execute the exclusion process when the observation data is determined to be the positive outlier. This information processing device can effectively suppress a decrease in estimation accuracy caused by outliers in a wider range of application scenarios. For example, when this information processing device is applied to a space in which a robot and a human exist, a negative outlier is an outlier on the side (safety side) where the possibility of contact between a human and a robot is low, so by executing a compensation process that uses the negative outlier as an inaccurate measurement value, a decrease in the accuracy of human position estimation can be suppressed. In addition, a positive outlier is an outlier on the side (danger side) where the possibility of contact between a human and a robot is high, so by executing an exclusion process that excludes the positive outlier, a decrease in the estimation accuracy of the human position caused by the outlier and an increase in the possibility of contact between a human and a robot can be suppressed.
(3)上記情報処理装置において、前記補償処理は、誤差共分散を増加させた前記観測データと、前記事前推定値および前記事前誤差共分散とに基づき、前記事後推定値および前記事後誤差共分散を算出する処理を含む構成としてもよい。本構成を採用すれば、負外れ値である観測データの誤差共分散を増加させたものを不正確な測定値として利用する補償処理により、対象物の位置推定の精度低下を効果的に抑制することができる。 (3) In the information processing device, the compensation process may include a process of calculating the posterior estimated value and the posterior error covariance based on the observation data with increased error covariance, the a priori estimated value, and the a priori error covariance. By adopting this configuration, a decrease in accuracy of the target position estimation can be effectively suppressed by the compensation process that uses the increased error covariance of observation data that is a negative outlier as an inaccurate measurement value.
(4)上記情報処理装置において、前記除外処理は、前記事後推定値を、現離散時間における前記事前推定値と同一に設定する処理を含む構成としてもよい。本構成を採用すれば、正外れ値に起因して対象物の位置の推定精度が低下することを効果的に抑制することができる。 (4) In the information processing device, the exclusion process may include a process of setting the posterior estimated value to be equal to the a priori estimated value at the current discrete time. By adopting this configuration, it is possible to effectively prevent a decrease in the estimation accuracy of the object position due to positive outliers.
(5)上記情報処理装置において、前記外れ値識別部は、検出された前記正外れ値が、複数の離散時間にまたがって連続的に発生した一時的外れ値であるか、単一の離散時間において発生した付加的外れ値であるか、を識別し、前記位置推定部は、前記観測データが前記一時的外れ値であると判定された場合には、前記除外処理として、前記事後誤差共分散を、1つ前の離散時間における前記事後誤差共分散と同一に設定し、前記観測データが前記付加的外れ値であると判定された場合には、前記除外処理として、前記事後誤差共分散を、現離散時間における前記事前誤差共分散と同一に設定する構成としてもよい。本構成を採用すれば、正外れ値が一時的外れ値である場合に、誤差が累積して過度に大きくなり、対象物の位置の推定精度が低下することを抑制することができる。 (5) In the information processing device, the outlier identification unit may identify whether the detected positive outlier is a temporary outlier that occurs continuously across multiple discrete times or an additive outlier that occurs in a single discrete time, and the position estimation unit may set the posterior error covariance to be the same as the posterior error covariance in the previous discrete time as the exclusion process when the observation data is determined to be the temporary outlier, and set the posterior error covariance to be the same as the prior error covariance in the current discrete time as the exclusion process when the observation data is determined to be the additive outlier. By adopting this configuration, it is possible to prevent errors from accumulating and becoming excessively large when the positive outlier is a temporary outlier, thereby preventing a decrease in the estimation accuracy of the target position.
(6)上記情報処理装置において、前記外れ値検出部は、マハラノビス距離を用いて前記観測データが前記外れ値であるか否かを判定する構成としてもよい。本構成を採用すれば、2次元または3次元位置情報が対象でも、外れ値を適切に検出することができる。 (6) In the information processing device, the outlier detection unit may be configured to determine whether the observation data is an outlier using Mahalanobis distance. By adopting this configuration, outliers can be appropriately detected even when two-dimensional or three-dimensional position information is the target.
(7)上記情報処理装置において、前記確率的フィルタリング処理は、カルマンフィルタ類を用いたフィルタリング処理である構成としてもよい。本構成を採用すれば、対象物の位置の推定を、効率的にかつ高精度に実現することができる。 (7) In the information processing device, the probabilistic filtering process may be a filtering process using a Kalman filter. By adopting this configuration, it is possible to estimate the position of an object efficiently and with high accuracy.
(8)上記情報処理装置において、前記センサーは、電波を発信および受信することにより、前記対象物の位置を測定するレーダーセンサーである構成としてもよい。レーダーセンサーは、例えばレーザーセンサー等の他の種類のセンサーと比較して、検知範囲(電波の照射範囲)が広いため、例えば人間の手のような比較的小さい物体も検知することができる。一方、レーダーセンサーは検知範囲が広いため、レーダーセンサーによる観測データには、比較的多くのノイズが含まれ得る。しかしながら、本情報処理装置によれば、そのようなノイズ(外れ値)に起因する位置推定精度の低下を抑制することができるため、比較的小さい対象物の位置の推定を高精度に実現することができる。 (8) In the above information processing device, the sensor may be a radar sensor that measures the position of the object by transmitting and receiving radio waves. Radar sensors have a wider detection range (radio wave irradiation range) than other types of sensors, such as laser sensors, and can therefore detect relatively small objects such as a human hand. On the other hand, because radar sensors have a wider detection range, observation data from the radar sensor may contain a relatively large amount of noise. However, according to the information processing device, it is possible to suppress the decrease in position estimation accuracy caused by such noise (outliers), and therefore it is possible to estimate the position of a relatively small object with high accuracy.
 なお、本情報処理装置によれば、推定した位置(距離)情報の時間差分に基づき、速度情報を得ることもできる。 In addition, this information processing device can also obtain speed information based on the time difference of estimated position (distance) information.
(9)上記情報処理装置において、さらに、前記位置推定部による前記対象物としての人間の位置の推定結果に基づき、ロボットの動作を制御するロボット制御部を備える構成としてもよい。本構成を採用すれば、ロボットと人間が存在する空間において、人間の位置を高精度に推定することができ、人間とロボットとの接触をより確実に回避することができる。 (9) The information processing device may further include a robot control unit that controls the operation of the robot based on the result of estimation of the position of the human as the target object by the position estimation unit. By adopting this configuration, the position of the human can be estimated with high accuracy in a space in which the robot and the human exist, and contact between the human and the robot can be avoided more reliably.
 なお、本明細書に開示される技術は、種々の形態で実現することが可能であり、例えば、情報処理装置、情報処理方法、それらの方法を実現するコンピュータプログラム、そのコンピュータプログラムを記録した一時的でない記録媒体等の形態で実現することができる。 The technology disclosed in this specification can be realized in various forms, such as an information processing device, an information processing method, a computer program that realizes the method, or a non-transitory recording medium on which the computer program is recorded.
本実施形態の安全監視システム10の構成を示す説明図FIG. 1 is an explanatory diagram showing a configuration of a safety monitoring system 10 according to an embodiment of the present invention. 安全監視装置100の構成を示すブロック図A block diagram showing the configuration of a safety monitoring device 100. 通常の拡張カルマンフィルタリング処理の手順を概念的に示す説明図A diagram conceptually illustrating the procedure of a typical extended Kalman filtering process. 通常の拡張カルマンフィルタリング処理の基本動作を概念的に示す説明図An explanatory diagram conceptually illustrating the basic operation of a normal extended Kalman filtering process. 通常の拡張カルマンフィルタリング処理のアルゴリズムの一例を示す説明図FIG. 1 is an explanatory diagram showing an example of an algorithm for a typical extended Kalman filtering process. 本実施形態の安全監視装置100により実行される対象物位置推定処理を示すフローチャートA flowchart showing an object position estimation process executed by the safety monitoring device 100 of the present embodiment. 負外れ値および正外れ値の一例を示す説明図FIG. 1 is an explanatory diagram showing an example of a negative outlier and a positive outlier. 観測データzが外れ値である場合に実行される補償処理を概念的に示す説明図FIG. 1 is an explanatory diagram conceptually illustrating compensation processing executed when observed data z k is an outlier. 観測データzが外れ値である場合に通常の拡張カルマンフィルタリング処理を行った結果を概念的に示す説明図FIG. 1 is an explanatory diagram conceptually illustrating a result of performing a normal extended Kalman filtering process when observed data z k is an outlier. 観測データzが外れ値である場合に実行される除外処理を概念的に示す説明図FIG. 1 is an explanatory diagram conceptually illustrating the exclusion process that is executed when observed data z k is an outlier. 一時的外れ値および付加的外れ値の一例を示す説明図FIG. 1 is an explanatory diagram showing an example of a temporary outlier and an additional outlier. 本実施形態で実行される拡張カルマンフィルタリング処理のアルゴリズムの一例を示す説明図FIG. 1 is an explanatory diagram showing an example of an algorithm for an extended Kalman filtering process executed in this embodiment. 本実施例における装置構成を示す説明図FIG. 1 is an explanatory diagram showing the configuration of an apparatus according to the present embodiment. 高速運動試行中のあるエポックでの観測データを示す説明図An illustration showing observed data at one epoch during a fast movement trial. 低速運動試行中のあるエポックでの観測データを示す説明図An illustration showing observed data at one epoch during a slow movement trial. 高速運動試行中のあるエポックでの観測データに対して本実施形態における非対称拡張カルマンフィルタリング処理を適用した後のデータを示す説明図FIG. 1 is an explanatory diagram showing data after applying the asymmetric extended Kalman filtering process of the present embodiment to observed data at a certain epoch during a high-speed movement trial. 低速運動試行中のあるエポックでの観測データに対して本実施形態における非対称拡張カルマンフィルタリング処理を適用した後のデータを示す説明図FIG. 1 is an explanatory diagram showing data after applying the asymmetric extended Kalman filtering process of the present embodiment to observed data at a certain epoch during a slow movement trial. 試験結果をまとめた説明図Diagram summarizing test results 本実施形態の非対称拡張カルマンフィルタリング処理を用いた推定値と、一時的な裾の重いガウスノイズを生成することにより算出された値との比較結果を示す説明図FIG. 1 is an explanatory diagram showing a comparison result between an estimated value using the asymmetric extended Kalman filtering process of the present embodiment and a value calculated by generating temporary heavy-tailed Gaussian noise. 本実施形態の非対称拡張カルマンフィルタリング処理と比較例の拡張カルマンフィルタリング処理との比較結果をまとめた説明図FIG. 11 is an explanatory diagram summarizing the results of a comparison between the asymmetric extended Kalman filtering process of the present embodiment and the extended Kalman filtering process of a comparative example. 本実施形態の非対称拡張カルマンフィルタリング処理と比較例の拡張カルマンフィルタリング処理とについて、誤って危険側の外れ値を採用した比率をまとめた説明図FIG. 11 is an explanatory diagram summarizing the ratio of erroneously adopting outliers on the dangerous side for the asymmetric extended Kalman filtering process of this embodiment and the extended Kalman filtering process of the comparative example; α=5、λ=0.15の場合における危険側の外れ値の比率の比較結果を示す説明図FIG. 11 is an explanatory diagram showing the results of comparing the ratio of outliers on the dangerous side when α=5 and λ=0.15. α=7、λ=0.3の場合における危険側の外れ値の比率の比較結果を示す説明図FIG. 10 is an explanatory diagram showing the results of comparing the ratio of outliers on the dangerous side when α=7 and λ=0.3.
A.実施形態:
A-1.安全監視システム10の構成:
 図1は、本実施形態の安全監視システム10の構成を示す説明図である。本実施形態の安全監視システム10は、ロボット200と人間HUが存在する空間(例えば、工場等の生産現場や配送センター等の物流現場)に導入されるシステムである。安全監視システム10は、ロボット200と、安全監視装置100とを有する。
A. Embodiments:
A-1. Configuration of safety monitoring system 10:
1 is an explanatory diagram showing the configuration of a safety monitoring system 10 according to the present embodiment. The safety monitoring system 10 according to the present embodiment is a system that is introduced into a space in which a robot 200 and a human HU exist (for example, a production site such as a factory or a logistics site such as a distribution center). The safety monitoring system 10 includes the robot 200 and a safety monitoring device 100.
 ロボット200は、種々の動作を行う機械である。図1の例では、ロボット200は、垂直多関節ロボットであるが、ロボット200の種類はこれに限られない。 The robot 200 is a machine that performs various operations. In the example of FIG. 1, the robot 200 is a vertical articulated robot, but the type of the robot 200 is not limited to this.
 安全監視装置100は、人間HUを検出し、人間HUとロボット200との接触を回避するためにロボット200の動作を制御する装置である。安全監視装置100は、例えば、ロボット200における非可動部に設置されている。 The safety monitoring device 100 is a device that detects a human HU and controls the operation of the robot 200 to avoid contact between the human HU and the robot 200. The safety monitoring device 100 is installed, for example, on a non-moving part of the robot 200.
 図2は、安全監視装置100の構成を示すブロック図である。安全監視装置100は、制御部110と、記憶部120と、レーダーセンサー130と、操作入力部140と、インターフェース部150とを備える。これらの各部は、バス190を介して互いに通信可能に接続されている。安全監視装置100は、特許請求の範囲における情報処理装置の一例である。 FIG. 2 is a block diagram showing the configuration of the safety monitoring device 100. The safety monitoring device 100 comprises a control unit 110, a memory unit 120, a radar sensor 130, an operation input unit 140, and an interface unit 150. These units are connected to each other via a bus 190 so that they can communicate with each other. The safety monitoring device 100 is an example of an information processing device within the scope of the claims.
 安全監視装置100のレーダーセンサー130は、電波RW(例えば、ミリ波)を発信すると共に、対象物で反射した電波RWである反射波を受信することにより、対象物(本実施形態では、人間HUの手)の位置を測定する装置である。本実施形態では、レーダーセンサー130は、電波RWの発信および受信の双方に複数のアンテナを利用するMIMO(Multi-Input Multi-Output)方式のセンサーである。レーダーセンサー130は、例えばレーザーセンサー等の他の種類のセンサーと比較して、検知範囲(電波RWの照射範囲)が広いため、例えば人間HUの手のような比較的小さい物体も検知することができる。一方、レーダーセンサー130は検知範囲が広いため、レーダーセンサー130による観測データには、比較的多くのノイズ(例えば、壁や天井からの反射波に起因するノイズ)が含まれ得る。 The radar sensor 130 of the safety monitoring device 100 is a device that measures the position of an object (in this embodiment, the hand of a human HU) by emitting radio waves RW (e.g., millimeter waves) and receiving reflected waves, which are radio waves RW reflected by the object. In this embodiment, the radar sensor 130 is a MIMO (Multi-Input Multi-Output) type sensor that uses multiple antennas for both emitting and receiving radio waves RW. Compared to other types of sensors such as laser sensors, the radar sensor 130 has a wide detection range (radiation range of the radio waves RW), so it can detect relatively small objects such as the hand of a human HU. On the other hand, because the radar sensor 130 has a wide detection range, the observation data obtained by the radar sensor 130 may contain a relatively large amount of noise (e.g., noise caused by reflected waves from walls and ceilings).
 安全監視装置100の操作入力部140は、例えば、ボタン、タッチパネル等により構成され、管理者の操作や指示を受け付ける。インターフェース部150は、例えば、ネットワークインターフェース等により構成され、有線または無線により他の装置(例えば、ロボット200)との通信を行う。 The operation input unit 140 of the safety monitoring device 100 is configured, for example, with buttons, a touch panel, etc., and accepts operations and instructions from the administrator. The interface unit 150 is configured, for example, with a network interface, etc., and communicates with other devices (for example, the robot 200) via wired or wireless communication.
 安全監視装置100の記憶部120は、例えばROMやRAM、ハードディスクドライブ(HDD)、ソリッドステートドライブ(SSD)等により構成され、各種のプログラムやデータを記憶したり、各種のプログラムを実行する際の作業領域やデータの一時的な記憶領域として利用されたりする。例えば、記憶部120には、安全監視プログラムCPが格納されている。安全監視プログラムCPは、例えば、CD-ROMやDVD-ROM、USBメモリ等のコンピュータ読み取り可能な記録媒体(不図示)に格納された状態で提供され、あるいは、インターフェース部150を介して外部装置(例えば、クラウド上のサーバや他の端末装置)から取得可能な状態で提供され、安全監視装置100上で動作可能な状態で記憶部120に格納される。 The storage unit 120 of the safety monitoring device 100 is composed of, for example, ROM, RAM, a hard disk drive (HDD), a solid state drive (SSD), etc., and is used to store various programs and data, and as a working area when executing various programs, and as a temporary storage area for data. For example, the storage unit 120 stores a safety monitoring program CP. The safety monitoring program CP is provided in a state stored in a computer-readable recording medium (not shown), such as a CD-ROM, DVD-ROM, or USB memory, or is provided in a state that can be obtained from an external device (for example, a server on the cloud or other terminal device) via the interface unit 150, and is stored in the storage unit 120 in a state that can be operated on the safety monitoring device 100.
 また、安全監視装置100の記憶部120には、後述する対象物位置推定処理において、動的モデルDM等の各種のデータ類が格納される。これらのデータ類については、後述の対象物位置推定処理の説明に合わせて説明する。 In addition, the storage unit 120 of the safety monitoring device 100 stores various types of data such as a dynamic model DM in the object position estimation process described below. These types of data will be explained in conjunction with the explanation of the object position estimation process described below.
 安全監視装置100の制御部110は、例えばCPU等により構成され、記憶部120から読み出したコンピュータプログラムを実行することにより、安全監視装置100の動作を制御する。例えば、制御部110は、記憶部120から安全監視プログラムCPを読み出して実行することにより、対象物(人間HUの手)の位置を推定する位置推定部111として機能する。位置推定部111は、観測データ取得部112と、モデル取得部113と、外れ値検出部114と、外れ値識別部115とを含む。これら各部の機能については、後述の対象物位置推定処理の説明に合わせて説明する。 The control unit 110 of the safety monitoring device 100 is configured with, for example, a CPU, and controls the operation of the safety monitoring device 100 by executing a computer program read from the storage unit 120. For example, the control unit 110 functions as a position estimation unit 111 that estimates the position of an object (the hand of a human HU) by reading a safety monitoring program CP from the storage unit 120 and executing it. The position estimation unit 111 includes an observation data acquisition unit 112, a model acquisition unit 113, an outlier detection unit 114, and an outlier identification unit 115. The functions of each of these units will be explained in conjunction with the explanation of the object position estimation process described below.
 また、制御部110は、記憶部120から安全監視プログラムCPを読み出して実行することにより、位置推定部111による人間HUの手の位置の推定結果に基づきロボット200の動作を制御するロボット制御部119としても機能する。例えば、ロボット制御部119は、位置推定部111により推定された人間HUの手の位置がロボット200との接触のおそれがある位置である場合に、ロボット200の動きを停止(または減速)させたり、ロボット200の動きの方向を変更させたりして、人間HUとロボット200との接触を回避する。 The control unit 110 also functions as a robot control unit 119 that controls the operation of the robot 200 based on the estimation result of the hand position of the human HU by the position estimation unit 111, by reading and executing the safety monitoring program CP from the memory unit 120. For example, when the hand position of the human HU estimated by the position estimation unit 111 is in a position where there is a risk of contact with the robot 200, the robot control unit 119 stops (or slows down) the movement of the robot 200 or changes the direction of the movement of the robot 200 to avoid contact between the human HU and the robot 200.
A-2.対象物位置推定処理:
 次に、本実施形態の安全監視装置100により実行される対象物位置推定処理について説明する。本実施形態の対象物位置推定処理は、確率的フィルタリング処理を実行することによって、対象物としての人間HUの手の位置を精度良く推定する処理である。本実施形態では、確率的フィルタとして、カルマンフィルタ類の1つである拡張カルマンフィルタ(Extended Kalman Filter、略してEKF)が用いられる。以下、拡張カルマンフィルタを用いた確率的フィルタリング処理を、拡張カルマンフィルタリング処理という。
A-2. Object position estimation process:
Next, an object position estimation process executed by the safety monitoring device 100 of this embodiment will be described. The object position estimation process of this embodiment is a process for accurately estimating the position of the hand of the human being HU as an object by executing a probabilistic filtering process. In this embodiment, an extended Kalman filter (abbreviated as EKF), which is one of the Kalman filters, is used as the probabilistic filter. Hereinafter, the probabilistic filtering process using the extended Kalman filter will be referred to as the extended Kalman filtering process.
 後述するように、本実施形態の確率的フィルタリング処理では、レーダーセンサー130による観測データが外れ値である場合において、外れ値の種類に応じて異なる処理が実行される。すなわち、本実施形態では、外れ値の種類に応じて処理が異なる非対称拡張カルマンフィルタリング処理(以下、「AS-EKF」ともいう。)が実行される。以下では、観測データが外れ値ではない場合に実行される通常の拡張カルマンフィルタリング処理を説明し、その後、本実施形態において実行される非対称拡張カルマンフィルタリング処理AS-EKFについて説明する。 As described below, in the probabilistic filtering process of this embodiment, when the observation data from the radar sensor 130 is an outlier, different processing is performed depending on the type of outlier. That is, in this embodiment, an asymmetric extended Kalman filtering process (hereinafter also referred to as "AS-EKF") is performed in which different processing is performed depending on the type of outlier. Below, we will explain the normal extended Kalman filtering process that is performed when the observation data is not an outlier, and then we will explain the asymmetric extended Kalman filtering process AS-EKF that is performed in this embodiment.
 なお、本明細書や図面において、各記号に付された記号~(tilde)および^(hat)は、それぞれ、測定値および推定値を意味し、各記号に付された記号(-)および(+)は、それぞれ、事前(最新の観測データの利用前)および事後(最新の観測データの利用後)のものであることを意味する。ただし、便宜上、それらの記号を省略することがある。 In this specification and drawings, the symbols ~ (tilde) and ^ (hat) attached to each symbol mean the measured value and estimated value, respectively, and the symbols (-) and (+) attached to each symbol mean the prior value (before the latest observation data is used) and the post-event value (after the latest observation data is used), respectively. However, for convenience, these symbols may be omitted.
(通常の拡張カルマンフィルタリング処理)
 まず、通常の拡張カルマンフィルタリング処理について説明する。はじめに、式(1)に示すように、対象物(本実施形態では、人間HUの手)について、非線形の動的モデルDMが設定される。式(1)において、xは時間kにおけるn次の状態空間ベクトルであり、fは推移関数であり、wはガウス分布に従うと仮定されたプロセスノイズである。
Figure JPOXMLDOC01-appb-M000001
(Normal extended Kalman filtering process)
First, a typical extended Kalman filtering process will be described. First, a nonlinear dynamic model DM is set for an object (in this embodiment, the hand of a human HU) as shown in formula (1). In formula (1), x k is an n-th order state space vector at time k, f is a transition function, and w k is a process noise assumed to follow a Gaussian distribution.
Figure JPOXMLDOC01-appb-M000001
 次に、式(2)に従い観測が行われた後、状態推定のための外挿処理が行われる。式(2)において、zは時間kにおけるm次の観測ベクトルであり、hは観測関数であり、vはガウス分布に従うと仮定された測定ノイズである。
Figure JPOXMLDOC01-appb-M000002
Next, an extrapolation process for state estimation is performed after observation according to equation (2), where z k is the m-th observation vector at time k, h is the observation function, and v k is the measurement noise assumed to follow a Gaussian distribution.
Figure JPOXMLDOC01-appb-M000002
 図3は、通常の拡張カルマンフィルタリング処理の手順を概念的に示す説明図である。図3の上段には、状態の推定手順を示しており、図3の下段には、誤差共分散の推定手順を示している。また、図4は、通常の拡張カルマンフィルタリング処理の基本動作を概念的に示す説明図である。図3および図4に示すように、拡張カルマンフィルタリング処理では、予測ステップとフィルタリングステップとが、離散時間毎に逐次的に実行される。予測ステップでは、上述した対象物の動的モデルDMを用いて、式(3)および式(4)に示すように、時間kにおける対象物の位置の事前推定値x(-)および事前誤差共分散P(-)が算出される。式(3)および式(4)において、xk-1(+)は1つ前の離散時間(k-1)における事後推定値であり、Qは式(5)に従う、時間kにおけるプロセスノイズ共分散である。また、Fは式(6)により表される、非線形推移関数fのヤコビアン(関数行列式)である。なお、予測ステップでは、例えば、等速直線運動モデルに基づく推定が行われる。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
FIG. 3 is an explanatory diagram conceptually showing the procedure of a normal extended Kalman filtering process. The upper part of FIG. 3 shows the procedure of estimating the state, and the lower part of FIG. 3 shows the procedure of estimating the error covariance. FIG. 4 is an explanatory diagram conceptually showing the basic operation of a normal extended Kalman filtering process. As shown in FIG. 3 and FIG. 4, in the extended Kalman filtering process, a prediction step and a filtering step are executed sequentially for each discrete time. In the prediction step, a prior estimate x k (-) of the position of the object at time k and a prior error covariance P k (-) are calculated as shown in Equation (3) and Equation (4) using the dynamic model DM of the object described above. In Equation (3) and Equation (4), x k-1 (+) is a posterior estimate at the previous discrete time (k-1), and Q k is the process noise covariance at time k according to Equation (5). Furthermore, F k is the Jacobian (function determinant) of the nonlinear transition function f expressed by Equation (6). In the prediction step, for example, estimation is performed based on a constant velocity rectilinear motion model.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
 次に、式(7)に従い、カルマンゲインKが算出される。式(7)において、Hは式(8)により表される観測行列であり、Rは式(9)に従う測定ノイズ共分散である。
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
Next, the Kalman gain K k is calculated according to equation (7): In equation (7), H k is the observation matrix expressed by equation (8), and R k is the measurement noise covariance according to equation (9).
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
 次に、フィルタリングステップにおいて、レーダーセンサー130を用いた対象物の位置の観測データzと、予測ステップにおいて算出された事前推定値x(-)および事前誤差共分散P(-)とに基づき、式(10)および式(11)に示すように、時間kにおける対象物の位置の事後推定値x(+)および事後誤差共分散P(+)が算出される。式(11)において、Iは、単位行列である。
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000011
Next, in a filtering step, a posterior estimate x k (+) and a posterior error covariance P k (+) of the object's position at time k are calculated based on the observation data z k of the object's position using the radar sensor 130 and the a priori estimate x k (-) and a priori error covariance P k (-) calculated in the prediction step, as shown in equations (10) and (11). In equation (11), I is a unit matrix.
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000011
 拡張カルマンフィルタリング処理では、上述した予測ステップおよびフィルタリングステップが、離散時間毎に繰り返し実行される。拡張カルマンフィルタリング処理によれば、レーダーセンサー130による対象物(人間HUの手)の位置の観測データに含まれるノイズの影響を低減することができ、対象物の位置を高精度に推定することができる。図5は、通常の拡張カルマンフィルタリング処理のアルゴリズム(Algorithm 1)の一例を示す説明図である。 In the extended Kalman filtering process, the prediction step and filtering step described above are repeatedly executed at discrete times. The extended Kalman filtering process can reduce the effect of noise contained in the observation data of the position of the object (the hand of the human HU) observed by the radar sensor 130, and can estimate the position of the object with high accuracy. Figure 5 is an explanatory diagram showing an example of an algorithm (Algorithm 1) for a typical extended Kalman filtering process.
(本実施形態の対象物位置推定処理)
 次に、本実施形態の安全監視装置100により実行される対象物位置推定処理について説明する。図6は、本実施形態の安全監視装置100により実行される対象物位置推定処理を示すフローチャートである。対象物位置推定処理は、例えば、管理者が安全監視装置100の操作入力部140を操作して開始指示を入力したことに応じて開始される。
(Object Position Estimation Process of the Present Embodiment)
Next, a description will be given of the object position estimation process executed by the safety monitoring device 100 of this embodiment. Fig. 6 is a flowchart showing the object position estimation process executed by the safety monitoring device 100 of this embodiment. The object position estimation process is started in response to, for example, an administrator operating the operation input unit 140 of the safety monitoring device 100 to input a start instruction.
 はじめに、安全監視装置100のモデル取得部113(図2)が、対象物(人間HUの手)の動的モデルDMを取得する(S110)。動的モデルDMは、例えば、監理者により予め設定されたものがインターフェース部150を介して取得され、記憶部120に格納される。 First, the model acquisition unit 113 (FIG. 2) of the safety monitoring device 100 acquires a dynamic model DM of the target object (the hand of the human HU) (S110). The dynamic model DM is, for example, a model previously set by a supervisor, acquired via the interface unit 150 and stored in the memory unit 120.
 次に、安全監視装置100の位置推定部111(図2)が、予測ステップとして、動的モデルDMを用いて、上述した式(3)および式(4)に従い、時間kにおける対象物の位置の事前推定値x(-)および事前誤差共分散P(-)を算出する(S120)。 Next, as a prediction step, the position estimation unit 111 (FIG. 2) of the safety monitoring device 100 uses the dynamic model DM to calculate the a priori estimate x k (-) and a priori error covariance P k (-) of the object's position at time k according to the above-mentioned equations (3) and (4) (S120).
 次に、安全監視装置100の観測データ取得部112(図2)が、レーダーセンサー130により測定された時間kにおける対象物の位置の観測データzを取得する(S130)。 Next, the observation data acquisition unit 112 (FIG. 2) of the safety monitoring device 100 acquires observation data zk of the position of the object at time k measured by the radar sensor 130 (S130).
 次に、安全監視装置100の外れ値検出部114(図2)が、取得された観測データzが外れ値であるか否かを判定するために、式(12)に従い外れ値判定指標γを算出する(S140)。式(12)において、Mはマハラノビス距離であり、γは状態空間ベクトルからの自由度mのカイ二乗分布に従う外れ値判定指標(ガンマ判定指標)である。なお、以下において、式(12)における「z-h(x(-))」をnと表す。
Figure JPOXMLDOC01-appb-M000012
Next, the outlier detection unit 114 (FIG. 2) of the safety monitoring device 100 calculates an outlier determination index γ k according to equation (12) to determine whether the acquired observation data z k is an outlier or not (S140). In equation (12), M k is the Mahalanobis distance, and γ k is an outlier determination index (gamma determination index) that follows a chi-square distribution with m degrees of freedom from a state space vector. In the following, "z k -h(x k (-))" in equation (12) is represented as n k .
Figure JPOXMLDOC01-appb-M000012
 マハラノビス距離を用いた外れ値判定のための閾値を決めるために、式(13)により表される包含距離の概念が考慮される。式(13)において、Cは包含確率であり、DRは安全関連システムの要求レートであり、PFHは1時間における失敗確率の上限である。式(14)に示すように、確率閾値αは、包含距離に基づき選択される。式(14)において、χαは、予め決められたカイ二乗分布のα分位点である。本実施形態では、要求されるパフォーマンスレベルに基づき、例えばαは1-2.5×10-7より大きな値に設定される。そのため、有意水準を有する自由度2のカイ二乗分布は、例えば1-2.5×10-7であり、χαは例えば30.41に設定される。
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000014
In order to determine the threshold for outlier determination using the Mahalanobis distance, the concept of inclusion distance expressed by formula (13) is taken into consideration. In formula (13), C p is the inclusion probability, DR is the required rate of the safety-related system, and PFH u is the upper limit of the failure probability in one hour. As shown in formula (14), the probability threshold α is selected based on the inclusion distance. In formula (14), χ α is the α quantile of a predetermined chi-square distribution. In this embodiment, α is set to a value greater than 1-2.5×10 −7 , for example, based on the required performance level. Therefore, a chi-square distribution with two degrees of freedom having a significance level is, for example, 1-2.5×10 −7 , and χ α is set to, for example, 30.41.
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000014
 安全監視装置100の外れ値検出部114は、算出された外れ値判定指標γに基づき、観測データzが外れ値であるか否かを判定する(S150)。具体的には、外れ値検出部114は、外れ値判定指標γが上述したχα以下である場合には、観測データzは外れ値ではないと判定する(S150:NO)。この場合には、位置推定部111は、上述した通常の拡張カルマンフィルタリング処理(図3および図4参照)のフィルタリングステップを実行する(S160)。 The outlier detection unit 114 of the safety monitoring device 100 judges whether or not the observation data z k is an outlier based on the calculated outlier judgment index γ k (S150). Specifically, when the outlier judgment index γ k is equal to or smaller than the above-mentioned χ α , the outlier detection unit 114 judges that the observation data z k is not an outlier (S150: NO). In this case, the position estimation unit 111 executes the filtering step of the above-mentioned normal extended Kalman filtering process (see FIG. 3 and FIG. 4) (S160).
 一方、外れ値検出部114は、外れ値判定指標γが上述したχαより大きい場合には、観測データzは外れ値であると判定する(S150:YES)。 On the other hand, when the outlier determination index γ k is greater than the above-mentioned χ α , the outlier detection unit 114 determines that the observed data z k is an outlier (S150: YES).
 ここで、外れ値には、負外れ値と正外れ値とがある。図7は、負外れ値および正外れ値の一例を示す説明図である。図7には、予測ステップにおいて算出された人間HUの手の位置の推定値PD(事前推定値x(-))と、推定誤差共分散を示す楕円E1を示している。負外れ値NOは、図7の左側に示すように、観測データ(レーダーセンサー130により観測された人間HUの手の位置)が、予測ステップにおける推定値PDに対して、安全監視装置100のレーダーセンサー130に近い側に外れた外れ値である。負外れ値NOは、人間HUの手が実際よりもレーダーセンサー130(ロボット200)に近い位置にあるものと誤認された外れ値であり、人間HUにとってロボット200との接触の可能性が低くなる側(安全側)の外れ値であると言える。一方、正外れ値POは、図7の右側に示すように、観測データが、予測ステップにおける推定値PDに対して、レーダーセンサー130から遠い側に外れた外れ値である。正外れ値POは、人間HUの手が実際よりもレーダーセンサー130(ロボット200)から遠い位置にあるものと誤認された外れ値であり、人間HUにとってロボット200との接触の可能性が高くなる側(危険側)の外れ値であると言える。このように、負外れ値と正外れ値とでは、人間HUとロボット200との接触可能性への影響が異なるため、本実施形態では、以下に説明するように、観測データzが負外れ値か正外れ値かによって、フィルタリングステップの処理を異ならせている。 Here, the outliers include negative and positive outliers. FIG. 7 is an explanatory diagram showing an example of a negative and positive outlier. FIG. 7 shows the estimated value PD (pre-estimated value x k (−)) of the hand position of the human HU calculated in the prediction step, and an ellipse E1 showing the estimation error covariance. As shown on the left side of FIG. 7, the negative outlier NO is an outlier in which the observation data (the hand position of the human HU observed by the radar sensor 130) deviates from the estimated value PD in the prediction step to the side closer to the radar sensor 130 of the safety monitoring device 100. The negative outlier NO is an outlier in which the hand of the human HU is mistakenly recognized as being closer to the radar sensor 130 (robot 200) than it actually is, and can be said to be an outlier on the side (safety side) where the possibility of contacting the robot 200 is low for the human HU. On the other hand, the positive outlier PO is an outlier in which the observation data deviates from the estimated value PD in the prediction step to the side farther from the radar sensor 130, as shown on the right side of FIG. 7. The positive outlier PO is an outlier in which the hand of the human being HU is mistakenly recognized as being farther from the radar sensor 130 (robot 200) than it actually is, and can be said to be an outlier on the side (danger side) where the possibility of contact between the human being HU and the robot 200 is higher for the human being HU. In this way, negative outliers and positive outliers have different effects on the possibility of contact between the human being HU and the robot 200, so in this embodiment, as described below, the processing of the filtering step is made different depending on whether the observation data zk is a negative outlier or a positive outlier.
 安全監視装置100の外れ値識別部115(図2)は、検出された外れ値が負外れ値であるか正外れ値であるかを識別する(S170)。具体的には、外れ値識別部115は、上記式(12)におけるn(=z-h(x(-)))が負の値である場合には、検出された外れ値は負外れ値であると判定し、nが正の値である場合には、検出された外れ値は正外れ値であると判定する。 The outlier identification unit 115 (FIG. 2) of the safety monitoring device 100 identifies whether the detected outlier is a negative outlier or a positive outlier (S170). Specifically, when n k (=z k -h(x k (-))) in the above formula (12) is a negative value, the outlier identification unit 115 determines that the detected outlier is a negative outlier, and when n k is a positive value, the outlier identification unit 115 determines that the detected outlier is a positive outlier.
 検出された外れ値が負外れ値であると判定された場合には(S170:YES)、安全監視装置100の位置推定部111は、フィルタリングステップにおいて、以下に説明するように、負外れ値を利用した補償処理を実行する(S180)。 If it is determined that the detected outlier is a negative outlier (S170: YES), the position estimation unit 111 of the safety monitoring device 100 performs compensation processing using the negative outlier in the filtering step, as described below (S180).
 補償処理では、位置推定部111は、式(15)に示すように、スケーリングファクターλを用いて観測データの誤差共分散Rを増加させる。そして、外れ値判定指標γを算出するための上述した式(12)を、下記の式(16)に更新する。なお、式(16)におけるP(-)(実際にはPの上にバーあり)は、式(17)により表される。
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000017
In the compensation process, the position estimation unit 111 increases the error covariance R k of the observation data by using the scaling factor λ as shown in formula (15). Then, the above formula (12) for calculating the outlier determination index γ k is updated to the following formula (16). Note that P k (-) (actually, there is a bar above P) in formula (16) is expressed by formula (17).
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000017
 位置推定部111は、ニュートン法を用いて、時間kにおけるスケーリングファクターλの最適値を算出する。式(18)のように関数gを規定すると、λは式(19)に示すように最適化される。式(19)において、iは、i番目のイノベーションであり、「’」は、該関数の導関数(微分係数)を表す。ここで、逆行列の導関数は、式(20)のように表される。式(20)において、Aはランダムな可逆行列であり、時間tの関数は式(21)のように書き換え可能である。上述したように、式(21)におけるnはz-h(x(-))を表す。λの初期値は例えば1に設定され、式(16)の算出値がχα以下となるまでiがインクリメントされる。
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000020
Figure JPOXMLDOC01-appb-M000021
The position estimation unit 111 calculates the optimal value of the scaling factor λ at time k using the Newton method. When the function g is defined as in formula (18), λ k is optimized as shown in formula (19). In formula (19), i is the i-th innovation, and "'" represents the derivative (differential coefficient) of the function. Here, the derivative of the inverse matrix is expressed as formula (20). In formula (20), A is a random invertible matrix, and the function of time t can be rewritten as formula (21). As described above, n k in formula (21) represents z k -h(x k (-)). The initial value of λ k is set to 1, for example, and i is incremented until the calculated value of formula (16) is equal to or less than χ α .
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000020
Figure JPOXMLDOC01-appb-M000021
 図8は、観測データzが外れ値である場合に実行される補償処理を概念的に示す説明図である。また、図9は、観測データzが外れ値である場合に通常の拡張カルマンフィルタリング処理を行った結果を概念的に示す説明図である。図9に示すように、観測データzが外れ値である場合において通常の拡張カルマンフィルタリング処理を実行すると、外れ値である観測データzがそのままフィルタリングステップに使用されるため、誤った事後推定値x(+)および事後誤差共分散P(+)が算出される。一方、図8に示すように、補償処理では、スケーリングファクターλを乗ずることによって誤差共分散Rを増加させた観測データzと、予測ステップにおいて算出された事前推定値x(-)および事前誤差共分散P(-)とに基づき、事後推定値x(+)および事後誤差共分散P(+)が算出される。そのため、外れ値である観測データzを不正確な測定値として利用することにより、拡張カルマンフィルタリング処理における推定精度の低下を抑制することができる。 FIG. 8 is an explanatory diagram conceptually showing a compensation process executed when the observation data z k is an outlier. FIG. 9 is an explanatory diagram conceptually showing a result of performing a normal extended Kalman filtering process when the observation data z k is an outlier. As shown in FIG. 9, when a normal extended Kalman filtering process is executed when the observation data z k is an outlier, the outlier observation data z k is used as is in the filtering step, so that an erroneous posterior estimate value x k (+) and a posterior error covariance P k (+) are calculated. On the other hand, as shown in FIG. 8, in the compensation process, the posterior estimate value x k (+) and the posterior error covariance P k (+) are calculated based on the observation data z k whose error covariance R k has been increased by multiplying it by a scaling factor λ, and the a priori estimate value x k (-) and a priori error covariance P k (-) calculated in the prediction step. Therefore, by using the outlier observation data z k as an inaccurate measurement value, it is possible to suppress a decrease in the estimation accuracy in the extended Kalman filtering process.
 上述したように、負外れ値は、人間HUにとってロボット200との接触の可能性が低くなる側(安全側)の外れ値である。そのため、検出された外れ値が負外れ値であると判定された場合には(S170:YES)、外れ値を不正確な測定値として利用した補償処理を実行することにより、人間HUとロボット200との接触の可能性を高めることなく、拡張カルマンフィルタリング処理における推定精度の低下を抑制している。 As described above, a negative outlier is an outlier on the side (safe side) where the possibility of contact between the human HU and the robot 200 is low. Therefore, when it is determined that the detected outlier is a negative outlier (S170: YES), a compensation process is executed that uses the outlier as an inaccurate measurement value, thereby suppressing a decrease in estimation accuracy in the extended Kalman filtering process without increasing the possibility of contact between the human HU and the robot 200.
 一方、検出された外れ値が正外れ値であると判定された場合には(S170:NO)、安全監視装置100の位置推定部111は、フィルタリングステップにおいて、以下に説明するように、外れ値を除外する除外処理を実行する(S190)。 On the other hand, if it is determined that the detected outlier is a positive outlier (S170: NO), the position estimation unit 111 of the safety monitoring device 100 performs an exclusion process to exclude the outlier in the filtering step, as described below (S190).
 除外処理では、位置推定部111は、式(22)および式(23)に示すように、事後推定値x(+)および事後誤差共分散P(+)を、それぞれ、予測ステップにおいて算出された事前推定値x(-)および事前誤差共分散P(-)と同一に設定する。換言すれば、除外処理では、フィルタリングステップが実行されず、外れ値である観測データzが推定に利用されない。
Figure JPOXMLDOC01-appb-M000022
Figure JPOXMLDOC01-appb-M000023
In the exclusion process, the position estimation unit 111 sets the posterior estimate xk (+) and the posterior error covariance Pk (+) to be equal to the a priori estimate xk (-) and the a priori error covariance Pk (-) calculated in the prediction step, respectively, as shown in equations (22) and (23). In other words, in the exclusion process, the filtering step is not performed, and the observation data zk that is an outlier is not used for estimation.
Figure JPOXMLDOC01-appb-M000022
Figure JPOXMLDOC01-appb-M000023
 図10は、観測データzが外れ値である場合に実行される除外処理を概念的に示す説明図である。図10に示すように、除外処理では、外れ値である観測データzが除外され、事後推定値x(+)および事後誤差共分散P(+)が、それぞれ、予測ステップにおいて算出された事前推定値x(-)および事前誤差共分散P(-)と同一に設定される。そのため、外れ値に起因して対象物の位置の推定精度が低下し、人間HUとロボット200との接触の可能性が高くなることを抑制することができる。 10 is an explanatory diagram conceptually illustrating the exclusion process executed when the observation data z k is an outlier. As shown in FIG. 10, in the exclusion process, the observation data z k that is an outlier is excluded, and the posterior estimate x k (+) and the posterior error covariance P k (+) are set to be equal to the a priori estimate x k (-) and the a priori error covariance P k (-) calculated in the prediction step, respectively. This makes it possible to suppress a decrease in the estimation accuracy of the target position due to the outlier, which in turn suppresses an increase in the possibility of contact between the human HU and the robot 200.
 ここで、外れ値には、一時的外れ値(temporary outlier)と付加的外れ値(additive outlier)とがある。図11は、一時的外れ値および付加的外れ値の一例を示す説明図である。図11に示すように、一時的外れ値TOは、複数の離散時間にまたがって連続的に発生した外れ値であり、所定の期間におけるトレンドを形成する外れ値である。一時的外れ値TOは、主として、センサーによる誤った検出(miss-detection)に起因して発生する。一方、付加的外れ値AOは、単一の離散時間において発生した外れ値であり、単一の離散時間(のみ)における観測に影響を与える外れ値である。付加的外れ値AOは、主として、裾の重い誤差分布ノイズに起因して発生する。 Here, there are two types of outliers: temporary outliers and additive outliers. FIG. 11 is an explanatory diagram showing an example of a temporary outlier and an additive outlier. As shown in FIG. 11, a temporary outlier TO is an outlier that occurs continuously across multiple discrete times and forms a trend in a specified period of time. A temporary outlier TO occurs mainly due to a miss-detection by a sensor. On the other hand, an additive outlier AO is an outlier that occurs in a single discrete time and affects the observation in a single discrete time (only). An additive outlier AO occurs mainly due to heavy-tailed error distribution noise.
 上述したように、本実施形態では、検出された外れ値が正外れ値であると判定された場合に、除外処理が行われる。しかしながら、検出された外れ値が一時的外れ値である場合に、上記式(23)に従い、事後誤差共分散P(+)を事前誤差共分散P(-)と同一に設定すると、誤差が累積して過度に大きくなるという問題がある。そのため、式(24)に示すように、検出された外れ値が正外れ値であり、かつ、一時的外れ値である場合には、事後誤差共分散P(+)を、1つ前の離散時間(k-1)における事後誤差共分散Pk-1(+)と同一に設定する。なお、式(24)において、τは、外れ値が連続した回数により表される一時的外れ値判定指標である。τが2以上である場合は、外れ値は一時的外れ値であり、τが2未満である場合は、外れ値は付加的外れ値である。また、γ は、式(16)のi番目の繰り返しである。
Figure JPOXMLDOC01-appb-M000024
As described above, in this embodiment, when the detected outlier is determined to be a positive outlier, the removal process is performed. However, when the detected outlier is a temporary outlier, if the posterior error covariance P k (+) is set to be equal to the prior error covariance P k (-) according to the above formula (23), there is a problem that the error accumulates and becomes excessively large. Therefore, as shown in formula (24), when the detected outlier is a positive outlier and a temporary outlier, the posterior error covariance P k (+) is set to be equal to the posterior error covariance P k-1 (+) at the previous discrete time (k-1). In formula (24), τ is a temporary outlier determination index represented by the number of consecutive outliers. When τ is 2 or more, the outlier is a temporary outlier, and when τ is less than 2, the outlier is an additional outlier. In addition, γ i k is the i-th repetition of formula (16).
Figure JPOXMLDOC01-appb-M000024
 このように、本実施形態では、安全監視装置100の外れ値識別部115は、検出された正外れ値が一時的外れ値であるか付加的外れ値であるかを識別する。位置推定部111は、観測データが一時的外れ値であると判定された場合には、除外処理として、事後誤差共分散P(+)を1つ前の離散時間における事後誤差共分散Pk-1(+)と同一に設定する。一方、位置推定部111は、観測データが付加的外れ値であると判定された場合には、除外処理として、事後誤差共分散P(+)を現離散時間における事前誤差共分散P(-)と同一に設定する。 Thus, in this embodiment, the outlier identification unit 115 of the safety monitoring device 100 identifies whether a detected positive outlier is a temporary outlier or an additional outlier. When the position estimation unit 111 determines that the observation data is a temporary outlier, it sets the posterior error covariance P k (+) to be equal to the posterior error covariance P k-1 (+) at the previous discrete time as an exclusion process. On the other hand, when the position estimation unit 111 determines that the observation data is an additional outlier, it sets the posterior error covariance P k (+) to be equal to the a priori error covariance P k (-) at the current discrete time as an exclusion process.
 現離散時間kにおけるフィルタリングステップが完了した後、安全監視装置100の位置推定部111は、対象物位置推定処理の終了指示があったか否かを判定し(S200)、該指示がなければ(S200:NO)、現離散時間kを更新して(k=k+1)(S210)、上述したS120以降の処理を同様に実行する。終了指示があれば(S200:YES)、位置推定部111は、対象物位置推定処理を終了する。 After the filtering step at the current discrete time k is completed, the position estimation unit 111 of the safety monitoring device 100 determines whether or not there has been an instruction to end the object position estimation process (S200). If there has been no such instruction (S200: NO), the position estimation unit 111 updates the current discrete time k (k = k + 1) (S210) and similarly executes the processes from S120 onwards described above. If there has been an instruction to end (S200: YES), the position estimation unit 111 ends the object position estimation process.
 図12は、本実施形態で実行される拡張カルマンフィルタリング処理(非対称拡張カルマンフィルタリング処理AS-EKF)のアルゴリズム(Algorithm 2)の一例を示す説明図である。 FIG. 12 is an explanatory diagram showing an example of an algorithm (Algorithm 2) for the extended Kalman filtering process (asymmetric extended Kalman filtering process AS-EKF) executed in this embodiment.
A-3.本実施形態の効果:
 以上説明したように、本実施形態の安全監視装置100は、対象物の位置を推定するための情報処理装置であり、位置推定部111を備える。位置推定部111は、対象物の動的モデルDMを用いて、対象物の位置の事前推定値x(-)および事前誤差共分散P(-)を算出する予測ステップと、レーダーセンサー130を用いた対象物の位置の観測データzと、事前推定値x(-)および事前誤差共分散P(-)とに基づき、対象物の位置の事後推定値x(+)および事後誤差共分散P(+)を算出するフィルタリングステップとを、離散時間毎に逐次的に行う確率的フィルタリング処理を実行する。また、位置推定部111は、観測データzが外れ値であるか否かを判定する外れ値検出部114と、検出された外れ値が、事前推定値x(-)に対してレーダーセンサー130に近い側に外れた負外れ値であるか、事前推定値x(-)に対してレーダーセンサー130から遠い側に外れた正外れ値であるか、を識別する外れ値識別部115とを含む。位置推定部111は、観測データzが負外れ値であると判定された場合には、フィルタリングステップにおいて、外れ値であると判定された観測データzを利用した補償を行う補償処理を実行し、観測データzが正外れ値であると判定された場合には、フィルタリングステップにおいて、外れ値であると判定された観測データzを除外する除外処理を実行する。
A-3. Advantages of this embodiment:
As described above, the safety monitoring device 100 of this embodiment is an information processing device for estimating the position of an object, and includes a position estimation unit 111. The position estimation unit 111 executes a probabilistic filtering process that sequentially performs, for each discrete time, a prediction step of calculating a priori estimate x k (-) and a priori error covariance P k (-) of the object's position using a dynamic model DM of the object, and a filtering step of calculating a posteriori estimate x k (+) and a posteriori error covariance P k (+) of the object's position based on observation data z k of the object's position using the radar sensor 130, the priori estimate x k (-), and the priori error covariance P k (-). The position estimation unit 111 also includes an outlier detection unit 114 that determines whether the observation data z k is an outlier, and an outlier identification unit 115 that identifies whether the detected outlier is a negative outlier that deviates from the prior estimate x k (-) on the side closer to the radar sensor 130, or a positive outlier that deviates from the prior estimate x k (-) on the side farther from the radar sensor 130. If the observation data z k is determined to be a negative outlier, the position estimation unit 111 executes a compensation process in a filtering step to perform compensation using the observation data z k determined to be an outlier, and if the observation data z k is determined to be a positive outlier, the position estimation unit 111 executes an exclusion process in a filtering step to exclude the observation data z k determined to be an outlier.
 このように、本実施形態の安全監視装置100では、観測データzが負外れ値であると判定された場合には、フィルタリングステップにおいて補償処理が実行され、観測データzが正外れ値であると判定された場合には、フィルタリングステップにおいて除外処理が実行される。そのため、本実施形態の安全監視装置100によれば、より広い適用場面において、外れ値に起因する推定精度の低下を抑制することができる。例えば、本実施形態の安全監視装置100が、ロボット200と人間HUが存在する空間に適用された場合には、負外れ値は、人間HUにとってロボット200との接触の可能性が低くなる側(安全側)の外れ値であるため、該負外れ値を不正確な測定値として利用する補償処理を実行することにより、人間HUの位置推定の精度低下を抑制することができる。また、正外れ値は、人間HUにとってロボット200との接触の可能性が高くなる側(危険側)の外れ値であるため、該正外れ値を除外する除外処理を実行することにより、外れ値に起因して人間HUの位置の推定精度が低下し、人間HUとロボット200との接触の可能性が高くなることを抑制することができる。 In this manner, in the safety monitoring device 100 of the present embodiment, when the observation data z k is determined to be a negative outlier, a compensation process is performed in the filtering step, and when the observation data z k is determined to be a positive outlier, an exclusion process is performed in the filtering step. Therefore, according to the safety monitoring device 100 of the present embodiment, it is possible to suppress a decrease in the estimation accuracy due to the outlier in a wider range of application scenes. For example, when the safety monitoring device 100 of the present embodiment is applied to a space in which the robot 200 and the human HU exist, the negative outlier is an outlier on the side (safety side) where the possibility of contact with the robot 200 is low for the human HU, so that a compensation process using the negative outlier as an inaccurate measurement value can be performed to suppress a decrease in the accuracy of the position estimation of the human HU. In addition, the positive outlier is an outlier on the side (danger side) where the possibility of contact with the robot 200 is high for the human HU, so that an exclusion process for excluding the positive outlier is performed to suppress a decrease in the estimation accuracy of the position of the human HU due to the outlier, and an increase in the possibility of contact between the human HU and the robot 200.
 また、本実施形態の安全監視装置100では、補償処理は、誤差共分散を増加させた観測データzと、事前推定値x(-)および事前誤差共分散P(-)とに基づき、事後推定値x(+)および事後誤差共分散P(+)を算出する処理を含む。そのため、本実施形態の安全監視装置100によれば、負外れ値である観測データzの誤差共分散を増加させたものを不正確な測定値として利用する補償処理により、対象物の位置推定の精度低下を効果的に抑制することができる。 Furthermore, in the safety monitoring device 100 of this embodiment, the compensation process includes a process of calculating a posterior estimated value xk (+) and a posterior error covariance Pk (+) based on the observation data zk with an increased error covariance, the a priori estimated value xk (-) and the a priori error covariance Pk (-). Therefore, according to the safety monitoring device 100 of this embodiment, the compensation process uses the increased error covariance of the observation data zk , which is a negative outlier, as an inaccurate measurement value, making it possible to effectively suppress a decrease in accuracy of the object position estimation.
 また、本実施形態の安全監視装置100では、除外処理は、事後推定値x(+)を、現離散時間における事前推定値x(-)と同一に設定する処理を含む。そのため、本実施形態の安全監視装置100によれば、正外れ値に起因して対象物の位置の推定精度が低下することを効果的に抑制することができる。 Furthermore, in the safety monitoring device 100 of this embodiment, the exclusion process includes a process of setting the posterior estimated value x k (+) to be equal to the a priori estimated value x k (−) at the current discrete time. Therefore, according to the safety monitoring device 100 of this embodiment, it is possible to effectively suppress a decrease in the estimation accuracy of the object position caused by the positive outlier.
 また、本実施形態の安全監視装置100では、外れ値識別部115は、検出された正外れ値が、複数の離散時間にまたがって連続的に発生した一時的外れ値であるか、単一の離散時間において発生した付加的外れ値であるかを識別する。また、位置推定部111は、観測データzが一時的外れ値であると判定された場合には、除外処理として、事後誤差共分散P(+)を1つ前の離散時間における事後誤差共分散Pk-1(+)と同一に設定し、観測データzが付加的外れ値であると判定された場合には、除外処理として、事後誤差共分散P(+)を現離散時間における事前誤差共分散P(-)と同一に設定する。そのため、本実施形態の安全監視装置100によれば、正外れ値が一時的外れ値である場合に、誤差が累積して過度に大きくなり、対象物の位置の推定精度が低下することを抑制することができる。 In addition, in the safety monitoring device 100 of this embodiment, the outlier identification unit 115 identifies whether the detected positive outlier is a temporary outlier that occurs continuously across multiple discrete times or an additional outlier that occurs in a single discrete time. In addition, when the observation data z k is determined to be a temporary outlier, the position estimation unit 111 sets the posterior error covariance P k (+) to be equal to the posterior error covariance P k-1 (+) in the previous discrete time as an exclusion process, and when the observation data z k is determined to be an additional outlier, sets the posterior error covariance P k (+) to be equal to the prior error covariance P k (-) in the current discrete time as an exclusion process. Therefore, according to the safety monitoring device 100 of this embodiment, when the positive outlier is a temporary outlier, it is possible to suppress a decrease in the estimation accuracy of the position of the object due to an excessively large accumulated error.
 また、本実施形態の安全監視装置100では、外れ値検出部114は、マハラノビス距離を用いて観測データzが外れ値であるか否かを判定する。そのため、本実施形態の安全監視装置100によれば、2次元または3次元位置情報が対象でも、外れ値を適切に検出することができる。 Furthermore, in the safety monitoring device 100 of this embodiment, the outlier detection unit 114 uses the Mahalanobis distance to determine whether or not the observation data z k is an outlier. Therefore, according to the safety monitoring device 100 of this embodiment, even when two-dimensional or three-dimensional position information is the target, outliers can be appropriately detected.
 また、本実施形態の安全監視装置100では、確率的フィルタリング処理として、カルマンフィルタ類を用いたフィルタリング処理が実行される。そのため、本実施形態の安全監視装置100によれば、対象物の位置の推定を、効率的にかつ高精度に実現することができる。 In addition, in the safety monitoring device 100 of this embodiment, a filtering process using a Kalman filter is executed as a probabilistic filtering process. Therefore, the safety monitoring device 100 of this embodiment can estimate the position of an object efficiently and with high accuracy.
 また、本実施形態の安全監視装置100では、電波を発信および受信することにより対象物の位置を測定するレーダーセンサー130が用いられる。レーダーセンサー130は、例えばレーザーセンサー等の他の種類のセンサーと比較して、検知範囲(電波RWの照射範囲)が広いため、例えば人間HUの手のような比較的小さい物体も検知することができる。一方、レーダーセンサー130は検知範囲が広いため、レーダーセンサー130による観測データには、比較的多くのノイズが含まれ得る。しかしながら、本実施形態の安全監視装置100によれば、そのようなノイズ(外れ値)に起因する位置推定精度の低下を抑制することができるため、比較的小さい対象物の位置の推定を高精度に実現することができる。例えば、本実施形態の安全監視装置100がロボット200と人間HUが存在する空間に適用された場合には、安全監視装置100により人間HUの手の位置の推定を高精度に実現することができる。そのため、人間HUの胴体部や脚部等の比較的大きい部分の位置を検出し、該検出された部分から所定の距離(例えば80cm)以内の範囲を一律にロボットとの接触のおそれのある範囲として、ロボットと人間との接触を回避する従来の安全監視方法と比較して、ロボットと人間との離隔距離を低減することができ、空間利用効率や人間HUの作業性を向上させることができる。 In addition, the safety monitoring device 100 of this embodiment uses a radar sensor 130 that measures the position of an object by transmitting and receiving radio waves. The radar sensor 130 has a wide detection range (radiation range of radio waves RW) compared to other types of sensors such as laser sensors, so it can detect relatively small objects such as the hand of a human HU. On the other hand, since the radar sensor 130 has a wide detection range, the observation data by the radar sensor 130 may contain a relatively large amount of noise. However, according to the safety monitoring device 100 of this embodiment, the decrease in position estimation accuracy caused by such noise (outliers) can be suppressed, so that the position of a relatively small object can be estimated with high accuracy. For example, when the safety monitoring device 100 of this embodiment is applied to a space where a robot 200 and a human HU exist, the safety monitoring device 100 can estimate the position of the hand of the human HU with high accuracy. Therefore, compared to conventional safety monitoring methods that detect the positions of relatively large parts of the human HU, such as the torso or legs, and uniformly define the area within a specified distance (e.g., 80 cm) from the detected parts as an area where there is a risk of contact with the robot, and thus avoid contact between the robot and the human, the separation distance between the robot and the human can be reduced, improving the efficiency of space utilization and the workability of the human HU.
 なお、本実施形態の安全監視装置100によれば、推定した位置(距離)情報の時間差分に基づき、速度情報を得ることもできる。 In addition, according to the safety monitoring device 100 of this embodiment, speed information can also be obtained based on the time difference of the estimated position (distance) information.
 また、本実施形態の安全監視装置100は、さらに、位置推定部111による対象物としての人間HUの位置の推定結果に基づき、ロボット200の動作を制御するロボット制御部119を備える。そのため、本実施形態の安全監視装置100によれば、ロボット200と人間HUが存在する空間において、人間HUの位置を高精度に推定することができ、人間HUとロボット200との接触をより確実に回避することができる。 The safety monitoring device 100 of this embodiment further includes a robot control unit 119 that controls the operation of the robot 200 based on the result of estimation of the position of the human being HU as an object by the position estimation unit 111. Therefore, according to the safety monitoring device 100 of this embodiment, it is possible to estimate the position of the human being HU with high accuracy in the space in which the robot 200 and the human being HU exist, and it is possible to more reliably avoid contact between the human being HU and the robot 200.
A-4.実施例:
 次に、本実施形態の安全監視装置100により実行される上述の非対称拡張カルマンフィルタリング処理(AS-EKF)の実施例(実験例)を説明する。図13は、本実施例における装置構成を示す説明図である。本実施例では、ロボットの周辺に侵入する人間の手の位置をレーダーセンサーによって検出するテストを行った。具体的には、リニアアクチュエータ310を用いて、人間の手を模したハンドテストピース320(ABS、IEC 61496-3)を、レーダーセンサー130に対して近付く動きおよび遠ざかる動きを繰り返すように往復運動させ、レーダーセンサー130によってハンドテストピース320の位置を測定し、レーダーセンサー130による観測データに対して非対称拡張カルマンフィルタリング処理(AS-EKF)を適用した。なお、実際の手の侵入環境に近付けるため、ハンドテストピース320の後方に、人間を模したマネキン330(表面がソフトウレタン材料により形成されたもの)を配置した。
A-4. Example:
Next, an example (experimental example) of the above-mentioned asymmetric extended Kalman filtering process (AS-EKF) executed by the safety monitoring device 100 of this embodiment will be described. FIG. 13 is an explanatory diagram showing the device configuration in this embodiment. In this embodiment, a test was conducted to detect the position of a human hand entering the vicinity of a robot using a radar sensor. Specifically, a linear actuator 310 was used to reciprocate a hand test piece 320 (ABS, IEC 61496-3) simulating a human hand so as to repeatedly move toward and away from the radar sensor 130, the position of the hand test piece 320 was measured by the radar sensor 130, and the asymmetric extended Kalman filtering process (AS-EKF) was applied to the observation data by the radar sensor 130. In order to approximate the actual hand intrusion environment, a mannequin 330 simulating a human (whose surface is made of a soft urethane material) was placed behind the hand test piece 320.
 IEC/TS 62998に従い、テストの継続時間は15分間とした。リニアアクチュエータ310(LEFB25S2S-1000-S2A1、SMC)のストロークは0.85mとした。レーダーセンサー130として、60GHz標準アンテナを備えたMIMOレーダーセンサー(IWR68431SK、Texas Instruments、アメリカ)を用いた。レーダーセンサー130の方位角および視野仰角は、それぞれ±60度および±20度であった。レーダーセンサー130の送信電力は12dBm、最大バンド幅は4GHz、周波数は60~64GHzとした。チャープの周波数勾配は71.26MHz/μsとし、サンプリングレートは5279kspsとし、各周波数変調チャープにつき222個のサンプルを得た。256サイズのFFTを用いたレンジ分解能は4.34cm(測定レート30Hz)であった。 The duration of the test was 15 minutes according to IEC/TS 62998. The stroke of the linear actuator 310 (LEFB25S2S-1000-S2A1, SMC) was 0.85 m. The radar sensor 130 was a MIMO radar sensor (IWR68431SK, Texas Instruments, USA) with a 60 GHz standard antenna. The azimuth and elevation angles of the radar sensor 130 were ±60 degrees and ±20 degrees, respectively. The transmission power of the radar sensor 130 was 12 dBm, the maximum bandwidth was 4 GHz, and the frequency was 60-64 GHz. The frequency slope of the chirp was 71.26 MHz/μs, the sampling rate was 5279 ksps, and 222 samples were obtained for each frequency-modulated chirp. The range resolution using a 256-size FFT was 4.34 cm (measurement rate 30 Hz).
 本実施例において、全体の測定システムの管理には、Linux(登録商標) Ubuntu 18.04 LTS(64ビット)で動作するロボットオペレーティングシステム(ROS)であるMelodicを用いた。製造元からキャリブレーションファイルおよびPCとの通信に必要なシリアルドライバと共に公式に提供されたTexas Instruments社のミリ波ros packageによって、三次元点群を測定した。すべての点群、および、ユークリッドクラスタリング法によって抽出された最も近い距離の点(closest distance points)を、タイムスタンプデータと共にrosbag packageによって記録した。比較のために、12台のカメラを用いたモーションキャプチャーシステム(アメリカ、カリフォルニア サンタローザ、Motion Analysis社)を利用して、センサアンテナの三次元位置とハンドテストピースの先端との間の相対距離および速度を測定した。本実施例では、このモーションキャプチャーシステムによる実測値を、真値として扱った。 In this embodiment, the entire measurement system was managed by Melodic, a robot operating system (ROS) that runs on Linux Ubuntu 18.04 LTS (64-bit). The 3D point cloud was measured by the millimeter wave ros package from Texas Instruments, which was officially provided by the manufacturer with a calibration file and a serial driver required for communication with the PC. All point clouds and the closest distance points extracted by the Euclidean clustering method were recorded with time stamp data by the rosbag package. For comparison, a motion capture system using 12 cameras (Motion Analysis, Santa Rosa, California, USA) was used to measure the relative distance and speed between the 3D position of the sensor antenna and the tip of the hand test piece. In this example, the actual measurements taken by the motion capture system were treated as true values.
 本実施例では、2つ以上の複雑なノイズ信号を生成するために、ガウス混合モデルを用いた。裾の重い(heavy-tailed)ガウスノイズ分布は、式(25)のように生成することができる。式(25)において、vは測定誤差ベクトルであり、Rは測定誤差共分散であり、λは汚染率(contamination ratio)であり、αはスケーリングファクターである。λは外れ値の発生頻度に寄与し、αは外れ値の大きさに関連する。
Figure JPOXMLDOC01-appb-M000025
In this embodiment, a Gaussian mixture model is used to generate two or more complex noise signals. A heavy-tailed Gaussian noise distribution can be generated as shown in Equation (25). In Equation (25), v k is the measurement error vector, R k is the measurement error covariance, λ is the contamination ratio, and α is a scaling factor. λ contributes to the frequency of occurrence of outliers, and α is related to the magnitude of the outliers.
Figure JPOXMLDOC01-appb-M000025
 主ターゲットが見失われ、すぐに二次ターゲットに移行するときに一時的外れ値が観察されることを考慮すると、一時的な裾の重いガウスノイズは以下の式(26)のように生成される。式(26)において、zは主ターゲットの観測ベクトルであり、z’k-1は二次ターゲットの観測ベクトルであり、ρは一時的外れ値の生成に貢献する一時的な汚染率である。また、πはρに応じたベルヌーイ変数である。
Figure JPOXMLDOC01-appb-M000026
Figure JPOXMLDOC01-appb-M000027
Considering that a temporal outlier is observed when the primary target is lost and immediately transitions to a secondary target, a temporal heavy-tailed Gaussian noise is generated as shown in Equation (26) below: In Equation (26), z k is the observation vector of the primary target, z′ k−1 is the observation vector of the secondary target, ρ is the temporal contamination rate contributing to the generation of the temporal outlier, and π k is the Bernoulli variable depending on ρ.
Figure JPOXMLDOC01-appb-M000026
Figure JPOXMLDOC01-appb-M000027
 パラメータを変更することによって適切なノイズプロファイルを生成するための有効範囲は、互いに異なる。具体的には、以下の通りである。
  1<α
  0<λ<1
  0<ρ<1
The effective ranges for generating a suitable noise profile by changing the parameters are different from each other, specifically, as follows:
1 < α
0<λ<1
0<ρ<1
 外れ値に耐える性能の評価要素のオプションとして、式(28)により表される二乗平均平方根誤差(RMSE)を用いた。式(28)において、Lはモンテカルロシミュレーションの試行回数であり、Nは各試行に含まれる観測ベクトルのサンプル数である。
Figure JPOXMLDOC01-appb-M000028
As an option for evaluating the performance tolerant to outliers, we used the root mean square error (RMSE) expressed by equation (28), where L is the number of trials in the Monte Carlo simulation, and N is the number of samples of the observation vector included in each trial.
Figure JPOXMLDOC01-appb-M000028
 対象物の速度による外れ値の比率の違いを調べるために、ハンドテストピース320の高速および低速での往復運動のテストを行った。モーションキャプチャーカメラおよびレーダーセンサー130のrosbag記録の測定時間を同期させるため、1ミリ秒未満の遅延を有するアナログパルス信号を生成した。カルマン変数の初期条件を、以下のように設定した。ロバスト法OD-KFを適用した従来のEKF(以下、「OD-EKF」ともいう。)を比較例とした。
・誤差共分散P=Q
・初期空間状態x、x(推定値)=z(測定値)
・測定ノイズ共分散R=diag(0.05,0.05)
・プロセスノイズ共分散Q=diag(0.01,0.01,0.10,5)
To investigate the difference in the outlier ratio depending on the speed of the object, a test was conducted on the reciprocating motion of the hand test piece 320 at high and low speeds. To synchronize the measurement time of the rosbag recording of the motion capture camera and the radar sensor 130, an analog pulse signal with a delay of less than 1 millisecond was generated. The initial conditions of the Kalman variables were set as follows. A conventional EKF to which the robust OD-KF method was applied (hereinafter also referred to as "OD-EKF") was used as a comparative example.
Error covariance P 0 =Q k
Initial spatial state x 0 , x 0 (estimated value)=z 0 (measured value)
Measurement noise covariance R k = diag(0.05, 0.05)
Process noise covariance Qk = diag(0.01, 0.01, 0.10, 5)
 図14は、高速運動試行中のあるエポックでの観測データを示す説明図である。図14には、モーションキャプチャーシステムにより測定されたハンドテストピース320(ダミーハンド)の位置(レーダーセンサー130からの距離)と、モーションキャプチャーシステムにより測定されたマネキン330(ダミーチェスト)の位置と、レーダーセンサー130による観測データとを示している。なお、この点は図15等も同様である。図14の例では、レーダーセンサー130による観測データは、概ね真値(ダミーハンドの真の位置)を示しているが、ダミーハンドの真の位置から大きく外れた外れ値も含まれている。この高速運動試行では、通常値および外れ値の比率は、それぞれ、97.5%および2.5%であり、外れ値のうちの付加的外れ値および一時的外れ値の比率は、それぞれ、1.5%および1.0%であった。 FIG. 14 is an explanatory diagram showing observation data at a certain epoch during a high-speed movement trial. FIG. 14 shows the position (distance from the radar sensor 130) of the hand test piece 320 (dummy hand) measured by the motion capture system, the position of the mannequin 330 (dummy chest) measured by the motion capture system, and the observation data by the radar sensor 130. This point is similar to FIG. 15 and others. In the example of FIG. 14, the observation data by the radar sensor 130 generally indicates the true value (the true position of the dummy hand), but also includes outliers that are significantly different from the true position of the dummy hand. In this high-speed movement trial, the ratios of normal values and outliers were 97.5% and 2.5%, respectively, and the ratios of additive outliers and temporary outliers among the outliers were 1.5% and 1.0%, respectively.
 図15は、低速運動試行中のあるエポックでの観測データを示す説明図である。図15に示すように、低速運動試行中の観測データには、図14に示す高速運動試行中と比べて、外れ値(特に、一時的外れ値)が多く含まれている。この低速運動試行では、通常値および外れ値の比率は、それぞれ、84.8%および15.2%であり、外れ値のうちの付加的外れ値および一時的外れ値の比率は、それぞれ、0.2%および15.0%であった。このように、低速運動試行中では、高速運動試行中と比べて、外れ値の発生頻度が約6倍となり(2.5%→15.2%)、外れ値における一時的外れ値の比率が40%(1.0/2.5)から99%(15.0/15.2)に増加した。 Figure 15 is an explanatory diagram showing the observed data at a certain epoch during a slow-speed movement trial. As shown in Figure 15, the observed data during a slow-speed movement trial contains more outliers (especially temporary outliers) than the fast-speed movement trial shown in Figure 14. In this slow-speed movement trial, the ratios of normal values and outliers were 84.8% and 15.2%, respectively, and the ratios of additive outliers and temporary outliers among the outliers were 0.2% and 15.0%, respectively. Thus, in the slow-speed movement trial, the frequency of outliers increased by about six times (2.5% to 15.2%) compared to the fast-speed movement trial, and the ratio of temporary outliers among the outliers increased from 40% (1.0/2.5) to 99% (15.0/15.2).
 図16は、高速運動試行中のあるエポックでの観測データに対して本実施形態における非対称拡張カルマンフィルタリング処理(AS-EKF)を適用した後のデータを示す説明図である。高速運動試行においてAS-EKFを適用した後のデータでは、通常値および外れ値の比率は、それぞれ、99.6%および0.4%であり、外れ値の比率がAS-EKF適用前の値(2.5%)から84%低減した。また、高速運動試行においてAS-EKFを適用した後のデータでは、外れ値のうちの付加的外れ値および一時的外れ値の比率は、それぞれ、0.3%および0.38%であり、それぞれAS-EKF適用前の値(1.5%および1.0%)から80%および62%低減した。 FIG. 16 is an explanatory diagram showing data after applying the asymmetric extended Kalman filtering process (AS-EKF) of this embodiment to observed data at a certain epoch during a high-speed movement trial. In the data after applying AS-EKF in the high-speed movement trial, the ratios of normal values and outliers were 99.6% and 0.4%, respectively, and the ratio of outliers was reduced by 84% from the value before applying AS-EKF (2.5%). In addition, in the data after applying AS-EKF in the high-speed movement trial, the ratios of additive outliers and temporary outliers among the outliers were 0.3% and 0.38%, respectively, and reduced by 80% and 62% from the values before applying AS-EKF (1.5% and 1.0%).
 図17は、低速運動試行中のあるエポックでの観測データに対して本実施形態における非対称拡張カルマンフィルタリング処理(AS-EKF)を適用した後のデータを示す説明図である。低速運動試行においてAS-EKFを適用した後のデータでは、通常値および外れ値の比率は、それぞれ、99.94%および0.06%であり、外れ値の比率がAS-EKF適用前の値(15.2%)から99.6%低減した。また、低速運動試行においてAS-EKFを適用した後のデータでは、外れ値のうちの付加的外れ値および一時的外れ値の比率は、それぞれ、0.0014%および0.06%であり、それぞれAS-EKF適用前の値(0.2%および15.0%)から99.3%および99.6%低減した。 FIG. 17 is an explanatory diagram showing data after applying the asymmetric extended Kalman filtering process (AS-EKF) of this embodiment to observed data at a certain epoch during a slow-speed movement trial. In the data after applying AS-EKF in the slow-speed movement trial, the ratios of normal values and outliers were 99.94% and 0.06%, respectively, and the ratio of outliers was reduced by 99.6% from the value before applying AS-EKF (15.2%). In addition, in the data after applying AS-EKF in the slow-speed movement trial, the ratios of additive outliers and temporary outliers among the outliers were 0.0014% and 0.06%, respectively, and were reduced by 99.3% and 99.6% from the values before applying AS-EKF (0.2% and 15.0%).
 図18は、試験結果をまとめた説明図である。なお、図18には、比較例の拡張カルマンフィルタリング処理(OD-EKF)を適用した場合の試験結果も示している。図18を参照すると、本実施形態の非対称拡張カルマンフィルタリング処理(AS-EKF)によれば、比較例の拡張カルマンフィルタリング処理(OD-EKF)と比較して、高速運動および低速運動のいずれの場合においても、外れ値(一時的外れ値および付加的外れ値)を効果的に低減することができると言える。 FIG. 18 is an explanatory diagram summarizing the test results. Note that FIG. 18 also shows the test results when the comparative extended Kalman filtering process (OD-EKF) was applied. Referring to FIG. 18, it can be said that the asymmetric extended Kalman filtering process (AS-EKF) of this embodiment can effectively reduce outliers (temporary outliers and additional outliers) in both high-speed and low-speed movements, compared to the comparative extended Kalman filtering process (OD-EKF).
 図19は、本実施形態の非対称拡張カルマンフィルタリング処理(AS-EKF)を用いた推定値と、一時的な裾の重いガウスノイズ(α=5、λ=0.5、ρ=0.5)を生成することにより算出された値との比較結果を示す説明図である。図19を参照すると、本実施形態の非対称拡張カルマンフィルタリング処理(AS-EKF)によれば、付加的外れ値と一時的外れ値との両方に耐えることができると言える。 FIG. 19 is an explanatory diagram showing the comparison results between the estimated value using the asymmetric extended Kalman filtering process (AS-EKF) of this embodiment and the value calculated by generating temporary heavy-tailed Gaussian noise (α=5, λ=0.5, ρ=0.5). With reference to FIG. 19, it can be said that the asymmetric extended Kalman filtering process (AS-EKF) of this embodiment can tolerate both additive and temporary outliers.
 図20は、本実施形態の非対称拡張カルマンフィルタリング処理(AS-EKF)と比較例の拡張カルマンフィルタリング処理(OD-EKF)との比較結果をまとめた説明図である。両者の公正な比較のため、各シミュレーションについて100ラウンドを実行し(L=100)、一時的な裾の重いガウスノイズによって生成された26,000個の観測ベクトルサンプルを用いた(N=26,000)。本実施形態のAS-EKFおよび比較例のOD-EKFの両方において、上述したスケーリングファクターαおよび汚染率λが増加すると、RMSEも増加した。一時的な汚染率ρが0.2より小さい場合、AS-EKFとOD-EKFとの間に大きな性能の違いはなかった。しかしながら、一時的な汚染率ρが0.5より大きい場合、OD-EKFではRMSEが大きく増加した一方、AS-EKFではRMSEが大きく増加しなかった。 FIG. 20 is an explanatory diagram summarizing the results of a comparison between the asymmetric extended Kalman filtering process (AS-EKF) of this embodiment and the extended Kalman filtering process (OD-EKF) of the comparative example. To make a fair comparison between the two, 100 rounds were performed for each simulation (L=100), and 26,000 observation vector samples generated by temporary heavy-tailed Gaussian noise were used (N=26,000). In both the AS-EKF of this embodiment and the OD-EKF of the comparative example, the RMSE increased as the above-mentioned scaling factor α and contamination rate λ increased. When the temporary contamination rate ρ was smaller than 0.2, there was no significant difference in performance between the AS-EKF and the OD-EKF. However, when the temporary contamination rate ρ was larger than 0.5, the RMSE increased significantly in the OD-EKF, while the RMSE did not increase significantly in the AS-EKF.
 図21は、本実施形態の非対称拡張カルマンフィルタリング処理(AS-EKF)と比較例の拡張カルマンフィルタリング処理(OD-EKF)とについて、誤って危険側の外れ値を採用した比率をまとめた説明図である。一時的な汚染率ρが0.4より大きい場合、比較例のOD-EKFでは誤って危険側の外れ値を採用した比率が大きく増加した一方、本実施形態のAS-EKFでは該比率が大きく増加しなかった。 FIG. 21 is an explanatory diagram summarizing the ratio of erroneously adopting outliers on the dangerous side for the asymmetric extended Kalman filtering process (AS-EKF) of this embodiment and the extended Kalman filtering process (OD-EKF) of the comparative example. When the temporary contamination rate ρ was greater than 0.4, the ratio of erroneously adopting outliers on the dangerous side increased significantly in the OD-EKF of the comparative example, whereas the ratio did not increase significantly in the AS-EKF of this embodiment.
 図22は、α=5、λ=0.15の場合における危険側の外れ値の比率の比較結果を示す説明図である。本実施形態のAS-EKFでも比較例のOD-EKFでも、一時的な汚染率ρが大きくなるほど、危険側の外れ値の比率が大きくなる。ただし、ρの値によらず、本実施形態のAS-EKFの方が比較例のOD-EKFよりも危険側の外れ値の比率が常に低い。図23は、α=7、λ=0.3の場合における危険側の外れ値の比率の比較結果を示す説明図である。図23に示す場合にも、同様に、ρの値によらず、本実施形態のAS-EKFの方が比較例のOD-EKFよりも危険側の外れ値の比率が常に低い。図示しない他の場合の比較結果も合わせると、本実施形態のAS-EKFの方が比較例のOD-EKFよりも外れ値の比率が低いため、本実施形態のAS-EKFは一時的外れ値に耐えることができると言える。 FIG. 22 is an explanatory diagram showing the comparison results of the ratio of dangerous outliers when α=5 and λ=0.15. For both the AS-EKF of this embodiment and the OD-EKF of the comparative example, the ratio of dangerous outliers increases as the temporary contamination rate ρ increases. However, regardless of the value of ρ, the ratio of dangerous outliers is always lower for the AS-EKF of this embodiment than for the OD-EKF of the comparative example. FIG. 23 is an explanatory diagram showing the comparison results of the ratio of dangerous outliers when α=7 and λ=0.3. Similarly, in the case shown in FIG. 23, the ratio of dangerous outliers is always lower for the AS-EKF of this embodiment than for the OD-EKF of the comparative example, regardless of the value of ρ. When the comparison results for other cases not shown are also taken into account, the ratio of outliers is lower for the AS-EKF of this embodiment than for the OD-EKF of the comparative example, so it can be said that the AS-EKF of this embodiment can withstand temporary outliers.
B.変形例:
 本明細書で開示される技術は、上述の実施形態に限られるものではなく、その要旨を逸脱しない範囲において種々の形態に変形することができ、例えば次のような変形も可能である。
B. Variations:
The technology disclosed in this specification is not limited to the above-described embodiments, and can be modified in various forms without departing from the spirit of the invention. For example, the following modifications are also possible.
 上記実施形態における安全監視システム10の構成は、あくまで一例であり、種々変形可能である。例えば、上記実施形態では、安全監視装置100がロボット200に取り付けられているが、安全監視装置100がロボット200とは別の場所に設置されていてもよい。 The configuration of the safety monitoring system 10 in the above embodiment is merely an example and can be modified in various ways. For example, in the above embodiment, the safety monitoring device 100 is attached to the robot 200, but the safety monitoring device 100 may be installed in a location separate from the robot 200.
 上記実施形態では、安全監視装置100がレーダーセンサー130を有するが、安全監視装置100が、レーダーセンサー130に代えて、あるいは、レーダーセンサー130と共に、レーザーセンサー等の他の種類の物体検出センサーを有していてもよい。また、レーダーセンサー130(または他の種類のセンサー、以下同様。)が安全監視装置100とは別に用意され、安全監視装置100がインターフェース部150を介してレーダーセンサー130から観測データを取得するものとしてもよい。 In the above embodiment, the safety monitoring device 100 has the radar sensor 130, but the safety monitoring device 100 may have other types of object detection sensors, such as a laser sensor, instead of or in addition to the radar sensor 130. Also, the radar sensor 130 (or other types of sensors, the same applies below) may be provided separately from the safety monitoring device 100, and the safety monitoring device 100 may acquire observation data from the radar sensor 130 via the interface unit 150.
 上記実施形態における対象物位置推定処理の内容は、あくまで一例であり、種々変形可能である。例えば、上記実施形態では、拡張カルマンフィルタを用いた確率的フィルタリング処理が実行されるが、確率的フィルタリング処理に他の種類の確率的フィルタ(例えば、アンセンテッドカルマンフィルタ(Unsented Kalman Filter、略してUKF)のような他のカルマンフィルタ類、パーティクルフィルタ、Hフィルタ等)が用いられてもよい。 The contents of the object position estimation process in the above embodiment are merely examples and can be modified in various ways. For example, in the above embodiment, a probabilistic filtering process using an extended Kalman filter is executed, but other types of probabilistic filters (for example, other Kalman filters such as an Unscented Kalman Filter (abbreviated as UKF), a particle filter, an H filter, etc.) may be used for the probabilistic filtering process.
 上記実施形態では、マハラノビス距離を用いて観測データが外れ値であるか否かを判定しているが、他の方法により観測データが外れ値であるか否かを判定してもよい。 In the above embodiment, the Mahalanobis distance is used to determine whether or not the observed data is an outlier, but other methods may be used to determine whether or not the observed data is an outlier.
 上記実施形態では、正外れ値が検出された場合において、該外れ値が一時的外れ値であるか付加的外れ値であるかに応じて、事後誤差共分散の算出方法を異ならせているが、正外れ値が検出された場合において、一律に事後誤差共分散を現離散時間における事前誤差共分散と同一に設定してもよい。 In the above embodiment, when a positive outlier is detected, the method of calculating the posterior error covariance is different depending on whether the outlier is a temporary outlier or an additive outlier. However, when a positive outlier is detected, the posterior error covariance may be uniformly set to be the same as the a priori error covariance at the current discrete time.
 上記実施形態では、負外れ値が検出された場合に補償処理を実行し、正外れ値が検出された場合に除外処理を実行しているが、反対に、負外れ値が検出された場合に除外処理を実行し、正外れ値が検出された場合に補償処理を実行してもよい。 In the above embodiment, compensation processing is performed when a negative outlier is detected, and exclusion processing is performed when a positive outlier is detected, but conversely, exclusion processing may be performed when a negative outlier is detected, and compensation processing may be performed when a positive outlier is detected.
 上記実施形態では、ロボット200と人間HUが存在する空間において、人間HUとロボット200との接触を回避するために導入される安全監視システム10について説明したが、本明細書に開示される技術は、これに限られず、確率的フィルタリング処理により対象物の位置を推定する場合に同様に適用可能である。 In the above embodiment, a safety monitoring system 10 is described that is introduced to avoid contact between the robot 200 and the human HU in a space in which the robot 200 and the human HU exist, but the technology disclosed in this specification is not limited to this and can be similarly applied to cases in which the position of an object is estimated by probabilistic filtering processing.
 上記実施形態において、ハードウェアによって実現されている構成の一部をソフトウェアに置き換えるようにしてもよく、反対に、ソフトウェアによって実現されている構成の一部をハードウェアに置き換えるようにしてもよい。 In the above embodiment, some of the configurations realized by hardware may be replaced by software, and conversely, some of the configurations realized by software may be replaced by hardware.
10:安全監視システム 100:安全監視装置 110:制御部 111:位置推定部 112:観測データ取得部 113:モデル取得部 114:外れ値検出部 115:外れ値識別部 119:ロボット制御部 120:記憶部 130:レーダーセンサー 140:操作入力部 150:インターフェース部 190:バス 200:ロボット 310:リニアアクチュエータ 320:ハンドテストピース 330:マネキン 10: Safety monitoring system 100: Safety monitoring device 110: Control unit 111: Position estimation unit 112: Observation data acquisition unit 113: Model acquisition unit 114: Outlier detection unit 115: Outlier identification unit 119: Robot control unit 120: Memory unit 130: Radar sensor 140: Operation input unit 150: Interface unit 190: Bus 200: Robot 310: Linear actuator 320: Hand test piece 330: Mannequin

Claims (11)

  1.  対象物の位置を推定するための情報処理装置であって、
     前記対象物の動的モデルを用いて、前記対象物の位置の事前推定値および事前誤差共分散を算出する予測ステップと、センサーを用いた前記対象物の位置の観測データと、前記事前推定値および前記事前誤差共分散とに基づき、前記対象物の位置の事後推定値および事後誤差共分散を算出するフィルタリングステップとを、離散時間毎に逐次的に行う確率的フィルタリング処理を実行する位置推定部を備え、
     前記位置推定部は、
      前記観測データが外れ値であるか否かを判定する外れ値検出部と、
      検出された前記外れ値が、前記事前推定値に対して前記センサーに近い側に外れた負外れ値であるか、前記事前推定値に対して前記センサーから遠い側に外れた正外れ値であるか、を識別する外れ値識別部と、
    を含み、
     前記位置推定部は、
      前記観測データが前記負外れ値であると判定された場合には、前記フィルタリングステップにおいて、前記外れ値であると判定された前記観測データを利用した補償を行う補償処理と、前記外れ値であると判定された前記観測データを除外する除外処理と、の一方を実行し、
      前記観測データが前記正外れ値であると判定された場合には、前記フィルタリングステップにおいて、前記補償処理と、前記除外処理と、の他方を実行する、情報処理装置。
    An information processing device for estimating a position of an object,
    a position estimation unit that executes a probabilistic filtering process that sequentially performs, at discrete times, a prediction step of calculating a priori estimate and a priori error covariance of the position of the object using a dynamic model of the object, and a filtering step of calculating a posterior estimate and a posterior error covariance of the position of the object based on observation data of the position of the object using a sensor, the priori estimate and the priori error covariance;
    The position estimation unit is
    an outlier detection unit that determines whether the observation data is an outlier;
    an outlier identification unit that identifies whether the detected outlier is a negative outlier that deviates from the pre-estimated value on a side closer to the sensor, or a positive outlier that deviates from the pre-estimated value on a side farther from the sensor;
    Including,
    The position estimation unit is
    When the observation data is determined to be the negative outlier, in the filtering step, one of a compensation process for performing compensation using the observation data determined to be the outlier and an exclusion process for excluding the observation data determined to be the outlier is executed;
    When the observation data is determined to be the positive outlier, the information processing device executes the other of the compensation process and the exclusion process in the filtering step.
  2.  請求項1に記載の情報処理装置であって、
     前記位置推定部は、
      前記観測データが前記負外れ値であると判定された場合には、前記補償処理を実行し、
      前記観測データが前記正外れ値であると判定された場合には、前記除外処理を実行する、情報処理装置。
    2. The information processing device according to claim 1,
    The position estimation unit is
    When the observation data is determined to be a negative outlier, the compensation process is performed;
    When the observation data is determined to be the positive outlier, the information processing device executes the exclusion process.
  3.  請求項2に記載の情報処理装置であって、
     前記補償処理は、誤差共分散を増加させた前記観測データと、前記事前推定値および前記事前誤差共分散とに基づき、前記事後推定値および前記事後誤差共分散を算出する処理を含む、情報処理装置。
    3. The information processing device according to claim 2,
    The information processing device, wherein the compensation process includes a process of calculating the posterior estimated value and the posterior error covariance based on the observation data in which error covariance has been increased, the a priori estimated value, and the a priori error covariance.
  4.  請求項2または請求項3に記載の情報処理装置であって、
     前記除外処理は、前記事後推定値を、現離散時間における前記事前推定値と同一に設定する処理を含む、情報処理装置。
    4. The information processing device according to claim 2,
    The information processing apparatus, wherein the exclusion process includes a process of setting the posterior estimated value to be equal to the a priori estimated value at the current discrete time.
  5.  請求項4に記載の情報処理装置であって、
     前記外れ値識別部は、検出された前記正外れ値が、複数の離散時間にまたがって連続的に発生した一時的外れ値であるか、単一の離散時間において発生した付加的外れ値であるか、を識別し、
     前記位置推定部は、
      前記観測データが前記一時的外れ値であると判定された場合には、前記除外処理として、前記事後誤差共分散を、1つ前の離散時間における前記事後誤差共分散と同一に設定し、
      前記観測データが前記付加的外れ値であると判定された場合には、前記除外処理として、前記事後誤差共分散を、現離散時間における前記事前誤差共分散と同一に設定する、情報処理装置。
    5. The information processing device according to claim 4,
    the outlier identification unit identifies whether the detected positive outlier is a temporary outlier that occurs continuously across a plurality of discrete times or an additional outlier that occurs during a single discrete time;
    The position estimation unit is
    When the observation data is determined to be the temporary outlier, the exclusion process includes setting the posterior error covariance to be equal to the posterior error covariance at the previous discrete time;
    When the observed data is determined to be the additional outlier, the information processing device sets the posterior error covariance to be equal to the a priori error covariance at the current discrete time as the exclusion process.
  6.  請求項1に記載の情報処理装置であって、
     前記外れ値検出部は、マハラノビス距離を用いて前記観測データが前記外れ値であるか否かを判定する、情報処理装置。
    2. The information processing device according to claim 1,
    The information processing device, wherein the outlier detection unit determines whether the observation data is an outlier by using a Mahalanobis distance.
  7.  請求項1に記載の情報処理装置であって、
     前記確率的フィルタリング処理は、カルマンフィルタ類を用いたフィルタリング処理である、情報処理装置。
    2. The information processing device according to claim 1,
    The information processing device, wherein the probabilistic filtering process is a filtering process using a Kalman filter.
  8.  請求項1に記載の情報処理装置であって、
     前記センサーは、電波を発信および受信することにより、前記対象物の位置を測定するレーダーセンサーである、情報処理装置。
    2. The information processing device according to claim 1,
    The information processing device, wherein the sensor is a radar sensor that measures the position of the object by transmitting and receiving radio waves.
  9.  請求項1に記載の情報処理装置であって、さらに、
     前記位置推定部による前記対象物としての人間の位置の推定結果に基づき、ロボットの動作を制御するロボット制御部を備える、情報処理装置。
    The information processing device according to claim 1, further comprising:
    An information processing device comprising: a robot control unit that controls an operation of a robot based on a result of estimation of the position of a human being as the target object by the position estimation unit.
  10.  対象物の位置を推定するための情報処理方法であって、
     前記対象物の動的モデルを用いて、前記対象物の位置の事前推定値および事前誤差共分散を算出する予測ステップと、センサーを用いた前記対象物の位置の観測データと、前記事前推定値および前記事前誤差共分散とに基づき、前記対象物の位置の事後推定値および事後誤差共分散を算出するフィルタリングステップとを、離散時間毎に逐次的に行う確率的フィルタリング処理を実行する位置推定工程を備え、
     前記位置推定工程は、
      前記観測データが外れ値であるか否かを判定する工程と、
      検出された前記外れ値が、前記事前推定値に対して前記センサーに近い側に外れた負外れ値であるか、前記事前推定値に対して前記センサーから遠い側に外れた正外れ値であるか、を識別する工程と、
    を含み、
     前記位置推定工程は、
      前記観測データが前記負外れ値であると判定された場合には、前記フィルタリングステップにおいて、前記外れ値であると判定された前記観測データを利用した補償を行う補償処理と、前記外れ値であると判定された前記観測データを除外する除外処理と、の一方を実行し、
      前記観測データが前記正外れ値であると判定された場合には、前記フィルタリングステップにおいて、前記補償処理と、前記除外処理と、の他方を実行する工程である、情報処理方法。
    An information processing method for estimating a position of an object, comprising:
    a position estimation process that executes a probabilistic filtering process that sequentially performs, at discrete times, a prediction step of calculating a prior estimate and a prior error covariance of the position of the object using a dynamic model of the object, and a filtering step of calculating a posterior estimate and a posterior error covariance of the position of the object based on observation data of the position of the object using a sensor and the prior estimate and the prior error covariance,
    The position estimation step includes:
    determining whether the observed data is an outlier;
    A step of identifying whether the detected outlier is a negative outlier that deviates from the pre-estimated value on the side closer to the sensor, or a positive outlier that deviates from the pre-estimated value on the side farther from the sensor;
    Including,
    The position estimation step includes:
    When the observation data is determined to be the negative outlier, in the filtering step, one of a compensation process for performing compensation using the observation data determined to be the outlier and an exclusion process for excluding the observation data determined to be the outlier is executed;
    an information processing method, wherein, when the observation data is determined to be the positive outlier, the filtering step is a step of executing the other of the compensation process and the exclusion process.
  11.  対象物の位置を推定するためのコンピュータプログラムであって、
     コンピュータに、
     前記対象物の動的モデルを用いて、前記対象物の位置の事前推定値および事前誤差共分散を算出する予測ステップと、センサーを用いた前記対象物の位置の観測データと、前記事前推定値および前記事前誤差共分散とに基づき、前記対象物の位置の事後推定値および事後誤差共分散を算出するフィルタリングステップとを、離散時間毎に逐次的に行う確率的フィルタリング処理を実行する位置推定処理を実行させ、
     前記位置推定処理は、
      前記観測データが外れ値であるか否かを判定する処理と、
      検出された前記外れ値が、前記事前推定値に対して前記センサーに近い側に外れた負外れ値であるか、前記事前推定値に対して前記センサーから遠い側に外れた正外れ値であるか、を識別する処理と、
    を含み、
     前記位置推定処理は、
      前記観測データが前記負外れ値であると判定された場合には、前記フィルタリングステップにおいて、前記外れ値であると判定された前記観測データを利用した補償を行う補償処理と、前記外れ値であると判定された前記観測データを除外する除外処理と、の一方を実行し、
      前記観測データが前記正外れ値であると判定された場合には、前記フィルタリングステップにおいて、前記補償処理と、前記除外処理と、の他方を実行する処理である、コンピュータプログラム。
    1. A computer program for estimating a position of an object, comprising:
    On the computer,
    a prediction step of calculating a priori estimate and a priori error covariance of the position of the object using a dynamic model of the object, and a filtering step of calculating a posteriori estimate and a posteriori error covariance of the position of the object based on observation data of the position of the object using a sensor and the priori estimate and the priori error covariance,
    The position estimation process includes:
    A process of determining whether the observed data is an outlier;
    A process of identifying whether the detected outlier is a negative outlier that deviates from the pre-estimated value on the side closer to the sensor, or a positive outlier that deviates from the pre-estimated value on the side farther from the sensor;
    Including,
    The position estimation process includes:
    When the observation data is determined to be the negative outlier, in the filtering step, one of a compensation process for performing compensation using the observation data determined to be the outlier and an exclusion process for excluding the observation data determined to be the outlier is executed;
    a process of performing, in the filtering step, the other of the compensation process and the exclusion process when the observation data is determined to be the positive outlier.
PCT/JP2023/035050 2022-09-27 2023-09-27 Information processing device, information processing method, and computer program WO2024071155A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022153382 2022-09-27
JP2022-153382 2022-09-27

Publications (1)

Publication Number Publication Date
WO2024071155A1 true WO2024071155A1 (en) 2024-04-04

Family

ID=90477791

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/035050 WO2024071155A1 (en) 2022-09-27 2023-09-27 Information processing device, information processing method, and computer program

Country Status (1)

Country Link
WO (1) WO2024071155A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019207607A (en) * 2018-05-30 2019-12-05 スズキ株式会社 Moving body tracking device
JP2020052676A (en) * 2018-09-26 2020-04-02 Ntn株式会社 State monitor and wind power generator using the same
JP2021135242A (en) * 2020-02-28 2021-09-13 株式会社日立エルジーデータストレージ Measurement value correction method of distance measuring device
JP2022135188A (en) * 2021-03-04 2022-09-15 日立Astemo株式会社 Travel support device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019207607A (en) * 2018-05-30 2019-12-05 スズキ株式会社 Moving body tracking device
JP2020052676A (en) * 2018-09-26 2020-04-02 Ntn株式会社 State monitor and wind power generator using the same
JP2021135242A (en) * 2020-02-28 2021-09-13 株式会社日立エルジーデータストレージ Measurement value correction method of distance measuring device
JP2022135188A (en) * 2021-03-04 2022-09-15 日立Astemo株式会社 Travel support device

Similar Documents

Publication Publication Date Title
JP7365593B2 (en) Methods, devices, servers and systems for object tracking
KR101829560B1 (en) Method, system and computer device for predicting a capacity based on kalman filter
EP2495583B1 (en) Target tracking system and target tracking method
EP2332017B1 (en) Estimating a state of at least one target
KR101628154B1 (en) Multiple target tracking method using received signal strengths
EP3693759B1 (en) System and method for tracking motion of target in indoor environment
CN104035083A (en) Radar target tracking method based on measurement conversion
CN111279209B (en) Fingerprint data preprocessing method for improving positioning model
KR101522385B1 (en) Method and apparatus for detecting fault in the semiconductor menufacturing process and recording medium thereof
CN110889862B (en) Combined measurement method for multi-target tracking in network transmission attack environment
JP2017156219A (en) Tracking device, tracking method, and program
US7949497B2 (en) Machine condition monitoring using discontinuity detection
KR101280513B1 (en) Localization method based on gauss-netwon method using tdoa/fdoa, and localization apparatus using the same
JP4220821B2 (en) Sensor signal processing system
WO2024071155A1 (en) Information processing device, information processing method, and computer program
KR101833007B1 (en) Method and system for estimating position and velocity of underwater vehicle using doppler beacon
JP2014211330A (en) Target tracking device and target tracking method
KR101333111B1 (en) System and method for improving precision upon location determination
JP2015121473A (en) Target tracking device and target tracking method
Shareef et al. Localization using extended Kalman filters in wireless sensor networks
JP2002181926A (en) Method and apparatus for tracking of target
KR101582404B1 (en) Method and apparatus for counting number of object using uwb radar
Yang et al. Interacting multiple model unscented Gauss-Helmert filter for bearings-only tracking with state-dependent propagation delay
CN112344966B (en) Positioning failure detection method and device, storage medium and electronic equipment
Kim et al. Robust asymmetric safety Kalman filter for MIMO radar resisting temporary outliers