WO2024071104A1 - Gyrotron power supply device and power supply control method - Google Patents

Gyrotron power supply device and power supply control method Download PDF

Info

Publication number
WO2024071104A1
WO2024071104A1 PCT/JP2023/034907 JP2023034907W WO2024071104A1 WO 2024071104 A1 WO2024071104 A1 WO 2024071104A1 JP 2023034907 W JP2023034907 W JP 2023034907W WO 2024071104 A1 WO2024071104 A1 WO 2024071104A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
constant voltage
section
gyrotron
voltage circuit
Prior art date
Application number
PCT/JP2023/034907
Other languages
French (fr)
Japanese (ja)
Inventor
坂本 慶司
Original Assignee
京都フュージョニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京都フュージョニアリング株式会社 filed Critical 京都フュージョニアリング株式会社
Publication of WO2024071104A1 publication Critical patent/WO2024071104A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J23/00Details of transit-time tubes of the types covered by group H01J25/00
    • H01J23/34Circuit arrangements not adapted to a particular application of the tube and not otherwise provided for
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J25/00Transit-time tubes, e.g. klystrons, travelling-wave tubes, magnetrons

Definitions

  • the present invention relates to a gyrotron, which is a high-power millimeter wave transmitter that uses the cyclotron resonance maser effect as the transmission principle, and to a power supply unit and power supply control method for a gyrotron that can be used as a high-power high-frequency source in the millimeter wave to submillimeter wave band for nuclear fusion plasma heating devices, etc.
  • a conventional power supply unit for a gyrotron for example, has an electron gun section that is configured with a separate power supply for accelerating the electron beam, which drives the gyrotron, and a power supply that supplies the power required for oscillation.
  • This electron gun section has two poles, a cathode electrode and an anode electrode, and a body electrode and a collector electrode are provided for this electron gun section, and a reverse bias voltage is applied between the body electrode and the collector electrode to recover energy.
  • a collector power supply is provided to supply power to the collector electrode.
  • This collector power supply has the highest power output of all gyrotron power supply devices, and with the recent trend towards higher power and longer pulses in gyrotrons, some require a DC voltage of several tens of KV to 100 KV and a DC current of several tens of A to 150 A.
  • DC power supplies use a capacitor bank, and generally a large-capacity capacitor bank is used to suppress fluctuations in the load voltage.
  • the power supply device disclosed in Patent Document 1 detects the output voltages of the collector power supply, anode power supply, and body power supply separately, and provides constant voltage control means for maintaining the output voltages of the collector power supply, anode power supply, and body power supply constant based on the detected output voltages.
  • the output voltage reference value of the collector power supply is converted to a pre-stored reference value pattern and output. This makes it possible to obtain smooth and stable output operation without the body power supply becoming overcurrent if the output voltage of the collector power supply fluctuates when the output voltage is rising or stopped.
  • the power supply device disclosed in the above-mentioned Patent Document 1 measures the voltage of each part in order to stabilize the power supply, and performs feedback control of the voltage of the main power supply, anode power supply, and body power supply to obtain a smooth and stable output, and is premised on active control to prevent overcurrent.
  • complex and highly accurate control is required for continuous output, which requires expensive control means and complex control, and there is a risk that the manufacturing and operating costs of the equipment will increase.
  • the present invention has been made in consideration of these circumstances, and aims to provide a power supply device and power supply control method for a gyrotron that can improve the oscillation efficiency of the gyrotron by more stabilizing the voltage applied to the power supply that accelerates the electron beam and the power supply required for oscillation, while reducing the manufacturing and operating costs of the gyrotron equipment.
  • the power supply device for a gyrotron comprises: a cathode electrode constituting an electron gun unit for generating an electron beam; a body section including a cavity resonator that oscillates high-power radio frequency waves by interaction with the electron beam generated by the electron gun section; a collector section for capturing the electron beam after the interaction; a body side constant voltage circuit including a constant voltage circuit for maintaining a constant voltage between the electron gun section and the body section;
  • the device is characterized by comprising a power supply section for applying a voltage between the body section and the collector section, and a resistance means disposed between the power supply section and a contact point between the body section and the body side constant voltage circuit.
  • the power supply device for a gyrotron is a cathode electrode and an anode electrode constituting an electron gun unit for generating an electron beam; a body portion including a cavity resonator that oscillates high-power radio frequency waves by interaction with the electron beam generated by the cathode electrode; a collector section for capturing the electron beam after the interaction; an anode side constant voltage circuit including a constant voltage circuit for maintaining a constant voltage between the cathode electrode and the anode electrode; a body side constant voltage circuit including a constant voltage circuit for maintaining a constant voltage between the electron gun section and the body section;
  • the semiconductor device is characterized by comprising: a power supply unit for applying a voltage between the body unit and the collector unit; and a resistance means disposed between a contact point between the body unit and the body side constant voltage circuit and the power supply unit.
  • the power supply control method for a gyrotron of the present invention comprises the steps of: a cathode electrode constituting an electron gun unit for generating an electron beam; a body section including a cavity resonator that oscillates high-power radio frequency waves by interaction with the electron beam generated by the electron gun section; a collector section for capturing the electron beam after the interaction;
  • a power supply control method for a gyrotron that controls voltages related to each of the above components in a gyrotron comprising: a body side constant voltage circuit including a constant voltage circuit is connected between the electron gun section and the body section, and a resistance means is disposed between the power supply section and a contact point between the body section and the body side constant voltage circuit, the power supply section applying a voltage between the body section and the collector section; and a step in which a constant voltage circuit included in the body side constant voltage circuit maintains a voltage between the electron gun section and the body section constant.
  • the power supply control method for a gyrotron of the present invention comprises the steps of: a cathode electrode and an anode electrode constituting an electron gun unit for generating an electron beam; a body portion including a cavity resonator that oscillates high-power radio frequency waves by interaction with the electron beam generated by the cathode electrode; a collector section for capturing the electron beam after the interaction;
  • a power supply control method for a gyrotron that controls voltages related to each of the above components in a gyrotron comprising: a power supply unit applying a voltage between the body unit and the collector unit in a state in which a resistance means is disposed between the power supply unit and a contact point between the body unit and the body side constant voltage circuit;
  • the method includes a step in which a constant voltage circuit included in an anode side constant voltage circuit maintains a voltage between the cathode electrode and the anode electrode constant, and a constant voltage circuit included in the body side constant voltage circuit maintains a
  • the constant voltage circuit can be, for example, a linear regulator circuit such as a series regulator or shunt regulator that adjusts the input voltage to a predetermined output voltage by the voltage drop of a control element such as a bipolar transistor or MOSFET.
  • the constant voltage circuit can also be configured to include a low-loss constant voltage control circuit that linearly adjusts the input voltage to a predetermined output voltage by a variable resistor whose resistance value is adjusted according to the feedback voltage of the output voltage, such as a linear regulator circuit composed of a Zener diode and a transistor.
  • This linear regulator circuit can be used singly or in the form of a stack of multiple linear regulator circuits.
  • a simple constant voltage circuit is used in the circuit that supplies the body voltage or anode voltage in the power supply device of a gyrotron, so that a stable gyrotron power supply can be constructed at a very low cost.
  • a linear regulator circuit such as a series regulator or shunt regulator that adjusts the input voltage to a predetermined output voltage by the voltage drop of a control element such as a bipolar transistor or MOSFET, or a low-loss constant voltage control circuit that linearly adjusts the input voltage to a predetermined output voltage by a variable resistor whose resistance value is adjusted according to the feedback voltage of the output voltage, such as a stack of linear regulator circuits composed of a Zener diode and a transistor, can be used.
  • a stack of linear regulator circuits composed of a Zener diode and a transistor can be used as a stack of linear regulator circuits composed of a Zener diode and a transistor.
  • FIG. 1 is a block diagram showing a schematic configuration of a power supply device for a gyrotron according to an embodiment.
  • FIG. 1 is a circuit diagram showing a configuration of a power supply device for a gyrotron according to an embodiment.
  • FIG. 1 is a schematic diagram showing a general configuration of a gyrotron according to an embodiment.
  • FIG. 2 is a sequence diagram showing power supply control by a gyrotron power supply device according to an embodiment.
  • FIG. 11 is a block diagram showing a schematic configuration of a power supply device for a gyrotron according to a modified example.
  • FIG. 11 is a circuit diagram showing the configuration of a power supply device for a gyrotron according to a modified example.
  • the gyrotron 2 is a high-power microwave generator, and is equipped with a triode-type electron gun section 2a which generates an electron beam, and this electron gun section 2a includes a cathode electrode 23 and an anode electrode 24 shown in Figures 1 and 2.
  • the gyrotron 2 is also generally composed of a body section 25 which includes a cavity resonator 251 which oscillates high-power radio frequency waves by interacting with the electron beam generated by the cathode electrode 23, and a collector section 26 which captures the electron beam after the interaction.
  • the body section 25 is provided at the tip of the electron gun section 2a, has a body electrode 255 that applies an acceleration voltage, and is surrounded by a solenoid coil (main coil) 252, and a static magnetic field is applied in the axial direction of the gyrotron 2.
  • a voltage is applied to the electron gun section 2a, thermal electrons are drawn out.
  • the emission belt 2b which is the electron emission section of the gyrotron 2
  • the emission belt 2b which is the electron emission section of the gyrotron 2
  • the cavity resonator 251 is placed at the center of the solenoid coil 252, which is a magnetic field generating device.
  • the strength of the magnetic field increases from the electron gun section 2a toward the cavity resonator 251, so that the electron's forward energy is converted into rotational energy according to the law of conservation of magnetic moment of electrons, and the ratio of the electron's rotational speed to its forward speed, the so-called rotation ratio (pitch factor), increases as it advances, and an electron beam with a large rotational energy component is produced in the cavity resonator 251.
  • the gyrotron 2 is an electron tube that converts the rotational energy of electrons into electromagnetic wave (microwave) energy within the cavity resonator 251 using the effect of an electron cyclotron resonance maser, creating an electron beam with a high rotation ratio.
  • the rotation ratio can be controlled by controlling the anode voltage while keeping the energy of the electron beam constant.
  • the rotation ratio can also be changed by changing the magnetic field of the electron gun section, but in this case the position of the electron beam changes, so it is necessary to link it with the magnetic field of the cavity resonator 251 (hereinafter referred to as the cavity magnetic field) and align it to the optimal electron beam position within the cavity resonator.
  • the cavity magnetic field the magnetic field of the cavity resonator 251
  • electromagnetic waves in a resonant mode with a specific resonant frequency are excited according to the position of the electron beam and the strength of the applied magnetic field. These electromagnetic waves do not leak to the electron gun section 2a because the electromagnetic waves are cut off, and only propagate downstream. These electromagnetic waves are converted into a Gaussian electromagnetic beam EMb by the mode converter 254, guided by the reflectors 241 and 242, and emitted to the outside as a quasi-optical electromagnetic beam MWb through the output window 20a.
  • the electron beam Eb which has lost its energy after being used to generate electromagnetic waves in the cavity resonator 251, travels along the magnetic field surrounded by the insulating ceramic 243 and is captured by the collector section 26.
  • the electron beam emitted from the cathode electrode 23 undergoes a spiral motion due to the electric field formed by the anode electrode 24 and the magnetic field created by the solenoid coil 252, and is further accelerated by the electric field between the cathode electrode 23 and the body section 25.
  • the energy of this accelerated electron beam is converted into rotational energy by the magnetic field created by the solenoid coil 252.
  • the resulting spirally moving electron beam interacts within the cavity resonator 251 of the body section 25, and part of the energy of the electron beam is converted into high frequency energy. After completing this interaction, the electron beam is captured by the collector section 26.
  • the gyrotron 2 is provided with a heater transformer 22 and a heater power supply 21 that supplies power to the heater transformer 22, and the output of the heater power supply 21 is supplied to the gyrotron 2 via the heater transformer 22.
  • the gyrotron 2 according to the present embodiment described above is equipped with a gyrotron power supply control device 1 as shown in Figures 1 and 2.
  • Figures 1 and 2 show the configuration of the gyrotron power supply device according to the present embodiment.
  • the gyrotron 2 is roughly composed of a triode-type electron gun section 2a having a cathode electrode 23 and an anode electrode 24, a body section 25 having a cavity resonator 251, a collector section 26, a heater transformer 22, and a heater power supply 21, as shown in Figures 1 and 2.
  • the gyrotron power supply control device 1 comprises a current limiting reactor 31 connected to the gyrotron 2 to be added, a switch circuit 32, an anode side constant voltage circuit 54, a body side constant voltage circuit 53, a limiting resistor 52, and an acceleration power supply 51, as well as a power supply unit 4 for applying voltage to these components.
  • the power supply unit 4 includes a capacitor 41, a charging high voltage power supply 43, and a resistance means 42.
  • the current-limiting reactor 31 is a leveling circuit that is composed of an inductor, a diode, a resistor, etc., and smoothes the output voltage. It is connected in series to the AC circuit and acts as a low-pass filter, and limits the short-circuit current in the event of a short-circuit fault.
  • the switch circuit 32 is arranged in series with the current-limiting reactor 31, and specifically includes a semiconductor switch 323, a Zener diode 322, and a voltage meter 321.
  • the power supply unit 4 is a power source that generates a beam current in the gyrotron 2 and supplies oscillation power, and is equipped with a capacitor 41, a high-voltage charging power supply 43, and a resistance means 42, and the capacitor 41 is charged to a predetermined voltage by the high-voltage charging power supply 43.
  • the anode side constant voltage circuit 54 includes a constant voltage circuit for maintaining a constant voltage between the cathode electrode 23 and the anode electrode 24, and the body side constant voltage circuit 53 includes a constant voltage circuit for maintaining a constant voltage between the electron gun section 2a and the body section 25.
  • the constant voltage circuits of the body side constant voltage circuit 53 and the anode side constant voltage circuit 54 can be linear regulator circuits such as series regulators and shunt regulators that adjust the input voltage to a predetermined output voltage by the voltage drop of a control element such as a bipolar transistor or MOSFET.
  • the constant voltage circuit may be configured to include a low-loss constant voltage control circuit that linearly adjusts the input voltage to a predetermined output voltage by a variable resistor whose resistance value is adjusted according to the feedback voltage of the output voltage, such as a linear regulator circuit composed of a Zener diode and a transistor.
  • the linear regulator circuit may be used singly or as a stack of multiple linear regulator circuits arranged in a row.
  • a 50KV constant voltage circuit can be configured by using 50 linear regulator circuits of 200V each.
  • the negative terminal of the anode side constant voltage circuit 54 is connected to the cathode electrode 23 of the gyrotron 2, and the positive terminal of the body side constant voltage circuit 53 is connected to the body part 25 of the gyrotron 2, and the acceleration power supply 51 applies a voltage between the cathode electrode 23 and the body part 25.
  • the anode side constant voltage circuit 54 is composed of a Zener diode 541 (set to 40 KV here) that stabilizes the DC voltage between connection point Ck and connection point Ca, a voltage dividing resistor 543, and a voltmeter 542.
  • the body side constant voltage circuit 53 is composed of a Zener diode 531 (set to 20 KV here) that stabilizes the DC voltage between connection point Ca and connection point Cb, a resistor 533, and a voltmeter 532.
  • the acceleration power supply 51 is a power supply device with its positive terminal connected to the body part 25 side of the gyrotron 2 and its negative terminal connected to the collector part 26 of the gyrotron 2, and in this embodiment is set to 30 KV.
  • the charging high voltage power supply 43 has its negative terminal connected to the cathode electrode 23 side of the gyrotron 2 and its positive terminal connected to the collector part 26 of the gyrotron 2.
  • the ground 47 is secured on the collector part 26 side.
  • the acceleration power supply 51 and charging high voltage power supply 43 are used to supply power for gyrotron oscillation, with the acceleration power supply 51 biasing between the body section 25 and the collector section 26, and the power supply section 4 biasing between the cathode electrode 23 and the collector section 26.
  • a voltage meter 310 is disposed between connection points Ck and Cc, as well as a collector load 311 and a beam power meter 312.
  • the collector load 311 is 2 k ⁇ , and when Vkc is 70 KV, the beam current is 35 A.
  • the body side constant voltage circuit 53 and the anode side constant voltage circuit 54 are connected in series, and the connection point Ca between the body side constant voltage circuit 53 and the anode side constant voltage circuit 54 is connected to the anode electrode 24.
  • the body side constant voltage circuit 53 and the anode side constant voltage circuit 54 form an electric field to give the electron beam an initial velocity, and provide a bias between the cathode electrode 23 and the anode electrode 24.
  • Voltage-dividing resistors 543, 533, and 513 are arranged in parallel with the Zener circuit between each connection point Ck to Ca, between Ca to Cb, and between Cb to Cc, respectively, and a predetermined potential difference is formed between each connection point, generating the voltage applied to the anode electrode 24 and the cathode electrode 23.
  • the acceleration power supply 51 is a power supply device for applying a voltage between the body portion 25 and the collector portion 26, and is a power supply for accelerating the electron beam emitted from the cathode electrode 23 and forming a highly stable electric field between the cathode electrode 23 and the body portion 25 for stable oscillation.
  • the output voltage of the acceleration power supply 51 is +80 KV with a stability of about ⁇ 0.2%, and the current is about 100 mA since only a small amount of the electron beam flowing from the cathode electrode 23 to the body portion 25 needs to be supplied, and the acceleration power supply 51 is a power supply of about 8 kW.
  • the charging high-voltage power supply 43 basically needs to be strong enough to capture the electron beam from the cathode electrode 23 at the collector portion 26.
  • the potential of the body unit 25 is made higher than the potential of the collector unit 26, generating a deceleration electric field between the body unit 25 and the collector unit 26, and by setting the voltage configuration so that the electron beam can pass through the body unit 25 and be captured by the collector, the electron beam is decelerated, thereby reducing heat generation in the collector.
  • the acceleration power supply 51 has an output voltage of +20 KV, a stability of about ⁇ 5%, and a current of 15 A
  • the power supply unit 4 has an output voltage of +40 KV, a stability of about ⁇ 5%, and a current of 15 A.
  • these power supply sources do not require particularly strict stability of about ⁇ 5% as mentioned above, they can be realized with a general DC electron beam power supply.
  • a limiting resistor 52 is arranged between the acceleration power supply 51 and a connection point Cb between the body part 25 and the body side constant voltage circuit 53.
  • This limiting resistor 52 is a Zener circuit current limiting resistor, and is arranged in series with each constant voltage circuit 54, 53, and is connected between the body side constant voltage circuit 53 and the positive terminal of the acceleration power supply 51, and the connection point Cb between the body side constant voltage circuit 53 and the limiting resistor 52 is connected to the body part 25.
  • This limiting resistor 52 also acts as a means for preventing and suppressing overvoltage generated in the body part 25 of the gyrotron 2.
  • the potential difference across the Zener diode of the anode side constant voltage circuit 54 is set to be larger than the potential difference across the Zener diode of the body side constant voltage circuit 53.
  • the potential difference applied by the acceleration power supply 51 is set to be smaller than the potential difference across the Zener diode of the anode side constant voltage circuit 54, and larger than the potential difference across the Zener diode of the body side constant voltage circuit 53.
  • Fig. 4 shows power supply control by the power supply device for a gyrotron according to this embodiment.
  • an operating method is adopted in which the power supply unit 4 is started up before the acceleration power supply 51 is started up.
  • the output voltage of the acceleration power supply 51 is not started up, and for 1.6 ms after the start, the anode-body voltage (Vab) is stable at 20 KV, and the anode-cathode voltage (Vak) is stable at 40 KV.
  • the collector-body voltage (Vbc) and the collector-cathode voltage (Vkc) are in the process of starting up and rising, but this does not affect the oscillation. In this way, sag in the anode-cathode and anode-body voltages is suppressed, and a stable voltage supply is obtained for 1.6 ms.
  • a simple constant voltage circuit is used in the circuit that supplies the anode voltage and body voltage in the gyrotron power supply device, so that an extremely inexpensive and stable gyrotron power supply can be constructed.
  • a linear regulator circuit such as a series regulator or shunt regulator, or a low-loss constant-voltage control circuit such as a linear regulator circuit as the body-side constant-voltage circuit 53 and the anode-side constant-voltage circuit 54
  • a stable voltage supply can be expected for 1.6 milliseconds, resulting in stable gyrotron operation.
  • the required voltage can be applied automatically without providing a complex, highly accurate, and expensive control mechanism, and inconveniences such as oscillation halt due to voltage sag can be suppressed, and operation with a pulse width according to the capacitor bank capacity becomes possible.
  • the electron gun section 2a is a triode type having an anode electrode 24, but the present invention is not limited to this and can also be applied to a gyrotron equipped with a diode type electron gun section in which the anode electrode 24 is omitted, as shown in Figures 5 and 6.
  • a diode type electron gun section since it does not have the anode electrode 24 as described above, the circuitry and components related to this anode electrode 24 are omitted.
  • the gyrotron power supply control device 1 in this modified example omits the anode side constant voltage circuit 54, but the other circuit configuration is the same as in the embodiment described above, and includes a current limiting reactor 31 connected to the gyrotron 2 to be added, a switch circuit 32, a body side constant voltage circuit 53, a limiting resistor 52, and an acceleration power supply 51, as well as a power supply unit 4 for applying voltage to these.
  • the body-side constant voltage circuit 53 includes a constant voltage circuit for maintaining a constant voltage between the cathode electrode 23 and the body part 25 of the electron gun part 2a.
  • the constant voltage circuit of this body-side constant voltage circuit 53 can be, for example, a linear regulator circuit such as a series regulator or a shunt regulator that adjusts the input voltage to a predetermined output voltage by the voltage drop of a control element such as a bipolar transistor or a MOSFET.
  • this constant voltage circuit can also be configured to include a low-loss constant voltage control circuit that linearly adjusts the input voltage to a predetermined output voltage by a variable resistor whose resistance value is adjusted according to the feedback voltage of the output voltage, such as a linear regulator circuit composed of a Zener diode and a transistor. Note that this linear regulator circuit may be used singly or multiple linear regulator circuits may be arranged to form a stack.
  • the anode side constant voltage circuit 54 is omitted, the positive terminal of the body side constant voltage circuit 53 is connected to the body part 25 of the gyrotron 2, and the acceleration power supply 51 applies a voltage between the collector part 26 and the body part 25.
  • the body side constant voltage circuit 53 is composed of a Zener diode 531 and resistor 533 that stabilize the DC voltage between connection point Ck and connection point Cb, and a voltmeter 532.
  • the body-side constant voltage circuit 53 forms an electric field to give the electron beam an initial velocity, and applies a bias between the cathode electrode 23 and the body portion 25.
  • voltage-dividing resistors 533, 513 are arranged in parallel with the Zener circuit between each of the connection points Ck-Cb and Cb-Cc, respectively, and a predetermined potential difference is formed between the connection points.
  • the manufacturing and operating costs of the equipment can be reduced while the voltage applied to the power supply that accelerates the electron beam and the power supply required for oscillation can be more stabilized, thereby improving the oscillation efficiency of the gyrotron.

Landscapes

  • Microwave Tubes (AREA)

Abstract

[Problem] To better stabilize voltages that are applied to a power supply for accelerating an electron beam and a power supply required for oscillation in a gyrotron, while suppressing facility manufacturing cost and operating cost, to thereby improve the oscillation efficiency of the gyrotron. [Solution] The gyrotron power supply device comprises: a cathode electrode 23 as a component of an electron gun unit 2a that generates an electron beam; a body unit 25 that includes a hollow resonator 251 that oscillates a high-power high frequency by means of an interaction with the electron beam generated from the cathode electrode 23; a collector unit 26 that captures the electron beam after the interaction; a body-side constant voltage circuit 53 that includes a constant voltage circuit for holding a constant voltage between the electron gun unit 2a and the body unit 25; an accelerating power supply 51 for applying a voltage between the body unit 25 and the collector unit 26; and a limiting resistance 52 that is disposed between a point of contact between the body unit 25 and the body-side constant voltage circuit 53 and the accelerating power supply 51.

Description

ジャイロトロン用電源装置及び電源制御方法Power supply device for gyrotron and power supply control method
 本発明は、例えば、サイクロトロン共鳴メーザー作用を発信原理とする大電力ミリ波発信器であるジャイロトロンに係り、主としてミリ波からサブミリ波帯における大電力高周波源として核融合プラズマ加熱装置などに利用可能なジャイロトロン用電源装置及び電源制御方法に関するものである。 The present invention relates to a gyrotron, which is a high-power millimeter wave transmitter that uses the cyclotron resonance maser effect as the transmission principle, and to a power supply unit and power supply control method for a gyrotron that can be used as a high-power high-frequency source in the millimeter wave to submillimeter wave band for nuclear fusion plasma heating devices, etc.
 従来のジャイロトロン用電源装置は、例えば、ジャイロトロンを駆動する電源で電子ビームを加速する電源と、発振に必要な電力を供給する電源とを分けて構成された電子銃部を備えており、この電子銃部ではカソード電極とアノード電極との二極を有し、この電子銃部に対して、ボディ電極、コレクタ電極が設けられ、ボディ電極とコレクタ電極との間に、逆バイアス電圧を印加してエネルギー回収を行う。 A conventional power supply unit for a gyrotron, for example, has an electron gun section that is configured with a separate power supply for accelerating the electron beam, which drives the gyrotron, and a power supply that supplies the power required for oscillation. This electron gun section has two poles, a cathode electrode and an anode electrode, and a body electrode and a collector electrode are provided for this electron gun section, and a reverse bias voltage is applied between the body electrode and the collector electrode to recover energy.
 そして、コレクタ電極に電力を供給するコレクタ電源が設けられており、このコレクタ電源は、ジャイロトロン電源装置の中で最も大電力であり、近年のジャイロトロンの大電力化、長パルス化に伴って、直流電圧は数十KV~100KV、直流電流は数十A~150A程度を必要とするものがある。このような直流電源は、短パルス動作の場合にはコンデンサバンクが用いられ、一般的に負荷電圧の変動を抑制するために、大容量のコンデンサバンクが用いられる。 A collector power supply is provided to supply power to the collector electrode. This collector power supply has the highest power output of all gyrotron power supply devices, and with the recent trend towards higher power and longer pulses in gyrotrons, some require a DC voltage of several tens of KV to 100 KV and a DC current of several tens of A to 150 A. In the case of short pulse operation, such DC power supplies use a capacitor bank, and generally a large-capacity capacitor bank is used to suppress fluctuations in the load voltage.
 ところで、このコンデンサバンクを用いた電源構成では、コンデンサから電流が放出されるとともに、時間とともに電圧が下がっていく傾向があり、これによりジャイロトロンの発振効率が下がっていくという問題があった。このような問題を解決するために、例えば、主回路にレギュレーターと称する4極管を挿入し、ここで電圧降下を生じさせ出力電圧を一定化させる、或いは特許文献1に開示された電源装置が提案されている。 However, in a power supply configuration using this capacitor bank, as current is released from the capacitor, the voltage tends to drop over time, causing the oscillation efficiency of the gyrotron to decrease. To solve this problem, for example, a tetrode tube called a regulator is inserted into the main circuit, which creates a voltage drop and stabilizes the output voltage, or the power supply device disclosed in Patent Document 1 has been proposed.
 この特許文献1に開示された電源装置では、コレクタ電源、アノード電源、ボディ電源の出力電圧を各別に検出し、この検出された出力電圧を基に、コレクタ電源、アノード電源、ボディ電源の出力電圧を一定に各別に保持する定電圧制御手段を設け、コレクタ電源の出力電圧基準値を、予め記憶されている基準値パターンに変換して出力する。これにより、出力電圧立上時或いは停止時において、コレクタ電源の出力電圧が変動した場合に、ボディ電源が過電流となることなく、スムーズで安定した出力動作を得ることができる。 The power supply device disclosed in Patent Document 1 detects the output voltages of the collector power supply, anode power supply, and body power supply separately, and provides constant voltage control means for maintaining the output voltages of the collector power supply, anode power supply, and body power supply constant based on the detected output voltages. The output voltage reference value of the collector power supply is converted to a pre-stored reference value pattern and output. This makes it possible to obtain smooth and stable output operation without the body power supply becoming overcurrent if the output voltage of the collector power supply fluctuates when the output voltage is rising or stopped.
特開平11-162366号公報Japanese Patent Application Laid-Open No. 11-162366
 しかしながら、上述した特許文献1に開示された電源装置では、電源の安定化を図るため、各部の電圧を測定し、スムーズで安定した出力を得るために主電源、アノード電源、ボディ電源の電圧のフィードバック制御を行い、過電流が生じないように積極的に制御することを前提としていることから、すなわち、連続出力を対象に、複雑且つ高精度な制御が要求され、そのための高価な制御手段と複雑な制御が必要となり、設備の製造コスト及び運用コストが増大する惧れがある。 However, the power supply device disclosed in the above-mentioned Patent Document 1 measures the voltage of each part in order to stabilize the power supply, and performs feedback control of the voltage of the main power supply, anode power supply, and body power supply to obtain a smooth and stable output, and is premised on active control to prevent overcurrent. In other words, complex and highly accurate control is required for continuous output, which requires expensive control means and complex control, and there is a risk that the manufacturing and operating costs of the equipment will increase.
 そこで、本発明はこのような事情を考慮してなされたもので、ジャイロトロンにおいて、設備の製造コスト及び運用コストを抑えつつ、電子ビームを加速する電源と、発振に必要な電源とに印加する電圧をより安定させて、ジャイロトロンの発振効率の向上を図ることのできるジャイロトロン用電源装置及び電源制御方法を提供することを目的とする。 The present invention has been made in consideration of these circumstances, and aims to provide a power supply device and power supply control method for a gyrotron that can improve the oscillation efficiency of the gyrotron by more stabilizing the voltage applied to the power supply that accelerates the electron beam and the power supply required for oscillation, while reducing the manufacturing and operating costs of the gyrotron equipment.
 上記課題を解決するために本発明のジャイロトロン用電源装置は、
 電子ビームを発生せる電子銃部を構成するカソード電極と、
 電子銃部より発生した電子ビームとの相互作用により大電力高周波を発振する空胴共振器を含むボディ部と、
 相互作用を行った後の電子ビームを捕捉するコレクタ部と、
 電子銃部及びボディ部間の電圧を一定に保持するための定電圧回路を含むボディ側定電圧回路と、
 ボディ部及びコレクタ部間に電圧を印加するための電源部と
 ボディ部とボディ側定電圧回路との接点と、電源部との間に配置される抵抗手段と
を備えることを特徴とする。
In order to solve the above problems, the power supply device for a gyrotron according to the present invention comprises:
a cathode electrode constituting an electron gun unit for generating an electron beam;
a body section including a cavity resonator that oscillates high-power radio frequency waves by interaction with the electron beam generated by the electron gun section;
a collector section for capturing the electron beam after the interaction;
a body side constant voltage circuit including a constant voltage circuit for maintaining a constant voltage between the electron gun section and the body section;
The device is characterized by comprising a power supply section for applying a voltage between the body section and the collector section, and a resistance means disposed between the power supply section and a contact point between the body section and the body side constant voltage circuit.
 また、本発明のジャイロトロン用電源装置は、
 電子ビームを発生せる電子銃部を構成するカソード電極及びアノード電極と、
 前記カソード電極より発生した電子ビームとの相互作用により大電力高周波を発振する空胴共振器を含むボディ部と、
 前記相互作用を行った後の電子ビームを捕捉するコレクタ部と、
 前記カソード電極及び前記アノード電極間の電圧を一定に保持するための定電圧回路を含むアノード側定電圧回路と、
 前記電子銃部及び前記ボディ部間の電圧を一定に保持するための定電圧回路を含むボディ側定電圧回路と、
 前記ボディ部及び前記コレクタ部間に電圧を印加するための電源部と
 前記ボディ部と前記ボディ側定電圧回路との接点と、前記電源部との間に配置される抵抗手段と
を備えることを特徴とする。
In addition, the power supply device for a gyrotron according to the present invention is
a cathode electrode and an anode electrode constituting an electron gun unit for generating an electron beam;
a body portion including a cavity resonator that oscillates high-power radio frequency waves by interaction with the electron beam generated by the cathode electrode;
a collector section for capturing the electron beam after the interaction;
an anode side constant voltage circuit including a constant voltage circuit for maintaining a constant voltage between the cathode electrode and the anode electrode;
a body side constant voltage circuit including a constant voltage circuit for maintaining a constant voltage between the electron gun section and the body section;
The semiconductor device is characterized by comprising: a power supply unit for applying a voltage between the body unit and the collector unit; and a resistance means disposed between a contact point between the body unit and the body side constant voltage circuit and the power supply unit.
 一方、本発明のジャイロトロン用電源制御方法は、
 電子ビームを発生せる電子銃部を構成するカソード電極と、
 前記電子銃部より発生した電子ビームとの相互作用により大電力高周波を発振する空胴共振器を含むボディ部と、
 前記相互作用を行った後の電子ビームを捕捉するコレクタ部と、
を備えたジャイロトロンにおいて、上記各部に係る電圧を制御するジャイロトロン用電源制御方法であって、
 前記電子銃部及び前記ボディ部間に定電圧回路を含むボディ側定電圧回路を接続するとともに、前記ボディ部と前記ボディ側定電圧回路との接点と、前記電源部との間に抵抗手段が配置された状態において、電源部が前記ボディ部及び前記コレクタ部間に電圧を印加するステップと、
 前記ボディ側定電圧回路に含まれる定電圧回路が、前記電子銃部及び前記ボディ部間の電圧を一定に保持するステップと
を含む。
On the other hand, the power supply control method for a gyrotron of the present invention comprises the steps of:
a cathode electrode constituting an electron gun unit for generating an electron beam;
a body section including a cavity resonator that oscillates high-power radio frequency waves by interaction with the electron beam generated by the electron gun section;
a collector section for capturing the electron beam after the interaction;
A power supply control method for a gyrotron that controls voltages related to each of the above components in a gyrotron comprising:
a body side constant voltage circuit including a constant voltage circuit is connected between the electron gun section and the body section, and a resistance means is disposed between the power supply section and a contact point between the body section and the body side constant voltage circuit, the power supply section applying a voltage between the body section and the collector section;
and a step in which a constant voltage circuit included in the body side constant voltage circuit maintains a voltage between the electron gun section and the body section constant.
 また、本発明のジャイロトロン用電源制御方法は、
 電子ビームを発生せる電子銃部を構成するカソード電極及びアノード電極と、
 前記カソード電極より発生した電子ビームとの相互作用により大電力高周波を発振する空胴共振器を含むボディ部と、
 前記相互作用を行った後の電子ビームを捕捉するコレクタ部と、
を備えたジャイロトロンにおいて、上記各部に係る電圧を制御するジャイロトロン用電源制御方法であって、
 前記ボディ部と前記ボディ側定電圧回路との接点と、前記電源部との間に抵抗手段が配置された状態において、電源部が前記ボディ部及び前記コレクタ部間に電圧を印加するステップと、
 アノード側定電圧回路に含まれる定電圧回路が、前記カソード電極及び前記アノード電極間の電圧を一定に保持するとともに、前記ボディ側定電圧回路に含まれる定電圧回路が、前記電子銃部及び前記ボディ部間の電圧を一定に保持するステップと
を含む。
Further, the power supply control method for a gyrotron of the present invention comprises the steps of:
a cathode electrode and an anode electrode constituting an electron gun unit for generating an electron beam;
a body portion including a cavity resonator that oscillates high-power radio frequency waves by interaction with the electron beam generated by the cathode electrode;
a collector section for capturing the electron beam after the interaction;
A power supply control method for a gyrotron that controls voltages related to each of the above components in a gyrotron comprising:
a power supply unit applying a voltage between the body unit and the collector unit in a state in which a resistance means is disposed between the power supply unit and a contact point between the body unit and the body side constant voltage circuit;
The method includes a step in which a constant voltage circuit included in an anode side constant voltage circuit maintains a voltage between the cathode electrode and the anode electrode constant, and a constant voltage circuit included in the body side constant voltage circuit maintains a voltage between the electron gun section and the body section constant.
 上記発明において、前記定電圧回路は、例えば、バイポーラトランジスタやMOSFET等の制御素子の電圧降下により入力電圧を所定の出力電圧に調整するシリーズレギュレーターやシャントレギュレーターなどのリニアレギュレーター回路とすることができる。また、前記定電圧回路は、例えば、ツェナーダイオードとトランジスタから構成されるリニアレギュレーター回路など、出力電圧の帰還電圧に応じて抵抗値が調整される可変抵抗により、入力電圧を線形的に所定の出力電圧に調整する低損失定電圧制御回路を含む構成とすることができる。なお、このリニアレギュレーター回路は単数で用いてもよく、また、複数を配列したスタックとして用いてもよい。 In the above invention, the constant voltage circuit can be, for example, a linear regulator circuit such as a series regulator or shunt regulator that adjusts the input voltage to a predetermined output voltage by the voltage drop of a control element such as a bipolar transistor or MOSFET. The constant voltage circuit can also be configured to include a low-loss constant voltage control circuit that linearly adjusts the input voltage to a predetermined output voltage by a variable resistor whose resistance value is adjusted according to the feedback voltage of the output voltage, such as a linear regulator circuit composed of a Zener diode and a transistor. This linear regulator circuit can be used singly or in the form of a stack of multiple linear regulator circuits.
 本発明によれば、ジャイロトロンの電源装置において、ボディ電圧或いはアノード電圧を供給する回路に簡単な定電圧回路を用いることから、極めて安価に安定なジャイロトロン電源を構成することができる。具体的には、例えばボディ側定電圧回路やアノード側定電圧回路として、例えば、バイポーラトランジスタやMOSFET等の制御素子の電圧降下により入力電圧を所定の出力電圧に調整するシリーズレギュレーターやシャントレギュレーターなどのリニアレギュレーター回路、或いは、例えばツェナーダイオードとトランジスタから構成されるリニアレギュレーター回路のスタックなど、出力電圧の帰還電圧に応じて抵抗値が調整される可変抵抗により、入力電圧を線形的に所定の出力電圧に調整する低損失定電圧制御回路を用いることができる。これにより、複雑で高精度な高価な制御機構を設けることなく、自動的に必要な電圧印加が可能となり、電圧サグによる発振停止などの不都合を抑えることができ、コンデンサバンク容量に応じたパルス幅での運転が可能となる。 According to the present invention, a simple constant voltage circuit is used in the circuit that supplies the body voltage or anode voltage in the power supply device of a gyrotron, so that a stable gyrotron power supply can be constructed at a very low cost. Specifically, for example, as the body side constant voltage circuit or the anode side constant voltage circuit, a linear regulator circuit such as a series regulator or shunt regulator that adjusts the input voltage to a predetermined output voltage by the voltage drop of a control element such as a bipolar transistor or MOSFET, or a low-loss constant voltage control circuit that linearly adjusts the input voltage to a predetermined output voltage by a variable resistor whose resistance value is adjusted according to the feedback voltage of the output voltage, such as a stack of linear regulator circuits composed of a Zener diode and a transistor, can be used. This makes it possible to automatically apply the required voltage without providing a complex, highly accurate, and expensive control mechanism, and it is possible to suppress inconveniences such as oscillation stop due to voltage sag, and to operate with a pulse width according to the capacity of the capacitor bank.
 この結果、本発明によれば、ジャイロトロンにおいて、設備の製造コスト及び運用コストを抑えつつ、電子ビームを加速する電源と、発振に必要な電源とに印加する電圧をより安定させることができ、ジャイロトロンの発振効率の向上を図ることができる。 As a result, according to the present invention, in a gyrotron, it is possible to more stabilize the voltage applied to the power supply that accelerates the electron beam and the power supply required for oscillation while reducing the manufacturing and operating costs of the equipment, thereby improving the oscillation efficiency of the gyrotron.
実施形態に係るジャイロトロン用電源装置の構成を模式的に示したブロック図である。FIG. 1 is a block diagram showing a schematic configuration of a power supply device for a gyrotron according to an embodiment. 実施形態に係るジャイロトロン用電源装置の構成を示す回路図である。FIG. 1 is a circuit diagram showing a configuration of a power supply device for a gyrotron according to an embodiment. 実施形態に係るジャイロトロンの概略構成を模式的に示す概要図である。FIG. 1 is a schematic diagram showing a general configuration of a gyrotron according to an embodiment. 実施形態に係るジャイロトロン用電源装置による電源制御を示すシーケンス図である。FIG. 2 is a sequence diagram showing power supply control by a gyrotron power supply device according to an embodiment. 変形例に係るジャイロトロン用電源装置の構成を模式的に示したブロック図である。FIG. 11 is a block diagram showing a schematic configuration of a power supply device for a gyrotron according to a modified example. 変形例に係るジャイロトロン用電源装置の構成を示す回路図である。FIG. 11 is a circuit diagram showing the configuration of a power supply device for a gyrotron according to a modified example.
 以下に添付図面を参照して、本発明に係るジャイロトロン用電源装置の実施形態についえ詳細に説明する。なお、以下に示す実施の形態は、この発明の技術的思想を具体化するための装置等を例示するものであって、この発明の技術的思想は、各構成部品の材質、形状、構造、配置等を下記のものに特定するものでない。この発明の技術的思想は、特許請求の範囲において、種々の変更を加えることができる。 The following describes in detail an embodiment of a power supply device for a gyrotron according to the present invention with reference to the attached drawings. Note that the embodiment shown below is an example of an apparatus for embodying the technical idea of the present invention, and the technical idea of the present invention does not specify the material, shape, structure, arrangement, etc. of each component part as described below. The technical idea of the present invention may be modified in various ways within the scope of the claims.
(ジャイロトロンの構成)
 先ず、本発明による電源制御の対象となるジャイロトロン2の構成について説明する。図3にジャイロトロンの概略構成を示す。ジャイロトロン2は、大電力マイクロ波発生装置であり、電子ビームを発生せる三極管式の電子銃部2aが備えられており、この電子銃部2aに、図1及び図2に示すカソード電極23及びアノード電極24が含まれる。また、ジャイロトロン2は、カソード電極23より発生した電子ビームとの相互作用により大電力高周波を発振する空胴共振器251を含むボディ部25と、相互作用を行った後の電子ビームを捕捉するコレクタ部26とから概略構成される。
(Gyrotron configuration)
First, the configuration of the gyrotron 2 which is the subject of power supply control according to the present invention will be described. A schematic configuration of the gyrotron is shown in Figure 3. The gyrotron 2 is a high-power microwave generator, and is equipped with a triode-type electron gun section 2a which generates an electron beam, and this electron gun section 2a includes a cathode electrode 23 and an anode electrode 24 shown in Figures 1 and 2. The gyrotron 2 is also generally composed of a body section 25 which includes a cavity resonator 251 which oscillates high-power radio frequency waves by interacting with the electron beam generated by the cathode electrode 23, and a collector section 26 which captures the electron beam after the interaction.
 ボディ部25は、電子銃部2aの先端に設けられ、加速電圧を与えるボディ電極255を有するとともに、ソレノイドコイル(主コイル)252に囲繞されており、ジャイロトロン2の軸方向に静磁場が印加される。電子銃部2aに電圧を印加すると熱電子が引き出される。ここで、ジャイロトロン2における電子放出部であるエミッションベルト2bは、幅の細いリング形状をしており、円筒型の電子ビームが形成される。電子がエミッションベルト2bから引き出される際、電子の引き出し方向と静磁場の磁力線方向の間に有限の角度を付けると、引き出される電子に回転速度が与えられる。電子の軌道に沿って加速電界と磁場強度が変化する配位を設けると、有効に電子に回転速度が与えられる。ここから放出された電子は、静磁場に巻き付いて、磁力線に沿って下流の空胴共振器251に導入される。 The body section 25 is provided at the tip of the electron gun section 2a, has a body electrode 255 that applies an acceleration voltage, and is surrounded by a solenoid coil (main coil) 252, and a static magnetic field is applied in the axial direction of the gyrotron 2. When a voltage is applied to the electron gun section 2a, thermal electrons are drawn out. Here, the emission belt 2b, which is the electron emission section of the gyrotron 2, has a narrow ring shape, and a cylindrical electron beam is formed. When electrons are drawn out from the emission belt 2b, if a finite angle is made between the direction of the electron draw-out and the direction of the magnetic field lines of the static magnetic field, a rotational speed is given to the drawn electrons. If a configuration is created in which the accelerating electric field and magnetic field strength change along the electron trajectory, a rotational speed is effectively given to the electrons. The electrons emitted from here are wrapped around the static magnetic field and introduced into the downstream cavity resonator 251 along the magnetic field lines.
 空胴共振器251は、磁場発生装置であるソレノイドコイル252の中心部に配置される。磁場の強度は、電子銃部2aから空胴共振器251に向かって強くなるため、電子の磁気モーメント保存則により、電子の進行エネルギーは回転エネルギーに変換され、電子の回転速度と進行速度の比、いわゆる回転比(ピッチファクタ)は進行するにつれて上昇し、空胴共振器251では回転エネルギー成分の大きい電子ビームができる。 The cavity resonator 251 is placed at the center of the solenoid coil 252, which is a magnetic field generating device. The strength of the magnetic field increases from the electron gun section 2a toward the cavity resonator 251, so that the electron's forward energy is converted into rotational energy according to the law of conservation of magnetic moment of electrons, and the ratio of the electron's rotational speed to its forward speed, the so-called rotation ratio (pitch factor), increases as it advances, and an electron beam with a large rotational energy component is produced in the cavity resonator 251.
 ジャイロトロン2は、空胴共振器251内において、電子サイクロトロン共鳴メーザーの効果で、電子の回転エネルギーを電磁波(マイクロ波)のエネルギーに変換する電子管であり、高い回転比の電子ビームを作る。電子放出部に含まれるカソード電極23と、引き出し電界を印加するためのアノード電極24とを含む電子銃部2aでは、電子ビームのエネルギーを一定に保ちながらアノード電圧を制御することにより、回転比を制御することができる。また、電子銃部の磁場を変えることによっても回転比は変化するが、この場合電子ビームの位置が変化するため、空胴共振器251の磁場(以下、空胴磁場)と連動させ、且つ空胴共振器内において、最適の電子ビーム位置にあわせる必要がある。 The gyrotron 2 is an electron tube that converts the rotational energy of electrons into electromagnetic wave (microwave) energy within the cavity resonator 251 using the effect of an electron cyclotron resonance maser, creating an electron beam with a high rotation ratio. In the electron gun section 2a, which includes a cathode electrode 23 included in the electron emission section and an anode electrode 24 for applying an extraction electric field, the rotation ratio can be controlled by controlling the anode voltage while keeping the energy of the electron beam constant. The rotation ratio can also be changed by changing the magnetic field of the electron gun section, but in this case the position of the electron beam changes, so it is necessary to link it with the magnetic field of the cavity resonator 251 (hereinafter referred to as the cavity magnetic field) and align it to the optimal electron beam position within the cavity resonator.
 空胴共振器251の内部では、電子ビームの位置と印加磁場強度に応じ、固有の共振周波数を持つ共振モードの電磁波が励起される。この電磁波は、電子銃部2a側には電磁波のカットとなるため漏れてこず、下流側にのみ伝播する。この電磁波をモード変換器254によりガウス型電磁ビームEMbに変換し、反射鏡241及び242によって誘導され、出力窓20aを介して外部に準光学電磁ビームMWbとして放出する。空胴共振器251で電磁波生起に利用された後のエネルギーを失った電子ビームEbは、絶縁セラミック243で囲繞された磁場に沿って進みコレクタ部26に捕捉される。 Inside the cavity resonator 251, electromagnetic waves in a resonant mode with a specific resonant frequency are excited according to the position of the electron beam and the strength of the applied magnetic field. These electromagnetic waves do not leak to the electron gun section 2a because the electromagnetic waves are cut off, and only propagate downstream. These electromagnetic waves are converted into a Gaussian electromagnetic beam EMb by the mode converter 254, guided by the reflectors 241 and 242, and emitted to the outside as a quasi-optical electromagnetic beam MWb through the output window 20a. The electron beam Eb, which has lost its energy after being used to generate electromagnetic waves in the cavity resonator 251, travels along the magnetic field surrounded by the insulating ceramic 243 and is captured by the collector section 26.
 そして、このような構成のジャイロトロン2では、カソード電極23から発した電子ビームが、アノード電極24によって形成される電界と、ソレノイドコイル252によって作られる磁場とによって螺旋運動を行うとともに、さらにカソード電極23とボディ部25の間の電界により加速される。この加速された電子ビームのエネルギーは、ソレノイドコイル252で作られた磁場によって回転エネルギーへと変換されていく。こうして得られた螺旋運動をする電子ビームはボディ部25の空胴共振器251内で相互作用を起こし電子ビームの持つエネルギーの一部が高周波エネルギーへと変換される。その相互作用を終えた電子ビームは、コレクタ部26で捕捉される。 In a gyrotron 2 configured as described above, the electron beam emitted from the cathode electrode 23 undergoes a spiral motion due to the electric field formed by the anode electrode 24 and the magnetic field created by the solenoid coil 252, and is further accelerated by the electric field between the cathode electrode 23 and the body section 25. The energy of this accelerated electron beam is converted into rotational energy by the magnetic field created by the solenoid coil 252. The resulting spirally moving electron beam interacts within the cavity resonator 251 of the body section 25, and part of the energy of the electron beam is converted into high frequency energy. After completing this interaction, the electron beam is captured by the collector section 26.
 なお、図1及び図2示すように、ジャイロトロン2にはヒータートランス22と、このヒータートランス22へ電力を供給するヒーター電源21とが設けられており、ヒーター電源21の出力はヒータートランス22を介してジャイロトロン2に給電される。 As shown in Figures 1 and 2, the gyrotron 2 is provided with a heater transformer 22 and a heater power supply 21 that supplies power to the heater transformer 22, and the output of the heater power supply 21 is supplied to the gyrotron 2 via the heater transformer 22.
(ジャイロトロン用電源装置の構成)
 以上説明した本実施形態に係るジャイロトロン2には、図1及び図2に示すようなジャイロトロン用電源制御装置1が備えられている。図1及び図2に本実施形態に係るジャイロトロン用電源装置の構成を示す。
(Configuration of power supply for gyrotron)
The gyrotron 2 according to the present embodiment described above is equipped with a gyrotron power supply control device 1 as shown in Figures 1 and 2. Figures 1 and 2 show the configuration of the gyrotron power supply device according to the present embodiment.
 上述したように、本実施形態に係るジャイロトロン2は、図1及び図2にも示すとおり、カソード電極23とアノード電極24を有する三極管式の電子銃部2aと、空胴共振器251を持つボディ部25と、コレクタ部26と、ヒータートランス22及びヒーター電源21とから概略構成される。 As described above, the gyrotron 2 according to this embodiment is roughly composed of a triode-type electron gun section 2a having a cathode electrode 23 and an anode electrode 24, a body section 25 having a cavity resonator 251, a collector section 26, a heater transformer 22, and a heater power supply 21, as shown in Figures 1 and 2.
 ジャイロトロン用電源制御装置1は、付加対象となるジャイロトロン2に接続される限流リアクトル31と、スイッチ回路32と、アノード側定電圧回路54と、ボディ側定電圧回路53と、制限抵抗52と、加速電源51とを備えるとともに、これらに対して電圧を印加するため電力供給電源部4を備えている。電力供給電源部4は、コンデンサ41と、充電用高圧電源43と、抵抗手段42とを含んでいる。 The gyrotron power supply control device 1 comprises a current limiting reactor 31 connected to the gyrotron 2 to be added, a switch circuit 32, an anode side constant voltage circuit 54, a body side constant voltage circuit 53, a limiting resistor 52, and an acceleration power supply 51, as well as a power supply unit 4 for applying voltage to these components. The power supply unit 4 includes a capacitor 41, a charging high voltage power supply 43, and a resistance means 42.
 限流リアクトル31は、インダクター、ダイオード及び抵抗等から構成され、出力電圧を平滑させる平準化回路であり、交流回路に直列で接続されローパスフィルタの役割を果たしたり、短絡故障時の短絡電流を制限したりする。スイッチ回路32は、限流リアクトル31と直列に配置されており、具体的には、半導体スイッチ323と、ツェナーダイオード322及び電圧測定器321とを含んでいる。 The current-limiting reactor 31 is a leveling circuit that is composed of an inductor, a diode, a resistor, etc., and smoothes the output voltage. It is connected in series to the AC circuit and acts as a low-pass filter, and limits the short-circuit current in the event of a short-circuit fault. The switch circuit 32 is arranged in series with the current-limiting reactor 31, and specifically includes a semiconductor switch 323, a Zener diode 322, and a voltage meter 321.
 電力供給電源部4は、ジャイロトロン2にビーム電流を発生させ、発振電力を供給する電源であり、コンデンサ41と充電用高圧電源43と抵抗手段42を備え、コンデンサ41は充電用高圧電源43によって所定の電圧まで充電される。 The power supply unit 4 is a power source that generates a beam current in the gyrotron 2 and supplies oscillation power, and is equipped with a capacitor 41, a high-voltage charging power supply 43, and a resistance means 42, and the capacitor 41 is charged to a predetermined voltage by the high-voltage charging power supply 43.
 アノード側定電圧回路54はカソード電極23及びアノード電極24間の電圧を一定に保持するための定電圧回路を含み、ボディ側定電圧回路53は電子銃部2a及びボディ部25間の電圧を一定に保持するための定電圧回路を含む。これらボディ側定電圧回路53及びアノード側定電圧回路54それぞれの定電圧回路は、例えば、バイポーラトランジスタやMOSFET等の制御素子の電圧降下により入力電圧を所定の出力電圧に調整するシリーズレギュレーターやシャントレギュレーターなどのリニアレギュレーター回路とすることができる。また、この定電圧回路としては、例えば、ツェナーダイオードとトランジスタから構成されるリニアレギュレーター回路など、出力電圧の帰還電圧に応じて抵抗値が調整される可変抵抗により、入力電圧を線形的に所定の出力電圧に調整する低損失定電圧制御回路を含む構成としてもよい。なお、このリニアレギュレーター回路は単数で用いてもよく、また、複数を配列したスタックとして用いることができ、例えば各200Vのリニアレギュレーター回路を50個用いることにより、50KVの定電圧回路を構成することができる。 The anode side constant voltage circuit 54 includes a constant voltage circuit for maintaining a constant voltage between the cathode electrode 23 and the anode electrode 24, and the body side constant voltage circuit 53 includes a constant voltage circuit for maintaining a constant voltage between the electron gun section 2a and the body section 25. The constant voltage circuits of the body side constant voltage circuit 53 and the anode side constant voltage circuit 54 can be linear regulator circuits such as series regulators and shunt regulators that adjust the input voltage to a predetermined output voltage by the voltage drop of a control element such as a bipolar transistor or MOSFET. In addition, the constant voltage circuit may be configured to include a low-loss constant voltage control circuit that linearly adjusts the input voltage to a predetermined output voltage by a variable resistor whose resistance value is adjusted according to the feedback voltage of the output voltage, such as a linear regulator circuit composed of a Zener diode and a transistor. The linear regulator circuit may be used singly or as a stack of multiple linear regulator circuits arranged in a row. For example, a 50KV constant voltage circuit can be configured by using 50 linear regulator circuits of 200V each.
 アノード側定電圧回路54の負端子はジャイロトロン2のカソード電極23に、ボディ側定電圧回路53の正端子はジャイロトロン2のボディ部25に接続されており、加速電源51はカソード電極23とボディ部25間に電圧を印加する。具体的にアノード側定電圧回路54は図2に示すように、接続点Ck~接続点Ca間の直流電圧を安定させるツェナーダイオード541(ここでは40KVに設定)と分圧用抵抗543と、電圧計542で構成されている。また、ボディ側定電圧回路53は、接続点Ca~接続点Cb間の直流電圧を安定させるツェナーダイオード531(ここでは20KVに設定)と抵抗533と、電圧計532で構成されている。 The negative terminal of the anode side constant voltage circuit 54 is connected to the cathode electrode 23 of the gyrotron 2, and the positive terminal of the body side constant voltage circuit 53 is connected to the body part 25 of the gyrotron 2, and the acceleration power supply 51 applies a voltage between the cathode electrode 23 and the body part 25. Specifically, as shown in FIG. 2, the anode side constant voltage circuit 54 is composed of a Zener diode 541 (set to 40 KV here) that stabilizes the DC voltage between connection point Ck and connection point Ca, a voltage dividing resistor 543, and a voltmeter 542. The body side constant voltage circuit 53 is composed of a Zener diode 531 (set to 20 KV here) that stabilizes the DC voltage between connection point Ca and connection point Cb, a resistor 533, and a voltmeter 532.
 加速電源51は、その正端子がジャイロトロン2のボディ部25側に、その負端子がジャイロトロン2のコレクタ部26に接続される電源装置であり、本実施形態では、30KVに設定されている。また、充電用高圧電源43は、その負端子がジャイロトロン2のカソード電極23側に、その正端子がジャイロトロン2のコレクタ部26に接続される。なお、接地47はコレクタ部26側で確保されている。 The acceleration power supply 51 is a power supply device with its positive terminal connected to the body part 25 side of the gyrotron 2 and its negative terminal connected to the collector part 26 of the gyrotron 2, and in this embodiment is set to 30 KV. The charging high voltage power supply 43 has its negative terminal connected to the cathode electrode 23 side of the gyrotron 2 and its positive terminal connected to the collector part 26 of the gyrotron 2. The ground 47 is secured on the collector part 26 side.
 加速電源51及び充電用高圧電源43はジャイロトロン発振のための電力供給を行うためのもので、加速電源51はボディ部25とコレクタ部26間を、電力供給電源部4はカソード電極23とコレクタ部26間を、それぞれバイアスする。また、接続点Ck~Cc間には、電圧測定器310が配置されているとともに、コレクタ負荷311及びビーム電力測定器312が配置されている。コレクタ負荷311は、本実施形態では2kΩであり、Vkcが70KVのとき、ビーム電流は35Aとなる。 The acceleration power supply 51 and charging high voltage power supply 43 are used to supply power for gyrotron oscillation, with the acceleration power supply 51 biasing between the body section 25 and the collector section 26, and the power supply section 4 biasing between the cathode electrode 23 and the collector section 26. A voltage meter 310 is disposed between connection points Ck and Cc, as well as a collector load 311 and a beam power meter 312. In this embodiment, the collector load 311 is 2 kΩ, and when Vkc is 70 KV, the beam current is 35 A.
 また、ボディ側定電圧回路53及びアノード側定電圧回路54が直列に接続され、ボディ側定電圧回路53とアノード側定電圧回路54の接続点Caがアノード電極24に接続される。これらボディ側定電圧回路53及びアノード側定電圧回路54は、電子ビームに初速を与えるための電界を形成させるものであり、カソード電極23と、アノード電極24との間にバイアスを与える。また、各接続点Ck~Ca間,Ca~Cb間及びCb~Cc間にはそれぞれ分圧用抵抗543,533,513が、ツエナー回路と並列に配置され、各接続点間に所定の電位差が形成され、アノード電極24やカソード電極23に印加される電圧が生成される。 The body side constant voltage circuit 53 and the anode side constant voltage circuit 54 are connected in series, and the connection point Ca between the body side constant voltage circuit 53 and the anode side constant voltage circuit 54 is connected to the anode electrode 24. The body side constant voltage circuit 53 and the anode side constant voltage circuit 54 form an electric field to give the electron beam an initial velocity, and provide a bias between the cathode electrode 23 and the anode electrode 24. Voltage-dividing resistors 543, 533, and 513 are arranged in parallel with the Zener circuit between each connection point Ck to Ca, between Ca to Cb, and between Cb to Cc, respectively, and a predetermined potential difference is formed between each connection point, generating the voltage applied to the anode electrode 24 and the cathode electrode 23.
 加速電源51は、ボディ部25及びコレクタ部26間に電圧を印加するための電源装置であり、カソード電極23から放出された電子ビームを加速させて、安定な発振を行うための高安定電界をカソード電極23とボディ部25間に形成するための電源である。本実施形態では、加速電源51の出力電圧は+80KVでその安定度を±0.2%程度とし、電流は、わずかにカソード電極23からボディ部25へ流入する電子ビームが供給されればよいから100mA程度であり、加速電源51としては8kW程度の電源である。充電用高圧電源43とは、基本的にカソード電極23からの電子ビームをコレクタ部26で捕捉できる程度であればよい。 The acceleration power supply 51 is a power supply device for applying a voltage between the body portion 25 and the collector portion 26, and is a power supply for accelerating the electron beam emitted from the cathode electrode 23 and forming a highly stable electric field between the cathode electrode 23 and the body portion 25 for stable oscillation. In this embodiment, the output voltage of the acceleration power supply 51 is +80 KV with a stability of about ±0.2%, and the current is about 100 mA since only a small amount of the electron beam flowing from the cathode electrode 23 to the body portion 25 needs to be supplied, and the acceleration power supply 51 is a power supply of about 8 kW. The charging high-voltage power supply 43 basically needs to be strong enough to capture the electron beam from the cathode electrode 23 at the collector portion 26.
 なお、加速電源51の電圧を電力供給電源部4の電圧より大きく取ることによりボディ部25の電位をコレクタ部26の電位より大きくして、ボディ部25とコレクタ部26との間に減速電界を生じさせ、且つ電子ビームがボディ部25を通過してコレクタで捕捉できる電圧配位とすることで電子ビームを減速させ、これによりコレクタにおける発熱を低減させるている。 In addition, by making the voltage of the acceleration power supply 51 higher than the voltage of the power supply unit 4, the potential of the body unit 25 is made higher than the potential of the collector unit 26, generating a deceleration electric field between the body unit 25 and the collector unit 26, and by setting the voltage configuration so that the electron beam can pass through the body unit 25 and be captured by the collector, the electron beam is decelerated, thereby reducing heat generation in the collector.
 本実施形態の場合には、加速電源51は、出力電圧が+20KV、安定度が±5%程度、及び電流が15Aであり、また電力供給電源部4は、出力電圧が+40KV、安定度が±5%程度、電流が15Aである。これらの電力供給電源では上記のように±5%程度と、特に厳しい安定度を要求されるものではないので、一般的な直流用電子ビーム電源で実現可能なものである。 In this embodiment, the acceleration power supply 51 has an output voltage of +20 KV, a stability of about ±5%, and a current of 15 A, and the power supply unit 4 has an output voltage of +40 KV, a stability of about ±5%, and a current of 15 A. As these power supply sources do not require particularly strict stability of about ±5% as mentioned above, they can be realized with a general DC electron beam power supply.
 また、この加速電源51の後段側において、ボディ部25及びボディ側定電圧回路53との接続点Cbと、当該加速電源51との間に制限抵抗52が配置されている。この制限抵抗52は、ツエナー回路電流制限抵抗であり、各定電圧回路54,53と直列になるように配置されるとともに、ボディ側定電圧回路53と加速電源51の正端子との間に接続され、ボディ側定電圧回路53と制限抵抗52の接続点Cbはボディ部25に接続されている。この制限抵抗52は、ジャイロトロン2のボディ部25に生じる過電圧を防止・抑制する手段としても作用する。 Furthermore, at the rear of the acceleration power supply 51, a limiting resistor 52 is arranged between the acceleration power supply 51 and a connection point Cb between the body part 25 and the body side constant voltage circuit 53. This limiting resistor 52 is a Zener circuit current limiting resistor, and is arranged in series with each constant voltage circuit 54, 53, and is connected between the body side constant voltage circuit 53 and the positive terminal of the acceleration power supply 51, and the connection point Cb between the body side constant voltage circuit 53 and the limiting resistor 52 is connected to the body part 25. This limiting resistor 52 also acts as a means for preventing and suppressing overvoltage generated in the body part 25 of the gyrotron 2.
 そして、アノード側定電圧回路54のツェナーダイオードに係る電位差は、ボディ側定電圧回路53のツェナーダイオードに係る電位差よりも大きく設定されている。また、加速電源51によって印加される電位差は、アノード側定電圧回路54のツェナーダイオードに係る電位差よりも小さく、且つボディ側定電圧回路53のツェナーダイオードに係る電位差よりも大きく設定されている。 The potential difference across the Zener diode of the anode side constant voltage circuit 54 is set to be larger than the potential difference across the Zener diode of the body side constant voltage circuit 53. The potential difference applied by the acceleration power supply 51 is set to be smaller than the potential difference across the Zener diode of the anode side constant voltage circuit 54, and larger than the potential difference across the Zener diode of the body side constant voltage circuit 53.
(ジャイロトロン用電源装置の動作)
 以上のように構成されたジャイロトロン用電源装置の動作について以下に説明する。図4に本実施形態に係るジャイロトロン用電源装置による電源制御を示す。
(Operation of the power supply for gyrotron)
The operation of the power supply device for a gyrotron configured as above will be described below. Fig. 4 shows power supply control by the power supply device for a gyrotron according to this embodiment.
 本実施形態では、電力供給電源部4を立ち上げてから、加速電源51を立ち上げる運転方式を採る。この運転方式では、図4に示すように、電力供給電源部4を立ち上げた当初は、加速電源51の出力電圧は立ち上げっておらず、開始後1.6ms迄は、アノード・ボディ間の電圧(Vab)は20KVで安定し、アノード・カソード間の電圧(Vak)は40KVで安定している。このとき、コレクタ・ボディ間の電圧(Vbc)、及びコレクタ・カソード間の電圧(Vkc)は立ち上げの途中であり上昇する過程にあるが、発振に影響はない。このように、アノード・カソード間及びアノード・ボディ間の電圧のサグが抑えられ、1.6ミリ秒の間、安定な電圧供給が得られる。 In this embodiment, an operating method is adopted in which the power supply unit 4 is started up before the acceleration power supply 51 is started up. In this operating method, as shown in FIG. 4, when the power supply unit 4 is started up, the output voltage of the acceleration power supply 51 is not started up, and for 1.6 ms after the start, the anode-body voltage (Vab) is stable at 20 KV, and the anode-cathode voltage (Vak) is stable at 40 KV. At this time, the collector-body voltage (Vbc) and the collector-cathode voltage (Vkc) are in the process of starting up and rising, but this does not affect the oscillation. In this way, sag in the anode-cathode and anode-body voltages is suppressed, and a stable voltage supply is obtained for 1.6 ms.
(作用・効果)
 以上説明した本実施形態に係るジャイロトロン用電源装置及び制御方法によれば、ジャイロトロンの電源装置において、アノード電圧、ボディ電圧を供給する回路に簡単な定電圧回路を用いることから、極めて安価に安定なジャイロトロン電源を構成することができる。
(Action and Effects)
According to the gyrotron power supply device and control method of the present embodiment described above, a simple constant voltage circuit is used in the circuit that supplies the anode voltage and body voltage in the gyrotron power supply device, so that an extremely inexpensive and stable gyrotron power supply can be constructed.
 具体的には、ボディ側定電圧回路53及びアノード側定電圧回路54として、シリーズレギュレーターやシャントレギュレーターなどのリニアレギュレーター回路や、リニアレギュレーター回路などの低損失定電圧制御回路を用いることにより、アノード・カソード間及びアノード・ボディ間の電圧のサグが抑えられ、図4に示したとおり、1.6ミリ秒の間、安定な電圧供給と、これによる安定なジャイロトロン動作が期待できる。このため、本実施形態によれば、複雑で高精度な高価な制御機構を設けることなく、自動的に必要な電圧印加が可能となり、電圧サグによる発振停止などの不都合を抑えることができ、コンデンサバンク容量に応じたパルス幅での運転が可能となる。 Specifically, by using a linear regulator circuit such as a series regulator or shunt regulator, or a low-loss constant-voltage control circuit such as a linear regulator circuit as the body-side constant-voltage circuit 53 and the anode-side constant-voltage circuit 54, voltage sag between the anode and cathode and between the anode and body is suppressed, and as shown in FIG. 4, a stable voltage supply can be expected for 1.6 milliseconds, resulting in stable gyrotron operation. Therefore, according to this embodiment, the required voltage can be applied automatically without providing a complex, highly accurate, and expensive control mechanism, and inconveniences such as oscillation halt due to voltage sag can be suppressed, and operation with a pulse width according to the capacitor bank capacity becomes possible.
 この結果、本発明によれば、ジャイロトロンにおいて、設備の製造コスト及び運用コストを抑えつつ、電子ビームを加速する電源と、発振に必要な電源とに印加する電圧をより安定させることができ、ジャイロトロンの発振効率の向上を図ることができる。 As a result, according to the present invention, in a gyrotron, it is possible to more stabilize the voltage applied to the power supply that accelerates the electron beam and the power supply required for oscillation while reducing the manufacturing and operating costs of the equipment, thereby improving the oscillation efficiency of the gyrotron.
(変形例)
 以上、本発明の実施形態を説明したが、上記実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
(Modification)
Although the embodiments of the present invention have been described above, the above embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, substitutions, and modifications can be made without departing from the spirit of the invention. These embodiments and their modifications are included in the scope and spirit of the invention, and are included in the scope of the invention and its equivalents described in the claims.
 例えば、上述した実施形態では、電子銃部2aが、アノード電極24を有する三極管式の場合を例に説明したが、本発明はこれに限定されるものではなく、図5及び図6に示すような、アノード電極24が省略された二極管式の電子銃部を備えたジャイロトロンについても適用することができる。このような二極管式の電子銃部では、上述したようなアノード電極24を具備しないため、このアノード電極24に関わる回路及び構成部品が省略される。 For example, in the above embodiment, the electron gun section 2a is a triode type having an anode electrode 24, but the present invention is not limited to this and can also be applied to a gyrotron equipped with a diode type electron gun section in which the anode electrode 24 is omitted, as shown in Figures 5 and 6. In such a diode type electron gun section, since it does not have the anode electrode 24 as described above, the circuitry and components related to this anode electrode 24 are omitted.
 図1若しくは図2で示したジャイロトロン用電源制御装置1において、定電圧回路53のみが設けられ、定電圧回路54が省略されるとともに接点Caからアノード電極24に接続されていた接続線も省略される。 In the gyrotron power supply control device 1 shown in Figure 1 or Figure 2, only the constant voltage circuit 53 is provided, the constant voltage circuit 54 is omitted, and the connection line connected from the contact Ca to the anode electrode 24 is also omitted.
 この変更例係るジャイロトロン用電源制御装置1は、アノード側定電圧回路54が省略されているが、他の回路構成は上述した実施形態と同様であり、付加対象となるジャイロトロン2に接続される限流リアクトル31と、スイッチ回路32と、ボディ側定電圧回路53と制限抵抗52と、加速電源51とを備えるとともに、これらに対して電圧を印加するため電力供給電源部4を備えている。 The gyrotron power supply control device 1 in this modified example omits the anode side constant voltage circuit 54, but the other circuit configuration is the same as in the embodiment described above, and includes a current limiting reactor 31 connected to the gyrotron 2 to be added, a switch circuit 32, a body side constant voltage circuit 53, a limiting resistor 52, and an acceleration power supply 51, as well as a power supply unit 4 for applying voltage to these.
 ボディ側定電圧回路53は電子銃部2aのカソード電極23及びボディ部25間の電圧を一定に保持するための定電圧回路を含む。このボディ側定電圧回路53の定電圧回路は、例えば、バイポーラトランジスタやMOSFET等の制御素子の電圧降下により入力電圧を所定の出力電圧に調整するシリーズレギュレーターやシャントレギュレーターなどのリニアレギュレーター回路とすることができる。また、この定電圧回路としては、例えば、ツェナーダイオードとトランジスタから構成されるリニアレギュレーター回路など、出力電圧の帰還電圧に応じて抵抗値が調整される可変抵抗により、入力電圧を線形的に所定の出力電圧に調整する低損失定電圧制御回路を含む構成としてもよい。なお、このリニアレギュレーター回路は単数で用いてもよく、また、複数を配列したスタックとして用いることができる。 The body-side constant voltage circuit 53 includes a constant voltage circuit for maintaining a constant voltage between the cathode electrode 23 and the body part 25 of the electron gun part 2a. The constant voltage circuit of this body-side constant voltage circuit 53 can be, for example, a linear regulator circuit such as a series regulator or a shunt regulator that adjusts the input voltage to a predetermined output voltage by the voltage drop of a control element such as a bipolar transistor or a MOSFET. In addition, this constant voltage circuit can also be configured to include a low-loss constant voltage control circuit that linearly adjusts the input voltage to a predetermined output voltage by a variable resistor whose resistance value is adjusted according to the feedback voltage of the output voltage, such as a linear regulator circuit composed of a Zener diode and a transistor. Note that this linear regulator circuit may be used singly or multiple linear regulator circuits may be arranged to form a stack.
 本変形例では、アノード側定電圧回路54が省略されており、ボディ側定電圧回路53の正端子はジャイロトロン2のボディ部25に接続され、加速電源51はコレクタ部26とボディ部25間に電圧を印加する。ボディ側定電圧回路53は、接続点Ck~接続点Cb間の直流電圧を安定させるツェナーダイオード531と抵抗533と、電圧計532で構成されている。 In this modified example, the anode side constant voltage circuit 54 is omitted, the positive terminal of the body side constant voltage circuit 53 is connected to the body part 25 of the gyrotron 2, and the acceleration power supply 51 applies a voltage between the collector part 26 and the body part 25. The body side constant voltage circuit 53 is composed of a Zener diode 531 and resistor 533 that stabilize the DC voltage between connection point Ck and connection point Cb, and a voltmeter 532.
 この場合、ボディ側定電圧回路53は、電子ビームに初速を与えるための電界を形成させるものであり、カソード電極23と、ボディ部25との間にバイアスを与える。また、各接続点Ck~Cb間及びCb~Cc間にはそれぞれ分圧用抵抗533,513が、ツエナー回路と並列に配置され、接続点間に所定の電位差が形成される。 In this case, the body-side constant voltage circuit 53 forms an electric field to give the electron beam an initial velocity, and applies a bias between the cathode electrode 23 and the body portion 25. In addition, voltage-dividing resistors 533, 513 are arranged in parallel with the Zener circuit between each of the connection points Ck-Cb and Cb-Cc, respectively, and a predetermined potential difference is formed between the connection points.
 このような本変更例によれば、アノード電極が省略された2極管式の電子銃部を備えたジャイロトロンにおいても、設備の製造コスト及び運用コストを抑えつつ、電子ビームを加速する電源と、発振に必要な電源とに印加する電圧をより安定させることができ、ジャイロトロンの発振効率の向上を図ることができる。 According to this modified example, even in a gyrotron equipped with a diode-type electron gun in which the anode electrode is omitted, the manufacturing and operating costs of the equipment can be reduced while the voltage applied to the power supply that accelerates the electron beam and the power supply required for oscillation can be more stabilized, thereby improving the oscillation efficiency of the gyrotron.
 Ca,Cb,Cc,Ck…接続点
 EMb…ガウス型電磁ビーム
 Eb…電子ビーム
 MWb…準光学電磁ビーム
 1…ジャイロトロン用電源制御装置
 2…ジャイロトロン
 2a…電子銃部
 2b…エミッションベルト
 4…電力供給電源部
 20a…出力窓
 21…ヒーター電源
 22…ヒータートランス
 23…カソード電極
 24…アノード電極
 25…ボディ部
 26…コレクタ部
 31…限流リアクトル
 32…スイッチ回路
 41…コンデンサ
 42…抵抗手段
 43…充電用高圧電源
 47…接地
 51…加速電源
 52…制限抵抗
 53…ボディ側定電圧回路
 54…アノード側定電圧回路
 241,242…反射鏡
 243…絶縁セラミック
 251…空胴共振器
 252…ソレノイドコイル
 254…モード変換器
 255…ボディ電極
 310…電圧測定器
 311…コレクタ負荷
 312…ビーム電力測定器
 321…電圧測定器
 322,531,541…ツェナーダイオード
 323…半導体スイッチ
 532,542…電圧計
 543,533,513…分圧用抵抗
Ca, Cb, Cc, Ck...Connection points EMb...Gaussian electromagnetic beam Eb...Electron beam MWb...Quasi-optical electromagnetic beam 1...Power supply control device for gyrotron 2...Gyrotron 2a...Electron gun section 2b...Emission belt 4...Power supply section 20a...Output window 21...Heater power supply 22...Heater transformer 23...Cathode electrode 24...Anode electrode 25...Body section 26...Collector section 31...Current limiting reactor 32...Switch circuit 41...Capacitor 42...Resistance means 43...Charging high voltage power supply 47...Ground 51...Acceleration power supply 52...Limiting resistor 53...Body side constant voltage circuit 54...Anode side constant voltage circuit 241, 242...Reflector 243...Insulating ceramic 251...Cavity resonator 252...Solenoid coil 254...Mode converter 255...Body electrode 310...Voltage measuring device 311: Collector load 312: Beam power meter 321: Voltage meter 322, 531, 541: Zener diode 323: Semiconductor switch 532, 542: Voltmeter 543, 533, 513: Voltage dividing resistor

Claims (8)

  1.  電子ビームを発生せる電子銃部を構成するカソード電極と、
     前記電子銃部より発生した電子ビームとの相互作用により大電力高周波を発振する空胴共振器を含むボディ部と、
     前記相互作用を行った後の電子ビームを捕捉するコレクタ部と、
     前記電子銃部及び前記ボディ部間の電圧を一定に保持するための定電圧回路を含むボディ側定電圧回路と、
     前記ボディ部及び前記コレクタ部間に電圧を印加するための電源部と
     前記ボディ部と前記ボディ側定電圧回路との接点と、前記電源部との間に配置される抵抗手段と
    を備えることを特徴とするジャイロトロン用電源制御装置。
    a cathode electrode constituting an electron gun unit for generating an electron beam;
    a body section including a cavity resonator that oscillates high-power radio frequency waves by interaction with the electron beam generated by the electron gun section;
    a collector section for capturing the electron beam after the interaction;
    a body side constant voltage circuit including a constant voltage circuit for maintaining a constant voltage between the electron gun section and the body section;
    A power supply control device for a gyrotron, comprising: a power supply unit for applying a voltage between the body portion and the collector portion; and a resistance means disposed between a contact between the body portion and the body side constant voltage circuit and the power supply unit.
  2.  電子ビームを発生せる電子銃部を構成するカソード電極及びアノード電極と、
     前記カソード電極より発生した電子ビームとの相互作用により大電力高周波を発振する空胴共振器を含むボディ部と、
     前記相互作用を行った後の電子ビームを捕捉するコレクタ部と、
     前記カソード電極及び前記アノード電極間の電圧を一定に保持するための定電圧回路を含むアノード側定電圧回路と、
     前記電子銃部及び前記ボディ部間の電圧を一定に保持するための定電圧回路を含むボディ側定電圧回路と、
     前記ボディ部及び前記コレクタ部間に電圧を印加するための電源部と前記ボディ部と前記ボディ側定電圧回路との接点と、前記電源部との間に配置される抵抗手段と
    を備えることを特徴とするジャイロトロン用電源制御装置。
    a cathode electrode and an anode electrode constituting an electron gun unit for generating an electron beam;
    a body portion including a cavity resonator that oscillates high-power radio frequency waves by interaction with the electron beam generated by the cathode electrode;
    a collector section for capturing the electron beam after the interaction;
    an anode side constant voltage circuit including a constant voltage circuit for maintaining a constant voltage between the cathode electrode and the anode electrode;
    a body side constant voltage circuit including a constant voltage circuit for maintaining a constant voltage between the electron gun section and the body section;
    A power supply control device for a gyrotron, comprising: a power supply unit for applying a voltage between the body portion and the collector portion, a contact between the body portion and the body side constant voltage circuit, and a resistance means arranged between the power supply unit.
  3.  前記定電圧回路は、制御素子の電圧降下により、入力電圧を所定の出力電圧に調整するリニアレギュレーター回路を含むことを特徴とする請求項1又は2に記載のジャイロトロン用電源制御装置。 The power supply control device for a gyrotron according to claim 1 or 2, characterized in that the constant voltage circuit includes a linear regulator circuit that adjusts the input voltage to a predetermined output voltage by voltage drop of a control element.
  4.  前記定電圧回路は、出力電圧の帰還電圧に応じて抵抗値が調整される可変抵抗により、入力電圧を所定の出力電圧に調整する低損失定電圧制御回路を含むことを特徴とする請求項1又は2に記載のジャイロトロン用電源制御装置。 The power supply control device for a gyrotron according to claim 1 or 2, characterized in that the constant voltage circuit includes a low-loss constant voltage control circuit that adjusts the input voltage to a predetermined output voltage using a variable resistor whose resistance value is adjusted according to the feedback voltage of the output voltage.
  5.  電子ビームを発生せる電子銃部を構成するカソード電極と、
     前記電子銃部より発生した電子ビームとの相互作用により大電力高周波を発振する空胴共振器を含むボディ部と、
     前記相互作用を行った後の電子ビームを捕捉するコレクタ部と、
    を備えたジャイロトロンにおいて、上記各部に係る電圧を制御するジャイロトロン用電源制御方法であって、
     前記電子銃部及び前記ボディ部間に定電圧回路を含むボディ側定電圧回路を接続するとともに、前記ボディ部と前記ボディ側定電圧回路との接点と、前記電源部との間に抵抗手段が配置された状態において、電源部が前記ボディ部及び前記コレクタ部間に電圧を印加するステップと、
     前記ボディ側定電圧回路に含まれる定電圧回路が、前記電子銃部及び前記ボディ部間の電圧を一定に保持するステップと
    を含むことを特徴とするジャイロトロン用電源制御方法。
    a cathode electrode constituting an electron gun unit for generating an electron beam;
    a body section including a cavity resonator that oscillates high-power radio frequency waves by interaction with the electron beam generated by the electron gun section;
    a collector section for capturing the electron beam after the interaction;
    A power supply control method for a gyrotron that controls voltages related to each of the above components in a gyrotron comprising:
    a body side constant voltage circuit including a constant voltage circuit is connected between the electron gun section and the body section, and a resistance means is disposed between the power supply section and a contact point between the body section and the body side constant voltage circuit, the power supply section applying a voltage between the body section and the collector section;
    and a step of causing a constant voltage circuit included in the body side constant voltage circuit to maintain a voltage between the electron gun section and the body section constant.
  6.  電子ビームを発生せる電子銃部を構成するカソード電極及びアノード電極と、
     前記カソード電極より発生した電子ビームとの相互作用により大電力高周波を発振する空胴共振器を含むボディ部と、
     前記相互作用を行った後の電子ビームを捕捉するコレクタ部と、
    を備えたジャイロトロンにおいて、上記各部に係る電圧を制御するジャイロトロン用電源制御方法であって、
     前記ボディ部と前記ボディ側定電圧回路との接点と、前記電源部との間に抵抗手段を配置された状態において、電源部が前記ボディ部及び前記コレクタ部間に電圧を印加するステップと、
     アノード側定電圧回路に含まれる定電圧回路が、前記カソード電極及び前記アノード電極間の電圧を一定に保持するとともに、前記ボディ側定電圧回路に含まれる定電圧回路が、前記電子銃部及び前記ボディ部間の電圧を一定に保持するステップと
    を含むことを特徴とするジャイロトロン用電源制御方法。
    a cathode electrode and an anode electrode constituting an electron gun unit for generating an electron beam;
    a body portion including a cavity resonator that oscillates high-power radio frequency waves by interaction with the electron beam generated by the cathode electrode;
    a collector section for capturing the electron beam after the interaction;
    A power supply control method for a gyrotron that controls voltages related to each of the above components in a gyrotron comprising:
    a power supply unit applying a voltage between the body unit and the collector unit in a state in which a resistance means is disposed between the power supply unit and a contact point between the body unit and the body side constant voltage circuit;
    a constant voltage circuit included in an anode side constant voltage circuit maintains the voltage between the cathode electrode and the anode electrode constant, and a constant voltage circuit included in the body side constant voltage circuit maintains the voltage between the electron gun section and the body section constant.
  7.  前記定電圧回路は、制御素子の電圧降下により、入力電圧を所定の出力電圧に調整するリニアレギュレーター回路を含むことを特徴とする請求項5又は6に記載のジャイロトロン用電源制御方法。 The power supply control method for a gyrotron according to claim 5 or 6, characterized in that the constant voltage circuit includes a linear regulator circuit that adjusts the input voltage to a predetermined output voltage by voltage drop of a control element.
  8.  前記定電圧回路は、出力電圧の帰還電圧に応じて抵抗値が調整される可変抵抗により、入力電圧を所定の出力電圧に調整する低損失定電圧制御回路を含むことを特徴とする請求項7に記載のジャイロトロン用電源制御方法。 The power supply control method for a gyrotron according to claim 7, characterized in that the constant voltage circuit includes a low-loss constant voltage control circuit that adjusts the input voltage to a predetermined output voltage using a variable resistor whose resistance value is adjusted according to the feedback voltage of the output voltage.
PCT/JP2023/034907 2022-09-30 2023-09-26 Gyrotron power supply device and power supply control method WO2024071104A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022158057A JP2024051742A (en) 2022-09-30 2022-09-30 Power supply device for gyrotron and power supply control method
JP2022-158057 2022-09-30

Publications (1)

Publication Number Publication Date
WO2024071104A1 true WO2024071104A1 (en) 2024-04-04

Family

ID=90477993

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/034907 WO2024071104A1 (en) 2022-09-30 2023-09-26 Gyrotron power supply device and power supply control method

Country Status (2)

Country Link
JP (1) JP2024051742A (en)
WO (1) WO2024071104A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0676748A (en) * 1992-08-27 1994-03-18 Japan Atom Energy Res Inst Power source device for gyrotron
JPH1167112A (en) * 1997-08-12 1999-03-09 Toshiba Corp Gyrotron control device
JPH11162366A (en) * 1997-11-26 1999-06-18 Toshiba Corp Gyrotron power source device
JP2003317639A (en) * 2002-04-26 2003-11-07 Japan Atom Energy Res Inst Power source for gyrotron
US20140097747A1 (en) * 2012-10-09 2014-04-10 Pl Technologies Ag Stabilized high-voltage power supply

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0676748A (en) * 1992-08-27 1994-03-18 Japan Atom Energy Res Inst Power source device for gyrotron
JPH1167112A (en) * 1997-08-12 1999-03-09 Toshiba Corp Gyrotron control device
JPH11162366A (en) * 1997-11-26 1999-06-18 Toshiba Corp Gyrotron power source device
JP2003317639A (en) * 2002-04-26 2003-11-07 Japan Atom Energy Res Inst Power source for gyrotron
US20140097747A1 (en) * 2012-10-09 2014-04-10 Pl Technologies Ag Stabilized high-voltage power supply

Also Published As

Publication number Publication date
JP2024051742A (en) 2024-04-11

Similar Documents

Publication Publication Date Title
Mesyats et al. Repetitively pulsed high-current accelerators with transformer charging of forming lines
CN113922475B (en) Microsecond-level microwave pulse driving power supply and working method thereof
WO2024071104A1 (en) Gyrotron power supply device and power supply control method
JP5835822B1 (en) High frequency circuit system
Ioannidis et al. First CW experiments with the EU ITER 1 MW, 170 GHz industrial prototype gyrotron
WO2024071105A1 (en) Power supply device for gyrotron and power control method
Shintake et al. Development of C-band 50 MW pulse klystron for e/sup+/e/sup-/linear collider
CN117082663B (en) Control device and method for keeping high voltage constant of magnetron microwave generation source
US4140942A (en) Radio-frequency electron accelerator
EP3364440A1 (en) Iot based power system
JP3276994B2 (en) Power supply for gyrotron
Jongewaard et al. The next linear collider klystron development program
JP3622423B2 (en) Gyrotron device
JP3918996B2 (en) Power supply for gyrotron
JP3067723B2 (en) Microwave energy generator
KR101531649B1 (en) A power apparatus for a gyrotron and a power supply method using this
JP6171126B2 (en) High frequency charged particle accelerator
Burov et al. Space-charge compensation in high-intensity proton rings
KR20160043821A (en) Variable capacity magnetron
Raghunathan et al. The design of space-charge limited magnetron injection guns with control electrodes for gyroklystron applications
KR20150021204A (en) Power supply unit for magnetron
Frank et al. Critical assessment of multistage pseudospark switches
JP2000217372A (en) Pulse power supply for klystron
Reiser Physics of high brightness sources
JPH10269957A (en) Gyrotron device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23872327

Country of ref document: EP

Kind code of ref document: A1