WO2024071066A1 - Metal-clad laminated plate - Google Patents

Metal-clad laminated plate Download PDF

Info

Publication number
WO2024071066A1
WO2024071066A1 PCT/JP2023/034815 JP2023034815W WO2024071066A1 WO 2024071066 A1 WO2024071066 A1 WO 2024071066A1 JP 2023034815 W JP2023034815 W JP 2023034815W WO 2024071066 A1 WO2024071066 A1 WO 2024071066A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
bis
layer
less
insulating resin
Prior art date
Application number
PCT/JP2023/034815
Other languages
French (fr)
Japanese (ja)
Inventor
宏遠 王
知弥 池田
Original Assignee
日鉄ケミカル&マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日鉄ケミカル&マテリアル株式会社 filed Critical 日鉄ケミカル&マテリアル株式会社
Publication of WO2024071066A1 publication Critical patent/WO2024071066A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate

Definitions

  • the present invention relates to a metal-clad laminate formed by laminating an insulating resin layer and a metal layer.
  • FPCs flexible printed circuits
  • FPCs especially transparent FPCs
  • transparent LED vision displays including large light-emitting boards and LED (Light Emitting Diode) displays
  • metal-clad laminates suitable for transparent FPCs have been proposed, but in order to ensure the visibility and transparency of the insulating resin layer used (the insulating resin layer at the location where the metal layer is etched), a metal layer that was present on that surface is preferably one that is relatively less roughened (for example, Patent Document 1). This is because, when the metal layer is etched, the surface profile of the metal layer, such as the surface roughness, is carried over to the resin layer.
  • a copper foil having a fine uneven structure formed by needle-like or plate-like convex portions with a maximum length of 500 nm or less and made of a copper composite compound containing cuprous oxide and cupric oxide has been disclosed as a copper foil used in forming extremely fine copper wiring of 10 ⁇ m or less as a fine wiring type transparent electrode (Patent Document 5).
  • Patent Document 5 the ranges of the reflectance of the copper foil, the adhesion to the resin layer, and the haze (turbidity) of the resin layer after film formation are not specified, and such viewpoints were not taken into consideration.
  • the inventors of the present application therefore further investigated the resin films and metal-clad laminates that had been previously investigated from the above perspective, and as a result, they discovered a metal-clad laminate that is suitable as a substrate for various new applications to be processed into fine metal layers (wiring layers) by using an insulating resin layer in the metal-clad laminate that has low haze (turbidity), excellent visibility and light transmittance, and excellent light resistance, and by using a metal layer that has low reflectance measured through the insulating resin layer, they completed the present invention.
  • the object of the present invention is therefore to provide a metal-clad laminate that has low haze (turbidity), excellent visibility and light transmittance, and excellent light resistance, and is suitable as a substrate for a variety of new applications when processed into a fine metal layer (wiring layer).
  • the present invention it is possible to obtain a metal-clad laminate having a low haze of the insulating resin layer, excellent visibility and light transmittance, and excellent light resistance.
  • the metal-clad laminate of the present invention is processed into a fine metal layer (wiring layer) and is suitable for applications requiring high transparency, such as transparent LED vision, head-mounted displays, and substrate applications for transparent antennas.
  • the metal-clad laminate of the present invention comprises an insulating resin layer and a metal layer laminated on at least one side of the insulating resin layer, and may have the metal layer on one side of the insulating resin layer or on both sides of the insulating resin layer.
  • the reflectance of reflected light at 580 nm when the surface of the metal layer in contact with the insulating resin layer of the metal-clad laminate is measured through the insulating resin layer (through the insulating resin layer) is 50% or less. Preferably, it is 45% or less, more preferably 40% or less, and even more preferably 30% or less. On the other hand, there is no particular limit to the lower limit, since it is preferable that there is no reflection.
  • the reason for measuring at a wavelength of 580 nm is that this wavelength is in the yellow light region of the visible light wavelength, making it easy to see both the insulating resin layer and the copper foil as the metal layer, and is a wavelength that makes it easy to see the differences between samples, especially when viewing the copper foil through the insulating resin layer.
  • the reflectance is preferably measured by the method described in the examples.
  • the mirror side of the metal layer of the metal-clad laminate (one side) is attached to a glass plate
  • light (C light source) is irradiated from the insulating resin layer side, and the reflected light reflected from the metal layer surface through the insulating resin layer is measured at a viewing angle of 2° to measure the reflectance at 580 nm.
  • the reflected light measured at this time is not limited to only the reflected light from the metal layer surface, but may also include light originating from the insulating resin layer.
  • an important feature of the metal-clad laminate of the present invention is that it takes into consideration the reflectance of reflected light measured when the metal layer is viewed through the insulating resin layer using light of 580 nm, which is in the visible light wavelength range representing yellow light. If the reflectance is within the above range, the presence of the metal layer is not noticeable when observed through the insulating resin layer, making it particularly preferable for FPC applications that require high transparency and visibility (such as transparent LED vision, which will be described later).
  • the L * of the L * a * b * color system of the reflected light when measured through the insulating resin layer (through the insulating resin layer) as described above is preferably 65 or less, and a * is preferably 15 or less.
  • the reflected light measured at this time is not limited to only the reflected light from the metal layer surface as described above, and does not exclude the inclusion of light caused by the insulating resin layer.
  • the L * is relatively low and blackened to suppress gloss, and it is more preferable that the L * measured by the above method is 45 or less, and even more preferable that it is 40 or less.
  • the lower limit there is no particular restriction on the lower limit, but from the viewpoint of ease of adjusting the balance between the color tone of the metal layer and the transparency of the film, it is preferably 10 or more, more preferably 20 or more, and even more preferably 30 or more.
  • a * is a chromaticity in which +a * represents the red direction and -a * represents the green direction.
  • copper copper foil
  • the reflected light of the copper surface often has a relatively large a * and a reddish color tone.
  • reddish colors tend to be easily noticeable to the human eye, in consideration of these, in the present invention, it is preferable that the value of a * of the reflected light of the metal layer surface in the above-mentioned measurement method is small, the redness is suppressed, and the presence of the metal layer is not noticeable, and a * is preferably 15 or less.
  • a * is 10 or less, and even more preferably 5 or less.
  • the greenish color tone becomes stronger as the negative value of a * increases, it is preferably -10 or more, more preferably -5 or more, and even more preferably -2 or more.
  • the numerical value is small, and the upper limit is preferably 15 or less, more preferably 12 or less, and even more preferably 10 or less.
  • the lower limit is preferably ⁇ 15 or more, more preferably ⁇ 5 or more, and even more preferably 0 or more.
  • the L * a * b * color system is measured in accordance with JIS Z 8781-4-2013.
  • the L * , a * , and b * values measured at this time are values measured at a viewing angle of 2° or 10° using a D65 light source (JIS Z8720 daylight standard illuminant (light for color measurement)) or a C light source (JIS Z8720 daylight auxiliary illuminant) used when displaying the color of an object illuminated by daylight.
  • the metal layer mirror side of the metal-clad laminate (one side) is attached to a glass plate, and then light is irradiated from the insulating resin layer side, and the reflected light reflected from the metal layer surface through the insulating resin layer is measured at a viewing angle of 2°.
  • the L * , a * , and b * values are measured.
  • the material of the metal layer is not particularly limited, but examples thereof include copper, stainless steel, iron, nickel, beryllium, aluminum, zinc, indium, silver, gold, tin, zirconium, tantalum, titanium, lead, magnesium, manganese, and alloys thereof.
  • the metal elements of copper, iron, or nickel, or indium tin oxide (ITO) are preferred, and copper (copper foil) is more preferred.
  • ITO indium tin oxide
  • copper foil both electrolytic copper foil and rolled copper foil can be used.
  • the metal layer is selected so as to exhibit the properties required for the intended use, such as the conductivity of the metal layer, the light transmittance of the polyimide layer, and the adhesion to the polyimide layer.
  • the shape of the metal layer it may be processed appropriately depending on the application. A roll-shaped one formed in a long shape is preferably used.
  • the thickness of the metal layer is not particularly limited, but is preferably 100 ⁇ m or less, more preferably in the range of 0.1 to 50 ⁇ m, and even more preferably in the range of 1 to 35 ⁇ m.
  • the surface roughness (maximum height roughness) Rz of the surface of the metal layer is preferably 300 nm or less, more preferably 200 nm or less, and even more preferably 180 nm or less.
  • the lower limit it is preferable that it is 20 nm or more, more preferably 40 nm or more, and even more preferably 50 nm or more, because it maintains adhesion with the insulating resin layer.
  • the surface roughness (arithmetic mean roughness) Ra is 0.005 ⁇ m or more and 0.1 ⁇ m or less, more preferably 0.005 ⁇ m or more and 0.07 ⁇ m or less, and even more preferably 0.005 ⁇ m or more and 0.03 ⁇ m or less.
  • the HAZE (turbidity) of the insulating resin layer after etching the metal layer can be relatively low, and various properties such as L * and a * of the metal layer described later can also be adjusted, which is preferable.
  • the L * , a * and b * of the metal layer measured through the insulating resin layer can be in a predetermined range.
  • the L * , a * and b * of the metal layer are measured by the same measurement method as for the metal-clad laminate (one side) after the metal layer is used alone and its mirror side is attached to a glass plate.
  • the L * of the metal layer is preferably 70 or less, more preferably 65 or less, and even more preferably 60 or less.
  • the lower limit of L * is preferably 10 or more, more preferably 40 or more, and even more preferably 45 or more.
  • a metal layer with a low L * is preferable because the brightness of the metal is reduced and it is not noticeable when viewed through the insulating resin layer.
  • a * of the metal layer is preferably 20 or less, more preferably 18 or less, and further preferably 15 or less.
  • the lower limit of a * is preferably 1 or more, more preferably 2 or more, and further preferably 3 or more.
  • the b * of the metal layer is preferably 20 or less, more preferably 15 or less, and even more preferably 12 or less, while the lower limit is preferably 2 or more, more preferably 5 or more, and even more preferably 7 or more.
  • the surface of the metal layer itself has low light reflectance, and the reflectance at a wavelength of 580 nm is preferably 50% or less. More preferably, it is 45% or less, even more preferably 40% or less, and even more preferably 35% or less. On the other hand, there is no particular restriction on the lower limit, since it is preferable that there is no reflection.
  • the reflectance is preferably measured by the method described in the examples.
  • the insulating resin layer of the present invention must have suitable light transmittance for FPC applications (such as transparent LED vision described below) that require high transparency and visibility, and must have a total light transmittance of 70% or more. It is preferable that the insulating resin layer is closer to transparency, and the total light transmittance is preferably 75% or more, and more preferably 80% or more.
  • the insulating resin layer (insulating resin layer after the metal layer is removed by etching) must have a haze of 50% or less, preferably 30% or less, more preferably 10% or less, even more preferably 5% or less, even more preferably 4% or less, and most preferably 3% or less. There is no lower limit since it is desirable to have less haze.
  • the thickness of the insulating resin layer is set to a range of 10 to 100 ⁇ m from the viewpoints of processability during processing, transportability, and supportability of the film itself. It can be appropriately selected depending on the application, but since the film needs to be transparent, it is preferably 10 to 70 ⁇ m, and more preferably 10 to 50 ⁇ m.
  • the insulating resin layer in the present invention preferably has good light resistance and undergoes little change (deterioration) in optical properties such as visibility and transparency, even in outdoor applications such as transparent LED vision described below, and indoor applications such as transparent antennas described below where the layer is exposed to sunlight. That is, the insulating resin layer used in the present invention has an absolute value of the difference in yellowness index (YI) before and after ultraviolet (UV) irradiation of 30 or less.
  • the absolute value of the difference in YI is preferably 10 or less, and more preferably 5 or less.
  • the UV irradiation conditions are preferably performed as described in the Examples.
  • the absolute value of the difference in haze between before and after UV irradiation of the insulating resin layer in the present invention is 10% or less. More preferably, it is 3% or less, and even more preferably, it is 2% or less.
  • the YI of the insulating resin layer is preferably 50 or less, more preferably 40 or less, and even more preferably 35 or less. For example, it is preferable to satisfy this when the insulating resin layer is 25 ⁇ m thick. By controlling it within this range, the insulating resin layer can be made almost colorless. On the other hand, if the YI is outside the above range, the yellow to yellowish brown coloring becomes stronger, and the visibility of the insulating resin layer tends to decrease.
  • the surface roughness Ra of the insulating resin layer is 0.1 ⁇ m or less, more preferably 0.07 ⁇ m or less, and even more preferably 0.03 ⁇ m or less.
  • the surface roughness Rz is 0.5 ⁇ m or less, more preferably 0.4 ⁇ m or less, and even more preferably 0.3 ⁇ m or less.
  • the insulating resin layer is not particularly limited and can be appropriately selected depending on the application.
  • Preferred examples include polyethylene terephthalate (PET) resin, polyethylene naphthalate (PEN) resin, liquid crystal polymer (LCP), perfluoroalkoxyalkane (PFA) resin, polymethyl methacrylate, cycloolefin polymer, polycarbonate, polyimide (PI) resin, etc.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • LCP liquid crystal polymer
  • PFA perfluoroalkoxyalkane
  • polymethyl methacrylate polymethyl methacrylate
  • cycloolefin polymer polycarbonate
  • polyimide (PI) resin etc.
  • polyimide resin is preferably used because it has excellent heat resistance, adhesion, flexibility, etc., and can also be made highly transparent depending on the composition, etc.
  • the insulating resin layer may contain an inorganic filler as necessary, provided that the object of the present invention is not hindered.
  • an inorganic filler include silicon dioxide, aluminum oxide, magnesium oxide, beryllium oxide, boron nitride, aluminum nitride, silicon nitride, aluminum fluoride, calcium fluoride, etc. These may be used alone or in combination of two or more.
  • the method of forming the polyimide layer as the insulating resin layer includes, for example, [1] a method of applying a polyamic acid solution to a supporting substrate (e.g., a metal layer) and drying it, and then imidizing it to produce a resin film (hereinafter, the casting method), [2] a method of applying a polyamic acid solution to a supporting substrate and drying it, and then peeling off the polyamic acid gel film from the supporting substrate and imidizing it to produce a resin film, etc.
  • a supporting substrate e.g., a metal layer
  • the embodiment of the manufacturing method includes, for example, [3] a method of applying a polyamic acid solution to a supporting substrate and drying it multiple times, and then imidizing it (hereinafter, the successive coating method), and [4] a method of applying a polyamic acid laminate structure to a supporting substrate by multilayer extrusion and drying it at the same time, and then imidizing it (hereinafter, the multilayer extrusion method).
  • the insulating resin layer metal-clad laminate
  • a casting method or a sequential coating method it is preferable to form the insulating resin layer (metal-clad laminate) by a casting method or a sequential coating method.
  • the method for applying the polyimide solution (or polyamic acid solution) to the substrate is not particularly limited, and it is possible to apply it using a coater such as a comma, die, knife, or lip coater.
  • a coater such as a comma, die, knife, or lip coater.
  • a method in which the polyimide solution (or polyamic acid solution) is applied to the substrate and then dried is repeated is preferred.
  • the polyimide layer may be formed from only a single layer, but a multi-layer structure is preferred in consideration of the adhesiveness between the polyimide layer and the metal layer, etc.
  • a two-layer structure may be used, with a polyimide layer (P1) laminated directly to the metal layer and a polyimide layer (P2) not laminated directly to the metal layer.
  • P1 polyimide layer
  • P2 polyimide layer
  • M1 and M2 represent metal layers, and M1 and M2 may be the same or different.
  • the polyimide layer (P1) laminated directly to the metal layer and the third polyimide layer (P3) may be of the same composition.
  • a two-layer structure may be formed in which a polyimide layer (P1) that is directly laminated on a metal layer from the cast surface side and a polyimide layer (P2) that is not directly laminated on a metal layer are laminated in this order, or a three-layer structure may be formed in which a polyimide layer (P1) that is directly laminated on a metal layer from the cast surface side and a polyimide layer (P2) that is not directly laminated on a metal layer and a third polyimide layer (P3) are laminated in this order.
  • the "cast surface” referred to here refers to the surface on the support side when forming a polyimide layer.
  • the support may be the metal layer of the metal-clad laminate of the present invention, glass, etc., or a support when forming a gel film, etc.
  • the surface opposite to the cast surface of the multiple polyimide layers is described as the "lamination surface", but unless otherwise specified, a metal layer may or may not be laminated on the laminate surface.
  • Configuration 1 M1/P1/P2 Configuration 2: M1/P1/P2/P1 (or P3) Configuration 3: M1/P1/P2/P1 (or P3)/M2 (or M1) Configuration 4: M1/P1/P2/P1 (or P3)/P2/P1 (or P3)/M2 (or M1)
  • the polyimide constituting the polyimide layer (P1) and the polyimide layer (P3) is preferably a thermoplastic polyimide, which improves the adhesiveness as an insulating resin layer and is suitable for use as an adhesive layer with a metal layer.
  • a preferred embodiment of the insulating resin layer has a thermoplastic polyimide layer (P1) and a non-thermoplastic polyimide layer (P2) made of a non-thermoplastic polyimide, and at least one of the non-thermoplastic polyimide layers (P2) has a polyimide layer (P1) that becomes a thermoplastic polyimide layer.
  • the polyimide layer (P1) is preferably provided on one or both sides of the non-thermoplastic polyimide layer.
  • the non-thermoplastic polyimide layer constitutes a polyimide layer with low thermal expansion
  • the thermoplastic polyimide layer constitutes a polyimide layer with high thermal expansion
  • the low thermal expansion polyimide layer refers to a polyimide layer with a coefficient of thermal expansion (CTE) preferably in the range of 1 ppm/K to 25 ppm/K, more preferably in the range of 3 ppm/K to 25 ppm/K.
  • CTE coefficient of thermal expansion
  • the high thermal expansion polyimide layer refers to a polyimide layer with a CTE preferably in the range of 35 ppm/K or more, more preferably in the range of 35 ppm/K to 80 ppm/K, and even more preferably in the range of 35 ppm/K to 70 ppm/K.
  • the polyimide layer can be made to have a desired CTE by appropriately changing the combination of raw materials used, the thickness, and the drying and curing conditions.
  • the coefficient of thermal expansion (CTE) of the entire insulating resin layer is preferably within the range of 10 to 30 ppm/K. By controlling it within this range, deformation such as curling can be suppressed and high dimensional stability can be ensured.
  • CTE is the average value of the coefficient of thermal expansion of the insulating resin layer in the MD and TD directions.
  • non-thermoplastic polyimide generally refers to polyimide that does not soften or exhibit adhesiveness even when heated, but in the present invention refers to polyimide having a storage modulus of 1.0 ⁇ 10 9 Pa or more at 30° C. and a storage modulus of 1.0 ⁇ 10 9 Pa or more at 350° C., as measured using a dynamic mechanical analyzer (DMA).
  • Thermoplastic polyimide also referred to as "TPI" generally refers to polyimide whose glass transition temperature (Tg) can be clearly confirmed, but in the present embodiment refers to polyimide having a storage modulus of 1.0 ⁇ 10 9 Pa or more at 30° C. and a storage modulus of less than 1.0 ⁇ 10 8 Pa at 300° C., as measured using a DMA.
  • the thickness of T1 is preferably in the range of 1 ⁇ m to 4 ⁇ m, and the thickness of T2 is preferably in the range of 4 ⁇ m to 30 ⁇ m. From another perspective, the thickness of T1 is preferably 20% or less of the thickness of the insulating resin layer.
  • “main” means that it has the largest thickness among the multiple polyimide layers that make up the insulating resin layer, and preferably has a thickness of 60% or more, more preferably 70% or more, and even more preferably 80% or more of the thickness of the insulating resin layer.
  • the main polyimide layer is preferably composed of a non-thermoplastic polyimide.
  • the insulating resin layer has a 1% weight loss temperature (Td1) of 400°C or higher in a thermal decomposition test, preferably 430°C or higher, and more preferably 450°C or higher. By controlling it within this range, it has sufficient heat resistance even when used as a major component of an FPC.
  • Td1 weight loss temperature
  • the insulating resin layer made of a polyimide layer preferably has a heat resistance (solder heat resistance) of 190°C or higher in a solder heat resistance test, and more preferably 200°C or higher.
  • the solder heat resistance is evaluated by the method described in the examples.
  • the insulating resin layer made of a polyimide layer preferably has a heat resistance of a glass transition temperature (Tg) of 210°C or higher. More preferably, it is 250°C or higher, and even more preferably, it is 300°C or higher.
  • Tg glass transition temperature
  • the insulating resin layer made of a polyimide layer has an in-plane retardation of 1 nm or more and 100 nm or less. More preferably, it is 1 nm or more and less than 20 nm.
  • composition of the polyimide layer used in the insulating resin layer in the present invention is not particularly limited, but it is preferable that the polyimide layer has the following composition.
  • the polyimide layer is made of a polyimide containing an acid anhydride residue and a diamine residue, and the polyimide constituting at least one polyimide layer (P1) contains 50 mol% or more, preferably 70 mol% or more, and more preferably 90 mol% or more of acid anhydride residues derived from an aromatic tetracarboxylic acid anhydride represented by general formula (1) relative to the total acid anhydride residues derived from the acid anhydride component. By setting the content in such a range, heat resistance and low retardation are easily exhibited.
  • the polyimide contains 50 mol% or more of diamine residues derived from an aromatic diamine compound represented by general formula (2) relative to the total diamine residues contained in the polyimide.
  • the content is 70 mol% or more, and more preferably, the content is 90 mol% or more.
  • the aromatic tetracarboxylic anhydride represented by the general formula (1) imparts flexibility to the polyimide, reduces interactions such as ⁇ - ⁇ stacking between polymer chains, and makes charge transfer (CT) between the aromatic tetracarboxylic acid residue and the aromatic diamine residue difficult to occur, so that it is believed that the resulting polyimide can be made closer to colorless and transparent.
  • the aromatic diamine compound represented by the general formula (2) has two or more benzene rings, and has amino groups and divalent linking groups Z directly bonded to at least two benzene rings, which increases the degree of freedom of the polyimide molecular chain and gives it high flexibility, which is believed to contribute to improving the flexibility of the polyimide molecular chain and promote high toughness.
  • the acid anhydride residue refers to a tetravalent group derived from a tetracarboxylic dianhydride
  • the diamine residue refers to a divalent group derived from a diamine compound.
  • the acid anhydride residue contained in the polyimide constituting the polyimide layer (P1) that is directly laminated to the metal layer is preferably an acid anhydride residue derived from an aromatic tetracarboxylic acid anhydride represented by the general formula (1).
  • X represents a divalent group selected from a single bond, --O--, or --C(CF 3 ) 2 --.
  • aromatic tetracarboxylic acid anhydrides represented by formula (1) include 4,4'-oxydiphthalic dianhydride (ODPA), 3,3',4,4'-biphenyltetracarboxylic dianhydride (BPDA), and 2,2-bis(3,4-dicarboxyphenyl)-hexafluoropropane dianhydride (6FDA).
  • ODPA 4,4'-oxydiphthalic dianhydride
  • BPDA 3,3',4,4'-biphenyltetracarboxylic dianhydride
  • 6FDA 2,2-bis(3,4-dicarboxyphenyl)-hexafluoropropane dianhydride
  • These aromatic tetracarboxylic acid anhydrides are preferred because they can impart strength and flexibility to the polyimide film, have excellent heat resistance and transparency, and can control the CTE within an appropriate range.
  • ODPA and 6FDA are particularly preferred.
  • the diamine residue contained in the polyimide constituting the polyimide layer (P1) is preferably a diamine residue derived from an aromatic diamine compound represented by general formula (2).
  • Z independently represents a divalent group selected from -O-, -S-, -CH 2 -, -CH(CH 3 )-, -C(CH 3 ) 2 -, -CO-, -COO-, -SO 2 -, -NH-, or -NHCO-, and is preferably -O-.
  • n 2 represents an integer of 0 to 4, and is preferably 0 or 1.
  • R is a substituent, and independently represents a halogen atom, an alkyl group or an alkoxy group having 1 to 6 carbon atoms which may be substituted with a halogen atom, or a phenyl group or a phenoxy group which may be substituted with a monovalent hydrocarbon group or an alkoxy group having 1 to 6 carbon atoms.
  • n 1 independently represents an integer of 0 to 3, and is preferably 0 or 1.
  • "independently” means that in the above formula (2), a plurality of substituents R, a divalent group Z, and further an integer n 1 may be the same or different.
  • the hydrogen atoms in the two terminal amino groups may be substituted, for example, -NR3R4 (wherein R3 and R4 each independently represent an arbitrary substituent such as an alkyl group).
  • R3 and R4 each independently represent an arbitrary substituent such as an alkyl group.
  • Z in formula (2) independently represents a divalent group selected from -O-, -S-, -CH 2 -, -CH(CH 3 )- or -NH-.
  • aromatic diamine compound represented by formula (2) examples include 3,3'-diaminodiphenylmethane, 3,3'-diaminodiphenylpropane, 3,3'-diaminodiphenyl sulfide, 3,3'-diaminodiphenyl sulfone, 3,3-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 3,4'-diaminodiphenylmethane, 3,4'-diaminodiphenylpropane, 3,4'-diaminodiphenyl sulfide, 3,4'-diaminobenzophenone, (3,3'-bisamino)di Phenylamine, 1,4-bis(3-aminophenoxy)benzene, 1,3-bis(3-aminophenoxy)benzene (APB), 1,3-bis(4-aminophenoxy)benzene (T
  • the amount is 50 mol % or less of the total acid anhydride residues, preferably less than 30 mol %, and more preferably less than 10 mol %.
  • acid anhydride residues include, for example, pyromellitic dianhydride, 3,3',4,4'-benzophenonetetracarboxylic dianhydride, 2,2',3,3'-benzophenonetetracarboxylic dianhydride, 2,3,3',4'-benzophenonetetracarboxylic dianhydride, naphthalene-1,2,5,6-tetracarboxylic dianhydride, naphthalene-1,2,4,5-tetracarboxylic dianhydride, naphthalene-1,4,5,8-tetracarboxylic dianhydride, naphthalene-1,2,6,7-tetracarboxylic dianhydride, and 4,8-dimethyl-1,2,3,5,6,7-hexahydronaphthalene.
  • the acid anhydride residues derived from pyromellitic dianhydride or 3,3',4,4'-biphenyl tetracarboxylic dianhydride are preferred, since they can impart strength and flexibility to the polyimide film, and the coefficient of thermal expansion (CTE) of the polyimide film does not increase too much and can be controlled within an appropriate range.
  • diamine residues derived from other diamine compounds may be contained as long as they do not impede the object of the present invention.
  • the amount is 50 mol % or less of the total diamine residues, preferably less than 30 mol %, and more preferably less than 10 mol %.
  • diamine residues include, for example, 2,2'-bis(trifluoromethyl)-4,4'-diaminobiphenyl (TFMB), bis[4-(aminophenoxy)phenyl]sulfone (BAPS), 4,6-dimethyl-m-phenylenediamine, 2,5-dimethyl-p-phenylenediamine, 2,4-diaminomesitylene, 3,3'-dimethyl-4,4'-diaminodiphenylmethane, 3,5,3',5'-tetramethyl-4,4'-diaminodiphenylmethane, 2,4-toluenediamine, m-phenylenediamine, p-phenylenediamine, 4,4'-diaminodiphenylpropane, 3,3'-diaminodiphenylpropane, 4,4'-diaminodiphenylethane, 3,3'-diaminodiphenylethan
  • diamine residues derived from diamine compounds such as 2,2-bis-[4-(4-aminophenoxy)phenyl]hexafluoropropane, 9,9-bis[4-(3-aminophenoxy)phenyl]fluorene, 2,2'-bis(trifluoromethyl)-4,4'-diaminobiphenyl, 4,4'-b bis(2-(trifluoromethyl)-4-aminophenoxy)biphenyl, 2,2-bis(4-(2-(trifluoromethyl)-4-aminophenoxy)phenyl)hexafluoropropane, 4,4'-bis(3-(trifluoromethyl)-4-aminophenoxy)biphenyl, 4,4'-bis(3-(trifluoromethyl)-4-aminophenoxy)biphenyl, and p-bis(2-trifluoromethyl
  • the main polyimide layer contains diamine residues derived from an aromatic diamine compound containing fluorine atoms and/or acid anhydride residues derived from an aromatic tetracarboxylic acid anhydride containing fluorine atoms.
  • the main polyimide preferably contains a fluorine-containing diamine residue.
  • the fluorine-containing diamine residue has a group containing a bulky fluorine atom, which reduces interactions such as ⁇ - ⁇ stacking between polymer chains and makes charge transfer (CT) between aromatic tetracarboxylic acid residues and aromatic diamine residues less likely to occur, which is thought to make the polyimide closer to colorless and transparent.
  • CT charge transfer
  • fluorine-containing diamine residues include diamine residues derived from diamine compounds such as 4,4'-diamino-2,2'-bis(trifluoromethyl)biphenyl (TFMB), 1,4-bis(4-amino-2-trifluoromethylphenoxy)benzene, 3,4-diamino-2,2'-bis(trifluoromethyl)biphenyl, 4,4'-bis(2-(trifluoromethyl)-4-aminophenoxy)biphenyl, 2,2-bis(4-(2-(trifluoromethyl)-4-aminophenoxy)phenyl)hexafluoropropane, 4,4'-bis(3-(trifluoromethyl)-4-aminophenoxy)biphenyl, 4,4'-bis(3-(trifluoromethyl)-4-aminophenoxy)biphenyl, p-bis(2-trifluoromethyl)-4-aminophenoxy]benzene, and 2,4
  • A1 residue a diamine residue derived from a diamine compound represented by the following general formula (A1) (hereinafter, sometimes referred to as "A1 residue").
  • the substituents X each independently represent an alkyl group having 1 to 3 carbon atoms substituted with a fluorine atom, and m and n each independently represent an integer from 1 to 4.
  • the A1 residue is an aromatic diamine residue and has a biphenyl skeleton in which two benzene rings are connected by a single bond, which makes it easy to form an ordered structure and promotes in-plane orientation of the molecular chains, thereby suppressing an increase in the CTE of the main polyimide layer and improving dimensional stability.
  • the main polyimide layer preferably contains 50 molar parts or more of A1 residues relative to a total of 100 molar parts of all diamine residues, and more preferably contains 50 molar parts or more and 100 molar parts or less.
  • A1 residue examples include diamine residues derived from diamine compounds such as 4,4'-diamino-2,2'-bis(trifluoromethyl)biphenyl (TFMB) and 3,4-diamino-2,2'-bis(trifluoromethyl)biphenyl.
  • TFMB 4,4'-diamino-2,2'-bis(trifluoromethyl)biphenyl
  • 3,4-diamino-2,2'-bis(trifluoromethyl)biphenyl examples include diamine residues derived from diamine compounds such as 4,4'-diamino-2,2'-bis(trifluoromethyl)biphenyl (TFMB) and 3,4-diamino-2,2'-bis(trifluoromethyl)biphenyl.
  • the main polyimide layer may contain, as diamine residues other than those mentioned above, diamine residues derived from diamine components generally used in the synthesis of polyimides.
  • the main polyimide layer preferably contains fluorine-containing acid anhydride residues.
  • Fluorine-containing acid anhydride residues have groups that contain bulky fluorine atoms, which reduces interactions such as ⁇ - ⁇ stacking between polymer chains and makes charge transfer (CT) between aromatic tetracarboxylic acid residues and aromatic diamine residues less likely to occur, which is thought to make the polyimide closer to colorless and transparent.
  • CT charge transfer
  • fluorine-containing acid anhydride residues include acid anhydride residues derived from acid anhydride components such as 2,2'-bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydride (6FDA).
  • acid anhydride residues derived from acid anhydride components such as 2,2'-bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydride (6FDA).
  • the main polyimide layer preferably contains a tetravalent acid anhydride residue (hereinafter, sometimes referred to as "PMDA residue”) derived from pyromellitic dianhydride (PMDA) represented by the following formula (B1).
  • the PMDA residue is preferably contained in an amount of 50 molar parts or more, more preferably in the range of 60 molar parts to 100 molar parts, relative to a total of 100 molar parts of all acid anhydride residues. If the PMDA residue is less than 50 molar parts, the CTE of the polyimide layer (A) may become high and the dimensional stability may decrease.
  • the main polyimide layer may also contain, as an acid anhydride residue other than those mentioned above, an acid anhydride residue derived from an acid anhydride component generally used in the synthesis of polyimides.
  • an acid anhydride residue an aromatic tetracarboxylic acid residue is preferred.
  • an alicyclic tetracarboxylic acid residue may contain an alicyclic tetracarboxylic acid residue, and preferred examples thereof include acid anhydride residues derived from alicyclic tetracarboxylic acid dianhydrides such as 1,2,3,4-cyclobutane tetracarboxylic dianhydride, fluorenylidene bisphthalic anhydride, 1,2,4,5-cyclohexane tetracarboxylic dianhydride, and cyclotanone bisspironorbornane tetracarboxylic dianhydride.
  • acid anhydride residues derived from alicyclic tetracarboxylic acid dianhydrides such as 1,2,3,4-cyclobutane tetracarboxylic dianhydride, fluorenylidene bisphthalic anhydride, 1,2,4,5-cyclohexane tetracarboxylic dianhydride, and cyclotanone bisspir
  • the layer P3 may have the same composition as the polyimide layer P1.
  • the layer P3 preferably contains 50 mol % or more of a diamine residue derived from an aromatic diamine compound represented by general formula (A3).
  • Z independently represents a divalent group selected from -O-, -S-, -CH 2 -, -CH(CH 3 )-, -C(CH 3 ) 2 -, or -SO 2 -, and is preferably -O-.
  • n 2 independently represents an integer of 0 to 4, and is preferably 0 or 1.
  • R independently represents a substituent, and is independently a halogen atom, an alkyl group or alkoxy group having 1 to 6 carbon atoms which may be substituted with a halogen atom, or a phenyl group or phenoxy group which may be substituted with a monovalent hydrocarbon group or alkoxy group having 1 to 6 carbon atoms.
  • n 1 independently represents an integer of 0 to 3, and is preferably 0 or 1.
  • the aromatic diamine compound represented by the above formula (A3) has two or more benzene rings, and since there are amino groups and divalent linking groups Z directly bonded to at least two of the benzene rings, the degree of freedom of the polyimide molecular chain is increased, resulting in high flexibility, which is thought to contribute to improving the flexibility of the polyimide molecular chain and promote adhesion and toughness.
  • the polyimide layer P3 contains 50 mol % or more of acid anhydride residues derived from the aromatic tetracarboxylic acid anhydride represented by the general formula (1) relative to the total acid anhydride residues, and contains 50 mol % or more of diamine residues derived from the aromatic diamine compound represented by the general formula (A3) relative to the total diamine residues contained in the polyimide.
  • aromatic diamine compound represented by the above formula (A3) examples include 3,3'-diaminodiphenylmethane, 3,3'-diaminodiphenylpropane, 3,3'-diaminodiphenyl sulfide, 3,3'-diaminodiphenyl sulfone, 3,3-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 3,4'-diaminodiphenylmethane, 3,4'-diaminodiphenylpropane, 3,4'-diaminodiphenyl sulfide, 3,4'-diaminobenzophenone, (3,3 '-bisamino)diphenylamine, 1,4-bis(3-aminophenoxy)benzene, 1,3-bis(3-aminophenoxy)benzene (APB), 1,3-bis(4-aminophenoxy)benzen
  • diamine residues include, for example, 2,2'-bis(trifluoromethyl)-4,4'-diaminobiphenyl (TFMB), bis[4-(aminophenoxy)phenyl]sulfone (BAPS), 4,6-dimethyl-m-phenylenediamine, 2,5-dimethyl-p-phenylenediamine, 2,4-diaminomesitylene, 3,3'-dimethyl-4,4'-diaminodiphenylmethane, 3,5,3',5'-tetramethyl-4,4'-diaminodiphenylmethane, 2,4-toluenediamine, m-phenylenediamine, p-phenylenediamine, 4,4'-diaminodiphenylpropane, 3,3'-diaminodiphenylpropane, 4,4'-diaminodiphenylethane, 3,3'-diaminodiphenylethan
  • diamine residues derived from diamine compounds such as 2,2-bis-[4-(4-aminophenoxy)phenyl]hexafluoropropane, 9,9-bis[4-(3-aminophenoxy)phenyl]fluorene, 2,2'-bis(trifluoromethyl)-4,4'-diaminobiphenyl, 4,4'-bis(2-(trifluoromethyl)-4-aminophenoxy)biphenyl, 2,2-bis(4-(2-(trifluoromethyl)-4-aminophenoxy)phenyl)hexafluoropropane, 4,4'-bis(3-(trifluoromethyl)-4-aminophenoxy)biphenyl, 4,4'-bis(3-(trifluoromethyl)-4-aminophenoxy)biphenyl, and p-bis(2-trifluoromethyl)
  • the polyimide of the present embodiment can be produced by reacting the acid anhydride and diamine in a solvent, generating polyamic acid, and then heating to close the ring.
  • the acid anhydride component and the diamine component are dissolved in an organic solvent in approximately equal moles, and the mixture is stirred at a temperature in the range of 0° C. to 100° C. for 30 minutes to 24 hours to polymerize, thereby obtaining polyamic acid, which is a precursor of polyimide.
  • the reaction components are dissolved so that the precursor generated is in the range of 5% by weight to 30% by weight, preferably 10% by weight to 20% by weight, in the organic solvent.
  • organic solvents used in the polymerization reaction include N,N-dimethylformamide, N,N-dimethylacetamide (DMAC), N-methyl-2-pyrrolidone, 2-butanone, dimethylsulfoxide, dimethyl sulfate, cyclohexanone, dioxane, tetrahydrofuran, diglyme, triglyme, and ⁇ -butyrolactone. Two or more of these solvents can be used in combination, and aromatic hydrocarbons such as xylene and toluene can also be used in combination.
  • the amount of such an organic solvent to be used is not particularly limited, but it is preferable to adjust the amount to be used so that the concentration of the polyamic acid solution (polyimide precursor solution) obtained by the polymerization reaction becomes about 5% by weight to 30% by weight.
  • the above-mentioned acid anhydrides and diamines can be used alone or in combination of two or more kinds.
  • the types of acid anhydrides and diamines, or the molar ratios when using two or more types of acid anhydrides or diamines it is possible to control the thermal expansion, adhesion, glass transition temperature, etc.
  • a terminal blocking agent may be used for the polyimide.
  • Monoamines or dicarboxylic acids are preferred as terminal blocking agents.
  • the amount of terminal blocking agent introduced is preferably in the range of 0.0001 to 0.1 mol per 1 mol of the acid anhydride component, and more preferably in the range of 0.001 to 0.05 mol.
  • monoamine terminal blocking agents for example, methylamine, ethylamine, propylamine, butylamine, benzylamine, 4-methylbenzylamine, 4-ethylbenzylamine, 4-dodecylbenzylamine, 3-methylbenzylamine, aniline, 4-methylaniline, etc. are recommended. Of these, benzylamine and aniline are preferably used.
  • dicarboxylic acids are preferred, and some of them may be ring-closed.
  • dicarboxylic acids are preferred, and some of them may be ring-closed.
  • phthalic acid, phthalic anhydride, 4-chlorophthalic acid, tetrafluorophthalic acid, cyclopentane-1,2-dicarboxylic acid, 4-cyclohexene-1,2-dicarboxylic acid, etc. are recommended. Of these, phthalic acid and phthalic anhydride are preferred.
  • the synthesized polyamic acid is usually advantageously used as a reaction solvent solution, but it can be concentrated, diluted, or replaced with another organic solvent if necessary. Polyamic acid is also advantageously used because it generally has excellent solvent solubility.
  • a suitable method is, for example, heat treatment in which the polyamic acid is heated in the solvent at a temperature in the range of 80°C to 400°C for 1 to 24 hours.
  • the weight-average molecular weight of the polyamic acid is preferably, for example, in the range of 10,000 to 400,000, and more preferably in the range of 50,000 to 350,000. If the weight-average molecular weight is less than 10,000, the strength of the film tends to decrease and it becomes easily brittle. On the other hand, if the weight-average molecular weight exceeds 400,000, the viscosity increases excessively, and defects such as uneven film thickness and streaks tend to occur during the coating process.
  • the metal-clad laminate of the present invention is preferably prepared by forming an insulating resin layer, particularly consisting of multiple polyimide resin layers, on a metal layer as a supporting substrate by a casting method or a sequential coating method from the viewpoint of dimensional stability, but is not particularly limited thereto.
  • the metal-clad laminate may be prepared by preparing an insulating resin layer (resin film) containing the polyimide of the present invention, sputtering a metal onto the insulating resin layer to form a seed layer, and then forming a metal layer by, for example, plating.
  • the insulating resin layer (resin film) containing the polyimide of the present invention may be prepared by laminating a metal foil onto the insulating resin layer (resin film) by a method such as thermocompression bonding.
  • the surface of the resin film may be modified, for example by plasma treatment, to improve adhesion between the resin film and the metal layer.
  • the metal layer when manufacturing a metal-clad laminate having metal layers on both sides, for example, can be laminated by means of hot pressing or the like, directly on the polyimide layer of the single-sided metal-clad laminate obtained by the above method, or after forming an adhesive layer that does not inhibit the transparency of the insulating resin layer as necessary.
  • the heat press temperature when hot pressing the metal layer is not particularly limited, but is preferably equal to or higher than the glass transition temperature of the polyimide layer adjacent to the metal layer used.
  • the heat press pressure is preferably in the range of 1 to 500 kg/ m2 , depending on the type of press equipment used.
  • the 180° peel strength between the insulating resin layer and the metal layer in the metal-clad laminate of the present invention is preferably 0.3 kN/m or more, more preferably 0.5 kN/m, even when the wiring layer made of the metal layer is processed to a wiring width of 100 ⁇ m.
  • the wiring width 250 ⁇ m, 500 ⁇ m, 1 mm, etc. can be adopted depending on the application, etc., but in any case, the 180° peel strength between the insulating resin layer and the metal layer preferably satisfies the above range.
  • the metal-clad laminate of the present invention is suitable for applications in which the wiring width is 500 ⁇ m or less, as described below. In this specification, the physical properties and characteristic values are evaluated by measuring under the conditions described in the Examples, and unless otherwise specified, the values are measured at room temperature (23° C.).
  • the metal-clad laminate as a whole preferably has a solder heat resistance of 190°C or higher, and more preferably 200°C or higher.
  • the solder heat resistance is evaluated by the method described in the examples.
  • the metal-clad laminate of the present invention is preferably used for applications in which the wiring layer made of the metal layer is processed to have a wiring width of 500 ⁇ m or less.
  • the wiring width is preferably 250 ⁇ m or less, more preferably 100 ⁇ m or less. By making the wiring width 100 ⁇ m or less, it is preferable because the wiring is difficult to see even if the visibility distance is several meters.
  • the processing method of the metal layer (wiring layer) a known processing method of FPC can be used depending on the application.
  • the peel strength can be relatively high, so that it is excellent in processing fine line patterns.
  • a metal-clad laminate having a relatively thick metal layer e.g., a copper thickness of 18 ⁇ m or more
  • it can be applied to a wide range of applications.
  • a metal-clad laminate produced by the casting method or the sequential coating method as described above.
  • Suitable applications of the metal-clad laminate of the present invention in which the wiring width is processed to 500 ⁇ m or less are as follows, but are not limited to these.
  • the metal-clad laminate of the present invention can be suitably used as a circuit board for a transparent LED vision.
  • the transparent LED vision includes a wide variety of uses, from small household displays to relatively large displays installed on outdoor advertising and bulletin boards and windows and walls of buildings, and is capable of displaying digital images and videos using LEDs in combination, while having high transparency (transparency) of the display part and having such high transparency and visibility that the back side of the display part can be seen through when the LED is not lit. It is called by various names, but is not limited to them, such as "transparent LED display” and "see-through (transparent) type LED vision".
  • the configuration of the transparent LED vision is, but is not limited to them, that when viewed from the back side of the display part, the LEDs are arranged in a lattice or blind shape, and the aperture ratio is high, so that the background of the display part can be seen through when the LED is not lit.
  • the metal-clad laminate of the present invention is, for example, incorporated into a display substrate of 100 cm x 50 cm size by processing copper foil wiring in a line and space shape of 100 ⁇ m/500 ⁇ m.
  • HMD head-mounted display
  • hat-type and eyeglass-type wearing forms can be mentioned, and they are often used to cover part or all of the field of vision.
  • the HMD referred to in the present invention can include such usage forms and display technologies without any restrictions.
  • the metal-clad laminate of the present invention is, for example, processed into thin wires to cover the entire surface of the glasses, or is incorporated into a cover for protecting the light guide plate that displays images, or into a microphone built into the cover.
  • the metal-clad laminate of the present invention can be suitably used as a substrate for a transparent antenna.
  • the transparent antenna can be used as a "glass antenna” that can be installed on a window glass inside a room or a car to turn the window into a base station, or a technology for attaching or embedding an antenna in a mobile display such as a smartphone (so-called antenna-on-display).
  • the metal-clad laminate of the present invention is, for example, processed into a copper foil wiring width of 100 ⁇ m, processed into a substrate size of 1 cm ⁇ 5 cm, and incorporated into a window so that radio waves can reach it.
  • the metal-clad laminate of the present invention can be suitably used as a substrate for flexible planar heating elements such as transparent heaters.
  • it can be used as a substrate for applications requiring heating, but where visibility may be impaired.
  • it is used as a heater for exerting anti-fogging, snow melting, and sensitivity improvement functions in window glass, cameras used mainly outdoors, such as observation cameras, surveillance cameras, and vehicle cameras, vehicle headlights, traffic lights, roadway guide lights, etc.
  • the metal-clad laminate of the present invention is incorporated, for example, in front of the camera lens of an autonomous vehicle to remove fogging.
  • the metal-clad laminate of the present invention can be suitably used as a substrate for an LED light strip.
  • the LED light strip is an LED light tape or ribbon-shaped material used as decorative lighting or as a replacement for a filament in a light bulb.
  • the metal-clad laminate of the present invention is incorporated into a lighting fixture in which, for example, an FPC is wired with a line and space of 200 ⁇ m/400 ⁇ m, fabricated into a tape shape with a diameter of 1 mm, and inserted into a light bulb.
  • YI 100 ⁇ (1.2879X - 1.0592Z) / Y ... (1)
  • X, Y, and Z Tristimulus values of the test piece (absolute value of difference in YI before and after UV irradiation) The absolute value of the difference in YI before and after UV irradiation is calculated as the difference between the YI measured after UV irradiation under the UV irradiation conditions described below and the YI before UV irradiation.
  • CTE coefficient of thermal expansion
  • UV irradiation conditions Using a DEEP UV irradiation device VUM-3073, irradiation was performed continuously for 4 hours at a wavelength of 200-350 nm with an output of 20 J/cm 2 per hour.
  • Viscosity measurement The viscosity of the polyamic acid solution obtained in the synthesis example was measured at 25° C. using a cone-plate viscometer equipped with a thermostatic water bath (manufactured by Tokimec Co., Ltd.).
  • a commercially available photoresist film was laminated onto the metal layer side of each of the copper-clad laminates obtained in the Examples and Comparative Examples, and exposed to light (365 nm, exposure dose of about 500 J/ m2 ) using a predetermined pattern forming mask to harden and form a resist layer on the metal layer side in a circular pattern with diameters of 20 mm, 15 mm, 10 mm, 5 mm, 3 mm, 1 mm, and 0.5 mm.
  • the hardened resist areas were developed (developing solution was a 1% NaOH aqueous solution), and the copper foil layer unnecessary for forming the specified pattern was etched away using an aqueous ferric chloride solution.
  • the hardened resist layer was peeled off and removed with an alkaline solution to obtain samples with patterns formed thereon for evaluating heat resistance corresponding to lead-free solder (laminates with circular patterns with a diameter of 1 mm formed on the metal layer side of each metal-clad laminate).
  • the samples were immersed in molten solder baths of different temperatures for 10 seconds, and the presence or absence of deformation or blistering in the copper foil layer was observed.
  • the maximum temperature of the solder bath at which the copper foil layer did not deform, blister, or peel off was determined as the solder heat resistance temperature.
  • APB 1,3-bis(3-aminophenoxy)benzene
  • TFMB 2,2'-bis(trifluoromethyl)-4,4'-diaminobiphenyl
  • BAPS bis[4-(aminophenoxy)phenyl]sulfone
  • BAFL 9,9-bis(4-aminophenyl)fluorene
  • PMDA pyromellitic dianhydride 6FDA: 2,2-bis(3,4-dicarboxyphenyl)-hexafluoropropane dianhydride
  • BPDA 3,3',4,4'-biphenyl tetracarboxylic dianhydride
  • ODPA 4,4'-oxydiphthalic dianhydride
  • CBDA 1,2,3,4-cyclobutane tetracarboxylic dianhydride
  • DMAc N,N-dimethylacetamide
  • Synthesis Example 1 To synthesize polyamic acid solution A, a DMAc solvent was added to a 200 ml separable flask under a nitrogen gas flow to a solids concentration of 15 wt%, and the diamine component and acid anhydride component shown in Table 1 were added and dissolved while stirring at room temperature. The solution was then stirred at room temperature for 8 hours to carry out a polymerization reaction, preparing a viscous polyamic acid solution A. The solution was then diluted to 12 wt% with the DMAc solvent. The viscosity after dilution was 3000 cP.
  • Synthesis Example 2 To synthesize polyamic acid solution B, a solvent, DMAc, was added to a 200 ml separable flask under a nitrogen gas flow so as to obtain a solid content concentration shown in Table 1, and the diamine component and acid anhydride component shown in Table 1 were dissolved by heating at 40° C. for 1 hour while stirring. The solution was then stirred at room temperature for 2 days to carry out a polymerization reaction, and a viscous polyamic acid solution B was prepared. The viscosity was 21,000 cP.
  • Synthesis Examples 3 to 6 Polyamic acid solutions C to F were prepared by changing the monomer types as shown in Table 1 and carrying out polymerization in the same manner as in Synthesis Example 1. Viscous solutions C to F of polyamic acid were prepared. The viscosities are shown in Table 1.
  • the types of copper foil used as the metal layer in this invention are shown in Table 2.
  • Example 1 On the copper foil I (electrolytic copper foil, manufactured by Mitsui Mining & Smelting Co., Ltd., trade name: TQ-M4-VSP, thickness: 12 ⁇ m), a solution of polyamic acid solution A was uniformly applied so that the thickness after curing was 2 ⁇ m, and then the solution was stepwise heated and dried in a temperature range up to 120 ° C. to remove the solvent. Next, a solution of polyamic acid solution B was uniformly applied thereon so that the thickness after curing was 23 ⁇ m, and then the solution was stepwise heated and dried in a temperature range up to 120 ° C. to remove the solvent.
  • a solution of polyamic acid solution A was uniformly applied so that the thickness after curing was 2 ⁇ m, and then the solution was stepwise heated and dried in a temperature range up to 120 ° C. to remove the solvent.
  • a solution of polyamic acid solution A was uniformly applied thereon so that the thickness after curing was 2 ⁇ m, and then the solution was stepwise heated and dried in a temperature range up to 120 ° C. to remove the solvent.
  • stepwise heat treatment was performed from 125 ° C. to 360 ° C. to complete imidization, and an insulating resin layer having a thickness of 27 ⁇ m consisting of polyimide layer A / polyimide layer B / polyimide layer A was formed, and a metal-clad laminate 1A (in the table, it is written as "metal laminate") was prepared.
  • the copper foil of the obtained single-sided metal-clad laminate 1A was etched away using an aqueous solution of ferric chloride to prepare a polyimide film 1a.
  • the haze, T.T., YI, CTE, and Tg of the polyimide film 1a were measured. The results of these measurements are shown in Table 3.
  • the obtained film was irradiated with UV for 4 hours under the above UV irradiation conditions, and the haze and the yellow index (YI) of the film after UV irradiation were measured, and the difference between the haze and the yellow index (YI) before UV irradiation was calculated to calculate the rate of change.
  • the results are shown in Table 3.
  • the reflectance and hue (L * , a * , b * ) of the obtained single-sided metal-clad laminate 1A were measured from the resin film side.
  • the peel strength of the polyamic acid-coated surface of the copper foil I when the wiring was processed to 1 mm, 500 ⁇ m, 250 ⁇ m, and 100 ⁇ m was 0.5 to 0.6 kN/m as shown in Table 3.
  • the solder heat resistance was 250° C. or higher.
  • Examples 2 to 4 and 6 Single-sided metal-clad laminates 2A to 4A and 6A were prepared, and polyimide films 2a to 4a and 6a were prepared in the same manner as in Example 1, except that the copper foil and polyamic acid solution shown in Table 3 were used.
  • HAZE, T.T., YI, CTE and Tg were measured, and the absolute values of the differences in YI and HAZE before and after UV irradiation were measured.
  • reflectance, hue, peel strength and solder heat resistance were measured in the same manner as in Example 1.
  • Example 5 Two sheets of copper foil II (electrolytic copper foil, manufactured by Fukuda Metal Foil and Powder Co., Ltd., product name: CF-T9DA-SV, thickness: 17 ⁇ m) were cut to 15 cm x 15 cm, and the 4a film of Example 4 was sandwiched between them with the coated surfaces facing each other, and heat-pressed at 320 ° C./5 min with a press to prepare a double-sided metal-clad laminate. Only the copper foil on one side of the prepared double-sided metal-clad laminate was etched and removed using an aqueous ferric chloride solution to obtain a single-sided metal-clad laminate 5A.
  • copper foil II electrolytic copper foil, manufactured by Fukuda Metal Foil and Powder Co., Ltd., product name: CF-T9DA-SV, thickness: 17 ⁇ m
  • the copper foil of the obtained single-sided metal-clad laminate 5A was etched and removed using an aqueous ferric chloride solution to prepare a polyimide film 5a.
  • the single-sided metal-clad laminate 5A and polyimide film 5a were used to evaluate the same items as in the above examples. Table 3 shows the evaluation results.
  • Comparative Example 1 Two sheets of copper foil II were cut to 15 cm x 15 cm, placed on both sides of a polyester film of the same size (manufactured by Toray Industries, Inc., product name: Lumirror 25S28L, thickness: 25 ⁇ m), sandwiched, and heat-pressed with a press to prepare a double-sided metal-clad laminate. Only the copper foil on one side of the prepared double-sided metal-clad laminate was etched and removed using an aqueous ferric chloride solution to obtain a single-sided metal-clad laminate 7A. The obtained single-sided metal-clad laminate 7A was etched and removed using an aqueous ferric chloride solution to prepare a resin film 7a. The single-sided metal-clad laminate 7A and polyimide film 7a were used to evaluate the same items as in the above examples. Table 4 shows the evaluation results.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Laminated Bodies (AREA)

Abstract

The present invention provides a metal-clad laminated plate in which the haze of an insulating resin layer is low and which has excellent visibility and light transmission and also has excellent light fastness. Provided is metal-clad laminated plate having a metal layer on one or both surfaces of an insulating resin layer, the metal-clad laminated plate being characterised in that: the insulating resin layer has a thickness in the range of 10 μm to 100 μm, a total light transmittance of 70% or more, a haze of 50% or less, and an absolute value of 30 or less for the difference in the yellowness index YI before and after irradiation with ultraviolet light; when the surface of the metal layer in contact with the insulating resin layer is measured through the insulating resin layer, the reflectance at 580 nm is 50% or less; and the metal-clad laminated plate is used for applications in which the width of wire comprising said metal layer is processed to be 500 μm or less.

Description

金属張積層板Metal-clad laminate
 本発明は、絶縁樹脂層と金属層とを積層してなる金属張積層板に関する。 The present invention relates to a metal-clad laminate formed by laminating an insulating resin layer and a metal layer.
 近年、電子機器の小型化、軽量化、省スペース化の進展に伴い、薄く軽量で、可撓性を有し、屈曲を繰り返しても優れた耐久性を持つフレキシブルプリント配線板(FPC;Flexible Printed Circuits)の需要が増大している。FPCは、限られたスペースでも立体的かつ高密度の実装が可能であるため、例えば、HDD、DVD、スマートフォン等の電子機器の可動部分の配線や、ケーブル、コネクター等の部品にその用途が拡大しつつある。FPCの多くは、金属箔などを用いた金属層と、絶縁性を持った樹脂基材(絶縁樹脂層)とを積層した金属張積層板の金属層に回路を形成することで製造される。 In recent years, with the progress of miniaturization, weight saving, and space saving of electronic devices, there has been an increasing demand for flexible printed circuits (FPCs) that are thin, lightweight, flexible, and have excellent durability even when repeatedly bent. Because FPCs allow for three-dimensional, high-density mounting even in a limited space, their applications are expanding to include wiring for moving parts of electronic devices such as HDDs, DVDs, and smartphones, as well as components such as cables and connectors. Most FPCs are manufactured by forming circuits on the metal layer of a metal-clad laminate, which is made by laminating a metal layer using metal foil or the like with an insulating resin substrate (insulating resin layer).
 FPC、とくに透明性に優れるFPCは、薄い、軽量、曲げられる、割れない、といった特徴を有することから、近年では、透明なアンテナとして用いてこれを窓ガラス表面に形成して窓を基地局化する「ガラスアンテナ」等であったり、モバイル用途においてディスプレイにアンテナを埋め込む技術であったり、或いは、大型の電光板やLED(Light Emitting Diode)ディスプレイ等を含んだ透明なLEDビジョンの設置が期待される分野での基板用途での需要が拡大している。こうした新しい用途では、肉眼では見えづらい細い配線を形成する手法等が知られているが、とくに基板の視認性が求められることから、加工した配線をフィルムの反対側(ユーザーから視認される側(絶縁樹脂層側))から見た際において、配線の存在をできるだけ目立たないようにすることが強く要求されている。なぜなら、配線の正反射によって、ディスプレイのコントラストが低下するおそれがあるからである。そして、このような分野では、現状では、コストや透明性等の点から絶縁樹脂層としてポリエチレンテレフタレート(PET)に銅箔がスパッタされた銅張積層板が一部採用されてきているが、このような方法では銅箔の接着力が十分に得られない場合があり、また、PETは耐熱性が低いため工程上において高温実装は困難であり、さらに、前記した新しい用途への展開に際して、とくに、太陽光に晒される状況下における耐光性などの問題もあって、長期信頼性を確保するために更なる検討の余地があった。 FPCs, especially transparent FPCs, are thin, lightweight, flexible, and unbreakable, and in recent years, they have been used as transparent antennas on the surface of window glass to turn windows into base stations, and are being used in mobile applications to embed antennas in displays, as well as in substrate applications in fields where transparent LED vision displays, including large light-emitting boards and LED (Light Emitting Diode) displays, are expected to be installed. For these new applications, there are known techniques for forming thin wiring that is difficult to see with the naked eye, but since the visibility of the substrate is particularly important, there is a strong demand for the processed wiring to be as inconspicuous as possible when viewed from the opposite side of the film (the side visible to the user (insulating resin layer side)). This is because there is a risk that the contrast of the display will decrease due to specular reflection of the wiring. Currently, in these fields, copper-clad laminates in which copper foil is sputtered onto polyethylene terephthalate (PET) as an insulating resin layer are being used in some cases due to cost and transparency considerations, but this method may not provide sufficient adhesive strength for the copper foil, and PET has low heat resistance, making high-temperature mounting difficult in the process. Furthermore, when expanding into the new applications mentioned above, there are issues such as light resistance, especially when exposed to sunlight, and there is room for further consideration to ensure long-term reliability.
 ここで、従来から透明FPCに好適な金属張積層板が提案されているが、使用される絶縁樹脂層(金属層がエッチングされた箇所における絶縁樹脂層)の視認性・透明性を確保するために、その面に存在していた金属層としては、比較的粗化の少ないものが好適に使用されている(例えば、特許文献1)。なぜなら、金属層がエッチングされた絶縁樹脂層は、当該金属層の表面粗さ等の表面プロファイルが樹脂層側に引き継がれるためである。 Here, metal-clad laminates suitable for transparent FPCs have been proposed, but in order to ensure the visibility and transparency of the insulating resin layer used (the insulating resin layer at the location where the metal layer is etched), a metal layer that was present on that surface is preferably one that is relatively less roughened (for example, Patent Document 1). This is because, when the metal layer is etched, the surface profile of the metal layer, such as the surface roughness, is carried over to the resin layer.
 ところが、粗化が少ない金属は表面が平滑であることから、光の散乱の発生が少なく、光の反射(正反射)を大きくする傾向があることから、使用される金属の光沢感や色味や存在感がより強く目立ってしまうことが懸念される。そのため、上記のような用途の基板に適用する場合、使用される金属それ自体の反射や色味などを考慮することはもとより、実使用を想定してフィルムの反対側(ユーザーから視認される側(絶縁樹脂層側))から視認した際における金属層の色相(存在感)を調整することが重要であり、このような懸念も含めて、総じてデバイスとしての透明性について更なる検討の余地があった。 However, metals with little roughening have a smooth surface, which means there is less scattering of light and a tendency to increase light reflection (specular reflection), which raises concerns that the gloss, color, and presence of the metal used may become more prominent. For this reason, when applying to substrates for the above-mentioned purposes, it is important not only to take into account the reflection and color of the metal itself used, but also to adjust the hue (presence) of the metal layer when viewed from the opposite side of the film (the side visible to the user (insulating resin layer side)) in anticipation of actual use, and there was room for further consideration of transparency as a device overall, including such concerns.
 なお、従来から、FPCやタッチパネルなどにおいて、粗化処理された銅箔として、銅箔のエッチング後のフィルムの透明性や配線の視認性などを考慮して、とくに明度L値が30以下に黒色化された銅箔を用いる技術や(例えば、特許文献2)、配線板の用途において回路パターン形成後の密着性と視認性とを考慮して、純銅で粗化処理されて拡散反射率を低減する技術(例えば、特許文献3)が開示され、また、タッチパネルにおいて、透明基材と銅箔との接触面において所定の粗化処理面を有する透明接着層を設ける技術(例えば、特許文献4)が開示されているが、これらはいずれも、LED透明ディスプレイ等のような非常に微細な配線であってもその存在感に配慮する用途において検討されたものではなかった。 Conventionally, in FPCs, touch panels, and the like, a technique has been disclosed in which, in consideration of the transparency of the film after etching of the copper foil and the visibility of the wiring, a copper foil that has been blackened to a lightness L * value of 30 or less is used as the roughened copper foil (e.g., Patent Document 2), and in consideration of the adhesion and visibility after the formation of a circuit pattern in the application of a wiring board, a technique has been disclosed in which a pure copper is roughened to reduce the diffuse reflectance (e.g., Patent Document 3). In addition, in a touch panel, a technique has been disclosed in which a transparent adhesive layer having a predetermined roughened surface is provided on the contact surface between the transparent substrate and the copper foil (e.g., Patent Document 4). However, none of these techniques have been considered for applications in which the presence of even very fine wiring is taken into consideration, such as LED transparent displays, etc.
 他方、微細配線型透明電極として10μm以下の極微細な銅配線を形成する際に用いられる銅箔として、酸化第一銅及び酸化第二銅を含む銅複合化合物からなる最大長さが500nm以下の針状又は板状の凸状部により形成された微細凹凸構造を有する銅箔が開示されているが(特許文献5)、銅箔の反射率、樹脂層との接着性、製膜後の樹脂層のHAZE(濁度)について範囲を規定しておらず、そのような観点が考慮されたものでなかった。 On the other hand, a copper foil having a fine uneven structure formed by needle-like or plate-like convex portions with a maximum length of 500 nm or less and made of a copper composite compound containing cuprous oxide and cupric oxide has been disclosed as a copper foil used in forming extremely fine copper wiring of 10 μm or less as a fine wiring type transparent electrode (Patent Document 5). However, the ranges of the reflectance of the copper foil, the adhesion to the resin layer, and the haze (turbidity) of the resin layer after film formation are not specified, and such viewpoints were not taken into consideration.
国際公開WO2020/262450号International Publication No. WO2020/262450 国際公開WO2014/133164号International Publication No. WO2014/133164 特許第5706026号公報Japanese Patent No. 5706026 特開2015-157392号公報JP 2015-157392 A 国際公開WO2015/178455号International Publication No. WO2015/178455
 そこで、先行して検討を行ってきた樹脂フィルムや金属張積層板について、本願の発明者らが上記の観点でさらに検討を進めた結果、金属張積層板において、HAZE(濁度)が低くて視認性・光透過性に優れ、尚且つ耐光性にも優れる絶縁樹脂層を使用し、また、絶縁樹脂層を介して測定される反射率が低い金属層を使用することにより、微細な金属層(配線層)に加工される種々の新しい用途の基板として好適な金属張積層板を見出して、本発明を完成した。 The inventors of the present application therefore further investigated the resin films and metal-clad laminates that had been previously investigated from the above perspective, and as a result, they discovered a metal-clad laminate that is suitable as a substrate for various new applications to be processed into fine metal layers (wiring layers) by using an insulating resin layer in the metal-clad laminate that has low haze (turbidity), excellent visibility and light transmittance, and excellent light resistance, and by using a metal layer that has low reflectance measured through the insulating resin layer, they completed the present invention.
 したがって、本発明の目的は、HAZE(濁度)が低くて視認性・光透過性に優れ、尚且つ耐光性にも優れ、微細な金属層(配線層)に加工される種々の新しい用途の基板として好適な金属張積層板を提供することである。 The object of the present invention is therefore to provide a metal-clad laminate that has low haze (turbidity), excellent visibility and light transmittance, and excellent light resistance, and is suitable as a substrate for a variety of new applications when processed into a fine metal layer (wiring layer).
 すなわち、本発明は、以下のとおりである。
[1]絶縁樹脂層の片面又は両面に金属層を有する金属張積層板であって、
 前記絶縁樹脂層は、厚みが10μm~100μmの範囲内であり、全光線透過率が70%以上であり、HAZEが50%以下であり、紫外線照射前後の黄色度YIの差の絶対値が30以下であり、
 前記絶縁樹脂層に接する前記金属層の表面を、前記絶縁樹脂層を介して測定した場合に、580nmにおける反射率が50%以下であり、
 当該金属層からなる配線幅が500μm以下に加工される用途に使用されることを特徴とする金属張積層板。
[2]前記絶縁樹脂層は、紫外線照射前後のHAZEの差の絶対値が10%以下であることを特徴とする[1]に記載の金属張積層板。
[3]半田耐熱性が200℃以上であることを特徴とする[1]又は[2]に記載の金属張積層板。
[4]前記金属層の100μm幅への加工時における、当該加工後の金属層と前記絶縁樹脂層との180°ピール強度が、0.3kN/m以上であることを特徴とする[1]又は[2]に記載の金属張積層板。
[5]前記絶縁樹脂層に接する前記金属層の表面の最大高さRzが300nm以下であると共に、L表色系のaが20以下であることを特徴とする[1]又は[2]に記載の金属張積層板。
[6]前記配線幅が500μm以下に加工される用途が、透明LEDビジョン用途であることを特徴とする[1]又は[2]に記載の金属張積層板。
[7]前記配線幅が500μm以下に加工される用途が、ヘッドマウントディスプレイ用途であることを特徴とする[1]又は[2]に記載の金属張積層板。
[8]前記配線幅が500μm以下に加工される用途が、透明アンテナ用途であることを特徴とする[1]又は[2]に記載の金属張積層板。
That is, the present invention is as follows.
[1] A metal-clad laminate having a metal layer on one or both sides of an insulating resin layer,
the insulating resin layer has a thickness in the range of 10 μm to 100 μm, a total light transmittance of 70% or more, a haze of 50% or less, and an absolute value of a difference in yellowness index YI before and after ultraviolet irradiation of 30 or less;
a reflectance at 580 nm of a surface of the metal layer in contact with the insulating resin layer is 50% or less when measured through the insulating resin layer;
A metal-clad laminate characterized in that it is used in applications in which the wiring width of the metal layer is processed to 500 μm or less.
[2] The metal-clad laminate according to [1], wherein the absolute value of the difference in haze between before and after ultraviolet irradiation is 10% or less.
[3] The metal-clad laminate according to [1] or [2], characterized in that the solder heat resistance is 200°C or higher.
[4] The metal-clad laminate according to [1] or [2], characterized in that when the metal layer is processed to a width of 100 μm, the 180° peel strength between the metal layer and the insulating resin layer after the processing is 0.3 kN/m or more.
[5] The metal-clad laminate according to [1] or [2], characterized in that the maximum height Rz of the surface of the metal layer in contact with the insulating resin layer is 300 nm or less, and the a * of the L * a * b * color system is 20 or less.
[6] The metal-clad laminate according to [1] or [2], characterized in that the application in which the wiring width is processed to 500 μm or less is a transparent LED vision application.
[7] The metal-clad laminate according to [1] or [2], characterized in that the application in which the wiring width is processed to 500 μm or less is for a head-mounted display.
[8] The metal-clad laminate according to [1] or [2], characterized in that the application in which the wiring width is processed to 500 μm or less is for a transparent antenna.
 本発明によれば、絶縁樹脂層のHAZEが低くて視認性・光透過性に優れ、尚且つ耐光性にも優れた金属張積層板を得ることができる。本発明の金属張積層板は、微細な金属層(配線層)に加工されて、高い透明性が求められる用途、例えば、透明LEDビジョンや、ヘッドマウントディスプレイや、透明アンテナの基板用途に好適である。 According to the present invention, it is possible to obtain a metal-clad laminate having a low haze of the insulating resin layer, excellent visibility and light transmittance, and excellent light resistance. The metal-clad laminate of the present invention is processed into a fine metal layer (wiring layer) and is suitable for applications requiring high transparency, such as transparent LED vision, head-mounted displays, and substrate applications for transparent antennas.
 以下、本発明の実施の形態について説明する。 The following describes an embodiment of the present invention.
<金属張積層板>
 本発明の金属張積層板は、絶縁樹脂層と、この絶縁樹脂層の少なくとも一方の面に積層された金属層とを備えており、絶縁樹脂層の片側に金属層を有してもよいし、絶縁樹脂層の両側に金属層を有してもよい。
<Metal-clad laminate>
The metal-clad laminate of the present invention comprises an insulating resin layer and a metal layer laminated on at least one side of the insulating resin layer, and may have the metal layer on one side of the insulating resin layer or on both sides of the insulating resin layer.
 本発明の金属張積層板においては、当該金属張積層板の絶縁樹脂層に接する金属層の表面を、当該絶縁樹脂層を介して(絶縁樹脂層越しに)測定した場合における反射光の580nmにおける反射率が50%以下である。好ましくは45%以下、より好ましくは40%以下、さらに好ましくは30%以下である。他方、下限値については、反射しないほうが望ましいため、特に制限はない。580nm波長で測定する理由としては、当該波長は可視光波長の黄色光の領域であり、絶縁樹脂層と金属層としての銅箔との両方を見やすく、特に、絶縁樹脂層を介して銅箔を見るときに、サンプル間の違いが分かりやすい波長だからである。反射率の測定方法は、実施例に記載の方法で行うことが好ましい。具体的には、後述の実施例に示したとおり、金属張積層板(片面)の金属層鏡面側をガラス板に貼り付けたあと、絶縁樹脂層側から光(C光源)を照射して、絶縁樹脂層を介して金属層表面から反射される反射光を、視野角2°で測定した場合の580nmの反射率を測定する。なお、その際に測定される反射光には、金属層表面からの反射光だけに制限されず、絶縁樹脂層に起因するものが含まれていることは排除されない。 In the metal-clad laminate of the present invention, the reflectance of reflected light at 580 nm when the surface of the metal layer in contact with the insulating resin layer of the metal-clad laminate is measured through the insulating resin layer (through the insulating resin layer) is 50% or less. Preferably, it is 45% or less, more preferably 40% or less, and even more preferably 30% or less. On the other hand, there is no particular limit to the lower limit, since it is preferable that there is no reflection. The reason for measuring at a wavelength of 580 nm is that this wavelength is in the yellow light region of the visible light wavelength, making it easy to see both the insulating resin layer and the copper foil as the metal layer, and is a wavelength that makes it easy to see the differences between samples, especially when viewing the copper foil through the insulating resin layer. The reflectance is preferably measured by the method described in the examples. Specifically, as shown in the examples described later, after the mirror side of the metal layer of the metal-clad laminate (one side) is attached to a glass plate, light (C light source) is irradiated from the insulating resin layer side, and the reflected light reflected from the metal layer surface through the insulating resin layer is measured at a viewing angle of 2° to measure the reflectance at 580 nm. The reflected light measured at this time is not limited to only the reflected light from the metal layer surface, but may also include light originating from the insulating resin layer.
 つまり、本発明の金属張積層板においては、このように、黄色光を表す可視光波長領域である580nmの光を用いて、絶縁樹脂層を介して金属層を見た場合に測定される反射光の反射率を考慮することが重要な特徴となる。当該反射率が前記の範囲であると、絶縁樹脂層を介して観察する場合において金属層の存在が目立たないことから、透明性・視認性が高く要求されるFPCの用途(後述する透明LEDビジョンなど)において特に好ましい。 In other words, an important feature of the metal-clad laminate of the present invention is that it takes into consideration the reflectance of reflected light measured when the metal layer is viewed through the insulating resin layer using light of 580 nm, which is in the visible light wavelength range representing yellow light. If the reflectance is within the above range, the presence of the metal layer is not noticeable when observed through the insulating resin layer, making it particularly preferable for FPC applications that require high transparency and visibility (such as transparent LED vision, which will be described later).
 また、本発明の金属張積層板においては、前記と同様に絶縁樹脂層を介して(絶縁樹脂層越しに)測定した場合における反射光のL表色系のLが65以下であることが好ましく、また、aが15以下であることが好ましい。なお、その際に測定される反射光には、前記同様に金属層表面からの反射光だけに制限されず、絶縁樹脂層に起因するものが含まれていることは排除されない。このように、黄色光を表す可視光波長領域である580nmの光を用いて、絶縁樹脂層を介して金属層を見た場合に測定される反射光のL値及びa値などを考慮することにより、前記の反射率だけでなく、金属層の反射が抑えられて存在が目立たないようにすることができるため望ましい。 In addition, in the metal-clad laminate of the present invention, the L * of the L * a * b * color system of the reflected light when measured through the insulating resin layer (through the insulating resin layer) as described above is preferably 65 or less, and a * is preferably 15 or less. The reflected light measured at this time is not limited to only the reflected light from the metal layer surface as described above, and does not exclude the inclusion of light caused by the insulating resin layer. In this way, by considering the L * value and a * value of the reflected light measured when the metal layer is viewed through the insulating resin layer using light of 580 nm, which is a visible light wavelength region representing yellow light, not only the reflectance but also the reflection of the metal layer can be suppressed to make the presence less noticeable, which is desirable.
 比較的Lが低くて黒色されて光沢が抑えられていることが好ましく、前記方法で測定されたLが45以下であることがより好ましく、さらに好ましくは40以下であることがよい。他方、下限値については、特に制限はないが、金属層の色調とフィルム透明性とのバランスの調整しやすさの観点から10以上であることが好ましく、より好ましくは20以上、さらに好ましくは30以上であることがよい。 It is preferable that the L * is relatively low and blackened to suppress gloss, and it is more preferable that the L * measured by the above method is 45 or less, and even more preferable that it is 40 or less. On the other hand, there is no particular restriction on the lower limit, but from the viewpoint of ease of adjusting the balance between the color tone of the metal layer and the transparency of the film, it is preferably 10 or more, more preferably 20 or more, and even more preferably 30 or more.
 また、aは、+aが赤方向、-aが緑方向を表す色度である。本発明の金属張積層板においては金属層として銅(銅箔)が使用されることが多く、銅表面の反射光は比較的aが大きく赤みがかった色調であることが多い。また、人間の目には赤みがかった色調が目につきやすい傾向があることから、これらを考慮すると、本発明においては前記の測定方法における金属層表面の反射光のaの値が小さく赤みが抑えられて金属層の存在が目立たないことが好ましく、aは15以下であることが好ましい。より好ましくはaが10以下、さらに好ましくは5以下であることがよい。他方、下限値については特に制限は無いが、aのマイナス値が大きくなると前記のとおり緑がかった色調が強くなることから、好ましくは-10以上、より好ましくは-5以上、さらに好ましくは-2以上であることがよい。 In addition, a * is a chromaticity in which +a * represents the red direction and -a * represents the green direction. In the metal-clad laminate of the present invention, copper (copper foil) is often used as the metal layer, and the reflected light of the copper surface often has a relatively large a * and a reddish color tone. In addition, since reddish colors tend to be easily noticeable to the human eye, in consideration of these, in the present invention, it is preferable that the value of a * of the reflected light of the metal layer surface in the above-mentioned measurement method is small, the redness is suppressed, and the presence of the metal layer is not noticeable, and a * is preferably 15 or less. More preferably, a * is 10 or less, and even more preferably 5 or less. On the other hand, there is no particular restriction on the lower limit, but since the greenish color tone becomes stronger as the negative value of a * increases, it is preferably -10 or more, more preferably -5 or more, and even more preferably -2 or more.
 なお、前記の測定方法における金属層表面の反射光について、bについては特段の制限は無いが、+bは黄方向、-bは青方向を示す色度であることから、数値(絶対値)が小さいことが好適であり、好ましい上限値は15以下であり、より好ましくは12以下、さらに好ましくは10以下であることがよい。他方、好ましい下限値としては-15以上であり、より好ましくは-5以上、さらに好ましくは0以上であることがよい。 In the above-mentioned measurement method, there is no particular limitation on b * for the reflected light from the metal layer surface, but since +b * is a chromaticity indicating a yellow direction and −b * is a chromaticity indicating a blue direction, it is preferable that the numerical value (absolute value) is small, and the upper limit is preferably 15 or less, more preferably 12 or less, and even more preferably 10 or less. On the other hand, the lower limit is preferably −15 or more, more preferably −5 or more, and even more preferably 0 or more.
 なお、L表色系については、JIS Z 8781-4-2013に準拠して測定される。その際に測定されるL、a、b値については、昼光で照明される物体色を表示する場合に用いられるD65光源(JIS Z8720の昼光の標準イルミナント(測色用の光))またはC光源(JIS Z8720の昼光の補助イルミナント)を用いて、視野角2°又は10°で測定した値である。具体的には、後述の実施例に示したとおり、金属張積層板(片面)の金属層鏡面側をガラス板に貼り付けたあと、絶縁樹脂層側から光を照射して、絶縁樹脂層を介して金属層表面から反射される反射光を、視野角2°で測定した場合のL、a、bの値が測定される。 The L * a * b * color system is measured in accordance with JIS Z 8781-4-2013. The L * , a * , and b * values measured at this time are values measured at a viewing angle of 2° or 10° using a D65 light source (JIS Z8720 daylight standard illuminant (light for color measurement)) or a C light source (JIS Z8720 daylight auxiliary illuminant) used when displaying the color of an object illuminated by daylight. Specifically, as shown in the examples described later, the metal layer mirror side of the metal-clad laminate (one side) is attached to a glass plate, and then light is irradiated from the insulating resin layer side, and the reflected light reflected from the metal layer surface through the insulating resin layer is measured at a viewing angle of 2°. The L * , a * , and b * values are measured.
<金属層>
 金属層の材質としては、特に限定されるものではないが、例えば銅、ステンレス、鉄、ニッケル、ベリリウム、アルミニウム、亜鉛、インジウム、銀、金、スズ、ジルコニウム、タンタル、チタン、鉛、マグネシウム、マンガン及びこれらの合金等が挙げられる。この中でも、銅、鉄又はニッケルの金属元素、または酸化インジウムスズ(ITO)が好ましく、銅(銅箔)であることがより好ましい。銅箔としては、電解銅箔及び圧延銅箔のいずれも使用することができる。なお、これら金属層の選定にあっては、金属層の導電性やポリイミド層の光透過性、ポリイミド層との接着性など使用目的で必要とされる特性を発現するように選択することになる。金属層の形状に特に制限はないが、用途に応じて適宜加工などが施されてよい。長尺状に形成されたロール状のものが好適に用いられる。
<Metal Layer>
The material of the metal layer is not particularly limited, but examples thereof include copper, stainless steel, iron, nickel, beryllium, aluminum, zinc, indium, silver, gold, tin, zirconium, tantalum, titanium, lead, magnesium, manganese, and alloys thereof. Among these, the metal elements of copper, iron, or nickel, or indium tin oxide (ITO) are preferred, and copper (copper foil) is more preferred. As the copper foil, both electrolytic copper foil and rolled copper foil can be used. In addition, in selecting these metal layers, the metal layer is selected so as to exhibit the properties required for the intended use, such as the conductivity of the metal layer, the light transmittance of the polyimide layer, and the adhesion to the polyimide layer. There is no particular limit to the shape of the metal layer, but it may be processed appropriately depending on the application. A roll-shaped one formed in a long shape is preferably used.
 金属層の厚みは特に限定されるものではないが、好ましくは100μm以下であり、より好ましくは0.1~50μmの範囲内、さらに好ましくは1~35μmの範囲内がよい。 The thickness of the metal layer is not particularly limited, but is preferably 100 μm or less, more preferably in the range of 0.1 to 50 μm, and even more preferably in the range of 1 to 35 μm.
 また、絶縁樹脂層の光透過性や金属層の色調や、ディスプレイとして用いた場合の画像の明瞭度などの観点から、金属層の表面の表面粗さ(最大高さ粗さ)Rzが300nm以下であることが好ましく、より好ましくは200nm以下、さらに好ましくは180nm以下であることがよい。下限値については、絶縁樹脂層との接着を維持するとの理由から、20nm以上であることが好ましく、40nm以上であることがより好ましく、50nm以上であることがさらに好ましい。また、表面粗さ(算術平均粗さ)Raが0.005μm以上0.1μm以下であることが好ましく、より好ましくは0.005μm以上0.07μm以下、さらに好ましくは0.005μm以上0.03μm以下であることがよい。金属層の表面の前記Rz,Raを前記の範囲とすることによって、金属層をエッチングした後の絶縁樹脂層のHAZE(濁度)を比較的低くすることができ、また、金属層の後述のLやa等の諸特性も調整することができるため好ましい。 In addition, from the viewpoint of the light transmittance of the insulating resin layer, the color tone of the metal layer, and the clarity of the image when used as a display, the surface roughness (maximum height roughness) Rz of the surface of the metal layer is preferably 300 nm or less, more preferably 200 nm or less, and even more preferably 180 nm or less. As for the lower limit, it is preferable that it is 20 nm or more, more preferably 40 nm or more, and even more preferably 50 nm or more, because it maintains adhesion with the insulating resin layer. In addition, it is preferable that the surface roughness (arithmetic mean roughness) Ra is 0.005 μm or more and 0.1 μm or less, more preferably 0.005 μm or more and 0.07 μm or less, and even more preferably 0.005 μm or more and 0.03 μm or less. By setting the Rz and Ra of the surface of the metal layer in the above range, the HAZE (turbidity) of the insulating resin layer after etching the metal layer can be relatively low, and various properties such as L * and a * of the metal layer described later can also be adjusted, which is preferable.
 また、金属層については、L表色系のL、a及びbが所定の範囲のものを用いることが、前記した絶縁樹脂層を介して測定した金属層のL、a及びbを所定の範囲とすることができるため好ましい。当該金属層のL、a及びbについては、後述の実施例に示したとおり、金属層を単独で用いてその鏡面側をガラス板に貼り付けたあと、金属張積層板(片面)と同じ測定方法により求められる。 In addition, it is preferable to use a metal layer having L * , a * and b * in the L*a*b * color system in a predetermined range, because the L * , a * and b * of the metal layer measured through the insulating resin layer can be in a predetermined range. As shown in the examples described later, the L * , a * and b * of the metal layer are measured by the same measurement method as for the metal-clad laminate (one side) after the metal layer is used alone and its mirror side is attached to a glass plate.
 金属層のLは70以下であることが好ましく、より好ましくは65以下、さらに好ましくは60以下である。他方、Lの下限については、好ましくは10以上、より好ましくは40以上、さらに好ましくは45以上である。金属層のLが低いものは、金属の明るさが低下し、絶縁樹脂層を介して見るときに目立たないので好ましい。 The L * of the metal layer is preferably 70 or less, more preferably 65 or less, and even more preferably 60 or less. On the other hand, the lower limit of L * is preferably 10 or more, more preferably 40 or more, and even more preferably 45 or more. A metal layer with a low L * is preferable because the brightness of the metal is reduced and it is not noticeable when viewed through the insulating resin layer.
 また、金属層のaは20以下であることが好ましく、より好ましくは18以下、さらに好ましくは15以下である。他方、aの下限については、好ましくは1以上、より好ましくは2以上、さらに好ましくは3以上である。 Further, a * of the metal layer is preferably 20 or less, more preferably 18 or less, and further preferably 15 or less. On the other hand, the lower limit of a * is preferably 1 or more, more preferably 2 or more, and further preferably 3 or more.
 なお、金属層のbについては、好ましくは20以下、より好ましくは15以下、さらに好ましくは12以下であり、他方、下限については2以上が好ましく、より好ましくは5以上、さらに好ましくは7以上である。 The b * of the metal layer is preferably 20 or less, more preferably 15 or less, and even more preferably 12 or less, while the lower limit is preferably 2 or more, more preferably 5 or more, and even more preferably 7 or more.
 また、前記と同じ理由から、金属層それ自体の表面の光反射率が低いことが好ましく、波長580nmの反射率が50%以下であることが好ましい。より好ましくは45%以下、さらに好ましくは40%以下、さらにより好ましくは35%以下である。他方、下限値については、反射しないほうが望ましいため、特に制限はない。反射率の測定方法は、実施例に記載の方法で行うことが好ましい。 For the same reasons as above, it is preferable that the surface of the metal layer itself has low light reflectance, and the reflectance at a wavelength of 580 nm is preferably 50% or less. More preferably, it is 45% or less, even more preferably 40% or less, and even more preferably 35% or less. On the other hand, there is no particular restriction on the lower limit, since it is preferable that there is no reflection. The reflectance is preferably measured by the method described in the examples.
<絶縁樹脂層>
 本発明の絶縁樹脂層については、透明性・視認性が高く要求されるFPCの用途(後述する透明LEDビジョンなど)において好適な光透過性を有する必要があり、全光線透過率が70%以上であることが必要である。より透明に近いことが好ましく、全光線透過率が75%以上であることが好ましく、より好ましくは80%以上である。
<Insulating resin layer>
The insulating resin layer of the present invention must have suitable light transmittance for FPC applications (such as transparent LED vision described below) that require high transparency and visibility, and must have a total light transmittance of 70% or more. It is preferable that the insulating resin layer is closer to transparency, and the total light transmittance is preferably 75% or more, and more preferably 80% or more.
 また、このような高い視認性・光透過性の要求の観点から、絶縁樹脂層(金属層をエッチング除去した後の絶縁樹脂層)は、HAZEが50%以下である必要があり、好ましくは30%以下、より好ましくは10%以下、さらに好ましくは5%以下、さらにより好ましくは4%以下、最も好ましくは3%以下である。下限値については、HAZEが少ないほうが望ましいため限定されない。 In addition, from the viewpoint of the requirement of such high visibility and light transmission, the insulating resin layer (insulating resin layer after the metal layer is removed by etching) must have a haze of 50% or less, preferably 30% or less, more preferably 10% or less, even more preferably 5% or less, even more preferably 4% or less, and most preferably 3% or less. There is no lower limit since it is desirable to have less haze.
 絶縁樹脂層の厚みは、工程中の加工性、搬送性、フィルム自体の支持性を持たせる観点から、10~100μmの範囲とする。使用される用途などによって適宜選択することができるが、フィルムの透明性が必要であることから、好ましくは10~70μm、より好ましくは10~50μmである。 The thickness of the insulating resin layer is set to a range of 10 to 100 μm from the viewpoints of processability during processing, transportability, and supportability of the film itself. It can be appropriately selected depending on the application, but since the film needs to be transparent, it is preferably 10 to 70 μm, and more preferably 10 to 50 μm.
 また、本発明における絶縁樹脂層については、後述する透明LEDビジョンなどのように屋外使用での用途や、また、屋内であっても後述する透明アンテナなどのように太陽光に晒される状況下で使用される用途においても、耐光性が良好であって、視認性や透明性などの光学特性の変化(劣化)が少ないものであることが好ましい。すなわち、本発明の絶縁樹脂層としては、紫外線(UV)照射前後の黄色度(YI)の差の絶対値が30以下であるものが使用される。好ましくはYIの差の絶対値が10以下、より好ましくは5以下であることがよい。UV照射条件は、具体的には実施例に記載の方法で行われることが好ましい。 Furthermore, the insulating resin layer in the present invention preferably has good light resistance and undergoes little change (deterioration) in optical properties such as visibility and transparency, even in outdoor applications such as transparent LED vision described below, and indoor applications such as transparent antennas described below where the layer is exposed to sunlight. That is, the insulating resin layer used in the present invention has an absolute value of the difference in yellowness index (YI) before and after ultraviolet (UV) irradiation of 30 or less. The absolute value of the difference in YI is preferably 10 or less, and more preferably 5 or less. Specifically, the UV irradiation conditions are preferably performed as described in the Examples.
 また、同様の観点から、本発明における絶縁樹脂層は、UV照射前後のHAZEの差の絶対値が10%以下であることが好ましい。より好ましくは3%以下、さらに好ましくは2%以下であることがよい。 From the same viewpoint, it is preferable that the absolute value of the difference in haze between before and after UV irradiation of the insulating resin layer in the present invention is 10% or less. More preferably, it is 3% or less, and even more preferably, it is 2% or less.
 また、絶縁樹脂層のYIは50以下であることが好ましく、より好ましくは40以下、さらに好ましくは35以下である。例えば、絶縁樹脂層の厚さ25μmにおいて、それを満足することが好ましい。このような範囲に制御することで、絶縁樹脂層をほぼ無色に近づけることができる。一方、YIが上記のような範囲を外れると、黄色~黄褐色の着色が強くなって、絶縁樹脂層の視認性が低下する傾向がある。 Furthermore, the YI of the insulating resin layer is preferably 50 or less, more preferably 40 or less, and even more preferably 35 or less. For example, it is preferable to satisfy this when the insulating resin layer is 25 μm thick. By controlling it within this range, the insulating resin layer can be made almost colorless. On the other hand, if the YI is outside the above range, the yellow to yellowish brown coloring becomes stronger, and the visibility of the insulating resin layer tends to decrease.
 絶縁樹脂層の表面粗さが大きいほど光を照射するときにHAZEが悪化しディスプレイの視認性が低下する観点から、絶縁樹脂層の表面粗さRaは0.1μm以下であることが好ましく、より好ましくは0.07μm以下、さらに好ましくは0.03μm以下であることがよい。また、表面粗さRzが0.5μm以下であることが好ましく、より好ましくは0.4μm以下、さらに好ましくは0.3μm以下であることがよい。 From the viewpoint that the greater the surface roughness of the insulating resin layer, the worse the haze becomes when light is irradiated and the lower the visibility of the display, it is preferable that the surface roughness Ra of the insulating resin layer is 0.1 μm or less, more preferably 0.07 μm or less, and even more preferably 0.03 μm or less. In addition, it is preferable that the surface roughness Rz is 0.5 μm or less, more preferably 0.4 μm or less, and even more preferably 0.3 μm or less.
 絶縁樹脂層としては、特に制限されるものではなく、用途に応じて適宜選択することができる。好ましくは、ポリエチレンテレフタレート(PET)樹脂、ポリエチレンナフタレート(PEN)樹脂、液晶ポリマー(LCP)、パーフルオロアルコキシアルカン(PFA)樹脂、ポリメチルメタクリレート、シクロオレフィンポリマー、ポリカーボネート、ポリイミド(PI)樹脂などを挙げることができる。この中でも、耐熱性、接着性、柔軟性などに優れ、組成などに応じて透明性も高くすることができることから、ポリイミド樹脂を好ましく使用することができる。 The insulating resin layer is not particularly limited and can be appropriately selected depending on the application. Preferred examples include polyethylene terephthalate (PET) resin, polyethylene naphthalate (PEN) resin, liquid crystal polymer (LCP), perfluoroalkoxyalkane (PFA) resin, polymethyl methacrylate, cycloolefin polymer, polycarbonate, polyimide (PI) resin, etc. Among these, polyimide resin is preferably used because it has excellent heat resistance, adhesion, flexibility, etc., and can also be made highly transparent depending on the composition, etc.
 なお、絶縁樹脂層には、本発明の目的を阻害しない限りにおいて、必要に応じ、層中に無機フィラーを含有してもよい。具体的には、例えば二酸化ケイ素、酸化アルミニウム、酸化マグネシウム、酸化ベリリウム、窒化ホウ素、窒化アルミニウム、窒化ケイ素、フッ化アルミニウム、フッ化カルシウム等が挙げられる。これらは1種又は2種以上を混合して用いることができる。 The insulating resin layer may contain an inorganic filler as necessary, provided that the object of the present invention is not hindered. Specific examples include silicon dioxide, aluminum oxide, magnesium oxide, beryllium oxide, boron nitride, aluminum nitride, silicon nitride, aluminum fluoride, calcium fluoride, etc. These may be used alone or in combination of two or more.
 以下、本発明の好ましい絶縁樹脂層の一例として、ポリイミド樹脂を使用した場合の実施形態を説明する。 Below, we will explain an embodiment in which polyimide resin is used as an example of a preferred insulating resin layer of the present invention.
 使用されるポリイミド樹脂(ポリイミド層)としては、市販のポリイミドフィルムをそのまま使用することができ、制限されないが、絶縁樹脂層としてのポリイミド層の形成方法としては、例えば、[1]支持基材(例えば、金属層)に、ポリアミド酸の溶液を塗布・乾燥した後、イミド化して樹脂フィルムを製造する方法(以下、キャスト法)、[2]支持基材に、ポリアミド酸の溶液を塗布・乾燥した後、ポリアミド酸のゲルフィルムを支持基材から剥がし、イミド化して樹脂フィルムを製造する方法などで形成されたものが挙げられる。また、絶縁樹脂層が、複数のポリイミド層からなる場合、その製造方法の態様としては、例えば、[3]支持基材に、ポリアミド酸の溶液を塗布・乾燥することを複数回繰り返した後、イミド化を行う方法(以下、逐次塗工法)、[4]支持基材に、多層押出により、同時にポリアミド酸の積層構造体を塗布・乾燥した後、イミド化を行う方法(以下、多層押出法)などにより形成されたものが挙げられる。
 寸法安定性や、絶縁樹脂層と金属層との接着性、金属層をエッチング後の絶縁樹脂層のHAZE、或いは面内のリタデーションの制御の観点から、キャスト法・逐次塗工法により絶縁樹脂層(金属張積層板)を形成することが好ましい。
As the polyimide resin (polyimide layer) used, a commercially available polyimide film can be used as it is, and there is no limitation, but the method of forming the polyimide layer as the insulating resin layer includes, for example, [1] a method of applying a polyamic acid solution to a supporting substrate (e.g., a metal layer) and drying it, and then imidizing it to produce a resin film (hereinafter, the casting method), [2] a method of applying a polyamic acid solution to a supporting substrate and drying it, and then peeling off the polyamic acid gel film from the supporting substrate and imidizing it to produce a resin film, etc. In addition, when the insulating resin layer is composed of multiple polyimide layers, the embodiment of the manufacturing method includes, for example, [3] a method of applying a polyamic acid solution to a supporting substrate and drying it multiple times, and then imidizing it (hereinafter, the successive coating method), and [4] a method of applying a polyamic acid laminate structure to a supporting substrate by multilayer extrusion and drying it at the same time, and then imidizing it (hereinafter, the multilayer extrusion method).
From the viewpoints of dimensional stability, adhesion between the insulating resin layer and the metal layer, and control of the haze or in-plane retardation of the insulating resin layer after etching the metal layer, it is preferable to form the insulating resin layer (metal-clad laminate) by a casting method or a sequential coating method.
 ポリイミド溶液(又はポリアミド酸溶液)を基材上に塗布する方法としては特に制限されず、例えばコンマ、ダイ、ナイフ、リップ等のコーターにて塗布することが可能である。多層のポリイミド層の形成に際しては、ポリイミド溶液(又はポリアミド酸溶液)を基材に塗布、乾燥する操作を繰り返す方法が好ましい。ポリイミド層は単層のみから形成されてもよいが、ポリイミド層と金属層との接着性等を考慮すると複数層からなるものが好ましい。 The method for applying the polyimide solution (or polyamic acid solution) to the substrate is not particularly limited, and it is possible to apply it using a coater such as a comma, die, knife, or lip coater. When forming a multi-layer polyimide layer, a method in which the polyimide solution (or polyamic acid solution) is applied to the substrate and then dried is repeated is preferred. The polyimide layer may be formed from only a single layer, but a multi-layer structure is preferred in consideration of the adhesiveness between the polyimide layer and the metal layer, etc.
 複数のポリイミド層の場合は、金属層に直接積層するポリイミド層(P1)と金属層と直接積層しないポリイミド層(P2)との二層構造でもよい。下に例示する構成1~4のように特に制限はされないが、好ましくは三層であり、より好ましくは、第三のポリイミド層(P3)が(P1)/(P2)/(P3)の順に積層していることが好ましい。M1、M2は金属層を表し、M1とM2が同じであっても異なってもよい。金属層に直接積層するポリイミド層(P1)と第三のポリイミド層(P3)は同一組成であってもよい。例えば、複数のポリイミド層をキャスト法によって形成する場合では、キャスト面側から金属層に直接積層するポリイミド層(P1)及び金属層と直接積層しないポリイミド層(P2)がこの順序で積層された二層構造とすることでもよいし、キャスト面側から金属層に直接積層するポリイミド層(P1)及び金属層と直接積層しないポリイミド層(P2)、第三のポリイミド層(P3)がこの順序で積層された三層構造とすることでもよい。ここで言う「キャスト面」とはポリイミド層を形成する際における、支持体側の面のことを示す。支持体は、本発明の金属張積層板の金属層であってもよいし、ガラス等でもよいし、ゲルフィルム等を形成する際の支持体であってもよい。なお、複数のポリイミド層においてキャスト面と反対側の面は「ラミネート面」と記述するが、特に記述が無い場合、ラミネート面に金属層が積層されていてもされていなくてもよい。 In the case of multiple polyimide layers, a two-layer structure may be used, with a polyimide layer (P1) laminated directly to the metal layer and a polyimide layer (P2) not laminated directly to the metal layer. Although not particularly limited, as shown in the examples of configurations 1 to 4 below, three layers are preferred, and more preferably, the third polyimide layer (P3) is laminated in the order of (P1)/(P2)/(P3). M1 and M2 represent metal layers, and M1 and M2 may be the same or different. The polyimide layer (P1) laminated directly to the metal layer and the third polyimide layer (P3) may be of the same composition. For example, when multiple polyimide layers are formed by a casting method, a two-layer structure may be formed in which a polyimide layer (P1) that is directly laminated on a metal layer from the cast surface side and a polyimide layer (P2) that is not directly laminated on a metal layer are laminated in this order, or a three-layer structure may be formed in which a polyimide layer (P1) that is directly laminated on a metal layer from the cast surface side and a polyimide layer (P2) that is not directly laminated on a metal layer and a third polyimide layer (P3) are laminated in this order. The "cast surface" referred to here refers to the surface on the support side when forming a polyimide layer. The support may be the metal layer of the metal-clad laminate of the present invention, glass, etc., or a support when forming a gel film, etc. In addition, the surface opposite to the cast surface of the multiple polyimide layers is described as the "lamination surface", but unless otherwise specified, a metal layer may or may not be laminated on the laminate surface.
構成1;M1/P1/P2
構成2;M1/P1/P2/P1(又はP3)
構成3;M1/P1/P2/P1(又はP3)/M2(又はM1)
構成4;M1/P1/P2/P1(又はP3)/P2/P1(又はP3)/M2(又はM1)
Configuration 1: M1/P1/P2
Configuration 2: M1/P1/P2/P1 (or P3)
Configuration 3: M1/P1/P2/P1 (or P3)/M2 (or M1)
Configuration 4: M1/P1/P2/P1 (or P3)/P2/P1 (or P3)/M2 (or M1)
 ポリイミド層(P1)とポリイミド層(P3)を構成するポリイミドは熱可塑性ポリイミドとすることが好ましく、絶縁樹脂層としての接着性を向上させ、金属層との接着層としての適用が好適となる。 The polyimide constituting the polyimide layer (P1) and the polyimide layer (P3) is preferably a thermoplastic polyimide, which improves the adhesiveness as an insulating resin layer and is suitable for use as an adhesive layer with a metal layer.
 絶縁樹脂層の好ましい実施形態は、熱可塑性のポリイミド層(P1)と、非熱可塑性ポリイミドから構成される非熱可塑性ポリイミド層(P2)とを有し、この非熱可塑性ポリイミド層(P2)の少なくとも一方に熱可塑性ポリイミド層となるポリイミド層(P1)を有するものがよい。すなわち、ポリイミド層(P1)は、非熱可塑性ポリイミド層の片面又は両面に設けるとよい。 A preferred embodiment of the insulating resin layer has a thermoplastic polyimide layer (P1) and a non-thermoplastic polyimide layer (P2) made of a non-thermoplastic polyimide, and at least one of the non-thermoplastic polyimide layers (P2) has a polyimide layer (P1) that becomes a thermoplastic polyimide layer. In other words, the polyimide layer (P1) is preferably provided on one or both sides of the non-thermoplastic polyimide layer.
 また非熱可塑性ポリイミド層は低熱膨張性のポリイミド層を構成し、熱可塑性ポリイミド層は高熱膨張性のポリイミド層を構成する。ここで、低熱膨張性のポリイミド層は、熱膨張係数(CTE)が好ましくは1ppm/K以上25ppm/K以下の範囲内、より好ましくは3ppm/K以上25ppm/K以下の範囲内のポリイミド層をいう。また、高熱膨張性のポリイミド層は、CTEが好ましくは35ppm/K以上、より好ましくは35ppm/K以上80ppm/K以下の範囲内、更に好ましくは35ppm/K以上70ppm/K以下の範囲内のポリイミド層をいう。ポリイミド層は、使用する原料の組合せ、厚み、乾燥・硬化条件を適宜変更することで所望のCTEを有するポリイミド層とすることができる。 The non-thermoplastic polyimide layer constitutes a polyimide layer with low thermal expansion, and the thermoplastic polyimide layer constitutes a polyimide layer with high thermal expansion. Here, the low thermal expansion polyimide layer refers to a polyimide layer with a coefficient of thermal expansion (CTE) preferably in the range of 1 ppm/K to 25 ppm/K, more preferably in the range of 3 ppm/K to 25 ppm/K. The high thermal expansion polyimide layer refers to a polyimide layer with a CTE preferably in the range of 35 ppm/K or more, more preferably in the range of 35 ppm/K to 80 ppm/K, and even more preferably in the range of 35 ppm/K to 70 ppm/K. The polyimide layer can be made to have a desired CTE by appropriately changing the combination of raw materials used, the thickness, and the drying and curing conditions.
 絶縁樹脂層全体の熱膨張係数(CTE)としては、10~30ppm/Kの範囲内であることが好ましい。このような範囲に制御することで、カール等の変形を抑制でき、また高い寸法安定性を担保できる。ここで、CTEは、絶縁樹脂層のMD方向及びTD方向の熱膨張係数の平均値である。 The coefficient of thermal expansion (CTE) of the entire insulating resin layer is preferably within the range of 10 to 30 ppm/K. By controlling it within this range, deformation such as curling can be suppressed and high dimensional stability can be ensured. Here, CTE is the average value of the coefficient of thermal expansion of the insulating resin layer in the MD and TD directions.
 ここで、非熱可塑性ポリイミドとは、一般に加熱しても軟化、接着性を示さないポリイミドのことであるが、本発明においては、動的粘弾性測定装置(DMA)を用いて測定した30℃における貯蔵弾性率が1.0×10Pa以上であり、350℃における貯蔵弾性率が1.0×10Pa以上であるポリイミドをいう。また、熱可塑性ポリイミド(「TPI」ともいう。)とは、一般にガラス転移温度(Tg)が明確に確認できるポリイミドのことであるが、本実施の形態では、DMAを用いて測定した、30℃における貯蔵弾性率が1.0×10Pa以上であり、300℃における貯蔵弾性率が1.0×10Pa未満であるポリイミドをいう。 Here, non-thermoplastic polyimide generally refers to polyimide that does not soften or exhibit adhesiveness even when heated, but in the present invention refers to polyimide having a storage modulus of 1.0×10 9 Pa or more at 30° C. and a storage modulus of 1.0×10 9 Pa or more at 350° C., as measured using a dynamic mechanical analyzer (DMA). Thermoplastic polyimide (also referred to as "TPI") generally refers to polyimide whose glass transition temperature (Tg) can be clearly confirmed, but in the present embodiment refers to polyimide having a storage modulus of 1.0×10 9 Pa or more at 30° C. and a storage modulus of less than 1.0×10 8 Pa at 300° C., as measured using a DMA.
 絶縁樹脂層のうち、金属層に接するポリイミド層(P1)の厚みをT1、主たるポリイミド層の厚みをT2とした際に、T1の厚みは1μm以上4μm以下の範囲内が好ましく、T2の厚みは4μm以上30μm以下の範囲内が好ましい。別の観点から、T1の厚みは、絶縁樹脂層の厚みに対して20%以下とすることが好ましい。ここで、「主たる」とは、絶縁樹脂層を構成する複数のポリイミド層において最も大きな厚みを有することを意味し、好ましくは、絶縁樹脂層の厚みに対して60%以上、より好ましくは70%以上、さらに好ましくは80%以上の厚みを有することをいう。主たるポリイミド層は、非熱可塑性ポリイミドで構成することが好ましい。 When the thickness of the polyimide layer (P1) in contact with the metal layer in the insulating resin layer is T1 and the thickness of the main polyimide layer is T2, the thickness of T1 is preferably in the range of 1 μm to 4 μm, and the thickness of T2 is preferably in the range of 4 μm to 30 μm. From another perspective, the thickness of T1 is preferably 20% or less of the thickness of the insulating resin layer. Here, "main" means that it has the largest thickness among the multiple polyimide layers that make up the insulating resin layer, and preferably has a thickness of 60% or more, more preferably 70% or more, and even more preferably 80% or more of the thickness of the insulating resin layer. The main polyimide layer is preferably composed of a non-thermoplastic polyimide.
 ポリイミド層からなる絶縁樹脂層の場合、絶縁樹脂層は、熱分解試験において、1%重量減少温度が(Td1)は400℃以上であり、好ましくは430℃以上、さらに好ましくは450℃以上が好ましい。このような範囲に制御することで、FPCの主要構成成分などに適用しても十分な耐熱性を有する。 In the case of an insulating resin layer made of a polyimide layer, the insulating resin layer has a 1% weight loss temperature (Td1) of 400°C or higher in a thermal decomposition test, preferably 430°C or higher, and more preferably 450°C or higher. By controlling it within this range, it has sufficient heat resistance even when used as a major component of an FPC.
 また、ポリイミド層からなる絶縁樹脂層は、ハンダ耐熱試験による耐熱性(ハンダ耐熱性)が190℃以上であることが好ましく、より好ましくは200℃以上である。ハンダ耐熱性は実施例に記載の方法で評価される。 In addition, the insulating resin layer made of a polyimide layer preferably has a heat resistance (solder heat resistance) of 190°C or higher in a solder heat resistance test, and more preferably 200°C or higher. The solder heat resistance is evaluated by the method described in the examples.
 また、ポリイミド層からなる絶縁樹脂層は、ガラス転移温度(Tg)は210℃以上の耐熱性を有することが好ましい。より好ましくは250℃以上、さらに好ましくは300℃以上である。 In addition, the insulating resin layer made of a polyimide layer preferably has a heat resistance of a glass transition temperature (Tg) of 210°C or higher. More preferably, it is 250°C or higher, and even more preferably, it is 300°C or higher.
 また、ポリイミド層からなる絶縁樹脂層は、面内リタデーションが1nm以上100nm以下であることが好ましい。より好ましくは、1nm以上20nm未満である。 Furthermore, it is preferable that the insulating resin layer made of a polyimide layer has an in-plane retardation of 1 nm or more and 100 nm or less. More preferably, it is 1 nm or more and less than 20 nm.
(ポリイミド層の組成)
 本発明における絶縁樹脂層に用いられるポリイミド層の組成については、特に制限されないが、以下の組成を有するようにすることが好ましい。
(Polyimide Layer Composition)
The composition of the polyimide layer used in the insulating resin layer in the present invention is not particularly limited, but it is preferable that the polyimide layer has the following composition.
 ポリイミド層は、酸無水物残基及びジアミン残基を含むポリイミドからなり、少なくとも1層のポリイミド層(P1)を構成しているポリイミドが、酸無水物成分から誘導される全酸無水物残基に対し、一般式(1)で表される芳香族テトラカルボン酸無水物から誘導される酸無水物残基を50モル%以上含有し、好ましくは70モル%以上、より好ましくは90モル%以上がよく、このような範囲にすることで耐熱性及び低リタデーションを発現しやすい。また、該ポリイミドに含まれる全ジアミン残基に対し、一般式(2)で表わされる芳香族ジアミン化合物から誘導されるジアミン残基を50モル%以上含有する。好ましくは70モル%以上、より好ましくは90モル%以上である。 The polyimide layer is made of a polyimide containing an acid anhydride residue and a diamine residue, and the polyimide constituting at least one polyimide layer (P1) contains 50 mol% or more, preferably 70 mol% or more, and more preferably 90 mol% or more of acid anhydride residues derived from an aromatic tetracarboxylic acid anhydride represented by general formula (1) relative to the total acid anhydride residues derived from the acid anhydride component. By setting the content in such a range, heat resistance and low retardation are easily exhibited. In addition, the polyimide contains 50 mol% or more of diamine residues derived from an aromatic diamine compound represented by general formula (2) relative to the total diamine residues contained in the polyimide. Preferably, the content is 70 mol% or more, and more preferably, the content is 90 mol% or more.
 一般式(1)で表される芳香族テトラカルボン酸無水物は、ポリイミドに柔軟性を付与するとともに、高分子鎖間のπ-πスタッキング等の相互作用を減少させ、芳香族テトラカルボン酸残基と芳香族ジアミン残基との間の電荷移動(CT)を起こりにくくするため、得られるポリイミドを無色透明に近づけることができると考えられる。また、一般式(2)で表される芳香族ジアミン化合物は2つ以上のベンゼン環を有し、少なくとも2つのベンゼン環に直結したアミノ基と2価の連結基Zがあることで、ポリイミド分子鎖が有する自由度が増加して高い屈曲性を有しており、ポリイミド分子鎖の柔軟性の向上に寄与し、高靭性化を促すと考えられる。なお、本発明において、酸無水物残基とは、テトラカルボン酸二無水物から誘導された4価の基のことを表し、ジアミン残基とは、ジアミン化合物から誘導された2価の基のことを表す。 The aromatic tetracarboxylic anhydride represented by the general formula (1) imparts flexibility to the polyimide, reduces interactions such as π-π stacking between polymer chains, and makes charge transfer (CT) between the aromatic tetracarboxylic acid residue and the aromatic diamine residue difficult to occur, so that it is believed that the resulting polyimide can be made closer to colorless and transparent. In addition, the aromatic diamine compound represented by the general formula (2) has two or more benzene rings, and has amino groups and divalent linking groups Z directly bonded to at least two benzene rings, which increases the degree of freedom of the polyimide molecular chain and gives it high flexibility, which is believed to contribute to improving the flexibility of the polyimide molecular chain and promote high toughness. In the present invention, the acid anhydride residue refers to a tetravalent group derived from a tetracarboxylic dianhydride, and the diamine residue refers to a divalent group derived from a diamine compound.
 金属層に直接積層するポリイミド層(P1)を構成するポリイミドに含有する酸無水物残基は、一般式(1)で表される芳香族テトラカルボン酸無水物から誘導される酸無水物残基であることが好ましい。 The acid anhydride residue contained in the polyimide constituting the polyimide layer (P1) that is directly laminated to the metal layer is preferably an acid anhydride residue derived from an aromatic tetracarboxylic acid anhydride represented by the general formula (1).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 式(1)において、Xは単結合、-O-、又は-C(CF-から選ばれる2価の基を示す。 In formula (1), X represents a divalent group selected from a single bond, --O--, or --C(CF 3 ) 2 --.
 式(1)で表される芳香族テトラカルボン酸無水物としては、例えば4,4’-オキシジフタル酸二無水物(ODPA)、3,3',4,4'-ビフェニルテトラカルボン酸二無水物(BPDA)、2,2-ビス(3,4-ジカルボキシフェニル)-ヘキサフルオロプロパン二無水物(6FDA)が挙げられる。これらの芳香族テトラカルボン酸無水物は、ポリイミドフィルムに強度と柔軟性を与えることが可能であり、耐熱性、透明性に優れ、CTEを適切な範囲に制御できることから好ましい。この中でも特に好ましくは、ODPA、6FDAがよい。 Examples of aromatic tetracarboxylic acid anhydrides represented by formula (1) include 4,4'-oxydiphthalic dianhydride (ODPA), 3,3',4,4'-biphenyltetracarboxylic dianhydride (BPDA), and 2,2-bis(3,4-dicarboxyphenyl)-hexafluoropropane dianhydride (6FDA). These aromatic tetracarboxylic acid anhydrides are preferred because they can impart strength and flexibility to the polyimide film, have excellent heat resistance and transparency, and can control the CTE within an appropriate range. Among these, ODPA and 6FDA are particularly preferred.
 ポリイミド層(P1)を構成するポリイミドに含有するジアミン残基は、一般式(2)で表される芳香族ジアミン化合物から誘導されるジアミン残基であることが好ましい。 The diamine residue contained in the polyimide constituting the polyimide layer (P1) is preferably a diamine residue derived from an aromatic diamine compound represented by general formula (2).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 式(2)において、Zは独立に-O-、-S-、-CH-、-CH(CH)-、-C(CH)-、-CO-、-COO-、-SO-、-NH-又は-NHCO-から選ばれる2価の基を示し、好ましくは-O-である。nは0~4の整数を示し、好ましくは0又は1である。Rは置換基であり、独立に、ハロゲン原子、又は炭素数1~6のハロゲン原子で置換されてもよいアルキル基若しくはアルコキシ基、又は炭素数1~6の1価の炭化水素基若しくはアルコキシ基で置換されてもよいフェニル基若しくはフェノキシ基を示す。nは独立に0~3の整数を示し、好ましくは0又は1である。ここで、「独立に」とは、上記式(2)において、複数の置換基R、2価の基Z、さらに整数nが、同一でもよいし、異なっていてもよいことを意味する。なお、上記式(2)において、末端の二つのアミノ基における水素原子は置換されていてもよく、例えば-NR(ここで、R,Rは、独立してアルキル基などの任意の置換基を意味する)であってもよい。他のジアミン化合物についても同様である。
 ただし、一般式(1)中、Xが単結合である場合、式(2)において、Zは独立に-O-、-S-、-CH-、-CH(CH)-又は-NH-から選ばれる2価の基を示す。
In formula (2), Z independently represents a divalent group selected from -O-, -S-, -CH 2 -, -CH(CH 3 )-, -C(CH 3 ) 2 -, -CO-, -COO-, -SO 2 -, -NH-, or -NHCO-, and is preferably -O-. n 2 represents an integer of 0 to 4, and is preferably 0 or 1. R is a substituent, and independently represents a halogen atom, an alkyl group or an alkoxy group having 1 to 6 carbon atoms which may be substituted with a halogen atom, or a phenyl group or a phenoxy group which may be substituted with a monovalent hydrocarbon group or an alkoxy group having 1 to 6 carbon atoms. n 1 independently represents an integer of 0 to 3, and is preferably 0 or 1. Here, "independently" means that in the above formula (2), a plurality of substituents R, a divalent group Z, and further an integer n 1 may be the same or different. In the above formula (2), the hydrogen atoms in the two terminal amino groups may be substituted, for example, -NR3R4 (wherein R3 and R4 each independently represent an arbitrary substituent such as an alkyl group). The same applies to other diamine compounds.
However, when X in formula (1) is a single bond, Z in formula (2) independently represents a divalent group selected from -O-, -S-, -CH 2 -, -CH(CH 3 )- or -NH-.
 式(2)で表される芳香族ジアミン化合物としては、例えば、3,3’-ジアミノジフェニルメタン、3,3’-ジアミノジフェニルプロパン、3,3’-ジアミノジフェニルスルフィド、3,3’-ジアミノジフェニルスルホン、3,3-ジアミノジフェニルエーテル、3,4'-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルプロパン、3,4’-ジアミノジフェニルスルフィド、3,4’-ジアミノベンゾフェノン、(3,3’-ビスアミノ)ジフェニルアミン、1,4-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン(APB)、1,3-ビス(4-アミノフェノキシ)ベンゼン(TPE-R)、3-[4-(4-アミノフェノキシ)フェノキシ]ベンゼンアミン、3-[3-(4-アミノフェノキシ)フェノキシ]ベンゼンアミン、4,4'-[2-メチル-(1,3-フェニレン)ビスオキシ]ビスアニリン、4,4'-[4-メチル-(1,3-フェニレン)ビスオキシ]ビスアニリン、4,4'-[5-メチル-(1,3-フェニレン)ビスオキシ]ビスアニリン、ビス[4-(3-アミノフェノキシ)フェニル]メタン、ビス[4-(3-アミノフェノキシ)フェニル]プロパン、ビス[4-(3-アミノフェノキシ)フェニル]エーテル、ビス[4-(3-アミノフェノキシ)フェニル]スルホン、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、ビス[4-(3-アミノフェノキシ)]ベンゾフェノン、ビス[4,4'-(3-アミノフェノキシ)]ベンズアニリド、4-[3-[4-(4-アミノフェノキシ)フェノキシ]フェノキシ]アニリン、4,4’-[オキシビス(3,1-フェニレンオキシ)]ビスアニリン、ビス[4-(4-アミノフェノキシ)フェニル]エーテル(BAPE)、ビス[4-(4-アミノフェノキシ)フェニル]ケトン(BAPK)、ビス[4-(3-アミノフェノキシ)]ビフェニル、ビス[4-(4-アミノフェノキシ)]ビフェニル、2,2-ビス(4-アミノフェノキシフェニル)プロパン(BAPP)、4,4’‐ジアミノジフェニルエーテルなどが挙げられる。これらの中でも、1,3-ビス(3-アミノフェノキシ)ベンゼン(APB)、1,3-ビス(4-アミノフェノキシ)ベンゼン(TPE-R)が好ましい。 Examples of the aromatic diamine compound represented by formula (2) include 3,3'-diaminodiphenylmethane, 3,3'-diaminodiphenylpropane, 3,3'-diaminodiphenyl sulfide, 3,3'-diaminodiphenyl sulfone, 3,3-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 3,4'-diaminodiphenylmethane, 3,4'-diaminodiphenylpropane, 3,4'-diaminodiphenyl sulfide, 3,4'-diaminobenzophenone, (3,3'-bisamino)di Phenylamine, 1,4-bis(3-aminophenoxy)benzene, 1,3-bis(3-aminophenoxy)benzene (APB), 1,3-bis(4-aminophenoxy)benzene (TPE-R), 3-[4-(4-aminophenoxy)phenoxy]benzenamine, 3-[3-(4-aminophenoxy)phenoxy]benzenamine, 4,4'-[2-methyl-(1,3-phenylene)bisoxy]bisaniline, 4,4'-[4-methyl-(1,3-phenylene)bisoxy]bisaniline, 4,4'-[5 -Methyl-(1,3-phenylene)bisoxy]bisaniline, bis[4-(3-aminophenoxy)phenyl]methane, bis[4-(3-aminophenoxy)phenyl]propane, bis[4-(3-aminophenoxy)phenyl]ether, bis[4-(3-aminophenoxy)phenyl]sulfone, bis[4-(4-aminophenoxy)phenyl]sulfone, bis[4-(3-aminophenoxy)]benzophenone, bis[4,4'-(3-aminophenoxy)]benzanilide, 4-[3-[4-(4-aminophenoxy)] Examples of such bis(aminophenoxy)phenyl]aniline, 4,4'-[oxybis(3,1-phenyleneoxy)]bisaniline, bis[4-(4-aminophenoxy)phenyl]ether (BAPE), bis[4-(4-aminophenoxy)phenyl]ketone (BAPK), bis[4-(3-aminophenoxy)]biphenyl, bis[4-(4-aminophenoxy)]biphenyl, 2,2-bis(4-aminophenoxyphenyl)propane (BAPP), 4,4'-diaminodiphenyl ether, etc. Among these, 1,3-bis(3-aminophenoxy)benzene (APB) and 1,3-bis(4-aminophenoxy)benzene (TPE-R) are preferred.
 ただし、本発明の目的を阻害しない限り、他の酸無水物残基を含有してもよい。他の酸無水物残基を含む場合は、全酸無水物残基の50モル%以下であり、好ましくは30モル%未満、より好ましくは10モル%未満である。 However, other acid anhydride residues may be contained as long as they do not impede the objective of the present invention. If other acid anhydride residues are contained, the amount is 50 mol % or less of the total acid anhydride residues, preferably less than 30 mol %, and more preferably less than 10 mol %.
 他の酸無水物残基としては、例えば、ピロメリット酸二無水物、3,3',4,4'-ベンゾフェノンテトラカルボン酸二無水物、2,2',3,3'-ベンゾフェノンテトラカルボン酸二無水物、2,3,3',4'-ベンゾフェノンテトラカルボン酸二無水物、ナフタレン-1,2,5,6-テトラカルボン酸二無水物、ナフタレン-1,2,4,5-テトラカルボン酸二無水物、ナフタレン-1,4,5,8-テトラカルボン酸二無水物、ナフタレン-1,2,6,7-テトラカルボン酸二無水物、4,8-ジメチル-1,2,3,5,6,7-ヘキサヒドロナフタレン-1,2,5,6-テトラカルボン酸二無水物、4,8-ジメチル-1,2,3,5,6,7-ヘキサヒドロナフタレン-2,3,6,7-テトラカルボン酸二無水物、2,6-ジクロロナフタレン-1,4,5,8-テトラカルボン酸二無水物、2,7-ジクロロナフタレン-1,4,5,8-テトラカルボン酸二無水物、2,3,6,7-テトラクロロナフタレン-1,4,5,8-テトラカルボン酸二無水物、1,4,5,8-テトラクロロナフタレン-2,3,6,7-テトラカルボン酸二無水物、2,2',3,3'-ビフェニルテトラカルボン酸二無水物、2,3,3',4'-ビフェニルテトラカルボン酸二無水物、3,3'',4,4''-p-テルフェニルテトラカルボン酸二無水物、2,2'',3,3''-p-テルフェニルテトラカルボン酸二無水物、2,3,3'',4''-p-テルフェニルテトラカルボン酸二無水物、2,2-ビス(2,3-ジカルボキシフェニル)-プロパン二無水物、2,2-ビス(3,4-ジカルボキシフェニル)-プロパン二無水物、ビス(2,3-ジカルボキシフェニル)エーテル二無水物、ビス(2,3-ジカルボキシフェニル)メタン二無水物、ビス(3.4-ジカルボキシフェニル)メタン二無水物、ビス(2,3-ジカルボキシフェニル)スルホン二無水物、ビス(3,4-ジカルボキシフェニル)スルホン二無水物、1,1-ビス(2,3-ジカルボキシフェニル)エタン二無水物、1,1-ビス(3,4-ジカルボキシフェニル)エタン二無水物、ペリレン-2,3,8,9-テトラカルボン酸二無水物、ペリレン-3,4,9,10-テトラカルボン酸二無水物、ペリレン-4,5,10,11-テトラカルボン酸二無水物、ペリレン-5,6,11,12-テトラカルボン酸二無水物、フェナンスレン-1,2,7,8-テトラカルボン酸二無水物、フェナンスレン-1, 2,6,7-テトラカルボン酸二無水物、フェナンスレン-1,2,9,10-テトラカルボン酸二無水物、シクロペンタン-1,2,3,4-テトラカルボン酸二無水物、ピラジン-2,3,5,6-テトラカルボン酸二無水物、ピロリジン-2,3,4,5-テトラカルボン酸二無水物、チオフェン-2,3,4,5-テトラカルボン酸二無水物、4,4'-オキシジフタル酸二無水物、(トリフルオロメチル)ピロメリット酸二無水物、ジ(トリフルオロメチル)ピロメリット酸二無水物、ジ(ヘプタフルオロプロピル)ピロメリット酸二無水物、ペンタフルオロエチルピロメリット酸二無水物、ビス{3,5-ジ(トリフルオロメチル)フェノキシ}ピロメリット酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)ヘキサフルオロプロパン二無水物、5,5'-ビス(トリフルオロメチル)-3,3',4,4'-テトラカルボキシビフェニル二無水物、2,2',5,5'-テトラキス(トリフルオロメチル)-3,3',4,4'-テトラカルボキシビフェニル二無水物、5,5'-ビス(トリフルオロメチル)-3,3',4,4'-テトラカルボキシジフェニルエーテル二無水物、5,5'-ビス(トリフルオロメチル)-3,3',4,4'-テトラカルボキシベンゾフェノン二無水物、ビス{(トリフルオロメチル)ジカルボキシフェノキシ}ベンゼン二無水物、ビス{(トリフルオロメチル)ジカルボキシフェノキシ}トリフルオロメチルベンゼン二無水物、ビス(ジカルボキシフェノキシ)トリフルオロメチルベンゼン二無水物、ビス(ジカルボキシフェノキシ)ビス(トリフルオロメチル)ベンゼン二無水物、ビス(ジカルボキシフェノキシ)テトラキス(トリフルオロメチル)ベンゼン二無水物、2,2-ビス{(4-(3,4-ジカルボキシフェノキシ)フェニル}ヘキサフルオロプロパン二無水物、ビス{(トリフルオロメチル)ジカルボキシフェノキシ}ビフェニル二無水物、ビス{(トリフルオロメチル)ジカルボキシフェノキシ}ビス(トリフルオロメチル)ビフェニル二無水物、ビス{(トリフルオロメチル)ジカルボキシフェノキシ}ジフェニルエーテル二無水物、ビス(ジカルボキシフェノキシ)ビス(トリフルオロメチル)ビフェニル二無水物、1,2,3,4-シクロブタンテトラカルボン酸二無水物、フルオレニリデンビス無水フタル酸、1,2,4,5-シクロヘキサンテトラカルボン酸ニ無水物から誘導される酸無水物残基などが挙げられる。これらの中でも、ポリイミドフィルムに強度と柔軟性を与えることが可能であり、ポリイミドフィルムの熱膨張係数(CTE)が上がりすぎず、適切な範囲に制御できることからピロメリット酸二無水物又は3,3’,4,4’-ビフェニルテトラカルボン酸二無水物から誘導される酸無水物残基が好ましい。 Other acid anhydride residues include, for example, pyromellitic dianhydride, 3,3',4,4'-benzophenonetetracarboxylic dianhydride, 2,2',3,3'-benzophenonetetracarboxylic dianhydride, 2,3,3',4'-benzophenonetetracarboxylic dianhydride, naphthalene-1,2,5,6-tetracarboxylic dianhydride, naphthalene-1,2,4,5-tetracarboxylic dianhydride, naphthalene-1,4,5,8-tetracarboxylic dianhydride, naphthalene-1,2,6,7-tetracarboxylic dianhydride, and 4,8-dimethyl-1,2,3,5,6,7-hexahydronaphthalene. -1,2,5,6-tetracarboxylic dianhydride, 4,8-dimethyl-1,2,3,5,6,7-hexahydronaphthalene-2,3,6,7-tetracarboxylic dianhydride, 2,6-dichloronaphthalene-1,4,5,8-tetracarboxylic dianhydride, 2,7-dichloronaphthalene-1,4,5,8-tetracarboxylic dianhydride, 2,3,6,7-tetrachloronaphthalene-1,4,5,8-tetracarboxylic dianhydride, 1,4,5,8-tetrachloronaphthalene-2,3,6,7-tetracarboxylic dianhydride, 2,2',3,3'-biphenyltetracarboxylic dianhydride, 2,3,3 ',4'-biphenyltetracarboxylic dianhydride, 3,3'',4,4''-p-terphenyltetracarboxylic dianhydride, 2,2'',3,3''-p-terphenyltetracarboxylic dianhydride, 2,3,3'',4''-p-terphenyltetracarboxylic dianhydride, 2,2-bis(2,3-dicarboxyphenyl)-propane dianhydride, 2,2-bis(3,4-dicarboxyphenyl)-propane dianhydride, bis(2,3-dicarboxyphenyl)ether dianhydride, bis(2,3-dicarboxyphenyl)methane dianhydride, bis(3.4-dicarboxyphenyl)methane dianhydride Anhydride, bis(2,3-dicarboxyphenyl)sulfone dianhydride, bis(3,4-dicarboxyphenyl)sulfone dianhydride, 1,1-bis(2,3-dicarboxyphenyl)ethane dianhydride, 1,1-bis(3,4-dicarboxyphenyl)ethane dianhydride, perylene-2,3,8,9-tetracarboxylic dianhydride, perylene-3,4,9,10-tetracarboxylic dianhydride, perylene-4,5,10,11-tetracarboxylic dianhydride, perylene-5,6,11,12-tetracarboxylic dianhydride, phenanthrene-1,2,7,8-tetracarboxylic dianhydride, phenanthrene 1,2,6,7-tetracarboxylic dianhydride, phenanthrene-1,2,9,10-tetracarboxylic dianhydride, cyclopentane-1,2,3,4-tetracarboxylic dianhydride, pyrazine-2,3,5,6-tetracarboxylic dianhydride, pyrrolidine-2,3,4,5-tetracarboxylic dianhydride, thiophene-2,3,4,5-tetracarboxylic dianhydride, 4,4'-oxydiphthalic dianhydride, (trifluoromethyl)pyromellitic dianhydride, di(trifluoromethyl)pyromellitic dianhydride, di(heptafluoropropyl)pyromellitic dianhydride, pentafluoro Ethyl pyromellitic dianhydride, bis{3,5-di(trifluoromethyl)phenoxy}pyromellitic dianhydride, 2,2-bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydride, 5,5'-bis(trifluoromethyl)-3,3',4,4'-tetracarboxybiphenyl dianhydride, 2,2',5,5'-tetrakis(trifluoromethyl)-3,3',4,4'-tetracarboxybiphenyl dianhydride, 5,5'-bis(trifluoromethyl)-3,3',4,4'-tetracarboxydiphenyl ether dianhydride, 5,5'-bis(trifluoromethyl)- 3,3',4,4'-Tetracarboxybenzophenone dianhydride, bis{(trifluoromethyl)dicarboxyphenoxy}benzene dianhydride, bis{(trifluoromethyl)dicarboxyphenoxy}trifluoromethylbenzene dianhydride, bis(dicarboxyphenoxy)trifluoromethylbenzene dianhydride, bis(dicarboxyphenoxy)bis(trifluoromethyl)benzene dianhydride, bis(dicarboxyphenoxy)tetrakis(trifluoromethyl)benzene dianhydride, 2,2-bis{(4-(3,4-dicarboxyphenoxy)phenyl}hexafluoropropane dianhydride Examples of suitable anhydride residues include those derived from bis(trifluoromethyl)dicarboxyphenoxy)biphenyl dianhydride, bis(trifluoromethyl)dicarboxyphenoxy)bis(trifluoromethyl)biphenyl dianhydride, bis(trifluoromethyl)dicarboxyphenoxy)diphenyl ether dianhydride, bis(dicarboxyphenoxy)bis(trifluoromethyl)biphenyl dianhydride, 1,2,3,4-cyclobutane tetracarboxylic dianhydride, fluorenylidene bisphthalic anhydride, and 1,2,4,5-cyclohexane tetracarboxylic dianhydride. Among these, the acid anhydride residues derived from pyromellitic dianhydride or 3,3',4,4'-biphenyl tetracarboxylic dianhydride are preferred, since they can impart strength and flexibility to the polyimide film, and the coefficient of thermal expansion (CTE) of the polyimide film does not increase too much and can be controlled within an appropriate range.
 同様に、本発明の目的を阻害しない限り、他のジアミン化合物から誘導されるジアミン残基を含有してもよい。他のジアミン残基を含む場合は、全ジアミン残基の50モル%以下であり、好ましくは30モル%未満、より好ましくは10モル%未満である。 Similarly, diamine residues derived from other diamine compounds may be contained as long as they do not impede the object of the present invention. When other diamine residues are contained, the amount is 50 mol % or less of the total diamine residues, preferably less than 30 mol %, and more preferably less than 10 mol %.
 他のジアミン残基としては、例えば、2,2'-ビス(トリフルオロメチル)-4,4'-ジアミノビフェニル(TFMB)、ビス[4-(アミノフェノキシ)フェニル]スルホン(BAPS)、4,6-ジメチル-m-フェニレンジアミン、2,5-ジメチル-p-フェニレンジアミン、2,4-ジアミノメシチレン、3,3'-ジメチル-4,4'-ジアミノジフェニルメタン、3,5,3',5'-テトラメチル-4,4'-ジアミノジフェニルメタン、2,4-トルエンジアミン、m-フェニレンジアミン、p-フェニレンジアミン、4,4'-ジアミノジフェニルプロパン、3,3'-ジアミノジフェニルプロパン、4,4'-ジアミノジフェニルエタン、3,3'-ジアミノジフェニルエタン、4,4'-ジアミノジフェニルメタン、3,3'-ジアミノジフェニルメタン、2,2-ビス(4-アミノフェノキシフェニル)プロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、4,4'-ジアミノジフェニルスルフィド、3,3'-ジアミノジフェニルスルフィド、4,4'-ジアミノジフェニルスルホン、3,3'-ジアミノジフェニルスルホン、4,4'-ジアミノジフェニルエーテル、3,3'-ジアミノジフェニルエーテル、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、ベンジジン、3,3'-ジアミノビフェニル、3,3'-ジメチル-4,4'-ジアミノビフェニル、3,3'-ジメトキシベンジジン、4,4"-ジアミノ-p-ターフェニル、3,3"-ジアミノ-p-ターフェニル、ビス(p-アミノシクロヘキシル)メタン、ビス(p-β-アミノ-t-ブチルフェニル)エーテル、ビス(p-β-メチル-δ-アミノペンチル)ベンゼン、p-ビス(2-メチル-4-アミノペンチル)ベンゼン、p-ビス(1,1-ジメチル-5-アミノペンチル)ベンゼン、1,5-ジアミノナフタレン、2,6-ジアミノナフタレン、2,4-ビス(β-アミノ-t-ブチル)トルエン、2,4-ジアミノトルエン、m-キシレン-2,5-ジアミン、p-キシレン-2,5-ジアミン、m-キシリレンジアミン、p-キシリレンジアミン、2,6-ジアミノピリジン、2,5-ジアミノピリジン、2,5-ジアミノ-1,3,4-オキサジアゾール、ピペラジン、4-(1H,1H,11H-エイコサフルオロウンデカノキシ)-1,3-ジアミノベンゼン、4-(1H,1H-パーフルオロ-1-ブタノキシ)-1,3-ジアミノベンゼン、4-(1H,1H-パーフルオロ-1-ヘプタノキシ)-1,3-ジアミノベンゼン、4-(1H,1H-パーフルオロ-1-オクタノキシ)-1,3-ジアミノベンゼン、4-ペンタフルオロフェノキシ-1,3-ジアミノベンゼン、4-(2,3,5,6-テトラフルオロフェノキシ)-1,3-ジアミノベンゼン、4-(4-フルオロフェノキシ)-1,3-ジアミノベンゼン、4-(1H,1H,2H,2H-パーフルオロ-1-ヘキサノキシ)-1,3-ジアミノベンゼン、4-(1H,1H,2H,2H-パーフルオロ-1-ドデカノキシ)-1,3-ジアミノベンゼン、(2,5)-ジアミノベンゾトリフルオライド、ジアミノテトラ(トリフルオロメチル)ベンゼン、ジアミノ(ペンタフルオロエチル)ベンゼン、2,5-ジアミノ(パーフルオロヘキシル)ベンゼン、2,5-ジアミノ(パーフルオロブチル)ベンゼン、2,2'-ビス(トリフルオロメチル)-4,4'-ジアミノビフェニル、3,3'-ビス(トリフルオロメチル)-4,4'-ジアミノビフェニル、オクタフルオロベンジジン、4,4'-ジアミノジフェニルエーテル、2,2-ビス(4-アミノフェニル)ヘキサフルオロプロパン、1,3-ビス(アニリノ)ヘキサフルオロプロパン、1,4-ビス(アニリノ)オクタフルオロブタン、1,5-ビス(アニリノ)デカフルオロペンタン、1,7-ビス(アニリノ)テトラデカフルオロヘプタン、2,2'-ビス(トリフルオロメチル)-4,4'-ジアミノジフェニルエーテル、3,3'-ビス(トリフルオロメチル)-4,4'-ジアミノジフェニルエーテル、3,3',5,5'-テトラキス(トリフルオロメチル)-4,4'-ジアミノジフェニルエーテル、3,3'-ビス(トリフルオロメチル)-4,4'-ジアミノベンゾフェノン、4,4'-ジアミノ-p-テルフェニル、1,4-ビス(p-アミノフェニル)ベンゼン、p-(4-アミノ-2-トリフルオロメチルフェノキシ)ベンゼン、ビス(アミノフェノキシ)ビス(トリフルオロメチル)ベンゼン、ビス(アミノフェノキシ)テトラキス(トリフルオロメチル)ベンゼン、2,2-ビス{4-(4-アミノフェノキシ)フェニル}ヘキサフルオロプロパン、2,2-ビス{4-(3-アミノフェノキシ)フェニル}ヘキサフルオロプロパン、2,2-ビス{4-(2-アミノフェノキシ)フェニル}ヘキサフルオロプロパン、2,2-ビス{4-(4-アミノフェノキシ)-3,5-ジメチルフェニル}ヘキサフルオロプロパン、2,2-ビス{4-(4-アミノフェノキシ)-3.5-ジトリフルオロメチルフェニル}ヘキサフルオロプロパン、4,4'-ビス(4-アミノ-2-トリフルオロメチルフェノキシ)ビフェニル、4,4'-ビス(4-アミノ-3-トリフルオロメチルフェノキシ)ビフェニル、4,4'-ビス(4-アミノ-2-トリフルオロメチルフェノキシ)ジフェニルスルホン、4,4'-ビス(3-アミノ-5-トリフルオロメチルフェノキシ)ジフェニルスルホン、2,2-ビス{4-(4-アミノ-3-トリフルオロメチルフェノキシ)フェニル}ヘキサフルオロプロパン、ビス{(トリフルオロメチル)アミノフェノキシ}ビフェニル、ビス〔{(トリフルオロメチル)アミノフェノキシ}フェニル〕ヘキサフルオロプロパン、ビス{2-〔(アミノフェノキシ)フェニル〕ヘキサフルオロイソプロピル}ベンゼン、4,4'-ビス(4-アミノフェノキシ)オクタフルオロビフェニルから誘導されるジアミン残基などが挙げられる。これらの中でも、透明性が高く、着色の程度が低いポリイミドを製造する観点から、2,2-ビス-[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、9,9-ビス[4-(3-アミノフェノキシ)フェニル]フルオレン、2,2’-ビス(トリフルオロメチル)-4,4'-ジアミノビフェニル、4,4'-bビス(2-(トリフルオロメチル)-4-アミノフェノキシ)ビフェニル、2,2-ビス(4-(2-(トリフルオロメチル)-4-アミノフェノキシ)フェニル)ヘキサフルオロプロパン、4,4‘-ビス(3-(トリフルオロメチル)-4-アミノフェノキシ)ビフェニル、4,4’-ビス(3-(トリフルオロメチル)-4-アミノフェノキシ)ビフェニル、p-ビス(2-トリフルオロメチル)-4-アミノフェノキシ]ベンゼンなどのジアミン化合物から誘導されるジアミン残基が好ましい。 Other diamine residues include, for example, 2,2'-bis(trifluoromethyl)-4,4'-diaminobiphenyl (TFMB), bis[4-(aminophenoxy)phenyl]sulfone (BAPS), 4,6-dimethyl-m-phenylenediamine, 2,5-dimethyl-p-phenylenediamine, 2,4-diaminomesitylene, 3,3'-dimethyl-4,4'-diaminodiphenylmethane, 3,5,3',5'-tetramethyl-4,4'-diaminodiphenylmethane, 2,4-toluenediamine, m-phenylenediamine, p-phenylenediamine, 4,4'-diaminodiphenylpropane, 3,3'-diaminodiphenylpropane, 4,4'-diaminodiphenylethane, 3,3'-diaminodiphenylethane, 4,4'-Diaminodiphenylmethane, 3,3'-Diaminodiphenylmethane, 2,2-Bis(4-aminophenoxyphenyl)propane, 2,2-Bis[4-(4-aminophenoxy)phenyl]propane, 4,4'-Diaminodiphenyl sulfide, 3,3'-Diaminodiphenyl sulfide, 4,4'-Diaminodiphenyl sulfone, 3,3'-Diaminodiphenyl sulfone, 4,4'-Diaminodiphenyl ether, 3,3'-Diaminodiphenyl ether, 1,3-Bis(3-aminophenoxy)benzene, 1,3-Bis(4-aminophenoxy)benzene, 1,4-Bis(4-aminophenoxy)benzene, benzidine, 3,3'-diaminobiphenyl, 3,3'-dimethyl-4,4'-diaminobiphenyl Phenyl, 3,3'-dimethoxybenzidine, 4,4"-diamino-p-terphenyl, 3,3"-diamino-p-terphenyl, bis(p-aminocyclohexyl)methane, bis(p-β-amino-t-butylphenyl)ether, bis(p-β-methyl-δ-aminopentyl)benzene, p-bis(2-methyl-4-aminopentyl)benzene, p-bis(1,1-dimethyl-5-aminopentyl)benzene, 1,5-diaminonaphthalene, 2,6-diaminonaphthalene, 2,4-bis(β-amino-t-butyl)toluene, 2,4-diaminotoluene, m-xylene-2,5-diamine, p-xylene-2,5-diamine, m-xylylenediamine, p-xylylenediamine, 2,6-diaminopyridine, 2,5-diaminopyridine, 2,5-diamino-1,3,4-oxadiazole, piperazine, 4-(1H,1H,11H-eicosafluoroundecanoxy)-1,3-diaminobenzene, 4-(1H,1H-perfluoro-1-butanoxy)-1,3-diaminobenzene, 4-(1H,1H-perfluoro-1-heptanoxy)-1,3-diaminobenzene, 4-(1H,1H-perfluoro-1-octanoxy)-1,3-diaminobenzene, 4-pentafluorophenoxy-1,3-diaminobenzene, 4-(2,3,5,6-tetrafluorophenoxy)-1,3-diaminobenzene, 4-(4-fluorophenoxy)-1,3-diaminobenzene, 4-(1H,1H,2H,2H-perfluoro-1- 1,3-diaminobenzene, 4-(1H,1H,2H,2H-perfluoro-1-dodecanoxy)-1,3-diaminobenzene, (2,5)-diaminobenzotrifluoride, diaminotetra(trifluoromethyl)benzene, diamino(pentafluoroethyl)benzene, 2,5-diamino(perfluorohexyl)benzene, 2,5-diamino(perfluorobutyl)benzene, 2,2'-bis(trifluoromethyl)-4,4'-diaminobiphenyl, 3,3'-bis(trifluoromethyl)-4,4'-diaminobiphenyl, octafluorobenzidine, 4,4'-diaminodiphenyl ether, 2,2-bis(4-aminophenyl)hexafluoropropane, 1,3-bis(aniline 1,4-bis(anilino)hexafluoropropane, 1,4-bis(anilino)octafluorobutane, 1,5-bis(anilino)decafluoropentane, 1,7-bis(anilino)tetradecafluoroheptane, 2,2'-bis(trifluoromethyl)-4,4'-diaminodiphenyl ether, 3,3'-bis(trifluoromethyl)-4,4'-diaminodiphenyl ether, 3,3',5,5'-tetrakis(trifluoromethyl)-4,4'-diaminodiphenyl ether, 3,3'-bis(trifluoromethyl)-4,4'-diaminobenzophenone, 4,4'-diamino-p-terphenyl, 1,4-bis(p-aminophenyl)benzene, p-(4-amino-2-trifluoromethylphenoxy)benzene, bis(amino 2,2-bis{4-(4-aminophenoxy)phenyl}hexafluoropropane, 2,2-bis{4-(3-aminophenoxy)phenyl}hexafluoropropane, 2,2-bis{4-(2-aminophenoxy)phenyl}hexafluoropropane, 2,2-bis{4-(4-aminophenoxy)-3,5-dimethylphenyl}hexafluoropropane, 2,2-bis{4-(4-aminophenoxy)-3.5-ditrifluoromethylphenyl}hexafluoropropane, 4,4'-bis(4-amino-2-trifluoromethylphenoxy)biphenyl, 4,4'-bis(4-aminophenoxy)phenyl and diamine residues derived from 4,4'-bis(4-amino-3-trifluoromethylphenoxy)biphenyl, 4,4'-bis(4-amino-2-trifluoromethylphenoxy)diphenyl sulfone, 4,4'-bis(3-amino-5-trifluoromethylphenoxy)diphenyl sulfone, 2,2-bis{4-(4-amino-3-trifluoromethylphenoxy)phenyl}hexafluoropropane, bis{(trifluoromethyl)aminophenoxy}biphenyl, bis[{(trifluoromethyl)aminophenoxy}phenyl]hexafluoropropane, bis{2-[(aminophenoxy)phenyl]hexafluoroisopropyl}benzene, and 4,4'-bis(4-aminophenoxy)octafluorobiphenyl. Among these, from the viewpoint of producing a polyimide having high transparency and a low degree of coloration, diamine residues derived from diamine compounds such as 2,2-bis-[4-(4-aminophenoxy)phenyl]hexafluoropropane, 9,9-bis[4-(3-aminophenoxy)phenyl]fluorene, 2,2'-bis(trifluoromethyl)-4,4'-diaminobiphenyl, 4,4'-b bis(2-(trifluoromethyl)-4-aminophenoxy)biphenyl, 2,2-bis(4-(2-(trifluoromethyl)-4-aminophenoxy)phenyl)hexafluoropropane, 4,4'-bis(3-(trifluoromethyl)-4-aminophenoxy)biphenyl, 4,4'-bis(3-(trifluoromethyl)-4-aminophenoxy)biphenyl, and p-bis(2-trifluoromethyl)-4-aminophenoxy]benzene are preferred.
 上記酸無水物残基及びジアミン残基の種類や、2種以上の酸無水物残基又はジアミン残基のそれぞれのモル比を選定することにより、靭性、熱膨張性、接着性、ガラス転移温度(Tg)等を制御することができる。 By selecting the types of the acid anhydride residues and diamine residues and the molar ratios of two or more types of acid anhydride residues or diamine residues, it is possible to control the toughness, thermal expansion, adhesion, glass transition temperature (Tg), etc.
 本発明の樹脂フィルムは、とくに全光線透過率を所定の範囲とするために、前記主たるポリイミド層は、フッ素原子を含む芳香族ジアミン化合物から誘導されるジアミン残基及び/又はフッ素原子を含む芳香族テトラカルボン酸無水物から誘導される酸無水物残基を含むことが好ましい。 In the resin film of the present invention, in particular to set the total light transmittance within a predetermined range, it is preferable that the main polyimide layer contains diamine residues derived from an aromatic diamine compound containing fluorine atoms and/or acid anhydride residues derived from an aromatic tetracarboxylic acid anhydride containing fluorine atoms.
 主たるポリイミドは、フッ素含有ジアミン残基を含有することが好ましい。フッ素含有ジアミン残基は、嵩高いフッ素原子を含有する基を有するため、高分子鎖間のπ-πスタッキング等の相互作用を減少させ、芳香族テトラカルボン酸残基と芳香族ジアミン残基との間の電荷移動(CT)を起こりにくくするため、ポリイミドを無色透明に近づけることができると考えられる。 The main polyimide preferably contains a fluorine-containing diamine residue. The fluorine-containing diamine residue has a group containing a bulky fluorine atom, which reduces interactions such as π-π stacking between polymer chains and makes charge transfer (CT) between aromatic tetracarboxylic acid residues and aromatic diamine residues less likely to occur, which is thought to make the polyimide closer to colorless and transparent.
 フッ素含有ジアミン残基としては、例えば4,4’-ジアミノ-2,2’-ビス(トリフルオロメチル)ビフェニル(TFMB)、1,4-ビス(4-アミノ-2-トリフルオロメチルフェノキシ)ベンゼン、3,4-ジアミノ-2,2’-ビス(トリフルオロメチル)ビフェニル、4,4’-ビス(2-(トリフルオロメチル)-4-アミノフェノキシ)ビフェニル、2,2-ビス(4-(2-(トリフルオロメチル)-4-アミノフェノキシ)フェニル)ヘキサフルオロプロパン、4,4’-ビス(3-(トリフルオロメチル)-4-アミノフェノキシ)ビフェニル、4,4’-ビス(3-(トリフルオロメチル)-4-アミノフェノキシ)ビフェニル、p-ビス(2-トリフルオロメチル)-4-アミノフェノキシ]ベンゼン、2,2-ビス-[4-(3-アミノフェノキシ)フェニル]ヘキサフルオロプロパン等のジアミン化合物から誘導されるジアミン残基などが挙げられる。 Examples of fluorine-containing diamine residues include diamine residues derived from diamine compounds such as 4,4'-diamino-2,2'-bis(trifluoromethyl)biphenyl (TFMB), 1,4-bis(4-amino-2-trifluoromethylphenoxy)benzene, 3,4-diamino-2,2'-bis(trifluoromethyl)biphenyl, 4,4'-bis(2-(trifluoromethyl)-4-aminophenoxy)biphenyl, 2,2-bis(4-(2-(trifluoromethyl)-4-aminophenoxy)phenyl)hexafluoropropane, 4,4'-bis(3-(trifluoromethyl)-4-aminophenoxy)biphenyl, 4,4'-bis(3-(trifluoromethyl)-4-aminophenoxy)biphenyl, p-bis(2-trifluoromethyl)-4-aminophenoxy]benzene, and 2,2-bis-[4-(3-aminophenoxy)phenyl]hexafluoropropane.
 フッ素含有ジアミン残基の中でも、下記の一般式(A1)で表されるジアミン化合物から誘導されるジアミン残基(以下、「A1残基」と記すことがある)を含有することがより好ましい。 Among the fluorine-containing diamine residues, it is more preferable to contain a diamine residue derived from a diamine compound represented by the following general formula (A1) (hereinafter, sometimes referred to as "A1 residue").
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 一般式(A1)中、置換基Xは独立にフッ素原子で置換されている炭素数1~3のアルキル素基を示し、m及びnは独立に1~4の整数を示す。 In general formula (A1), the substituents X each independently represent an alkyl group having 1 to 3 carbon atoms substituted with a fluorine atom, and m and n each independently represent an integer from 1 to 4.
 A1残基は、芳香族ジアミン残基であり、2個のベンゼン環が単結合で接続されたビフェニル骨格を有しているので、秩序構造を形成しやすく、分子鎖の面内方向の配向が促進されるため、主たるポリイミド層のCTEの増加を抑制し、寸法安定性を高めることができる。このような観点から、主たるポリイミド層は、全ジアミン残基の合計100モル部に対して、A1残基を50モル部以上含有することが好ましく、50モル部以上100モル部以下の範囲内で含有することがより好ましい。 The A1 residue is an aromatic diamine residue and has a biphenyl skeleton in which two benzene rings are connected by a single bond, which makes it easy to form an ordered structure and promotes in-plane orientation of the molecular chains, thereby suppressing an increase in the CTE of the main polyimide layer and improving dimensional stability. From this perspective, the main polyimide layer preferably contains 50 molar parts or more of A1 residues relative to a total of 100 molar parts of all diamine residues, and more preferably contains 50 molar parts or more and 100 molar parts or less.
 A1残基の好ましい具体例としては、4,4’-ジアミノ-2,2’-ビス(トリフルオロメチル)ビフェニル(TFMB)、3,4-ジアミノ-2,2’-ビス(トリフルオロメチル)ビフェニル等のジアミン化合物から誘導されるジアミン残基が挙げられる。 Preferred specific examples of the A1 residue include diamine residues derived from diamine compounds such as 4,4'-diamino-2,2'-bis(trifluoromethyl)biphenyl (TFMB) and 3,4-diamino-2,2'-bis(trifluoromethyl)biphenyl.
 主たるポリイミド層には、上記以外のジアミン残基として、一般にポリイミドの合成に使用されるジアミン成分から誘導されるジアミン残基を含んでいてもよい。 The main polyimide layer may contain, as diamine residues other than those mentioned above, diamine residues derived from diamine components generally used in the synthesis of polyimides.
 主たるポリイミド層は、フッ素含有酸無水物残基を含有することが好ましい。フッ素含有酸無水物残基は、嵩高いフッ素原子を含有する基を有するため、高分子鎖間のπ-πスタッキング等の相互作用を減少させ、芳香族テトラカルボン酸残基と芳香族ジアミン残基との間の電荷移動(CT)を起こりにくくするため、ポリイミドを無色透明に近づけることができると考えられる。 The main polyimide layer preferably contains fluorine-containing acid anhydride residues. Fluorine-containing acid anhydride residues have groups that contain bulky fluorine atoms, which reduces interactions such as π-π stacking between polymer chains and makes charge transfer (CT) between aromatic tetracarboxylic acid residues and aromatic diamine residues less likely to occur, which is thought to make the polyimide closer to colorless and transparent.
 フッ素含有酸無水物残基としては、例えば2,2'-ビス(3,4-ジカルボキシフェニル)ヘキサフルオロプロパン二無水物(6FDA)等の酸無水物成分から誘導される酸無水物残基を挙げることができる。 Examples of fluorine-containing acid anhydride residues include acid anhydride residues derived from acid anhydride components such as 2,2'-bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydride (6FDA).
 また、主たるポリイミド層は、CTEを上記範囲内に制御するため、下記の式(B1)で表される、ピロメリット酸二無水物(PMDA)から誘導される4価の酸無水物残基(以下、「PMDA残基」と記すことがある)を含有することが好ましい。PMDA残基は、全酸無水物残基の合計100モル部に対して、50モル部以上含有することが好ましく、60モル部以上100モル部以下の範囲内で含有することがより好ましい。PMDA残基が50モル部未満では、ポリイミド層(A)のCTEが高くなって寸法安定性が低下する場合がある。
Figure JPOXMLDOC01-appb-C000004
In addition, in order to control the CTE within the above range, the main polyimide layer preferably contains a tetravalent acid anhydride residue (hereinafter, sometimes referred to as "PMDA residue") derived from pyromellitic dianhydride (PMDA) represented by the following formula (B1). The PMDA residue is preferably contained in an amount of 50 molar parts or more, more preferably in the range of 60 molar parts to 100 molar parts, relative to a total of 100 molar parts of all acid anhydride residues. If the PMDA residue is less than 50 molar parts, the CTE of the polyimide layer (A) may become high and the dimensional stability may decrease.
Figure JPOXMLDOC01-appb-C000004
 また、主たるポリイミド層は、上記以外の酸無水物残基として、一般にポリイミドの合成に使用される酸無水物成分から誘導される酸無水物残基を含んでいてもよい。そのような酸無水物残基としては、芳香族テトラカルボン酸残基が好ましい。また、脂環式テトラカルボン酸残基を含有してもよく、例えば、1,2,3,4-シクロブタンテトラカルボン酸二無水物、フルオレニリデンビス無水フタル酸、1,2,4,5-シクロヘキサンテトラカルボン酸ニ無水物、シクロタノンビススピロノルボルナンテトラカルボン酸二無水物などの脂環式テトラカルボン酸二無水物から誘導される酸無視物残基が好ましく挙げられる。 The main polyimide layer may also contain, as an acid anhydride residue other than those mentioned above, an acid anhydride residue derived from an acid anhydride component generally used in the synthesis of polyimides. As such an acid anhydride residue, an aromatic tetracarboxylic acid residue is preferred. In addition, it may contain an alicyclic tetracarboxylic acid residue, and preferred examples thereof include acid anhydride residues derived from alicyclic tetracarboxylic acid dianhydrides such as 1,2,3,4-cyclobutane tetracarboxylic dianhydride, fluorenylidene bisphthalic anhydride, 1,2,4,5-cyclohexane tetracarboxylic dianhydride, and cyclotanone bisspironorbornane tetracarboxylic dianhydride.
 前記第三のポリイミド層P3を用いる場合、当該P3については、特に制限はなく、ポリイミド層P1と同一組成ものを適用してもよい。ポリイミド層P1と異なる組成を適用する場合は、一般式(A3)で表される芳香族ジアミン化合物から誘導されるジアミン残基を50モル%以上含有することが好ましい。
Figure JPOXMLDOC01-appb-C000005
When the third polyimide layer P3 is used, there is no particular limitation on the composition of the polyimide layer P3, and the layer P3 may have the same composition as the polyimide layer P1. When the layer P3 has a composition different from that of the polyimide layer P1, the layer P3 preferably contains 50 mol % or more of a diamine residue derived from an aromatic diamine compound represented by general formula (A3).
Figure JPOXMLDOC01-appb-C000005
 上記式(A3)において、Zは独立に-O-、-S-、-CH-、-CH(CH)-、-C(CH)-、又は-SO-から選ばれる2価の基を示し、好ましくは-O-である。nは0~4の整数を示し、好ましくは0又は1である。Rは置換基であり、独立に、ハロゲン原子であるか、ハロゲン原子で置換されてもよい炭素数1~6のアルキル基若しくはアルコキシ基であるか、又は炭素数1~6の1価の炭化水素基若しくはアルコキシ基で置換されてもよいフェニル基若しくはフェノキシ基を示す。nは独立に0~3の整数を示し、好ましくは0又は1である。 In the above formula (A3), Z independently represents a divalent group selected from -O-, -S-, -CH 2 -, -CH(CH 3 )-, -C(CH 3 ) 2 -, or -SO 2 -, and is preferably -O-. n 2 independently represents an integer of 0 to 4, and is preferably 0 or 1. R independently represents a substituent, and is independently a halogen atom, an alkyl group or alkoxy group having 1 to 6 carbon atoms which may be substituted with a halogen atom, or a phenyl group or phenoxy group which may be substituted with a monovalent hydrocarbon group or alkoxy group having 1 to 6 carbon atoms. n 1 independently represents an integer of 0 to 3, and is preferably 0 or 1.
 上記式(A3)で表される芳香族ジアミン化合物は2つ以上のベンゼン環を有し、少なくとも2つのベンゼン環に直結したアミノ基と2価の連結基Zがあることで、ポリイミド分子鎖が有する自由度が増加して高い屈曲性を有しており、ポリイミド分子鎖の柔軟性の向上に寄与し、接着性と高靭性化を促すと考えられる。 The aromatic diamine compound represented by the above formula (A3) has two or more benzene rings, and since there are amino groups and divalent linking groups Z directly bonded to at least two of the benzene rings, the degree of freedom of the polyimide molecular chain is increased, resulting in high flexibility, which is thought to contribute to improving the flexibility of the polyimide molecular chain and promote adhesion and toughness.
 またポリイミド層P3にポリイミド層P1と異なる組成を適用する場合は、前記一般式(1)で表される芳香族テトラカルボン酸無水物から誘導される酸無水物残基を、全酸無水物残基に対して50モル%以上含有し、該ポリイミドに含まれる全ジアミン残基に対し、前記一般式(A3)で表わされる芳香族ジアミン化合物から誘導されるジアミン残基を50モル%以上含有することがよい。 When a different composition from that of the polyimide layer P1 is applied to the polyimide layer P3, it is preferable that the polyimide layer P3 contains 50 mol % or more of acid anhydride residues derived from the aromatic tetracarboxylic acid anhydride represented by the general formula (1) relative to the total acid anhydride residues, and contains 50 mol % or more of diamine residues derived from the aromatic diamine compound represented by the general formula (A3) relative to the total diamine residues contained in the polyimide.
 上記式(A3)で表される芳香族ジアミン化合物としては、例えば、3,3’-ジアミノジフェニルメタン、3,3’-ジアミノジフェニルプロパン、3,3’-ジアミノジフェニルスルフィド、3,3’-ジアミノジフェニルスルホン、3,3-ジアミノジフェニルエーテル、3,4'-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルプロパン、3,4’-ジアミノジフェニルスルフィド、3,4’-ジアミノベンゾフェノン、(3,3’-ビスアミノ)ジフェニルアミン、1,4-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン(APB)、1,3-ビス(4-アミノフェノキシ)ベンゼン(TPE-R)、3-[4-(4-アミノフェノキシ)フェノキシ]ベンゼンアミン、3-[3-(4-アミノフェノキシ)フェノキシ]ベンゼンアミン、4,4'-[2-メチル-(1,3-フェニレン)ビスオキシ]ビスアニリン、4,4'-[4-メチル-(1,3-フェニレン)ビスオキシ]ビスアニリン、4,4'-[5-メチル-(1,3-フェニレン)ビスオキシ]ビスアニリン、ビス[4-(3-アミノフェノキシ)フェニル]メタン、ビス[4-(3-アミノフェノキシ)フェニル]プロパン、ビス[4-(3-アミノフェノキシ)フェニル]エーテル、ビス[4-(3-アミノフェノキシ)フェニル]スルホン、ビス[4-(3-アミノフェノキシ)]ベンゾフェノン、ビス[4,4'-(3-アミノフェノキシ)]ベンズアニリド、4-[3-[4-(4-アミノフェノキシ)フェノキシ]フェノキシ]アニリン、4,4’-[オキシビス(3,1-フェニレンオキシ)]ビスアニリン、ビス[4-(4-アミノフェノキシ)フェニル]エーテル(BAPE)、ビス[4-(4-アミノフェノキシ)フェニル]ケトン(BAPK)、ビス[4-(3-アミノフェノキシ)]ビフェニル、ビス[4-(4-アミノフェノキシ)]ビフェニル、2,2-ビス(4-アミノフェノキシフェニル)プロパン(BAPP)、4,4’‐ジアミノジフェニルエーテルなどが挙げられる。これらの中でも、1,3-ビス(3-アミノフェノキシ)ベンゼン(APB)、1,3-ビス(4-アミノフェノキシ)ベンゼン(TPE-R)が好ましい。 Examples of the aromatic diamine compound represented by the above formula (A3) include 3,3'-diaminodiphenylmethane, 3,3'-diaminodiphenylpropane, 3,3'-diaminodiphenyl sulfide, 3,3'-diaminodiphenyl sulfone, 3,3-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 3,4'-diaminodiphenylmethane, 3,4'-diaminodiphenylpropane, 3,4'-diaminodiphenyl sulfide, 3,4'-diaminobenzophenone, (3,3 '-bisamino)diphenylamine, 1,4-bis(3-aminophenoxy)benzene, 1,3-bis(3-aminophenoxy)benzene (APB), 1,3-bis(4-aminophenoxy)benzene (TPE-R), 3-[4-(4-aminophenoxy)phenoxy]benzenamine, 3-[3-(4-aminophenoxy)phenoxy]benzenamine, 4,4'-[2-methyl-(1,3-phenylene)bisoxy]bisaniline, 4,4'-[4-methyl-(1,3-phenylene)bisoxy ]bisaniline, 4,4'-[5-methyl-(1,3-phenylene)bisoxy]bisaniline, bis[4-(3-aminophenoxy)phenyl]methane, bis[4-(3-aminophenoxy)phenyl]propane, bis[4-(3-aminophenoxy)phenyl]ether, bis[4-(3-aminophenoxy)phenyl]sulfone, bis[4-(3-aminophenoxy)]benzophenone, bis[4,4'-(3-aminophenoxy)]benzanilide, 4-[3-[4-(4-aminophenoxy Examples of such compounds include 4,4'-[oxybis(3,1-phenyleneoxy)]bisaniline, bis[4-(4-aminophenoxy)phenyl]ether (BAPE), bis[4-(4-aminophenoxy)phenyl]ketone (BAPK), bis[4-(3-aminophenoxy)]biphenyl, bis[4-(4-aminophenoxy)]biphenyl, 2,2-bis(4-aminophenoxyphenyl)propane (BAPP), and 4,4'-diaminodiphenyl ether. Among these, 1,3-bis(3-aminophenoxy)benzene (APB) and 1,3-bis(4-aminophenoxy)benzene (TPE-R) are preferred.
 他のジアミン残基としては、例えば、2,2'-ビス(トリフルオロメチル)-4,4'-ジアミノビフェニル(TFMB)、ビス[4-(アミノフェノキシ)フェニル]スルホン(BAPS)、4,6-ジメチル-m-フェニレンジアミン、2,5-ジメチル-p-フェニレンジアミン、2,4-ジアミノメシチレン、3,3'-ジメチル-4,4'-ジアミノジフェニルメタン、3,5,3',5'-テトラメチル-4,4'-ジアミノジフェニルメタン、2,4-トルエンジアミン、m-フェニレンジアミン、p-フェニレンジアミン、4,4'-ジアミノジフェニルプロパン、3,3'-ジアミノジフェニルプロパン、4,4'-ジアミノジフェニルエタン、3,3'-ジアミノジフェニルエタン、4,4'-ジアミノジフェニルメタン、3,3'-ジアミノジフェニルメタン、2,2-ビス(4-アミノフェノキシフェニル)プロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、4,4'-ジアミノジフェニルスルフィド、3,3'-ジアミノジフェニルスルフィド、4,4'-ジアミノジフェニルスルホン、3,3'-ジアミノジフェニルスルホン、4,4'-ジアミノジフェニルエーテル、3,3'-ジアミノジフェニルエーテル、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、ベンジジン、3,3'-ジアミノビフェニル、3,3'-ジメチル-4,4'-ジアミノビフェニル、3,3'-ジメトキシベンジジン、4,4"-ジアミノ-p-ターフェニル、3,3"-ジアミノ-p-ターフェニル、ビス(p-アミノシクロヘキシル)メタン、ビス(p-β-アミノ-t-ブチルフェニル)エーテル、ビス(p-β-メチル-δ-アミノペンチル)ベンゼン、p-ビス(2-メチル-4-アミノペンチル)ベンゼン、p-ビス(1,1-ジメチル-5-アミノペンチル)ベンゼン、1,5-ジアミノナフタレン、2,6-ジアミノナフタレン、2,4-ビス(β-アミノ-t-ブチル)トルエン、2,4-ジアミノトルエン、m-キシレン-2,5-ジアミン、p-キシレン-2,5-ジアミン、m-キシリレンジアミン、p-キシリレンジアミン、2,6-ジアミノピリジン、2,5-ジアミノピリジン、2,5-ジアミノ-1,3,4-オキサジアゾール、ピペラジン、4-(1H,1H,11H-エイコサフルオロウンデカノキシ)-1,3-ジアミノベンゼン、4-(1H,1H-パーフルオロ-1-ブタノキシ)-1,3-ジアミノベンゼン、4-(1H,1H-パーフルオロ-1-ヘプタノキシ)-1,3-ジアミノベンゼン、4-(1H,1H-パーフルオロ-1-オクタノキシ)-1,3-ジアミノベンゼン、4-ペンタフルオロフェノキシ-1,3-ジアミノベンゼン、4-(2,3,5,6-テトラフルオロフェノキシ)-1,3-ジアミノベンゼン、4-(4-フルオロフェノキシ)-1,3-ジアミノベンゼン、4-(1H,1H,2H,2H-パーフルオロ-1-ヘキサノキシ)-1,3-ジアミノベンゼン、4-(1H,1H,2H,2H-パーフルオロ-1-ドデカノキシ)-1,3-ジアミノベンゼン、(2,5)-ジアミノベンゾトリフルオライド、ジアミノテトラ(トリフルオロメチル)ベンゼン、ジアミノ(ペンタフルオロエチル)ベンゼン、2,5-ジアミノ(パーフルオロヘキシル)ベンゼン、2,5-ジアミノ(パーフルオロブチル)ベンゼン、2,2'-ビス(トリフルオロメチル)-4,4'-ジアミノビフェニル、3,3'-ビス(トリフルオロメチル)-4,4'-ジアミノビフェニル、オクタフルオロベンジジン、4,4'-ジアミノジフェニルエーテル、2,2-ビス(4-アミノフェニル)ヘキサフルオロプロパン、1,3-ビス(アニリノ)ヘキサフルオロプロパン、1,4-ビス(アニリノ)オクタフルオロブタン、1,5-ビス(アニリノ)デカフルオロペンタン、1,7-ビス(アニリノ)テトラデカフルオロヘプタン、2,2'-ビス(トリフルオロメチル)-4,4'-ジアミノジフェニルエーテル、3,3'-ビス(トリフルオロメチル)-4,4'-ジアミノジフェニルエーテル、3,3',5,5'-テトラキス(トリフルオロメチル)-4,4'-ジアミノジフェニルエーテル、3,3'-ビス(トリフルオロメチル)-4,4'-ジアミノベンゾフェノン、4,4'-ジアミノ-p-テルフェニル、1,4-ビス(p-アミノフェニル)ベンゼン、p-(4-アミノ-2-トリフルオロメチルフェノキシ)ベンゼン、ビス(アミノフェノキシ)ビス(トリフルオロメチル)ベンゼン、ビス(アミノフェノキシ)テトラキス(トリフルオロメチル)ベンゼン、2,2-ビス{4-(4-アミノフェノキシ)フェニル}ヘキサフルオロプロパン、2,2-ビス{4-(3-アミノフェノキシ)フェニル}ヘキサフルオロプロパン、2,2-ビス{4-(2-アミノフェノキシ)フェニル}ヘキサフルオロプロパン、2,2-ビス{4-(4-アミノフェノキシ)-3,5-ジメチルフェニル}ヘキサフルオロプロパン、2,2-ビス{4-(4-アミノフェノキシ)-3.5-ジトリフルオロメチルフェニル}ヘキサフルオロプロパン、4,4'-ビス(4-アミノ-2-トリフルオロメチルフェノキシ)ビフェニル、4,4'-ビス(4-アミノ-3-トリフルオロメチルフェノキシ)ビフェニル、4,4'-ビス(4-アミノ-2-トリフルオロメチルフェノキシ)ジフェニルスルホン、4,4'-ビス(3-アミノ-5-トリフルオロメチルフェノキシ)ジフェニルスルホン、2,2-ビス{4-(4-アミノ-3-トリフルオロメチルフェノキシ)フェニル}ヘキサフルオロプロパン、ビス{(トリフルオロメチル)アミノフェノキシ}ビフェニル、ビス〔{(トリフルオロメチル)アミノフェノキシ}フェニル〕ヘキサフルオロプロパン、ビス{2-〔(アミノフェノキシ)フェニル〕ヘキサフルオロイソプロピル}ベンゼン、4,4'-ビス(4-アミノフェノキシ)オクタフルオロビフェニルから誘導されるジアミン残基などが挙げられる。これらの中でも、透明性が高く、着色の程度が低いポリイミドを製造する観点から、2,2-ビス-[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、9,9-ビス[4-(3-アミノフェノキシ)フェニル]フルオレン、2,2’-ビス(トリフルオロメチル)-4,4'-ジアミノビフェニル、4,4'-ビス(2-(トリフルオロメチル)-4-アミノフェノキシ)ビフェニル、2,2-ビス(4-(2-(トリフルオロメチル)-4-アミノフェノキシ)フェニル)ヘキサフルオロプロパン、4,4‘-ビス(3-(トリフルオロメチル)-4-アミノフェノキシ)ビフェニル、4,4’-ビス(3-(トリフルオロメチル)-4-アミノフェノキシ)ビフェニル、p-ビス(2-トリフルオロメチル)-4-アミノフェノキシ]ベンゼンなどのジアミン化合物から誘導されるジアミン残基が好ましい。 Other diamine residues include, for example, 2,2'-bis(trifluoromethyl)-4,4'-diaminobiphenyl (TFMB), bis[4-(aminophenoxy)phenyl]sulfone (BAPS), 4,6-dimethyl-m-phenylenediamine, 2,5-dimethyl-p-phenylenediamine, 2,4-diaminomesitylene, 3,3'-dimethyl-4,4'-diaminodiphenylmethane, 3,5,3',5'-tetramethyl-4,4'-diaminodiphenylmethane, 2,4-toluenediamine, m-phenylenediamine, p-phenylenediamine, 4,4'-diaminodiphenylpropane, 3,3'-diaminodiphenylpropane, 4,4'-diaminodiphenylethane, 3,3'-diaminodiphenylethane, 4,4'-Diaminodiphenylmethane, 3,3'-Diaminodiphenylmethane, 2,2-Bis(4-aminophenoxyphenyl)propane, 2,2-Bis[4-(4-aminophenoxy)phenyl]propane, 4,4'-Diaminodiphenyl sulfide, 3,3'-Diaminodiphenyl sulfide, 4,4'-Diaminodiphenyl sulfone, 3,3'-Diaminodiphenyl sulfone, 4,4'-Diaminodiphenyl ether, 3,3'-Diaminodiphenyl ether, 1,3-Bis(3-aminophenoxy)benzene, 1,3-Bis(4-aminophenoxy)benzene, 1,4-Bis(4-aminophenoxy)benzene, benzidine, 3,3'-diaminobiphenyl, 3,3'-dimethyl-4,4'-diaminobiphenyl Phenyl, 3,3'-dimethoxybenzidine, 4,4"-diamino-p-terphenyl, 3,3"-diamino-p-terphenyl, bis(p-aminocyclohexyl)methane, bis(p-β-amino-t-butylphenyl)ether, bis(p-β-methyl-δ-aminopentyl)benzene, p-bis(2-methyl-4-aminopentyl)benzene, p-bis(1,1-dimethyl-5-aminopentyl)benzene, 1,5-diaminonaphthalene, 2,6-diaminonaphthalene, 2,4-bis(β-amino-t-butyl)toluene, 2,4-diaminotoluene, m-xylene-2,5-diamine, p-xylene-2,5-diamine, m-xylylenediamine, p-xylylenediamine, 2,6-diaminopyridine, 2,5-diaminopyridine, 2,5-diamino-1,3,4-oxadiazole, piperazine, 4-(1H,1H,11H-eicosafluoroundecanoxy)-1,3-diaminobenzene, 4-(1H,1H-perfluoro-1-butanoxy)-1,3-diaminobenzene, 4-(1H,1H-perfluoro-1-heptanoxy)-1,3-diaminobenzene, 4-(1H,1H-perfluoro-1-octanoxy)-1,3-diaminobenzene, 4-pentafluorophenoxy-1,3-diaminobenzene, 4-(2,3,5,6-tetrafluorophenoxy)-1,3-diaminobenzene, 4-(4-fluorophenoxy)-1,3-diaminobenzene, 4-(1H,1H,2H,2H-perfluoro-1- 1,3-diaminobenzene, 4-(1H,1H,2H,2H-perfluoro-1-dodecanoxy)-1,3-diaminobenzene, (2,5)-diaminobenzotrifluoride, diaminotetra(trifluoromethyl)benzene, diamino(pentafluoroethyl)benzene, 2,5-diamino(perfluorohexyl)benzene, 2,5-diamino(perfluorobutyl)benzene, 2,2'-bis(trifluoromethyl)-4,4'-diaminobiphenyl, 3,3'-bis(trifluoromethyl)-4,4'-diaminobiphenyl, octafluorobenzidine, 4,4'-diaminodiphenyl ether, 2,2-bis(4-aminophenyl)hexafluoropropane, 1,3-bis(aniline 1,4-bis(anilino)hexafluoropropane, 1,4-bis(anilino)octafluorobutane, 1,5-bis(anilino)decafluoropentane, 1,7-bis(anilino)tetradecafluoroheptane, 2,2'-bis(trifluoromethyl)-4,4'-diaminodiphenyl ether, 3,3'-bis(trifluoromethyl)-4,4'-diaminodiphenyl ether, 3,3',5,5'-tetrakis(trifluoromethyl)-4,4'-diaminodiphenyl ether, 3,3'-bis(trifluoromethyl)-4,4'-diaminobenzophenone, 4,4'-diamino-p-terphenyl, 1,4-bis(p-aminophenyl)benzene, p-(4-amino-2-trifluoromethylphenoxy)benzene, bis(amino 2,2-bis{4-(4-aminophenoxy)phenyl}hexafluoropropane, 2,2-bis{4-(3-aminophenoxy)phenyl}hexafluoropropane, 2,2-bis{4-(2-aminophenoxy)phenyl}hexafluoropropane, 2,2-bis{4-(4-aminophenoxy)-3,5-dimethylphenyl}hexafluoropropane, 2,2-bis{4-(4-aminophenoxy)-3.5-ditrifluoromethylphenyl}hexafluoropropane, 4,4'-bis(4-amino-2-trifluoromethylphenoxy)biphenyl, 4,4'-bis(4-aminophenoxy)phenyl and diamine residues derived from 4,4'-bis(4-amino-3-trifluoromethylphenoxy)biphenyl, 4,4'-bis(4-amino-2-trifluoromethylphenoxy)diphenyl sulfone, 4,4'-bis(3-amino-5-trifluoromethylphenoxy)diphenyl sulfone, 2,2-bis{4-(4-amino-3-trifluoromethylphenoxy)phenyl}hexafluoropropane, bis{(trifluoromethyl)aminophenoxy}biphenyl, bis[{(trifluoromethyl)aminophenoxy}phenyl]hexafluoropropane, bis{2-[(aminophenoxy)phenyl]hexafluoroisopropyl}benzene, and 4,4'-bis(4-aminophenoxy)octafluorobiphenyl. Among these, from the viewpoint of producing a polyimide having high transparency and a low degree of coloration, diamine residues derived from diamine compounds such as 2,2-bis-[4-(4-aminophenoxy)phenyl]hexafluoropropane, 9,9-bis[4-(3-aminophenoxy)phenyl]fluorene, 2,2'-bis(trifluoromethyl)-4,4'-diaminobiphenyl, 4,4'-bis(2-(trifluoromethyl)-4-aminophenoxy)biphenyl, 2,2-bis(4-(2-(trifluoromethyl)-4-aminophenoxy)phenyl)hexafluoropropane, 4,4'-bis(3-(trifluoromethyl)-4-aminophenoxy)biphenyl, 4,4'-bis(3-(trifluoromethyl)-4-aminophenoxy)biphenyl, and p-bis(2-trifluoromethyl)-4-aminophenoxy]benzene are preferred.
 次に、複数のポリイミド層を構成するポリイミドの合成方法について説明する。
 本実施の形態のポリイミドは、上記酸無水物及びジアミンを溶媒中で反応させ、ポリアミド酸を生成したのち加熱閉環させることにより製造できる。例えば、酸無水物成分とジアミン成分をほぼ等モルで有機溶媒中に溶解させて、0℃以上100℃以下の範囲内の温度で30分乃至24時間撹拌し重合反応させることでポリイミドの前駆体であるポリアミド酸が得られる。反応にあたっては、生成する前駆体が有機溶媒中に5重量%以上30重量%以下の範囲内、好ましくは10重量%以上20重量%以下の範囲内となるように反応成分を溶解する。重合反応に用いる有機溶媒としては、例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド(DMAC)、N-メチル-2-ピロリドン、2-ブタノン、ジメチルスホキシド、硫酸ジメチル、シクロヘキサノン、ジオキサン、テトラヒドロフラン、ジグライム、トリグライム、γ‐プチロラクト等が挙げられる。これらの溶媒を2種以上併用して使用することもでき、更にはキシレン、トルエンのような芳香族炭化水素の併用も可能である。また、このような有機溶剤の使用量としては特に制限されるものではないが、重合反応によって得られるポリアミド酸溶液(ポリイミド前駆体溶液)の濃度が5重量%乃至30重量%程度になるような使用量に調整して用いることが好ましい。
Next, a method for synthesizing the polyimide constituting the multiple polyimide layers will be described.
The polyimide of the present embodiment can be produced by reacting the acid anhydride and diamine in a solvent, generating polyamic acid, and then heating to close the ring. For example, the acid anhydride component and the diamine component are dissolved in an organic solvent in approximately equal moles, and the mixture is stirred at a temperature in the range of 0° C. to 100° C. for 30 minutes to 24 hours to polymerize, thereby obtaining polyamic acid, which is a precursor of polyimide. In the reaction, the reaction components are dissolved so that the precursor generated is in the range of 5% by weight to 30% by weight, preferably 10% by weight to 20% by weight, in the organic solvent. Examples of organic solvents used in the polymerization reaction include N,N-dimethylformamide, N,N-dimethylacetamide (DMAC), N-methyl-2-pyrrolidone, 2-butanone, dimethylsulfoxide, dimethyl sulfate, cyclohexanone, dioxane, tetrahydrofuran, diglyme, triglyme, and γ-butyrolactone. Two or more of these solvents can be used in combination, and aromatic hydrocarbons such as xylene and toluene can also be used in combination. The amount of such an organic solvent to be used is not particularly limited, but it is preferable to adjust the amount to be used so that the concentration of the polyamic acid solution (polyimide precursor solution) obtained by the polymerization reaction becomes about 5% by weight to 30% by weight.
 ポリイミドの合成において、上記酸無水物及びジアミンはそれぞれ、その1種のみを使用してもよく2種以上を併用して使用することもできる。酸無水物及びジアミンの種類や、2種以上の酸無水物又はジアミンを使用する場合のそれぞれのモル比を選定することにより、熱膨張性、接着性、ガラス転移温度等を制御することができる。 In the synthesis of polyimide, the above-mentioned acid anhydrides and diamines can be used alone or in combination of two or more kinds. By selecting the types of acid anhydrides and diamines, or the molar ratios when using two or more types of acid anhydrides or diamines, it is possible to control the thermal expansion, adhesion, glass transition temperature, etc.
 また、ポリイミドには、末端封止剤を用いてもよい。末端封止剤としてはモノアミン類あるいはジカルボン酸類が好ましい。導入される末端封止剤の仕込み量としては、酸無水物成分1モルに対して0.0001モル以上0.1モル以下の範囲内が好ましく、特に0.001モル以上0.05モル以下の範囲内が好ましい。モノアミン類末端封止剤としては、例えば、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、ベンジルアミン、4-メチルベンジルアミン、4-エチルベンジルアミン、4-ドデシルベンジルアミン、3-メチルベンジルアミン、アニリン、4-メチルアニリン等が推奨される。これらのうち、ベンジルアミン、アニリンが好適に使用できる。ジカルボン酸類末端封止剤としては、ジカルボン酸類が好ましく、その一部を閉環していてもよい。例えば、フタル酸、無水フタル酸、4-クロロフタル酸、テトラフルオロフタル酸、シクロペンタン-1,2-ジカルボン酸、4-シクロヘキセン-1,2-ジカルボン酸等が推奨される。これらのうち、フタル酸、無水フタル酸が好適に使用できる。 In addition, a terminal blocking agent may be used for the polyimide. Monoamines or dicarboxylic acids are preferred as terminal blocking agents. The amount of terminal blocking agent introduced is preferably in the range of 0.0001 to 0.1 mol per 1 mol of the acid anhydride component, and more preferably in the range of 0.001 to 0.05 mol. As monoamine terminal blocking agents, for example, methylamine, ethylamine, propylamine, butylamine, benzylamine, 4-methylbenzylamine, 4-ethylbenzylamine, 4-dodecylbenzylamine, 3-methylbenzylamine, aniline, 4-methylaniline, etc. are recommended. Of these, benzylamine and aniline are preferably used. As dicarboxylic acid terminal blocking agents, dicarboxylic acids are preferred, and some of them may be ring-closed. For example, phthalic acid, phthalic anhydride, 4-chlorophthalic acid, tetrafluorophthalic acid, cyclopentane-1,2-dicarboxylic acid, 4-cyclohexene-1,2-dicarboxylic acid, etc. are recommended. Of these, phthalic acid and phthalic anhydride are preferred.
 合成されたポリアミド酸は、通常、反応溶媒溶液として使用することが有利であるが、必要により濃縮、希釈又は他の有機溶媒に置換することができる。また、ポリアミド酸は一般に溶媒可溶性に優れるので、有利に使用される。ポリアミド酸をイミド化させる方法は、特に制限されず、例えば前記溶媒中で、80℃以上400℃以下の範囲内の温度条件で1時間乃至24時間かけて加熱するといった熱処理が好適に採用される。 The synthesized polyamic acid is usually advantageously used as a reaction solvent solution, but it can be concentrated, diluted, or replaced with another organic solvent if necessary. Polyamic acid is also advantageously used because it generally has excellent solvent solubility. There are no particular limitations on the method for imidizing polyamic acid, and a suitable method is, for example, heat treatment in which the polyamic acid is heated in the solvent at a temperature in the range of 80°C to 400°C for 1 to 24 hours.
 ポリアミド酸の重量平均分子量は、例えば10,000以上400,000以下の範囲内が好ましく、50,000以上350,000以下の範囲内がより好ましい。重量平均分子量が10,000未満であると、フィルムの強度が低下して脆化しやすい傾向となる。一方、重量平均分子量が400,000を超えると、過度に粘度が増加して塗工作業の際にフィルム厚みムラ、スジ等の不良が発生しやすい傾向になる。 The weight-average molecular weight of the polyamic acid is preferably, for example, in the range of 10,000 to 400,000, and more preferably in the range of 50,000 to 350,000. If the weight-average molecular weight is less than 10,000, the strength of the film tends to decrease and it becomes easily brittle. On the other hand, if the weight-average molecular weight exceeds 400,000, the viscosity increases excessively, and defects such as uneven film thickness and streaks tend to occur during the coating process.
<金属張積層板の製造方法>
 本発明の金属張積層板は、前述のとおり、支持基材としての金属層に対して、キャスト法又は逐次塗工法で、とくに複数層のポリイミド樹脂層からなる絶縁樹脂層を形成することが、寸法安定性などの観点から好適であるが、特に限定されない。例えば、本発明のポリイミドを含んで構成される絶縁樹脂層(樹脂フィルム)を用意し、これに金属をスパッタリングしてシード層を形成した後、例えばメッキによって金属層を形成することによって調製してもよい。
<Metal-clad laminate manufacturing method>
As described above, the metal-clad laminate of the present invention is preferably prepared by forming an insulating resin layer, particularly consisting of multiple polyimide resin layers, on a metal layer as a supporting substrate by a casting method or a sequential coating method from the viewpoint of dimensional stability, but is not particularly limited thereto. For example, the metal-clad laminate may be prepared by preparing an insulating resin layer (resin film) containing the polyimide of the present invention, sputtering a metal onto the insulating resin layer to form a seed layer, and then forming a metal layer by, for example, plating.
 また、本発明のポリイミドを含んで構成される絶縁樹脂層(樹脂フィルム)を用意し、これに金属箔を熱圧着などの方法でラミネートすることによって調製してもよい。 Alternatively, the insulating resin layer (resin film) containing the polyimide of the present invention may be prepared by laminating a metal foil onto the insulating resin layer (resin film) by a method such as thermocompression bonding.
 それらの場合、樹脂フィルムと金属層の接着性を高めるために、樹脂フィルムの表面を例えばプラズマ処理などの改質処理を施してもよい。 In such cases, the surface of the resin film may be modified, for example by plasma treatment, to improve adhesion between the resin film and the metal layer.
 また、両面に金属層を有する金属張積層板を製造する場合は、例えば上記方法により得られた片面金属張積層板のポリイミド層上に、直接、あるいは必要に応じて絶縁樹脂層の透明性を阻害しない接着層を形成した後、金属層を加熱圧着等の手段で積層することにより得ることができる。金属層を加熱圧着の場合の熱プレス温度については、特に限定されるものではないが、使用される金属層に隣接するポリイミド層のガラス転移温度以上であることが望ましい。また、熱プレス圧力については、使用するプレス機器の種類にもよるが、1~500kg/mの範囲であることが望ましい。 In addition, when manufacturing a metal-clad laminate having metal layers on both sides, for example, the metal layer can be laminated by means of hot pressing or the like, directly on the polyimide layer of the single-sided metal-clad laminate obtained by the above method, or after forming an adhesive layer that does not inhibit the transparency of the insulating resin layer as necessary. The heat press temperature when hot pressing the metal layer is not particularly limited, but is preferably equal to or higher than the glass transition temperature of the polyimide layer adjacent to the metal layer used. The heat press pressure is preferably in the range of 1 to 500 kg/ m2 , depending on the type of press equipment used.
<ピール強度>
 本発明の金属張積層板における絶縁樹脂層と金属層との180°ピール強度は、金属層からなる配線層が配線幅100μmに加工された場合であっても、0.3kN/m以上であることが好ましく、0.5kN/mであることがより好ましい。配線幅については、用途などに応じて、その他、250μm、500μm、1mm等を採用することができるが、そのいずれにおいても、絶縁樹脂層と金属層との180°ピール強度は、前記の範囲を満足することが好ましい。本発明の金属張積層板は、後述のとおり配線幅が500μm以下の用途に好適である。
 なお、本明細書において、物性・特性値の評価は実施例に記載した条件で測定したものであり、特に記載がないものは、室温(23℃)での測定値である。
<Peel strength>
The 180° peel strength between the insulating resin layer and the metal layer in the metal-clad laminate of the present invention is preferably 0.3 kN/m or more, more preferably 0.5 kN/m, even when the wiring layer made of the metal layer is processed to a wiring width of 100 μm. As for the wiring width, 250 μm, 500 μm, 1 mm, etc. can be adopted depending on the application, etc., but in any case, the 180° peel strength between the insulating resin layer and the metal layer preferably satisfies the above range. The metal-clad laminate of the present invention is suitable for applications in which the wiring width is 500 μm or less, as described below.
In this specification, the physical properties and characteristic values are evaluated by measuring under the conditions described in the Examples, and unless otherwise specified, the values are measured at room temperature (23° C.).
 また、金属張積層板は、前記したポリイミド層からなる絶縁樹脂層のハンダ耐熱試験による耐熱性(ハンダ耐熱性)と同様に、金属張積層板全体としてのハンダ耐熱性が190℃以上であることが好ましく、より好ましくは200℃以上である。ハンダ耐熱性は実施例に記載の方法で評価される。 In addition, similar to the heat resistance (solder heat resistance) of the insulating resin layer made of the polyimide layer as described above in a solder heat resistance test, the metal-clad laminate as a whole preferably has a solder heat resistance of 190°C or higher, and more preferably 200°C or higher. The solder heat resistance is evaluated by the method described in the examples.
<用途>
 本発明の金属張積層板は、前記金属層からなる配線層の配線幅が500μm以下に加工される用途として好適に用いられる。前述のとおり、近年では益々透明性に優れるFPCを用いた用途へ展開されており、こうした新しい用途では、肉眼では見えづらい細い配線を形成する手法等が知られている。好ましくは配線幅が250μm以下、より好ましくは100μm以下である。100μm以下の配線幅とすることにより、視認距離が数mとなっても配線が視認され難くなるため好適である。金属層(配線層)の加工方法については、用途などに応じてFPCの公知の加工方法を用いることができる。
<Applications>
The metal-clad laminate of the present invention is preferably used for applications in which the wiring layer made of the metal layer is processed to have a wiring width of 500 μm or less. As mentioned above, in recent years, applications using FPCs with increasingly excellent transparency have been expanded, and in such new applications, methods for forming thin wiring that is difficult to see with the naked eye are known. The wiring width is preferably 250 μm or less, more preferably 100 μm or less. By making the wiring width 100 μm or less, it is preferable because the wiring is difficult to see even if the visibility distance is several meters. As for the processing method of the metal layer (wiring layer), a known processing method of FPC can be used depending on the application.
 ここで、前記で好ましく例示したキャスト法又は逐次塗工法で製造された金属張積層板によれば、ピール強度を比較的高くできるため、細線パターンを加工する点に優れる。また、比較的厚い金属層(例えば、18μm以上の銅厚み)の金属張積層板を製造できるため、広い用途に適用可能となる。例えば、大画面の用途では大電流が要求されるため、厚い金属層(銅箔)を用いる必要がある等の制限がかかるといった事情も存在し、そのよう観点から前記したようにキャスト法又は逐次塗工法で製造された金属張積層板であることが好適である。
 本発明の金属張積層板の、前記配線幅500μm以下に加工される用途として好適な用途は以下のとおりであるが、これらに限定されない。
Here, according to the metal-clad laminate produced by the casting method or the sequential coating method preferably exemplified above, the peel strength can be relatively high, so that it is excellent in processing fine line patterns. In addition, since a metal-clad laminate having a relatively thick metal layer (e.g., a copper thickness of 18 μm or more) can be produced, it can be applied to a wide range of applications. For example, since a large current is required for a large screen application, there are circumstances such as restrictions such as the need to use a thick metal layer (copper foil), and from such a viewpoint, it is preferable to use a metal-clad laminate produced by the casting method or the sequential coating method as described above.
Suitable applications of the metal-clad laminate of the present invention in which the wiring width is processed to 500 μm or less are as follows, but are not limited to these.
(透明LEDビジョン)
 本発明の金属張積層板は、透明LEDビジョンの回路基板として好適に用いることができる。ここで、透明LEDビジョンについては、使用形態としては、家庭用の小型ディスプレイから、屋外広告・掲示板や建築物の窓・壁面に設置される比較的大型のディスプレイのように、広義のLEDを用いた表示装置の使用形態を含むが、その中でも表示部の透明性(透過性)が高く、LED非点灯時には表示部の裏側まで透けて見えるような高い透明性・視認性を有しながらも、LEDによるデジタル画像・映像を組み合わせて表示できるものをいう。呼称はさまざまであって制限されないが、「透明LEDディスプレイ」や「シースルー(透過)型LEDビジョン」などとも呼ばれる。透明LEDビジョンの構成としては、制限されないが、表示部の裏面から見るとLEDなどが格子状・すだれ状に配列されていて開口率が高いため、LEDの非点灯時には表示部の背景が透けて見える。本発明の金属張積層板は、このような透明LEDビジョンにおいて、例えば、銅箔配線をライン&スペースで100μm/500μmの形で加工して100cm×50cmサイズのディスプレイ基板に組み込まれる。
(Transparent LED vision)
The metal-clad laminate of the present invention can be suitably used as a circuit board for a transparent LED vision. Here, the transparent LED vision includes a wide variety of uses, from small household displays to relatively large displays installed on outdoor advertising and bulletin boards and windows and walls of buildings, and is capable of displaying digital images and videos using LEDs in combination, while having high transparency (transparency) of the display part and having such high transparency and visibility that the back side of the display part can be seen through when the LED is not lit. It is called by various names, but is not limited to them, such as "transparent LED display" and "see-through (transparent) type LED vision". The configuration of the transparent LED vision is, but is not limited to them, that when viewed from the back side of the display part, the LEDs are arranged in a lattice or blind shape, and the aperture ratio is high, so that the background of the display part can be seen through when the LED is not lit. In such a transparent LED vision, the metal-clad laminate of the present invention is, for example, incorporated into a display substrate of 100 cm x 50 cm size by processing copper foil wiring in a line and space shape of 100 μm/500 μm.
(ヘッドマウントディスプレイ)
 本発明の金属張積層板は、ヘッドマウントディスプレイ(HMD)の基板として好適に用いることができる。HMDは、近年、益々の用途展開がなされており、頭部に装着するウェアラブルなデジタル表示装置を全て含むものである。例えば、帽子型や眼鏡型の装着形態が挙げられ、視野の一部又は全部を覆うように使用されることが多い。具体的には、仮想現実(Virtual Reality:VR)を写すものや、現実空間を主体としてそれにデジタル情報を重ねて出現させることで現実空間を拡張(拡張現実)(Augmented Reality:AR)するものや、或いは、現実空間と仮想現実とを組み合わせて、コンピューターグラフィック(CG)やホログラムに触れたり別の角度に切り替えたりすることができる複合現実(Mixed Reality:MR)など、現実世界と仮想世界とを融合する先端技術であるクロスリアリティ(Cross Reality:XR)が含まれる。本発明でいうHMDには、このような使用形態や表示技術であれば制限なく含むことができる。本発明の金属張積層板は、このようなHMDにおいて、例えば、細線加工してグラス全面に覆わせることや映像を表示する導光板などを保護するためのカバーやその中に内蔵するマイクに組み込まれる。
(Head-mounted display)
The metal-clad laminate of the present invention can be suitably used as a substrate for a head-mounted display (HMD). In recent years, the applications of HMDs have been increasingly expanded, and include all wearable digital display devices that are worn on the head. For example, hat-type and eyeglass-type wearing forms can be mentioned, and they are often used to cover part or all of the field of vision. Specifically, they include those that project virtual reality (VR), those that extend real space by superimposing digital information on real space as the main body and making it appear (Augmented Reality (AR)), or those that combine real space and virtual reality to allow computer graphics (CG) and holograms to be touched or switched to a different angle, such as cross reality (XR), which is an advanced technology that combines the real world and the virtual world. The HMD referred to in the present invention can include such usage forms and display technologies without any restrictions. In such HMDs, the metal-clad laminate of the present invention is, for example, processed into thin wires to cover the entire surface of the glasses, or is incorporated into a cover for protecting the light guide plate that displays images, or into a microphone built into the cover.
(透明アンテナ)
 本発明の金属張積層板は、透明アンテナの基板として好適に用いることができる。ここで、透明アンテナとは、室内や車内の窓ガラスなどに設置して窓を基地局化することができる「ガラスアンテナ」等や、スマートフォンなどのモバイルのディプレイにアンテナを貼り付けたり埋め込んだりする技術(いわゆる、アンテナオンディスプレイ)として使用され得る。本発明の金属張積層板は、このような透明アンテナにおいて、例えば、銅箔配線を100μm幅に加工し、基板を1cm×5cmの大きさに加工し、電波が届くように窓の中に組み込まれる。
(Transparent antenna)
The metal-clad laminate of the present invention can be suitably used as a substrate for a transparent antenna. Here, the transparent antenna can be used as a "glass antenna" that can be installed on a window glass inside a room or a car to turn the window into a base station, or a technology for attaching or embedding an antenna in a mobile display such as a smartphone (so-called antenna-on-display). In such a transparent antenna, the metal-clad laminate of the present invention is, for example, processed into a copper foil wiring width of 100 μm, processed into a substrate size of 1 cm × 5 cm, and incorporated into a window so that radio waves can reach it.
(透明ヒーター)
 本発明の金属張積層板は、透明ヒーターなどのフレキシブル面状発熱体の基板として好適に用いることができる。例えば、視認性を損なうことが憚れるが加熱するための用途の基板として使用され得る。例えば、窓ガラス、観測カメラや監視カメラや車両カメラなどの主として屋外で使用されるカメラ、車両のヘッドライト、信号機、路上誘導灯などおいて、防曇、融雪、感度向上の機能を発揮するためのヒーターとして使用される。本発明の金属張積層板は、このような透明ヒーターにおいて、例えば、曇りを除去するために自動運転車のカメラレンズの前に組み込まれる。
(Transparent heater)
The metal-clad laminate of the present invention can be suitably used as a substrate for flexible planar heating elements such as transparent heaters. For example, it can be used as a substrate for applications requiring heating, but where visibility may be impaired. For example, it is used as a heater for exerting anti-fogging, snow melting, and sensitivity improvement functions in window glass, cameras used mainly outdoors, such as observation cameras, surveillance cameras, and vehicle cameras, vehicle headlights, traffic lights, roadway guide lights, etc. In such transparent heaters, the metal-clad laminate of the present invention is incorporated, for example, in front of the camera lens of an autonomous vehicle to remove fogging.
(LEDライトストリップ)
 本発明の金属張積層板は、LEDライトストリップの基板として好適に用いることができる。ここで、LEDライトストリップとは、LEDライトテープやリボン状のものであり、飾り照明もしくは電球のフィラメントの代わりとして使用される。本発明の金属張積層板は、このようなLEDライトストリップにおいて、例えば、FPCをライン&スペースが200μm/400μmに配線加工して、直径1mmのテープ状に作製して電球の中に入れた照明器具に組み込まれる。
(LED light strip)
The metal-clad laminate of the present invention can be suitably used as a substrate for an LED light strip. Here, the LED light strip is an LED light tape or ribbon-shaped material used as decorative lighting or as a replacement for a filament in a light bulb. In such an LED light strip, the metal-clad laminate of the present invention is incorporated into a lighting fixture in which, for example, an FPC is wired with a line and space of 200 μm/400 μm, fabricated into a tape shape with a diameter of 1 mm, and inserted into a light bulb.
 以下、実施例に基づいて本発明の内容を具体的に説明するが、本発明はこれらの実施例の範囲に限定されるものではない。なお、以下の実施例において、特にことわりのない限り各種測定、評価は下記によるものである。 The present invention will be explained in detail below based on examples, but the present invention is not limited to the scope of these examples. In the following examples, various measurements and evaluations are as follows, unless otherwise specified.
[光透過率、黄色度(YI)の算出]
 樹脂フィルム(絶縁樹脂層とも呼ぶ。以下同様である。)(50mm×50mm)を、島津製作所社製のUV-3600分光光度計にて光透過率及び黄色度(YI)を測定した。
1)光透過率
 JIS Z 8722に準拠して、波長が400nm、430nm及び450nmの光におけるそれぞれの光透過率(T400、T430及びT450)を算出した。
2)YI
 JIS Z 8722に準拠して、下記式(1)で表される計算式に基づいて算出した。
 YI=100×(1.2879X-1.0592Z)/Y ・・・(1)
 X、Y及びZ:試験片の三刺激値
(UV照射前後のYIの差の絶対値)
 UV照射前後のYIの差の絶対値は、下記のUV照射条件にてUV照射後に測定したYIと、UV照射前のYIとの差で計算する。
[Calculation of light transmittance and yellowness index (YI)]
The resin film (also referred to as an insulating resin layer, the same applies below) (50 mm×50 mm) was measured for light transmittance and yellowness index (YI) using a UV-3600 spectrophotometer manufactured by Shimadzu Corporation.
1) Light Transmittance According to JIS Z 8722, the light transmittances (T400, T430 and T450) for light having wavelengths of 400 nm, 430 nm and 450 nm were calculated.
2) YI
In accordance with JIS Z 8722, calculation was performed based on the calculation formula represented by the following formula (1).
YI = 100 × (1.2879X - 1.0592Z) / Y ... (1)
X, Y, and Z: Tristimulus values of the test piece (absolute value of difference in YI before and after UV irradiation)
The absolute value of the difference in YI before and after UV irradiation is calculated as the difference between the YI measured after UV irradiation under the UV irradiation conditions described below and the YI before UV irradiation.
[反射率、色相評価]
 実施例および比較例の各片面金属張積層板、およびその製造に使用した各銅箔を、それぞれ、ガラス板(12.5cm角)上に、銅箔鏡面側がガラス板に接するように貼り付けた。株式会社日立ハイテクノロジーズ社製UH-4100にて、この基板の樹脂面側または銅箔塗工面側に光を照射し、380~780nm波長範囲の反射率と色相(L,a、b)を測定した。光源はC光源(2°視野)を用いた。580nmにおける反射率を反射率の結果として使用した。
[Reflectance and hue evaluation]
Each of the single-sided metal-clad laminates of the Examples and Comparative Examples, and each of the copper foils used in the manufacture thereof, was attached to a glass plate (12.5 cm square) so that the mirror side of the copper foil was in contact with the glass plate. The resin side or the copper foil coated side of the substrate was irradiated with light using a Hitachi High-Technologies Corporation UH-4100, and the reflectance and hue (L * , a * , b * ) in the wavelength range of 380 to 780 nm were measured. The light source used was a C light source (2° field of view). The reflectance at 580 nm was used as the reflectance result.
[熱膨張係数(CTE)の測定]
 樹脂フィルム(3mm×15mm)を、熱機械分析(TMA)装置にて5.0gの荷重を加えながら10℃/minの昇温速度で30℃から280℃まで昇温し、次いで、250℃から100℃までの降温し、降温時における樹脂フィルムの伸び量(線膨張)から熱膨張係数を測定した。
[Measurement of coefficient of thermal expansion (CTE)]
A resin film (3 mm x 15 mm) was heated from 30°C to 280°C at a heating rate of 10°C/min while applying a load of 5.0 g in a thermomechanical analysis (TMA) device, and then cooled from 250°C to 100°C. The thermal expansion coefficient was measured from the elongation (linear expansion) of the resin film during cooling.
[全光線透過率(T.T.)及びHAZE(濁度)の算出]
 樹脂フィルム(50mm×50mm)を、日本電色工業社製のHAZE METER NDH500にて、全光線透過率(T.T.)及びHAZE(濁度)をJIS K 7136に準拠して測定した。
(UV照射前後のHAZEの差の絶対値)
 UV照射前後のHAZEの差の絶対値は、下記のUV照射条件にてUV照射後に測定したHAZEと、UV照射前のHAZEとの差で計算する。
[Calculation of total light transmittance (T.T.) and HAZE (turbidity)]
The total light transmittance (TT) and haze (turbidity) of the resin film (50 mm x 50 mm) were measured in accordance with JIS K 7136 using a HAZE METER NDH500 manufactured by Nippon Denshoku Industries Co., Ltd.
(Absolute value of difference in haze before and after UV irradiation)
The absolute value of the difference in haze before and after UV irradiation is calculated as the difference between the haze measured after UV irradiation under the UV irradiation conditions described below and the haze before UV irradiation.
[UV照射条件]
 DEEP UV照射装置VUM-3073を用いて、200-350nm波長において、出力を1時間あたり20J/cmで4時間連続照射した。
[UV irradiation conditions]
Using a DEEP UV irradiation device VUM-3073, irradiation was performed continuously for 4 hours at a wavelength of 200-350 nm with an output of 20 J/cm 2 per hour.
[粘度の測定]
 粘度は、恒温水槽付のコーンプレート式粘度計(トキメック社製)にて、合成例で得られたポリアミド酸溶液について25℃で測定した。
[Viscosity measurement]
The viscosity of the polyamic acid solution obtained in the synthesis example was measured at 25° C. using a cone-plate viscometer equipped with a thermostatic water bath (manufactured by Tokimec Co., Ltd.).
[ガラス転移温度(Tg)の測定]
 樹脂フィルム(10mm×22.6mm)を動的熱機械分析装置にて20℃から400℃まで5℃/分で昇温させたときの動的粘弾性を測定し、ガラス転移温度(Tanδ極大値:℃)を求めた。
[Measurement of glass transition temperature (Tg)]
A resin film (10 mm x 22.6 mm) was heated from 20°C to 400°C at a rate of 5°C/min using a dynamic thermomechanical analyzer, and the dynamic viscoelasticity was measured to determine the glass transition temperature (Tan δ maximum value: °C).
[ピール強度の測定]
 テンションテスターを用い、積層体から得られた幅1mm、500μm、250μm及び100μmの回路を有する試験サンプルの樹脂側を両面テープによりアルミ板に固定し、銅を180°方向に50mm/minの速度で剥離して、ピール強度を求めた。
[Peel strength measurement]
Using a tension tester, the resin side of test samples having circuits with widths of 1 mm, 500 μm, 250 μm and 100 μm obtained from the laminate was fixed to an aluminum plate with double-sided tape, and the copper was peeled off in a 180° direction at a speed of 50 mm/min to determine the peel strength.
[銅箔の表面粗度の測定]
 サンプルを約10mm角の大きさにカットし、試料台に両面テープで固定させ、軟X線を照射し、銅箔表面の静電気を除去した後、表面粗さを測定した。走査型プローブ顕微鏡(AFM、ブルカー・エイエックスエス社製、商品名:Dimension Icon型SPM)を用い、以下の測定条件にて銅箔表面の算術平均粗さRaと最大高さRzを測定した。測定条件は、下記のとおりである。
測定モード;タッピングモード
測定エリア;1μm×1μm
スキャンスピード;1Hz
プローブ;Olympus製 AC160製
解析ソフト;NanoScope Analysis
[Measurement of copper foil surface roughness]
The sample was cut into a size of about 10 mm square, fixed to a sample stage with double-sided tape, irradiated with soft X-rays, and the static electricity on the copper foil surface was removed, and then the surface roughness was measured. The arithmetic mean roughness Ra and maximum height Rz of the copper foil surface were measured using a scanning probe microscope (AFM, manufactured by Bruker AXS, product name: Dimension Icon type SPM) under the following measurement conditions. The measurement conditions are as follows.
Measurement mode: tapping mode Measurement area: 1 μm x 1 μm
Scan speed: 1Hz
Probe: Olympus AC160 Analysis software: NanoScope Analysis
[ハンダ耐熱性の測定]
 実施例および比較例で得られた各銅張積層板の金属層側に、市販のフォトレジストフィルムをラミネートし、所定のパターン形成用マスクで露光(365nm、露光量500J/m程度)し、金属層側に直径20mm、15mm、10mm、5mm、3mm、1mm及び0.5mmの円形となるパターンにレジスト層を硬化形成した。
 次に、硬化レジスト箇所を現像(現像液は1%NaOH水溶液)し、塩化第二鉄水溶液を用いて所定のパターン形成に不要な銅箔層をエッチング除去し、さらに、硬化レジスト層をアルカリ液にて剥離除去することにより、鉛フリーはんだに対応した耐熱性を評価するためのパターンが形成されたサンプル(各金属張積層板の金属層側に、直径1mmの円形パターンが形成された積層体)を得た。
 サンプルを温度の異なる溶融ハンダ浴槽に10sec浸積して、銅箔層箇所における変形、膨れの有無を観察した。銅箔層箇所に変形や膨れ、剥がれが発生しない、ハンダ浴槽の最高温度をハンダ耐熱温度とした。
[Measurement of solder heat resistance]
A commercially available photoresist film was laminated onto the metal layer side of each of the copper-clad laminates obtained in the Examples and Comparative Examples, and exposed to light (365 nm, exposure dose of about 500 J/ m2 ) using a predetermined pattern forming mask to harden and form a resist layer on the metal layer side in a circular pattern with diameters of 20 mm, 15 mm, 10 mm, 5 mm, 3 mm, 1 mm, and 0.5 mm.
Next, the hardened resist areas were developed (developing solution was a 1% NaOH aqueous solution), and the copper foil layer unnecessary for forming the specified pattern was etched away using an aqueous ferric chloride solution. Furthermore, the hardened resist layer was peeled off and removed with an alkaline solution to obtain samples with patterns formed thereon for evaluating heat resistance corresponding to lead-free solder (laminates with circular patterns with a diameter of 1 mm formed on the metal layer side of each metal-clad laminate).
The samples were immersed in molten solder baths of different temperatures for 10 seconds, and the presence or absence of deformation or blistering in the copper foil layer was observed. The maximum temperature of the solder bath at which the copper foil layer did not deform, blister, or peel off was determined as the solder heat resistance temperature.
 実施例等に用いた略号は、以下の化合物を示す。
APB:1,3-ビス(3-アミノフェノキシ)ベンゼン
TFMB:2,2'-ビス(トリフルオロメチル)-4,4'-ジアミノビフェニル
BAPS:ビス[4-(アミノフェノキシ)フェニル]スルホン
BAFL:9,9-ビス(4-アミノフェニル)フルオレン
PMDA:ピロメリット酸二無水物
6FDA:2,2-ビス(3,4-ジカルボキシフェニル)-ヘキサフルオロプロパン二無水物
BPDA:3,3',4,4'-ビフェニルテトラカルボン酸二無水物
ODPA:4,4’-オキシジフタル酸二無水物
CBDA:1,2,3,4-シクロブタンテトラカルボン酸二無水物
DMAc:N,N-ジメチルアセトアミド
The abbreviations used in the examples represent the following compounds.
APB: 1,3-bis(3-aminophenoxy)benzene TFMB: 2,2'-bis(trifluoromethyl)-4,4'-diaminobiphenyl BAPS: bis[4-(aminophenoxy)phenyl]sulfone BAFL: 9,9-bis(4-aminophenyl)fluorene PMDA: pyromellitic dianhydride 6FDA: 2,2-bis(3,4-dicarboxyphenyl)-hexafluoropropane dianhydride BPDA: 3,3',4,4'-biphenyl tetracarboxylic dianhydride ODPA: 4,4'-oxydiphthalic dianhydride CBDA: 1,2,3,4-cyclobutane tetracarboxylic dianhydride DMAc: N,N-dimethylacetamide
合成例1
 ポリアミド酸溶液Aを合成するため、窒素気流下で、200mlのセパラブルフラスコの中に、15wt%固形分濃度となるように溶剤のDMAcを加え、表1に示したジアミン成分及び酸無水物成分を室温で攪拌しながら添加し溶解させた。その後、溶液を室温で8時間攪拌を続けて重合反応を行い、ポリアミド酸の粘稠な溶液Aを調製した。その後、溶剤DMAcで12wt%に希釈した。希釈後の粘度は3000cPであった。
Synthesis Example 1
To synthesize polyamic acid solution A, a DMAc solvent was added to a 200 ml separable flask under a nitrogen gas flow to a solids concentration of 15 wt%, and the diamine component and acid anhydride component shown in Table 1 were added and dissolved while stirring at room temperature. The solution was then stirred at room temperature for 8 hours to carry out a polymerization reaction, preparing a viscous polyamic acid solution A. The solution was then diluted to 12 wt% with the DMAc solvent. The viscosity after dilution was 3000 cP.
合成例2
 ポリアミド酸溶液Bを合成するため、窒素気流下で、200mlのセパラブルフラスコの中に、表1で示した固形分濃度となるように溶剤のDMAcを加え、表1に示したジアミン成分及び酸無水物成分を攪拌しながら40℃、1時間加熱し溶解させた。その後、溶液を室温で2日間攪拌を続けて重合反応を行い、ポリアミド酸の粘稠な溶液Bを調製した。粘度は21000cPであった。
Synthesis Example 2
To synthesize polyamic acid solution B, a solvent, DMAc, was added to a 200 ml separable flask under a nitrogen gas flow so as to obtain a solid content concentration shown in Table 1, and the diamine component and acid anhydride component shown in Table 1 were dissolved by heating at 40° C. for 1 hour while stirring. The solution was then stirred at room temperature for 2 days to carry out a polymerization reaction, and a viscous polyamic acid solution B was prepared. The viscosity was 21,000 cP.
合成例3~6
 ポリアミド酸溶液C~Fは、モノマー種類を表1に示したように変更し、合成例1と同様な方法で重合を行った。ポリアミド酸の粘稠な溶C~Fを調製した。粘度は表1に示した。
Synthesis Examples 3 to 6
Polyamic acid solutions C to F were prepared by changing the monomer types as shown in Table 1 and carrying out polymerization in the same manner as in Synthesis Example 1. Viscous solutions C to F of polyamic acid were prepared. The viscosities are shown in Table 1.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 本発明で使用した金属層としての銅箔の種類を表2に示した。 The types of copper foil used as the metal layer in this invention are shown in Table 2.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
実施例1
 銅箔I(電解銅箔、三井金属鉱業社製、商品名;TQ-M4-VSP、厚み;12μm)の上に、ポリアミド酸溶液Aの溶液を硬化後の厚みが2μmとなるように均一に塗布した後、120℃までの温度範囲で段階加熱乾燥し、溶媒を除去した。次に、その上にポリアミド酸溶液Bの溶液を硬化後の厚みが23μmとなるように均一に塗布した後、120℃までの温度範囲で段階加熱乾燥し溶媒を除去した。更に、その上にポリアミド酸溶液Aの溶液を硬化後の厚みが2μmとなるように均一に塗布した後、120℃までの温度範囲で段階加熱乾燥し溶剤を除去した。このようにして、3層のポリアミド酸層を形成した後、125℃から360℃まで段階的な熱処理を行い、イミド化を完結し、ポリイミド層A/ポリイミド層B/ポリイミド層Aからなる厚みが27μmの絶縁樹脂層を形成し、金属張積層板1A(表中では、「金属積層体」と表記)を調製した。
 得られた片面金属張積層板1Aを、塩化第二鉄水溶液を用いて、銅箔をエッチング除去して、ポリイミドフィルム1aを調製した。ポリイミドフィルム1aについて、HAZE、T.T.、YI、CTE、及びTgを求めた。これらの測定結果を表3に示す。
 上記得られたフィルムについて、前記UV照射条件にてUV照射を4時間行い、UV照射後のフィルムについて、UV照射後HAZE、YIを測定し、UV照射前のHAZE及びYIとの差を求めて、それぞれ変化率を算出した。結果を表3に示す。
 また、得られた片面金属張積層板1Aについて、樹脂フィルム側から測定した反射率及び色相(L、a、b)を求めた。また、銅箔Iについて1mm、500μm、250μm及び100μmにそれぞれ配線を加工した場合のポリアミド酸塗布面のピール強度は、表3に示すとおり0.5~0.6kN/mであった。また、ハンダ耐熱性が250℃以上であった。
Example 1
On the copper foil I (electrolytic copper foil, manufactured by Mitsui Mining & Smelting Co., Ltd., trade name: TQ-M4-VSP, thickness: 12 μm), a solution of polyamic acid solution A was uniformly applied so that the thickness after curing was 2 μm, and then the solution was stepwise heated and dried in a temperature range up to 120 ° C. to remove the solvent. Next, a solution of polyamic acid solution B was uniformly applied thereon so that the thickness after curing was 23 μm, and then the solution was stepwise heated and dried in a temperature range up to 120 ° C. to remove the solvent. Furthermore, a solution of polyamic acid solution A was uniformly applied thereon so that the thickness after curing was 2 μm, and then the solution was stepwise heated and dried in a temperature range up to 120 ° C. to remove the solvent. In this way, after forming three polyamic acid layers, stepwise heat treatment was performed from 125 ° C. to 360 ° C. to complete imidization, and an insulating resin layer having a thickness of 27 μm consisting of polyimide layer A / polyimide layer B / polyimide layer A was formed, and a metal-clad laminate 1A (in the table, it is written as "metal laminate") was prepared.
The copper foil of the obtained single-sided metal-clad laminate 1A was etched away using an aqueous solution of ferric chloride to prepare a polyimide film 1a. The haze, T.T., YI, CTE, and Tg of the polyimide film 1a were measured. The results of these measurements are shown in Table 3.
The obtained film was irradiated with UV for 4 hours under the above UV irradiation conditions, and the haze and the yellow index (YI) of the film after UV irradiation were measured, and the difference between the haze and the yellow index (YI) before UV irradiation was calculated to calculate the rate of change. The results are shown in Table 3.
The reflectance and hue (L * , a * , b * ) of the obtained single-sided metal-clad laminate 1A were measured from the resin film side. The peel strength of the polyamic acid-coated surface of the copper foil I when the wiring was processed to 1 mm, 500 μm, 250 μm, and 100 μm was 0.5 to 0.6 kN/m as shown in Table 3. The solder heat resistance was 250° C. or higher.
実施例2~4、6
 表3に示す銅箔及びポリアミド酸溶液を使用した他は、実施例1と同様にして、片面金属張積層板2A~4A、6Aを調製し、ポリイミドフィルム2a~4a、6aを調製した。ポリイミドフィルム2a~4a、6aについて、HAZE、T.T.、YI、CTE及びTgを求め、UV照射前後のYI及びHAZEの差の絶対値を求めた。また、片面金属張積層板2A~4A、6Aについて、実施例1と同様にして、反射率、色相、ピール強度及びハンダ耐熱性を求めた。
Examples 2 to 4 and 6
Single-sided metal-clad laminates 2A to 4A and 6A were prepared, and polyimide films 2a to 4a and 6a were prepared in the same manner as in Example 1, except that the copper foil and polyamic acid solution shown in Table 3 were used. For the polyimide films 2a to 4a and 6a, HAZE, T.T., YI, CTE and Tg were measured, and the absolute values of the differences in YI and HAZE before and after UV irradiation were measured. In addition, for the single-sided metal-clad laminates 2A to 4A and 6A, reflectance, hue, peel strength and solder heat resistance were measured in the same manner as in Example 1.
実施例5
 銅箔II(電解銅箔、福田金属箔粉工業社製、商品名;CF-T9DA-SV、厚み;17μm)の2枚を15cm×15cmにカットし、塗工面を向かい合わせた状態でその間に実施例4の4aフィルムを挟み込み、プレス機にて、320℃/5minで熱圧着し両面金属張積層板を調製した。調製した両面金属張積層板の片側の銅箔のみを、塩化第二鉄水溶液を用いて、エッチング除去し、片面金属張積層板5Aを得た。得られた片面金属張積層板5Aを、塩化第二鉄水溶液を用いて、銅箔をエッチング除去して、ポリイミドフィルム5aを調製した。片面金属張積層板5A、ポリイミドフィルム5aを用いて、前記実施例と同様の項目を評価した。表3に評価結果を示す。
Example 5
Two sheets of copper foil II (electrolytic copper foil, manufactured by Fukuda Metal Foil and Powder Co., Ltd., product name: CF-T9DA-SV, thickness: 17 μm) were cut to 15 cm x 15 cm, and the 4a film of Example 4 was sandwiched between them with the coated surfaces facing each other, and heat-pressed at 320 ° C./5 min with a press to prepare a double-sided metal-clad laminate. Only the copper foil on one side of the prepared double-sided metal-clad laminate was etched and removed using an aqueous ferric chloride solution to obtain a single-sided metal-clad laminate 5A. The copper foil of the obtained single-sided metal-clad laminate 5A was etched and removed using an aqueous ferric chloride solution to prepare a polyimide film 5a. The single-sided metal-clad laminate 5A and polyimide film 5a were used to evaluate the same items as in the above examples. Table 3 shows the evaluation results.
比較例1
 銅箔IIの2枚を15cm×15cmにカットし、同サイズのポリエステルフィルム(東レ社製、商品名;ルミラー25S28L、厚み;25μm)の両側に設置し、挟み込み、プレス機にて、熱圧着し両面金属張積層板を調製した。調製した両面金属張積層板の片側の銅箔のみを、塩化第二鉄水溶液を用いて、エッチング除去し、片面金属張積層板7Aを得た。得られた片面金属張積層板7Aを、塩化第二鉄水溶液を用いて、銅箔をエッチング除去して、樹脂フィルム7aを調製した。片面金属張積層板7A、ポリイミドフィルム7aを用いて、前記実施例と同様の項目を評価した。表4に評価結果を示す。
Comparative Example 1
Two sheets of copper foil II were cut to 15 cm x 15 cm, placed on both sides of a polyester film of the same size (manufactured by Toray Industries, Inc., product name: Lumirror 25S28L, thickness: 25 μm), sandwiched, and heat-pressed with a press to prepare a double-sided metal-clad laminate. Only the copper foil on one side of the prepared double-sided metal-clad laminate was etched and removed using an aqueous ferric chloride solution to obtain a single-sided metal-clad laminate 7A. The obtained single-sided metal-clad laminate 7A was etched and removed using an aqueous ferric chloride solution to prepare a resin film 7a. The single-sided metal-clad laminate 7A and polyimide film 7a were used to evaluate the same items as in the above examples. Table 4 shows the evaluation results.
比較例2~3
 表4に示す銅箔及びポリアミド酸溶液を使用した他は、実施例1と同様にして、片面金属張積層板8A~9Aを調製し、ポリイミドフィルム8a~9aを調製した。これらポリイミドフィルム8a~9a、片面金属張積層板8A~9Aについて、前記実施例と同様に評価した。これらの測定結果を表4に示す。
Comparative Examples 2 to 3
Single-sided metal-clad laminates 8A to 9A and polyimide films 8a to 9a were prepared in the same manner as in Example 1, except that the copper foil and polyamic acid solution shown in Table 4 were used. These polyimide films 8a to 9a and single-sided metal-clad laminates 8A to 9A were evaluated in the same manner as in the previous Examples. The measurement results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009

Claims (8)

  1.  絶縁樹脂層の片面又は両面に金属層を有する金属張積層板であって、
     前記絶縁樹脂層は、厚みが10μm~100μmの範囲内であり、全光線透過率が70%以上であり、HAZEが50%以下であり、紫外線照射前後の黄色度YIの差の絶対値が30以下であり、
     前記絶縁樹脂層に接する前記金属層の表面を、前記絶縁樹脂層を介して測定した場合に、580nmにおける反射率が50%以下であり、
     当該金属層からなる配線幅が500μm以下に加工される用途に使用されることを特徴とする金属張積層板。
    A metal-clad laminate having a metal layer on one or both sides of an insulating resin layer,
    the insulating resin layer has a thickness in the range of 10 μm to 100 μm, a total light transmittance of 70% or more, a haze of 50% or less, and an absolute value of a difference in yellowness index YI before and after ultraviolet irradiation of 30 or less;
    a reflectance at 580 nm of a surface of the metal layer in contact with the insulating resin layer is 50% or less when measured through the insulating resin layer;
    A metal-clad laminate characterized in that it is used in applications in which the wiring width of the metal layer is processed to 500 μm or less.
  2.  前記絶縁樹脂層は、紫外線照射前後のHAZEの差の絶対値が10%以下であることを特徴とする請求項1に記載の金属張積層板。 The metal-clad laminate according to claim 1, characterized in that the absolute value of the difference in haze between before and after ultraviolet irradiation of the insulating resin layer is 10% or less.
  3.  半田耐熱性が200℃以上であることを特徴とする請求項1又は2に記載の金属張積層板。 The metal-clad laminate according to claim 1 or 2, characterized in that it has a solder heat resistance of 200°C or higher.
  4.  前記金属層の100μm幅への加工時における、当該加工後の金属層と前記絶縁樹脂層との180°ピール強度が、0.3kN/m以上であることを特徴とする請求項1又は2に記載の金属張積層板。 The metal-clad laminate according to claim 1 or 2, characterized in that when the metal layer is processed to a width of 100 μm, the 180° peel strength between the processed metal layer and the insulating resin layer is 0.3 kN/m or more.
  5.  前記絶縁樹脂層に接する前記金属層の表面の最大高さRzが300nm以下であると共に、L表色系のaが20以下であることを特徴とする請求項1又は2に記載の金属張積層板。 3. The metal-clad laminate according to claim 1, wherein the maximum height Rz of the surface of the metal layer in contact with the insulating resin layer is 300 nm or less, and the a * of the L * a * b * color system is 20 or less.
  6.  前記配線幅が500μm以下に加工される用途が、透明LEDビジョン用途であることを特徴とする請求項1又は2に記載の金属張積層板。 The metal-clad laminate according to claim 1 or 2, characterized in that the application in which the wiring width is processed to 500 μm or less is a transparent LED vision application.
  7.  前記配線幅が500μm以下に加工される用途が、ヘッドマウントディスプレイ用途であることを特徴とする請求項1又は2に記載の金属張積層板。 The metal-clad laminate according to claim 1 or 2, characterized in that the application in which the wiring width is processed to 500 μm or less is for use in a head-mounted display.
  8.  前記配線幅が500μm以下に加工される用途が、透明アンテナ用途であることを特徴とする請求項1又は2に記載の金属張積層板。
     
    3. The metal-clad laminate according to claim 1, wherein the application in which the wiring width is processed to 500 μm or less is for a transparent antenna.
PCT/JP2023/034815 2022-09-30 2023-09-26 Metal-clad laminated plate WO2024071066A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022159079 2022-09-30
JP2022-159079 2022-09-30

Publications (1)

Publication Number Publication Date
WO2024071066A1 true WO2024071066A1 (en) 2024-04-04

Family

ID=90477877

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/034815 WO2024071066A1 (en) 2022-09-30 2023-09-26 Metal-clad laminated plate

Country Status (1)

Country Link
WO (1) WO2024071066A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012011388A (en) * 2010-05-31 2012-01-19 Toyobo Co Ltd Flexible metal-clad laminate
WO2020071288A1 (en) * 2018-10-05 2020-04-09 パナソニックIpマネジメント株式会社 Metal-clad laminate, wiring board, metal foil provided with resin, and resin composition
WO2020262450A1 (en) * 2019-06-27 2020-12-30 日鉄ケミカル&マテリアル株式会社 Resin film, metal-clad laminate and method for producing same
JP2022099997A (en) * 2020-12-23 2022-07-05 日鉄ケミカル&マテリアル株式会社 Conductor-polyimide laminate
WO2022202742A1 (en) * 2021-03-24 2022-09-29 パナソニックIpマネジメント株式会社 Resin composition, prepreg, resin-coated film, resin-coated metal foil, metal-clad laminate, and wiring board

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012011388A (en) * 2010-05-31 2012-01-19 Toyobo Co Ltd Flexible metal-clad laminate
WO2020071288A1 (en) * 2018-10-05 2020-04-09 パナソニックIpマネジメント株式会社 Metal-clad laminate, wiring board, metal foil provided with resin, and resin composition
WO2020262450A1 (en) * 2019-06-27 2020-12-30 日鉄ケミカル&マテリアル株式会社 Resin film, metal-clad laminate and method for producing same
JP2022099997A (en) * 2020-12-23 2022-07-05 日鉄ケミカル&マテリアル株式会社 Conductor-polyimide laminate
WO2022202742A1 (en) * 2021-03-24 2022-09-29 パナソニックIpマネジメント株式会社 Resin composition, prepreg, resin-coated film, resin-coated metal foil, metal-clad laminate, and wiring board

Similar Documents

Publication Publication Date Title
JP7222089B2 (en) Resin film, metal-clad laminate and method for producing the same
US9752030B2 (en) Polyamic acid and polyimide, processes for the production of same, compositions containing same, and uses thereof
US10844175B2 (en) Polyamide acid, thermoplastic polyimide, resin film, metal-clad laminate and circuit board
JP5273545B2 (en) Polyamideimide resin, flexible metal-clad laminate and wiring board obtained therefrom
JP6457168B2 (en) POLYIMIDE FILM FOR DISPLAY DEVICE SUPPORTING SUBSTRATE, ITS LAMINATE, AND METHOD FOR PRODUCING THE SAME
JP5713242B2 (en) Flexible metal-clad laminate
KR20190109453A (en) Optical film and manufacturing method of the optical film
JP2010201625A (en) Laminate for flexible substrate and thermally conductive polyimide film
JP5383343B2 (en) White polyimide film
JP2013049743A (en) Method for producing polyamide-imide film
JP4765769B2 (en) Colorless and transparent flexible metal-clad laminate and colorless and transparent flexible printed wiring board using the same
JP5693422B2 (en) Heat-resistant double-sided metal laminate, heat-resistant transparent film using the same, and heat-resistant transparent circuit board
JP5383286B2 (en) Method for producing white polyimide
JP6589887B2 (en) Polymer blend composition, flexible metal laminate and flexible printed circuit board
WO2024071066A1 (en) Metal-clad laminated plate
TW202415541A (en) Metal-clad laminate
JP2022099997A (en) Conductor-polyimide laminate
JP2023097390A (en) Metal-clad laminate and circuit board
JP2023097389A (en) Resin laminate, metal-clad laminate, circuit board, electronic device and electronic apparatus
US20240052104A1 (en) Dicarbonyl halides, polymer compositions and films made therefrom

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23872289

Country of ref document: EP

Kind code of ref document: A1