WO2024071025A1 - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
WO2024071025A1
WO2024071025A1 PCT/JP2023/034695 JP2023034695W WO2024071025A1 WO 2024071025 A1 WO2024071025 A1 WO 2024071025A1 JP 2023034695 W JP2023034695 W JP 2023034695W WO 2024071025 A1 WO2024071025 A1 WO 2024071025A1
Authority
WO
WIPO (PCT)
Prior art keywords
fin
heat exchanger
fins
fin pitch
flat tubes
Prior art date
Application number
PCT/JP2023/034695
Other languages
French (fr)
Japanese (ja)
Inventor
起洋剛 豊山
好男 織谷
文 奥野
智彦 坂巻
将仁 関谷
貴也 小田
良広 堤
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Publication of WO2024071025A1 publication Critical patent/WO2024071025A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • F24F1/0067Indoor units, e.g. fan coil units characterised by heat exchangers by the shape of the heat exchangers or of parts thereof, e.g. of their fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements

Definitions

  • the present disclosure relates to a heat exchanger having multiple fins and multiple flat tubes.
  • Patent Document 1 JP 2012-163318 A shows an example of an outdoor heat exchanger used in the outdoor unit of an air conditioner that is equipped with flat tubes and fins.
  • the heat exchanger of the first aspect is a heat exchanger that includes a plurality of fins and a plurality of flat tubes, and exchanges heat with air passing between the plurality of flat tubes and the plurality of fins in a first direction.
  • Each fin includes a heat transfer portion having a plurality of through-holes, a communication portion, and one or more fin pitch determining portions.
  • a plurality of flat tubes pass through the plurality of through-holes.
  • the communication portion extends in a second direction intersecting the first direction without penetrating the plurality of flat tubes.
  • the one or more fin pitch determining portions contact adjacent fins to determine the fin pitch.
  • One fin pitch determining portion is provided for N (N is an integer of 2 or more) flat tubes in each fin.
  • the fin pitch determining portion of each fin includes two or more raised portions formed by cutting and raising the heat transfer portion of each fin located in a position other than the communication portion in two or more directions.
  • two or more raised portions of the fin pitch defining portion are cut and raised in two or more directions, so that gaps are created between the two or more raised portions, and it is possible to prevent at least one of the ventilation path and the drainage path from being narrowed by the fin pitch defining portion.
  • the heat exchanger of the second aspect is the heat exchanger of the first aspect, and the fin pitch determining portion includes three raised portions formed by cutting and raising the heat transfer portion of each fin located in a location other than the communication portion in three directions.
  • three gaps are formed between the three rising parts, so that the fin pitch can be stably determined while preventing at least one of the ventilation path and the drainage path from being narrowed by the fin pitch determination part.
  • the heat exchanger of the third aspect is the heat exchanger of the first aspect, and the fin pitch determining portion includes four raised portions formed by cutting and raising the heat transfer portion of each fin located in a location other than the communication portion in four directions.
  • the heat exchanger of the fourth aspect is a heat exchanger of any one of the first aspect to the third aspect, in which the number of flat tubes is four or more, and one fin pitch regulation portion is provided for every four flat tubes.
  • the reduction in the heat transfer coefficient caused by providing a fin pitch regulation portion in the heat transfer portion can be suppressed.
  • the heat exchanger of the fifth aspect is a heat exchanger of any one of the first aspect to the third aspect, in which the number of flat tubes is six or more, and one fin pitch regulation portion is provided for every six flat tubes.
  • the reduction in the heat transfer coefficient caused by providing a fin pitch regulation portion in the heat transfer portion can be suppressed.
  • the heat exchanger of the sixth aspect is a heat exchanger of any one of the first aspect to the fifth aspect, in which the number of fin pitch defining portions in each fin is three or more.
  • the three or more fin pitch defining portions in each fin are arranged so that the number of flat tubes between adjacent fin pitch defining portions is the same.
  • the fin pitch regulation portion is arranged so that the points where the heat transfer coefficient decreases are arranged regularly, and the decrease in the overall heat transfer coefficient can be suppressed compared to when the points are arranged irregularly.
  • the heat exchanger of the seventh aspect is a heat exchanger of any one of the first to sixth aspects, in which each penetration portion of each fin has a first rising portion that rises along the corresponding flat tube and contacts the adjacent fin, and a second rising portion that rises along the corresponding flat tube and does not contact the adjacent fin.
  • the first upright portion of the penetration portion comes into contact with the adjacent fin, so that buckling can be prevented from occurring when the flat tube is inserted.
  • the heat exchanger of the eighth aspect is any one of the heat exchangers of the first to seventh aspects, in which the air passing through in the first direction is indoor air that is heat exchanged in an indoor unit that performs indoor air conditioning.
  • the heat exchanger of the ninth aspect is a heat exchanger that includes a plurality of flat tubes and a plurality of fins. Each fin has a plurality of penetrations through which the plurality of flat tubes pass. Each penetration has a first upright portion that rises along the corresponding flat tube and contacts the adjacent fin.
  • the first standing part when there is another part that determines the fin pitch other than the first standing part, can suppress buckling and fin crushing when the flat tubes are inserted, and can help ensure the fin pitch by the other part that determines the fin pitch.
  • the heat exchanger of the tenth aspect is the heat exchanger of the ninth aspect, in which the first upright portion is provided on only one of the two side surfaces of each flat tube in the longitudinal direction of each fin.
  • the first raised portion is provided on only one of the two side surfaces of the flat tube, so the height of the first raised portion can be increased to a height close to the thickness of the flat tube, compared to when the first raised portion is provided on both sides.
  • the heat exchanger of the eleventh aspect is the heat exchanger of the ninth or tenth aspect, and each penetration portion has, as a portion other than the first upright portion, a second upright portion that rises along the corresponding flat tube and does not contact the adjacent fin. The first upright portion rises higher than the second upright portion.
  • FIG. 1 is a conceptual diagram showing an outline of the configuration of an air conditioner.
  • FIG. 1 is a diagram showing the external appearance of an indoor unit and an outdoor unit of an air conditioner.
  • FIG. 2 is a plan view of an indoor heat exchanger in the indoor unit.
  • 4 is a cross-sectional view of the indoor unit taken along line II in FIG. 3.
  • 4 is a plan view of the first heat exchange section as viewed in the thickness direction of the flat tube.
  • FIG. FIG. 4 is a partially enlarged plan view showing a portion of the fin.
  • FIG. 10 is a partially enlarged perspective view showing a part of a fin on which a fin pitch determining portion is not formed.
  • FIG. 4 is a partially enlarged perspective view showing a part of a fin on which a fin pitch defining portion is formed;
  • FIG. 13 is a graph showing the air-side heat transfer coefficient of several types of fins.
  • FIG. 12 is a partially enlarged plan view showing an example of the configuration of a fin corresponding to the graph in FIG. 11 . 12 is a partially enlarged plan view showing another example of the configuration of the fin corresponding to the graph in FIG. 11 . 12 is a partially enlarged plan view showing another example of the fin configuration corresponding to the graph in FIG. 11 .
  • FIG. 11 is a partially enlarged plan view showing an example of the configuration of corresponding to the graph in FIG. 11 .
  • FIG. 12 is a partially enlarged plan view showing another example of the fin configuration corresponding to the graph in FIG. 11 .
  • FIG. FIG. 11 is a cross-sectional view showing another example of the indoor unit.
  • FIG. 11 is a cross-sectional view showing another example of the indoor unit.
  • FIG. 11 is a cross-sectional view showing another example of the indoor unit.
  • FIG. 13 is a partially enlarged plan view showing the configuration of a fin according to modification B.
  • the heat exchanger according to the embodiment is, for example, an indoor heat exchanger 1 that is applied to an indoor unit 110 of an air conditioner 100.
  • the air conditioner 100 includes the indoor unit 110 and an outdoor unit 120.
  • the indoor unit 110 is connected to the outdoor unit 120 by connecting pipes 131 and 132.
  • the indoor unit 110 includes a casing 111 and an indoor fan 112 in addition to the indoor heat exchanger 1.
  • the indoor unit 110 is a wall-mounted type that is installed by hanging it on the wall WL in the room RM.
  • the indoor unit 110 has an approximately rectangular parallelepiped appearance.
  • the casing 111 mainly constitutes the outer surface of the indoor unit 110.
  • the casing 111 houses the indoor heat exchanger 1 and the indoor fan 112 inside.
  • the casing 111 has an intake port 113 that allows indoor air to flow into the inside of the casing 111, and an outlet port 114 from which air that has exchanged heat with the refrigerant in the indoor heat exchanger 1 is blown out.
  • the position (rotation angle) of the flap 115 is controlled. By changing the position of the flap 115, the opening degree of the outlet port 114 and the wind direction of the airflow blown out from the outlet port 114 are adjusted.
  • the outdoor unit 120 is installed outside the room RM, for example, on the roof of a building or near the exterior wall of the building.
  • the outdoor unit 120 has a compressor 122, a four-way valve 123, an outdoor heat exchanger 124, an expansion valve 125, and an outdoor fan 126.
  • Compressor 122 draws in low-pressure refrigerant from an intake port, compresses it to high pressure, and then discharges it from a discharge port.
  • Compressor 122 is, for example, a positive displacement compressor whose capacity can be changed by changing the rotation speed of a built-in motor.
  • Four-way valve 123 has a first port P1, a second port P2, a third port P3, and a fourth port P4.
  • the four-way valve 123 switches the direction of refrigerant flow by switching between a first state (a state shown by a dashed line in FIG. 2) and a second state (a state shown by a solid line in FIG. 2).
  • first state the first port P1 and the fourth port P4 communicate with each other, and the second port P2 and the third port P3 communicate with each other.
  • second state the first port P1 and the second port P2 communicate with each other, and the third port P3 and the fourth port P4 communicate with each other.
  • the first port P1 is connected to the discharge port of the compressor 122.
  • the second port P2 is connected to the gas side inlet/outlet of the outdoor heat exchanger 124.
  • the third port P3 is connected to the suction port of the compressor 122.
  • fourth port P4 is connected to the connecting pipe 132.
  • the outdoor heat exchanger 124 is a heat exchanger that exchanges heat between the refrigerant and the outside air.
  • the liquid side inlet and outlet of the outdoor heat exchanger 124 are connected to the expansion valve 125.
  • the gas side inlet and outlet of the outdoor heat exchanger 124 are connected to the second port P2 of the four-way valve 123.
  • the expansion valve 125 reduces the pressure of the refrigerant.
  • the expansion valve 125 is provided between the connecting pipe 131 and the liquid side of the outdoor heat exchanger 124.
  • the expansion valve 125 is, for example, an electric expansion valve whose opening degree can be controlled.
  • the compressor 122, four-way valve 123, outdoor heat exchanger 124, expansion valve 125, and indoor heat exchanger 1 form a refrigerant circuit 200.
  • refrigerant circulates through the compressor 122, four-way valve 123, outdoor heat exchanger 124, expansion valve 125, and indoor heat exchanger 1 to implement a vapor compression refrigeration cycle.
  • Air conditioning by the air conditioner 100 is performed by implementing a vapor compression refrigeration cycle.
  • the four-way valve 123 is switched to the first state (the state shown by the dashed line)
  • the refrigerant that has circulated through the compressor 122, indoor heat exchanger 1, expansion valve 125, and outdoor heat exchanger 124 circulates back to the compressor 122, and heating operation is performed.
  • the indoor fan 112 generates an airflow of indoor air that passes through the indoor heat exchanger 1. As the indoor air passes through the indoor heat exchanger 1, heat exchange between the refrigerant passing through the indoor heat exchanger 1 and the indoor air is promoted.
  • the indoor fan 112 can change the volume of air passing through the indoor heat exchanger 1 by changing the rotation speed of the built-in motor.
  • the outdoor fan 126 generates an airflow of outside air that passes through the outdoor heat exchanger 124.
  • the outdoor fan 126 sends the outside air to the outdoor heat exchanger 124, promoting heat exchange between the refrigerant passing through the outdoor heat exchanger 124 and the outside air.
  • the outdoor fan 126 can change the volume of air passing through the outdoor heat exchanger 124 by changing the rotation speed of the built-in motor.
  • (1-1) Heating Operation When the indoor unit 110 receives a signal from, for example, the remote controller 150 instructing to perform heating operation, the air conditioner 100 starts heating operation. During heating operation, the air conditioner 100 switches the four-way valve 123 to the first state. The air conditioner 100 adjusts the rotation speed of the compressor 122, the opening of the expansion valve 125, and the rotation speed of the outdoor fan 126 to match the room temperature with the set temperature received from, for example, the remote controller 150. In addition, the air conditioner 100 adjusts the rotation speed of the indoor fan 112 so that the air volume becomes the set air volume received from, for example, the remote controller 150. During heating operation, the outdoor heat exchanger 124 functions as an evaporator of the refrigerant, and the indoor heat exchanger 1 functions as a radiator of the refrigerant.
  • the high-temperature, high-pressure refrigerant discharged from the compressor 122 exchanges heat with indoor air sent by the indoor fan 112 in the indoor heat exchanger 1 and dissipates heat.
  • the indoor air heated by the indoor heat exchanger 1 is blown into the room as conditioned air.
  • the refrigerant that dissipates heat in the indoor heat exchanger 1 passes through the expansion valve 125 and is reduced in pressure.
  • the refrigerant that expands due to the reduction in pressure exchanges heat with outside air sent by the outdoor fan 126 in the outdoor heat exchanger 124 and evaporates.
  • the refrigerant that has passed through the outdoor heat exchanger 124 is drawn into the compressor 122 and compressed.
  • the indoor unit 110 receives a signal from the remote controller 150 instructing it to perform the cooling operation, it starts the cooling operation.
  • the air conditioner 100 switches the four-way valve 123 to the second state. For example, the air conditioner 100 adjusts the rotation speed of the compressor 122, the opening degree of the expansion valve 125, and the rotation speed of the indoor fan 112 to match the room temperature with the set temperature received from the remote controller 150.
  • the air conditioner 100 also adjusts the rotation speed of the indoor fan 112 so that the air volume becomes the set air volume received from the remote controller 150.
  • the outdoor heat exchanger 124 functions as a radiator of the refrigerant
  • the indoor heat exchanger 1 functions as an evaporator of the refrigerant.
  • the high-temperature, high-pressure refrigerant discharged from the compressor 122 dissipates heat in the outdoor heat exchanger 124 by exchanging heat with outside air sent by the outdoor fan 126.
  • the refrigerant cooled in the outdoor heat exchanger 124 passes through the expansion valve 125 to be reduced in pressure.
  • the refrigerant expanded by the reduction in pressure exchanges heat in the indoor heat exchanger 1 and evaporates through heat exchange with indoor air sent by the indoor fan 112.
  • the indoor air cooled by the indoor heat exchanger 1 is blown into the room as conditioned air.
  • the refrigerant that has passed through the indoor heat exchanger 1 is drawn into the compressor 122 and compressed.
  • the indoor heat exchanger 1 is composed of three heat exchange sections, namely, a first heat exchange section 11, a second heat exchange section 12, and a third heat exchange section 13.
  • the difference between the first heat exchange section 11, the second heat exchange section 12, and the third heat exchange section 13 is the arrangement position inside the casing 111.
  • the case where the first heat exchange section 11, the second heat exchange section 12, and the third heat exchange section 13 have the same structure will be described. Therefore, the structure of the first heat exchange section 11 will be described below as an example, and the description of the structures of the second heat exchange section 12 and the third heat exchange section 13 will be omitted.
  • the heat exchanger according to the present disclosure can be applied.
  • the arrangement inside the casing 111 of the first heat exchange section 11, the second heat exchange section 12, and the third heat exchange section 13 will be described later.
  • the first heat exchange section 11, the second heat exchange section 12, and the third heat exchange section 13 are collectively referred to as the heat exchange section 10.
  • FIG. 5 shows the first heat exchange section 11 as viewed from diagonally above.
  • FIG. 6 shows an enlarged cross section of the first heat exchange section 11 cut along plane B in FIG. 5.
  • FIG. 7 shows the first heat exchange section 11 as viewed along the thickness direction of the flat tubes 20.
  • the width direction (first direction), thickness direction (second direction), and longitudinal direction of the flat tubes 20 used in the following description correspond to the directions indicated by arrows in FIG. 5, FIG. 6, and FIG. 7.
  • the width direction of the flat tubes 20 coincides with the first direction, which is the direction in which the air undergoing heat exchange in the indoor heat exchanger 1 passes.
  • the thickness direction of the flat tubes 20 coincides with the second direction that intersects with the first direction.
  • the first heat exchange section 11 has a plurality of flat tubes 20, a plurality of fins 30, a first header 41, a second header 42, and a third header 43.
  • the first heat exchange section 11 is a stacked type heat exchanger in which a plurality of flat tubes 20 are stacked at a predetermined interval in the thickness direction of the flat tubes 20 by a plurality of fins 30.
  • the indoor heat exchanger 1 has an inner heat exchange section 10i and an outer heat exchange section 10o.
  • the flat tube 20 is a heat transfer tube through which a refrigerant flows.
  • the flat tube 20 has a cross section formed in a flat oval shape.
  • the flat tube 20 is a multi-hole tube having a plurality of refrigerant flow paths 201 formed perpendicular to the cross section.
  • the plurality of refrigerant flow paths 201 are arranged side by side in the width direction of the flat tube 20.
  • the flat tube 20 is formed by extrusion molding using aluminum or an aluminum alloy, for example.
  • the flat tube 20 of this embodiment is arranged along the longitudinal direction of the indoor unit 110.
  • the flat tube 20 has two side surfaces 211, 212.
  • the two side surfaces 211, 212 extend in the width direction and longitudinal direction.
  • the fin 30 is a strip-shaped plate material through which the flat tubes 20 penetrate at regular intervals.
  • the fin 30 has a plurality of through-holes 310, which are peripheral portions of slit-shaped cutouts for inserting the flat tubes 20.
  • the cutouts of the through-holes 310 are formed so as to extend from one edge extending in the longitudinal direction of the fin 30 toward the other edge while intersecting the edge at right angles.
  • the multiple through-holes 310 are formed at regular intervals in the longitudinal direction of the fin 30.
  • the fin 30 is formed, for example, using aluminum or an aluminum alloy.
  • the flat tube 20 is inserted into the through-hole 310 so that the width direction coincides with the insertion direction into the notch of the through-hole 310.
  • the multiple fins 30 are arranged in the longitudinal direction of the flat tube 20 at a predetermined interval. In other words, the predetermined interval is the fin pitch.
  • the fins 30 and the flat tube 20 are joined by brazing at the through-hole 310.
  • the multiple flat tubes 20 are joined to the fins 30 so that their ends are aligned in the thickness direction of the flat tube 20. In other words, the multiple flat tubes 20 are joined to the fins 30 so that they are aligned in multiple stages.
  • Figures 5 and 7 show the outer edge formed by the multiple fins 30 aligned in the longitudinal direction of the flat tube 20 and a portion of the multiple fins 30.
  • Both the inner heat exchange section 10i and the outer heat exchange section 10o are formed in approximately the same shape by joining a predetermined number of flat tubes 20 to a predetermined number of fins 30.
  • the inner heat exchange section 10i is disposed closer to the indoor fan 112 than the outer heat exchange section 10o.
  • the inner heat exchange section 10i and the outer heat exchange section 10o are disposed overlapping in the thickness direction of the flat tubes 20.
  • the first heat exchange section 11 is composed of two rows of the inner heat exchange section 10i and the outer heat exchange section 10o.
  • the number of flat tubes 20 in each row is the number of stages of the first heat exchange section 11.
  • the gaps between the adjacent flat tubes 20 and the gaps between the adjacent fins 30 in each of the inner heat exchange section 10i and the outer heat exchange section 10o form a flow path through which the airflow generated by the indoor fan 112 flows.
  • the flow of the airflow flowing through this flow path is indicated by dashed arrows in FIG. 6.
  • the first header 41, the second header 42, and the third header 43 are cylindrical members that connect the refrigerant flow paths 201 of the flat tubes 20 to each other at the ends of the flat tubes 20.
  • the first header 41 is provided at one longitudinal end of the flat tubes 20 of the inner heat exchange section 10i so as to connect the refrigerant flow paths 201 of the flat tubes 20 to each other. Specifically, one longitudinal end of the flat tubes 20 of the inner heat exchange section 10i is inserted into the first header 41 through an opening formed in the side of the first header 41 and fixed to the first header 41 using brazing or the like.
  • the second header 42 is provided so as to communicate the refrigerant flow paths 201 of the flat tubes 20 of the inner heat exchange section 10i with the refrigerant flow paths 201 of the flat tubes 20 of the outer heat exchange section 10o at the other longitudinal ends of the flat tubes 20 of the inner heat exchange section 10i and the other longitudinal ends of the flat tubes 20 of the outer heat exchange section 10o.
  • the other longitudinal ends of the flat tubes 20 of the inner heat exchange section 10i and the other longitudinal ends of the flat tubes 20 of the outer heat exchange section 10o are inserted into the second header 42 through openings formed in the side of the second header 42 and fixed to the second header 42 using brazing or the like.
  • the third header 43 is provided at one longitudinal end of the flat tubes 20 of the outer heat exchange section 10o so as to connect the refrigerant flow paths 201 of the flat tubes 20 to each other. Specifically, one longitudinal end of the flat tubes 20 of the outer heat exchange section 10o is inserted into the third header 43 through an opening formed in the side of the third header 43 and fixed to the third header 43 using brazing or the like.
  • the third header 43 is connected to the connecting pipe 132 via a branch pipe 431.
  • the refrigerant that flows into the first header 41 through the connecting pipe 131 passes through the multiple refrigerant flow paths 201 formed in the flat tubes 20 of the inner heat exchange section 10i and flows into the second header 42.
  • the refrigerant that flows into the second header 42 passes through the multiple refrigerant flow paths 201 formed in the outer heat exchange section 10o and flows into the connecting pipe 132 through the third header 43.
  • the refrigerant that flows into the first header 41 through the connecting pipe 132 passes through the multiple refrigerant flow paths 201 formed in the flat tubes 20 of the outer heat exchange section 10o and flows into the third header 43.
  • the refrigerant that flows into the third header 43 passes through the multiple refrigerant flow paths 201 formed in the inner heat exchange section 10i and flows into the connecting pipe 131 through the first header 41.
  • the first heat exchange section 11 is provided so that the thickness direction of the flat tubes 20 is inclined backward with respect to the up-down direction (vertical direction) when the indoor unit 110 is viewed from the side (when viewed horizontally along the wall WL). As a result, the upper end of the first heat exchange section 11 is arranged so that it is closer to the wall WL than the lower end.
  • the second heat exchange section 12 is provided so that the thickness direction of the flat tubes 20 is inclined forward with respect to the up-down direction (vertical direction) when the indoor unit 110 is viewed from the side. As a result, the lower end of the second heat exchange section 12 is arranged so that it is closer to the wall WL than the upper end.
  • the third heat exchange section 13 is provided so that the thickness direction of the flat tubes 20 is inclined forward with respect to the up-down direction (vertical direction) when the indoor unit 110 is viewed from the side. As a result, the lower end of the third heat exchange section 13 is arranged so that it is closer to the wall WL than the upper end.
  • FIG. 8 shows a part of one fin 30.
  • Each fin 30 has a plurality of through-holes 310, one communication portion 320, and a plurality of heat transfer portions 330.
  • the communication portion 320 is a portion that continues continuously in the second direction.
  • the dashed line extending in the second direction shown in FIG. 8 is a boundary between the heat transfer portion 330 and the communication portion 320.
  • the through-hole 310 is a peripheral portion around the notch.
  • a collar 311 that rises along the flat tube 20 is formed on the peripheral portion. In this embodiment, the collar 311 corresponds to the through-hole 310.
  • the direction along the flat tube 20 is a direction that intersects with the first direction and the second direction.
  • the heat transfer portion 330 is a portion other than the through-hole 310 and the communication portion 320.
  • Each fin 30 also has a fin pitch determining portion 340, a bridge-shaped cut-and-raised portion 350, and a convex portion 360.
  • the fin pitch determining portion 340, the cut-and-raised portion 350, and the convex portion 360 are structures formed in the heat transfer portion 330.
  • the fin pitch determining portion 340 contacts the adjacent fin 30 to determine the fin pitch.
  • the fin pitch of the adjacent fins 30 is determined by the height h1 (see FIG. 10) of the fin pitch determining portion 340.
  • the fin pitch determining portion 340 includes two or more raised portions 341 formed by cutting and raising the heat transfer portion 330 of each fin 30 located in a location other than the communication portion 320 in two or more directions.
  • each fin 30 one fin pitch determining portion 340 is provided for N (N is an integer of 2 or more) flat tubes 20.
  • N is an integer of 2 or more
  • the three or more fin pitch defining portions 340 of each fin 30 are arranged so that the number of flat tubes 20 between adjacent fin pitch defining portions 340 is the same.
  • the structure of FIG. 10 is arranged first, followed by three structures of FIG. 9, followed by the structure of FIG. 10, followed by three more structures of FIG. 9, followed by the structure of FIG. 10, followed by three more structures of FIG. 9, followed by the structure of FIG. 10.
  • the collar 311 of the through portion 310 can be divided into a first rising portion 316 and a second rising portion 317.
  • the first rising portion 316 is a portion of the collar 311 that rises along the flat tube 20 that it penetrates and that comes into contact with the adjacent fin 30.
  • the second rising portion 317 is a portion that rises along the flat tube 20 that it penetrates and that does not come into contact with the adjacent fin 30.
  • the first rising portion 316 is disposed on only one of the two opposing sides 318, 319 (see FIG. 8) of the notch.
  • the first standing portion 316 helps maintain the fin pitch defined by the fin pitch defining portion 340.
  • the first standing portion 316 also suppresses buckling of the fin 30 when the flat tube 20 is inserted. To make it easier to suppress buckling, it is preferable that the first standing portion 316 is provided at the entrance of the notch of the penetration portion 310. It is also preferable that the length L2 of the first standing portion 316 is 50% or less of the length L1 of the fin 30 in the first direction. It is preferable that the surface where the first standing portion 316 contacts the adjacent fin 30 is rectangular in order to stably support the fin 30.
  • FIG. 8 shows a part of the fin 30 when N is 4.
  • FIG. 9 shows a portion of the fin 30 where the fin pitch defining portion 340 is not formed between adjacent flat tubes 20.
  • FIG. 10 shows a portion of the fin 30 where the fin pitch defining portion 340 is formed between adjacent flat tubes 20.
  • four flat tubes 20 are arranged between two adjacent fin pitch defining portions 340 in each fin 30.
  • the rising parts 341 are formed by forming a cross cutting line in the flat heat transfer part 330 and cutting and raising it so that the folding lines form a circle. This allows the air flowing in the first direction to easily pass through the two gaps 342. Also, condensed water easily flows in the second direction through the other two gaps 342.
  • FIG. 11 shows the air-side heat transfer coefficient (W/m 2 ) of the configuration X1 using the fin 30 shown in FIG. 12, the configuration Y1 using the fin 530 shown in FIG. 13, the configuration Y2 using the fin 630 shown in FIG. 14, and the configuration Y3 using the fin 730 shown in FIG. 14.
  • W/m 2 air-side heat transfer coefficient
  • the graph shows the results of measurements of three rows of fins under conditions of a row pitch of 10 mm and a row pitch of 9.7 mm. The direction of the air flow is indicated by the arrow AF.
  • the "N" on the horizontal axis of the graph corresponds to the number of flat tubes 20 for one fin pitch determining portion 340, 540 in each fin of the configurations X1, Y1.
  • the fin pitch determining portion 340, 540 is formed in all heat transfer portions 330.
  • N 3, three flat tubes 20 are arranged between adjacent fin pitch determining portions 340, 540.
  • the structure shown in FIG. 9 appears twice in succession, and then the structure shown in FIG. 10 appears once.
  • FIG. 12 shows a configuration using the fin 30 according to the above embodiment, in which the heat transfer section 330 is provided with the fin pitch determining section 340, one bridge-type cut-and-raised section 350, and a convex section 360, and the through section 310 is provided with the first upright section 316.
  • the difference between the configuration X1 shown in FIG. 12 and the configuration Y1 shown in FIG. 13 is the difference in the structure of the fin pitch determining sections 340 and 540.
  • the fin pitch determining section 340 has a gap 342, but the fin pitch determining section 540 does not have a structure corresponding to the gap 342.
  • the fin pitch determining section 340 in FIG. 12 has four upright sections 341, but the fin pitch determining section 540 in FIG. 13 has only one circular upright section.
  • the configuration Y2 shown in FIG. 14 has a low air-side heat transfer coefficient, as shown by the dashed line in FIG. 11.
  • the configuration Y3 shown in FIG. 15 has a fin pitch determining portion 740 provided at the through-hole 710.
  • the configuration Y3, in which the fin pitch determining portion 740 is provided only at the through-hole 710, is difficult to manufacture and is not practical, but it is possible to provide three bridge-type cut-and-raised portions 350 on each of the heat transfer portions 330. Therefore, the configuration Y3 shown in FIG. 15 has a good air-side heat transfer coefficient, as shown by the dashed line in FIG. 11.
  • the air-side heat transfer coefficient of configuration X1 is higher than that of configuration Y1, regardless of the value of N.
  • the indoor unit 110 is a wall-mounted type
  • the indoor unit to which the indoor heat exchanger 1 described in the above embodiment can be applied is not limited to the wall-mounted type.
  • the indoor heat exchanger 1 according to the present disclosure can be applied to, for example, a duct-type indoor unit as shown in FIG. 16, which is embedded in a ceiling and distributes conditioned air through a duct.
  • an airflow is generated in the indoor heat exchanger 1 by the indoor fan 112.
  • a centrifugal fan can be used for the indoor fan 112 in FIG. 16.
  • a sirocco fan can be used for the centrifugal fan.
  • the shape of the indoor heat exchanger 1 shown in FIG. 16 is an I-shape when viewed from the side, but the shape when viewed from the side may be bent into a wedge shape as shown in FIG. 17.
  • a cross-flow fan may be used for the indoor fan 112 as shown in FIG. 17, or a centrifugal fan may be used instead of the cross-flow fan.
  • the arrow AF of the two-dot chain line indicates the direction in which the air flows.
  • the heat exchanger 1 can also be arranged in an N-shape when viewed from the side.
  • the indoor fan 112 is configured to make air flow from bottom to top in the direction of gravity.
  • the indoor unit 110 in Fig. 18 can also be configured to make air flow from top to bottom.
  • the number of rising portions 341 of the fin pitch determining portion 340 can be two.
  • arranging two gaps 342 side by side in the air flow direction (first direction) can facilitate the flow of air.
  • arranging two gaps 342 side by side in the direction in which condensation water flows (second direction) can facilitate the flow of condensation water.
  • the size of the two or more rising portions 341 may be the same as in the above embodiment, but they do not have to be the same size as shown in FIG. 19.
  • the collar 311 is provided on the through-hole 310.
  • the collar 311 may not be provided, and only the first upright portion 316 may be configured to stand up at the through-hole 310.
  • each fin 30 has a plurality of through-holes 310, a communication portion 320, and one or more fin pitch defining portions 340.
  • a plurality of flat tubes 20 penetrate the plurality of through-holes 310.
  • the communication portion 320 extends in a second direction intersecting with the first direction without penetrating the plurality of flat tubes 20.
  • the one or more fin pitch defining portions 340 contact adjacent fins 30 to define the fin pitch.
  • one fin pitch defining portion 340 is provided for N (N is an integer of 2 or more) flat tubes 20.
  • the fin pitch defining portion 340 of each fin 30 includes two or more rising portions 341 formed by cutting and raising the heat transfer portion 330 of each fin 30 located in a place other than the communication portion 320 in two or more directions. Since the two or more rising portions 341 of the fin pitch defining portion 340 are cut and raised in two or more directions, gaps 342 are formed between the two or more rising portions 341, and it is possible to prevent at least one of the ventilation path and the drainage path from being narrowed by the fin pitch defining portion 340. As a result, it is possible to prevent a decrease in heat exchange efficiency or drainage performance due to the fin pitch defining portion 340.
  • the fin pitch specifying portion 340 can support adjacent fins 30 at three points with the three rising portions 341. As a result, the fin pitch specifying portion 340 can firmly support the adjacent fins 30 and stably specify the fin pitch.
  • the fin pitch specifying portion 340 including the three rising portions 341 has three gaps 342, and therefore the arrangement of the gaps 342 can prevent at least one of the ventilation path and the drainage path from being narrowed by the fin pitch specifying portion 340.
  • the fin pitch defining portion 340 of the above embodiment includes four rising portions 341 cut and raised in four directions. Since the four rising portions 341 of the fin pitch defining portion 340 are cut and raised in four directions, two gaps 342 can be arranged side by side in the first direction, and the other two gaps 342 can be arranged side by side in the second direction. The two gaps 342 arranged side by side in the first direction can prevent the ventilation path from narrowing. In addition, the two gaps 342 arranged side by side in the second direction can prevent the drainage path from narrowing. As a result, the arrangement of the gaps 342 can prevent the ventilation path and the drainage path from narrowing due to the fin pitch defining portion 340.
  • the fin pitch defining portion 340 can be provided for every four flat tubes or every six flat tubes, and the decrease in the heat transfer coefficient can be suppressed by reducing the proportion of the portion in each fin 30 where the fin pitch defining portion 340 is provided. Reducing the proportion of the portion where the fin pitch defining portion 340 is provided means increasing N, in other words, reducing the value of (the number of configurations in Fig. 10 / the number of configurations in Fig. 9) in each fin 30.
  • the number of fin pitch defining portions 340 in each fin 30 is three or more, it is preferable that the three or more fin pitch defining portions 340 of each fin 30 are arranged so that the number of flat tubes 20 between adjacent fin pitch defining portions 340 is the same.
  • the fin pitch defining portions 340 are arranged so that the locations where the heat transfer coefficient decreases are arranged regularly, and the decrease in the overall heat transfer coefficient can be suppressed compared to when the fin pitch defining portions 340 are arranged irregularly.
  • Each penetration portion 310 of each fin 30 in the above embodiment has a first rising portion 316 that rises along the corresponding flat tube 20 and contacts the adjacent fin 30, and a second rising portion 317 that rises along the corresponding flat tube 20 and does not contact the adjacent fin 30. Since the first rising portion 316 of the penetration portion 310 contacts the adjacent fin 30, it is possible to suppress buckling when the penetration portion 310 is inserted into the flat tube 20. In addition, the first rising portion 316 can help ensure the fin pitch.
  • Each penetration portion 310 of each fin in the above embodiment has a first rising portion 316 that rises along the corresponding flat tube 20 and contacts the adjacent fin 30.
  • the first rising portion 316 can suppress buckling and fin crushing when the flat tube 20 is inserted, and can help ensure the fin pitch by the other portion that defines the fin pitch.
  • the other portion that defines the fin pitch is the fin pitch defining portion 340, but the other portion that defines the fin pitch is not limited to the fin pitch defining portion 340.
  • the first standing portion 316 in the above embodiment is provided on only one of the two side surfaces 211, 212 (see FIG. 6 ) of each flat tube 20 in the longitudinal direction of each fin 30. In other words, it is arranged on only one of the two opposing sides 318, 319 (see FIG. 8 ) of the cutout of the through-hole 310. Since the first standing portion 316 is provided on only one of the two side surfaces of the flat tube 20, the height of the first standing portion 316 can be increased to a height close to the thickness of the flat tube 20 compared to when the first standing portion 316 is provided on both sides.

Abstract

This heat exchanger, which comprises flat tubes and fins, suppresses a decline in heat exchange efficiency that could arise as a consequence of maintaining the pitch of fins. At least one fin pitch regulation part (340) is disposed in contact with adjacent fins (30) to regulate the fin pitch. For each of the fins (30), the fin pitch regulation part (340) is provided per N (N is an integer of 2 or greater) flat tubes. The fin pitch regulation part (340) of each of the fins (30) includes at least two raised sections (341) which are formed by cutting and raising, in two or more directions, a heat transfer section (330) of the fin (30), said section being located in an area other than a connection section (320).

Description

熱交換器Heat exchanger
 本開示は、複数のフィンと複数の扁平管とを備える熱交換器に関する。 The present disclosure relates to a heat exchanger having multiple fins and multiple flat tubes.
 複数の扁平管と複数のフィンを備える熱交換器は、空気調和機の室外機などに用いられている。特許文献1(特開2012-163318号公報)には、空気調和機の室外機で用いられる室外熱交換器が、扁平管とフィンを備える例が示されている。 Heat exchangers equipped with multiple flat tubes and multiple fins are used in outdoor units of air conditioners, etc. Patent Document 1 (JP 2012-163318 A) shows an example of an outdoor heat exchanger used in the outdoor unit of an air conditioner that is equipped with flat tubes and fins.
 特許文献1に記載されている室外熱交換器では、フィンに設けられているスペーサが、隣のフィンに当接して互いに隣り合うフィンの間を所定の間隔に保持している。このフィンの間の所定の間隔がフィンピッチである。しかし、フィンピッチの確保のために、スペーサをフィンに配置すると熱交換効率の低下に繋がる。特に、熱交換器が、室内機に用いられるなど、小型化を要求される場合には、スペーサによる熱交換効率の低下が問題となる。 In the outdoor heat exchanger described in Patent Document 1, spacers attached to the fins abut against adjacent fins to maintain a predetermined distance between the fins. This predetermined distance between the fins is the fin pitch. However, placing spacers on the fins to ensure the fin pitch leads to a decrease in heat exchange efficiency. In particular, when the heat exchanger is required to be compact, such as when used in an indoor unit, the decrease in heat exchange efficiency due to the spacers becomes a problem.
 扁平管とフィンを備える熱交換器においては、フィンピッチを確保する際に生じる熱交換効率の低下を抑制するという課題がある。 Heat exchangers with flat tubes and fins face the challenge of suppressing the decrease in heat exchange efficiency that occurs when ensuring the fin pitch.
 第1観点の熱交換器は、複数のフィンと複数の扁平管とを備え、複数の扁平管と複数のフィンの間を第1方向に通過する空気の熱交換を行う熱交換器である。各フィンは、複数の貫通部と連通部と1つ以上のフィンピッチ規定部を有する伝熱部とを備える。複数の貫通部には、複数の扁平管が貫通している。連通部は、複数の扁平管を貫通させずに第1方向と交差する第2方向に延びている。1つ以上のフィンピッチ規定部は、隣接するフィンに接してフィンピッチを規定する。フィンピッチ規定部は、各フィンにおいて、N本(Nは2以上の整数)の扁平管に対して1つ設けられている。各フィンのフィンピッチ規定部は、連通部以外の場所に位置する各フィンの伝熱部を、2方向以上に切り起こしてなる2以上の立上部を含む。 The heat exchanger of the first aspect is a heat exchanger that includes a plurality of fins and a plurality of flat tubes, and exchanges heat with air passing between the plurality of flat tubes and the plurality of fins in a first direction. Each fin includes a heat transfer portion having a plurality of through-holes, a communication portion, and one or more fin pitch determining portions. A plurality of flat tubes pass through the plurality of through-holes. The communication portion extends in a second direction intersecting the first direction without penetrating the plurality of flat tubes. The one or more fin pitch determining portions contact adjacent fins to determine the fin pitch. One fin pitch determining portion is provided for N (N is an integer of 2 or more) flat tubes in each fin. The fin pitch determining portion of each fin includes two or more raised portions formed by cutting and raising the heat transfer portion of each fin located in a position other than the communication portion in two or more directions.
 第1観点の熱交換器では、フィンピッチ規定部の2以上の立上部が2方向以上に切起されているので、2以上の立上部の間に隙間ができ、通風経路及び排水経路のうちの少なくとも一方がフィンピッチ規定部で狭まるのを抑制することができる。 In the heat exchanger of the first aspect, two or more raised portions of the fin pitch defining portion are cut and raised in two or more directions, so that gaps are created between the two or more raised portions, and it is possible to prevent at least one of the ventilation path and the drainage path from being narrowed by the fin pitch defining portion.
 第2観点の熱交換器は、第1観点の熱交換器であって、フィンピッチ規定部は、連通部以外の場所に位置する各フィンの伝熱部を、3方向に切り起こしてなる3つの立上部を含む。 The heat exchanger of the second aspect is the heat exchanger of the first aspect, and the fin pitch determining portion includes three raised portions formed by cutting and raising the heat transfer portion of each fin located in a location other than the communication portion in three directions.
 第2観点の熱交換器では、3つの立上部の間に3つの隙間が形成されるので、通風経路及び排水経路のうちの少なくとも一方がフィンピッチ規定部で狭まるのを抑制しつつフィンピッチを安定的に規定することができる。 In the heat exchanger of the second aspect, three gaps are formed between the three rising parts, so that the fin pitch can be stably determined while preventing at least one of the ventilation path and the drainage path from being narrowed by the fin pitch determination part.
 第3観点の熱交換器は、第1観点の熱交換器であって、フィンピッチ規定部は、連通部以外の場所に位置する各フィンの伝熱部を、4方向に切り起こしてなる4つの立上部を含む。 The heat exchanger of the third aspect is the heat exchanger of the first aspect, and the fin pitch determining portion includes four raised portions formed by cutting and raising the heat transfer portion of each fin located in a location other than the communication portion in four directions.
 第3観点の熱交換器では、4つの立上部の間の4つの隙間が形成されるので、通風経路及び排水経路がフィンピッチ規定部で狭まるのを抑制することができる。 In the heat exchanger of the third aspect, four gaps are formed between the four rising parts, so that the ventilation path and the drainage path can be prevented from being narrowed by the fin pitch regulation part.
 第4観点の熱交換器は、第1観点から第3観点のいずれかの熱交換器であって、扁平管の数が4本以上であり、フィンピッチ規定部は、扁平管4本に対して1つ設けられている。 The heat exchanger of the fourth aspect is a heat exchanger of any one of the first aspect to the third aspect, in which the number of flat tubes is four or more, and one fin pitch regulation portion is provided for every four flat tubes.
 第4観点の熱交換器では、フィンピッチ規定部を伝熱部に設けることによる熱伝達率の低下を抑制することができる。 In the heat exchanger of the fourth aspect, the reduction in the heat transfer coefficient caused by providing a fin pitch regulation portion in the heat transfer portion can be suppressed.
 第5観点の熱交換器は、第1観点から第3観点のいずれかの熱交換器であって、扁平管の数が6本以上であり、フィンピッチ規定部は、扁平管6本に対して1つ設けられている。 The heat exchanger of the fifth aspect is a heat exchanger of any one of the first aspect to the third aspect, in which the number of flat tubes is six or more, and one fin pitch regulation portion is provided for every six flat tubes.
 第5観点の熱交換器では、フィンピッチ規定部を伝熱部に設けることによる熱伝達率の低下を抑制することができる。 In the heat exchanger of the fifth aspect, the reduction in the heat transfer coefficient caused by providing a fin pitch regulation portion in the heat transfer portion can be suppressed.
 第6観点の熱交換器は、第1観点から第5観点のいずれかの熱交換器であって、各フィンにおけるフィンピッチ規定部の数が3つ以上である。各フィンの3つ以上のフィンピッチ規定部は、互いに隣り合うフィンピッチ規定部の間の扁平管の数が同じになるように配置されている。 The heat exchanger of the sixth aspect is a heat exchanger of any one of the first aspect to the fifth aspect, in which the number of fin pitch defining portions in each fin is three or more. The three or more fin pitch defining portions in each fin are arranged so that the number of flat tubes between adjacent fin pitch defining portions is the same.
 第6観点の熱交換器では、フィンピッチ規定部が配置されて熱伝達率の低下する箇所が規則正しく配置され、不規則に配置される場合に比べて全体の熱伝達率の低下を抑制することができる。 In the heat exchanger of the sixth aspect, the fin pitch regulation portion is arranged so that the points where the heat transfer coefficient decreases are arranged regularly, and the decrease in the overall heat transfer coefficient can be suppressed compared to when the points are arranged irregularly.
 第7観点の熱交換器は、第1観点から第6観点のいずれかの熱交換器であって、各フィンの各貫通部は、対応する扁平管に沿って立ち上がっており且つ隣接するフィンと接している第1起立部と、対応する扁平管に沿って立ち上がっており且つ隣接するフィンと接しない第2起立部とを有する。 The heat exchanger of the seventh aspect is a heat exchanger of any one of the first to sixth aspects, in which each penetration portion of each fin has a first rising portion that rises along the corresponding flat tube and contacts the adjacent fin, and a second rising portion that rises along the corresponding flat tube and does not contact the adjacent fin.
 第7観点の熱交換器では、貫通部の第1起立部が隣接するフィンに接触するので、扁平管挿入時に座屈が生じるのを抑制することができる。 In the heat exchanger of the seventh aspect, the first upright portion of the penetration portion comes into contact with the adjacent fin, so that buckling can be prevented from occurring when the flat tube is inserted.
 第8観点の熱交換器は、第1観点から第7観点のいずれかの熱交換器であって、第1方向に通過する空気が、室内の空調を行う室内機の中で熱交換される室内空気である。 The heat exchanger of the eighth aspect is any one of the heat exchangers of the first to seventh aspects, in which the air passing through in the first direction is indoor air that is heat exchanged in an indoor unit that performs indoor air conditioning.
 第9観点の熱交換器は、複数の扁平管と複数のフィンとを備える熱交換器である。各フィンは、複数の扁平管が貫通している複数の貫通部を有する。各貫通部は、対応する扁平管に沿って立ち上がっており且つ隣接するフィンと接している第1起立部を有する。 The heat exchanger of the ninth aspect is a heat exchanger that includes a plurality of flat tubes and a plurality of fins. Each fin has a plurality of penetrations through which the plurality of flat tubes pass. Each penetration has a first upright portion that rises along the corresponding flat tube and contacts the adjacent fin.
 第9観点の熱交換器では、フィンピッチを規定する別の部分が第1起立部以外にある場合に、第1起立部によって、扁平管挿入の際の座屈およびフィンつぶれを抑制し、フィンピッチを規定する別の部分によるフィンピッチの確保を補助することができる。 In the heat exchanger of the ninth aspect, when there is another part that determines the fin pitch other than the first standing part, the first standing part can suppress buckling and fin crushing when the flat tubes are inserted, and can help ensure the fin pitch by the other part that determines the fin pitch.
 第10観点の熱交換器は、第9観点の熱交換器であって、第1起立部は、各フィンの長手方向における各扁平管の2つの側面のうちの片側のみに対して設けられている。 The heat exchanger of the tenth aspect is the heat exchanger of the ninth aspect, in which the first upright portion is provided on only one of the two side surfaces of each flat tube in the longitudinal direction of each fin.
 第10観点の熱交換器では、第1起立部が扁平管の2つの側面のうちの片側のみに対して設けられることから、両側に設ける場合に比べて、第1起立部の高さを、扁平管の厚みに近い高さまで高くすることができる。 In the heat exchanger of the tenth aspect, the first raised portion is provided on only one of the two side surfaces of the flat tube, so the height of the first raised portion can be increased to a height close to the thickness of the flat tube, compared to when the first raised portion is provided on both sides.
 第11観点の熱交換器は、第9観点または第10観点の熱交換器であって、各貫通部は、第1起立部以外の部分として、対応する扁平管に沿って立ち上がっており且つ隣接するフィンと接しない第2起立部を有する。第1起立部が第2起立部よりも高く立ち上がっている。 The heat exchanger of the eleventh aspect is the heat exchanger of the ninth or tenth aspect, and each penetration portion has, as a portion other than the first upright portion, a second upright portion that rises along the corresponding flat tube and does not contact the adjacent fin. The first upright portion rises higher than the second upright portion.
空気調和機の構成の概要を示す概念図である。1 is a conceptual diagram showing an outline of the configuration of an air conditioner. 空気調和機の室内機と室外機の外観を示す図である。FIG. 1 is a diagram showing the external appearance of an indoor unit and an outdoor unit of an air conditioner. 室内機の中の室内熱交換器の平面図である。FIG. 2 is a plan view of an indoor heat exchanger in the indoor unit. 図3のI-I線で切断した室内機の断面図である。4 is a cross-sectional view of the indoor unit taken along line II in FIG. 3. 室内熱交換部の第1熱交換部の斜視図である。FIG. 2 is a perspective view of a first heat exchange section of the indoor heat exchange section. 図5の第1熱交換部をB平面で切断した断面を示す部分拡大断面図である。6 is a partially enlarged cross-sectional view showing a cross section of the first heat exchanger portion of FIG. 5 taken along plane B. 第1熱交換部を扁平管の厚み方向に見た平面図である。4 is a plan view of the first heat exchange section as viewed in the thickness direction of the flat tube. FIG. フィンの一部を示す部分拡大平面図である。FIG. 4 is a partially enlarged plan view showing a portion of the fin. フィンピッチ規定部が形成されていないフィンの一部を示す部分拡大斜視図である。10 is a partially enlarged perspective view showing a part of a fin on which a fin pitch determining portion is not formed. FIG. フィンピッチ規定部が形成されているフィンの一部を示す部分拡大斜視図である。4 is a partially enlarged perspective view showing a part of a fin on which a fin pitch defining portion is formed; FIG. 複数種類のフィンの空気側熱伝達率を示すグラフである。13 is a graph showing the air-side heat transfer coefficient of several types of fins. 図11のグラフの対応するフィンの一構成例を示す部分拡大平面図である。FIG. 12 is a partially enlarged plan view showing an example of the configuration of a fin corresponding to the graph in FIG. 11 . 図11のグラフの対応するフィンの他の構成例を示す部分拡大平面図である。12 is a partially enlarged plan view showing another example of the configuration of the fin corresponding to the graph in FIG. 11 . 図11のグラフの対応するフィンの構成の他の例を示す部分拡大平面図である。12 is a partially enlarged plan view showing another example of the fin configuration corresponding to the graph in FIG. 11 . FIG. 図11のグラフの対応するフィンの構成の他の例を示す部分拡大平面図である。12 is a partially enlarged plan view showing another example of the fin configuration corresponding to the graph in FIG. 11 . FIG. 室内機の他の例を示す断面図である。FIG. 11 is a cross-sectional view showing another example of the indoor unit. 室内機の他の例を示す断面図である。FIG. 11 is a cross-sectional view showing another example of the indoor unit. 室内機の他の例を示す断面図である。FIG. 11 is a cross-sectional view showing another example of the indoor unit. 変形例Bに係るフィンの構成を示す部分拡大平面図である。FIG. 13 is a partially enlarged plan view showing the configuration of a fin according to modification B.
 (1)全体構成
 図1に示されているように、実施形態に係る熱交換器は、例えば、空気調和機100の室内機110に適用される室内熱交換器1である。空気調和機100には、室内機110と室外機120が含まれている。室内機110は、連絡管131,132によって室外機120と接続されている。
(1) Overall Configuration As shown in Fig. 1, the heat exchanger according to the embodiment is, for example, an indoor heat exchanger 1 that is applied to an indoor unit 110 of an air conditioner 100. The air conditioner 100 includes the indoor unit 110 and an outdoor unit 120. The indoor unit 110 is connected to the outdoor unit 120 by connecting pipes 131 and 132.
 図2に示されているように、室内機110は、室内熱交換器1以外に、ケーシング111と、室内ファン112とを備えている。室内機110は、部屋RMにおいて壁WLに掛けて設置される壁掛け型である。室内機110は、略直方体状の外観を呈する。ケーシング111は、主に、室内機110の外面を構成する。ケーシング111は、室内熱交換器1と室内ファン112を内部に収容する。ケーシング111は、室内の空気をケーシング111の内部に流入させる吸込口113と、室内熱交換器1において冷媒と熱交換を行った空気が吹き出す吹出口114とを有する。フラップ115は、姿勢(回転角度)が制御される。フラップ115が姿勢を変えることにより、吹出口114の開度及び吹出口114から吹き出される気流の風向が調整される。 As shown in FIG. 2, the indoor unit 110 includes a casing 111 and an indoor fan 112 in addition to the indoor heat exchanger 1. The indoor unit 110 is a wall-mounted type that is installed by hanging it on the wall WL in the room RM. The indoor unit 110 has an approximately rectangular parallelepiped appearance. The casing 111 mainly constitutes the outer surface of the indoor unit 110. The casing 111 houses the indoor heat exchanger 1 and the indoor fan 112 inside. The casing 111 has an intake port 113 that allows indoor air to flow into the inside of the casing 111, and an outlet port 114 from which air that has exchanged heat with the refrigerant in the indoor heat exchanger 1 is blown out. The position (rotation angle) of the flap 115 is controlled. By changing the position of the flap 115, the opening degree of the outlet port 114 and the wind direction of the airflow blown out from the outlet port 114 are adjusted.
 室外機120は、例えば、建物の屋上や建物の外壁面近傍等の部屋RMの外部(室外)に設置される。室外機120は、圧縮機122と、四方弁123と、室外熱交換器124と、膨張弁125と、室外ファン126とを有している。 The outdoor unit 120 is installed outside the room RM, for example, on the roof of a building or near the exterior wall of the building. The outdoor unit 120 has a compressor 122, a four-way valve 123, an outdoor heat exchanger 124, an expansion valve 125, and an outdoor fan 126.
 圧縮機122は、低圧の冷媒を吸入口から吸入して、高圧になるまで圧縮した後、吐出口から吐出する。圧縮機122は、例えば、内蔵するモータの回転速度を変えることにより容量を変えることができる容積式圧縮機である。四方弁123は、第1ポートP1と、第2ポートP2と、第3ポートP3と、第4ポートP4とを有する。 Compressor 122 draws in low-pressure refrigerant from an intake port, compresses it to high pressure, and then discharges it from a discharge port. Compressor 122 is, for example, a positive displacement compressor whose capacity can be changed by changing the rotation speed of a built-in motor. Four-way valve 123 has a first port P1, a second port P2, a third port P3, and a fourth port P4.
 四方弁123は、第1状態(図2において破線で示す状態)と第2状態(図2において実線で示す状態)を切り換えることにより、冷媒の流れの方向を切り換える。第1状態では、第1ポートP1と第4ポートP4が互いに連通して第2ポートP2と第3ポートP3が互いに連通する。第2状態では、第1ポートP1と第2ポートP2が互いに連通して第3ポートP3と第4ポートP4が互いに連通する。第1ポートP1は、圧縮機122の吐出口に接続されている。第2ポートP2は、室外熱交換器124のガス側の出入口に接続されている。第3ポートP3は、圧縮機122の吸入口に接続されている。第4ポートP4は、連絡管132に接続されている。 The four-way valve 123 switches the direction of refrigerant flow by switching between a first state (a state shown by a dashed line in FIG. 2) and a second state (a state shown by a solid line in FIG. 2). In the first state, the first port P1 and the fourth port P4 communicate with each other, and the second port P2 and the third port P3 communicate with each other. In the second state, the first port P1 and the second port P2 communicate with each other, and the third port P3 and the fourth port P4 communicate with each other. The first port P1 is connected to the discharge port of the compressor 122. The second port P2 is connected to the gas side inlet/outlet of the outdoor heat exchanger 124. The third port P3 is connected to the suction port of the compressor 122. The fourth port P4 is connected to the connecting pipe 132.
 室外熱交換器124は、冷媒と外気との熱交換を行う熱交換器である。室外熱交換器124の液側の出入口は、膨張弁125に接続されている。室外熱交換器124のガス側の出入口は、四方弁123の第2ポートP2に接続されている。 The outdoor heat exchanger 124 is a heat exchanger that exchanges heat between the refrigerant and the outside air. The liquid side inlet and outlet of the outdoor heat exchanger 124 are connected to the expansion valve 125. The gas side inlet and outlet of the outdoor heat exchanger 124 are connected to the second port P2 of the four-way valve 123.
 膨張弁125は、冷媒を減圧する。膨張弁125は、連絡管131と、室外熱交換器124の液側との間に設けられている。膨張弁125は、例えば、開度制御が可能な電動膨張弁である。 The expansion valve 125 reduces the pressure of the refrigerant. The expansion valve 125 is provided between the connecting pipe 131 and the liquid side of the outdoor heat exchanger 124. The expansion valve 125 is, for example, an electric expansion valve whose opening degree can be controlled.
 圧縮機122と四方弁123と室外熱交換器124と膨張弁125と室内熱交換器1は、冷媒回路200を形成している。冷媒回路200では、圧縮機122と四方弁123と室外熱交換器124と膨張弁125と室内熱交換器1を冷媒が循環して、蒸気圧縮式の冷凍サイクルが実施される。空気調和機100による空気調和は、蒸気圧縮式の冷凍サイクルの実施により行われる。四方弁123が第1状態(破線で示す状態)に切り換えられると、圧縮機122、室内熱交換器1、膨張弁125、室外熱交換器124を巡った冷媒が圧縮機122に戻るように循環して、暖房運転が行われる。四方弁123が第2状態(実線で示す状態)に切り換えられると、圧縮機122、室外熱交換器124、膨張弁125、室内熱交換器1を巡った冷媒が圧縮機122に戻るように循環して、冷房運転が行われる。 The compressor 122, four-way valve 123, outdoor heat exchanger 124, expansion valve 125, and indoor heat exchanger 1 form a refrigerant circuit 200. In the refrigerant circuit 200, refrigerant circulates through the compressor 122, four-way valve 123, outdoor heat exchanger 124, expansion valve 125, and indoor heat exchanger 1 to implement a vapor compression refrigeration cycle. Air conditioning by the air conditioner 100 is performed by implementing a vapor compression refrigeration cycle. When the four-way valve 123 is switched to the first state (the state shown by the dashed line), the refrigerant that has circulated through the compressor 122, indoor heat exchanger 1, expansion valve 125, and outdoor heat exchanger 124 circulates back to the compressor 122, and heating operation is performed. When the four-way valve 123 is switched to the second state (state shown by the solid line), the refrigerant that has circulated through the compressor 122, the outdoor heat exchanger 124, the expansion valve 125, and the indoor heat exchanger 1 is circulated back to the compressor 122, and cooling operation is performed.
 室内ファン112は、室内熱交換器1を通過する室内空気の気流を生成する。室内の空気が室内熱交換器1を通過することにより、室内熱交換器1の中を通過する冷媒と室内の空気との熱交換が促される。室内ファン112は、内蔵するモータの回転速度を変えることにより、室内熱交換器1を通過する風量を変えることができる。 The indoor fan 112 generates an airflow of indoor air that passes through the indoor heat exchanger 1. As the indoor air passes through the indoor heat exchanger 1, heat exchange between the refrigerant passing through the indoor heat exchanger 1 and the indoor air is promoted. The indoor fan 112 can change the volume of air passing through the indoor heat exchanger 1 by changing the rotation speed of the built-in motor.
 室外ファン126は、室外熱交換器124を通過する外気の気流を生成する。室外ファン126が外気を室外熱交換器124に送ることにより、室外熱交換器124の中を通過する冷媒と外気との熱交換が促される。室外ファン126は、内蔵するモータの回転速度を変えることにより、室外熱交換器124を通過する風量を変えることができる。 The outdoor fan 126 generates an airflow of outside air that passes through the outdoor heat exchanger 124. The outdoor fan 126 sends the outside air to the outdoor heat exchanger 124, promoting heat exchange between the refrigerant passing through the outdoor heat exchanger 124 and the outside air. The outdoor fan 126 can change the volume of air passing through the outdoor heat exchanger 124 by changing the rotation speed of the built-in motor.
 (1-1)暖房運転
 室内機110が例えばリモートコントローラ150から暖房運転の実行指示についての信号を受信すると、空気調和機100は暖房運転を開始する。暖房運転に際して、空気調和機100は、四方弁123を第1状態へ切り換える。空気調和機100は、例えばリモートコントローラ150から受信した設定温度に室温を一致させるため、圧縮機122の回転速度、膨張弁125の開度、室外ファン126の回転速度を調節する。また、空気調和機100は、例えばリモートコントローラ150から受信した設定風量になるように、室内ファン112の回転速度を調節する。暖房運転では、室外熱交換器124が冷媒の蒸発器として機能し、かつ、室内熱交換器1が冷媒の放熱器として機能する。
(1-1) Heating Operation When the indoor unit 110 receives a signal from, for example, the remote controller 150 instructing to perform heating operation, the air conditioner 100 starts heating operation. During heating operation, the air conditioner 100 switches the four-way valve 123 to the first state. The air conditioner 100 adjusts the rotation speed of the compressor 122, the opening of the expansion valve 125, and the rotation speed of the outdoor fan 126 to match the room temperature with the set temperature received from, for example, the remote controller 150. In addition, the air conditioner 100 adjusts the rotation speed of the indoor fan 112 so that the air volume becomes the set air volume received from, for example, the remote controller 150. During heating operation, the outdoor heat exchanger 124 functions as an evaporator of the refrigerant, and the indoor heat exchanger 1 functions as a radiator of the refrigerant.
 暖房運転の間、冷媒回路200で、圧縮機122から吐出された高温高圧の冷媒は、室内熱交換器1で、室内ファン112によって送られる室内の空気と熱交換して放熱する。室内熱交換器1で加熱された室内の空気は、調和空気として室内に吹出される。室内熱交換器1で放熱した冷媒は、膨張弁125を通過して減圧される。減圧により膨張した冷媒は、室外熱交換器124で、室外ファン126によって送られる外気と熱交換して蒸発する。冷媒回路200では、室外熱交換器124を通過した冷媒が、圧縮機122へ吸入されて圧縮される。 During heating operation, in the refrigerant circuit 200, the high-temperature, high-pressure refrigerant discharged from the compressor 122 exchanges heat with indoor air sent by the indoor fan 112 in the indoor heat exchanger 1 and dissipates heat. The indoor air heated by the indoor heat exchanger 1 is blown into the room as conditioned air. The refrigerant that dissipates heat in the indoor heat exchanger 1 passes through the expansion valve 125 and is reduced in pressure. The refrigerant that expands due to the reduction in pressure exchanges heat with outside air sent by the outdoor fan 126 in the outdoor heat exchanger 124 and evaporates. In the refrigerant circuit 200, the refrigerant that has passed through the outdoor heat exchanger 124 is drawn into the compressor 122 and compressed.
 (1-2)冷房運転
 室内機110は、リモートコントローラ150から冷房運転の実行指示についての信号を受信すると冷房運転を開始する。冷房運転に際して、空気調和機100は、四方弁123を第2状態へ切り換える。空気調和機100は、例えばリモートコントローラ150から受信した設定温度に室温を一致させるため、圧縮機122の回転速度、膨張弁125の開度、室内ファン112の回転速度を調節する。また、空気調和機100は、例えばリモートコントローラ150から受信した設定風量になるように、室内ファン112の回転速度を調節する。冷房運転では、室外熱交換器124が冷媒の放熱器として機能し、かつ、室内熱交換器1が冷媒の蒸発器として機能する。
(1-2) Cooling Operation When the indoor unit 110 receives a signal from the remote controller 150 instructing it to perform the cooling operation, it starts the cooling operation. During the cooling operation, the air conditioner 100 switches the four-way valve 123 to the second state. For example, the air conditioner 100 adjusts the rotation speed of the compressor 122, the opening degree of the expansion valve 125, and the rotation speed of the indoor fan 112 to match the room temperature with the set temperature received from the remote controller 150. The air conditioner 100 also adjusts the rotation speed of the indoor fan 112 so that the air volume becomes the set air volume received from the remote controller 150. During the cooling operation, the outdoor heat exchanger 124 functions as a radiator of the refrigerant, and the indoor heat exchanger 1 functions as an evaporator of the refrigerant.
 冷房運転の間、冷媒回路200は、圧縮機122から吐出された高温高圧の冷媒は、室外熱交換器124で、室外ファン126によって送られる外気と熱交換して放熱する。室外熱交換器124で冷やされた冷媒は、膨張弁125を通過して減圧される。減圧により膨張した冷媒は、室内熱交換器1で、室内ファン112によって送られる室内の空気と熱交換して蒸発する。室内熱交換器1で冷却された室内の空気は、調和空気として室内に吹出される。冷媒回路200では、室内熱交換器1を通過した冷媒が、圧縮機122へ吸入されて圧縮される。 During cooling operation, in the refrigerant circuit 200, the high-temperature, high-pressure refrigerant discharged from the compressor 122 dissipates heat in the outdoor heat exchanger 124 by exchanging heat with outside air sent by the outdoor fan 126. The refrigerant cooled in the outdoor heat exchanger 124 passes through the expansion valve 125 to be reduced in pressure. The refrigerant expanded by the reduction in pressure exchanges heat in the indoor heat exchanger 1 and evaporates through heat exchange with indoor air sent by the indoor fan 112. The indoor air cooled by the indoor heat exchanger 1 is blown into the room as conditioned air. In the refrigerant circuit 200, the refrigerant that has passed through the indoor heat exchanger 1 is drawn into the compressor 122 and compressed.
 (2)詳細構成
 (2-1)室内熱交換器1
 本実施形態では、室内熱交換器1は、第1熱交換部11と、第2熱交換部12と、第3熱交換部13の3つの熱交換部により構成されている。第1熱交換部11と、第2熱交換部12と、第3熱交換部13との相違点は、ケーシング111の内部における配置位置である。本実施形態では、第1熱交換部11と、第2熱交換部12と、第3熱交換部13との構造が同一である場合について説明する。このため、以下では、第1熱交換部11を例にその構造を説明し、第2熱交換部12及び第3熱交換部13の構造の説明は省略する。ただし、第1熱交換部11と第2熱交換部12と第3熱交換部13の構造が同一でない場合にも、本開示に係る熱交換器を適用することができる。なお、第1熱交換部11と第2熱交換部12と第3熱交換部13のケーシング111の内部における配置については後述する。なお、第1熱交換部11、第2熱交換部12及び第3熱交換部13を総称する場合は、熱交換部10と呼ぶ。
(2) Detailed configuration (2-1) Indoor heat exchanger 1
In this embodiment, the indoor heat exchanger 1 is composed of three heat exchange sections, namely, a first heat exchange section 11, a second heat exchange section 12, and a third heat exchange section 13. The difference between the first heat exchange section 11, the second heat exchange section 12, and the third heat exchange section 13 is the arrangement position inside the casing 111. In this embodiment, the case where the first heat exchange section 11, the second heat exchange section 12, and the third heat exchange section 13 have the same structure will be described. Therefore, the structure of the first heat exchange section 11 will be described below as an example, and the description of the structures of the second heat exchange section 12 and the third heat exchange section 13 will be omitted. However, even if the structures of the first heat exchange section 11, the second heat exchange section 12, and the third heat exchange section 13 are not the same, the heat exchanger according to the present disclosure can be applied. The arrangement inside the casing 111 of the first heat exchange section 11, the second heat exchange section 12, and the third heat exchange section 13 will be described later. In addition, the first heat exchange section 11, the second heat exchange section 12, and the third heat exchange section 13 are collectively referred to as the heat exchange section 10.
 図5には、第1熱交換部11を斜め上方から見た状態が示されている。図6には、第1熱交換部11を図5のB平面で切断して拡大した断面が示されている。図7には、扁平管20の厚み方向に沿って見た第1熱交換部11が示されている。以下の説明で用いる扁平管20の幅方向(第1方向)、厚み方向(第2方向)、長手方向の各方向は、図5、図6、図7に矢印で示された方向に従う。扁平管20の幅方向は、室内熱交換器1で熱交換される空気が通過する方向である第1方向と一致する。扁平管20の厚み方向は、第1方向と交差する第2方向に一致する。 FIG. 5 shows the first heat exchange section 11 as viewed from diagonally above. FIG. 6 shows an enlarged cross section of the first heat exchange section 11 cut along plane B in FIG. 5. FIG. 7 shows the first heat exchange section 11 as viewed along the thickness direction of the flat tubes 20. The width direction (first direction), thickness direction (second direction), and longitudinal direction of the flat tubes 20 used in the following description correspond to the directions indicated by arrows in FIG. 5, FIG. 6, and FIG. 7. The width direction of the flat tubes 20 coincides with the first direction, which is the direction in which the air undergoing heat exchange in the indoor heat exchanger 1 passes. The thickness direction of the flat tubes 20 coincides with the second direction that intersects with the first direction.
 第1熱交換部11は、複数の扁平管20と、複数のフィン30と、第1ヘッダ41と、第2ヘッダ42と、第3ヘッダ43とを有する。第1熱交換部11は、複数のフィン30によって複数の扁平管20が扁平管20の厚み方向へ所定の間隔を空けて積層された積層型熱交換器である。本実施形態では、室内熱交換器1は、内側熱交換部10iと、外側熱交換部10oとを有する。 The first heat exchange section 11 has a plurality of flat tubes 20, a plurality of fins 30, a first header 41, a second header 42, and a third header 43. The first heat exchange section 11 is a stacked type heat exchanger in which a plurality of flat tubes 20 are stacked at a predetermined interval in the thickness direction of the flat tubes 20 by a plurality of fins 30. In this embodiment, the indoor heat exchanger 1 has an inner heat exchange section 10i and an outer heat exchange section 10o.
 扁平管20は、内部に冷媒が流れる伝熱管である。扁平管20は、横断面が扁平の長円形状に形成される。扁平管20は、横断面に直交するように形成された冷媒流路201を複数有する多穴管である。複数の冷媒流路201は、扁平管20の幅方向に並べて配置されている。扁平管20は、例えば、アルミニウムやアルミニウム合金を用いて押し出し成形により形成される。本実施形態の扁平管20は、室内機110の長手方向に沿うように配置される。扁平管20は、2つの側面211,212を有している。2つの側面211,212の幅方向及び長手方向に広がっている。 The flat tube 20 is a heat transfer tube through which a refrigerant flows. The flat tube 20 has a cross section formed in a flat oval shape. The flat tube 20 is a multi-hole tube having a plurality of refrigerant flow paths 201 formed perpendicular to the cross section. The plurality of refrigerant flow paths 201 are arranged side by side in the width direction of the flat tube 20. The flat tube 20 is formed by extrusion molding using aluminum or an aluminum alloy, for example. The flat tube 20 of this embodiment is arranged along the longitudinal direction of the indoor unit 110. The flat tube 20 has two side surfaces 211, 212. The two side surfaces 211, 212 extend in the width direction and longitudinal direction.
 フィン30は、複数の扁平管20が一定の間隔をおいて貫通している帯状の板材である。フィン30は、扁平管20を挿入するためのスリット状の切り欠きの周縁部である貫通部310を複数有している。貫通部310の切り欠きは、フィン30の厚み方向から見て、フィン30長手方向に延びる端縁の一方から、当該端縁と直交しながら他方の端縁に向かって延びるように形成されている。複数の貫通部310は、フィン30の長手方向に一定間隔で形成されている。フィン30は、例えば、アルミニウムやアルミニウム合金を用いて形成される。 The fin 30 is a strip-shaped plate material through which the flat tubes 20 penetrate at regular intervals. The fin 30 has a plurality of through-holes 310, which are peripheral portions of slit-shaped cutouts for inserting the flat tubes 20. When viewed from the thickness direction of the fin 30, the cutouts of the through-holes 310 are formed so as to extend from one edge extending in the longitudinal direction of the fin 30 toward the other edge while intersecting the edge at right angles. The multiple through-holes 310 are formed at regular intervals in the longitudinal direction of the fin 30. The fin 30 is formed, for example, using aluminum or an aluminum alloy.
 扁平管20は、幅方向が貫通部310の切り欠きへの挿入方向に一致するように、貫通部310に挿入される。複数のフィン30は、扁平管20の長手方向に所定の間隔を空けて並べられる。言い換えると、所定の間隔とは、フィンピッチである。フィン30と扁平管20とは、貫通部310においてロウ付けにより接合される。複数の扁平管20は、端部が扁平管20の厚み方向に並ぶようにフィン30に接合される。言い換えると、複数段に複数の扁平管20が並ぶようにフィン30に接合されるということである。図5及び図7は、扁平管20の長手方向に並べられた複数のフィン30により形成される外縁と、複数のフィン30の一部とを図示している。 The flat tube 20 is inserted into the through-hole 310 so that the width direction coincides with the insertion direction into the notch of the through-hole 310. The multiple fins 30 are arranged in the longitudinal direction of the flat tube 20 at a predetermined interval. In other words, the predetermined interval is the fin pitch. The fins 30 and the flat tube 20 are joined by brazing at the through-hole 310. The multiple flat tubes 20 are joined to the fins 30 so that their ends are aligned in the thickness direction of the flat tube 20. In other words, the multiple flat tubes 20 are joined to the fins 30 so that they are aligned in multiple stages. Figures 5 and 7 show the outer edge formed by the multiple fins 30 aligned in the longitudinal direction of the flat tube 20 and a portion of the multiple fins 30.
 内側熱交換部10iと、外側熱交換部10oとはどちらも、所定の数の扁平管20を所定の数のフィン30に接合して、略同一の形状に形成されている。内側熱交換部10iは、外側熱交換部10oよりも室内ファン112に近い位置に配置される。内側熱交換部10iと、外側熱交換部10oとは、扁平管20の厚み方向に重ねて配置される。言い換えると、第1熱交換部11は、内側熱交換部10iと外側熱交換部10oの2列からなるということである。それに対して、各列の扁平管20の数が、第1熱交換部11の段数になる。内側熱交換部10i及び外側熱交換部10oそれぞれの隣り合う扁平管20の間の隙間及び隣り合うフィン30の隙間によって、室内ファン112が生成する気流の流れる流路が形成される。図6に破線の矢印で、この流路に流れる気流の流れが示される。 Both the inner heat exchange section 10i and the outer heat exchange section 10o are formed in approximately the same shape by joining a predetermined number of flat tubes 20 to a predetermined number of fins 30. The inner heat exchange section 10i is disposed closer to the indoor fan 112 than the outer heat exchange section 10o. The inner heat exchange section 10i and the outer heat exchange section 10o are disposed overlapping in the thickness direction of the flat tubes 20. In other words, the first heat exchange section 11 is composed of two rows of the inner heat exchange section 10i and the outer heat exchange section 10o. In contrast, the number of flat tubes 20 in each row is the number of stages of the first heat exchange section 11. The gaps between the adjacent flat tubes 20 and the gaps between the adjacent fins 30 in each of the inner heat exchange section 10i and the outer heat exchange section 10o form a flow path through which the airflow generated by the indoor fan 112 flows. The flow of the airflow flowing through this flow path is indicated by dashed arrows in FIG. 6.
 第1ヘッダ41、第2ヘッダ42、及び第3ヘッダ43は、複数の扁平管20の端部において複数の扁平管20の冷媒流路201を互いに連通する筒状の部材である。 The first header 41, the second header 42, and the third header 43 are cylindrical members that connect the refrigerant flow paths 201 of the flat tubes 20 to each other at the ends of the flat tubes 20.
 第1ヘッダ41は、内側熱交換部10iが有する扁平管20の長手方向の一端において、複数の扁平管20の冷媒流路201を互いに連通するように設けられる。具体的には、内側熱交換部10iが有する複数の扁平管20の長手方向の一端は、第1ヘッダ41の側面に形成された開口を通して第1ヘッダ41に挿入され、ロウ付け等を用いて第1ヘッダ41に固定される。 The first header 41 is provided at one longitudinal end of the flat tubes 20 of the inner heat exchange section 10i so as to connect the refrigerant flow paths 201 of the flat tubes 20 to each other. Specifically, one longitudinal end of the flat tubes 20 of the inner heat exchange section 10i is inserted into the first header 41 through an opening formed in the side of the first header 41 and fixed to the first header 41 using brazing or the like.
 第2ヘッダ42は、内側熱交換部10iが有する扁平管20の長手方向の他端及び外側熱交換部10oが有する扁平管20の長手方向の他端において、内側熱交換部10iの複数の扁平管20の冷媒流路201と、外側熱交換部10oの複数の扁平管20の冷媒流路201とを互いに連通するように設けられる。具体的には、内側熱交換部10iが有する扁平管20の長手方向の他端及び外側熱交換部10oが有する扁平管20の長手方向の他端は、第2ヘッダ42の側面に形成された開口を通して第2ヘッダ42に挿入され、ロウ付け等を用いて第2ヘッダ42に固定される。 The second header 42 is provided so as to communicate the refrigerant flow paths 201 of the flat tubes 20 of the inner heat exchange section 10i with the refrigerant flow paths 201 of the flat tubes 20 of the outer heat exchange section 10o at the other longitudinal ends of the flat tubes 20 of the inner heat exchange section 10i and the other longitudinal ends of the flat tubes 20 of the outer heat exchange section 10o. Specifically, the other longitudinal ends of the flat tubes 20 of the inner heat exchange section 10i and the other longitudinal ends of the flat tubes 20 of the outer heat exchange section 10o are inserted into the second header 42 through openings formed in the side of the second header 42 and fixed to the second header 42 using brazing or the like.
 第3ヘッダ43は、外側熱交換部10oが有する扁平管20の長手方向の一端において、複数の扁平管20の冷媒流路201を互いに連通するように設けられる。具体的には、外側熱交換部10oが有する複数の扁平管20の長手方向の一端は、第3ヘッダ43の側面に形成された開口を通して第3ヘッダ43に挿入され、ロウ付け等を用いて第3ヘッダ43に固定される。第3ヘッダ43は、分岐管431を介して連絡管132に接続されている。 The third header 43 is provided at one longitudinal end of the flat tubes 20 of the outer heat exchange section 10o so as to connect the refrigerant flow paths 201 of the flat tubes 20 to each other. Specifically, one longitudinal end of the flat tubes 20 of the outer heat exchange section 10o is inserted into the third header 43 through an opening formed in the side of the third header 43 and fixed to the third header 43 using brazing or the like. The third header 43 is connected to the connecting pipe 132 via a branch pipe 431.
 連絡管131を通って第1ヘッダ41に流入した冷媒は、内側熱交換部10iの扁平管20に形成された複数の冷媒流路201を通過して第2ヘッダ42に流入する。第2ヘッダ42に流入した冷媒は、外側熱交換部10oに形成された複数の冷媒流路201を通過して第3ヘッダ43を通って連絡管132に流入する。また、連絡管132を通って第1ヘッダ41に流入した冷媒は、外側熱交換部10oの扁平管20に形成された複数の冷媒流路201を通過して第3ヘッダ43に流入する。第3ヘッダ43に流入した冷媒は、内側熱交換部10iに形成された複数の冷媒流路201を通過して第1ヘッダ41を通って連絡管131に流入する。 The refrigerant that flows into the first header 41 through the connecting pipe 131 passes through the multiple refrigerant flow paths 201 formed in the flat tubes 20 of the inner heat exchange section 10i and flows into the second header 42. The refrigerant that flows into the second header 42 passes through the multiple refrigerant flow paths 201 formed in the outer heat exchange section 10o and flows into the connecting pipe 132 through the third header 43. The refrigerant that flows into the first header 41 through the connecting pipe 132 passes through the multiple refrigerant flow paths 201 formed in the flat tubes 20 of the outer heat exchange section 10o and flows into the third header 43. The refrigerant that flows into the third header 43 passes through the multiple refrigerant flow paths 201 formed in the inner heat exchange section 10i and flows into the connecting pipe 131 through the first header 41.
 第1熱交換部11は、室内機110を側面から見て(壁WLに沿った水平方向に見て)、扁平管20の厚み方向が上下方向(鉛直方向)に対して後方に傾斜するように設けられる。その結果、第1熱交換部11の上端が下端よりも壁WLに近くなるように配置される。第2熱交換部12は、室内機110を側面から見て、扁平管20の厚み方向が上下方向(鉛直方向)に対して前方に傾斜するように設けられる。その結果、第2熱交換部12の下端が上端よりも壁WLに近くなるように配置される。第3熱交換部13は、室内機110を側面から見て、扁平管20の厚み方向が上下方向(鉛直方向)に対して前方に傾斜するように設けられる。その結果、第3熱交換部13の下端が上端よりも壁WLに近くなるように配置される。 The first heat exchange section 11 is provided so that the thickness direction of the flat tubes 20 is inclined backward with respect to the up-down direction (vertical direction) when the indoor unit 110 is viewed from the side (when viewed horizontally along the wall WL). As a result, the upper end of the first heat exchange section 11 is arranged so that it is closer to the wall WL than the lower end. The second heat exchange section 12 is provided so that the thickness direction of the flat tubes 20 is inclined forward with respect to the up-down direction (vertical direction) when the indoor unit 110 is viewed from the side. As a result, the lower end of the second heat exchange section 12 is arranged so that it is closer to the wall WL than the upper end. The third heat exchange section 13 is provided so that the thickness direction of the flat tubes 20 is inclined forward with respect to the up-down direction (vertical direction) when the indoor unit 110 is viewed from the side. As a result, the lower end of the third heat exchange section 13 is arranged so that it is closer to the wall WL than the upper end.
 (2-1-1)フィン30
 図8には、1枚のフィン30の一部が示されている。各フィン30は、複数の貫通部310と1つの連通部320と複数の伝熱部330とを有する。連通部320は、第2方向に連続的に続く部分である。図8に示した、第2方向に延びている一点鎖線が伝熱部330と連通部320の境界線である。貫通部310は、切り欠きの周囲の周縁部である。周縁部には、扁平管20に沿って立ち上がるカラー311が形成されている。この実施形態では、カラー311が貫通部310に相当する。扁平管20に沿う方向は、第1方向及び第2方向に対して交差する方向である。伝熱部330は、貫通部310及び連通部320以外の部分である。
(2-1-1) Fin 30
FIG. 8 shows a part of one fin 30. Each fin 30 has a plurality of through-holes 310, one communication portion 320, and a plurality of heat transfer portions 330. The communication portion 320 is a portion that continues continuously in the second direction. The dashed line extending in the second direction shown in FIG. 8 is a boundary between the heat transfer portion 330 and the communication portion 320. The through-hole 310 is a peripheral portion around the notch. A collar 311 that rises along the flat tube 20 is formed on the peripheral portion. In this embodiment, the collar 311 corresponds to the through-hole 310. The direction along the flat tube 20 is a direction that intersects with the first direction and the second direction. The heat transfer portion 330 is a portion other than the through-hole 310 and the communication portion 320.
 各フィン30は、また、フィンピッチ規定部340と、ブリッジ形状の切起部350と、凸部360とを有する。フィンピッチ規定部340と切起部350と凸部360は、伝熱部330に形成された構造である。フィンピッチ規定部340は、隣接するフィン30に接してフィンピッチを規定する。隣接するフィン30のフィンピッチは、フィンピッチ規定部340の高さh1(図10参照)によって決まる。フィンピッチ規定部340は、連通部320以外の場所に位置する各フィン30の伝熱部330を、2方向以上に切り起こしてなる2以上の立上部341を含むものである。そのため、立上部341の間には隙間342が形成される。フィンピッチ規定部340は、各フィン30において、N本(Nは2以上の整数)の扁平管20に対して1つ設けられる。各フィン30におけるフィンピッチ規定部340の数が3つ以上である場合には、各フィン30の3つ以上のフィンピッチ規定部340は、互いに隣り合うフィンピッチ規定部340の間の扁平管20の数が同じになるように配置されることが好ましい。例えば、各フィン30のフィンピッチ規定部340の数が4つで且つN=4であれば、1つ目に図10の構造が配置され、次に3つ図9の構造が続き、次に図10の構造が配置され、また3つ図9の構造が続き、次に図10の構造が配置され、さらに3つ図9の構造が続き、次に図10の構造が配置される。 Each fin 30 also has a fin pitch determining portion 340, a bridge-shaped cut-and-raised portion 350, and a convex portion 360. The fin pitch determining portion 340, the cut-and-raised portion 350, and the convex portion 360 are structures formed in the heat transfer portion 330. The fin pitch determining portion 340 contacts the adjacent fin 30 to determine the fin pitch. The fin pitch of the adjacent fins 30 is determined by the height h1 (see FIG. 10) of the fin pitch determining portion 340. The fin pitch determining portion 340 includes two or more raised portions 341 formed by cutting and raising the heat transfer portion 330 of each fin 30 located in a location other than the communication portion 320 in two or more directions. Therefore, a gap 342 is formed between the raised portions 341. In each fin 30, one fin pitch determining portion 340 is provided for N (N is an integer of 2 or more) flat tubes 20. When the number of fin pitch defining portions 340 in each fin 30 is three or more, it is preferable that the three or more fin pitch defining portions 340 of each fin 30 are arranged so that the number of flat tubes 20 between adjacent fin pitch defining portions 340 is the same. For example, if the number of fin pitch defining portions 340 of each fin 30 is four and N=4, the structure of FIG. 10 is arranged first, followed by three structures of FIG. 9, followed by the structure of FIG. 10, followed by three more structures of FIG. 9, followed by the structure of FIG. 10, followed by three more structures of FIG. 9, followed by the structure of FIG. 10.
 貫通部310のカラー311は、第1起立部316と第2起立部317とに分けることができる。第1起立部316は、カラー311において、貫通する扁平管20に沿って立ち上がっており且つ隣接するフィン30と接する部分である。それに対し、第2起立部317は、貫通する扁平管20に沿って立ち上がっており且つ前記隣接するフィン30と接しない部分である。第1起立部316は、切り欠きの互いに対向する二辺318,319(図8参照)のうちの一辺にのみ配置される。 The collar 311 of the through portion 310 can be divided into a first rising portion 316 and a second rising portion 317. The first rising portion 316 is a portion of the collar 311 that rises along the flat tube 20 that it penetrates and that comes into contact with the adjacent fin 30. In contrast, the second rising portion 317 is a portion that rises along the flat tube 20 that it penetrates and that does not come into contact with the adjacent fin 30. The first rising portion 316 is disposed on only one of the two opposing sides 318, 319 (see FIG. 8) of the notch.
 第1起立部316は、フィンピッチ規定部340によって規定されるフィンピッチを維持する補助を行う。また、第1起立部316は、扁平管20を挿入する際のフィン30の座屈を抑制する。座屈を抑止し易くするために、第1起立部316は、貫通部310の切り欠きの入口に設けることが好ましい。また、第1起立部316の長さL2は、フィン30の第1方向の長さL1の50%以下であることが好ましい。第1起立部316が隣接するフィン30に接する面は、安定してフィン30を支えるために、長方形であることが好ましい。 The first standing portion 316 helps maintain the fin pitch defined by the fin pitch defining portion 340. The first standing portion 316 also suppresses buckling of the fin 30 when the flat tube 20 is inserted. To make it easier to suppress buckling, it is preferable that the first standing portion 316 is provided at the entrance of the notch of the penetration portion 310. It is also preferable that the length L2 of the first standing portion 316 is 50% or less of the length L1 of the fin 30 in the first direction. It is preferable that the surface where the first standing portion 316 contacts the adjacent fin 30 is rectangular in order to stably support the fin 30.
 (2-1-2)フィンピッチ規定部340の具体的構成
 図8には、Nが4である場合のフィン30の一部が示されている。図9には、互いに隣接する扁平管20の間にフィンピッチ規定部340が形成されていないフィン30の箇所が示されている。図10には、互いに隣接する扁平管20の間にフィンピッチ規定部340が形成されているフィン30の箇所が示されている。N=4の場合、フィンピッチ規定部340は、4本の扁平管20に対して1つ設けられる。言い換えると、N=4の場合、各フィン30において、互いに隣接する2つのフィンピッチ規定部340の間には、4本の扁平管20が配置される。
(2-1-2) Specific configuration of fin pitch defining portion 340 FIG. 8 shows a part of the fin 30 when N is 4. FIG. 9 shows a portion of the fin 30 where the fin pitch defining portion 340 is not formed between adjacent flat tubes 20. FIG. 10 shows a portion of the fin 30 where the fin pitch defining portion 340 is formed between adjacent flat tubes 20. When N=4, one fin pitch defining portion 340 is provided for four flat tubes 20. In other words, when N=4, four flat tubes 20 are arranged between two adjacent fin pitch defining portions 340 in each fin 30.
 図9に示されている、フィンピッチ規定部340が形成されていないフィン30の伝熱部330には、ブリッジ形状の切起部350が3つ形成されている。それに対し、図10に示されている、フィンピッチ規定部340が形成されている伝熱部330には、ブリッジ形状の切起部350が1つしか形成されていない。ブリッジ形状の切起部350は、伝熱部330の切起されていない平坦な部分を通過した気流は、切起部350の両面に沿って通過する。このようなブリッジ形状の切起部350をスリットと呼ぶ場合がある。ブリッジ形状の切起部350が3つ形成されている伝熱部330の方が、ブリッジ形状の切起部350が1つ形成されている伝熱部330よりも効率良く熱交換を行うことができる。 In the heat transfer section 330 of the fin 30 shown in FIG. 9, in which the fin pitch determining section 340 is not formed, three bridge-shaped cut-outs 350 are formed. In contrast, in the heat transfer section 330 shown in FIG. 10, in which the fin pitch determining section 340 is formed, only one bridge-shaped cut-out 350 is formed. In the bridge-shaped cut-out 350, airflow that passes through the flat, uncut portion of the heat transfer section 330 passes along both sides of the cut-out 350. Such a bridge-shaped cut-out 350 is sometimes called a slit. The heat transfer section 330 in which three bridge-shaped cut-outs 350 are formed can exchange heat more efficiently than the heat transfer section 330 in which one bridge-shaped cut-out 350 is formed.
 フィンピッチ規定部340の4つの立上部341の間には、4つの隙間342がある。4つの隙間342のうちの2つが第1方向に並ぶように配置され、残りの2つが第2方向に並ぶように配置される。立上部341は、平坦な伝熱部330に十字の切断線を形成して折り曲げ線が円になるように切り起すことにより形成される。それにより、第1方向に流れる気流が2つの隙間342を通過して容易に流れる。また、第2方向に他の2つの隙間342を通過して結露水が容易に流れる。 There are four gaps 342 between the four rising parts 341 of the fin pitch determination part 340. Two of the four gaps 342 are arranged so as to line up in the first direction, and the remaining two are arranged so as to line up in the second direction. The rising parts 341 are formed by forming a cross cutting line in the flat heat transfer part 330 and cutting and raising it so that the folding lines form a circle. This allows the air flowing in the first direction to easily pass through the two gaps 342. Also, condensed water easily flows in the second direction through the other two gaps 342.
 (2-1-3)フィンピッチ規定部と熱伝達率
 フィンピッチ規定部340と熱伝達の関係を示すグラフが図11に示されている。図11に示されているグラフは、図12に示されたフィン30を用いた構成X1、図13に示されたフィン530を用いた構成Y1、図14に示されたフィン630を用いた構成Y2、及び図14に示されたフィン730を用いた構成Y3の空気側熱伝達率(W/m)を示すものである。これらのグラフは、同じ面積のフィン30,530,630,730の温度と空気の温度を同じ条件とした場合に、フィン30,530,630,730から空気に伝わる熱量の差を比較するためのグラフである。空気側熱伝達率が高いフィンを用いるほど、熱交換効率の良い熱交換器を得られることになる。グラフは、3列フィンについて、列ピッチが10mm、段ピッチが9.7mmの条件で測定した結果を示している。空気の流れの向きは、矢印AFで示された向きである。
(2-1-3) Fin pitch defining portion and heat transfer coefficient A graph showing the relationship between the fin pitch defining portion 340 and heat transfer is shown in FIG. 11. The graph shown in FIG. 11 shows the air-side heat transfer coefficient (W/m 2 ) of the configuration X1 using the fin 30 shown in FIG. 12, the configuration Y1 using the fin 530 shown in FIG. 13, the configuration Y2 using the fin 630 shown in FIG. 14, and the configuration Y3 using the fin 730 shown in FIG. 14. These graphs are for comparing the difference in the amount of heat transferred from the fins 30, 530, 630, and 730 to the air when the temperature of the fins 30, 530, 630, and 730 with the same area and the temperature of the air are the same. The higher the air-side heat transfer coefficient of the fins used, the higher the heat exchange efficiency of the heat exchanger. The graph shows the results of measurements of three rows of fins under conditions of a row pitch of 10 mm and a row pitch of 9.7 mm. The direction of the air flow is indicated by the arrow AF.
 グラフの横軸の「N」は、構成X1,Y1の各フィンにおける、1つのフィンピッチ規定部340,540に対する扁平管20の本数に対応している。N=1の場合は、フィンピッチ規定部340,540が全ての伝熱部330に形成されている場合である。言い換えると、N=1の場合は、各フィン30,530において、図9に示されている構造が現れない場合である。N=2の場合は、隣接するフィンピッチ規定部340,540の間に2つの扁平管20が配置される場合である。言い換えると、N=2の場合は、例えば各フィン30において、図9に示されている構造と図10に示されている構造が交互に現れる場合である。N=3の場合は、隣接するフィンピッチ規定部340,540の間に3つの扁平管20が配置される場合である。言い換えると、N=3の場合は、例えば各フィン30において、図9に示されている構造が2回続けて現れた後に図10に示されている構造が1回現れる場合である。 The "N" on the horizontal axis of the graph corresponds to the number of flat tubes 20 for one fin pitch determining portion 340, 540 in each fin of the configurations X1, Y1. When N=1, the fin pitch determining portion 340, 540 is formed in all heat transfer portions 330. In other words, when N=1, the structure shown in FIG. 9 does not appear in each fin 30, 530. When N=2, two flat tubes 20 are arranged between adjacent fin pitch determining portions 340, 540. In other words, when N=2, for example, in each fin 30, the structure shown in FIG. 9 and the structure shown in FIG. 10 appear alternately. When N=3, three flat tubes 20 are arranged between adjacent fin pitch determining portions 340, 540. In other words, when N=3, for example, in each fin 30, the structure shown in FIG. 9 appears twice in succession, and then the structure shown in FIG. 10 appears once.
 図12に示されている構成X1は、上記実施形態に係るフィン30を用いた構成であり、伝熱部330にフィンピッチ規定部340と1つのブリッジ型の切起部350と凸部360が設けられ、貫通部310に第1起立部316が設けられている。図12に示されている構成X1と図13に示されている構成Y1とが異なる点は、フィンピッチ規定部340,540の構造に違いである。フィンピッチ規定部340には隙間342が存在するが,フィンピッチ規定部540には隙間342に相当する構造が存在しない。図12のフィンピッチ規定部340には4つの立上部341があるが、図13のフィンピッチ規定部540には円形状に立ち上がった部分が一つだけ存在する。図14に示されている構成Y2には、特許文献1に開示されていたスペーサ640が伝熱部330に2つ設けられている。そのため、ブリッジ型の切起部350が伝熱部330に一つしか設けられない。そのため、図14に示されている構成Y2は、図11に破線のグラフで示されているように、低い空気側熱伝達率を有する。図15に示されている構成Y3には、貫通部710にフィンピッチ規定部740が設けられている。このような貫通部710のみにフィンピッチ規定部740が設けられる構成Y3は、製造が難しく実用的ではないが、全ての伝熱部330にブリッジ型の切起部350を3つずつ設けることができる。そのため、図15に示されている構成Y3は、図11に一点鎖線のグラフで示されているように、良好な空気側熱伝達率を有している。 12 shows a configuration using the fin 30 according to the above embodiment, in which the heat transfer section 330 is provided with the fin pitch determining section 340, one bridge-type cut-and-raised section 350, and a convex section 360, and the through section 310 is provided with the first upright section 316. The difference between the configuration X1 shown in FIG. 12 and the configuration Y1 shown in FIG. 13 is the difference in the structure of the fin pitch determining sections 340 and 540. The fin pitch determining section 340 has a gap 342, but the fin pitch determining section 540 does not have a structure corresponding to the gap 342. The fin pitch determining section 340 in FIG. 12 has four upright sections 341, but the fin pitch determining section 540 in FIG. 13 has only one circular upright section. In the configuration Y2 shown in FIG. 14, two spacers 640 disclosed in Patent Document 1 are provided in the heat transfer section 330. Therefore, only one bridge-type cut-and-raised section 350 is provided in the heat transfer section 330. Therefore, the configuration Y2 shown in FIG. 14 has a low air-side heat transfer coefficient, as shown by the dashed line in FIG. 11. The configuration Y3 shown in FIG. 15 has a fin pitch determining portion 740 provided at the through-hole 710. The configuration Y3, in which the fin pitch determining portion 740 is provided only at the through-hole 710, is difficult to manufacture and is not practical, but it is possible to provide three bridge-type cut-and-raised portions 350 on each of the heat transfer portions 330. Therefore, the configuration Y3 shown in FIG. 15 has a good air-side heat transfer coefficient, as shown by the dashed line in FIG. 11.
 図12及び図13に示された構成X1,Y1のN=1の空気側熱伝達率は、いずれも、構成Y2の空気側熱伝達率よりも劣る。しかし、図12及び図13に示された構成X1,Y1のN=2以上の空気側熱伝達率は、構成Y2の空気側熱伝達率よりも良くなる。さらに、N=4、N=6のように、Nが大きくなるにつれて、図15に示された構成Y3の空気側熱伝達率に近づく。また、図12に示された構成X1と図13に示された構成Y1とを比較すると、Nの値が幾つであっても、構成X1の空気側熱伝達率が構成Y1の空気側熱伝達率よりも高い値になる。 The air-side heat transfer coefficients of configurations X1 and Y1 shown in Figures 12 and 13 for N=1 are both inferior to the air-side heat transfer coefficient of configuration Y2. However, the air-side heat transfer coefficients of configurations X1 and Y1 shown in Figures 12 and 13 for N=2 or more are better than the air-side heat transfer coefficient of configuration Y2. Furthermore, as N becomes larger, such as N=4 and N=6, the air-side heat transfer coefficient approaches that of configuration Y3 shown in Figure 15. Also, when comparing configurations X1 shown in Figure 12 and Y1 shown in Figure 13, the air-side heat transfer coefficient of configuration X1 is higher than that of configuration Y1, regardless of the value of N.
 (3)変形例
 (3-1)変形例A
 上記実施形態では、室内機110が壁掛け型である場合について説明した。しかし、上記実施形態で説明した室内熱交換器1が適用できる室内機は、壁掛け型には限られない。本開示に係る室内熱交換器1は、例えば、天井に埋め込まれてダクトにより調和空気を分配する、図16に示されているようなダクト型の室内機に適用できる。図16においては、室内ファン112によって、室内熱交換器1に気流が発生する。図16の室内ファン112には、例えば遠心ファンを用いることができる。遠心ファンには、例えばシロッコファンを用いることができる。図16に示された室内熱交換器1の形状は、側面から見てI字形であるが、例えば図17に示されているように側面から見た形状が楔形に折れ曲がっていてもよい。この場合、図17に示されているように室内ファン112には、例えばクロスフローファンを用いてもよく、クロスフローファンに代えて遠心ファンを用いてもよい。図17において、二点鎖線の矢印AFが空気が流れる方向を表している。図18に示されているように、側面から見てN字形に熱交換器1を配置することもできる。図18の室内機110では、矢印AFで示されているように、室内ファン112により、重力方向の下から上に空気が流れるように構成されている。図18の室内機110の構成で、上から下に空気が流れるように構成することもできる。
(3) Modifications (3-1) Modification A
In the above embodiment, the case where the indoor unit 110 is a wall-mounted type has been described. However, the indoor unit to which the indoor heat exchanger 1 described in the above embodiment can be applied is not limited to the wall-mounted type. The indoor heat exchanger 1 according to the present disclosure can be applied to, for example, a duct-type indoor unit as shown in FIG. 16, which is embedded in a ceiling and distributes conditioned air through a duct. In FIG. 16, an airflow is generated in the indoor heat exchanger 1 by the indoor fan 112. For example, a centrifugal fan can be used for the indoor fan 112 in FIG. 16. For example, a sirocco fan can be used for the centrifugal fan. The shape of the indoor heat exchanger 1 shown in FIG. 16 is an I-shape when viewed from the side, but the shape when viewed from the side may be bent into a wedge shape as shown in FIG. 17. In this case, for example, a cross-flow fan may be used for the indoor fan 112 as shown in FIG. 17, or a centrifugal fan may be used instead of the cross-flow fan. In FIG. 17, the arrow AF of the two-dot chain line indicates the direction in which the air flows. As shown in Fig. 18, the heat exchanger 1 can also be arranged in an N-shape when viewed from the side. In the indoor unit 110 in Fig. 18, as shown by the arrow AF, the indoor fan 112 is configured to make air flow from bottom to top in the direction of gravity. The indoor unit 110 in Fig. 18 can also be configured to make air flow from top to bottom.
 (3-2)変形例B
 上記実施形態では、フィンピッチ規定部340の立上部341が4つである場合について説明した。しかし、1つのフィンピッチ規定部340の立上部341の個数は、図19に示されているように、3つであってもよい。この場合、図19に示されているように、互いに隣接する立上部341の間の隙間342は、空気流れ方向(第1方向)にずれて配置されることで、気流の抵抗を小さくし易くなる。また、互いに隣接する立上部341の間の隙間342は、結露水が流れる方向(第2方向)に並んで配置されることで、結露水を流れ易くすることができる。
(3-2) Modification B
In the above embodiment, the case where the fin pitch defining portion 340 has four rising portions 341 has been described. However, the number of rising portions 341 of one fin pitch defining portion 340 may be three, as shown in Fig. 19. In this case, as shown in Fig. 19, the gaps 342 between adjacent rising portions 341 are arranged to be offset in the air flow direction (first direction), which makes it easier to reduce the resistance of the air flow. In addition, the gaps 342 between adjacent rising portions 341 are arranged side by side in the direction in which condensation water flows (second direction), which makes it easier for condensation water to flow.
 また、フィンピッチ規定部340の立上部341の個数を2つにすることができる。立上部341の個数を2つにする場合に、2つの隙間342を、空気の流れ方向(第1方向)に並んで配置すると、気流を流れ易くすることができる。立上部341の個数を2つにする場合に、2つの隙間342を、結露水が流れる方向(第2方向)に並んで配置すると、結露水を流れ易くすることができる。なお、2つ以上ある立上部341の大きさは、上記実施形態のように互いに同じ大きさであってもよいが、図19に示したように、同じ大きさでなくてもよい。 Furthermore, the number of rising portions 341 of the fin pitch determining portion 340 can be two. When the number of rising portions 341 is two, arranging two gaps 342 side by side in the air flow direction (first direction) can facilitate the flow of air. When the number of rising portions 341 is two, arranging two gaps 342 side by side in the direction in which condensation water flows (second direction) can facilitate the flow of condensation water. Note that the size of the two or more rising portions 341 may be the same as in the above embodiment, but they do not have to be the same size as shown in FIG. 19.
 (3-3)変形例C
 上記実施形態では、フィンピッチ規定部340と第1起立部316とを組み合わせる場合について説明した。しかし、フィンピッチ規定部340と第1起立部316とを組み合わせなくてもよい。例えば、フィンピッチ規定部340を設けて、第1起立部316を設けないように構成することもできる。また、第1起立部316は、フィンピッチ規定部340以外のフィンピッチ規定部と組み合わせてもよい。
(3-3) Modification C
In the above embodiment, a case has been described in which the fin pitch specifying portion 340 and the first standing portion 316 are combined. However, the fin pitch specifying portion 340 and the first standing portion 316 do not have to be combined. For example, a configuration may be made in which the fin pitch specifying portion 340 is provided and the first standing portion 316 is not provided. Furthermore, the first standing portion 316 may be combined with a fin pitch specifying portion other than the fin pitch specifying portion 340.
 (3-4)変形例D
 上記実施形態では、貫通部310にカラー311を設ける場合について説明した。しかし、カラー311を設けずに、貫通部310において第1起立部316のみが立ち上がるように構成することもできる。
(3-4) Modification D
In the above embodiment, the collar 311 is provided on the through-hole 310. However, the collar 311 may not be provided, and only the first upright portion 316 may be configured to stand up at the through-hole 310.
 (3-5)変形例E
 上記実施形態では、伝熱部330にブリッジ型の切起部350を形成する場合について説明した。しかし、熱交換を促進するための構造は、ブリッジ型の切起部350(スリット)には限られない。例えば、熱交換を促進するための構造は、伝熱部330の平面に対して斜めに切り起されたルーバー型の切起部でもよい。
(3-5) Modification E
In the above embodiment, a case has been described in which the bridge-shaped cut-and-raised portions 350 are formed in the heat transfer portion 330. However, the structure for promoting heat exchange is not limited to the bridge-shaped cut-and-raised portions 350 (slits). For example, the structure for promoting heat exchange may be a louver-shaped cut-and-raised portion that is cut and raised obliquely with respect to the plane of the heat transfer portion 330.
 (4)特徴
 (4-1)
 上記実施形態または変形例では、各フィン30は、複数の貫通部310と連通部320と1つ以上のフィンピッチ規定部340とを有している。複数の貫通部310には、複数の扁平管20が貫通している。連通部320は、複数の扁平管20を貫通させずに第1方向と交差する第2方向に延びている。1つ以上のフィンピッチ規定部340は、隣接するフィン30に接してフィンピッチを規定する。フィンピッチ規定部340は、各フィン30において、N本(Nは2以上の整数)の扁平管20に対して1つ設けられている。各フィン30のフィンピッチ規定部340は、連通部320以外の場所に位置する各フィン30の伝熱部330を、2方向以上に切り起こしてなる2以上の立上部341を含む。フィンピッチ規定部340の2以上の立上部341が2方向以上に切起されているので、2以上の立上部341の間に隙間342ができ、通風経路及び排水経路のうちの少なくとも一方がフィンピッチ規定部340で狭まるのを抑制することができる。その結果、熱交換効率または排水性がフィンピッチ規定部340によって低下するのを抑制することができる。
(4) Features (4-1)
In the above embodiment or modified example, each fin 30 has a plurality of through-holes 310, a communication portion 320, and one or more fin pitch defining portions 340. A plurality of flat tubes 20 penetrate the plurality of through-holes 310. The communication portion 320 extends in a second direction intersecting with the first direction without penetrating the plurality of flat tubes 20. The one or more fin pitch defining portions 340 contact adjacent fins 30 to define the fin pitch. In each fin 30, one fin pitch defining portion 340 is provided for N (N is an integer of 2 or more) flat tubes 20. The fin pitch defining portion 340 of each fin 30 includes two or more rising portions 341 formed by cutting and raising the heat transfer portion 330 of each fin 30 located in a place other than the communication portion 320 in two or more directions. Since the two or more rising portions 341 of the fin pitch defining portion 340 are cut and raised in two or more directions, gaps 342 are formed between the two or more rising portions 341, and it is possible to prevent at least one of the ventilation path and the drainage path from being narrowed by the fin pitch defining portion 340. As a result, it is possible to prevent a decrease in heat exchange efficiency or drainage performance due to the fin pitch defining portion 340.
 (4-2)
 変形例Bで説明した図19のフィンピッチ規定部340のように3方向に切り起こしてなる3つの立上部341を含む場合に、フィンピッチ規定部340は、3つの立上部341で隣接するフィン30を三点で支持できる。その結果、フィンピッチ規定部340が、隣接するフィン30をしっかりと支えられ、フィンピッチを安定的に規定することができる。また、3つの立上部341を含むフィンピッチ規定部340は、3つの隙間342を有するので、通風経路及び排水経路のうちの少なくとも一方がフィンピッチ規定部340で狭まるのを、隙間342の配置により抑制することができる。
(4-2)
19 described in Modification B, the fin pitch specifying portion 340 can support adjacent fins 30 at three points with the three rising portions 341. As a result, the fin pitch specifying portion 340 can firmly support the adjacent fins 30 and stably specify the fin pitch. In addition, the fin pitch specifying portion 340 including the three rising portions 341 has three gaps 342, and therefore the arrangement of the gaps 342 can prevent at least one of the ventilation path and the drainage path from being narrowed by the fin pitch specifying portion 340.
 (4-3)
 上記実施形態のフィンピッチ規定部340は、4方向に切り起こしてなる4つの立上部341を含んでいる。フィンピッチ規定部340の4つの立上部341が4方向に切起されているので、2つの隙間342を第1方向に並べて配置することができ、他の2つの隙間342を第2方向に並べて配置することができる。第1方向に並べて配置された2つの隙間342によって、通風経路が狭まるのを抑制することができる。また、第2方向に並べて配置された2つの隙間342によって、排水経路が狭まるのを抑制することができる。その結果、通風経路及び排水経路がフィンピッチ規定部340で狭まるのを、隙間342の配置により抑制することができる。
(4-3)
The fin pitch defining portion 340 of the above embodiment includes four rising portions 341 cut and raised in four directions. Since the four rising portions 341 of the fin pitch defining portion 340 are cut and raised in four directions, two gaps 342 can be arranged side by side in the first direction, and the other two gaps 342 can be arranged side by side in the second direction. The two gaps 342 arranged side by side in the first direction can prevent the ventilation path from narrowing. In addition, the two gaps 342 arranged side by side in the second direction can prevent the drainage path from narrowing. As a result, the arrangement of the gaps 342 can prevent the ventilation path and the drainage path from narrowing due to the fin pitch defining portion 340.
 (4-4)
 図11の構成X1のグラフにあるように、フィンピッチ規定部340は、扁平管4本に対して1つ設けたり、扁平管6本に対して1つ設けたりするように、各フィン30において、フィンピッチ規定部340の設けられている部分の割合を減らすことで、熱伝達率の低下を抑制することができる。フィンピッチ規定部340の設けられている部分の割合を減らすとは、Nを増やすことであり、換言すると、各フィン30における(図10の構成の数/図9の構成の数)の値を減らすということである。
(4-4)
As shown in the graph of configuration X1 in Fig. 11, the fin pitch defining portion 340 can be provided for every four flat tubes or every six flat tubes, and the decrease in the heat transfer coefficient can be suppressed by reducing the proportion of the portion in each fin 30 where the fin pitch defining portion 340 is provided. Reducing the proportion of the portion where the fin pitch defining portion 340 is provided means increasing N, in other words, reducing the value of (the number of configurations in Fig. 10 / the number of configurations in Fig. 9) in each fin 30.
 (4-5)
 上記実施形態では、各フィン30におけるフィンピッチ規定部340の数が3つ以上である場合に、各フィン30の3つ以上のフィンピッチ規定部340は、互いに隣り合うフィンピッチ規定部340の間の扁平管20の数が同じになるように配置されることが好ましい。このように配置されると、フィンピッチ規定部340が配置されて熱伝達率の低下する箇所が規則正しく配置され、不規則に配置される場合に比べて全体の熱伝達率の低下を抑制することができる。
(4-5)
In the above embodiment, when the number of fin pitch defining portions 340 in each fin 30 is three or more, it is preferable that the three or more fin pitch defining portions 340 of each fin 30 are arranged so that the number of flat tubes 20 between adjacent fin pitch defining portions 340 is the same. When arranged in this manner, the fin pitch defining portions 340 are arranged so that the locations where the heat transfer coefficient decreases are arranged regularly, and the decrease in the overall heat transfer coefficient can be suppressed compared to when the fin pitch defining portions 340 are arranged irregularly.
 (4-6)
 上記実施形態の各フィン30の各貫通部310は、対応する扁平管20に沿って立ち上がっており且つ隣接するフィン30と接している第1起立部316と、対応する扁平管20に沿って立ち上がっており且つ隣接するフィン30と接しない第2起立部317とを有する。貫通部310の第1起立部316が隣接するフィン30に接触するので、扁平管20への挿入時に座屈が生じるのを抑制することができる。また、第1起立部316は、フィンピッチの確保を補助することができる。
(4-6)
Each penetration portion 310 of each fin 30 in the above embodiment has a first rising portion 316 that rises along the corresponding flat tube 20 and contacts the adjacent fin 30, and a second rising portion 317 that rises along the corresponding flat tube 20 and does not contact the adjacent fin 30. Since the first rising portion 316 of the penetration portion 310 contacts the adjacent fin 30, it is possible to suppress buckling when the penetration portion 310 is inserted into the flat tube 20. In addition, the first rising portion 316 can help ensure the fin pitch.
 (4-7)
 上記実施形態の各フィンの各貫通部310は、対応する扁平管20に沿って立ち上がっており且つ隣接するフィン30と接している第1起立部316を有する。フィンピッチを規定する別の部分が第1起立部316以外にある場合に、第1起立部316によって、扁平管20の挿入の際の座屈およびフィンつぶれを抑制し、フィンピッチを規定する別の部分によるフィンピッチの確保を補助することができる。上記実施形態では、フィンピッチを規定する別の部分がフィンピッチ規定部340であるが、フィンピッチを規定する別の部分は、フィンピッチ規定部340には限られない。
(4-7)
Each penetration portion 310 of each fin in the above embodiment has a first rising portion 316 that rises along the corresponding flat tube 20 and contacts the adjacent fin 30. When there is another portion that defines the fin pitch other than the first rising portion 316, the first rising portion 316 can suppress buckling and fin crushing when the flat tube 20 is inserted, and can help ensure the fin pitch by the other portion that defines the fin pitch. In the above embodiment, the other portion that defines the fin pitch is the fin pitch defining portion 340, but the other portion that defines the fin pitch is not limited to the fin pitch defining portion 340.
 (4-8)
 上記実施形態の第1起立部316は、各フィン30の長手方向における各扁平管20の2つの側面211,212(図6参照)のうちの片側のみに対して設けられている。言い換えると、貫通部310の切り欠きの互いに対向する二辺318,319(図8参照)のうちの一辺のみに配置されている。第1起立部316が扁平管20の2つの側面のうちの片側のみに対して設けられることから、両側に設ける場合に比べて、第1起立部316の高さを、扁平管20の厚みに近い高さまで高くすることができる。
(4-8)
The first standing portion 316 in the above embodiment is provided on only one of the two side surfaces 211, 212 (see FIG. 6 ) of each flat tube 20 in the longitudinal direction of each fin 30. In other words, it is arranged on only one of the two opposing sides 318, 319 (see FIG. 8 ) of the cutout of the through-hole 310. Since the first standing portion 316 is provided on only one of the two side surfaces of the flat tube 20, the height of the first standing portion 316 can be increased to a height close to the thickness of the flat tube 20 compared to when the first standing portion 316 is provided on both sides.
 以上、本開示の実施形態を説明したが、請求の範囲に記載された本開示の趣旨及び範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。 Although the embodiments of the present disclosure have been described above, it will be understood that various changes in form and details are possible without departing from the spirit and scope of the present disclosure as set forth in the claims.
1  室内熱交換器 (熱交換器の例)
20  扁平管
30  フィン
310 貫通部
316 第1起立部
317 第2起立部
320 連通部
330 伝熱部
340 フィンピッチ規定部
341 立上部
1. Indoor heat exchanger (Example of a heat exchanger)
20 Flat tube 30 Fin 310 Penetration portion 316 First rising portion 317 Second rising portion 320 Communication portion 330 Heat transfer portion 340 Fin pitch regulation portion 341 Rising portion
特開2012-163318号公報JP 2012-163318 A

Claims (11)

  1.  複数のフィン(30)と複数の扁平管(20)とを備え、前記複数の扁平管と前記複数のフィンの間を第1方向に通過する空気の熱交換を行う熱交換器(1)であって、
     前記各フィンは、
      前記複数の扁平管が貫通している複数の貫通部(310)と、
      前記複数の扁平管を貫通させずに前記第1方向と交差する第2方向に延びる連通部(320)と、
      隣接するフィンに接してフィンピッチを規定する1つ以上のフィンピッチ規定部(340)と、
    を有し、
     前記フィンピッチ規定部は、前記各フィンにおいて、N本(Nは2以上の整数)の扁平管に対して1つ設けられ、
     前記各フィンの前記フィンピッチ規定部は、前記連通部以外の場所に位置する前記各フィンの伝熱部(330)を2方向以上に切り起こしてなる2以上の立上部(341)を含む、熱交換器(1)。
    A heat exchanger (1) comprising a plurality of fins (30) and a plurality of flat tubes (20), and performing heat exchange of air passing between the plurality of flat tubes and the plurality of fins in a first direction,
    Each of the fins is
    A plurality of penetration portions (310) through which the plurality of flat tubes penetrate;
    A communication portion (320) extending in a second direction intersecting the first direction without penetrating the plurality of flat tubes;
    one or more fin pitch defining portions (340) that contact adjacent fins to define a fin pitch;
    having
    The fin pitch defining portion is provided for each of N flat tubes (N is an integer of 2 or more) in each of the fins,
    The fin pitch defining portion of each of the fins includes two or more raised portions (341) formed by cutting and raising the heat transfer portion (330) of each of the fins located in a position other than the communicating portion in two or more directions.
  2.  前記フィンピッチ規定部は、前記連通部以外の場所に位置する前記各フィンの前記伝熱部を3方向に切り起こしてなる3つの前記立上部を含む、
    請求項1に記載の熱交換器(1)。
    The fin pitch defining portion includes three raised portions formed by cutting and raising the heat transfer portion of each of the fins located in a position other than the communication portion in three directions.
    A heat exchanger (1) according to claim 1.
  3.  前記フィンピッチ規定部は、前記連通部以外の場所に位置する前記各フィンの前記伝熱部を4方向に切り起こしてなる4つの前記立上部を含む、
    請求項1に記載の熱交換器(1)。
    The fin pitch defining portion includes four raised portions formed by cutting and raising the heat transfer portion of each of the fins located in a position other than the communication portion in four directions.
    A heat exchanger (1) according to claim 1.
  4.  扁平管の数が4本以上であり、
     前記フィンピッチ規定部は、扁平管4本に対して1つ設けられている、
    請求項1から3のいずれか一項に記載の熱交換器(1)。
    The number of flat tubes is four or more,
    The fin pitch defining portion is provided for every four flat tubes.
    A heat exchanger (1) according to any one of claims 1 to 3.
  5.  扁平管の数が6本以上であり、
     前記フィンピッチ規定部は、扁平管6本に対して1つ設けられている、
    請求項1から3のいずれか一項に記載の熱交換器(1)。
    The number of flat tubes is six or more,
    The fin pitch defining portion is provided for every six flat tubes.
    A heat exchanger (1) according to any one of claims 1 to 3.
  6.  前記各フィンにおける前記フィンピッチ規定部の数が3つ以上であり、
     前記各フィンの3つ以上の前記フィンピッチ規定部は、互いに隣り合う前記フィンピッチ規定部の間の扁平管の数が同じになるように配置されている、
    請求項1から5のいずれか一項に記載の熱交換器(1)。
    the number of the fin pitch defining portions in each of the fins is three or more,
    The three or more fin pitch defining portions of each fin are arranged so that the number of flat tubes between adjacent fin pitch defining portions is the same.
    A heat exchanger (1) according to any one of the preceding claims.
  7.  前記各フィンの前記各貫通部は、対応する扁平管に沿って立ち上がっており且つ隣接するフィンと接している第1起立部(316)と、前記対応する扁平管に沿って立ち上がっており且つ前記隣接するフィンと接しない第2起立部(317)とを有する、
    請求項1から6のいずれか一項に記載の熱交換器(1)。
    Each of the penetration portions of each of the fins has a first rising portion (316) that rises along the corresponding flat tube and contacts the adjacent fin, and a second rising portion (317) that rises along the corresponding flat tube and does not contact the adjacent fin.
    A heat exchanger (1) according to any one of the preceding claims.
  8.  前記第1方向に通過する空気が、室内の空調を行う室内機の中で熱交換される室内空気である、
    請求項1から7のいずれか一項に記載の熱交換器(1)。
    The air passing in the first direction is indoor air that is heat exchanged in an indoor unit that conditions the air in the room.
    A heat exchanger (1) according to any one of the preceding claims.
  9.  複数の扁平管(20)と複数のフィン(30)とを備える熱交換器(1)であって、
     前記各フィンは、前記複数の扁平管が貫通している複数の貫通部(310)を有し、
     前記各貫通部は、対応する扁平管に沿って立ち上がっており且つ隣接するフィンと接している第1起立部(316)を有する、熱交換器(1)。
    A heat exchanger (1) comprising a plurality of flat tubes (20) and a plurality of fins (30),
    Each of the fins has a plurality of through-portions (310) through which the plurality of flat tubes pass,
    Each of the penetrations has a first upstanding portion (316) that rises along the corresponding flat tube and contacts an adjacent fin.
  10.  前記第1起立部は、前記各フィンの長手方向における前記各扁平管の2つの側面のうちの片側のみに対して設けられている、
    請求項9に記載の熱交換器(1)。
    The first upright portion is provided on only one of two side surfaces of each of the flat tubes in the longitudinal direction of each of the fins.
    A heat exchanger (1) according to claim 9.
  11.  前記各貫通部は、前記第1起立部以外の部分として、前記対応する扁平管に沿って立ち上がっており且つ前記隣接するフィンと接しない第2起立部(317)を有し、
     前記第1起立部が前記第2起立部よりも高く立ち上がっている、
    請求項9または請求項10に記載の熱交換器(1)。
    Each of the through portions has a second upright portion (317) that rises along the corresponding flat tube and does not contact the adjacent fin as a portion other than the first upright portion,
    The first standing portion stands higher than the second standing portion.
    A heat exchanger (1) according to claim 9 or claim 10.
PCT/JP2023/034695 2022-09-30 2023-09-25 Heat exchanger WO2024071025A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-157840 2022-09-30
JP2022157840A JP7464872B1 (en) 2022-09-30 2022-09-30 Heat exchanger

Publications (1)

Publication Number Publication Date
WO2024071025A1 true WO2024071025A1 (en) 2024-04-04

Family

ID=90477848

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/034695 WO2024071025A1 (en) 2022-09-30 2023-09-25 Heat exchanger

Country Status (2)

Country Link
JP (1) JP7464872B1 (en)
WO (1) WO2024071025A1 (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2530064A1 (en) * 1975-07-05 1977-01-27 Volkswagenwerk Ag Light alloy air plate for vehicle radiator - has spacers to separate adjacent plates set at angle to air flow direction
GB2047399A (en) * 1979-04-20 1980-11-26 Du Pont Improvements in the fabrication of finned-tube heat exchangers
JPS5628586U (en) * 1980-03-12 1981-03-17
GB2110811A (en) * 1981-11-28 1983-06-22 Salter & Co Ltd G Finned tube heat exchanger members
US5117905A (en) * 1987-08-29 1992-06-02 Sueddeutsche Kuehlerfabrik Julius Fr. Behr Gmbh & Co. Kg Heat exchanger with fins
US20050016718A1 (en) * 2003-07-24 2005-01-27 Papapanu Steven James Fin-and-tube type heat exchanger
US20050072562A1 (en) * 2003-10-02 2005-04-07 Hall Peter David Heat exchanger tube assembly
JP2005121288A (en) * 2003-10-16 2005-05-12 Matsushita Electric Ind Co Ltd Heat exchanger
JP2007518962A (en) * 2004-01-20 2007-07-12 オートクンプ ヒートクラフト ユーエスエー リミテッド ライアビリティー カンパニー Brazed plate fin heat exchanger
US20140116667A1 (en) * 2012-10-29 2014-05-01 Samsung Electronics Co., Ltd. Heat exchanger
WO2020095616A1 (en) * 2018-11-07 2020-05-14 ダイキン工業株式会社 Heat exchanger and air-conditioning apparatus provided therewith
JP2020535384A (en) * 2017-09-30 2020-12-03 サンホワ(ハンチョウ) マイクロ チャンネル ヒート イクスチェンジャー カンパニー リミテッド Heat exchanger and fins

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2530064A1 (en) * 1975-07-05 1977-01-27 Volkswagenwerk Ag Light alloy air plate for vehicle radiator - has spacers to separate adjacent plates set at angle to air flow direction
GB2047399A (en) * 1979-04-20 1980-11-26 Du Pont Improvements in the fabrication of finned-tube heat exchangers
JPS5628586U (en) * 1980-03-12 1981-03-17
GB2110811A (en) * 1981-11-28 1983-06-22 Salter & Co Ltd G Finned tube heat exchanger members
US5117905A (en) * 1987-08-29 1992-06-02 Sueddeutsche Kuehlerfabrik Julius Fr. Behr Gmbh & Co. Kg Heat exchanger with fins
US20050016718A1 (en) * 2003-07-24 2005-01-27 Papapanu Steven James Fin-and-tube type heat exchanger
US20050072562A1 (en) * 2003-10-02 2005-04-07 Hall Peter David Heat exchanger tube assembly
JP2005121288A (en) * 2003-10-16 2005-05-12 Matsushita Electric Ind Co Ltd Heat exchanger
JP2007518962A (en) * 2004-01-20 2007-07-12 オートクンプ ヒートクラフト ユーエスエー リミテッド ライアビリティー カンパニー Brazed plate fin heat exchanger
US20140116667A1 (en) * 2012-10-29 2014-05-01 Samsung Electronics Co., Ltd. Heat exchanger
JP2020535384A (en) * 2017-09-30 2020-12-03 サンホワ(ハンチョウ) マイクロ チャンネル ヒート イクスチェンジャー カンパニー リミテッド Heat exchanger and fins
WO2020095616A1 (en) * 2018-11-07 2020-05-14 ダイキン工業株式会社 Heat exchanger and air-conditioning apparatus provided therewith

Also Published As

Publication number Publication date
JP2024054878A (en) 2024-04-18
JP7464872B1 (en) 2024-04-10

Similar Documents

Publication Publication Date Title
US8205470B2 (en) Indoor unit for air conditioner
JP6897372B2 (en) Heat exchanger
US20210041115A1 (en) Indoor heat exchanger and air conditioning apparatus
WO2016067957A1 (en) Heat exchanger
JPWO2013084397A1 (en) Air conditioner
JP7425282B2 (en) Evaporator and refrigeration cycle equipment equipped with it
WO2018235215A1 (en) Heat exchanger, refrigeration cycle device, and air conditioner
JP6370399B2 (en) Air conditioner indoor unit
JP7292510B2 (en) heat exchangers and air conditioners
JP2011112315A (en) Fin tube type heat exchanger and air conditioner using the same
JP2019027614A (en) Heat exchanging device and air conditioner
WO2024071025A1 (en) Heat exchanger
JP2011064338A (en) Air conditioner
JP7140988B2 (en) Heat exchanger
JP6036788B2 (en) Heat exchanger
JP7190579B2 (en) Fin used in heat exchanger, heat exchanger having fins, and refrigeration cycle device having heat exchanger
JP2006275376A (en) Heat exchanger and outdoor unit of air conditioner
WO2022244232A1 (en) Air conditioner
CN212252913U (en) Outdoor unit of air conditioner
WO2023175926A1 (en) Outdoor machine for air conditioning device and air conditioning device
CN116724209B (en) Heat exchanger
CN217082721U (en) Indoor unit of air conditioner
CN217109792U (en) Indoor unit of air conditioner
JP7150157B2 (en) Heat exchanger and refrigeration cycle equipment
CN218721876U (en) Vertical air conditioner