WO2022244232A1 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
WO2022244232A1
WO2022244232A1 PCT/JP2021/019355 JP2021019355W WO2022244232A1 WO 2022244232 A1 WO2022244232 A1 WO 2022244232A1 JP 2021019355 W JP2021019355 W JP 2021019355W WO 2022244232 A1 WO2022244232 A1 WO 2022244232A1
Authority
WO
WIPO (PCT)
Prior art keywords
cut
downstream
fins
heat exchanger
air
Prior art date
Application number
PCT/JP2021/019355
Other languages
French (fr)
Japanese (ja)
Inventor
直紀 中川
尚史 池田
啓 地村
暁 八柳
和英 山本
洋平 小柳
將太 須貝
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2021/019355 priority Critical patent/WO2022244232A1/en
Publication of WO2022244232A1 publication Critical patent/WO2022244232A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • F24F1/0067Indoor units, e.g. fan coil units characterised by heat exchangers by the shape of the heat exchangers or of parts thereof, e.g. of their fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements

Definitions

  • the present disclosure relates to air conditioners.
  • Patent Documents 1 and 2 describe conventional air conditioners.
  • An air conditioner includes a heat exchanger having a plurality of fins and heat transfer tubes, and a blower such as a cross-flow fan.
  • a plurality of cut-and-raised slits are formed in the plurality of fins by cutting and raising part of the surfaces of the fins.
  • the present disclosure has been made to solve the above problems, and aims to provide an air conditioner equipped with a heat exchanger capable of suppressing the generation of abnormal noise.
  • An air conditioner includes a heat transfer tube through which a refrigerant flows, a heat exchanger that exchanges heat between the refrigerant flowing in the heat transfer tube and air, and a blower that sends air to the heat transfer tube; Prepare.
  • the heat exchanger is formed in a plate shape, and has a plurality of fins extending in an extending direction intersecting with a ventilation direction of the air sent to the heat exchanger by the blower, and a plate surface of each of the plurality of fins. and a fin collar provided between adjacent fins among the plurality of fins and through which the heat transfer tube is inserted.
  • the plurality of cut-and-raised portions include a downstream cut-and-raised portion located downstream of the fin collar in the airflow direction. One end in the extending direction of the downstream cut-and-raised portion is arranged to overlap the fin collar when viewed in the ventilation direction.
  • the air conditioner according to the present disclosure it is possible to suppress the occurrence of abnormal noise.
  • FIG. 1 is a fluid circuit diagram showing an air conditioner according to Embodiment 1.
  • FIG. 1 is a schematic cross-sectional view showing an indoor unit according to Embodiment 1.
  • FIG. 1 is a schematic cross-sectional view showing a heat exchanger according to Embodiment 1;
  • FIG. 4 is a side view showing a structure in which a plurality of fins forming the heat exchanger according to Embodiment 1 are laminated;
  • FIG. 4 is a side view showing a structure in which a plurality of fins forming the heat exchanger according to Embodiment 1 are laminated;
  • FIG. 4 is a plan view partially showing the fins forming the heat exchanger according to the first embodiment, showing the arrangement of the cut-and-raised portions; It is a figure which shows the wind speed distribution in the heat exchanger which concerns on a comparative example.
  • FIG. 10 is a plan view showing the wind speed distribution in the heat exchanger according to the example, showing a case where both open ends of two cut-and-raised portions adjacent to each other are located downstream of the fin collar in the ventilation direction.
  • 7B is a graph corresponding to the wind speed distribution shown in FIG. 7A; FIG.
  • FIG. 10 is a plan view showing the wind speed distribution in a heat exchanger according to a comparative example, showing a case where both open ends of two cut-and-raised portions adjacent to each other are not located downstream of the fin collar in the ventilation direction; be. 8B is a graph corresponding to the wind speed distribution shown in FIG. 8A;
  • FIG. 10 is a plan view showing the wind speed distribution in a heat exchanger according to a comparative example, in which only one of the open ends of two adjacent cut-and-raised portions is positioned downstream of the fin collar in the ventilation direction;
  • FIG. 10 is a diagram showing a case; 9B is a graph corresponding to the wind speed distribution shown in FIG. 9A;
  • FIG. 10 is a plan view partially showing a fin constituting a heat exchanger according to a comparative example, showing a case where the cut-and-raised portion is divided;
  • FIG. 10 is a plan view showing the wind velocity distribution in a heat exchanger according to a comparative example, showing a case where the cut-and-raised portion is divided;
  • 11B is a graph corresponding to the wind speed distribution shown in FIG. 11A;
  • FIG. 5 is a perspective view showing simulation results of wind speed distribution in the heat exchanger according to the example.
  • FIG. 7 is a perspective view showing a simulation result of wind speed distribution in a heat exchanger according to a comparative example;
  • the air conditioner 1 according to Embodiment 1 will be described with reference to the drawings.
  • the vertical direction (gravity direction, vertical direction) is defined as the Z direction
  • the width direction of the indoor unit 2 is defined as the Y direction
  • the front-rear direction of the indoor unit 2 is defined as the X direction (Y direction and Z direction). orthogonal direction).
  • a tilt direction G is defined as a direction tilted in the X direction and the Y direction.
  • a direction perpendicular to the tilt direction G is defined as a direction P.
  • FIG. 1 is a fluid circuit diagram showing an air conditioner 1 according to Embodiment 1.
  • the air conditioner 1 has an indoor unit 2 , an outdoor unit 3 and refrigerant pipes 4 .
  • one indoor unit 2 is shown in the example shown in FIG. 1, the number of indoor units 2 constituting the air conditioner 1 may be two or more.
  • the refrigerant pipe 4 (pipe) connects the flow switching valve 11 , the indoor heat exchanger 7 , the expansion valve 9 and the outdoor heat exchanger 8 .
  • a coolant flows inside the coolant pipe 4 .
  • a refrigerant such as R32 or a refrigerant having a global warming potential GWP of 675 or less is used.
  • the refrigerant pipe 4 and the above-described devices connected to the refrigerant pipe 4 constitute a refrigerant circuit.
  • the outdoor unit 3 has an air blower 6 , an outdoor heat exchanger 8 , an expansion valve 9 , a compressor 10 and a channel switching valve 11 .
  • the blower 6 is a device that sends outdoor air to the outdoor heat exchanger 8 .
  • the outdoor heat exchanger 8 includes a heat exchanger that exchanges heat between refrigerant and outdoor air.
  • the outdoor heat exchanger 8 is, for example, a fin-and-tube heat exchanger.
  • the outdoor heat exchanger 8 functions as a condenser during cooling operation.
  • the outdoor heat exchanger 8 functions as an evaporator during heating operation.
  • the expansion valve 9 is a valve that decompresses and expands the refrigerant.
  • the expansion valve 9 is, for example, an electronic expansion valve.
  • the compressor 10 sucks a low-temperature, low-pressure refrigerant, compresses the sucked refrigerant, and converts it into a high-temperature, high-pressure refrigerant.
  • the channel switching valve 11 is a valve that switches the flow direction of the refrigerant in the refrigerant circuit, and is, for example, a four-way valve.
  • the indoor unit 2 has an air blower 5 and an indoor heat exchanger 7 .
  • the blower 5 is a device that sends indoor air to the indoor heat exchanger 7, and is a cross-flow fan 22, for example.
  • the indoor heat exchanger 7 includes a heat exchanger 18 that exchanges heat between the indoor air and the refrigerant.
  • the indoor heat exchanger 7 functions as an evaporator during cooling operation.
  • the indoor heat exchanger 7 functions as a condenser during heating operation.
  • the air conditioner 1 performs cooling operation by switching the flow path switching valve 11 so that the discharge portion of the compressor 10 and the outdoor heat exchanger 8 are connected.
  • the refrigerant sucked into the compressor 10 is compressed by the compressor 10 into a high-temperature and high-pressure gas state.
  • the gaseous refrigerant is discharged toward the outdoor heat exchanger 8 .
  • the high-temperature and high-pressure gaseous refrigerant discharged from the compressor 10 passes through the flow path switching valve 11 and flows into the outdoor heat exchanger 8 functioning as a condenser.
  • the refrigerant that has flowed into the outdoor heat exchanger 8 exchanges heat with the outdoor air sent by the blower 6, condenses, and liquefies.
  • the liquid refrigerant flows into the expansion valve 9 and is decompressed and expanded to become a low-temperature, low-pressure gas-liquid two-phase refrigerant.
  • the gas-liquid two-phase refrigerant flows into the indoor heat exchanger 7 functioning as an evaporator.
  • the refrigerant that has flowed into the indoor heat exchanger 7 exchanges heat with the indoor air sent by the blower 5, evaporates, and gasifies. At that time, the room air is cooled to cool the room. Thereafter, the vaporized low-temperature, low-pressure gaseous refrigerant passes through the flow path switching valve 11 and is sucked into the compressor 10 .
  • the air conditioner 1 performs heating operation by switching the flow path switching valve 11 so that the discharge portion of the compressor 10 and the indoor heat exchanger 7 are connected.
  • the refrigerant sucked into the compressor 10 is compressed by the compressor 10 into a high-temperature, high-pressure gas state.
  • the gaseous refrigerant is discharged toward the indoor heat exchanger 7 .
  • the high-temperature and high-pressure gaseous refrigerant discharged from the compressor 10 passes through the flow path switching valve 11 and flows into the indoor heat exchanger 7 functioning as a condenser.
  • the refrigerant that has flowed into the indoor heat exchanger 7 exchanges heat with the indoor air sent by the blower 5, condenses, and liquefies. At that time, the room air is warmed, and the room is heated.
  • the liquid refrigerant flows into the expansion valve 9 and is decompressed and expanded to become a low-temperature, low-pressure gas-liquid two-phase refrigerant.
  • the gas-liquid two-phase refrigerant flows into the outdoor heat exchanger 8 that functions as an evaporator.
  • the refrigerant that has flowed into the outdoor heat exchanger 8 exchanges heat with the outdoor air sent by the blower 6 to evaporate and gasify. Thereafter, the vaporized low-temperature, low-pressure gaseous refrigerant passes through the flow path switching valve 11 and is sucked into the compressor 10 .
  • FIG. 2 is a schematic cross-sectional view showing the indoor unit 2 according to Embodiment 1, showing a cross section of the indoor unit 2 along the Z direction.
  • the indoor unit 2 has a housing 12, an air filter 14, a heat exchanger 18, a drain pan 19, a flap 20, and a cross-flow fan 22 (blower 5).
  • the housing 12 has a cover 12A, a support portion 12B, a base portion 16, a top panel 15, and a front panel 13. As shown in FIG.
  • the housing 12 constitutes the outer shell of the indoor unit 2 .
  • the cover 12A has an air outlet 21 .
  • the outlet 21 is formed in the lower portion of the cover 12A.
  • the support portion 12B and the base portion 16 are attached to a wall surface W or the like in the room to support the cover 12A.
  • the base 16 is positioned above the support 12B in the Z direction.
  • the top panel 15 is connected to the base 16 and constitutes the top surface 2T of the indoor unit 2.
  • the top panel 15 is open in a grid pattern.
  • the front panel 13 constitutes the front surface of the indoor unit 2 in the X direction.
  • the air filter 14 is attached to the top panel 15 and removes dust from the air drawn from the top panel 15 .
  • the cross-flow fan 22 is housed inside the housing 12 and sends air to the heat transfer tubes 17 constituting the heat exchanger 18, which will be described later.
  • the cross-flow fan 22 extends in the Y direction of the housing 12 in FIG.
  • the heat exchanger 18 is housed inside the housing 12 and has a first heat exchange section 18A and a second heat exchange section 18B.
  • Cross-flow fan 22 faces heat exchanger 18 .
  • Embodiment 1 a structure in which the heat exchanger 18 is not arranged in the back area (area facing the wall surface W) of the cross flow fan 22 is described. A structure in which the heat exchanger 18 is arranged in the back area of the cross flow fan 22 may be adopted.
  • the first heat exchange section 18A has an upper end 18AU and a lower end 18AL.
  • the lower end 18AL faces the drain pan 19 .
  • the first heat exchange section 18A extends, for example, along the Z direction.
  • the first heat exchange portion 18A faces a front area 22A of the cross-flow fan 22 located on the opposite side of the wall surface W in the X direction. In other words, the first heat exchange section 18A is arranged to face the cross flow fan 22 via the front region 22A.
  • the second heat exchange section 18B is positioned above the first heat exchange section 18A in the Z direction.
  • the second heat exchange section 18B has an upper end 18BU and a lower end 18BL.
  • the upper end 18BU faces the support portion 12B.
  • the lower end 18BL is connected to the upper end 18AU of the first heat exchange section 18A.
  • the second heat exchange portion 18B extends along an inclination direction G that is inclined in the X direction and the Z direction.
  • the tilt direction G is a direction perpendicular to the Y direction.
  • the second heat exchange portion 18B extends upward and obliquely rearward from the upper end 18AU of the first heat exchange portion 18A when viewed in the Y direction.
  • the second heat exchange section 18B faces the upper region 22B of the crossflow fan 22.
  • the upper area 22B means an area extending from the upper portion 22C of the cross-flow fan 22 toward the front area 22A in the Z direction.
  • the second heat exchange section 18B is arranged to face the cross flow fan 22 via the upper region 22B.
  • the drain pan 19 is arranged below the first heat exchange section 18A.
  • the drain pan 19 stores water dripped from the heat exchanger 18 .
  • the flap 20 is attached to the lower portion of the cover 12A.
  • the flap 20 is rotatable around a rotary shaft 20A and adjusts the blowing direction of air blown from the blower port 21 .
  • the rotating shaft 20A is an axis extending in the Y direction.
  • Air flow in indoor unit 2 The air flow in the indoor unit 2 will be described. First, by driving the cross-flow fan 22 , the indoor air is sucked into the housing 12 through the opening of the top panel 15 . The air drawn into the housing 12 passes through the heat exchanger 18 and is drawn into the cross-flow fan 22 . Then, the air sucked into the cross-flow fan 22 is blown out from the outlet 21. - ⁇
  • FIG. 3 is a schematic cross-sectional view showing the main part of the indoor unit 2 shown in FIG. 2 and showing the heat exchanger 18 according to the first embodiment.
  • FIG. 3 only the heat exchanger 18 is shown among the members constituting the indoor unit 2, and the other constituent members are omitted.
  • 4A and 4B are side views showing a structure in which a plurality of fins 24 constituting heat exchanger 18 according to Embodiment 1 are laminated.
  • 4A and 4B show only the fins 24, the cut-and-raised portions 23, and the fin collars 25 among the members constituting the heat exchanger 18, and the other constituent members are omitted.
  • FIG. 5 is a plan view partially showing the fins 24 that constitute the heat exchanger 18 according to the first embodiment.
  • FIG. 5 is a diagram showing the arrangement of the cut-and-raised portions 23, showing an enlarged view of the fins 24 of the heat exchanger 18 shown in FIG. The structure shown in FIG. 5 is applied to each of the first heat exchange section 18A and the second heat exchange section 18B shown in FIG.
  • the heat exchanger 18 (the first heat exchange section 18A and the second heat exchange section 18B) includes a plurality of fins 24 arranged in the Y direction and a plurality of fins 24 that are inserted into the heat exchanger 18. and a heat transfer tube 17 extending in the Y direction.
  • Each of the plurality of fins 24 is formed in a plate shape having a plate surface 24F (surface) extending in the Y direction.
  • the positions where the heat transfer tubes 17 are fixed that is, the positions of the plurality of fin collars 25 are indicated by reference numeral 25P.
  • Each of the plurality of fins 24 forming the first heat exchange section 18A extends in the Z direction.
  • Each of the plurality of fins 24 forming the second heat exchange portion 18B extends in the tilt direction G. As shown in FIG.
  • the plurality of fins 24 are arranged side by side in the width direction (Y direction) of the housing 12 in FIGS. 3, 4A, and 4B.
  • Each of the plurality of fins 24 is plate-shaped, for example, made of aluminum.
  • the number of fins 24 facing the front area 22A and the upper area 22B is the number facing the back area of the cross-flow fan 22. fins may be greater than the number of fins. Since each of the plurality of fins 24 has the same structure, only one fin 24 will be described in the following description, and description of each of the plurality of fins 24 may be omitted.
  • the arrangement pattern of the plurality of fixed positions 25P on each fin 24 is, for example, a zigzag pattern as shown in FIG.
  • the zigzag pattern will be specifically described.
  • a plurality of fixed positions 25P are arranged along a first row labeled a and a second row labeled b.
  • Reference 24K is the boundary between the first column a and the second column b.
  • the boundary line 24K corresponds to the centerline of each of the first heat exchange section 18A and the second heat exchange section 18B.
  • the first row a of the plurality of fixed positions 25P is the row located on the upstream side (upwind side) in the flow of air passing through the fins 24 .
  • the second row b of the plurality of fixed positions 25P is the row positioned downstream (downwind side) in the flow of air passing through the fins 24 .
  • the arrangement pitch of the plurality of fixed positions 25P in the first row a and the arrangement pitch of the plurality of fixed positions 25P in the second row b are the same.
  • a central position between two adjacent fixed positions 25P (for example, 25PAa) that constitute the first row a is denoted by 25CAa.
  • the central position 25CAa overlaps with one fixed position 25P (for example, 25PAb) forming the second row b when viewed from the X direction (the direction perpendicular to the direction of the first row a).
  • the central position between two fixed positions 25P (for example, 25PAb) that constitute the second row b and are adjacent to each other is indicated by 25CAb.
  • the central position 25CAb overlaps with one fixed position 25P (for example, reference numeral 25PAa) that forms the first row a when viewed from the X direction.
  • the heat transfer tubes 17 are arranged at positions corresponding to the zigzag pattern in which the plurality of fixed positions 25P are arranged in two rows.
  • the arrangement pitch of the plurality of fixed positions 25P in the first row a and the arrangement pitch of the plurality of fixed positions 25P in the second row b are the same.
  • the central position between two adjacent fixed positions 25P (for example, 25PBa) that constitute the first row a is indicated by 25CBa.
  • the central position 25CBa overlaps with one fixed position 25P (for example, 25PBb) forming the second row b when viewed from the direction P (the direction orthogonal to both the tilt direction G and the Y direction).
  • the central position between two adjacent fixed positions 25P (for example, 25PBb) forming the second row b is designated 25CBb.
  • the center position 25CBb overlaps the position of one fixed position 25P (for example, 25PBa) that forms the first row a when viewed from the direction P.
  • the heat transfer tubes 17 are arranged at positions corresponding to the zigzag pattern in which the plurality of fixed positions 25P are arranged in two rows.
  • (Cut-and-raised portion 23) As shown in FIG. 5 , a plurality of cut-and-raised portions 23 are formed on plate surfaces 24F of the plurality of fins 24 . The plurality of cut-and-raised portions 23 are located upstream UP and downstream DW in the ventilation direction FL of the air flowing through the heat exchanger 18 (the ventilation direction of the air sent to the heat exchanger 18 by the cross-flow fan 22).
  • the ventilation direction FL is a direction orthogonal to the arrangement direction of the plurality of fins 24 arranged in the Y direction shown in FIG.
  • a ventilation direction FL is a direction perpendicular to the direction in which the fins 24 extend.
  • Each of the plurality of cut-and-raised portions 23 is raised upward from the plate surface 24F of the fin 24 from a cut portion formed in a portion of the plate surface 24F.
  • the plurality of cut-and-raised portions 23 are formed by, for example, a known sheet metal working method.
  • a cut-and-raised portion 23 is formed to extend obliquely upward from the bent portion.
  • each of the plurality of upstream cut-and-raised portions 23U has an opening 23UH and an opening end 23UE (apex, one end).
  • the opening 23UH is formed between the upper end 23T (see FIGS. 4A and 4B) of the upstream cut-and-raised portion 23U and the plate surface 24F.
  • the opening 23UH opens in the ventilation direction.
  • the opening end 23UE is located at the boundary between the plate surface 24F on which the opening 23UH is not formed and the opening 23UH. That is, the opening ends 23UE are located on both sides of the opening 23UH in the extending direction (Z direction) of the opening 23UH.
  • Each of the plurality of downstream cut-and-raised portions 23D has an opening 23DH and an opening end 23DE (apex, one end).
  • the opening 23DH is formed between the upper end 23T (see FIGS. 4A and 4B) of the downstream cut-and-raised portion 23D and the plate surface 24F.
  • the opening 23DH opens in the ventilation direction.
  • the opening end 23DE is located at the boundary between the plate surface 24F on which the opening 23DH is not formed and the opening 23DH. That is, the opening ends 23DE are positioned on both sides of the opening 23DH in the extending direction (Z direction) of the opening 23DH.
  • the opening ends 23UE and 23DE can also be referred to as starting points (opening starting points) from which the formation of the openings 23UH and 23DH starts when the cut-and-raised portions 23 are formed by cutting a part of the plate surface 24F of the fin 24.
  • the openings 23UH and 23DH of the cut-and-raised portions 23 are open in the ventilation direction FL.
  • the height of the cut-and-raised portion 23 will be described.
  • the plurality of fins 24 are arranged along the Y direction. A space between two fins 24 facing each other among the plurality of fins 24 is maintained by fin collars 25 .
  • the height of the space 30 formed between the fins 24 adjacent to each other in the direction in which the plurality of fins 24 overlap is defined as F
  • the height of each of the plurality of cut-and-raised portions 23 is defined as H.
  • the height of each of the plurality of cut-and-raised portions 23 is set so as to satisfy the relationship H ⁇ 1/2 ⁇ F.
  • the height F of the space 30 is the distance between the two fins 24 facing each other.
  • the height H of the cut-and-raised portion 23 is the distance from the plate surface 24F of the fin 24 on which the cut-and-raised portion 23 is formed to the upper end 23T of the cut-and-raised portion 23 .
  • FIG. 4A shows a case where the height H of the cut-and-raised portion 23 is half the height F of the space 30.
  • FIG. 4B shows a case where the height H of the cut-and-raised portion 23 is smaller than half the height F of the space 30 .
  • a plurality of fin collars 25 are formed on the plate surface 24 ⁇ /b>F of each of the plurality of fins 24 .
  • the plurality of fin collars 25 maintains the spacing between adjacent fins 24 among the plurality of fins 24 arranged in the Y direction shown in FIG.
  • Heat transfer tubes 17 are inserted through a plurality of fin collars 25 , and the heat transfer tubes 17 are fixed to the fins 24 at the fin collars 25 .
  • the plurality of fin collars 25 are positioned upstream UP and downstream DW in the ventilation direction FL.
  • the fin collars 25 (25U, 25D) have hole diameters about 4 to 7% larger than the diameter of the heat transfer tubes 17 in order to insert the heat transfer tubes 17 therein.
  • the hole diameter of the fin collar 25 is preferably 5.35 mm or less.
  • the plurality of fixing positions 25P at which the heat transfer tubes 17 are fixed to the fin collars 25 are arranged in two rows.
  • the first row a is composed of a plurality of upstream cut-and-raised portions 23U and a plurality of upstream fin collars 25U.
  • one upstream fin collar 25U is arranged between two upstream cut-and-raised portions 23U.
  • one upstream cut-and-raised portion 23U is arranged between two upstream fin collars 25U.
  • the second row b is composed of a plurality of downstream cut-and-raised portions 23D and a plurality of downstream fin collars 25D.
  • one downstream fin collar 25D is arranged between two downstream cut-and-raised portions 23D.
  • one downstream cut-and-raised portion 23D is arranged between two downstream fin collars 25D.
  • the upstream fin collar 25U forming the first row a and the downstream cut-and-raised portion 23D forming the second row b are aligned in the ventilation direction FL.
  • the downstream fin collar 25D and the downstream cut-and-raised portion 23D are arranged in the longitudinal direction of the fin 24 (extending direction of the second row b).
  • the opening end 23DE of the downstream cut-and-raised portion 23D is located behind the downstream fin collar 25D. That is, in the ventilation direction FL, the opening end 23DE of the downstream cut-and-raised portion 23D is located downstream of the downstream fin collar 25D.
  • the opening end 23DE is located behind the downstream fin collar 25D
  • the downstream fin collar 25D and the opening end 23DE overlap when viewed from the upstream side UP in the ventilation direction FL and It means that the fin collar 25D is arranged in front of the open end 23DE.
  • the heat transfer tube 17 and the open end 23DE overlap when viewed from the upstream side UP in the air flow direction FL, and that the heat transfer tube 17 is arranged in front of the open end 23DE.
  • a first downstream cut-and-raised portion 23D1 and a second downstream cut-and-raised portion 23D2, which are the downstream cut-and-raised portion 23D, are arranged in the extending direction of the second row b.
  • Each of the first downstream cut-and-raised portion 23D1 and the second downstream cut-and-raised portion 23D2 is one of the plurality of cut-and-raised portions 23 positioned on the downstream side DW in the ventilation direction FL.
  • the first downstream cut-and-raised portion 23D1 includes a first opening 23DH1, a first opening end 23DE1 (first end part).
  • the second downstream cut-and-raised portion 23D2 has a second opening 23DH2, a second opening end 23DE2 (second end part).
  • the downstream fin collar 25D is positioned between the first downstream cut-and-raised portion 23D1 and the second downstream cut-and-raised portion 23D2.
  • the first opening end 23DE1 and the second opening end 23DE2 are formed so as to face each other and be adjacent to each other.
  • the first opening end 23DE1 and the second opening end 23DE2 are located behind the downstream fin collar 25D. That is, in the ventilation direction FL, the first opening end 23DE1 and the second opening end 23DE2 are located downstream of the downstream fin collar 25D.
  • the first opening end 23DE1 and the second opening end 23DE2 are positioned behind the downstream fin collar 25D
  • the downstream fin collar 25D and the first opening end are positioned behind the downstream fin collar 25D when viewed from the upstream side UP in the ventilation direction FL.
  • 23DE1 and the second open end 23DE2 overlap, and the downstream fin collar 25D is arranged in front of the first open end 23DE1 and the second open end 23DE2.
  • the heat transfer tubes 17 overlap the first opening end 23DE1 and the second opening end 23DE2, and the heat transfer tubes 17 are arranged in front of the opening end 23DE.
  • the heat transfer tubes 17 are housed inside the housing 12 .
  • the heat transfer tube 17 is inserted through a plurality of fin collars 25 formed on each of the plurality of fins 24 .
  • the heat transfer tubes 17 are fixed to the plurality of fin collars 25 by caulking by a tube expanding method. Therefore, the heat transfer tubes 17 are fixed to the fins 24 in a state where the adhesion between the heat transfer tubes 17 and the plurality of fins 24 is enhanced.
  • a refrigerant flows inside the heat transfer tube 17 .
  • the heat transfer tube 17 is, for example, copper or aluminum piping.
  • symbol B indicates the distance between the first open end 23DE1 and the second open end 23DE2
  • symbol C indicates the hole diameter of the fin collar 25
  • symbol D indicates the outer diameter of the heat transfer tube 17. indicates the diameter.
  • the first downstream cut-and-raised portion 23D1 and the second downstream cut-and-raised portion 23D2 are arranged so as to satisfy the relationship B ⁇ 0.75 ⁇ C.
  • the outer diameter D of the heat transfer tube 17 is 5.0 mm.
  • the downstream cut-and-raised portion 23D is It is formed by one cut-and-raised portion that is not divided in the longitudinal direction of the fin 24 .
  • the first fin collar is provided between the fins 24 adjacent to each other among the plurality of fins 24 and is a fin collar through which the heat transfer tubes 17 are inserted.
  • the second fin collar is provided between the fins 24 adjacent to each other among the plurality of fins 24 and is a fin collar through which the heat transfer tubes 17 are inserted.
  • the air passes through the space around the heat transfer tubes 17 inserted through the downstream fin collars 25D in the air ventilation direction FL, the air flows downstream of the heat transfer tubes 17.
  • the growth of the air flow occurs on the side. Specifically, a low-velocity air flow resulting from the pipe wake flow and a constricted air flow flowing from between the fin collar 25 and the cut-and-raised portion 23 are generated. Such airflow reaches the blade surfaces of the cross-flow fan 22 .
  • the heat exchanger 18 according to Embodiment 1 has a configuration in which the opening end 23DE of the downstream cut-and-raised portion 23D is positioned behind the downstream fin collar 25D.
  • the downstream fin collar 25D is positioned between the first downstream cut-and-raised portion 23D1 and the second downstream cut-and-raised portion 23D2.
  • the first open end 23DE1 and the second open end 23DE2 hinder the growth of the air flow.
  • the first opening end 23DE1 and the second opening end 23DE2 can suppress an increase in the width of the low-velocity air flow caused by the pipe wake flow. Therefore, it is possible to prevent the slow-speed airflow from reaching the cross-flow fan.
  • the "width of the air flow” means the width in the direction intersecting with the ventilation direction FL.
  • the speed difference between the slow-speed air and the constricted air can be uniformly reduced. It is possible to suppress the occurrence of drift, reduce the pressure difference, and obtain a uniform air flow. Furthermore, by reducing the air velocity difference, air pressure fluctuations can be suppressed, and as a result, the occurrence of noise such as abnormal fan noise can be suppressed.
  • the airflow direction from the portion between the downstream fin collar 25D and the downstream cut-and-raised portion 23D in the airflow direction FL It becomes possible to suppress the amount of flowing heat exchange air. As a result, it is possible to suppress the occurrence of a contracted air flow having a high flow velocity that flows out from the portion between the downstream fin collar 25D and the downstream cut-and-raised portion 23D.
  • conventional heat exchangers used heat transfer tubes having an outer diameter of, for example, 7.2 mm or 7.0 mm.
  • the outer diameter of the heat transfer tubes 17 constituting the heat exchanger 18 according to Embodiment 1 is 5.0 mm, which is smaller than the outer diameter of conventional heat transfer tubes. It is known that when the outer diameter of the heat transfer tube 17 becomes smaller, a pipe wake, which is an air flow occurring on the downstream side of the heat transfer tube 17 in the ventilation direction FL, is generated and the pipe wake grows along the ventilation direction FL. ing. Furthermore, it is generally known that the pipe wake reaches the cross-flow fan 22 .
  • constricted air is generated between the downstream cut-and-raised portion 23D and the downstream fin collar 25D. It is possible to suppress This constricted air is a flow of air that has been constricted and increased in speed.
  • the heat exchanger 18 having the heat transfer tube 17 having an outer diameter of 5.0 mm (that is, the hole diameter C of the fin collar 25 is 5.0 mm) satisfies the relationship B ⁇ 0.75 ⁇ C
  • the distance B between the first open end 23DE1 and the second open end 23DE2 is determined.
  • the growth of the pipe wake 27 is reliably suppressed, and the pipe wake 27 does not directly flow into the cross flow fan 22, so that the occurrence of abnormal fan noise can be suppressed.
  • Embodiment 1 the structure in which the cut-and-raised portions 23 and the fin collars 25 are arranged in each of the two first rows a and second rows b has been described.
  • the effect obtained by the first embodiment can be obtained not only in the heat exchanger 18 having the two-row structure, but also in a heat exchanger having three or more rows. Similar or similar effects can also be obtained with structures having different column widths.
  • the cross-flow fan 22 has wings with blade surfaces. As the cross-flow fan 22 is driven to rotate, the air flowing in the space around the blade surface is affected by pressure when passing through the blade surface from the front to the rear. Rotation noise is generated from the cross flow fan 22 by the action of this pressure.
  • abnormal fan noise occurs due to periodic changes in the flow of air in the heat exchanger in the ventilation direction.
  • FIG. Examples 1 and 2 described below show the results obtained by the air conditioner 1 including the heat exchanger 18 according to Embodiment 1 described above.
  • Comparative Examples 1 to 4 differ from Example 1 in the structures of the cut-and-raised portion 23 and the fin collar 25 .
  • Comparative Example 5 differs from Example 2 in the relationship between the height F of the space 30 and the height H of the cut-and-raised portion 23 .
  • FIG. 6 is a diagram showing the wind velocity distribution in the heat exchanger 50 according to Comparative Example 1.
  • the opening end 23DE of the downstream cut-and-raised portion 23D is not located behind (downstream) of the downstream fin collar 25D in the ventilation direction FL.
  • the heat transfer tubes 17 having an outer diameter of 5.0 mm are used, and the diameters of the heat transfer tubes 17 are reduced. In such a heat exchanger 50 , when air flows along the ventilation direction FL, the pipe wake 27 tends to grow on the downstream side of the heat transfer pipe 17 .
  • This pipe wake 27 is lower than the velocity of the air flow that would not have reached the cross-flow fan 22 if heat transfer tubes with an outer diameter of 7.2 mm were mounted in the heat exchanger. In the heat exchanger 50 , such pipe wake flow 27 directly reaches the cross flow fan 22 . Therefore, due to the generation of the pipe wake 27, a speed difference and a pressure difference occur in the air flowing in the space around the blade surfaces of the cross-flow fan 22, and abnormal fan noise is likely to occur.
  • the heat transfer tube 17 having a reduced diameter is applied while maintaining the conventional arrangement of the cut-and-raised portions 23 .
  • constricted air 26 is generated between the fin collar 25 provided with the heat transfer tube 17 and the cut-and-raised portion 23 .
  • the constricted air 26 is an air flow generated by constricted air, and has a high velocity. If the constricted air 26 directly flows into the cross flow fan 22, a significant difference in speed will occur between the constricted air 26 and the pipe wake 27, making abnormal fan noise more likely to occur.
  • FIG. 7A is a plan view showing the wind speed distribution in the heat exchanger 18 according to the first embodiment, in which both open ends 23DE of two cut-and-raised portions 23D adjacent to each other extend behind the fin collar 25 with respect to the ventilation direction. It is a figure which shows the case where it is located in.
  • FIG. 7B is a graph corresponding to the wind speed distribution shown in FIG. 7A.
  • the vertical axis indicates the position of the fin in the longitudinal direction
  • the horizontal axis indicates the flow velocity (m/s) at the end of the fin on the downstream side DW in the airflow direction FL.
  • FIG. 7A The plan view shown in FIG. 7A corresponds to FIG. That is, the opening end 23DE of the downstream cut-and-raised portion 23D is located behind the downstream fin collar 25D.
  • the downstream fin collar 25D is positioned between the first downstream cut-and-raised portion 23D1 and the second downstream cut-and-raised portion 23D2.
  • Reference numeral 100 in FIG. 7B indicates the velocity difference between the constricted air flow and the pipe wake 27 . This speed difference was about 0.8 m/s. 7B corresponds to the position of the pipe wake 27 shown in FIG. 7A.
  • the opening end 23DE of the downstream cut-and-raised portion 23D is positioned behind the downstream fin collar 25D, thereby inhibiting the growth of the pipe wake flow 27 having a slow speed, and causing the pipe wake flow 27 to grow. shortened in length.
  • the pipe wake 27 does not reach the blade surface of the cross-flow fan 22, which is the surface on which abnormal fan noise is generated. Therefore, the difference in speed between the constricted air flow and the pipe wake 27 can be reduced, and abnormal fan noise can be suppressed.
  • FIG. 8A is a plan view showing the wind speed distribution in the heat exchanger 51 according to Comparative Example 2, in which both open ends 23DE of two cut-and-raised portions 23D adjacent to each other are located behind the fin collar 25 with respect to the ventilation direction. It is a figure which shows the case where it is not located in.
  • the same members as those shown in FIG. 7A are denoted by the same reference numerals, and the description thereof will be omitted or simplified.
  • FIG. 8B is a graph corresponding to the wind speed distribution shown in FIG. 8A.
  • the vertical axis indicates the position of the fin in the longitudinal direction
  • the horizontal axis indicates the flow velocity (m/s) at the end of the fin on the downstream side DW in the air flow direction FL.
  • Reference numeral 101 in FIG. 8B indicates the velocity difference between the constricted air flow and the pipe wake 27 . This speed difference was about 3.0 m/s. 8B corresponds to the position of the pipe wake 27 shown in FIG. 8A.
  • Example 1 shown in FIG. 7A and Comparative Example 2 shown in FIG. 8A are compared.
  • the width of the pipe wake 27 shown in FIG. is smaller than the width of the pipe wake 27 shown in FIG.
  • the length of the pipe wake 27 shown in FIG. 7A (the length in the direction along the ventilation direction FL) is smaller than the length of the pipe wake 27 shown in FIG. 8A.
  • FIG. 9A is a plan view showing the wind speed distribution in the heat exchanger 52 according to Comparative Example 3, in which only one open end 23DE1 of the open ends 23DE of the two cut-and-raised portions 23D adjacent to each other is 10 is a diagram showing a case where the fin collar 25 is located behind the fin collar 25. FIG. In other words, only the opening end 23DE2 is not located behind the fin collar 25 with respect to the ventilation direction.
  • the same members as those shown in FIG. 7A are denoted by the same reference numerals, and the description thereof will be omitted or simplified.
  • FIG. 9B is a graph corresponding to the wind speed distribution shown in FIG. 9A.
  • the vertical axis indicates the position of the fin in the longitudinal direction
  • the horizontal axis indicates the flow velocity (m/s) at the end of the fin on the downstream side DW in the air flow direction FL.
  • Reference numeral 102 in FIG. 9B indicates the velocity difference between the constricted air flow and the pipe wake 27 .
  • This speed difference was about 3.5 m/s.
  • 9B corresponds to the position of the pipe wake 27 shown in FIG. 9A.
  • FIGS. 9A and 9B when the opening end 23DE1 is positioned behind the fin collar 25 with respect to the airflow direction and the opening end 23DE2 is not positioned behind the fin collar 25 with respect to the airflow direction, Compressed air 26 is generated from the open end 23DE2. Therefore, the growth of the pipe wake 27 cannot be sufficiently suppressed. Furthermore, a significant difference in velocity between the constricted air 26 and the pipe wake 27 occurs. In this state, when the contracted air 26 and the pipe wake 27 reach the blade surface of the cross-flow fan 22, an abnormal blower noise is generated.
  • FIG. 10 is a plan view partially showing a fin constituting a heat exchanger according to Comparative Example 4, showing a case where the cut-and-raised portion is divided.
  • the heat exchanger fins may be cut to a required length depending on the specifications and design of the indoor unit 2 .
  • a part of the cut-and-raised portion 23 may be broken. If a portion of the cut-and-raised portion 23 is broken, the broken cut-and-raised portion 23 may protrude from the outer shell of the heat exchanger 18 . In this case, the condensed water generated in the evaporator may drop into the ventilation passage via the broken cut-and-raised portion 23 .
  • the cut-and-raised portion 23 may be divided and provided on the fin 24 so as not to be broken.
  • FIG. 10 shows a case where the fin 24 is provided with the first split portion 23F and the second split portion 23S.
  • the cut-and-raised portion 23 is not formed in the boundary portion 23X located between the first divided portion 23F and the second divided portion 23S.
  • FIG. 11A is a plan view showing the wind velocity distribution in the heat exchanger 53 according to Comparative Example 4, and shows the case where the cut-and-raised portion 23 is divided.
  • FIG. 11B is a graph corresponding to the wind speed distribution shown in FIG. 11A.
  • the vertical axis indicates the position of the fin in the longitudinal direction
  • the horizontal axis indicates the flow velocity (m/s) at the end of the fin on the downstream side DW in the air flow direction FL.
  • the air is released from the position of the boundary portion 23X along the ventilation direction FL. put away. Further, since the flow path of the boundary portion 23X is narrow, the flow velocity of the air is high, and the constricted air 26 is generated. Specifically, the position indicated by reference numeral 103 in FIG. 11B corresponds to the boundary portion 23X shown in FIGS. 10 and 11A. The flow velocity of the constricted air 26 generated from the boundary 23X was approximately 1.6 m/s.
  • each of the plurality of downstream cut-and-raised portions 23D forming the most downstream second row b in the ventilation direction FL is required to be one continuous portion (cut-and-raised portion).
  • the downstream cut-and-raised portion 23 ⁇ /b>D must be formed by one cut-and-raised portion that is not divided in the longitudinal direction of the fin 24 .
  • FIG. 12 is a perspective view showing simulation results of wind speed distribution in the heat exchanger 18 according to the second embodiment.
  • the height of the space 30 formed between the fins 24 adjacent to each other in the overlapping direction of the plurality of fins 24 is defined as F
  • each of the plurality of cut-and-raised portions 23 is defined as H
  • the height of each of the plurality of cut-and-raised portions 23 is set so as to satisfy the relationship H ⁇ 1/2 ⁇ F (see FIGS. 4A and 4B).
  • a flow area (spatial area ) becomes wider. This makes it easier for the air to circulate in the space 30 .
  • the constricted air 29 flowing between the fin collar 25 and the cut-and-raised portion 23 can be reduced.
  • the influence of pressure on the blade surfaces of the cross-flow fan 22 can be minimized.
  • FIG. 13 is a perspective view showing a simulation result of the wind speed distribution in the heat exchanger 18 according to Comparative Example 5. As shown in FIG. Unlike Example 2 shown in FIG. 12, Comparative Example 5 does not satisfy the relationship H ⁇ 1/2 ⁇ F. That is, in Comparative Example 5, the height of the space 30 and the height H of the cut-and-raised portion are set so as to satisfy the relationship of H>1/2 ⁇ F.
  • Front area 22B Upper area 22C
  • Upper part 23 Cut-and-raised part 23D
  • Downstream cut-and-raised part (cut-and-raised part) 23D1 First downstream cut-and-raised part (cut-and-raised part) 23D2...

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

This air conditioner comprises a heat exchanger that exchanges heat between a refrigerant flowing through a heat exchanger tube and air, and a blower that sends air to the heat exchanger tube. The heat exchanger is equipped with: a plurality of plate-shaped fins that extend in the extension direction that intersects with the ventilation direction of air sent by the blower to the heat exchanger; a plurality of cut-and-raised portions that are formed on the plate surface of each of the plurality of fins; and a fin collar that is provided between the fins adjacent to each other among the plurality of fins and into which the heat exchanger tube is inserted. The plurality of cut-and-raised portions include a downstream cut-and-raised portion located downstream of the fin collar in the ventilation direction. One end of the downstream cut-and-raised portion in the extension direction is disposed overlapping the fin collar when viewed in the ventilation direction.

Description

空気調和機air conditioner
 本開示は、空気調和機に関する。 The present disclosure relates to air conditioners.
 特許文献1、2には、従来の空気調和機が記載されている。空気調和機は、複数のフィン及び伝熱管を有する熱交換器と、クロスフローファン等の送風機とを備える。複数のフィンには、フィンの表面の一部を切り起こすことによって形成された複数の切り起こしスリットが形成されている。 Patent Documents 1 and 2 describe conventional air conditioners. An air conditioner includes a heat exchanger having a plurality of fins and heat transfer tubes, and a blower such as a cross-flow fan. A plurality of cut-and-raised slits are formed in the plurality of fins by cutting and raising part of the surfaces of the fins.
日本国特開2009-127882号公報Japanese Patent Application Laid-Open No. 2009-127882 日本国特開2003-247794号公報Japanese Patent Application Laid-Open No. 2003-247794
 特許文献1、2に開示された熱交換器においては、回転するクロスフローファンの翼面において圧力変動が生じ、異常送風機音が発生し、異常騒音の発生を十分に抑制することができないという問題がある。 In the heat exchangers disclosed in Patent Documents 1 and 2, pressure fluctuation occurs on the blade surface of the rotating cross-flow fan, abnormal blower noise is generated, and abnormal noise cannot be sufficiently suppressed. There is
 本開示は、上記のような課題を解決するためになされたもので、異常騒音の発生を抑制することが可能となる熱交換器を備える空気調和機を提供することを目的とする。 The present disclosure has been made to solve the above problems, and aims to provide an air conditioner equipped with a heat exchanger capable of suppressing the generation of abnormal noise.
 本開示に係る空気調和機は、冷媒が流れる伝熱管を有し、前記伝熱管に流れる前記冷媒と空気との間で熱交換を行う熱交換器と、前記伝熱管に空気を送る送風機と、を備える。前記熱交換器は、板状に形成され、前記送風機が前記熱交換器に送る空気の通風方向と交差する延在方向に延びる複数のフィンと、前記複数のフィンの各々の板面に形成された複数の切り起こし部と、前記複数のフィンのうち互いに隣り合うフィン同士の間に設けられ、前記伝熱管が挿通されたフィンカラーと、を備える。前記複数の切り起こし部は、前記フィンカラーよりも前記通風方向の下流側に位置する下流切り起こし部を含む。前記下流切り起こし部における前記延在方向の一端部は、前記通風方向に見て、前記フィンカラーに重なって配置されている。 An air conditioner according to the present disclosure includes a heat transfer tube through which a refrigerant flows, a heat exchanger that exchanges heat between the refrigerant flowing in the heat transfer tube and air, and a blower that sends air to the heat transfer tube; Prepare. The heat exchanger is formed in a plate shape, and has a plurality of fins extending in an extending direction intersecting with a ventilation direction of the air sent to the heat exchanger by the blower, and a plate surface of each of the plurality of fins. and a fin collar provided between adjacent fins among the plurality of fins and through which the heat transfer tube is inserted. The plurality of cut-and-raised portions include a downstream cut-and-raised portion located downstream of the fin collar in the airflow direction. One end in the extending direction of the downstream cut-and-raised portion is arranged to overlap the fin collar when viewed in the ventilation direction.
 本開示に係る空気調和機によれば、異常騒音の発生を抑制することが可能となる。 According to the air conditioner according to the present disclosure, it is possible to suppress the occurrence of abnormal noise.
実施の形態1に係る空気調和機を示す流体回路図である。1 is a fluid circuit diagram showing an air conditioner according to Embodiment 1. FIG. 実施の形態1に係る室内機を示す断面模式図である。1 is a schematic cross-sectional view showing an indoor unit according to Embodiment 1. FIG. 実施の形態1に係る熱交換器を示す断面模式図である。1 is a schematic cross-sectional view showing a heat exchanger according to Embodiment 1; FIG. 実施の形態1に係る熱交換器を構成する複数のフィンが積層された構造を示す側面図である。4 is a side view showing a structure in which a plurality of fins forming the heat exchanger according to Embodiment 1 are laminated; FIG. 実施の形態1に係る熱交換器を構成する複数のフィンが積層された構造を示す側面図である。4 is a side view showing a structure in which a plurality of fins forming the heat exchanger according to Embodiment 1 are laminated; FIG. 実施の形態1に係る熱交換器を構成するフィンを部分的に示す平面図であって、切り起こし部の配置を示す図である。FIG. 4 is a plan view partially showing the fins forming the heat exchanger according to the first embodiment, showing the arrangement of the cut-and-raised portions; 比較例に係る熱交換器における風速分布を示す図である。It is a figure which shows the wind speed distribution in the heat exchanger which concerns on a comparative example. 実施例に係る熱交換器における風速分布を示す平面図であって、互いに隣り合う2つの切り起こし部の開口端の両方が通風方向におけるフィンカラーの下流側に位置している場合を示す図である。FIG. 10 is a plan view showing the wind speed distribution in the heat exchanger according to the example, showing a case where both open ends of two cut-and-raised portions adjacent to each other are located downstream of the fin collar in the ventilation direction. be. 図7Aに示す風速分布に対応するグラフである。7B is a graph corresponding to the wind speed distribution shown in FIG. 7A; 比較例に係る熱交換器における風速分布を示す平面図であって、互いに隣り合う2つの切り起こし部の開口端の両方が通風方向におけるフィンカラーの下流側に位置していない場合を示す図である。FIG. 10 is a plan view showing the wind speed distribution in a heat exchanger according to a comparative example, showing a case where both open ends of two cut-and-raised portions adjacent to each other are not located downstream of the fin collar in the ventilation direction; be. 図8Aに示す風速分布に対応するグラフである。8B is a graph corresponding to the wind speed distribution shown in FIG. 8A; 比較例に係る熱交換器における風速分布を示す平面図であって、互いに隣り合う2つの切り起こし部の開口端のうち一方の開口端のみが通風方向におけるフィンカラーの下流側に位置している場合を示す図である。FIG. 10 is a plan view showing the wind speed distribution in a heat exchanger according to a comparative example, in which only one of the open ends of two adjacent cut-and-raised portions is positioned downstream of the fin collar in the ventilation direction; FIG. 10 is a diagram showing a case; 図9Aに示す風速分布に対応するグラフである。9B is a graph corresponding to the wind speed distribution shown in FIG. 9A; 比較例に係る熱交換器を構成するフィンを部分的に示す平面図であって、切り起こし部が分割されている場合を示す図である。FIG. 10 is a plan view partially showing a fin constituting a heat exchanger according to a comparative example, showing a case where the cut-and-raised portion is divided; 比較例に係る熱交換器における風速分布を示す平面図であって、切り起こし部が分割されている場合を示す図である。FIG. 10 is a plan view showing the wind velocity distribution in a heat exchanger according to a comparative example, showing a case where the cut-and-raised portion is divided; 図11Aに示す風速分布に対応するグラフである。11B is a graph corresponding to the wind speed distribution shown in FIG. 11A; 実施例に係る熱交換器における風速分布のシミュレーション結果を示す斜視図である。FIG. 5 is a perspective view showing simulation results of wind speed distribution in the heat exchanger according to the example. 比較例に係る熱交換器における風速分布のシミュレーション結果を示す斜視図である。FIG. 7 is a perspective view showing a simulation result of wind speed distribution in a heat exchanger according to a comparative example;
実施の形態1.
 以下、実施の形態1に係る空気調和機1について、図面を参照しながら説明する。
 後述する説明では、鉛直方向(重力方向、上下方向)をZ方向と定義し、室内機2の幅方向をY方向と定義し、室内機2の前後方向をX方向(Y方向及びZ方向に直交する方向)と定義する。X方向及びY方向に傾斜する方向を傾斜方向Gと定義する。傾斜方向Gに直交する方向を方向Pと定義する。
Embodiment 1.
Hereinafter, the air conditioner 1 according to Embodiment 1 will be described with reference to the drawings.
In the description to be given later, the vertical direction (gravity direction, vertical direction) is defined as the Z direction, the width direction of the indoor unit 2 is defined as the Y direction, and the front-rear direction of the indoor unit 2 is defined as the X direction (Y direction and Z direction). orthogonal direction). A tilt direction G is defined as a direction tilted in the X direction and the Y direction. A direction perpendicular to the tilt direction G is defined as a direction P.
(空気調和機1)
 図1は、実施の形態1に係る空気調和機1を示す流体回路図である。
 図1に示すように、空気調和機1は、室内機2、室外機3、及び冷媒配管4を有している。なお、図1に示す例では、1台の室内機2が示されているが、空気調和機1を構成する室内機2の台数は、2台以上でもよい。
(Air conditioner 1)
FIG. 1 is a fluid circuit diagram showing an air conditioner 1 according to Embodiment 1. FIG.
As shown in FIG. 1 , the air conditioner 1 has an indoor unit 2 , an outdoor unit 3 and refrigerant pipes 4 . Although one indoor unit 2 is shown in the example shown in FIG. 1, the number of indoor units 2 constituting the air conditioner 1 may be two or more.
(冷媒配管4)
 冷媒配管4(配管)は、流路切替弁11、室内熱交換器7、膨張弁9、及び室外熱交換器8を接続する。冷媒配管4の内部には、冷媒が流れる。冷媒としては、例えば、R32等の冷媒や、地球温暖化係数GWPが675以下である冷媒が用いられる。冷媒配管4、及び、冷媒配管4に接続された上述した各機器は、冷媒回路を構成している。
(Refrigerant pipe 4)
The refrigerant pipe 4 (pipe) connects the flow switching valve 11 , the indoor heat exchanger 7 , the expansion valve 9 and the outdoor heat exchanger 8 . A coolant flows inside the coolant pipe 4 . As the refrigerant, for example, a refrigerant such as R32 or a refrigerant having a global warming potential GWP of 675 or less is used. The refrigerant pipe 4 and the above-described devices connected to the refrigerant pipe 4 constitute a refrigerant circuit.
(室外機3)
 室外機3は、送風機6、室外熱交換器8、膨張弁9、圧縮機10、及び流路切替弁11を有している。
 送風機6は、室外熱交換器8に室外空気を送る機器である。
 室外熱交換器8は、冷媒と室外空気との間で熱交換を行う熱交換器を備える。室外熱交換器8は、例えば、フィンアンドチューブ型熱交換器である。室外熱交換器8は、冷房運転時には凝縮器として機能する。室外熱交換器8は、暖房運転時には蒸発器として機能する。
(Outdoor unit 3)
The outdoor unit 3 has an air blower 6 , an outdoor heat exchanger 8 , an expansion valve 9 , a compressor 10 and a channel switching valve 11 .
The blower 6 is a device that sends outdoor air to the outdoor heat exchanger 8 .
The outdoor heat exchanger 8 includes a heat exchanger that exchanges heat between refrigerant and outdoor air. The outdoor heat exchanger 8 is, for example, a fin-and-tube heat exchanger. The outdoor heat exchanger 8 functions as a condenser during cooling operation. The outdoor heat exchanger 8 functions as an evaporator during heating operation.
 膨張弁9は、冷媒を減圧して膨張させる弁である。膨張弁9は、例えば、電子膨張弁である。
 圧縮機10は、低温且つ低圧の状態の冷媒を吸入し、吸入した冷媒を圧縮して高温且つ高圧の状態の冷媒に変換する。
 流路切替弁11は、冷媒回路において、冷媒の流通方向を切り替える弁であり、例えば、四方弁である。
The expansion valve 9 is a valve that decompresses and expands the refrigerant. The expansion valve 9 is, for example, an electronic expansion valve.
The compressor 10 sucks a low-temperature, low-pressure refrigerant, compresses the sucked refrigerant, and converts it into a high-temperature, high-pressure refrigerant.
The channel switching valve 11 is a valve that switches the flow direction of the refrigerant in the refrigerant circuit, and is, for example, a four-way valve.
(室内機2)
 室内機2は、送風機5及び室内熱交換器7を有している。
 送風機5は、室内熱交換器7に室内空気を送る機器であり、例えば、クロスフローファン22である。
 室内熱交換器7は、室内空気と冷媒との間で熱交換を行う熱交換器18を備える。室内熱交換器7は、冷房運転時には蒸発器として機能する。室内熱交換器7は、暖房運転時には凝縮器として機能する。
(Indoor unit 2)
The indoor unit 2 has an air blower 5 and an indoor heat exchanger 7 .
The blower 5 is a device that sends indoor air to the indoor heat exchanger 7, and is a cross-flow fan 22, for example.
The indoor heat exchanger 7 includes a heat exchanger 18 that exchanges heat between the indoor air and the refrigerant. The indoor heat exchanger 7 functions as an evaporator during cooling operation. The indoor heat exchanger 7 functions as a condenser during heating operation.
(空気調和機1における冷房運転)
 次に、上述した構成を有する空気調和機1の動作について説明する。
 まず、冷房運転について説明する。空気調和機1は、圧縮機10の吐出部と室外熱交換器8とが接続されるように流路切替弁11を切り替えることで、冷房運転を行う。
 冷房運転において、圧縮機10に吸入された冷媒は、圧縮機10によって圧縮されて高温且つ高圧のガス状態となる。ガス状態の冷媒は、室外熱交換器8に向けて吐出される。圧縮機10から吐出された高温且つ高圧のガス状態の冷媒は、流路切替弁11を通過して、凝縮器として機能する室外熱交換器8に流入する。
(Cooling operation in air conditioner 1)
Next, the operation of the air conditioner 1 having the configuration described above will be described.
First, the cooling operation will be explained. The air conditioner 1 performs cooling operation by switching the flow path switching valve 11 so that the discharge portion of the compressor 10 and the outdoor heat exchanger 8 are connected.
In the cooling operation, the refrigerant sucked into the compressor 10 is compressed by the compressor 10 into a high-temperature and high-pressure gas state. The gaseous refrigerant is discharged toward the outdoor heat exchanger 8 . The high-temperature and high-pressure gaseous refrigerant discharged from the compressor 10 passes through the flow path switching valve 11 and flows into the outdoor heat exchanger 8 functioning as a condenser.
 室外熱交換器8に流入した冷媒は、送風機6によって送られる室外空気と熱交換されて凝縮し、液化する。液状態の冷媒は、膨張弁9に流入し、減圧及び膨張されて、低温且つ低圧の気液二相状態の冷媒となる。気液二相状態の冷媒は、蒸発器として機能する室内熱交換器7に流入する。室内熱交換器7に流入した冷媒は、送風機5によって送られる室内空気と熱交換されて蒸発し、ガス化する。その際、室内空気が冷却されて室内における冷房が実施される。その後、蒸発した低温且つ低圧のガス状態の冷媒は、流路切替弁11を通過して、圧縮機10に吸入される。 The refrigerant that has flowed into the outdoor heat exchanger 8 exchanges heat with the outdoor air sent by the blower 6, condenses, and liquefies. The liquid refrigerant flows into the expansion valve 9 and is decompressed and expanded to become a low-temperature, low-pressure gas-liquid two-phase refrigerant. The gas-liquid two-phase refrigerant flows into the indoor heat exchanger 7 functioning as an evaporator. The refrigerant that has flowed into the indoor heat exchanger 7 exchanges heat with the indoor air sent by the blower 5, evaporates, and gasifies. At that time, the room air is cooled to cool the room. Thereafter, the vaporized low-temperature, low-pressure gaseous refrigerant passes through the flow path switching valve 11 and is sucked into the compressor 10 .
(空気調和機1における暖房運転)
 次に、暖房運転について説明する。空気調和機1は、圧縮機10の吐出部と室内熱交換器7とが接続されるように流路切替弁11を切り替えることで、暖房運転を行う。
 暖房運転において、圧縮機10に吸入された冷媒は、圧縮機10によって圧縮されて高温且つ高圧のガス状態となる。ガス状態の冷媒は、室内熱交換器7に向けて吐出される。圧縮機10から吐出された高温且つ高圧のガス状態の冷媒は、流路切替弁11を通過して、凝縮器として機能する室内熱交換器7に流入する。
(Heating operation in air conditioner 1)
Next, the heating operation will be explained. The air conditioner 1 performs heating operation by switching the flow path switching valve 11 so that the discharge portion of the compressor 10 and the indoor heat exchanger 7 are connected.
In the heating operation, the refrigerant sucked into the compressor 10 is compressed by the compressor 10 into a high-temperature, high-pressure gas state. The gaseous refrigerant is discharged toward the indoor heat exchanger 7 . The high-temperature and high-pressure gaseous refrigerant discharged from the compressor 10 passes through the flow path switching valve 11 and flows into the indoor heat exchanger 7 functioning as a condenser.
 室内熱交換器7に流入した冷媒は、送風機5によって送られる室内空気と熱交換されて凝縮し、液化する。その際、室内空気が温められて、室内における暖房が実施される。液状態の冷媒は、膨張弁9に流入し、減圧及び膨張されて、低温且つ低圧の気液二相状態の冷媒となる。気液二相状態の冷媒は、蒸発器として機能する室外熱交換器8に流入する。室外熱交換器8に流入した冷媒は、送風機6によって送られる室外空気と熱交換されて蒸発し、ガス化する。その後、蒸発した低温且つ低圧のガス状態の冷媒は、流路切替弁11を通過して、圧縮機10に吸入される。 The refrigerant that has flowed into the indoor heat exchanger 7 exchanges heat with the indoor air sent by the blower 5, condenses, and liquefies. At that time, the room air is warmed, and the room is heated. The liquid refrigerant flows into the expansion valve 9 and is decompressed and expanded to become a low-temperature, low-pressure gas-liquid two-phase refrigerant. The gas-liquid two-phase refrigerant flows into the outdoor heat exchanger 8 that functions as an evaporator. The refrigerant that has flowed into the outdoor heat exchanger 8 exchanges heat with the outdoor air sent by the blower 6 to evaporate and gasify. Thereafter, the vaporized low-temperature, low-pressure gaseous refrigerant passes through the flow path switching valve 11 and is sucked into the compressor 10 .
(室内機2の構成)
 図2は、実施の形態1に係る室内機2を示す断面模式図であり、Z方向に沿う室内機2の断面を示している。
 図2に示すように、室内機2は、筐体12、エアフィルタ14、熱交換器18、ドレンパン19、フラップ20、及びクロスフローファン22(送風機5)を有している。
 筐体12は、カバー12A、支持部12B、基部16、トップパネル15、及びフロントパネル13を有する。筐体12は、室内機2の外郭を構成する。
(Configuration of indoor unit 2)
FIG. 2 is a schematic cross-sectional view showing the indoor unit 2 according to Embodiment 1, showing a cross section of the indoor unit 2 along the Z direction.
As shown in FIG. 2, the indoor unit 2 has a housing 12, an air filter 14, a heat exchanger 18, a drain pan 19, a flap 20, and a cross-flow fan 22 (blower 5).
The housing 12 has a cover 12A, a support portion 12B, a base portion 16, a top panel 15, and a front panel 13. As shown in FIG. The housing 12 constitutes the outer shell of the indoor unit 2 .
 カバー12Aは、吹出口21を備える。吹出口21は、カバー12Aの下部に形成されている。
 支持部12B及び基部16は、室内の壁面W等に取付けられ、カバー12Aを支持する。基部16は、Z方向における支持部12Bの上部に位置する。
The cover 12A has an air outlet 21 . The outlet 21 is formed in the lower portion of the cover 12A.
The support portion 12B and the base portion 16 are attached to a wall surface W or the like in the room to support the cover 12A. The base 16 is positioned above the support 12B in the Z direction.
 トップパネル15は、基部16に接続され、室内機2の天面2Tを構成している。トップパネル15は、格子状に開口している。フロントパネル13は、X方向における室内機2の前面を構成する。エアフィルタ14は、トップパネル15に取り付けられ、トップパネル15から吸い込まれる空気から塵埃を除去する。 The top panel 15 is connected to the base 16 and constitutes the top surface 2T of the indoor unit 2. The top panel 15 is open in a grid pattern. The front panel 13 constitutes the front surface of the indoor unit 2 in the X direction. The air filter 14 is attached to the top panel 15 and removes dust from the air drawn from the top panel 15 .
(クロスフローファン22)
 クロスフローファン22は、筐体12の内部に収納されており、後述する熱交換器18を構成する伝熱管17に空気を送る。クロスフローファン22は、図2における筐体12のY方向に延びている。熱交換器18は、筐体12の内部に収納され、第1熱交換部18A及び第2熱交換部18Bを有する。クロスフローファン22は、熱交換器18に面している。
(Cross flow fan 22)
The cross-flow fan 22 is housed inside the housing 12 and sends air to the heat transfer tubes 17 constituting the heat exchanger 18, which will be described later. The cross-flow fan 22 extends in the Y direction of the housing 12 in FIG. The heat exchanger 18 is housed inside the housing 12 and has a first heat exchange section 18A and a second heat exchange section 18B. Cross-flow fan 22 faces heat exchanger 18 .
 なお、実施の形態1においては、一例として、熱交換器18がクロスフローファン22の背面領域(壁面Wに対向する領域)に配置されていない構造について説明している。熱交換器18がクロスフローファン22の背面領域に配置された構造が採用されてもよい。 In addition, in Embodiment 1, as an example, a structure in which the heat exchanger 18 is not arranged in the back area (area facing the wall surface W) of the cross flow fan 22 is described. A structure in which the heat exchanger 18 is arranged in the back area of the cross flow fan 22 may be adopted.
 第1熱交換部18Aは、上端18AUと、下端18ALとを有する。下端18ALは、ドレンパン19に面している。第1熱交換部18Aは、例えば、Z方向に沿って延在している。第1熱交換部18Aは、X方向における壁面Wとは反対側に位置するクロスフローファン22の前面領域22Aに面している。
 換言すると、第1熱交換部18Aは、前面領域22Aを介して、クロスフローファン22に面するように配置されている。
The first heat exchange section 18A has an upper end 18AU and a lower end 18AL. The lower end 18AL faces the drain pan 19 . The first heat exchange section 18A extends, for example, along the Z direction. The first heat exchange portion 18A faces a front area 22A of the cross-flow fan 22 located on the opposite side of the wall surface W in the X direction.
In other words, the first heat exchange section 18A is arranged to face the cross flow fan 22 via the front region 22A.
 第2熱交換部18Bは、Z方向における第1熱交換部18Aの上方に位置する。第2熱交換部18Bは、上端18BUと、下端18BLとを有する。上端18BUは、支持部12Bに面している。下端18BLは、第1熱交換部18Aの上端18AUに接続されている。
 第2熱交換部18Bは、X方向及びZ方向に傾斜する傾斜方向Gに沿って延在している。傾斜方向Gは、Y方向と直交する方向である。第2熱交換部18Bは、Y方向に見て、第1熱交換部18Aの上端18AUから上方かつ斜め後方に延びている。
The second heat exchange section 18B is positioned above the first heat exchange section 18A in the Z direction. The second heat exchange section 18B has an upper end 18BU and a lower end 18BL. The upper end 18BU faces the support portion 12B. The lower end 18BL is connected to the upper end 18AU of the first heat exchange section 18A.
The second heat exchange portion 18B extends along an inclination direction G that is inclined in the X direction and the Z direction. The tilt direction G is a direction perpendicular to the Y direction. The second heat exchange portion 18B extends upward and obliquely rearward from the upper end 18AU of the first heat exchange portion 18A when viewed in the Y direction.
 第2熱交換部18Bは、クロスフローファン22の上方領域22Bに面している。上方領域22Bとは、Z方向におけるクロスフローファン22の上部分22Cから前面領域22Aに向かって延びる領域を意味する。換言すると、第2熱交換部18Bは、上方領域22Bを介して、クロスフローファン22に面するように配置されている。 The second heat exchange section 18B faces the upper region 22B of the crossflow fan 22. The upper area 22B means an area extending from the upper portion 22C of the cross-flow fan 22 toward the front area 22A in the Z direction. In other words, the second heat exchange section 18B is arranged to face the cross flow fan 22 via the upper region 22B.
 ドレンパン19は、第1熱交換部18Aの下方に配置されている。ドレンパン19は、熱交換器18から滴下した水分を貯留する。
 フラップ20は、カバー12Aの下部に取り付けられている。フラップ20は、回転軸20Aの周りを回動することが可能であり、吹出口21から吹き出される空気の吹き出し方向を調整する。回転軸20Aは、Y方向に延びる軸である。
The drain pan 19 is arranged below the first heat exchange section 18A. The drain pan 19 stores water dripped from the heat exchanger 18 .
The flap 20 is attached to the lower portion of the cover 12A. The flap 20 is rotatable around a rotary shaft 20A and adjusts the blowing direction of air blown from the blower port 21 . The rotating shaft 20A is an axis extending in the Y direction.
(室内機2における空気の流れ)
 室内機2における空気の流れについて説明する。
 まず、クロスフローファン22が駆動することで、室内の空気がトップパネル15の開口を通って筐体12の内部に吸い込まれる。筐体12の内部に吸い込まれた空気は、熱交換器18を通過し、クロスフローファン22に吸い込まれる。そして、クロスフローファン22に吸い込まれた空気は、吹出口21から吹き出される。
(Air flow in indoor unit 2)
The air flow in the indoor unit 2 will be described.
First, by driving the cross-flow fan 22 , the indoor air is sucked into the housing 12 through the opening of the top panel 15 . The air drawn into the housing 12 passes through the heat exchanger 18 and is drawn into the cross-flow fan 22 . Then, the air sucked into the cross-flow fan 22 is blown out from the outlet 21. - 特許庁
(熱交換器18の構成)
 図3は、図2に示す室内機2の要部を示す図であって、実施の形態1に係る熱交換器18を示す断面模式図である。図3においては、室内機2を構成する部材のうち、熱交換器18のみが示されており、他の構成部材は省略されている。
 図4A及び図4Bは、実施の形態1に係る熱交換器18を構成する複数のフィン24が積層された構造を示す側面図である。図4A及び図4Bにおいては、熱交換器18を構成する部材のうち、フィン24、切り起こし部23、及びフィンカラー25のみが示されており、他の構成部材は省略されている。
(Configuration of heat exchanger 18)
FIG. 3 is a schematic cross-sectional view showing the main part of the indoor unit 2 shown in FIG. 2 and showing the heat exchanger 18 according to the first embodiment. In FIG. 3, only the heat exchanger 18 is shown among the members constituting the indoor unit 2, and the other constituent members are omitted.
4A and 4B are side views showing a structure in which a plurality of fins 24 constituting heat exchanger 18 according to Embodiment 1 are laminated. 4A and 4B show only the fins 24, the cut-and-raised portions 23, and the fin collars 25 among the members constituting the heat exchanger 18, and the other constituent members are omitted.
 図5は実施の形態1に係る熱交換器18を構成するフィン24を部分的に示す平面図である。図5は、切り起こし部23の配置を示す図であり、図3に示す熱交換器18のフィン24を拡大して示している。図5に示す構造は、図3に示す第1熱交換部18A及び第2熱交換部18Bの各々に適用されている。 FIG. 5 is a plan view partially showing the fins 24 that constitute the heat exchanger 18 according to the first embodiment. FIG. 5 is a diagram showing the arrangement of the cut-and-raised portions 23, showing an enlarged view of the fins 24 of the heat exchanger 18 shown in FIG. The structure shown in FIG. 5 is applied to each of the first heat exchange section 18A and the second heat exchange section 18B shown in FIG.
 図3に示すように、熱交換器18(第1熱交換部18A及び第2熱交換部18B)は、Y方向に配列された複数のフィン24と、複数のフィン24に挿通されるようにY方向に延在する伝熱管17とを備える。複数のフィン24の各々は、Y方向に延在する板面24F(表面)を有する板状に形成されている。
 図3においては、伝熱管17が固定される位置、すなわち、複数のフィンカラー25の位置が符号25Pで示されている。以下、固定位置25Pと称する。
As shown in FIG. 3, the heat exchanger 18 (the first heat exchange section 18A and the second heat exchange section 18B) includes a plurality of fins 24 arranged in the Y direction and a plurality of fins 24 that are inserted into the heat exchanger 18. and a heat transfer tube 17 extending in the Y direction. Each of the plurality of fins 24 is formed in a plate shape having a plate surface 24F (surface) extending in the Y direction.
In FIG. 3, the positions where the heat transfer tubes 17 are fixed, that is, the positions of the plurality of fin collars 25 are indicated by reference numeral 25P. Hereinafter, it is called fixed position 25P.
(フィン24)
 第1熱交換部18Aを構成する複数のフィン24の各々は、Z方向に延びている。
 第2熱交換部18Bを構成する複数のフィン24の各々は、傾斜方向Gに延びている。
 複数のフィン24は、図3、図4A、及び図4Bにおける筐体12の幅方向(Y方向)に並列して配置されている。複数のフィン24の各々は、例えば、アルミニウム製の板状である。
(fin 24)
Each of the plurality of fins 24 forming the first heat exchange section 18A extends in the Z direction.
Each of the plurality of fins 24 forming the second heat exchange portion 18B extends in the tilt direction G. As shown in FIG.
The plurality of fins 24 are arranged side by side in the width direction (Y direction) of the housing 12 in FIGS. 3, 4A, and 4B. Each of the plurality of fins 24 is plate-shaped, for example, made of aluminum.
 熱交換器18がクロスフローファン22の背面領域にも配置された構造では、前面領域22A及び上方領域22Bに面している複数のフィン24の数は、クロスフローファン22の背面領域に面している複数のフィンの数より多くてもよい。
 複数のフィン24の各々の構造は同じであるため、以下の説明では、1枚のフィン24のみについて説明し、複数のフィン24の各々に関する説明を省略する場合がある。
In a structure in which the heat exchanger 18 is also arranged in the back area of the cross-flow fan 22, the number of fins 24 facing the front area 22A and the upper area 22B is the number facing the back area of the cross-flow fan 22. fins may be greater than the number of fins.
Since each of the plurality of fins 24 has the same structure, only one fin 24 will be described in the following description, and description of each of the plurality of fins 24 may be omitted.
 各フィン24における複数の固定位置25Pの配置パターン(各フィン24において伝熱管17が固定される位置の固定位置パターン)は、例えば、図3に示すように、千鳥状パターンである。ここで、千鳥状パターンについて具体的に説明する。
 複数の固定位置25Pは、符号aで示された第1列と、符号bで示された第2列とに沿って、配列されている。
 符号24Kは、第1列aと第2列bとの間の境界線である。境界線24Kは、第1熱交換部18A及び第2熱交換部18Bの各々の中心線に相当する。
The arrangement pattern of the plurality of fixed positions 25P on each fin 24 (the fixed position pattern of the positions where the heat transfer tubes 17 are fixed on each fin 24) is, for example, a zigzag pattern as shown in FIG. Here, the zigzag pattern will be specifically described.
A plurality of fixed positions 25P are arranged along a first row labeled a and a second row labeled b.
Reference 24K is the boundary between the first column a and the second column b. The boundary line 24K corresponds to the centerline of each of the first heat exchange section 18A and the second heat exchange section 18B.
 複数の固定位置25Pの第1列aは、フィン24を通過する空気の流れにおいて、上流側(最風上側)に位置する列である。複数の固定位置25Pの第2列bは、フィン24を通過する空気の流れにおいて、下流側(最風下側)に位置する列である。 The first row a of the plurality of fixed positions 25P is the row located on the upstream side (upwind side) in the flow of air passing through the fins 24 . The second row b of the plurality of fixed positions 25P is the row positioned downstream (downwind side) in the flow of air passing through the fins 24 .
 第1熱交換部18Aにおいて、第1列aにおける複数の固定位置25Pの配置ピッチと、第2列bにおける複数の固定位置25Pの配置ピッチは、同じである。
 第1熱交換部18Aにおいて、第1列aを構成するとともに互いに隣り合う2つの固定位置25P(例えば、符号25PAa)の間の中央位置は、符号25CAaで示されている。中央位置25CAaは、X方向(第1列aの方向に直交する方向)から見て、第2列bを構成する1つの固定位置25P(例えば、符号25PAb)の位置と重なっている。
In the first heat exchange section 18A, the arrangement pitch of the plurality of fixed positions 25P in the first row a and the arrangement pitch of the plurality of fixed positions 25P in the second row b are the same.
In the first heat exchanging portion 18A, a central position between two adjacent fixed positions 25P (for example, 25PAa) that constitute the first row a is denoted by 25CAa. The central position 25CAa overlaps with one fixed position 25P (for example, 25PAb) forming the second row b when viewed from the X direction (the direction perpendicular to the direction of the first row a).
 同様に、第2列bを構成するとともに互いに隣り合う2つの固定位置25P(例えば、符号25PAb)の間の中央位置は、符号25CAbで示されている。中央位置25CAbは、X方向から見て、第1列aを構成する1つの固定位置25P(例えば、符号25PAa)の位置と重なっている。
 このように、第1熱交換部18Aにおいては、複数の固定位置25Pが2列に配置された千鳥状パターンに応じた位置に、伝熱管17が配置されている。
Similarly, the central position between two fixed positions 25P (for example, 25PAb) that constitute the second row b and are adjacent to each other is indicated by 25CAb. The central position 25CAb overlaps with one fixed position 25P (for example, reference numeral 25PAa) that forms the first row a when viewed from the X direction.
Thus, in the first heat exchange section 18A, the heat transfer tubes 17 are arranged at positions corresponding to the zigzag pattern in which the plurality of fixed positions 25P are arranged in two rows.
 第2熱交換部18Bにおいて、第1列aにおける複数の固定位置25Pの配置ピッチと、第2列bにおける複数の固定位置25Pの配置ピッチは、同じである。
 第2熱交換部18Bにおいて、第1列aを構成するとともに互いに隣り合う2つの固定位置25P(例えば、符号25PBa)の間の中央位置は、符号25CBaで示されている。中央位置25CBaは、方向P(傾斜方向G及びY方向の両方に直交する方向)から見て、第2列bを構成する1つの固定位置25P(例えば、符号25PBb)の位置と重なっている。
In the second heat exchange section 18B, the arrangement pitch of the plurality of fixed positions 25P in the first row a and the arrangement pitch of the plurality of fixed positions 25P in the second row b are the same.
In the second heat exchange section 18B, the central position between two adjacent fixed positions 25P (for example, 25PBa) that constitute the first row a is indicated by 25CBa. The central position 25CBa overlaps with one fixed position 25P (for example, 25PBb) forming the second row b when viewed from the direction P (the direction orthogonal to both the tilt direction G and the Y direction).
 同様に、第2列bを構成するとともに互いに隣り合う2つの固定位置25P(例えば、符号25PBb)の間の中央位置は、符号25CBbで示されている。中央位置25CBbは、方向Pから見て、第1列aを構成する1つの固定位置25P(例えば、符号25PBa)の位置と重なっている。
 このように、第2熱交換部18Bにおいては、複数の固定位置25Pが2列に配置された千鳥状パターンに応じた位置に、伝熱管17が配置されている。
Similarly, the central position between two adjacent fixed positions 25P (for example, 25PBb) forming the second row b is designated 25CBb. The center position 25CBb overlaps the position of one fixed position 25P (for example, 25PBa) that forms the first row a when viewed from the direction P. As shown in FIG.
Thus, in the second heat exchange section 18B, the heat transfer tubes 17 are arranged at positions corresponding to the zigzag pattern in which the plurality of fixed positions 25P are arranged in two rows.
 上記のような千鳥状パターンを有する複数の固定位置25Pの各々に伝熱管17を配置することによって、伝熱管17の内部を流動する冷媒と空気との間における熱交換効率を向上させることが可能となる。 By arranging the heat transfer tubes 17 at each of the plurality of fixed positions 25P having the zigzag pattern as described above, it is possible to improve the heat exchange efficiency between the refrigerant flowing inside the heat transfer tubes 17 and the air. becomes.
(切り起こし部23)
 図5に示すように、複数のフィン24の板面24Fには、複数の切り起こし部23が形成されている。複数の切り起こし部23は、熱交換器18に流れる空気の通風方向FL(クロスフローファン22が熱交換器18に送る空気の通風方向)の上流側UP及び下流側DWに位置する。
(Cut-and-raised portion 23)
As shown in FIG. 5 , a plurality of cut-and-raised portions 23 are formed on plate surfaces 24F of the plurality of fins 24 . The plurality of cut-and-raised portions 23 are located upstream UP and downstream DW in the ventilation direction FL of the air flowing through the heat exchanger 18 (the ventilation direction of the air sent to the heat exchanger 18 by the cross-flow fan 22).
 通風方向FLとは、図3に示すY方向に配列する複数のフィン24の配列方向に対して直交する方向であり、複数のフィン24の間を空気が通過する方向を意味する。通風方向FLは、フィン24が延びる方向と直交する方向である。 The ventilation direction FL is a direction orthogonal to the arrangement direction of the plurality of fins 24 arranged in the Y direction shown in FIG. A ventilation direction FL is a direction perpendicular to the direction in which the fins 24 extend.
 複数の切り起こし部23の各々は、フィン24の板面24Fの一部に形成された切り込み部から板面24Fの上方に向けて起こされている。複数の切り起こし部23は、例えば、公知の板金加工方法によって形成される。 Each of the plurality of cut-and-raised portions 23 is raised upward from the plate surface 24F of the fin 24 from a cut portion formed in a portion of the plate surface 24F. The plurality of cut-and-raised portions 23 are formed by, for example, a known sheet metal working method.
 切り起こし部23の各々の形成方法について説明する。
 まず、図5に示すように、板面24F上において、台形形状の下辺(底辺)に相当する箇所を残しつつ、台形形状の上辺及び2つの斜辺に相当する箇所に切り込み部を形成する。この切り込み部は、板面24Fを貫通するように形成される。
A method for forming each of the cut-and-raised portions 23 will be described.
First, as shown in FIG. 5, on the plate surface 24F, notches are formed at locations corresponding to the upper side and two oblique sides of the trapezoid while leaving a location corresponding to the lower side (base) of the trapezoid. This cut portion is formed so as to penetrate the plate surface 24F.
 その後、台形形状の下辺に相当する箇所を曲げるように、台形形状部分を起こす(持ち上げる)。これによって、台形形状の下辺に相当する箇所に屈曲部が形成される。屈曲部から斜め上方に向けて延在するように切り起こし部23が形成される。 After that, raise (lift) the trapezoidal part so as to bend the part corresponding to the lower side of the trapezoidal shape. As a result, a bent portion is formed at a location corresponding to the lower side of the trapezoidal shape. A cut-and-raised portion 23 is formed to extend obliquely upward from the bent portion.
 複数のフィン24の板面24Fにおいては、通風方向FLの上流側UPに形成された複数の上流切り起こし部23Uと、通風方向FLの下流側DWに形成された複数の下流切り起こし部23Dとが形成されている。
 複数の上流切り起こし部23Uの各々は、開口部23UHと、開口端23UE(頂角部、一端部)とを有する。開口部23UHは、上流切り起こし部23Uの上端23T(図4A及び図4B参照)と板面24Fとの間に形成されている。開口部23UHは、通風方向に向けて開口する。開口端23UEは、開口部23UHが形成されていない板面24Fと、開口部23UHとの境界に位置する。すなわち、開口端23UEは、開口部23UHの延在方向(Z方向)における開口部23UHの両側に位置する。
On the plate surface 24F of the plurality of fins 24, there are a plurality of upstream cut-and-raised portions 23U formed on the upstream side UP in the airflow direction FL and a plurality of downstream cut-and-raised portions 23D formed on the downstream side DW in the airflow direction FL. is formed.
Each of the plurality of upstream cut-and-raised portions 23U has an opening 23UH and an opening end 23UE (apex, one end). The opening 23UH is formed between the upper end 23T (see FIGS. 4A and 4B) of the upstream cut-and-raised portion 23U and the plate surface 24F. The opening 23UH opens in the ventilation direction. The opening end 23UE is located at the boundary between the plate surface 24F on which the opening 23UH is not formed and the opening 23UH. That is, the opening ends 23UE are located on both sides of the opening 23UH in the extending direction (Z direction) of the opening 23UH.
 複数の下流切り起こし部23Dの各々は、開口部23DHと、開口端23DE(頂角部、一端部)とを有する。開口部23DHは、下流切り起こし部23Dの上端23T(図4A及び図4B参照)と板面24Fとの間に形成されている。開口部23DHは、通風方向に向けて開口する。開口端23DEは、開口部23DHが形成されていない板面24Fと、開口部23DHとの境界に位置する。すなわち、開口端23DEは、開口部23DHの延在方向(Z方向)における開口部23DHの両側に位置する。 Each of the plurality of downstream cut-and-raised portions 23D has an opening 23DH and an opening end 23DE (apex, one end). The opening 23DH is formed between the upper end 23T (see FIGS. 4A and 4B) of the downstream cut-and-raised portion 23D and the plate surface 24F. The opening 23DH opens in the ventilation direction. The opening end 23DE is located at the boundary between the plate surface 24F on which the opening 23DH is not formed and the opening 23DH. That is, the opening ends 23DE are positioned on both sides of the opening 23DH in the extending direction (Z direction) of the opening 23DH.
 開口端23UE、23DEは、フィン24の板面24Fの一部を切り込むことによって切り起こし部23を形成する際に、開口部23UH、23DHの形成が始まる起点(開口起点)と称することもできる。 The opening ends 23UE and 23DE can also be referred to as starting points (opening starting points) from which the formation of the openings 23UH and 23DH starts when the cut-and-raised portions 23 are formed by cutting a part of the plate surface 24F of the fin 24.
 切り起こし部23(23U、23D)の開口部23UH、23DHは、通風方向FLに向け開口している。熱交換器18を構成するフィン24に複数の切り起こし部23が形成されることにより、複数のフィン24の間を流れる空気とフィン24との間の伝熱性能を向上させることができる。 The openings 23UH and 23DH of the cut-and-raised portions 23 (23U and 23D) are open in the ventilation direction FL. By forming the plurality of cut-and-raised portions 23 on the fins 24 that constitute the heat exchanger 18, the heat transfer performance between the fins 24 and the air flowing between the plurality of fins 24 can be improved.
 次に、切り起こし部23の高さについて説明する。
 図3、図4A、及び図4Bに示すように、複数のフィン24は、Y方向に沿って配列されている。複数のフィン24のうち互いに向かい合う2つのフィン24の間の間隔は、フィンカラー25によって維持されている。
 実施の形態1においては、複数のフィン24が重なる方向において互いに隣り合うフィン24の間に形成された空間30の高さをFと定義し、複数の切り起こし部23の各々の高さをHと定義した場合、H≦1/2×Fの関係を満たすように、複数の切り起こし部23の各々の高さが設定されている。
Next, the height of the cut-and-raised portion 23 will be described.
As shown in FIGS. 3, 4A, and 4B, the plurality of fins 24 are arranged along the Y direction. A space between two fins 24 facing each other among the plurality of fins 24 is maintained by fin collars 25 .
In Embodiment 1, the height of the space 30 formed between the fins 24 adjacent to each other in the direction in which the plurality of fins 24 overlap is defined as F, and the height of each of the plurality of cut-and-raised portions 23 is defined as H. , the height of each of the plurality of cut-and-raised portions 23 is set so as to satisfy the relationship H≦1/2×F.
 ここで、空間30の高さFとは、互いに向かい合う2つのフィン24の間の間隔である。切り起こし部23の高さHとは、切り起こし部23が形成されたフィン24の板面24Fから切り起こし部23の上端23Tまでの距離である。 Here, the height F of the space 30 is the distance between the two fins 24 facing each other. The height H of the cut-and-raised portion 23 is the distance from the plate surface 24F of the fin 24 on which the cut-and-raised portion 23 is formed to the upper end 23T of the cut-and-raised portion 23 .
 図4Aは、切り起こし部23の高さHが空間30の高さFの1/2である場合を示している。図4Bは、切り起こし部23の高さHが空間30の高さFの1/2よりも小さい場合を示している。 FIG. 4A shows a case where the height H of the cut-and-raised portion 23 is half the height F of the space 30. FIG. FIG. 4B shows a case where the height H of the cut-and-raised portion 23 is smaller than half the height F of the space 30 .
(フィンカラー25)
 複数のフィン24の各々の板面24Fには、複数のフィンカラー25が形成されている。複数のフィンカラー25は、図3に示すY方向に配列する複数のフィン24のうち互いに隣り合うフィン24の間隔を維持する。複数のフィンカラー25に、伝熱管17が挿通されており、伝熱管17はフィンカラー25においてフィン24に固定されている。
(Fin collar 25)
A plurality of fin collars 25 are formed on the plate surface 24</b>F of each of the plurality of fins 24 . The plurality of fin collars 25 maintains the spacing between adjacent fins 24 among the plurality of fins 24 arranged in the Y direction shown in FIG. Heat transfer tubes 17 are inserted through a plurality of fin collars 25 , and the heat transfer tubes 17 are fixed to the fins 24 at the fin collars 25 .
 複数のフィンカラー25は、通風方向FLの上流側UP及び下流側DWに位置する。換言すると、複数のフィン24の板面24Fにおいては、通風方向FLの上流側UPに形成された複数の上流フィンカラー25Uと、通風方向FLの下流側DWに形成された複数の下流フィンカラー25Dとが形成されている。 The plurality of fin collars 25 are positioned upstream UP and downstream DW in the ventilation direction FL. In other words, on the plate surface 24F of the plurality of fins 24, a plurality of upstream fin collars 25U formed on the upstream side UP in the airflow direction FL and a plurality of downstream fin collars 25D formed on the downstream side DW in the airflow direction FL. and are formed.
 フィンカラー25(25U、25D)は、伝熱管17を挿入するため伝熱管17の直径に対して4~7%程度大きい穴径を有する。具体的に、フィンカラー25の穴径は、5.35mm以下であることが好ましい。 The fin collars 25 (25U, 25D) have hole diameters about 4 to 7% larger than the diameter of the heat transfer tubes 17 in order to insert the heat transfer tubes 17 therein. Specifically, the hole diameter of the fin collar 25 is preferably 5.35 mm or less.
 図5に示す符号a、bの各々は、図3に示す第1列a、第2列bに相当する。つまり、伝熱管17がフィンカラー25に固定される複数の固定位置25Pは、2列で並んでいる。
 具体的に、第1列aは、複数の上流切り起こし部23Uと、複数の上流フィンカラー25Uとによって構成されている。第1列aにおいては、2つの上流切り起こし部23Uの間に1つの上流フィンカラー25Uが配置されている。換言すると、2つの上流フィンカラー25Uの間に1つの上流切り起こし部23Uが配置されている。
5 correspond to the first column a and the second column b shown in FIG. 3, respectively. That is, the plurality of fixing positions 25P at which the heat transfer tubes 17 are fixed to the fin collars 25 are arranged in two rows.
Specifically, the first row a is composed of a plurality of upstream cut-and-raised portions 23U and a plurality of upstream fin collars 25U. In the first row a, one upstream fin collar 25U is arranged between two upstream cut-and-raised portions 23U. In other words, one upstream cut-and-raised portion 23U is arranged between two upstream fin collars 25U.
 第2列bは、複数の下流切り起こし部23Dと、複数の下流フィンカラー25Dとによって構成されている。第1列aにおいては、2つの下流切り起こし部23Dの間に1つの下流フィンカラー25Dが配置されている。換言すると、2つの下流フィンカラー25Dの間に1つの下流切り起こし部23Dが配置されている。 The second row b is composed of a plurality of downstream cut-and-raised portions 23D and a plurality of downstream fin collars 25D. In the first row a, one downstream fin collar 25D is arranged between two downstream cut-and-raised portions 23D. In other words, one downstream cut-and-raised portion 23D is arranged between two downstream fin collars 25D.
 第1列aを構成する上流フィンカラー25Uと、第2列bを構成する下流切り起こし部23Dは、通風方向FLに並んでおいる。
 第2列bにおいて、下流フィンカラー25Dと、下流切り起こし部23Dとは、フィン24の長手方向(第2列bの延在方向)に並んでいる。
 さらに、通風方向FLにおいて、下流切り起こし部23Dの開口端23DEは、下流フィンカラー25Dの後方に位置する。すなわち、通風方向FLにおいて、下流切り起こし部23Dの開口端23DEは、下流フィンカラー25Dの下流側に位置する。
The upstream fin collar 25U forming the first row a and the downstream cut-and-raised portion 23D forming the second row b are aligned in the ventilation direction FL.
In the second row b, the downstream fin collar 25D and the downstream cut-and-raised portion 23D are arranged in the longitudinal direction of the fin 24 (extending direction of the second row b).
Furthermore, in the ventilation direction FL, the opening end 23DE of the downstream cut-and-raised portion 23D is located behind the downstream fin collar 25D. That is, in the ventilation direction FL, the opening end 23DE of the downstream cut-and-raised portion 23D is located downstream of the downstream fin collar 25D.
 ここで、「開口端23DEが下流フィンカラー25Dの後方に位置する」とは、通風方向FLの上流側UPから見て、下流フィンカラー25Dと、開口端23DEとが重なっており、かつ、下流フィンカラー25Dが開口端23DEの手前に配置されていることを意味する。換言すると、通風方向FLの上流側UPから見て、伝熱管17と、開口端23DEとが重なっていること、かつ、伝熱管17が開口端23DEの手前に配置されていることを意味する。 Here, "the opening end 23DE is located behind the downstream fin collar 25D" means that the downstream fin collar 25D and the opening end 23DE overlap when viewed from the upstream side UP in the ventilation direction FL and It means that the fin collar 25D is arranged in front of the open end 23DE. In other words, it means that the heat transfer tube 17 and the open end 23DE overlap when viewed from the upstream side UP in the air flow direction FL, and that the heat transfer tube 17 is arranged in front of the open end 23DE.
 さらに、第2列bにおいては、下流切り起こし部23Dである、第1下流切り起こし部23D1と、第2下流切り起こし部23D2とが第2列bの延在方向に並んでいる。第1下流切り起こし部23D1及び第2下流切り起こし部23D2の各々は、通風方向FLの下流側DWに位置する複数の切り起こし部23の一つである。 Furthermore, in the second row b, a first downstream cut-and-raised portion 23D1 and a second downstream cut-and-raised portion 23D2, which are the downstream cut-and-raised portion 23D, are arranged in the extending direction of the second row b. Each of the first downstream cut-and-raised portion 23D1 and the second downstream cut-and-raised portion 23D2 is one of the plurality of cut-and-raised portions 23 positioned on the downstream side DW in the ventilation direction FL.
 第1下流切り起こし部23D1は、第1開口部23DH1と、第1開口部23DH1が形成されていな板面24Fと第1開口部23DH1との境界に位置する第1開口端23DE1(第1端部)とを有する。
 第2下流切り起こし部23D2は、第2開口部23DH2と、第2開口部23DH2が形成されていない板面24Fと第2開口部23DH2との境界に位置する第2開口端23DE2(第2端部)とを有する。
The first downstream cut-and-raised portion 23D1 includes a first opening 23DH1, a first opening end 23DE1 (first end part).
The second downstream cut-and-raised portion 23D2 has a second opening 23DH2, a second opening end 23DE2 (second end part).
 下流フィンカラー25Dは、第1下流切り起こし部23D1と第2下流切り起こし部23D2との間に位置する。第1開口端23DE1及び第2開口端23DE2は、互いに向かい合い、かつ、互いに隣り合うように形成されている。通風方向FLにおいて、第1開口端23DE1及び第2開口端23DE2は、下流フィンカラー25Dの後方に位置する。すなわち、通風方向FLにおいて、第1開口端23DE1及び第2開口端23DE2は、下流フィンカラー25Dの下流側に位置する。 The downstream fin collar 25D is positioned between the first downstream cut-and-raised portion 23D1 and the second downstream cut-and-raised portion 23D2. The first opening end 23DE1 and the second opening end 23DE2 are formed so as to face each other and be adjacent to each other. In the ventilation direction FL, the first opening end 23DE1 and the second opening end 23DE2 are located behind the downstream fin collar 25D. That is, in the ventilation direction FL, the first opening end 23DE1 and the second opening end 23DE2 are located downstream of the downstream fin collar 25D.
 ここで、「第1開口端23DE1及び第2開口端23DE2が下流フィンカラー25Dの後方に位置する」とは、通風方向FLの上流側UPから見て、下流フィンカラー25Dと、第1開口端23DE1及び第2開口端23DE2とが重なっており、かつ、下流フィンカラー25Dが第1開口端23DE1及び第2開口端23DE2の手前に配置されていることを意味する。換言すると、通風方向FLの上流側UPから見て、伝熱管17と、第1開口端23DE1及び第2開口端23DE2とが重なっていること、かつ、伝熱管17が開口端23DEの手前に配置されていることを意味する。 Here, "the first opening end 23DE1 and the second opening end 23DE2 are positioned behind the downstream fin collar 25D" means that the downstream fin collar 25D and the first opening end are positioned behind the downstream fin collar 25D when viewed from the upstream side UP in the ventilation direction FL. 23DE1 and the second open end 23DE2 overlap, and the downstream fin collar 25D is arranged in front of the first open end 23DE1 and the second open end 23DE2. In other words, when viewed from the upstream side UP in the ventilation direction FL, the heat transfer tubes 17 overlap the first opening end 23DE1 and the second opening end 23DE2, and the heat transfer tubes 17 are arranged in front of the opening end 23DE. means that
(伝熱管17)
 伝熱管17は、筐体12の内部に収納されている。伝熱管17は、複数のフィン24の各々に形成された複数のフィンカラー25に挿通されている。複数のフィン24の各々において、伝熱管17は、拡管方法による加締めによって、複数のフィンカラー25に固定されている。このため、伝熱管17と複数のフィン24との密着性が高められた状態で、伝熱管17は、フィン24に固定されている。伝熱管17の内部には冷媒が流れる。伝熱管17は、例えば、銅製又はアルミニウム製の配管である。
(Heat transfer tube 17)
The heat transfer tubes 17 are housed inside the housing 12 . The heat transfer tube 17 is inserted through a plurality of fin collars 25 formed on each of the plurality of fins 24 . In each of the plurality of fins 24, the heat transfer tubes 17 are fixed to the plurality of fin collars 25 by caulking by a tube expanding method. Therefore, the heat transfer tubes 17 are fixed to the fins 24 in a state where the adhesion between the heat transfer tubes 17 and the plurality of fins 24 is enhanced. A refrigerant flows inside the heat transfer tube 17 . The heat transfer tube 17 is, for example, copper or aluminum piping.
 図5において、符号Bは第1開口端23DE1と第2開口端23DE2との間の距離を示しており、符号Cはフィンカラー25の穴径を示しており、符号Dは伝熱管17の外径を示している。
 この場合において、B≦0.75×Cの関係を満たすように、第1下流切り起こし部23D1及び第2下流切り起こし部23D2が配置されている。
 また、伝熱管17の外径Dは、5.0mmである。
In FIG. 5, symbol B indicates the distance between the first open end 23DE1 and the second open end 23DE2, symbol C indicates the hole diameter of the fin collar 25, and symbol D indicates the outer diameter of the heat transfer tube 17. indicates the diameter.
In this case, the first downstream cut-and-raised portion 23D1 and the second downstream cut-and-raised portion 23D2 are arranged so as to satisfy the relationship B≦0.75×C.
Moreover, the outer diameter D of the heat transfer tube 17 is 5.0 mm.
 さらに、図3~図5に示すように、複数の下流フィンカラー25Dのうち互いに隣り合う2つの下流フィンカラー(第1フィンカラー及び第2フィンカラー)の間において、下流切り起こし部23Dは、フィン24の長手方向において分割されていない1つの切り起こし部により形成されている。
 具体的に、第1フィンカラーは、複数のフィン24のうち互いに隣り合うフィン24同士の間に設けられ、伝熱管17が挿通されているフィンカラーである。
第2フィンカラーは、複数のフィン24のうち互いに隣り合うフィン24同士の間に設けられ、伝熱管17が挿通されているフィンカラーである。
Furthermore, as shown in FIGS. 3 to 5, between two adjacent downstream fin collars (a first fin collar and a second fin collar) among the plurality of downstream fin collars 25D, the downstream cut-and-raised portion 23D is It is formed by one cut-and-raised portion that is not divided in the longitudinal direction of the fin 24 .
Specifically, the first fin collar is provided between the fins 24 adjacent to each other among the plurality of fins 24 and is a fin collar through which the heat transfer tubes 17 are inserted.
The second fin collar is provided between the fins 24 adjacent to each other among the plurality of fins 24 and is a fin collar through which the heat transfer tubes 17 are inserted.
 上述した構成を有する切り起こし部23を備える熱交換器18においては、空気の通風方向FLにおいて下流フィンカラー25Dに挿通された伝熱管17の周囲の空間を空気が通過すると、伝熱管17の下流側において空気の流れ(配管後流)の成長が生じる。具体的に、配管後流に起因する速度が遅い空気の流れと、フィンカラー25と切り起こし部23との間から流れる縮流された空気の流れとが発生する。このような空気の流れは、クロスフローファン22の翼面に達する。 In the heat exchanger 18 including the cut-and-raised portions 23 having the above-described configuration, when the air passes through the space around the heat transfer tubes 17 inserted through the downstream fin collars 25D in the air ventilation direction FL, the air flows downstream of the heat transfer tubes 17. The growth of the air flow (pipe wake) occurs on the side. Specifically, a low-velocity air flow resulting from the pipe wake flow and a constricted air flow flowing from between the fin collar 25 and the cut-and-raised portion 23 are generated. Such airflow reaches the blade surfaces of the cross-flow fan 22 .
 実施の形態1に係る熱交換器18は、下流切り起こし部23Dの開口端23DEが下流フィンカラー25Dの後方に位置するという構成を有する。特に、下流フィンカラー25Dは、第1下流切り起こし部23D1と第2下流切り起こし部23D2との間に位置している。 The heat exchanger 18 according to Embodiment 1 has a configuration in which the opening end 23DE of the downstream cut-and-raised portion 23D is positioned behind the downstream fin collar 25D. In particular, the downstream fin collar 25D is positioned between the first downstream cut-and-raised portion 23D1 and the second downstream cut-and-raised portion 23D2.
 これによって、第1開口端23DE1と第2開口端23DE2によって空気の流れの成長が阻害される。換言すると、第1開口端23DE1と第2開口端23DE2によって、配管後流に起因する速度が遅い空気の流れの幅が大きくなることを抑えることができる。したがって、速度が遅い空気流をクロスフローファンに到達させないようにすることができる。ここで、「空気の流れの幅」とは、通風方向FLに対して交差する方向における幅を意味する。 As a result, the first open end 23DE1 and the second open end 23DE2 hinder the growth of the air flow. In other words, the first opening end 23DE1 and the second opening end 23DE2 can suppress an increase in the width of the low-velocity air flow caused by the pipe wake flow. Therefore, it is possible to prevent the slow-speed airflow from reaching the cross-flow fan. Here, the "width of the air flow" means the width in the direction intersecting with the ventilation direction FL.
 この結果、クロスフローファン22の翼面の周囲において、速度が遅い空気と縮流された空気との間の速度差を一様にして小さくすることができる。偏流が発生することを抑制し、圧力差を小さくし、一様な空気の流れを得ることができる。さらに、空気の速度差を小さくすることによって、空気の圧力変動を抑制することができ、この結果、異常送風機音といった騒音の発生を抑制することができる。 As a result, around the blade surfaces of the cross-flow fan 22, the speed difference between the slow-speed air and the constricted air can be uniformly reduced. It is possible to suppress the occurrence of drift, reduce the pressure difference, and obtain a uniform air flow. Furthermore, by reducing the air velocity difference, air pressure fluctuations can be suppressed, and as a result, the occurrence of noise such as abnormal fan noise can be suppressed.
 さらに、通風方向FLにおいて、第1開口端23DE1と第2開口端23DE2が下流フィンカラー25Dの後方に位置するので、通風方向FLにおいて下流フィンカラー25Dと下流切り起こし部23Dとの間の部分から流れる熱交換空気の量を抑えることが可能となる。これによって、下流フィンカラー25Dと下流切り起こし部23Dとの間の部分から流出する縮流された流速が大きい空気の流れの発生を抑えることが可能となる。 Furthermore, since the first opening end 23DE1 and the second opening end 23DE2 are positioned behind the downstream fin collar 25D in the airflow direction FL, the airflow direction from the portion between the downstream fin collar 25D and the downstream cut-and-raised portion 23D in the airflow direction FL It becomes possible to suppress the amount of flowing heat exchange air. As a result, it is possible to suppress the occurrence of a contracted air flow having a high flow velocity that flows out from the portion between the downstream fin collar 25D and the downstream cut-and-raised portion 23D.
 また、上記のように、第1開口端23DE1と第2開口端23DE2との間の距離をBと定義し、かつ9、フィンカラー25の穴径をCと定義した場合、B≦0.75×Cの関係を満たすように、第1下流切り起こし部23D1及び第2下流切り起こし部23D2の配置が決定されている。この効果について、以下に述べる。 Further, as described above, when the distance between the first opening end 23DE1 and the second opening end 23DE2 is defined as B, and the hole diameter of the fin collar 25 is defined as C, B≤0.75. The arrangement of the first downstream cut-and-raised portion 23D1 and the second downstream cut-and-raised portion 23D2 is determined so as to satisfy the relationship xC. This effect will be described below.
 まず、従来の熱交換器では、例えば、7.2mm又は7.0mmの外径を有する伝熱管が用いられていた。実施の形態1に係る熱交換器18を構成する伝熱管17の外径は、5.0mmであり、従来の伝熱管の外径よりも小さい。伝熱管17の外径が小さくなると、通風方向FLにおける伝熱管17の下流側に生じる空気の流れである配管後流が発生し、通風方向FLに沿って配管後流が成長することが知られている。さらに、配管後流は、クロスフローファン22に到達することは一般的に周知である。 First, conventional heat exchangers used heat transfer tubes having an outer diameter of, for example, 7.2 mm or 7.0 mm. The outer diameter of the heat transfer tubes 17 constituting the heat exchanger 18 according to Embodiment 1 is 5.0 mm, which is smaller than the outer diameter of conventional heat transfer tubes. It is known that when the outer diameter of the heat transfer tube 17 becomes smaller, a pipe wake, which is an air flow occurring on the downstream side of the heat transfer tube 17 in the ventilation direction FL, is generated and the pipe wake grows along the ventilation direction FL. ing. Furthermore, it is generally known that the pipe wake reaches the cross-flow fan 22 .
 第1開口端23DE1及び第2開口端23DE2を通風方向FLに対して下流フィンカラー25Dの後方に位置とすることで、下流切り起こし部23Dと下流フィンカラー25Dとの間から縮流空気が発生することを抑制することが可能である。この縮流空気は、空気が縮流されて、速度を増した空気の流れである。 By positioning the first opening end 23DE1 and the second opening end 23DE2 behind the downstream fin collar 25D with respect to the ventilation direction FL, constricted air is generated between the downstream cut-and-raised portion 23D and the downstream fin collar 25D. It is possible to suppress This constricted air is a flow of air that has been constricted and increased in speed.
 上記の距離Bを規定しない場合、5.0mmの外径を有する伝熱管17を備えた熱交換器では配管後流27の成長を抑制することができず、配管後流27がクロスフローファン22に突入する。このため、クロスフローファン22の翼面の周囲における速度が遅い空気の速度と、配管後流27の速度の差が生じ、この速度差に起因して圧力差が生じ、異常送風機音が発生する恐れがある。 If the above distance B is not specified, the growth of the pipe wake 27 cannot be suppressed in the heat exchanger provided with the heat transfer tubes 17 having an outer diameter of 5.0 mm, and the pipe wake 27 will be displaced by the cross flow fan 22. plunge into. Therefore, there is a difference between the speed of the slow air around the blade surface of the cross-flow fan 22 and the speed of the pipe wake 27, and this speed difference causes a pressure difference, resulting in abnormal blower noise. There is fear.
 これに対し、5.0mmの外径を有する伝熱管17(すなわち、フィンカラー25の穴径Cは5.0mm)を備えた熱交換器18では、B≦0.75×Cの関係を満たすように、第1開口端23DE1と第2開口端23DE2との間の距離Bを決定している。これにより、配管後流27の成長を確実に抑制し、クロスフローファン22に配管後流27が直接流入することがないため、異常送風機音の発生を抑制することができる。 On the other hand, the heat exchanger 18 having the heat transfer tube 17 having an outer diameter of 5.0 mm (that is, the hole diameter C of the fin collar 25 is 5.0 mm) satisfies the relationship B≦0.75×C Thus, the distance B between the first open end 23DE1 and the second open end 23DE2 is determined. As a result, the growth of the pipe wake 27 is reliably suppressed, and the pipe wake 27 does not directly flow into the cross flow fan 22, so that the occurrence of abnormal fan noise can be suppressed.
 実施の形態1では、2つの第1列a及び第2列bの各々に切り起こし部23及びフィンカラー25が配列された構造を説明した。なお、実施の形態1によって得られる効果は、上記の2列構造を有する熱交換器18に限らず、3列以上の列を有する熱交換器においても得ることができる。また、列の幅が異なった構造においても、同様或いは類似の効果を得ることができる。 In Embodiment 1, the structure in which the cut-and-raised portions 23 and the fin collars 25 are arranged in each of the two first rows a and second rows b has been described. The effect obtained by the first embodiment can be obtained not only in the heat exchanger 18 having the two-row structure, but also in a heat exchanger having three or more rows. Similar or similar effects can also be obtained with structures having different column widths.
(異常送風機音の発生原理)
 次に、実施の形態1によって得られる効果をより具体的に説明する前に、従来の熱交換器において発生する異常送風機音の発生原理を説明する。
(Principle of generation of abnormal fan noise)
Next, before describing more specifically the effects obtained by the first embodiment, the principle of generation of abnormal fan noise generated in a conventional heat exchanger will be described.
 クロスフローファン22は、翼面を有する翼を備えている。クロスフローファン22の回転駆動に伴って、翼面の周辺の空間を流れる空気が、前方から後方に向けて翼面を通過する際に圧力の影響を受ける。この圧力の作用によって、クロスフローファン22から回転音が発生する。 The cross-flow fan 22 has wings with blade surfaces. As the cross-flow fan 22 is driven to rotate, the air flowing in the space around the blade surface is affected by pressure when passing through the blade surface from the front to the rear. Rotation noise is generated from the cross flow fan 22 by the action of this pressure.
 さらに、熱交換器における空気の通風方向の流れが周期的に変化することに起因して、異常送風機音が発生する。異常送風機音を解消するためには、クロスフローファン22を構成する翼面の周辺の空間を流れる空気の速度差や圧力差を低減し、一様な流れを得ることが好ましい。 In addition, abnormal fan noise occurs due to periodic changes in the flow of air in the heat exchanger in the ventilation direction. In order to eliminate the abnormal blower noise, it is preferable to reduce the speed difference and pressure difference of the air flowing in the space around the blade surfaces of the cross-flow fan 22 to obtain a uniform flow.
 また、空気調和機の分野においては、地球温暖化の抑制の観点から、冷媒R410a等の冷媒からR32等といった低GWPの冷媒への転換が求められている。GWPが低い冷媒は、微燃性を有しているため、低GWP冷媒を使用する空気調和機は、省冷媒量で運転するように設計される。 In addition, in the field of air conditioners, from the viewpoint of curbing global warming, there is a demand for conversion from refrigerants such as R410a to low GWP refrigerants such as R32. A refrigerant with a low GWP has mild flammability, so an air conditioner using a low GWP refrigerant is designed to operate with a reduced amount of refrigerant.
 この点について、従来の熱交換器では、例えば、以前主流であった7.2mm又は7.0mmの外径を有する伝熱管が用いられていたが、実施の形態1に係る熱交換器18を構成する伝熱管17の外径は、5.0mmである。これにより、伝熱管17の細径化が図られており、省冷媒量による空気調和機の運転に適合している。 Regarding this point, in conventional heat exchangers, for example, heat transfer tubes having an outer diameter of 7.2 mm or 7.0 mm, which were the mainstream in the past, were used, but the heat exchanger 18 according to Embodiment 1 is The outer diameter of the constituting heat transfer tube 17 is 5.0 mm. As a result, the diameter of the heat transfer tube 17 is reduced, which is suitable for the operation of the air conditioner with a reduced amount of refrigerant.
 次に、図6~図13を参照し、実施例1、2及び比較例1~5を説明する。
 以下に説明する実施例1、2は、上述した実施の形態1に係る熱交換器18を備えた空気調和機1によって得られる結果を示している。比較例1~4は、切り起こし部23及びフィンカラー25の構造の点で、実施例1とは異なっている。比較例5は、空間30の高さFと切り起こし部23の高さHとの関係の点で、実施例2とは異なっている。
Next, Examples 1 and 2 and Comparative Examples 1 to 5 will be described with reference to FIGS. 6 to 13. FIG.
Examples 1 and 2 described below show the results obtained by the air conditioner 1 including the heat exchanger 18 according to Embodiment 1 described above. Comparative Examples 1 to 4 differ from Example 1 in the structures of the cut-and-raised portion 23 and the fin collar 25 . Comparative Example 5 differs from Example 2 in the relationship between the height F of the space 30 and the height H of the cut-and-raised portion 23 .
(比較例1)
 図6は、比較例1に係る熱交換器50における風速分布を示す図である。
 比較例1に示す構造では、通風方向FLにおいて下流切り起こし部23Dの開口端23DEが下流フィンカラー25Dの後方(下流側)に位置していない。さらに、比較例1に係る熱交換器50においては、5.0mmの外径を有する伝熱管17が用いられており、伝熱管17の細径化がされている。このような熱交換器50において、通風方向FLに沿って空気の流れが生じると、伝熱管17の下流側において配管後流27が成長しやすくなる。
(Comparative example 1)
FIG. 6 is a diagram showing the wind velocity distribution in the heat exchanger 50 according to Comparative Example 1. As shown in FIG.
In the structure shown in Comparative Example 1, the opening end 23DE of the downstream cut-and-raised portion 23D is not located behind (downstream) of the downstream fin collar 25D in the ventilation direction FL. Furthermore, in the heat exchanger 50 according to Comparative Example 1, the heat transfer tubes 17 having an outer diameter of 5.0 mm are used, and the diameters of the heat transfer tubes 17 are reduced. In such a heat exchanger 50 , when air flows along the ventilation direction FL, the pipe wake 27 tends to grow on the downstream side of the heat transfer pipe 17 .
 この配管後流27の速度は、7.2mmの外径を有する伝熱管が熱交換機に搭載されていた場合にはクロスフローファン22に到達しなかった空気の流れの速度よりも遅い。
 熱交換器50においては、このような配管後流27が、直接、クロスフローファン22に到達する。このため、配管後流27の発生に起因して、クロスフローファン22を構成する翼面の周辺の空間を流れる空気の速度差や圧力差が生じ、異常送風機音が発生しやすくなる。
The velocity of this pipe wake 27 is lower than the velocity of the air flow that would not have reached the cross-flow fan 22 if heat transfer tubes with an outer diameter of 7.2 mm were mounted in the heat exchanger.
In the heat exchanger 50 , such pipe wake flow 27 directly reaches the cross flow fan 22 . Therefore, due to the generation of the pipe wake 27, a speed difference and a pressure difference occur in the air flowing in the space around the blade surfaces of the cross-flow fan 22, and abnormal fan noise is likely to occur.
 さらに、従来の切り起こし部23の配置を維持したまま、細径化された伝熱管17を適用する場合が考えられる。この場合、伝熱管17が設けられたフィンカラー25と切り起こし部23との間から縮流空気26が発生する。この縮流空気26は、空気が縮流されて発生された空気流であり、高い速度を有している。この縮流空気26が、直接、クロスフローファン22に流入すると、縮流空気26と配管後流27との速度差が顕著に生じるため、異常送風機音がさらに発生しやすくなる。 Furthermore, it is conceivable that the heat transfer tube 17 having a reduced diameter is applied while maintaining the conventional arrangement of the cut-and-raised portions 23 . In this case, constricted air 26 is generated between the fin collar 25 provided with the heat transfer tube 17 and the cut-and-raised portion 23 . The constricted air 26 is an air flow generated by constricted air, and has a high velocity. If the constricted air 26 directly flows into the cross flow fan 22, a significant difference in speed will occur between the constricted air 26 and the pipe wake 27, making abnormal fan noise more likely to occur.
(実施例1)
 図7Aは、実施例1に係る熱交換器18における風速分布を示す平面図であって、互いに隣り合う2つの切り起こし部23Dの開口端23DEの両方が通風方向に対してフィンカラー25の後方に位置している場合を示す図である。
 図7Bは、図7Aに示す風速分布に対応するグラフである。図7Bにおいて、縦軸はフィンの長手方向における位置を示し、横軸は通風方向FLの下流側DWにおけるフィンの端部における流速(m/s)を示す。
(Example 1)
FIG. 7A is a plan view showing the wind speed distribution in the heat exchanger 18 according to the first embodiment, in which both open ends 23DE of two cut-and-raised portions 23D adjacent to each other extend behind the fin collar 25 with respect to the ventilation direction. It is a figure which shows the case where it is located in.
FIG. 7B is a graph corresponding to the wind speed distribution shown in FIG. 7A. In FIG. 7B, the vertical axis indicates the position of the fin in the longitudinal direction, and the horizontal axis indicates the flow velocity (m/s) at the end of the fin on the downstream side DW in the airflow direction FL.
 図7Aに示す平面図は、図6に対応している。すなわち、下流切り起こし部23Dの開口端23DEが下流フィンカラー25Dの後方に位置する。特に、下流フィンカラー25Dは、第1下流切り起こし部23D1と第2下流切り起こし部23D2との間に位置している。
 図7Bの符号100は、縮流された空気の流れと配管後流27との速度差を示している。この速度差は、約0.8m/sであった。なお、図7Bの符号100で示された位置は、図7Aに示す配管後流27の位置に対応する。
The plan view shown in FIG. 7A corresponds to FIG. That is, the opening end 23DE of the downstream cut-and-raised portion 23D is located behind the downstream fin collar 25D. In particular, the downstream fin collar 25D is positioned between the first downstream cut-and-raised portion 23D1 and the second downstream cut-and-raised portion 23D2.
Reference numeral 100 in FIG. 7B indicates the velocity difference between the constricted air flow and the pipe wake 27 . This speed difference was about 0.8 m/s. 7B corresponds to the position of the pipe wake 27 shown in FIG. 7A.
 図7A及び図7Bに示すように、下流切り起こし部23Dの開口端23DEが下流フィンカラー25Dの後方に位置することで、速度が遅い配管後流27の成長が阻害され、配管後流27の長さが短くなった。配管後流27は、異常送風機音の発生面となるクロスフローファン22の翼面に到達しない。このため、縮流された空気の流れと配管後流27との速度差を小さくすることができ、異常送風機音を抑制することが可能となる。 As shown in FIGS. 7A and 7B, the opening end 23DE of the downstream cut-and-raised portion 23D is positioned behind the downstream fin collar 25D, thereby inhibiting the growth of the pipe wake flow 27 having a slow speed, and causing the pipe wake flow 27 to grow. shortened in length. The pipe wake 27 does not reach the blade surface of the cross-flow fan 22, which is the surface on which abnormal fan noise is generated. Therefore, the difference in speed between the constricted air flow and the pipe wake 27 can be reduced, and abnormal fan noise can be suppressed.
(比較例2)
 図8Aは、比較例2に係る熱交換器51における風速分布を示す平面図であって、互いに隣り合う2つの切り起こし部23Dの開口端23DEの両方が通風方向に対してフィンカラー25の後方に位置していない場合を示す図である。図8Aにおいて、図7Aが示す部材と同一部材には同一符号を付して、その説明は省略または簡略化する。
(Comparative example 2)
FIG. 8A is a plan view showing the wind speed distribution in the heat exchanger 51 according to Comparative Example 2, in which both open ends 23DE of two cut-and-raised portions 23D adjacent to each other are located behind the fin collar 25 with respect to the ventilation direction. It is a figure which shows the case where it is not located in. In FIG. 8A, the same members as those shown in FIG. 7A are denoted by the same reference numerals, and the description thereof will be omitted or simplified.
 図8Bは、図8Aに示す風速分布に対応するグラフである。図8Bにおいて、縦軸はフィンの長手方向における位置を示し、横軸は通風方向FLの下流側DWにおけるフィンの端部における流速(m/s)を示す。
 図8Bの符号101は、縮流された空気の流れと配管後流27との速度差を示している。この速度差は、約3.0m/sであった。なお、図8Bの符号101で示された位置は、図8Aに示す配管後流27の位置に対応する。
FIG. 8B is a graph corresponding to the wind speed distribution shown in FIG. 8A. In FIG. 8B, the vertical axis indicates the position of the fin in the longitudinal direction, and the horizontal axis indicates the flow velocity (m/s) at the end of the fin on the downstream side DW in the air flow direction FL.
Reference numeral 101 in FIG. 8B indicates the velocity difference between the constricted air flow and the pipe wake 27 . This speed difference was about 3.0 m/s. 8B corresponds to the position of the pipe wake 27 shown in FIG. 8A.
 図8A及び図8Bに示すように、切り起こし部23Dの開口端23DEが通風方向FLに対してフィンカラー25の後方に位置していない場合、フィンカラー25と切り起こし部23Dとの間から、縮流空気26が発生する。この縮流空気26は、空気が縮流されて速度が増した空気流である。このため、縮流空気26と配管後流27との速度差が顕著に生じる。この状態で、縮流空気26及び配管後流27がクロスフローファン22の翼面に到達すると、異常送風機音が発生する。 As shown in FIGS. 8A and 8B, when the opening end 23DE of the cut-and-raised portion 23D is not located behind the fin collar 25 with respect to the ventilation direction FL, from between the fin collar 25 and the cut-and-raised portion 23D, Constricted air 26 is generated. This constricted air 26 is an air flow in which the air is constricted and the speed is increased. For this reason, a significant difference in speed occurs between the constricted air 26 and the pipe wake 27 . In this state, when the contracted air 26 and the pipe wake 27 reach the blade surface of the cross-flow fan 22, an abnormal blower noise is generated.
 さらに、図7Aに示す実施例1と、図8Aに示す比較例2とを比べると、次の点が明らかである。
 まず、図7Aに示す配管後流27の形状と、図8Aに示す配管後流27の形状とを比較すると、図7Aに示す配管後流27の幅(空気の流れの幅)が、図8Aに示す配管後流27の幅よりも小さいことが分かる。
 また、図7Aに示す配管後流27の長さ(通風方向FLに沿う方向の長さ)が、図8Aに示す配管後流27の長さよりも小さいことが分かる。
 このような比較結果から、比較例2に比べて、実施例1においては、配管後流に起因する速度が遅い空気の流れの幅が大きくなることを抑えることができる。つまり、比較例2に比べて、実施例1においては、速度が遅い空気流をクロスフローファンに到達させないようにすることができる。
Furthermore, the following point is clear when Example 1 shown in FIG. 7A and Comparative Example 2 shown in FIG. 8A are compared.
First, comparing the shape of the pipe wake 27 shown in FIG. 7A with the shape of the pipe wake 27 shown in FIG. 8A, the width of the pipe wake 27 shown in FIG. is smaller than the width of the pipe wake 27 shown in FIG.
Also, it can be seen that the length of the pipe wake 27 shown in FIG. 7A (the length in the direction along the ventilation direction FL) is smaller than the length of the pipe wake 27 shown in FIG. 8A.
From such a comparison result, in comparison with Comparative Example 2, in Example 1, it is possible to suppress an increase in the width of the low-velocity air flow caused by the wake of the piping. In other words, compared with Comparative Example 2, in Example 1, it is possible to prevent the air flow having a low speed from reaching the cross-flow fan.
(比較例3)
 図9Aは、比較例3に係る熱交換器52における風速分布を示す平面図であって、互いに隣り合う2つの切り起こし部23Dの開口端23DEのうち一方の開口端23DE1のみが通風方向に対してフィンカラー25の後方に位置している場合を示す図である。換言すると、開口端23DE2のみが通風方向に対してフィンカラー25の後方に位置していない。図9Aにおいて、図7Aが示す部材と同一部材には同一符号を付して、その説明は省略または簡略化する。
(Comparative Example 3)
FIG. 9A is a plan view showing the wind speed distribution in the heat exchanger 52 according to Comparative Example 3, in which only one open end 23DE1 of the open ends 23DE of the two cut-and-raised portions 23D adjacent to each other is 10 is a diagram showing a case where the fin collar 25 is located behind the fin collar 25. FIG. In other words, only the opening end 23DE2 is not located behind the fin collar 25 with respect to the ventilation direction. In FIG. 9A, the same members as those shown in FIG. 7A are denoted by the same reference numerals, and the description thereof will be omitted or simplified.
 図9Bは、図9Aに示す風速分布に対応するグラフである。図9Bにおいて、縦軸はフィンの長手方向における位置を示し、横軸は通風方向FLの下流側DWにおけるフィンの端部における流速(m/s)を示す。 FIG. 9B is a graph corresponding to the wind speed distribution shown in FIG. 9A. In FIG. 9B, the vertical axis indicates the position of the fin in the longitudinal direction, and the horizontal axis indicates the flow velocity (m/s) at the end of the fin on the downstream side DW in the air flow direction FL.
 図9Bの符号102は、縮流された空気の流れと配管後流27との速度差を示している。この速度差は、約3.5m/sであった。なお、図9Bの符号102で示された位置は、図9Aに示す配管後流27の位置に対応する。
 図9A及び図9Bに示すように、開口端23DE1が通風方向に対してフィンカラー25の後方に位置し、開口端23DE2が通風方向に対してフィンカラー25の後方に位置していない場合では、開口端23DE2から縮流空気26が発生する。このため、配管後流27の成長を十分に抑制することができない。さらに、縮流空気26と配管後流27との速度差が顕著に生じる。この状態で、縮流空気26及び配管後流27がクロスフローファン22の翼面に到達すると、異常送風機音が発生する。
Reference numeral 102 in FIG. 9B indicates the velocity difference between the constricted air flow and the pipe wake 27 . This speed difference was about 3.5 m/s. 9B corresponds to the position of the pipe wake 27 shown in FIG. 9A.
As shown in FIGS. 9A and 9B, when the opening end 23DE1 is positioned behind the fin collar 25 with respect to the airflow direction and the opening end 23DE2 is not positioned behind the fin collar 25 with respect to the airflow direction, Compressed air 26 is generated from the open end 23DE2. Therefore, the growth of the pipe wake 27 cannot be sufficiently suppressed. Furthermore, a significant difference in velocity between the constricted air 26 and the pipe wake 27 occurs. In this state, when the contracted air 26 and the pipe wake 27 reach the blade surface of the cross-flow fan 22, an abnormal blower noise is generated.
(比較例4)
 図10は、比較例4に係る熱交換器を構成するフィンを部分的に示す平面図であって、切り起こし部が分割されている場合を示す図である。
 熱交換器のフィンは、室内機2の仕様や設計に応じて必要な長さに切断される場合がある。この熱交換器のフィン24を切断する際に、切り起こし部23の一部が破断する場合がある。切り起こし部23の一部が破断されると、破断された切り起こし部23が熱交換器18の外郭から飛び出す恐れがある。この場合、蒸発器において発生した凝縮水が、破断された切り起こし部23を経由して、通風路に滴下する恐れがある。そのため、切り起こし部23は、破断されないように分割されてフィン24に設けられる場合がある。
 図10は、第1分割部23Fと第2分割部23Sとをフィン24に設けた場合を示している。第1分割部23Fと第2分割部23Sとの間に位置する境界部23Xには、切り起こし部23が形成されていない。
(Comparative Example 4)
FIG. 10 is a plan view partially showing a fin constituting a heat exchanger according to Comparative Example 4, showing a case where the cut-and-raised portion is divided.
The heat exchanger fins may be cut to a required length depending on the specifications and design of the indoor unit 2 . When cutting the fins 24 of this heat exchanger, a part of the cut-and-raised portion 23 may be broken. If a portion of the cut-and-raised portion 23 is broken, the broken cut-and-raised portion 23 may protrude from the outer shell of the heat exchanger 18 . In this case, the condensed water generated in the evaporator may drop into the ventilation passage via the broken cut-and-raised portion 23 . Therefore, the cut-and-raised portion 23 may be divided and provided on the fin 24 so as not to be broken.
FIG. 10 shows a case where the fin 24 is provided with the first split portion 23F and the second split portion 23S. The cut-and-raised portion 23 is not formed in the boundary portion 23X located between the first divided portion 23F and the second divided portion 23S.
 図11Aは、比較例4に係る熱交換器53における風速分布を示す平面図であって、切り起こし部23が分割されている場合を示す図である。
 図11Bは、図11Aに示す風速分布に対応するグラフである。図11Bにおいて、縦軸はフィンの長手方向における位置を示し、横軸は通風方向FLの下流側DWにおけるフィンの端部における流速(m/s)を示す。
FIG. 11A is a plan view showing the wind velocity distribution in the heat exchanger 53 according to Comparative Example 4, and shows the case where the cut-and-raised portion 23 is divided.
FIG. 11B is a graph corresponding to the wind speed distribution shown in FIG. 11A. In FIG. 11B, the vertical axis indicates the position of the fin in the longitudinal direction, and the horizontal axis indicates the flow velocity (m/s) at the end of the fin on the downstream side DW in the air flow direction FL.
 図11Aに示すように、切り起こし部23が第1分割部23F及び第2分割部23Sの2つに分割されている場合では、境界部23Xの位置から通風方向FLに沿って空気が抜けてしまう。また、境界部23Xの流路が狭いため、空気の流速が大きい状態となり、縮流空気26が発生する。具体的に、図11Bの符号103で示された位置は、図10及び図11Aに示す境界部23Xに対応している。境界部23Xから生じた縮流空気26の流速は、約1.6m/sであった。 As shown in FIG. 11A, in the case where the cut-and-raised portion 23 is divided into the first divided portion 23F and the second divided portion 23S, the air is released from the position of the boundary portion 23X along the ventilation direction FL. put away. Further, since the flow path of the boundary portion 23X is narrow, the flow velocity of the air is high, and the constricted air 26 is generated. Specifically, the position indicated by reference numeral 103 in FIG. 11B corresponds to the boundary portion 23X shown in FIGS. 10 and 11A. The flow velocity of the constricted air 26 generated from the boundary 23X was approximately 1.6 m/s.
 この縮流空気26がクロスフローファン22の翼面に到達すると、異常送風機音が発生する。したがって、通風方向FLにおける最下流の第2列bを構成する複数の下流切り起こし部23Dの各々は、連続した1本の部位(切り起こし部)であることが必要である。換言すると、下流切り起こし部23Dは、フィン24の長手方向において分割されていない1つの切り起こし部により形成されている必要がある。
 上述した理由に基づき、第1分割部23Fと第2分割部23Sとが形成されないように、切り起こし部23をフィン24に形成する必要がある。
When this contracted air 26 reaches the blade surfaces of the cross-flow fan 22, an abnormal blower noise is generated. Therefore, each of the plurality of downstream cut-and-raised portions 23D forming the most downstream second row b in the ventilation direction FL is required to be one continuous portion (cut-and-raised portion). In other words, the downstream cut-and-raised portion 23</b>D must be formed by one cut-and-raised portion that is not divided in the longitudinal direction of the fin 24 .
For the reason described above, it is necessary to form the cut-and-raised portion 23 in the fin 24 so that the first divided portion 23F and the second divided portion 23S are not formed.
(実施例2)
 図12は、実施例2に係る熱交換器18における風速分布のシミュレーション結果を示す斜視図である。
 実施例2に係る熱交換器18においては、複数のフィン24が重なる方向において互いに隣り合うフィン24の間に形成された空間30の高さをFと定義し、複数の切り起こし部23の各々の高さをHと定義した場合、H≦1/2×Fの関係を満たすように、複数の切り起こし部23の各々の高さが設定されている(図4A及び図4B参照)。
(Example 2)
FIG. 12 is a perspective view showing simulation results of wind speed distribution in the heat exchanger 18 according to the second embodiment.
In the heat exchanger 18 according to the second embodiment, the height of the space 30 formed between the fins 24 adjacent to each other in the overlapping direction of the plurality of fins 24 is defined as F, and each of the plurality of cut-and-raised portions 23 is defined as H, the height of each of the plurality of cut-and-raised portions 23 is set so as to satisfy the relationship H≦1/2×F (see FIGS. 4A and 4B).
 H≦1/2×Fの関係を満たすように、複数の切り起こし部23の各々の高さが設定されていることで、空間30において通風方向FLに沿って空気が流れる流動面積(空間面積)が広くなる。これによって、空間30において、空気が流通しやすくなる。 By setting the height of each of the plurality of cut-and-raised portions 23 so as to satisfy the relationship H≦1/2×F, a flow area (spatial area ) becomes wider. This makes it easier for the air to circulate in the space 30 .
 このため、図12に示すように、フィンカラー25と切り起こし部23の間から流れる縮流された空気29を減少させることができる。この結果、クロスフローファン22の翼面に対する圧力の影響を最小限に抑えることができる。 Therefore, as shown in FIG. 12, the constricted air 29 flowing between the fin collar 25 and the cut-and-raised portion 23 can be reduced. As a result, the influence of pressure on the blade surfaces of the cross-flow fan 22 can be minimized.
(比較例5)
 図13は、比較例5に係る熱交換器18における風速分布のシミュレーション結果を示す斜視図である。比較例5は、図12に示す実施例2とは異なり、H≦1/2×Fの関係を満たしていない。つまり、比較例5では、H>1/2×Fの関係となるように、空間30の高さ及び切り起こし部の高さHが設定されている。
(Comparative Example 5)
FIG. 13 is a perspective view showing a simulation result of the wind speed distribution in the heat exchanger 18 according to Comparative Example 5. As shown in FIG. Unlike Example 2 shown in FIG. 12, Comparative Example 5 does not satisfy the relationship H≦1/2×F. That is, in Comparative Example 5, the height of the space 30 and the height H of the cut-and-raised portion are set so as to satisfy the relationship of H>1/2×F.
 H>1/2×Fの関係の場合、互いに隣り合うフィン24の間を空気29が流動する流動面積(空間面積)が狭くなる。このため、フィンカラー25と切り起こし部23との間を流通する空気29の流速が大きくなる。流速が大きい空気29がクロスフローファン22に達すると、クロスフローファン22の翼面に対する圧力が大きくなる。この結果、異常騒音が発生しやすくなる。
 したがって、H>1/2×Fの関係の場合では、上述した実施例2において述べて効果を得ることができない。
In the case of the relationship H>1/2×F, the flow area (spatial area) in which the air 29 flows between the fins 24 adjacent to each other becomes narrow. Therefore, the flow velocity of the air 29 flowing between the fin collar 25 and the cut-and-raised portion 23 increases. When the air 29 with a high flow velocity reaches the cross-flow fan 22, the pressure on the blade surfaces of the cross-flow fan 22 increases. As a result, abnormal noise is likely to occur.
Therefore, in the case of the relationship of H>1/2×F, the effects described in the second embodiment cannot be obtained.
1…空気調和機 2…室内機 2T…天面 3…室外機 4…冷媒配管 5…送風機 6…送風機 7…室内熱交換器 8…室外熱交換器 9…膨張弁 10…圧縮機 11…流路切替弁 12…筐体 12A…カバー(筐体) 12B…支持部(筐体) 13…フロントパネル 14…エアフィルタ 15…トップパネル 16…基部 17…伝熱管 18、50、51、52、53…熱交換器 18A…第1熱交換部 18AL、18BL…下端 18AU…上端 18B…第2熱交換部 18BU…上端 19…ドレンパン 20…フラップ 20A…回転軸 21…吹出口 22…クロスフローファン(送風機) 22A…前面領域 22B…上方領域 22C…上部分 23…切り起こし部 23D…下流切り起こし部(切り起こし部) 23D1…第1下流切り起こし部(切り起こし部) 23D2…第2下流切り起こし部(切り起こし部) 23DE、23UE…開口端 23DE1…第1開口端(開口端) 23DE2…第2開口端(開口端) 23DH、23UH…開口部 23DH1…第1開口部 23DH2…第2開口部 23F…第1分割部 23S…第2分割部 23T…上端 23U…上流切り起こし部(切り起こし部) 23X…境界部 24…フィン 24F…板面(表面) 24K…境界線 25…フィンカラー 25CAa…中央位置 25CAb…中央位置 25CBa…中央位置 25CBb…中央位置 25D…下流フィンカラー(フィンカラー) 25P…固定位置 25U…上流フィンカラー(フィンカラー) 26…縮流空気 27…配管後流 29…空気 30…空間 a…第1列 b…第2列 DW…下流側 UP…上流側 W…壁面 1...Air conditioner 2...Indoor unit 2T...Ceiling 3...Outdoor unit 4...Refrigerant pipe 5...Blower 6...Blower 7...Indoor heat exchanger 8...Outdoor heat exchanger 9...Expansion valve 10...Compressor 11...Flow Path switching valve 12...Case 12A...Cover (case) 12B...Support portion (case) 13...Front panel 14...Air filter 15...Top panel 16...Base 17... Heat transfer tube 18, 50, 51, 52, 53 ...Heat exchanger 18A...First heat exchange section 18AL, 18BL...Lower end 18AU...Upper end 18B...Second heat exchange section 18BU...Upper end 19...Drain pan 20...Flap 20A...Rotating shaft 21...Outlet 22...Cross flow fan (blower ) 22A... Front area 22B... Upper area 22C... Upper part 23... Cut-and-raised part 23D... Downstream cut-and-raised part (cut-and-raised part) 23D1... First downstream cut-and-raised part (cut-and-raised part) 23D2... Second downstream cut-and-raised part (Cut and raised portion) 23DE, 23UE...Open end 23DE1...First open end (open end) 23DE2...Second open end (open end) 23DH, 23UH...Opening 23DH1...First opening 23DH2...Second opening 23F 1st division 23S 2nd division 23T Upper end 23U Upper cut-and-raised portion (cut-and-raised portion) 23X Boundary 24 Fin 24F Plate surface (surface) 24K Boundary 25 Fin collar 25CAa Center Position 25CAb...Central position 25CBa...Central position 25CBb...Central position 25D...Downstream fin collar (fin collar) 25P...Fixed position 25U...Upstream fin collar (fin collar) 26...Constricted air 27...Piping downstream 29...Air 30... Space a... 1st row b... 2nd row DW... downstream side UP... upstream side W... wall surface

Claims (6)

  1.  冷媒が流れる伝熱管を有し、前記伝熱管に流れる前記冷媒と空気との間で熱交換を行う熱交換器と、
     前記伝熱管に空気を送る送風機と、
     を備え、
     前記熱交換器は、
     板状に形成され、前記送風機が前記熱交換器に送る空気の通風方向と交差する延在方向に延びる複数のフィンと、
     前記複数のフィンの各々の板面に形成された複数の切り起こし部と、
     前記複数のフィンのうち互いに隣り合うフィン同士の間に設けられ、前記伝熱管が挿通されたフィンカラーと、
     を備え、
     前記複数の切り起こし部は、前記フィンカラーよりも前記通風方向の下流側に位置する下流切り起こし部を含み、
     前記下流切り起こし部における前記延在方向の一端部は、前記通風方向に見て、前記フィンカラーに重なって配置されている、
     空気調和機。
    a heat exchanger having a heat transfer tube through which a refrigerant flows and performing heat exchange between the refrigerant flowing through the heat transfer tube and air;
    a blower that blows air to the heat transfer tubes;
    with
    The heat exchanger is
    a plurality of plate-shaped fins extending in an extending direction intersecting with a ventilation direction of air sent by the blower to the heat exchanger;
    a plurality of cut-and-raised portions formed on the plate surface of each of the plurality of fins;
    a fin collar provided between the fins adjacent to each other among the plurality of fins and through which the heat transfer tubes are inserted;
    with
    The plurality of cut-and-raised portions include a downstream cut-and-raised portion located downstream of the fin collar in the airflow direction,
    One end in the extending direction of the downstream cut-and-raised portion is arranged so as to overlap the fin collar when viewed in the ventilation direction,
    Air conditioner.
  2.  前記複数の切り起こし部は、前記フィンカラーよりも前記通風方向の下流側に位置する第1下流切り起こし部及び第2下流切り起こし部を含み、
     第1下流切り起こし部は、前記延在方向の第1端部を有し、
     第2下流切り起こし部は、前記延在方向の第2端部を有し、
     前記フィンカラーは、前記第1下流切り起こし部と前記第2下流切り起こし部との間に位置し、
     前記第1端部及び前記第2端部は、互いに向かい合い、かつ、互いに隣り合うように形成されており、
     前記第1端部及び前記第2端部は、前記通風方向に見て、前記フィンカラーに重なって配置されている、
     請求項1に記載の空気調和機。
    The plurality of cut-and-raised portions include a first downstream cut-and-raised portion and a second downstream cut-and-raised portion located downstream of the fin collar in the airflow direction,
    The first downstream cut-and-raised portion has a first end in the extending direction,
    The second downstream cut-and-raised portion has a second end in the extending direction,
    The fin collar is positioned between the first downstream cut-and-raised portion and the second downstream cut-and-raised portion,
    The first end and the second end are formed so as to face each other and be adjacent to each other,
    The first end and the second end are arranged to overlap the fin collar when viewed in the airflow direction.
    The air conditioner according to claim 1.
  3.  前記第1端部と前記第2端部との間の距離をBと定義し、
     前記フィンカラーの穴径をCと定義した場合、
     B≦0.75×Cの関係を満たすように、
     前記第1下流切り起こし部及び前記第2下流切り起こし部が配置されている、
     請求項2に記載の空気調和機。
    defining the distance between the first end and the second end as B;
    When the hole diameter of the fin collar is defined as C,
    To satisfy the relationship B ≤ 0.75 × C,
    The first downstream cut-and-raised part and the second downstream cut-and-raised part are arranged,
    The air conditioner according to claim 2.
  4.  前記複数のフィンのうち互いに隣り合うフィン同士の間に設けられ、前記伝熱管が挿通された第1フィンカラーと、
     前記複数のフィンのうち互いに隣り合うフィン同士の間に設けられ、前記伝熱管が挿通された第2フィンカラーと、
     を有し、
     前記第1フィンカラー及び前記第2フィンカラーは、互いに隣り合って配置されており、
     前記第1フィンカラーと前記第2フィンカラーとの間において、前記下流切り起こし部は、前記長手方向において分割されていない1つの切り起こし部により形成されている、
     請求項1から請求項3のいずれか一項に記載の空気調和機。
    a first fin collar provided between adjacent fins among the plurality of fins and through which the heat transfer tubes are inserted;
    a second fin collar provided between adjacent fins among the plurality of fins and through which the heat transfer tubes are inserted;
    has
    The first fin collar and the second fin collar are arranged adjacent to each other,
    Between the first fin collar and the second fin collar, the downstream cut-and-raised portion is formed by one cut-and-raised portion that is not divided in the longitudinal direction.
    The air conditioner according to any one of claims 1 to 3.
  5.  前記複数のフィンが重なる方向において互いに隣り合うフィンの間に形成された空間の高さをFと定義し、
     前記複数の切り起こし部の各々の高さをHと定義した場合、
     H≦1/2×Fの関係を満たすように、
     前記複数の切り起こし部の各々の高さが設定されている、
     請求項1から請求項4のいずれか一項に記載の空気調和機。
    The height of the space formed between the fins adjacent to each other in the direction in which the plurality of fins overlap is defined as F,
    When the height of each of the plurality of cut-and-raised parts is defined as H,
    so as to satisfy the relationship H ≤ 1/2 × F,
    a height of each of the plurality of cut-and-raised parts is set;
    The air conditioner according to any one of claims 1 to 4.
  6.  前記伝熱管が挿通される前記複数のフィンカラーの各々の穴径は、5.35mm以下である、
     請求項1から請求項5のいずれか一項に記載の空気調和機。
    The hole diameter of each of the plurality of fin collars through which the heat transfer tubes are inserted is 5.35 mm or less.
    The air conditioner according to any one of claims 1 to 5.
PCT/JP2021/019355 2021-05-21 2021-05-21 Air conditioner WO2022244232A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/019355 WO2022244232A1 (en) 2021-05-21 2021-05-21 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/019355 WO2022244232A1 (en) 2021-05-21 2021-05-21 Air conditioner

Publications (1)

Publication Number Publication Date
WO2022244232A1 true WO2022244232A1 (en) 2022-11-24

Family

ID=84140353

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/019355 WO2022244232A1 (en) 2021-05-21 2021-05-21 Air conditioner

Country Status (1)

Country Link
WO (1) WO2022244232A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57100079U (en) * 1980-12-11 1982-06-19
JPS57144892A (en) * 1981-02-28 1982-09-07 Daikin Ind Ltd Gross-fin coil type heat exchanger
JPS61161570U (en) * 1985-03-28 1986-10-06
JPH11173785A (en) * 1997-12-05 1999-07-02 Mitsubishi Electric Corp Heat exchanger
JP2002243383A (en) * 2001-02-19 2002-08-28 Mitsubishi Electric Corp Heat exchanger and air conditioner using the same
JP2003035497A (en) * 2001-07-24 2003-02-07 Mitsubishi Electric Corp Heat exchanger
JP2011232028A (en) * 2011-08-26 2011-11-17 Mitsubishi Electric Corp Heat exchanger and air conditioner with the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57100079U (en) * 1980-12-11 1982-06-19
JPS57144892A (en) * 1981-02-28 1982-09-07 Daikin Ind Ltd Gross-fin coil type heat exchanger
JPS61161570U (en) * 1985-03-28 1986-10-06
JPH11173785A (en) * 1997-12-05 1999-07-02 Mitsubishi Electric Corp Heat exchanger
JP2002243383A (en) * 2001-02-19 2002-08-28 Mitsubishi Electric Corp Heat exchanger and air conditioner using the same
JP2003035497A (en) * 2001-07-24 2003-02-07 Mitsubishi Electric Corp Heat exchanger
JP2011232028A (en) * 2011-08-26 2011-11-17 Mitsubishi Electric Corp Heat exchanger and air conditioner with the same

Similar Documents

Publication Publication Date Title
EP2851641B1 (en) Heat exchanger, indoor unit, and refrigeration cycle device
US8205470B2 (en) Indoor unit for air conditioner
JP6897372B2 (en) Heat exchanger
JP5195733B2 (en) Heat exchanger and refrigeration cycle apparatus equipped with the same
EP3745075B1 (en) Indoor heat exchanger and air conditioning device
JP2016200338A (en) Air conditioner
WO2018056209A1 (en) Heat exchanger
EP4184105A1 (en) Heat exchanger
JP7292510B2 (en) heat exchangers and air conditioners
WO2020012549A1 (en) Heat exchanger, heat exchange device, heat exchanger unit, and refrigeration system
JP7317231B2 (en) Heat exchanger, outdoor unit provided with heat exchanger, and air conditioner provided with outdoor unit
JP6925393B2 (en) Outdoor unit of air conditioner and air conditioner
JP2011064338A (en) Air conditioner
JP2011112315A (en) Fin tube type heat exchanger and air conditioner using the same
WO2022244232A1 (en) Air conditioner
JP6471345B2 (en) Heat exchanger
WO2020121615A1 (en) Indoor unit and air conditioner
JP5664272B2 (en) Heat exchanger and air conditioner
JP6621928B2 (en) Heat exchanger and air conditioner
JP2015169358A (en) heat exchanger
JP7464872B1 (en) Heat exchanger
JP6230852B2 (en) Air conditioner and heat exchanger for air conditioner
CN216346674U (en) Machine in heat exchanger and air conditioning
WO2021234957A1 (en) Heat exchanger and air conditioner comprising said heat exchanger
WO2021260818A1 (en) Indoor unit for air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21940846

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21940846

Country of ref document: EP

Kind code of ref document: A1