WO2024071014A1 - Resin composition for film, film production method, and film - Google Patents

Resin composition for film, film production method, and film Download PDF

Info

Publication number
WO2024071014A1
WO2024071014A1 PCT/JP2023/034658 JP2023034658W WO2024071014A1 WO 2024071014 A1 WO2024071014 A1 WO 2024071014A1 JP 2023034658 W JP2023034658 W JP 2023034658W WO 2024071014 A1 WO2024071014 A1 WO 2024071014A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
acid
resin
polymer resin
resin composition
Prior art date
Application number
PCT/JP2023/034658
Other languages
French (fr)
Japanese (ja)
Inventor
祥吾 片野
愛 継枝
祐介 藤原
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2024071014A1 publication Critical patent/WO2024071014A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/24Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of indefinite length
    • B29C41/28Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of indefinite length by depositing flowable material on an endless belt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/34Component parts, details or accessories; Auxiliary operations
    • B29C41/36Feeding the material on to the mould, core or other substrate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/02Halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/521Esters of phosphoric acids, e.g. of H3PO4
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • C08L5/14Hemicellulose; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Definitions

  • the present invention relates to a resin composition for films, a method for producing a film, and a film.
  • a known method for producing transparent films for optical applications that require high smoothness and optical uniformity, or for display applications is the solution deposition method, in which a polymer resin is made into a solution and cast onto a band of smooth metal support, and then dried and peeled off to produce a film.
  • the peel load when peeling the film from the metal support can sometimes be high.
  • it is known to use additives that have a peel-promoting effect Patent Document 1 or Patent Document 2.
  • the present invention aims to provide a resin composition for a film, a film manufacturing method, and a film that can be produced with improved peelability from a support.
  • the resin composition for films of the present invention comprises a polymer resin containing multiple main structural units that do not contain an acid component and multiple acid structural units that contain an acid component, an organic compound that contains a phosphoric acid group and has acid dissociability, and a solvent.
  • the organic compound is preferably contained in the range of 0.01 to 10 parts by mass per 100 parts by mass of the polymer resin.
  • the polymer resin preferably contains a cellulose derivative and a hemicellulose derivative.
  • the polymer resin is preferably a cellulose ester made from pulp.
  • the polymer resin is preferably a polyimide or acrylic resin.
  • the acid unit preferably contains a carboxyl group.
  • the acid constituent units are preferably contained within a composition ratio of 0.4% to 5% based on the entire polymer resin.
  • the organic compound is preferably at least one of the compounds represented by the following general formula (1) or (2):
  • R1 is an alkyl group having 1 to 20 carbon atoms
  • R2 is an alkyl group having 1 to 20 carbon atoms
  • R3 is an alkyl group having 1 to 6 carbon atoms
  • n is a natural number of 1 to 8
  • X is a hydroxy group
  • Y and Z are each one of a hydroxy group, an alkoxy group, and oxygen.
  • the organic compound preferably has an acid value of 100 mg (KOH)/g or more, as measured based on the acid value measurement method according to JIS K0070-1992.
  • the solvent is preferably a halogenated hydrocarbon solvent.
  • the method for producing a film of the present invention includes a casting process in which a dope made of a resin composition for a film is cast onto a metal support to form a cast film, a peeling process in which the cast film is peeled off from the support to form a film, and a drying process in which the film is dried.
  • the casting process it is preferable to continuously cast the dope onto the moving support, and in the peeling process, the cast film is continuously peeled off from the support.
  • the support is preferably a stainless steel band.
  • the film of the present invention contains a polymer resin that contains multiple main structural units that do not contain an acid component and multiple acid structural units that contain an acid component, and an organic compound that contains a phosphate group and has acid dissociability.
  • the organic compound is preferably contained in the range of 0.01 to 10 parts by mass per 100 parts by mass of the polymer resin.
  • the acid constituent units are preferably contained within a composition ratio of 0.4% to 5% based on the entire polymer resin.
  • the haze value measured based on JIS K7136 is 2.0 or less.
  • the present invention provides a resin composition for a film, a film manufacturing method, and a film that can produce a film with improved peelability from a support.
  • FIG. 1 is a schematic diagram of a film production facility.
  • acrylic resins there may be variations in the acid content in the polymer and its lot, and acid components may be generated over the course of the material's life.
  • organic solvent-soluble polyimides if the reaction during the imidization reaction of the polyimide is insufficient, carboxyl groups may remain in part of the polymer's main chain structure.
  • hemicellulose components containing carboxyl groups are included as part of the repeating units of the polymer.
  • the resin composition for films of the present invention contains a polymer resin that contains multiple main structural units that do not contain an acid component and multiple acid structural units that contain an acid component, an organic compound that contains a phosphoric acid group and has acid dissociability, and a solvent.
  • the polymer resin contains multiple main structural units that do not contain acid components and multiple acid structural units that contain acid components.
  • the main structural units that do not contain acid components and the acid structural units that contain acid components form the main chain of the polymer resin.
  • the polymer resin used is a polymer resin that can be formed into a film by a solution film formation method and contains acid structural units in the main chain.
  • a structural unit is a unit of chemical structure that can describe a polymer chain or polymer molecule by repetition or combination in the main chain of the polymer resin.
  • the polymer resin either synthetic or natural resins can be used as long as they are polymer resins that can be formed into a film by a solution film formation method and contain multiple acid constituent units, such as cellulose ester resin, polyimide resin, acrylic resin, etc. Acid constituent units containing acid components may be contained in the manufactured resin itself, and the content of acid components may vary depending on the lot during resin production. In addition, acid components may be generated in the resin material or the resin itself over time, causing the acid components to be contained in the resin.
  • acid constituent units containing acid components may be contained in the manufactured resin itself, and the content of acid components may vary depending on the lot during resin production. In addition, acid components may be generated in the resin material or the resin itself over time, causing the acid components to be contained in the resin.
  • Examples of the acid components contained in the acid structural unit include carboxyl groups.
  • carboxyl groups may remain as part of the polymer's main chain structure.
  • hemicellulose components containing carboxyl groups are contained as part of the repeating units of the polymer. Therefore, the effects of promoting peelability are better exhibited when cellulose ester resins made from pulp, commonly used polyimide resins, and acrylic resins are used as polymer resins.
  • the acid constituent units are preferably contained in a composition ratio of 0.4% to 5% based on the entire polymer resin. More preferably, it is contained in a range of 0.6% to 4%, and even more preferably, it is contained in a range of 1% to 3.5%.
  • the composition ratio of the acid constituent units is a value calculated from the type and amount of acid constituent units such as carboxyl groups and the composition of the polymer resin. The amount of the acid constituent units in the polymer resin may be adjusted so as to obtain the above composition ratio of the acid constituent units.
  • the polymer resin is a cellulose ester resin composed of cellulose ester
  • the raw materials for cellulose ester are generally wood pulp and cotton linters.
  • Cellulose ester made from linters contains relatively few acid constituent units, so it is generally unlikely to cause problems with poor releasability due to interactions with the metal support in solution film-forming methods.
  • cellulose ester made from wood pulp contains relatively many acid constituent units, so it is likely to cause problems with poor releasability from the metal support in solution film-forming methods.
  • the polymer resin is a cellulose ester resin
  • the main constituent unit that does not contain an acid component is a cellulose derivative
  • the acid constituent unit that contains an acid component is a hemicellulose derivative. Therefore, cellulose esters made from wood pulp contain a relatively large amount of hemicellulose derivatives.
  • the resin composition for films of the present invention is particularly effective in peeling during production when a cellulose ester resin is used as the polymer resin, and when the cellulose ester is derived from pulp.
  • the pulp that can be used is any pulp that is commonly used as a raw material for cellulose esters, for example, broadleaf trees such as oak and eucalyptus, or softleaf trees such as radiata pine and spruce.
  • the main structural unit which is a cellulose derivative can be, specifically, various cellulose esters having an aliphatic acyl group.
  • cellulose acetate, cellulose propionate, cellulose butyrate, cellulose acetate propionate, and cellulose acetate butyrate are preferred.
  • cellulose acylate such as cellulose triacetate.
  • the acyl group of cellulose acylate is not particularly limited, and may be an acetyl group with one carbon atom, or may be one with two or more carbon atoms.
  • the acyl group with two or more carbon atoms may be an aliphatic group or an aryl group, such as an alkyl carbonyl ester, alkenyl carbonyl ester, aromatic carbonyl ester, or aromatic alkyl carbonyl ester of cellulose, each of which may further have a substituted group.
  • Examples of such groups include a propionyl group, a butanoyl group, a pentanoyl group, a hexanoyl group, an octanoyl group, a decanoyl group, a dodecanoyl group, a tridecanoyl group, a tetradecanoyl group, a hexadecanoyl group, an octadecanoyl group, an iso-butanoyl group, a t-butanoyl group, a cyclohexanecarbonyl group, an oleoyl group, a benzoyl group, a naphthylcarbonyl group, and a cinnamoyl group.
  • the average degree of substitution of acyl groups in cellulose acylate (hereinafter referred to as the degree of substitution of acyl groups) is preferably in the range of 1.5 to 3, more preferably in the range of 2 to 2.97, and even more preferably in the range of 2.5 to 2.97.
  • the upper limit of the degree of substitution of acyl groups is 3.00, but it is difficult to synthesize cellulose acylate with an acyl substitution degree exceeding 2.97. For this reason, the degree of substitution of acyl groups in cellulose acylate used as a polymer resin is set to 2.97 or less.
  • the degree of substitution of acyl groups is the proportion of hydroxyl groups of cellulose esterified with carboxylic acid, that is, the degree of substitution of acyl groups.
  • the degree of acyl group substitution can be determined by a conventional method.
  • the degree of acetylation degree of acetyl group substitution
  • ASTM D-817-91 (Testing method for cellulose acetate, etc.). It can also be measured by measuring the distribution of the degree of acetylation (degree of acyl group substitution) by high performance liquid chromatography.
  • the degree of acetylation of cellulose acetate is measured by dissolving the sample in methylene chloride, using a column "Novapac phenyl (Waters)", measuring the acetylation distribution by a linear gradient from the eluent mixture of methanol and water (methanol:water mass ratio 8:1) to a mixture of dichloromethane and methanol (dichloromethane:methanol mass ratio 9:1), and comparing it with a calibration curve of standard samples with different degrees of acetylation.
  • Novapac phenyl Waters
  • the acid constituent unit which is a hemicellulose derivative may be one contained in a cellulose ester made from pulp as a raw material.
  • a cellulose ester made from pulp For example, depending on the type of constituent sugar, mannan, ⁇ -1,3-1,4-glucan, xylan, xyloglucan, etc. may be mentioned. These hemicellulose derivatives often have acid components such as side chains, and mannan, xylan, etc. also have acid components.
  • the cellulose ester resin may contain acid components other than hemicellulose derivatives due to pulp bleaching, etc. These hemicellulose derivatives may be of any type, and may be one type or two or more types. Furthermore, when multiple types of hemicellulose derivatives are contained, they can be used regardless of the composition ratio of each type of hemicellulose.
  • the amount of each hemicellulose derivative contained in cellulose ester resin can be measured by high performance liquid chromatography (HPLC).
  • HPLC high performance liquid chromatography
  • pulp made from a blend of oak, poplar, gum, maple, etc. contains about 0.20% mannan, which is a hemicellulose, and about 1.00% xylan, based on the entire cellulose ester resin.
  • the type of hemicellulose contained in cellulose ester resin can be measured by the following method.
  • the ratio of mannose to xylose in the hemicellulose contained in cellulose ester resin can be measured by the following method. Accurately weigh 200 mg of dried sample, add 3 ml of 72% sulfuric acid, and completely dissolve the sample over 2 hours using ultrasonic waves while cooling with ice water. Add 37 ml of distilled water to the resulting solution, shake thoroughly, reflux at 106°C under a nitrogen stream for 4 hours, and then leave to stand for 30 minutes. Next, add 10 mL of the resulting solution to 14 g of barium carbonate, and neutralize by applying ultrasonic waves while cooling with ice water. Filter the supernatant, confirm that the pH is about 5.5 to 6.5, and place in an HPLC vial. Analyze the sample by high performance liquid chromatography under the following conditions.
  • Measurement equipment High performance liquid chromatography (HPLC) Detector: CAD Column: Shodex (registered trademark) Asahipak NH2-50 4E (4.6 ⁇ 250 mm) (manufactured by Showa Denko K.K.) Eluent: acetonitrile (700 mL) / ultrapure water (300 mL) Flow rate: 0.9 ml/min Column temperature: 10° C. Injection volume: 20 ⁇ L Measurement time: 40 minutes
  • the number average molecular weight Mn is not particularly limited, but is preferably within the range of 70,000 to 110,000.
  • the number average molecular weight Mn is measured using a high performance liquid chromatography system in which a detector for detecting refractive index and light scattering is connected to a gel filtration column.
  • a high performance liquid chromatography system for example, Shodex (registered trademark) GPC SYSTEM-21H (manufactured by Showa Denko K.K.) can be used.
  • the detector for example, a differential refractive index detector (RI) can be used.
  • RI differential refractive index detector
  • An example of the measurement conditions for such gel permeation chromatography is as follows:
  • Solvent dichloromethane Column: TSKgel (registered trademark) GMHXL (7.8 x 300 mm), two columns (manufactured by Tosoh Corporation) Guard column: TSKgel (registered trademark) guard column HXL-H (manufactured by Tosoh Corporation) Sample concentration: 2000 ppm Flow rate: 0.8 mL/min Sample injection volume: 100 ⁇ L Standard samples: PMMA (Poly Methyl Methacrylate) (molecular weight: 1850, 7360, 29960, 79500, 201800, 509000, 625500) Column temperature: 28 ° C.
  • PMMA Poly Methyl Methacrylate
  • the acid constituent units are preferably contained in a range of 0.4% to 5% in terms of composition ratio based on the entire polymer resin.
  • the composition ratio of the acid constituent units can be calculated from the polymer units contained in the polymer resin.
  • a polymer unit is a unit of a polymer molecule that constitutes a polymer resin, and in the case of a cellulose ester resin, the polymer unit can be considered to be a cellulose ester having a molecular weight.
  • the composition ratio of the acid constituent units can be calculated from the composition ratio of mannan and xylan, which are hemicelluloses that constitute the acid constituent units in the cellulose ester, which is a polymer unit, and this composition ratio and the number average molecular weight of the entire cellulose ester resin can be used to determine the composition ratio of the acid constituent units.
  • the acid constituent units of the hemicellulose can be considered to be mannan and xylan, and the ratio of the acid constituent units can be 1.20% based on the entire cellulose ester resin.
  • the number of components of the acid constituent units in the cellulose ester which is a polymer unit, can be set to an average of 6.7 in the cellulose ester resin.
  • the number of components of the acid constituent units in the cellulose ester, which is a polymer unit, is not particularly limited, but is preferably within the range of, for example, 1.0 to 20.
  • a synergistic effect with the organic compound added to the resin composition for film is more preferably exerted, and the peelability from the support metal during film production is improved.
  • the carboxyl group concentration per 100 g of cellulose ester is, for example, 0.1 to 2.0, preferably 0.1 to 1.5, more preferably 0.5 to 1.5, even more preferably 0.3 to 1.2, and particularly preferably about 0.7 to 1.2, and may be, for example, 0.4 to 1.5, or, for example, about 0.4 to 0.9.
  • the carboxyl group content in cellulose ester (in terms of cellulose) can be calculated, for example, by adsorbing methylene blue to the carboxyl groups of the cellulose ester.
  • Polyimide is a polymer having imide bonds, and in particular, a polymer containing imide rings having imide bonds in the repeating units of the main chain of the polymer.
  • Polyimide can be suitably used as long as it can be subjected to a solution film forming method.
  • Polyimide is preferably formed from a diamine compound and an acid anhydride compound.
  • Polyimide is preferably soluble in an organic solvent.
  • the acid constituent units are preferably contained in a composition ratio of 0.4% to 5% based on the entire polymer resin.
  • the composition ratio of the acid constituent units in the polyimide can be calculated from the number average molecular weight and the imidization rate. For example, in a polyimide with a number average molecular weight Mn of 180,000, if the imidization rate is 98.5%, the non-imidization rate can be 1.5%, so that the number of acid constituent units in the polyimide, which is a polymer unit, can be determined to be 3.7 based on the composition of the non-imidized carboxyl groups.
  • the number of components of the acid structural unit in the polyimide (unit: pieces) is not particularly limited, but is preferably within the range of, for example, 1.0 to 20.
  • a synergistic effect with the organic compound added to the resin composition for film is more preferably exerted, and the peelability from the support metal during film production is improved.
  • aromatic polyimide or alicyclic polyimide can be used, and these can be appropriately selected by using a compound in which the chemical structure of the portion where the acid anhydride compound and the diamine compound are linked is aromatic or alicyclic.
  • the aromatic, alicyclic, or the bond between them can also be substituted with fluorine, hydrocarbon, halogen, hydrophilic group, or the like.
  • the acid anhydride compound and the diamine compound can be selected from the viewpoint of solubility in methylene chloride, which is a solvent, or the glass transition point of the resin, or the physical properties or transparency when made into a film.
  • alicyclic polyimides or fluorine-substituted polyimides are preferred from the viewpoint of solubility in methylene chloride or film transparency, etc.
  • the polyimide used in the present invention is preferably a resin that is imidized in the resin state.
  • One method for forming a polyimide film is to form a polyamic acid, which is a reaction between an acid anhydride compound and a diamine compound, into a film and then imidize it by heat.
  • this method requires high heat treatment, which places a heavy burden on the production process, and the polyamic acid contains a large amount of hydrophilic components, which makes the resin highly adhesive to metals, and it is prone to insolubilization and coloring after heat treatment, making film processing for optical applications difficult.
  • the molecular weight of the polyimide resin used in the present invention is preferably in the range of 10,000 to 300,000 in number average molecular weight Mn, and more preferably in the range of 50,000 to 300,000. If the molecular weight is 10,000 or less, the film strength may not be sufficient, and the proportion of molecular ends that tend to be hydrophilic in the polyimide resin may increase, which may increase the resin's adhesion to metals. If the molecular weight is 300,000 or more, it may become difficult to dissolve in a solvent.
  • polyimides can be used in the present invention.
  • polyimides synthesized from pyromellitic dianhydride (PMDA) and 4,4'-diaminodiphenyl ether (ODA), or 4,4'-(hexafluoroisopropylidene)diphthalic dianhydride 6F
  • suitable polyimides include polyimides synthesized from 6FDA/TFMB (4,4'-(hexafluoroisopropylidene) diphthalic anhydride) and 2,2'-bis(trifluoromethyl)-4,4'-diamino-diphenyl (TFMB or TFDB, 2,2'-bis(trifluoromethyl)-[1,1'-biphenyl]-4,4'-diamine).
  • polyimides made of 6FDA/TFMB can be preferably used in terms of the physical properties of the film.
  • examples of commercially available products include Neoprim (registered trademark) manufactured by Mitsubishi Gas Chemical Co., Ltd. and KPI-MX300F manufactured by Kawamura Sangyo Co., Ltd. It should be noted that a mixture of two or more types of polyimides may be used.
  • the polymer resin is an acrylic resin
  • the acrylic resin is a polymer of an acrylic acid ester or a methacrylic acid ester.
  • polymers of methyl acrylate (MA) and methyl methacrylate (MMA), or copolymers of these with acrylic acid or methacrylic acid are preferable.
  • Acrylic resins have a wide range of acid values depending on the carboxyl groups contained in the raw monomers.
  • carbonyl compounds may be added due to deterioration.
  • Acid can also be introduced by copolymerizing an acid monomer into acrylic resin. It can be said that acrylic resins are commonly used as resins that contain acid.
  • acid monomers include acrylic acid and methacrylic acid.
  • Commercially available products of this type of acid-containing acrylic resin include "DIANAL (registered trademark) BR73” (acid value: 3.3 mg (KOH)/g) manufactured by Mitsubishi Rayon Co., Ltd.
  • the acid constituent units are preferably contained in a composition ratio of 0.4% to 5% based on the entire polymer resin.
  • the composition ratio of the acid constituent units in the acrylic resin can be calculated from the raw materials, the composition of the polymer unit, the acid value, etc.
  • an acrylic resin with a composition ratio of MMA and MA of 95:5 containing 1% acrylic acid and a number average molecular weight Mn of 100,000 has a composition ratio of 1.0% acid constituent units, so the number of acid components in the polymer unit can be set to an average of 10.1.
  • the number of components of the acid structural unit in the acrylic resin (units: pieces) is not particularly limited, but is preferably within the range of, for example, 1.0 to 20.
  • a synergistic effect with the organic compound added to the resin composition for film is more preferably exerted, and the peelability from the support metal during film production is improved.
  • the molecular weight of the acrylic resin used in the present invention is preferably in the range of 10,000 to 200,000 in number average molecular weight Mn, and more preferably in the range of 50,000 to 100,000. If the molecular weight is 10,000 or less, the film strength may not be sufficient, and the proportion of molecular ends that tend to be hydrophilic in the acrylic resin may increase, which may increase the resin's adhesion to metals. If the molecular weight is 200,000 or more, it may become difficult to dissolve in a solvent.
  • the above polymer resins may be used alone or in combination of two or more.
  • the same type of polymer resins with different molecular weights or the same type of polymer resins with different copolymer compositions can be appropriately selected and used from the viewpoints of the solubility or drying property of the solution, or the physical properties or transparency of the film.
  • the resin composition for films of the present invention contains an organic compound that contains a phosphate group and has acid dissociability.
  • the organic compound is contained as an additive.
  • the organic compound preferably has an acid value (unit: mg(KOH)/g) in the range of 40 to 300 as measured by the acid value measurement method for chemical products according to JIS K0070-1992. More preferably, it is in the range of 60 to 250, and even more preferably, it is in the range of 100 to 200. If it is in this range, it is preferable because the peelability is good and the transparency of the film is high (low haze).
  • Examples of organic compounds that contain a phosphate group and have acid dissociability include various types of phosphoric acid.
  • the phosphoric acid is preferably at least one of the compounds represented by the following general formula (1) or (2).
  • R1 is an alkyl group having 1 to 20 carbon atoms
  • R2 is an alkyl group having 1 to 20 carbon atoms
  • R3 is an alkyl group having 1 to 6 carbon atoms
  • n is a natural number of 1 to 8
  • X is a hydroxy group
  • Y and Z are each one of a hydroxy group, an alkoxy group, and oxygen.
  • R 1 is an alkyl group having 12 carbon atoms (represented as lauryl (C12) in Table 1) (lauryl phosphate, Phosphanol, ML-200), R 1 is oxygen and R 2 is an alkyl group having 12 carbon atoms (represented as lauryl (C12) in Table 1)
  • R 3 is ethylene and n is any one of 1 to 8 (polyoxyethylene lauryl phosphate ester, Plysurf A208B, Plysurf A219B)
  • R 1 is oxygen and R 2 is an alkyl group having 10 carbon atoms (represented as C10 in Table 1)
  • R 3 is ethylene and n is any one of 1 to 8 (polyoxyethylene tridecyl ether phosphate ester, Plysurf A212C, Plysurf A215C)
  • R 1 is oxygen and R 2 is a 2-ethylhexyl group (represented as (C8) in Table 1 because it has 8 carbon atoms)
  • R Examples include those in
  • the compound number, R1 , R2 , R3 , acid value, and product name are shown for each of the above compounds.
  • "-" is entered where there is no corresponding item.
  • the acid value is a value determined by the acid value measurement method according to Japanese Industrial Standard JIS K0070-1992, and the unit is (mg(KOH)/g).
  • the resin composition for films of the present invention preferably contains the organic compounds exemplified above in an amount of 0.01 to 10 parts by mass relative to 100 parts by mass of the polymer resin. More preferably, the amount is in the range of 0.02 to 5 parts by mass, and even more preferably, in the range of 0.03 to 3 parts by mass.
  • the organic compound when the polymer resin is made of a cellulose derivative, the organic compound is preferably contained in an amount of 0.01 to 1 part by mass relative to 100 parts by mass of the polymer resin.
  • the organic compound is preferably contained in an amount of 0.05 to 5 parts by mass relative to 100 parts by mass of the polymer resin.
  • the organic compound is preferably contained in an amount of 0.05 to 5 parts by mass relative to 100 parts by mass of the polymer resin.
  • the resin composition for film of the present invention contains a solvent.
  • the solvent is preferably a halogenated hydrocarbon.
  • the solvent is not particularly limited as long as it dissolves the resin, but a solvent containing chlorine in the molecule (hereinafter referred to as a chlorine-based solvent) is preferable.
  • chlorine-based solvents that can be used include methylene chloride, chloroform, 1,2-dichloroethane, and 1,1,2,2-tetrachloroethane, and methylene chloride is used in this embodiment.
  • chlorine-based solvents especially in the case of methylene chloride, it can be used alone as a solvent without using other solvent components, and in this embodiment, only methylene chloride is used as the solvent.
  • the polymer resin dissolves in the solvent at a mass ratio sufficient to form a dope in the solution film formation method even at room temperature. Since the solubility of the polymer resin is good, a film with excellent transparency can be obtained.
  • a monohydric alcohol having a carbon number in the range of 1 to 3 may be added to methylene chloride.
  • examples of such monohydric alcohol include methanol, ethanol, and 1-propanol. Methanol is preferably used.
  • the mixing ratio of monohydric alcohol to methylene chloride is preferably within the range of 0.5% to 10% by mass relative to the total solvent including methylene chloride and monohydric alcohol. More preferably, it is within the range of 1% to 5%, and even more preferably, it is within the range of 1% to 3%. By being within this range, the transparency of the solution-cast film is good.
  • the monohydric alcohol added as a solvent can be measured as the amount of residual solvent in the film.
  • a polymer resin that dissolves in methylene chloride at a mass percent concentration of 10% or more is preferably used.
  • a polymer resin that dissolves at 15% or more is more preferably used, and a polymer resin that dissolves at 20% or more is even more preferably used. This is because a smooth film can be obtained in solution casting when at least 10% of the polymer resin is dissolved.
  • the resin composition for films may contain various additives such as plasticizers, UV absorbers, fine particles, or anti-degradants, in addition to polymer resins and organic compounds added to a solvent consisting of methylene chloride and a monohydric alcohol.
  • the additive it is preferable to add a matting agent which is a fine particle.
  • the matting agent is an additive for improving the slipperiness of the film surface.
  • An example of a matting agent is fine particles of silica (SiO 2 ).
  • the matting agent also contributes to improving the peelability from the support.
  • the silica fine particles are preferably surface-modified (modified) with TMS (trimethylsilyl) groups.
  • Surface modification is a hydrophobic treatment, and as is commonly done, silica fine particles are treated with HMDS (hexamethyldisilazane) or TMCS (trimethylsilyl chloride).
  • HMDS hexamethyldisilazane
  • TMCS trimethylsilyl chloride
  • the surface coverage rate of trimethylsilyl groups on the silica is preferably in the range of 0.005 to 0.120. More preferably, it is in the range of 0.008 to 0.050, and even more preferably, it is in the range of 0.012 to 0.030.
  • a surface coverage ratio in the range of 0.005 to 0.120 is preferable because it suppresses surface scattering, ensures transparency, and prevents films from adhering to each other.
  • the surface coverage is calculated by dividing the carbon content in the fine particles by the specific surface area. That is, the surface coverage is calculated by RC/S, where RC is the carbon content of the fine particles and S is the specific surface area.
  • the carbon content RC is calculated by elemental analysis using a combustion method (for example, a fully automatic elemental analyzer manufactured by PerkinElmer Japan Co., Ltd.).
  • the specific surface area S is measured according to the BET method (the adsorption theory method by Brunauer, Emmett, and Teller).
  • the silica fine particles preferably have a specific surface area of 20 m 2 /g or more and 400 m 2 /g or less, more preferably 50 m 2 /g or more and 300 m 2 /g or less, and particularly preferably 70 m 2 /g or more and 150 m 2 /g or less. This range is preferable because the particle diameter of the silica fine particles can ensure transparency and suppress adhesion between films.
  • the method for producing the film includes a casting process, a peeling process, and a drying process.
  • a dope made of a resin composition for the film is cast onto a metal support to form a cast film.
  • the peeling process the cast film is peeled off from the support to form a film.
  • the drying process the film is dried in stages.
  • the film manufacturing equipment 20 shown in FIG. 1 is an example of equipment for manufacturing a film 10, and the film manufacturing method will be described using this example.
  • the film manufacturing equipment 20 includes a dope preparation device 22 and a film manufacturing device 23.
  • the dope preparation device 22 is for preparing a dope 21, which is a resin composition for a film.
  • the dope preparation device 22 includes a mixing tank 26, a pump 27, a filter 28, a storage tank 31, and a pump 32, which are connected in this order from the upstream side by piping 33.
  • the mixing tank 26 is for dissolving the polymer resin 11 and the organic compound 12 in the solvent 15 by mixing the raw materials of the dope 21, the polymer resin 11, the organic compound 12, and the solvent 15.
  • the solvent 15 is adjusted by mixing methylene chloride with methanol, which is a monohydric alcohol (solvent adjustment process).
  • the polymer resin 11 and the organic compound 12 are added to the mixing tank 26 containing the solvent 15.
  • the polymer resin 11 supplied to the mixing tank 26 is a powder, but the form of the polymer resin 11 is not limited to a powder, and may be, for example, a flake or pellet shape.
  • the mixing tank 26 is equipped with a stirring mechanism (not shown) that stirs the mixture of the polymer resin 11, the organic compound 12, and the solvent 15 that has been introduced, thereby promoting dissolution.
  • the stirring mechanism in this embodiment is a stirring blade contained in the mixing tank and a drive unit that rotates and drives the stirring blade.
  • the stirring mechanism is not particularly limited as long as it is a mechanism that stirs the mixture of the polymer resin 11, the organic compound 12, and the solvent 15.
  • the polymer resin 11 and the organic compound 12 are dissolved in the solvent 15 by being mixed with the solvent 15 in the mixing tank 26, and the dope 21 is produced.
  • the organic compound 12 has excellent solubility in the solvent 15 and also has excellent compatibility with the solution in which the polymer resin 11 is dissolved in the solvent 15, so that a film 10 with excellent transparency is obtained.
  • the resin of the present invention may absorb moisture.
  • the moisture content may be in the range of 2% to 4%. If the polymer resin 11 is made into a solution while its moisture content is high, the solution may become cloudy or the transparency of the film may deteriorate. In addition, fluctuations in the moisture content of the resin may cause fluctuations in the resin concentration, drying during casting, or peelability.
  • the heating temperature for the heating and drying of the polymer resin 11 of the present invention is preferably in the range of 100°C to 180°C, more preferably in the range of 120°C to 160°C.
  • the heating time is preferably in the range of 5 minutes to 240 minutes, more preferably in the range of 20 minutes to 180 minutes.
  • the moisture content of the resin after heating and drying is preferably 1% or less, more preferably 0.7% or less.
  • the mixing tank 26 may be equipped with a temperature control mechanism (not shown) for controlling the internal temperature.
  • the mixing tank 26 of this embodiment is also equipped with a temperature control mechanism, and the temperature of the mixture is maintained at room temperature (approximately in the range of 25°C to 30°C).
  • room temperature approximately in the range of 25°C to 30°C.
  • the temperature of the mixture is controlled by the temperature control mechanism, so that dissolution is promoted and deterioration and/or foaming are suppressed.
  • methylene chloride is used as the solvent 15
  • the temperature in the mixing tank 26 is more preferably in the range of 15°C to 39°C, even more preferably in the range of 15°C to 37°C, and particularly preferably in the range of 25°C to 35°C.
  • dissolution may occur without temperature control, in which case a temperature control mechanism may not be provided.
  • the various additives mentioned above are to be included in the film 10, these additives may be introduced into the mixing tank 26.
  • the raw materials of the dope 21 mixed in the mixing tank 26 are not limited to the polymer resin 11, the organic compound 12, and the solvent 15.
  • Some raw materials may contain impurities, or may remain as insoluble matter without being dissolved by stirring in the mixing tank 26.
  • the dope 21 is sent from the mixing tank 26 to the filter 28 by the pump 27, and these foreign matters are removed by the filter 28.
  • a filter paper 63LS manufactured by Toyo Roshi Kaisha, Ltd.
  • the pore size and material are not limited to this example and may be determined according to the use of the film 10, or the types of the polymer resin 11, the organic compound 12, and the solvent 15.
  • the pore size of the filter paper used as the filter 28 is preferably in the range of 5 ⁇ m to 100 ⁇ m, more preferably in the range of 10 ⁇ m to 50 ⁇ m, and even more preferably in the range of 10 ⁇ m to 25 ⁇ m.
  • Other filters include metal filters, the pore size of which is preferably in the range of 3 ⁇ m to 15 ⁇ m, more preferably in the range of 3 ⁇ m to 10 ⁇ m, and even more preferably in the range of 3 ⁇ m to 5 ⁇ m.
  • the metal filter may be disposed downstream of filter 28, and filtration may be performed in two stages. Such staged filtration is particularly effective when manufacturing optical films.
  • a heater may be provided between the pump 27 and the filter 28 to promote dissolution of the undissolved portion that was not dissolved in the mixing tank 26.
  • a heater may be used in such cases as well.
  • the temperature of the dope 21 in the heater is preferably in the range of 40°C to 120°C, more preferably in the range of 45°C to 90°C, and particularly preferably in the range of 60°C to 90°C.
  • the dope 21 filtered by the filter 28 is guided to the storage tank 31, where it is stored until it is used for casting.
  • the storage tank 31 is preferably equipped with a stirring mechanism (not shown), and in this embodiment, it is equipped with a stirring mechanism having a similar configuration to the stirring mechanism of the mixing tank 26. This stirring mechanism more reliably maintains the uniformity of the dope 21 until it is used for casting.
  • the mixing tank 26, the filter 28, and the storage tank 31 are each preferably provided with a light-shielding member that blocks light from entering the interior, and are provided in this embodiment as well.
  • the mixing tank 26 has a tank body that contains the mixture formed from a material with a light-shielding function, and a lid is provided on the top of the tank body as a light-shielding member that also has a light-shielding function.
  • a light-shielding member can suppress these.
  • the dope 21 used for casting preferably has a polymer resin 11 concentration in the range of 15% to 30% by mass percent, and in this embodiment, it is 20%. By making it 15% or more, the viscosity of the dope coming out of the casting die 36 (corresponding to pressure loss) is more easily ensured than when it is less than 15%. Also, by making it 30% or less, when the solvent 15 is methylene chloride, the polymer resin 11 is more reliably dissolved in the solvent 15, and the dope 21 is more reliably prevented from becoming cloudy, compared to when it is greater than 30%.
  • the concentration of the polymer resin 11 is preferably in the range of 15% to 25% by mass percent, and more preferably in the range of 15% to 23% by mass percent. Even if the concentration of the polymer resin 11 is in the range of 8% to less than 15%, the dope 21 can be cast by using, for example, a Geesa (preferably a G-type Geesa).
  • the concentration of the polyimide is more preferably in the range of 20% to 30% by mass percent.
  • the concentration of the polymer resin 11 can be adjusted by adjusting the amount of the solvent 15 and the polymer resin 11 supplied to the mixing tank 26.
  • the concentration of the polymer resin 11 in the dope 21 is a mass percent concentration, which is the mass ratio of the polymer resin 11 to the sum of the masses of the polymer resin 11 and the solvent 15. In other words, when the mass of the solvent 15 is M15 and the mass of the resin is M11, it is calculated as ⁇ M11/(M15+M11) ⁇ 100.
  • the film manufacturing apparatus 23 manufactures the film 10 from the dope 21.
  • the apparatus includes a casting unit 37, a tenter 38, a roller dryer 41, a slitter 42, and a winder 43, in this order from the upstream side.
  • the casting unit 37 includes a band 46 formed into an annular shape as a support, a pair of rollers 47 that support the band 46 and run it in the longitudinal direction, a casting die 36, and a peeling roller 48.
  • At least one of the pair of rollers 47 is rotated in the circumferential direction by a driving mechanism (not shown), and this rotation causes the band 46 wrapped around the pair of rollers 47 to circulate and run in the longitudinal direction.
  • the casting die 36 is disposed above one of the pair of rollers 47, but it may be disposed above the band 46 between one and the other of the pair of rollers 47.
  • the casting die 36 is a discharge part that continuously discharges the supplied dope 21 from a discharge port 36a facing the band 46.
  • the dope 21 is cast onto the band 46, and a casting film 51 is continuously formed on the band 46 (casting process).
  • the casting position the position where the dope 21 comes into contact with the band 46 and the casting film 51 begins to be formed (hereinafter referred to as the casting position) is marked with the symbol PC.
  • the material of the band 46 is not particularly limited, but metal is preferable, and as a metal, stainless steel (SUS, Steel Use Stainless, stainless steel), in particular hard chrome plated SUS, is preferable. Therefore, the support is preferably a stainless steel band.
  • the band 46 is made of SUS, which allows the production of a suitable film while favorably exerting the effects of the resin composition for film, etc.
  • Various types of SUS can be used, and SUS316, SUS316L, etc. are preferably used.
  • the pair of rollers 47 are equipped with a temperature controller (not shown) that adjusts the peripheral temperature.
  • the temperature of the casting film 51 is adjusted via the band 46 by the rollers 47 with the adjusted peripheral temperature.
  • the peripheral temperature of the rollers 47 is set within a range of, for example, 10°C to 30°C.
  • the peripheral temperature of the rollers 47 is set within a range of -15°C to 5°C. By this gelling, the casting film 51 is solidified to a degree that it can be transported.
  • a drum (not shown) may be used as the support instead of the band 46.
  • a driving mechanism is provided on the drum, and the drum is rotated in the circumferential direction to form the casting film 51 on the circumferential surface.
  • the circumferential surface of the drum functions as the surface of the running support.
  • the material of the drum is not particularly limited, but metal is preferable, and as the metal, SUS, particularly SUS plated with hard chrome, is preferable.
  • the drum is provided with a temperature controller (not shown) for adjusting the circumferential surface temperature, and the temperature of the casting film 51 can be adjusted by adjusting the circumferential surface temperature of the drum.
  • the band 46 it is preferable to use the band 46 as the support
  • the cool gelation method it is preferable to use the drum as the support.
  • a decompression chamber (not shown) may be provided upstream of the dope 21 (the bead) from the casting die 36 to the band 46 in the running direction of the band 46, and is provided in this embodiment as well. This decompression chamber sucks in the atmosphere in the area upstream of the discharged dope 21, and reduces the pressure in this area through this suction.
  • a blower (not shown) may be provided opposite the band 46 to promote drying of the casting film 51.
  • the casting film 51 formed on the band 46 also contains the organic compound 12.
  • the organic compound 12 has an acid. Therefore, as presumed above, it is presumed that the acid generated by the acid dissociation from the organic compound 12 preferentially adsorbs to the surface of the band 46, suppressing the polymer resin 11 from adsorbing to the surface of the band 46. Therefore, the peel load of the casting film 51 from the band 46 is suppressed to be small, and as a result, the casting film 51 is peeled off smoothly and continuously from the band 46. Therefore, the film 10 having excellent smoothness of the film surface is obtained. Since the film surface is smooth, the film 10 can be used for an optical film having strict requirements for optical properties. In addition, in the organic compound 12 of this embodiment, when there is a large amount of acid to be dissociated, the peel load of the film 10 is suppressed to be smaller than when there is a small amount of acid.
  • the mass ratio of the organic compound 12 is approximately equal in the dope 21 and the casting film 51. Therefore, the mass ratio of the organic compound 12 in the casting film 51 or the film 10 is also within the range of 0.01 parts by mass or more and 10 parts by mass or less, assuming that the polymer resin 11 is 100 parts by weight. By making it 0.01 parts by mass or more, the peel load from the band 46 is more reliably kept small compared to when it is less than 0.01 parts by mass. Also, by making it 10 parts by mass or less, a transparent film 10 with less cloudiness is obtained compared to when it exceeds 10 parts by mass.
  • the casting film 51 is peeled off from the band 46 while the solvent content of the casting film 51 is in the range of 10% by mass to 100% by mass.
  • the solvent content (unit: %) is a value based on the dry weight, and specifically, it is a percentage calculated by ⁇ M15/(M10-M15) ⁇ x 100, where M15 is the mass of the solvent 15 and M10 is the mass of the film 10.
  • the casting film 51 contains the organic compound 12, which is an organic compound containing a phosphate group and having acid dissociability, and therefore the peel load of the casting film 51 from the band 46 is reduced by the above-mentioned presumed effect on the interaction between the surface of the band 46 and the polymer resin 11. Also, the improved peelability allows the running speed of the band 46 to be increased, and therefore the production efficiency of the film 10 is improved. Furthermore, the improved peelability not only improves the surface condition of the peeled surface of the film 10, but also stabilizes the peeling position, thereby preventing problems with the surface condition of the surface opposite the peeled surface.
  • the casting unit 37 forms the film 10 from the dope 21.
  • the band 46 travels between the casting position PC and the peeling position PP in a circular manner, so that the casting of the dope 21 and the peeling of the cast film 51 are repeatedly performed.
  • a blower (not shown) for drying the film 10 may be provided in the transport path between the casting unit 37 and the tenter 38.
  • the peeled film 10 is guided to the tenter 38.
  • the tenter 38 includes clips 52 for holding the sides of the long film 10, a pair of rails (not shown), and a chain (not shown).
  • a pin plate (not shown) may be used in which multiple pins (not shown) are arranged upright on the top surface of a table, and the film 10 is held by piercing each pin into the side of the film 10.
  • the rails are installed on the sides of the transport path for the film 10, and the pair of rails are spaced apart.
  • the chain is hung over a driving sprocket and a driven sprocket (not shown) and is attached so as to be freely movable along the rails.
  • the clips 52 are attached to the chain at predetermined intervals, and as the driving sprocket rotates, the clips 52 move in a circular motion along the rails.
  • the clips 52 begin to hold the film 10 that has been guided near the entrance of the tenter 38, move toward the exit, and release their hold near the exit. After releasing their hold, the clips 52 move again near the entrance and hold the newly guided film 10. In this way, the clips 52 transport the film 10 in the longitudinal direction while gripping each side of the film 10.
  • the travel path of the clip 52 can be changed. This allows the film 10 to be stretched in a direction intersecting the longitudinal direction (e.g., width direction) during transport.
  • the tenter 38 is provided with a blower 53 above the transport path of the film 10.
  • An outlet (not shown) for letting out dry gas is formed on the underside of the blower 53, and the dry gas (e.g., air) is blown toward the passing film 10.
  • the temperature of the dry gas from the blower 53 is preferably within the range of 40°C or higher and 200°C or lower.
  • a blower having a similar structure may be provided below the transport path of the film 10. As the tenter 38 has the blower 53, the film 10 can be dried even while passing through the tenter 38 (first drying step). However, there are cases where the tenter 38 is not provided.
  • the roller dryer 41 includes multiple rollers 41a and an air conditioner (not shown).
  • the multiple rollers 41a support the film 10 on their circumferential surfaces.
  • the film 10 is wound around the rollers 41a and transported.
  • the air conditioner adjusts the temperature, humidity, and other factors inside the roller dryer 41.
  • the temperature inside the roller dryer 41 is preferably within the range of 80°C to 160°C.
  • the humidity inside the roller dryer 41 is preferably within the range of 0% to 50% relative humidity.
  • the film 10 continues to dry while passing through this roller dryer 41 (second drying process).
  • the slitter 42 is for cutting off each side edge of the film 10. By this cutting, the film 10 is made to have, for example, a desired product width.
  • a slitter with the same configuration as the slitter 42 may be arranged at other positions. For example, between the casting unit 37 and the tenter 38, and/or between the tenter 38 and the roller dryer 41.
  • the slitter 42 is arranged between the casting unit 37 and the tenter 38, the side edge of the film 10 moving from the casting unit 37 to the tenter 38 is cut off just before being introduced into the tenter 38, so that, for example, the clip 52 can hold the film 10 more reliably.
  • the clip 52 can cut off the trace of the clip 52, so that the transport by the roller 41a can be more stable.
  • the cut off side edge is guided to a crusher (not shown), where it is crushed into chips, and may be used as a raw material for a new dope 21.
  • the winding machine 43 is used to wind the film 10 into a roll.
  • the winding machine 43 is equipped with a motor (not shown), and a winding core 54 is set in the winding machine 43.
  • the film 10 is wound around the winding core 54 as the winding core 54 rotates due to the motor.
  • the wound film 10 is produced from a dope 21 made of a resin composition for films, and contains the polymer resin 11 and organic compound 12 as described above. Because it contains both of these, due to the presumed action described above, it has good peelability from the band 46, and the peeling speed can also be improved. In addition, because it has good peelability, the surface condition of the film itself is good.
  • the organic compound 12 and various additives other than the organic compound 12 are not limited to being mixed with the polymer resin 11, etc., in the mixing tank 26.
  • an addition pipe (not shown) for guiding at least a portion of these additives may be connected so as to join the pipe 33, and the additives may be added in the pipe 33.
  • mixing may be performed by providing a well-known static mixer (e.g., a through-the-pipe mixer, etc.) in the pipe 33.
  • the film 10 is not limited to a single-layer structure, but may be a multi-layer structure.
  • the number of layers is not limited to two, but may be three or more.
  • the film 10 of the present invention has the same composition as the resin composition for film used in its production. Therefore, the film 10 contains a polymer resin that contains multiple main structural units that do not contain an acid component and multiple acid structural units that contain an acid component, and an organic compound that contains a phosphate group and has acid dissociability.
  • the organic compound is preferably contained in a range of 0.01 parts by mass to 10 parts by mass to 100 parts by mass of the polymer resin. Furthermore, in the polymer resin, when averaging a plurality of polymer units, it is preferable that the repeating units that are acid components out of all the repeating units in the polymer units are in a range of 0.4% to 5%.
  • the film 10 Since the film 10 is constructed as described above, when the film 10 is produced by the solution casting method, the film 10 is produced in a state where it has good peelability. Therefore, the film 10 has a good surface condition. Furthermore, the organic compound 12 contained in the resin composition for film does not deteriorate the performance of the film 10. For example, the film 10 can be made to have a reduced effect on the haze of the film 10 and be applicable to optical applications. For example, the film 10 has a haze of 2.0 or less as measured based on JIS K7136. More preferably, the haze is 1.5 or less.
  • the thickness of the film 10 is not particularly limited as long as it is within a range in which the film 10 can be suitably produced by a solution casting method using a resin composition for film, and can be set appropriately depending on the application.
  • the thickness is preferably in the range of 10 ⁇ m to 60 ⁇ m.
  • the thickness is preferably in the range of 10 ⁇ m to 50 ⁇ m, and when used as a diaphragm for earphones, etc., the thickness is preferably in the range of 5 ⁇ m to 15 ⁇ m.
  • the film 10 can be produced without problems if the thickness is in the range of 5 ⁇ m to 150 ⁇ m.
  • the thickness of the film 10 may be thicker than 150 ⁇ m or thinner than 5 ⁇ m depending on various adjustments.
  • Films 10 were produced using film production equipment 20, resulting in Examples 1 to 22.
  • the polymer resins used were cellulose ester resin, polyimide resin, and acrylic resin.
  • the cellulose ester resin used in the examples was a cellulose acylate resin, and the raw material was various pulps.
  • the cellulose acylate resins used are listed in Table 2.
  • the types of cellulose acylate resins used are listed in the "Cellulose Acylate Resin” column of Table 2 as “CA-1" to “CA-7".
  • the raw materials for each cellulose acylate resin are listed in the "Raw Material” column of Table 2.
  • Pulp 1 is a hardwood and is a blend of oak, poplar, gum, and/or maple
  • Pulp 2 is a hardwood and is oak
  • Pulp 3 is a hardwood and is eucalyptus
  • Pulp 4" is a softwood and is radiata pine
  • Pulp 5" is a softwood and is spruce.
  • a cellulose ester resin whose raw material is linter was used and named "CA-1".
  • the degree of acylation, number average molecular weight Mn, and ratio of acid constituent units to the entire polymer resin were determined by the above-mentioned method. That is, the ratio of acid constituent units to the entire polymer resin was determined by measuring the composition ratio of mannan and xylan, which are hemicelluloses that are acid constituent units in the polymer unit contained in the polymer resin, as shown in Table 2. Note that a polymer unit is a unit of polymer molecules that constitute a polymer resin, and a polymer resin is composed of multiple polymer molecules. In addition, the average number of acid components in the polymer unit was calculated from this composition ratio and the number average molecular weight.
  • composition ratio which is the composition ratio of mannan and xylan, which are hemicelluloses
  • hemicellulose composition ratio the ratio of acid constituent units in the polymer unit
  • acid constituent unit ratio the ratio of acid constituent units in the polymer unit
  • average number of acid components in the polymer unit is listed in the "number of components in polymer unit (average)”.
  • the polyimide resins used in the examples were 2,2'-bis(trifluoromethyl)-4,4'-diaminodiphenyl (TFMB, 2,2'-Bis(trifluoromethyl)benzidine) as "PI-1” and 4,4'-(hexafluoroisopropylidene)diphthalic anhydride (6FDA, 4,4'-(hexafluoroisopropylidene)diphthalic anhydride) as "PI-2".
  • PI-1 has a molecular weight of approximately 320 and is represented by the following formula (3)
  • PI-2 has a molecular weight of approximately 444.24 and is represented by the following formula (4).
  • the number average molecular weight and imidization rate of "PI-1" and "PI-2" are shown in Table 3.
  • the ratio of acid constituent units contained in the polymer resin was calculated based on the number average molecular weight and imidization rate, with the entire polymer resin as the standard.
  • the average number of acid components in the polymer units contained in the polymer resin was calculated from the ratio of acid constituent units, and is shown in Table 3.
  • the acrylic resins used in the examples were "MA-1” a resin made of a copolymer of MMA and MA (composition ratio 95:5) and acrylic acid (1% of the total resin), and "MA-2” a commercially available product, "Dianal BR73” (manufactured by Mitsubishi Chemical Corporation).
  • MA-1 a resin made of a copolymer of MMA and MA (composition ratio 95:5) and acrylic acid (1% of the total resin)
  • MA-2 a commercially available product, "Dianal BR73” (manufactured by Mitsubishi Chemical Corporation).
  • the number average molecular weight, the ratio (%) of acid constituent units in the polymer unit, and the average number (pieces) of acid components in the polymer unit are shown in Table 4.
  • the compounds used as organic compound 12 were those shown as "PA-1" to "PA-7" in Table 1 above.
  • the dope 21 containing the resin composition for film to be supplied to the film manufacturing equipment 20 contains 100 parts by mass of polymer resin and the organic compounds in the amounts shown in Table 5.
  • the solvent is dichloromethane, and the concentration of the polymer resin is determined according to each polymer resin.
  • the casting die and metal lip (die lip) used were made of SUS316L or the like.
  • the dope 21 was passed through the filters 28. First, it was passed through a 30 ⁇ m filter, and then through a 10 ⁇ m filter. The dope 21 was delivered from the casting die at 1450 cc/min. The band 46 was operated at 5 m/min. Therefore, the casting speed was 5 m/min.
  • the band 46 was made of SUS. Drying was carried out on the metal band by the film manufacturing equipment 20. After peeling in the peeling process, drying was carried out in the drying process. It was first dried at 50°C, and then dried at 140°C for 10 to 15 minutes. The film was wound onto a fiber-reinforced plastics (FRP) core with a film width of 800 mm and a length of 500 m.
  • FRP fiber-reinforced plastics
  • Example 7 to [Example 11]
  • a single-layer film was produced by the film production equipment 20 using the cellulose ester "CA-2" as the polymer resin 11 and "PA-6" as the organic compound in the amounts shown in Table 5.
  • the amount of the polymer resin and the organic compound relative to the solvent was 20%.
  • a film production test was carried out on the produced film by the method described below. In the film production test, the film thickness, peelability, peeled surface condition, and haze were measured.
  • a separate film was produced, and a peel load test was carried out by the method described below. The peel load was measured by the peel load test. The measurement results are shown in Table 5.
  • PA-1(K) and “PA-1(K)” are potassium salts obtained by neutralizing “PA-1” or “PA-6” with potassium hydroxide and then drying.
  • cellulose ester of "CA-1” was used as the polymer resin 11, and a film was produced by the film production equipment 20 without using an organic compound.
  • a film production test was performed on the produced film by the method described below. The film production test was performed to measure the thickness, peelability, peeled surface state, and haze of the film. Separately, a film was formed and a peel load test was carried out by the method described below. The peel load was measured by the peel load test. The measurement results are shown in Table 5.
  • Example 1 to 9 and Examples 12 to 16, Reference Example 1, and Comparative Examples 1 to 3 The film was peeled off from the metal band so that the volatile content was 20%, and then dried and wound up.
  • Example 10 the film was formed so that the thickness after film formation was 80 ⁇ m, and the volatile content was 40%, and then peeled off from the metal band, dried and wound up.
  • Example 11 the film was formed so that the thickness after film formation was 120 ⁇ m, and then peeled off from the metal band, dried and wound up with the volatile content being 60%.
  • the peelability was evaluated from the following viewpoints.
  • the volatile content is a value based on the dry weight as the amount of volatile content (unit: %), specifically, where the mass of the film 10 for which the amount of residual solvent is to be determined is x and the mass of this film 10 after it has been completely dried is y, it is a percentage calculated by ⁇ (x-y)/y ⁇ x 100. Note that "completely dried” does not necessarily mean that the amount of residual solvent is strictly "0".
  • y is the mass of the film 10 to be measured after it has been dried for 3 hours or more in a thermostatic chamber at 120°C or higher and a relative humidity of 10% or lower.
  • peel Load Test Using the film production equipment 20, a sample of each of the dopes 21 was cast on a support adjusted to a temperature of 20°C to form a casting film.
  • the support used was made of SUS316 stainless steel.
  • the thickness of the casting film was set so that the thickness of the film sample when dried was 80 ⁇ m.
  • the formed casting film was left at room temperature for 2 minutes. Although the casting film was dried compared to the film immediately after casting by this leaving, it was not completely dried.
  • 13 cutting lines were made in the casting film with a width of 2 cm using a cutter. In one of the 12 cut pieces with a width of 2 cm formed by the cutting lines (first cut piece), one end of the cut piece in the longitudinal direction was held by a clip.
  • the one end of the cut piece was pulled up by the clip at a speed of 2 cm/sec so that the angle between the surface of the support and the cut piece was 45°.
  • the load required for this lifting was measured by a load cell (UTA-200GR, a small-scale tension-compression type, manufactured by MinebeaMitsumi Inc.) and was taken as the peel load of the first cut piece (first peel load). Thereafter, the peel loads of the remaining 11 cut pieces were measured in the same manner, and were taken as the second peel load to the twelfth peel load.
  • the time intervals for measuring the first peel load to the twelfth peel load were set as equal as possible, and the final twelfth peel load was measured approximately 30 minutes after the formation of the casting film.
  • the peel loads measured for each dope 21 as described above are shown in Table 5.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

Provided are a resin composition for a film whereby it is possible to improve the peelability from a support body and produce a film, a film production method, and a film. The resin composition for a film contains: a polymer resin containing a plurality of each of main structural units not including an acid component and acid structural units including an acid component; an organic compound including a phosphoric acid group and having acid dissociation properties; and a solvent. The film production method includes a flow casting step in which a flow-cast film is formed by flow casting a dope comprising the resin composition for a film onto a metal support body, a peeling steep in which a film is formed by peeling the flow-cast film from the support body, and a drying step in which the film is dried.

Description

フィルム用樹脂組成物、フィルム製造方法及びフィルムResin composition for film, film manufacturing method, and film
 本発明は、フィルム用樹脂組成物、フィルム製造方法及びフィルムに関する。 The present invention relates to a resin composition for films, a method for producing a film, and a film.
 高い平滑性や光学的な均一性が必要な光学用途、または、ディスプレイ用途に用いる透明フィルムの生産方法として、高分子樹脂を溶液にして、平滑な金属支持体のバンドに流延し、その後、乾燥、及び剥離してフィルムを製膜する溶液成膜法が知られている。溶液成膜法においては、金属支持体からフィルムを剥離する際の剥離荷重が高くなる場合があった。そのような場合のために、剥離促進効果のある添加剤を使用することが知られている(特許文献1または特許文献2)。 A known method for producing transparent films for optical applications that require high smoothness and optical uniformity, or for display applications, is the solution deposition method, in which a polymer resin is made into a solution and cast onto a band of smooth metal support, and then dried and peeled off to produce a film. In the solution deposition method, the peel load when peeling the film from the metal support can sometimes be high. For such cases, it is known to use additives that have a peel-promoting effect (Patent Document 1 or Patent Document 2).
国際公開第2020/195377号International Publication No. 2020/195377 特開平61-243837号公報Japanese Patent Application Laid-Open No. 61-243837
 剥離促進効果のある添加剤があっても万能ではなく、例えば、各種アクリル樹脂等の製膜では、材料種やポリマーのロットの変化等により、金属支持体からの剥離が困難になる場合があった。 Even if there are additives that promote peeling, they are not a panacea. For example, when making films from various acrylic resins, changes in the material type or polymer lot can make peeling from the metal support difficult.
 本発明は、支持体からの剥離性を改善してフィルムを製造可能であるフィルム用樹脂組成物、フィルム製造方法及びフィルムを提供することを目的とする。 The present invention aims to provide a resin composition for a film, a film manufacturing method, and a film that can be produced with improved peelability from a support.
 本発明のフィルム用樹脂組成物は、酸成分を含まない主構成単位と酸成分を含む酸構成単位とをそれぞれ複数含む高分子樹脂と、リン酸基を含み酸解離性を有する有機化合物と、溶剤とからなる。 The resin composition for films of the present invention comprises a polymer resin containing multiple main structural units that do not contain an acid component and multiple acid structural units that contain an acid component, an organic compound that contains a phosphoric acid group and has acid dissociability, and a solvent.
 有機化合物は、高分子樹脂100質量部に対して0.01質量部以上10質量部以下の範囲内で含有されることが好ましい。 The organic compound is preferably contained in the range of 0.01 to 10 parts by mass per 100 parts by mass of the polymer resin.
 高分子樹脂は、セルロース誘導体とヘミセルロース誘導体とを含むことが好ましい。 The polymer resin preferably contains a cellulose derivative and a hemicellulose derivative.
 高分子樹脂は、パルプを原料とするセルロースエステルであることが好ましい。 The polymer resin is preferably a cellulose ester made from pulp.
 高分子樹脂は、ポリイミド又はアクリル樹脂であることが好ましい。 The polymer resin is preferably a polyimide or acrylic resin.
 酸構成単位は、カルボキシル基を含むことが好ましい。 The acid unit preferably contains a carboxyl group.
 酸構成単位は、高分子樹脂全体を基準として、組成比で0.4%以上5%以下の範囲内で含まれることが好ましい。 The acid constituent units are preferably contained within a composition ratio of 0.4% to 5% based on the entire polymer resin.
 有機化合物は、以下の一般式(1)または(2)で表される化合物の少なくとも1つであることが好ましい。 The organic compound is preferably at least one of the compounds represented by the following general formula (1) or (2):
Figure JPOXMLDOC01-appb-C000003
 
Figure JPOXMLDOC01-appb-C000003
 
Figure JPOXMLDOC01-appb-C000004
 
Figure JPOXMLDOC01-appb-C000004
 
(上記式(1)又は式(2)において、Rは炭素数が1以上20以下のアルキル基、Rは炭素数が1以上20以下のアルキル基、Rは炭素数が1以上6以下のアルキル基、nは1以上8以下の自然数、Xはヒドロキシ基、Y及びZはそれぞれヒドロキシ基、アルコキシ基、または酸素のいずれか1つである。) (In the above formula (1) or (2), R1 is an alkyl group having 1 to 20 carbon atoms, R2 is an alkyl group having 1 to 20 carbon atoms, R3 is an alkyl group having 1 to 6 carbon atoms, n is a natural number of 1 to 8, X is a hydroxy group, and Y and Z are each one of a hydroxy group, an alkoxy group, and oxygen.)
 有機化合物は、JIS K0070-1992による酸価測定法に基づいて測定した酸価が100mg(KOH)/g以上であることが好ましい。 The organic compound preferably has an acid value of 100 mg (KOH)/g or more, as measured based on the acid value measurement method according to JIS K0070-1992.
 溶剤は、ハロゲン化炭化水素系溶剤であることが好ましい。 The solvent is preferably a halogenated hydrocarbon solvent.
 本発明のフィルムの製造方法は、フィルム用樹脂組成物からなるドープを、金属製の支持体に流延することにより流延膜を形成する流延工程と、流延膜を支持体から剥がすことによりフィルムを形成する剥離工程と、フィルムを乾燥する乾燥工程と、を有する。 The method for producing a film of the present invention includes a casting process in which a dope made of a resin composition for a film is cast onto a metal support to form a cast film, a peeling process in which the cast film is peeled off from the support to form a film, and a drying process in which the film is dried.
 流延工程では、走行する支持体にドープを連続的に流延し、剥離工程では、流延膜を支持体から連続的に剥がすことが好ましい。 In the casting process, it is preferable to continuously cast the dope onto the moving support, and in the peeling process, the cast film is continuously peeled off from the support.
 支持体は、ステンレスバンドであることが好ましい。 The support is preferably a stainless steel band.
 本発明のフィルムは、酸成分を含まない主構成単位と酸成分を含む酸構成単位とをそれぞれ複数含む高分子樹脂と、リン酸基を含み酸解離性を有する有機化合物とを含有する。 The film of the present invention contains a polymer resin that contains multiple main structural units that do not contain an acid component and multiple acid structural units that contain an acid component, and an organic compound that contains a phosphate group and has acid dissociability.
 有機化合物は、高分子樹脂100質量部に対して0.01質量部以上10質量部以下の範囲内で含有されることが好ましい。 The organic compound is preferably contained in the range of 0.01 to 10 parts by mass per 100 parts by mass of the polymer resin.
 酸構成単位は、高分子樹脂全体を基準として、組成比で0.4%以上5%以下の範囲内で含まれることが好ましい。 The acid constituent units are preferably contained within a composition ratio of 0.4% to 5% based on the entire polymer resin.
 JIS K7136に基づいて測定したヘーズ値が、2.0以下であることが好ましい。 It is preferable that the haze value measured based on JIS K7136 is 2.0 or less.
 本発明によれば、支持体からの剥離性を改善してフィルムを製造可能であるフィルム用樹脂組成物、フィルム製造方法及びフィルムを提供することができる。 The present invention provides a resin composition for a film, a film manufacturing method, and a film that can produce a film with improved peelability from a support.
フィルム製造設備の概略図である。FIG. 1 is a schematic diagram of a film production facility.
 以下、実施形態を説明する。まず、以下の実施形態の一形態を得るに至った経緯を説明する。溶液成膜法において、フィルムを金属支持体から剥離する際に、金属支持体からの剥離荷重が高くなることを防ぐために、剥離促進効果のある添加剤を使用することが知られている。しかしながら、各種アクリルフィルムや溶剤可溶性のポリイミドの製膜では、材料種やポリマーのロットの変化等ではぎとりにくくなる場合があった。また素原料がパルプであるセルロースアシレート樹脂では剥離性が悪く、剥離したフィルムの面状が悪化する場合があった。 The following describes the embodiments. First, the process by which one of the following embodiments was achieved will be described. In solution film formation, it is known to use an additive that promotes peeling in order to prevent the peel load from the metal support from becoming too high when peeling the film from the metal support. However, when forming films from various acrylic films or solvent-soluble polyimides, peeling can be difficult due to changes in the material type or polymer lot. Also, cellulose acylate resin, which is made from pulp as a raw material, has poor peelability, and the surface condition of the peeled film can deteriorate.
 アクリル樹脂では、ポリマー中の酸成分含量やそのロットによるばらつき、素材の経時による酸成分の生成がある場合がある。また、有機溶剤可溶性のポリイミドでは、ポリイミドのイミド化反応時の反応が不十分な場合、高分子の主鎖構造の一部にカルボキシル基が残る場合がある。また、セルロースアシレートのパルプ素原料ではカルボキシル基を含むヘミセルロース成分が高分子の繰り返し単位の一部に含まれる。このような高分子樹脂を、溶液とし金属支持体上に製膜及び乾燥する際、主鎖中に複数の酸を含有する酸構成単位である酸成分部分があると、乾燥時に樹脂中の高分子鎖が絡み合った状態でその複数の酸成分部分で金属支持体と相互作用するため、金属支持体上で特に剥離性が悪化するであろうことがわかってきた。 In acrylic resins, there may be variations in the acid content in the polymer and its lot, and acid components may be generated over the course of the material's life. In addition, in organic solvent-soluble polyimides, if the reaction during the imidization reaction of the polyimide is insufficient, carboxyl groups may remain in part of the polymer's main chain structure. In addition, in the pulp base material of cellulose acylate, hemicellulose components containing carboxyl groups are included as part of the repeating units of the polymer. When such polymer resins are made into a solution and then formed into a film on a metal support and dried, if there are acid component portions that are acid structural units containing multiple acids in the main chain, the polymer chains in the resin become entangled during drying and interact with the metal support at the multiple acid component portions, which has been found to result in particularly poor peelability on the metal support.
 このような高分子樹脂における溶液製膜時の剥離性悪化について、剥離促進効果のある添加剤を検討した結果、酸解離性のリン酸基を含む有機化合物を添加することで、十分な剥離改善効果が得られることがわかってきた。このような化合物は、リン酸基が強い酸解離性を有するため、高分子中のカルボキシル基などの酸解離基に比べ、より確実に酸として解離し、金属支持体表面への吸着作用が大きいと考えられる。 In order to address the deterioration of peelability during solution film formation in such polymer resins, additives that promote peelability were investigated, and it was found that adding an organic compound containing an acid-dissociable phosphate group was effective in sufficiently improving peelability. Since the phosphate group in such compounds has strong acid dissociability, it is believed that it dissociates as an acid more reliably than acid-dissociable groups such as carboxyl groups in the polymer, and has a greater adsorption effect on the metal support surface.
 また、有機溶剤、とくに塩素系有機溶剤による溶液においては、微量の水分やアルコールなども寄与して溶液中で塩酸等の解離により強酸環境になり易いことが知られているが、そのような状態のドープ中でも、酸解離性のリン酸基を含む有機化合物は、十分に酸解離するものと推測される。このようなリン酸系添加剤の効果により、微量の添加で、解離した酸が金属支持体表面へ優先的に吸着し、主鎖中に複数のカルボキシル基のある高分子樹脂でも、十分に剥離荷重を低下させるよう改善し、剥離時の面状悪化抑制効果が高くなると考えられる。なお、後述する実施例に示すように、リン酸塩化合物を用いた場合は、剥離性や透明性が不十分な結果が得られた。 In addition, it is known that solutions using organic solvents, especially chlorine-based organic solvents, are prone to becoming strongly acidic due to the dissociation of hydrochloric acid and the like in the solution, due to the contribution of trace amounts of water and alcohol, but it is presumed that even in such a dope, organic compounds containing acid-dissociable phosphate groups will dissociate sufficiently with acid. Due to the effect of such phosphate-based additives, the addition of a small amount of the dissociated acid preferentially adsorbs onto the metal support surface, and it is believed that even in polymer resins with multiple carboxyl groups in the main chain, the peel load is sufficiently reduced, and the effect of suppressing deterioration of the surface condition during peeling is high. As shown in the examples described below, when phosphate compounds were used, the results were insufficient in terms of peelability and transparency.
 以下では、支持体からの剥離性を改善してフィルムを製造可能なフィルム用樹脂組成物、フィルム製造方法及びフィルムに関する実施形態について説明する。 Below, we will explain the embodiments of a resin composition for a film that can produce a film with improved peelability from a support, a film production method, and a film.
 本発明のフィルム用樹脂組成物は、酸成分を含まない主構成単位と、酸成分を含む酸構成単位とをそれぞれ複数含む高分子樹脂と、リン酸基を含み酸解離性を有する有機化合物と、溶剤とを含有する。 The resin composition for films of the present invention contains a polymer resin that contains multiple main structural units that do not contain an acid component and multiple acid structural units that contain an acid component, an organic compound that contains a phosphoric acid group and has acid dissociability, and a solvent.
 高分子樹脂は、酸成分を含まない主構成単位と、酸成分を含む酸構成単位とをそれぞれ複数含む。酸成分を含まない主構成単位と、酸成分を含む酸構成単位とは、高分子樹脂の主鎖を形成する。高分子樹脂としては、溶液成膜法による成膜が可能な高分子樹脂であって、主鎖に酸構成単位が含まれるものを使用する。なお、構成単位とは、高分子樹脂の主鎖において、繰り返しや組み合わせによりポリマー鎖またはポリマー分子を記述できる化学構造の単位とする。 The polymer resin contains multiple main structural units that do not contain acid components and multiple acid structural units that contain acid components. The main structural units that do not contain acid components and the acid structural units that contain acid components form the main chain of the polymer resin. The polymer resin used is a polymer resin that can be formed into a film by a solution film formation method and contains acid structural units in the main chain. Note that a structural unit is a unit of chemical structure that can describe a polymer chain or polymer molecule by repetition or combination in the main chain of the polymer resin.
 高分子樹脂としては、溶液成膜法による成膜が可能な高分子樹脂であって、複数の酸構成単位が含まれる樹脂であれば、合成樹脂または天然樹脂のどちらも用いることができ、例えば、セルロースエステル樹脂、ポリイミド樹脂、アクリル樹脂等が挙げられる。酸成分を含む酸構成単位は、製造された樹脂自体に含まれる場合があり、樹脂製造時のロットによる酸成分の含有量のばらつきが生じている場合がある。また、樹脂の素材又は樹脂自体の経時による酸成分の生成により、酸成分が樹脂に含まれるようになる場合がある。 As the polymer resin, either synthetic or natural resins can be used as long as they are polymer resins that can be formed into a film by a solution film formation method and contain multiple acid constituent units, such as cellulose ester resin, polyimide resin, acrylic resin, etc. Acid constituent units containing acid components may be contained in the manufactured resin itself, and the content of acid components may vary depending on the lot during resin production. In addition, acid components may be generated in the resin material or the resin itself over time, causing the acid components to be contained in the resin.
 酸構成単位が含む酸成分としては、カルボキシル基等が挙げられる。有機溶剤可溶性のポリイミドでは、ポリイミドのイミド化反応時の反応が不十分な場合、高分子の主鎖構造の一部にカルボキシル基が残る場合がある。また、セルロースアシレートのパルプ素原料によっては、カルボキシル基を含むヘミセルロース成分が高分子の繰り返し単位の一部に含まれる。したがって、高分子樹脂としては、パルプを原料とするセルロースエステル系樹脂、一般的に用いられるポリイミド樹脂、アクリル樹脂を用いた場合に、剥離性促進等の効果がより良く発揮される。 Examples of the acid components contained in the acid structural unit include carboxyl groups. In the case of polyimides soluble in organic solvents, if the reaction during the imidization reaction of the polyimide is insufficient, carboxyl groups may remain as part of the polymer's main chain structure. In addition, depending on the pulp raw material of the cellulose acylate, hemicellulose components containing carboxyl groups are contained as part of the repeating units of the polymer. Therefore, the effects of promoting peelability are better exhibited when cellulose ester resins made from pulp, commonly used polyimide resins, and acrylic resins are used as polymer resins.
 酸構成単位は、高分子樹脂全体を基準として、組成比で0.4%以上5%以下の範囲内で含まれることが好ましい。より好ましくは、0.6%以上4%以下の範囲内であり、さらに好ましくは、1%以上3.5%以下の範囲内である。酸構成単位が上記範囲内であることにより、フィルム用樹脂組成物に添加される有機化合物との相乗効果がより好ましく発揮され、フィルム製造時の支持体金属との剥離性がより良好となる。なお、酸構成単位の組成比は、カルボキシル基等の酸構成単位の種類及び量と高分子樹脂の組成とにより算出した値である。また、上記酸構成単位の組成比となるように、高分子樹脂において、酸構成単位の量を調整してもよい。 The acid constituent units are preferably contained in a composition ratio of 0.4% to 5% based on the entire polymer resin. More preferably, it is contained in a range of 0.6% to 4%, and even more preferably, it is contained in a range of 1% to 3.5%. When the acid constituent units are contained in the above range, a synergistic effect with the organic compound added to the resin composition for film is more preferably exhibited, and the peelability from the support metal during film production is improved. The composition ratio of the acid constituent units is a value calculated from the type and amount of acid constituent units such as carboxyl groups and the composition of the polymer resin. The amount of the acid constituent units in the polymer resin may be adjusted so as to obtain the above composition ratio of the acid constituent units.
 高分子樹脂がセルロースエステルから構成されるセルロースエステル樹脂である場合について説明する。セルロースエステルの原料は、木材パルプと綿花リンターとが一般的である。リンターを原料とするセルロースエステルは、含まれる酸構成単位が比較的少ないため、通常は、溶液成膜法において金属支持体との相互作用により剥離性が悪化する問題が起きづらい。一方、木材パルプを原料とするセルロースエステルは、含まれる酸構成単位が比較的多く、溶液成膜法において金属支持体との剥離性が悪化する問題が生じやすい。 The case where the polymer resin is a cellulose ester resin composed of cellulose ester will be described. The raw materials for cellulose ester are generally wood pulp and cotton linters. Cellulose ester made from linters contains relatively few acid constituent units, so it is generally unlikely to cause problems with poor releasability due to interactions with the metal support in solution film-forming methods. On the other hand, cellulose ester made from wood pulp contains relatively many acid constituent units, so it is likely to cause problems with poor releasability from the metal support in solution film-forming methods.
 高分子樹脂がセルロースエステル樹脂の場合、酸成分を含まない主構成単位は、セルロース誘導体であり、酸成分を含む酸構成単位はヘミセルロース誘導体である。したがって、木材パルプを原料とするセルロースエステルは、ヘミセルロース誘導体を比較的多く含む。本発明のフィルム用樹脂組成物は、高分子樹脂としてセルロースエステル樹脂を用いる場合、パルプ由来のセルロースエステルである場合に、製造時の剥離において特に効果的である。 When the polymer resin is a cellulose ester resin, the main constituent unit that does not contain an acid component is a cellulose derivative, and the acid constituent unit that contains an acid component is a hemicellulose derivative. Therefore, cellulose esters made from wood pulp contain a relatively large amount of hemicellulose derivatives. The resin composition for films of the present invention is particularly effective in peeling during production when a cellulose ester resin is used as the polymer resin, and when the cellulose ester is derived from pulp.
 パルプとしては、セルロースエステルの原料として通常用いられるものを採用することができ、例えば、オーク、ユーカリ等の広葉樹、ラジアータパイン、スプルース等の針葉樹の、いずれであっても用いることができる。 The pulp that can be used is any pulp that is commonly used as a raw material for cellulose esters, for example, broadleaf trees such as oak and eucalyptus, or softleaf trees such as radiata pine and spruce.
 セルロースエステル樹脂において、セルロース誘導体である主構成単位としては、具体的には、脂肪族アシル基などを有する種々のセルロースエステルとすることができる。例えば、セルロースアセテート(セルロースアシレート)、セルロースプロピオネート、セルロースブチレート、セルロースアセテートプロピオネート、セルロースアセテートブチレートが好ましく挙げられる。透明性等の諸特性に優れることから、セルローストリアセテート等のセルロースアシレートからなることが好ましい。これらのセルロースエステルは単独で又は二種以上組み合わせて使用できる。 In the cellulose ester resin, the main structural unit which is a cellulose derivative can be, specifically, various cellulose esters having an aliphatic acyl group. For example, cellulose acetate, cellulose propionate, cellulose butyrate, cellulose acetate propionate, and cellulose acetate butyrate are preferred. Because of their excellent properties such as transparency, it is preferable to use cellulose acylate such as cellulose triacetate. These cellulose esters can be used alone or in combination of two or more.
 セルロースアシレートのアシル基は、特に限定されず、炭素数が1であるアセチル基であってもよいし、炭素数が2以上のものであってもよい。炭素数が2以上であるアシル基としては、脂肪族基でもアリール基でもよく、例えばセルロースのアルキルカルボニルエステル、アルケニルカルボニルエステル、芳香族カルボニルエステル、芳香族アルキルカルボニルエステル等があり、これらは、それぞれさらに置換された基を有していてもよい。プロピオニル基、ブタノイル基、ペンタノイル基、ヘキサノイル基、オクタノイル基、デカノイル基、ドデカノイル基、トリデカノイル基、テトラデカノイル基、ヘキサデカノイル基、オクタデカノイル基、イソ-ブタノイル基、t-ブタノイル基、シクロヘキサンカルボニル基、オレオイル基、ベンゾイル基、ナフチルカルボニル基、シンナモイル基等を挙げることが出来る。 The acyl group of cellulose acylate is not particularly limited, and may be an acetyl group with one carbon atom, or may be one with two or more carbon atoms. The acyl group with two or more carbon atoms may be an aliphatic group or an aryl group, such as an alkyl carbonyl ester, alkenyl carbonyl ester, aromatic carbonyl ester, or aromatic alkyl carbonyl ester of cellulose, each of which may further have a substituted group. Examples of such groups include a propionyl group, a butanoyl group, a pentanoyl group, a hexanoyl group, an octanoyl group, a decanoyl group, a dodecanoyl group, a tridecanoyl group, a tetradecanoyl group, a hexadecanoyl group, an octadecanoyl group, an iso-butanoyl group, a t-butanoyl group, a cyclohexanecarbonyl group, an oleoyl group, a benzoyl group, a naphthylcarbonyl group, and a cinnamoyl group.
 セルロースアシレートにおいてアシル基の平均置換度(以下、アシル基置換度という)は、1.5以上3以下の範囲内であることが好ましく、より好ましくは2以上2.97以下の範囲内、さらに好ましくは2.5以上2.97以下の範囲内である。アシル基置換度は、理論上3.00が上限となるが、アシル基置換度が2.97を超えるセルロースアシレートは合成が難しい。このため、高分子樹脂として用いるセルロースアシレートのアシル基置換度は2.97以下とする。なお、アシル基置換度は、周知の通り、セルロースのヒドロキシ基がカルボン酸によりエステル化されている割合、つまりアシル基の置換度である。 The average degree of substitution of acyl groups in cellulose acylate (hereinafter referred to as the degree of substitution of acyl groups) is preferably in the range of 1.5 to 3, more preferably in the range of 2 to 2.97, and even more preferably in the range of 2.5 to 2.97. Theoretically, the upper limit of the degree of substitution of acyl groups is 3.00, but it is difficult to synthesize cellulose acylate with an acyl substitution degree exceeding 2.97. For this reason, the degree of substitution of acyl groups in cellulose acylate used as a polymer resin is set to 2.97 or less. As is well known, the degree of substitution of acyl groups is the proportion of hydroxyl groups of cellulose esterified with carboxylic acid, that is, the degree of substitution of acyl groups.
 アシル基置換度は、慣用の方法で求めることができる。例えば、アセチル化度(アセチル基置換度)は、ASTM:D-817-91(セルロースアセテート等の試験方法)におけるアセチル化度の測定および計算に従って求められる。また、高速液体クロマトグラフィによるアシル化度(アシル基置換度)分布測定によっても測定できる。この方法の一例としてセルロースアセテートのアセチル化度測定は、試料をメチレンクロライドに溶解し、カラム「Novapac phenyl(Waters)」を用い、溶離液であるメタノールと水との混合液(メタノール:水の質量比が8:1)からジクロロメタンとメタノールとの混合液(ジクロロメタン:メタノールの質量比が9:1)へのリニアグラジエントによりアセチル化度分布を測定し、アセチル化度の異なる標準サンプルによる検量線との比較で求める。これらの測定方法は特開2003-201301号公報に記載の方法を参照して求めることができる。 The degree of acyl group substitution can be determined by a conventional method. For example, the degree of acetylation (degree of acetyl group substitution) is determined according to the measurement and calculation of the degree of acetylation in ASTM: D-817-91 (Testing method for cellulose acetate, etc.). It can also be measured by measuring the distribution of the degree of acetylation (degree of acyl group substitution) by high performance liquid chromatography. As an example of this method, the degree of acetylation of cellulose acetate is measured by dissolving the sample in methylene chloride, using a column "Novapac phenyl (Waters)", measuring the acetylation distribution by a linear gradient from the eluent mixture of methanol and water (methanol:water mass ratio 8:1) to a mixture of dichloromethane and methanol (dichloromethane:methanol mass ratio 9:1), and comparing it with a calibration curve of standard samples with different degrees of acetylation. These measurement methods can be determined by referring to the method described in JP-A-2003-201301.
 セルロースエステル樹脂において、ヘミセルロース誘導体である酸構成単位としては、パルプを素原料としたセルロースエステルに含まれるものであってよい。例えば、構成糖の種類等により、マンナン、β-1,3-1,4-グルカン、キシラン、キシログルカン等が挙げられる。これらのヘミセルロース誘導体は、側鎖等の酸成分を有する場合が多く、マンナン、キシラン等も酸成分を有する。また、セルロースエステル樹脂は、パルプの漂白等により、ヘミセルロース誘導体以外に酸成分を含んでもよい。これらのヘミセルロース誘導体は、いずれの種類であってもよく、1種であっても2種以上であってもよい。また、ヘミセルロース誘導体が複数種類含まれる場合、各種類のヘミセルロース構成比を問わず使用可能である。 In the cellulose ester resin, the acid constituent unit which is a hemicellulose derivative may be one contained in a cellulose ester made from pulp as a raw material. For example, depending on the type of constituent sugar, mannan, β-1,3-1,4-glucan, xylan, xyloglucan, etc. may be mentioned. These hemicellulose derivatives often have acid components such as side chains, and mannan, xylan, etc. also have acid components. Furthermore, the cellulose ester resin may contain acid components other than hemicellulose derivatives due to pulp bleaching, etc. These hemicellulose derivatives may be of any type, and may be one type or two or more types. Furthermore, when multiple types of hemicellulose derivatives are contained, they can be used regardless of the composition ratio of each type of hemicellulose.
 セルロースエステル樹脂に含まれる各ヘミセルロース誘導体の量は、高速液体クロマトグラフィ(HPLC、High Performance Liquid Chromatography)によって測定することができる。例えば、オーク、ポプラ、ガム、メープル等のブレンドを素原料としたパルプの場合、セルロースエステル樹脂全体を基準として、組成比として、ヘミセルロースであるマンナンを0.20%、キシランを1.00%程度含有する。 The amount of each hemicellulose derivative contained in cellulose ester resin can be measured by high performance liquid chromatography (HPLC). For example, pulp made from a blend of oak, poplar, gum, maple, etc. contains about 0.20% mannan, which is a hemicellulose, and about 1.00% xylan, based on the entire cellulose ester resin.
 セルロースエステル樹脂に含まれるヘミセルロースの種類は下記の方法で測定できる、例えば、セルロースエステル樹脂に含まれるヘミセルロースにおけるマンノースとキシロースとの比率は次のような方法で測定できる。乾燥した試料200mgを精秤量し、72%硫酸3mlを加え、氷水で冷却しながら超音波を用い、2時間以上かけて試料を完全に溶解させる。得られた溶液に蒸留水37mlを加えて十分に振とうし、窒素気流下、106℃で4時間環流した後、30分間放置する。次いで、炭酸バリウム14gの中に得られた溶液を10mL添加し、氷水で冷却しつつ超音波を作用させ中和する。上澄みを濾過しpH5.5~6.5程度になっている事を確認しHPLC用バイアル瓶に入れる。試料を以下の条件で高速液体クロマトグラフィにより分析する。 The type of hemicellulose contained in cellulose ester resin can be measured by the following method. For example, the ratio of mannose to xylose in the hemicellulose contained in cellulose ester resin can be measured by the following method. Accurately weigh 200 mg of dried sample, add 3 ml of 72% sulfuric acid, and completely dissolve the sample over 2 hours using ultrasonic waves while cooling with ice water. Add 37 ml of distilled water to the resulting solution, shake thoroughly, reflux at 106°C under a nitrogen stream for 4 hours, and then leave to stand for 30 minutes. Next, add 10 mL of the resulting solution to 14 g of barium carbonate, and neutralize by applying ultrasonic waves while cooling with ice water. Filter the supernatant, confirm that the pH is about 5.5 to 6.5, and place in an HPLC vial. Analyze the sample by high performance liquid chromatography under the following conditions.
 測定装置:高速液体クロマトグラフィ(HPLC)
 検出器:CAD
 カラム:Shodex(登録商標) Asahipak NH2-50 4E(4.6φ×250mm)(昭和電工株式会社製)
 溶離液:アセトニトリル(700mL)/超純水(300mL)
 流量:0.9ml/分
 カラム温度:10℃
 注入量:20μL
 測定時間:40分
Measurement equipment: High performance liquid chromatography (HPLC)
Detector: CAD
Column: Shodex (registered trademark) Asahipak NH2-50 4E (4.6φ×250 mm) (manufactured by Showa Denko K.K.)
Eluent: acetonitrile (700 mL) / ultrapure water (300 mL)
Flow rate: 0.9 ml/min Column temperature: 10° C.
Injection volume: 20 μL
Measurement time: 40 minutes
 数平均分子量Mnは、特に限定されないが、70000から110000の範囲内であることが好ましい。なお、本明細書において、数平均分子量Mnの測定には、ゲルろ過カラムに屈折率および光散乱を検出する検出器を接続した高速液体クロマトグラフィーシステムを用いる。高速液体クロマトグラフィーシステムとしては、例えば、Shodex(登録商標) GPC SYSTEM-21H(昭和電工株式会社製)を用いることができる。検出器としては、例えば、示差屈折率検出器(RI)を用いることができる。このようなゲル浸透クロマトグラフィの測定条件の一例は以下の通りである。 The number average molecular weight Mn is not particularly limited, but is preferably within the range of 70,000 to 110,000. In this specification, the number average molecular weight Mn is measured using a high performance liquid chromatography system in which a detector for detecting refractive index and light scattering is connected to a gel filtration column. As the high performance liquid chromatography system, for example, Shodex (registered trademark) GPC SYSTEM-21H (manufactured by Showa Denko K.K.) can be used. As the detector, for example, a differential refractive index detector (RI) can be used. An example of the measurement conditions for such gel permeation chromatography is as follows:
 溶媒:ジクロロメタン
 カラム:TSKgel(登録商標) GMHXL(7.8×300mm)二本、(東ソー株式会社製)
 ガードカラム:TSKgel(登録商標) guardcolumn HXL-H、(東ソー株式会社製)
 試料濃度:2000ppm
 流量:0.8mL/min
 試料注入量:100μL
 標準試料:PMMA(Poly Methyl Methacrylate)(分子量1850、7360、29960、79500、201800、509000、625500)
 カラム温度:28℃
Solvent: dichloromethane Column: TSKgel (registered trademark) GMHXL (7.8 x 300 mm), two columns (manufactured by Tosoh Corporation)
Guard column: TSKgel (registered trademark) guard column HXL-H (manufactured by Tosoh Corporation)
Sample concentration: 2000 ppm
Flow rate: 0.8 mL/min
Sample injection volume: 100 μL
Standard samples: PMMA (Poly Methyl Methacrylate) (molecular weight: 1850, 7360, 29960, 79500, 201800, 509000, 625500)
Column temperature: 28 ° C.
 高分子樹脂がセルロースエステル樹脂である場合、酸構成単位は、高分子樹脂全体を基準として、組成比で0.4%以上5%以下の範囲内で含まれることが好ましい。酸構成単位の組成比は、高分子樹脂が含む高分子ユニットから算出することができる。高分子ユニットとは、高分子樹脂を構成するポリマー分子の単位であり、セルロースエステル樹脂の場合、高分子ユニットは分子量を持つセルロースエステルであるとすることができる。セルロースエステル樹脂では、高分子ユニットであるセルロースエステルにおいて酸構成単位を構成するヘミセルロースであるマンナンとキシランとの構成比を測定することにより、この構成比とセルロースエステル樹脂全体の数平均分子量とから、酸構成単位の組成比を求めることができる。 When the polymer resin is a cellulose ester resin, the acid constituent units are preferably contained in a range of 0.4% to 5% in terms of composition ratio based on the entire polymer resin. The composition ratio of the acid constituent units can be calculated from the polymer units contained in the polymer resin. A polymer unit is a unit of a polymer molecule that constitutes a polymer resin, and in the case of a cellulose ester resin, the polymer unit can be considered to be a cellulose ester having a molecular weight. In a cellulose ester resin, the composition ratio of the acid constituent units can be calculated from the composition ratio of mannan and xylan, which are hemicelluloses that constitute the acid constituent units in the cellulose ester, which is a polymer unit, and this composition ratio and the number average molecular weight of the entire cellulose ester resin can be used to determine the composition ratio of the acid constituent units.
 例えば、セルロースエステル樹脂の数平均分子量が90000であり、ヘミセルロースとして、マンナンが組成比で0.20%、キシランが組成比で1.00%、合わせて、組成比で1.20%含有される場合は、酸構成単位がマンナン及びキシランからなるヘミセルロースであるとすることができ、酸構成単位の比率は、セルロースエステル樹脂全体を基準として1.20%とすることができる。また、セルロースエステルの組成及び数平均分子量、並びに、マンナン及びキシランの組成から、高分子ユニットであるセルロースエステル中の酸構成単位の成分の数は、セルロースエステル樹脂における平均で6.7個とすることができる。 For example, if the number average molecular weight of a cellulose ester resin is 90,000, and the hemicellulose contains 0.20% mannan and 1.00% xylan in a composition ratio, totaling 1.20%, the acid constituent units of the hemicellulose can be considered to be mannan and xylan, and the ratio of the acid constituent units can be 1.20% based on the entire cellulose ester resin. In addition, based on the composition and number average molecular weight of the cellulose ester, and the composition of the mannan and xylan, the number of components of the acid constituent units in the cellulose ester, which is a polymer unit, can be set to an average of 6.7 in the cellulose ester resin.
 高分子ユニットであるセルロースエステルにおける酸構成単位の成分の数(単位:個)は、特に制限はないが、例えば1.0個以上20個以下の範囲内であることが好ましい。酸構成単位が上記範囲内であることにより、フィルム用樹脂組成物に添加される有機化合物との相乗効果がより好ましく発揮され、フィルム製造時の支持体金属との剥離性がより良好となる。 The number of components of the acid constituent units in the cellulose ester, which is a polymer unit, is not particularly limited, but is preferably within the range of, for example, 1.0 to 20. By having the acid constituent units within the above range, a synergistic effect with the organic compound added to the resin composition for film is more preferably exerted, and the peelability from the support metal during film production is improved.
 また、パルプの漂白やヘミセルロース誘導体であるマンナンであるマンノース単位及びキシランであるキシロース単位を含むセルロースに起因して、酸成分としてカルボキシル基を有する場合、セルロースエステル100g当たりのカルボキシル基濃度(meq/100g、セルロース換算)は、例えば、0.1~2.0、好ましくは0.1~1.5、より好ましくは0.5~1.5、さらに好ましくは0.3~1.2、特に好ましくは0.7~1.2程度であり、例えば0.4~1.5、または、例えば0.4~0.9程度であってもよい。 In addition, when carboxyl groups are present as acid components due to bleaching of pulp or cellulose containing mannose units, which are mannans and xylose units, which are hemicellulose derivatives, and xylose units, which are xylan, the carboxyl group concentration per 100 g of cellulose ester (meq/100 g, cellulose equivalent) is, for example, 0.1 to 2.0, preferably 0.1 to 1.5, more preferably 0.5 to 1.5, even more preferably 0.3 to 1.2, and particularly preferably about 0.7 to 1.2, and may be, for example, 0.4 to 1.5, or, for example, about 0.4 to 0.9.
 セルロースエステル中のカルボキシル基含量(セルロース換算)は、例えば、セルロースエステルのカルボキシル基にメチレンブルーを吸着させることにより、セルロースエステル中のカルボキシル基含量を算出する方法等が採用できる。 The carboxyl group content in cellulose ester (in terms of cellulose) can be calculated, for example, by adsorbing methylene blue to the carboxyl groups of the cellulose ester.
 次に、高分子樹脂がポリイミドである場合について説明する。ポリイミドは、イミド結合を持つポリマーであり、特に、ポリマーの主鎖の繰返し単位中にイミド結合を有するイミド環を含むポリマーである。ポリイミドは、溶液成膜法が可能なものであれば好適に用いることができる。ポリイミドは、ジアミン化合物と酸無水物化合物とから形成されることが好ましい。ポリイミドは、有機溶剤可溶性であることが好ましい。 Next, the case where the polymer resin is polyimide will be described. Polyimide is a polymer having imide bonds, and in particular, a polymer containing imide rings having imide bonds in the repeating units of the main chain of the polymer. Polyimide can be suitably used as long as it can be subjected to a solution film forming method. Polyimide is preferably formed from a diamine compound and an acid anhydride compound. Polyimide is preferably soluble in an organic solvent.
 高分子樹脂としてのポリイミドは、ポリイミドの生成に際し、イミド化反応時の反応が不十分な場合、高分子の主鎖構造の一部にカルボキシル基が残る場合がある。イミド化反応時の反応は、イミド化率により測定することができ、イミド化率により、酸成分を含む酸構成単位の割合を測定し比較することができる。イミド化率が高い場合はポリイミドに含まれる酸構成単位の割合が低く、カルボキシル基の残存が少なく、イミド化率が低い場合はポリイミドに含まれる酸構成単位の割合が高く、カルボキシル基の残存が多いといえる。一般的なポリイミドは、多少の酸成分を含有する。 When polyimide is produced as a polymer resin, if the reaction during the imidization reaction is insufficient, carboxyl groups may remain as part of the polymer's main chain structure. The reaction during the imidization reaction can be measured by the imidization rate, which allows the proportion of acid constituent units containing acid components to be measured and compared. When the imidization rate is high, the proportion of acid constituent units contained in the polyimide is low and there are few remaining carboxyl groups, and when the imidization rate is low, the proportion of acid constituent units contained in the polyimide is high and there are many remaining carboxyl groups. General polyimides contain some acid components.
 高分子樹脂がポリイミドである場合、酸構成単位は、高分子樹脂全体を基準として、組成比で0.4%以上5%以下の範囲内で含まれることが好ましい。ポリイミドにおける酸構成単位の組成比は、数平均分子量及びイミド化率から算出することができ、例えば、数平均分子量Mnが180000のポリイミドにおいて、イミド化率が98.5%である場合は、非イミド化率は1.5%とすることができるので、イミド化されなかったカルボキシル基の組成から、高分子ユニットであるポリイミド中の酸構成単位は、3.7個とすることができる。 When the polymer resin is a polyimide, the acid constituent units are preferably contained in a composition ratio of 0.4% to 5% based on the entire polymer resin. The composition ratio of the acid constituent units in the polyimide can be calculated from the number average molecular weight and the imidization rate. For example, in a polyimide with a number average molecular weight Mn of 180,000, if the imidization rate is 98.5%, the non-imidization rate can be 1.5%, so that the number of acid constituent units in the polyimide, which is a polymer unit, can be determined to be 3.7 based on the composition of the non-imidized carboxyl groups.
 ポリイミドにおける酸構成単位の成分の数(単位:個)は、特に制限はないが、例えば1.0個以上20個以下の範囲内であることが好ましい。酸構成単位が上記範囲内であることにより、フィルム用樹脂組成物に添加される有機化合物との相乗効果がより好ましく発揮され、フィルム製造時の支持体金属との剥離性がより良好となる。 The number of components of the acid structural unit in the polyimide (unit: pieces) is not particularly limited, but is preferably within the range of, for example, 1.0 to 20. By having the acid structural unit within the above range, a synergistic effect with the organic compound added to the resin composition for film is more preferably exerted, and the peelability from the support metal during film production is improved.
 ポリイミドとしては、芳香族ポリイミド、又は脂環族ポリイミド等を用いることができ、これらは酸無水物化合物とジアミン化合物とが連結された部分の化学構造が、芳香族又は脂環族である化合物を用いることにより適宜選択できる。芳香族、脂環族、又はそれらの結合部等を、フッ素、炭化水素、ハロゲン、又は親水性基等で置換することもできる。酸無水物化合物及びジアミン化合物は、溶剤であるメチレンクロライドへの溶解性若しくは樹脂のガラス転移点、又はフィルムとした際の物性若しくは透明性の観点から選択することができる。これらのうち脂環族ポリイミド又はフッ素置換ポリイミドは、メチレンクロライド溶解性又はフィルム透明性等の点から好ましい。 As the polyimide, aromatic polyimide or alicyclic polyimide can be used, and these can be appropriately selected by using a compound in which the chemical structure of the portion where the acid anhydride compound and the diamine compound are linked is aromatic or alicyclic. The aromatic, alicyclic, or the bond between them can also be substituted with fluorine, hydrocarbon, halogen, hydrophilic group, or the like. The acid anhydride compound and the diamine compound can be selected from the viewpoint of solubility in methylene chloride, which is a solvent, or the glass transition point of the resin, or the physical properties or transparency when made into a film. Of these, alicyclic polyimides or fluorine-substituted polyimides are preferred from the viewpoint of solubility in methylene chloride or film transparency, etc.
 本発明に用いられるポリイミドは、樹脂の状態でイミド化されている樹脂であることが好ましい。ポリイミドのフィルム形成方法としては、酸無水化合物とジアミン化合物とが反応したポリアミック酸をフィルム化して熱によりイミド化する方法があるが、この方法では高熱処理が必要で生産工程負荷が大きい、ポリアミック酸の親水性成分多く樹脂の金属付着性が高い、又は熱処理後に不溶化や着色が起きやすく光学用途のフィルム加工が困難である等のおそれがある。樹脂の状態でイミド化され、メチレンクロライドへの溶解性を有するポリイミド樹脂を用いることにより、溶液流延可能で透明で平滑なフィルムを得ることができるため好ましい。 The polyimide used in the present invention is preferably a resin that is imidized in the resin state. One method for forming a polyimide film is to form a polyamic acid, which is a reaction between an acid anhydride compound and a diamine compound, into a film and then imidize it by heat. However, this method requires high heat treatment, which places a heavy burden on the production process, and the polyamic acid contains a large amount of hydrophilic components, which makes the resin highly adhesive to metals, and it is prone to insolubilization and coloring after heat treatment, making film processing for optical applications difficult. It is preferable to use a polyimide resin that is imidized in the resin state and has solubility in methylene chloride, because this makes it possible to obtain a transparent, smooth film that can be solution-cast.
 本発明に用いられるポリイミド樹脂の分子量は、数平均分子量Mnで10000以上300000以下の範囲内が好ましく、50000以上300000以下の範囲内がより好ましい。分子量が10000以下であると、フィルムの強度が得られないおそれがあり、またポリイミド樹脂において親水性となりやすい分子末端の比率が高くなるため、樹脂の金属付着性が高まるおそれがある。分子量が300000以上であると、溶剤への溶解が困難となるおそれがある。 The molecular weight of the polyimide resin used in the present invention is preferably in the range of 10,000 to 300,000 in number average molecular weight Mn, and more preferably in the range of 50,000 to 300,000. If the molecular weight is 10,000 or less, the film strength may not be sufficient, and the proportion of molecular ends that tend to be hydrophilic in the polyimide resin may increase, which may increase the resin's adhesion to metals. If the molecular weight is 300,000 or more, it may become difficult to dissolve in a solvent.
 本発明においてこのようなポリイミドであればいずれも用いることができるが、例えば、無水ピロメリット酸無水物(PMDA、Pyromellitic Dianhydride)と4,4′-ジアミノジフェニルエーテル(ODA、4,4′-Oxydianiline)とから合成されるポリイミド、又は4,4′-(ヘキサフルオロイソプロピリデン)ジフタル酸二無水物(6FDA、4,4′-(Hexafluoroisopropylidene)diphthalic Anhydride)と2,2′-ビス(トリフルオロメチル)-4,4′-ジアミノ-ジフェニル(TFMB又はTFDB、2,2′-bis(trifluoromethyl)-[1,1′-biphenyl]-4,4′-diamine)とから合成されるポリイミド等が挙げられる。より具体的には、フィルムの物性の点等により、上記の6FDA/TFMBからなるポリイミドを好ましく用いることができる。また、市販品としては、三菱瓦斯化学株式会社製ネオプリム(登録商標)又は河村産業株式会社製KPI-MX300F等が好ましくあげられる。なお、ポリイミドは、2種以上の混合物を用いても良い。 Any of these polyimides can be used in the present invention. For example, polyimides synthesized from pyromellitic dianhydride (PMDA) and 4,4'-diaminodiphenyl ether (ODA), or 4,4'-(hexafluoroisopropylidene)diphthalic dianhydride (6F Examples of suitable polyimides include polyimides synthesized from 6FDA/TFMB (4,4'-(hexafluoroisopropylidene) diphthalic anhydride) and 2,2'-bis(trifluoromethyl)-4,4'-diamino-diphenyl (TFMB or TFDB, 2,2'-bis(trifluoromethyl)-[1,1'-biphenyl]-4,4'-diamine). More specifically, polyimides made of 6FDA/TFMB can be preferably used in terms of the physical properties of the film. In addition, examples of commercially available products include Neoprim (registered trademark) manufactured by Mitsubishi Gas Chemical Co., Ltd. and KPI-MX300F manufactured by Kawamura Sangyo Co., Ltd. It should be noted that a mixture of two or more types of polyimides may be used.
 次に、高分子樹脂がアクリル樹脂の場合について説明する。アクリル樹脂としては、溶液成膜に用いることができるものであれば限定はなく、アクリル酸エステル又はメタクリル酸エステルの重合体である。例えば、メチルアクリレート(MA、methyl acrylate)、メチルメタクリレート(MMA、Methyl Methacrylate)の重合体、又は、これらとアクリル酸やメタクリル酸との共重合体などが好ましい。 Next, the case where the polymer resin is an acrylic resin will be described. There are no limitations on the acrylic resin as long as it can be used for solution film formation, and it is a polymer of an acrylic acid ester or a methacrylic acid ester. For example, polymers of methyl acrylate (MA) and methyl methacrylate (MMA), or copolymers of these with acrylic acid or methacrylic acid, are preferable.
 アクリル樹脂においては、原料となるモノマーに含まれるカルボキシル基により、酸価が様々である。また、劣化により、カルボニル化合物等が付加される場合もある。アクリル樹脂に、酸モノマーを共重合することによっても、酸を導入することができる。酸を含有する樹脂として一般的に用いられるのがアクリル樹脂であると言える。 Acrylic resins have a wide range of acid values depending on the carboxyl groups contained in the raw monomers. In addition, carbonyl compounds may be added due to deterioration. Acid can also be introduced by copolymerizing an acid monomer into acrylic resin. It can be said that acrylic resins are commonly used as resins that contain acid.
 酸モノマーの具体例としては、アクリル酸、メタクリル酸等である。このような酸含有のアクリル系樹脂として、市販品としては、例えば三菱レイヨン株式会社製の商品名「ダイヤナール(登録商標)BR73」(酸価:3.3mg(KOH)/g)等が挙げられる。 Specific examples of acid monomers include acrylic acid and methacrylic acid. Commercially available products of this type of acid-containing acrylic resin include "DIANAL (registered trademark) BR73" (acid value: 3.3 mg (KOH)/g) manufactured by Mitsubishi Rayon Co., Ltd.
 高分子樹脂がアクリル樹脂である場合、酸構成単位は、高分子樹脂全体を基準として、組成比で0.4%以上5%以下の範囲内で含まれることが好ましい。アクリル樹脂における酸構成単位の組成比は、原料、高分子ユニットの組成、酸価等から算出することができ、例えば、アクリル酸を1%含有するMMAとMAとの組成比が95:5のアクリル樹脂であって、数平均分子量Mnが100000のものは、酸構成単位が組成比1.0%であるから、高分子ユニット中の酸成分数は平均で10.1個とすることができる。 When the polymer resin is an acrylic resin, the acid constituent units are preferably contained in a composition ratio of 0.4% to 5% based on the entire polymer resin. The composition ratio of the acid constituent units in the acrylic resin can be calculated from the raw materials, the composition of the polymer unit, the acid value, etc. For example, an acrylic resin with a composition ratio of MMA and MA of 95:5 containing 1% acrylic acid and a number average molecular weight Mn of 100,000 has a composition ratio of 1.0% acid constituent units, so the number of acid components in the polymer unit can be set to an average of 10.1.
 アクリル樹脂における酸構成単位の成分の数(単位:個)は、特に制限はないが、例えば1.0個以上20個以下の範囲内であることが好ましい。酸構成単位が上記範囲内であることにより、フィルム用樹脂組成物に添加される有機化合物との相乗効果がより好ましく発揮され、フィルム製造時の支持体金属との剥離性がより良好となる。 The number of components of the acid structural unit in the acrylic resin (units: pieces) is not particularly limited, but is preferably within the range of, for example, 1.0 to 20. By having the acid structural unit within the above range, a synergistic effect with the organic compound added to the resin composition for film is more preferably exerted, and the peelability from the support metal during film production is improved.
 本発明に用いられるアクリル樹脂の分子量は、数平均分子量Mnで10000以上200000以下の範囲内が好ましく、50000以上100000以下の範囲内がより好ましい。分子量が10000以下であると、フィルムの強度が得られないおそれがあり、またアクリル樹脂において親水性となりやすい分子末端の比率が高くなるため、樹脂の金属付着性が高まるおそれがある。分子量が200000以上であると、溶剤への溶解が困難となるおそれがある。 The molecular weight of the acrylic resin used in the present invention is preferably in the range of 10,000 to 200,000 in number average molecular weight Mn, and more preferably in the range of 50,000 to 100,000. If the molecular weight is 10,000 or less, the film strength may not be sufficient, and the proportion of molecular ends that tend to be hydrophilic in the acrylic resin may increase, which may increase the resin's adhesion to metals. If the molecular weight is 200,000 or more, it may become difficult to dissolve in a solvent.
 以上のような高分子樹脂は、1種を用いてもよいし、2種以上を使用しても良い。2種以上を使用する場合は、例えば、分子量の異なる同種の高分子樹脂、又は共重合組成の異なる同種の高分子樹脂を、溶液の溶解性若しくは乾燥性、又はフィルムの物理特性若しくは透明性の観点から適宜選択して使用することができる。 The above polymer resins may be used alone or in combination of two or more. When using two or more polymer resins, for example, the same type of polymer resins with different molecular weights or the same type of polymer resins with different copolymer compositions can be appropriately selected and used from the viewpoints of the solubility or drying property of the solution, or the physical properties or transparency of the film.
 本発明のフィルム用樹脂組成物は、リン酸基を含み酸解離性を有する有機化合物を含有する。上記有機化合物は、添加剤として含有される。有機化合物は、JIS K0070-1992による化学製品の酸価測定法により測定した酸価(単位:mg(KOH)/g)が40以上300以下の範囲内であることが好ましい。より好ましくは、60以上250以下の範囲内であり、さらに好ましくは100以上200以下の範囲内である。この範囲内であると、はぎとり性が良好であり、フィルムの透明性が高い(ヘーズが低い)ため好ましい。 The resin composition for films of the present invention contains an organic compound that contains a phosphate group and has acid dissociability. The organic compound is contained as an additive. The organic compound preferably has an acid value (unit: mg(KOH)/g) in the range of 40 to 300 as measured by the acid value measurement method for chemical products according to JIS K0070-1992. More preferably, it is in the range of 60 to 250, and even more preferably, it is in the range of 100 to 200. If it is in this range, it is preferable because the peelability is good and the transparency of the film is high (low haze).
 リン酸基を含み、酸解離性を有する有機化合物としては、各種のリン酸が挙げられる。リン酸は、以下の一般式(1)又は(2)で表される化合物の少なくとも1つであることが好ましい。 Examples of organic compounds that contain a phosphate group and have acid dissociability include various types of phosphoric acid. The phosphoric acid is preferably at least one of the compounds represented by the following general formula (1) or (2).
Figure JPOXMLDOC01-appb-C000005
 
Figure JPOXMLDOC01-appb-C000006
 
Figure JPOXMLDOC01-appb-C000005
 
Figure JPOXMLDOC01-appb-C000006
 
 上記式(1)又は式(2)において、Rは炭素数が1以上20以下のアルキル基、R2は炭素数が1以上20以下のアルキル基、Rは炭素数が1以上6以下のアルキル基、nは1以上8以下の自然数、Xはヒドロキシ基、Y及びZはそれぞれヒドロキシ基、アルコキシ基、または酸素のいずれか1つである。 In the above formula (1) or (2), R1 is an alkyl group having 1 to 20 carbon atoms, R2 is an alkyl group having 1 to 20 carbon atoms, R3 is an alkyl group having 1 to 6 carbon atoms, n is a natural number of 1 to 8, X is a hydroxy group, and Y and Z are each one of a hydroxy group, an alkoxy group, and oxygen.
 具体的な化合物としては、Rが炭素数が12個のアルキル基(表1にラウリル(C12)と表記する)であるもの(ラウリルリン酸、フォスファノール、ML-200)、R1が酸素であり、Rが炭素数が12個のアルキル基(表1にラウリル(C12)と表記する)、Rがエチレンでありnが1から8のいずれかであるもの(ポリオキシエチレンラウリルリン酸エステル、プライサーフA208B、プライサーフA219B)、Rが酸素であり、Rが炭素数が10個のアルキル基(表1にC10と表記する)、Rがエチレンでありnが1から8のいずれかであるもの(ポリオキシエチレントリデシルエーテルリン酸エステル、プライサーフA212C、プライサーフA215C)、Rが酸素であり、Rが2-エチルヘキシル基(炭素数8であるため表1に(C8)と記す)、Rがエチレンでありnが1から8のいずれかであるもの(ポリオキシエチレンアルキル(C8)エーテルリン酸エステル、プライサーフA208F)、Rが酸素であり、Rがスチレン化フェニル基(炭素数8であるため表1に(C8)と記す)、Rがエチレンでありnが1から8のいずれかであるもの(ポリオキシエチレンスチレン化フェニルエーテルリン酸エステル、プライサーフAL)等が挙げられる。 Specific compounds include those in which R 1 is an alkyl group having 12 carbon atoms (represented as lauryl (C12) in Table 1) (lauryl phosphate, Phosphanol, ML-200), R 1 is oxygen and R 2 is an alkyl group having 12 carbon atoms (represented as lauryl (C12) in Table 1), R 3 is ethylene and n is any one of 1 to 8 (polyoxyethylene lauryl phosphate ester, Plysurf A208B, Plysurf A219B), R 1 is oxygen and R 2 is an alkyl group having 10 carbon atoms (represented as C10 in Table 1), R 3 is ethylene and n is any one of 1 to 8 (polyoxyethylene tridecyl ether phosphate ester, Plysurf A212C, Plysurf A215C), R 1 is oxygen and R 2 is a 2-ethylhexyl group (represented as (C8) in Table 1 because it has 8 carbon atoms), and R Examples include those in which R 1 is oxygen and R 2 is a styrenated phenyl group (having 8 carbon atoms, hence indicated as (C8) in Table 1), and those in which R 3 is ethylene and n is any one of 1 to 8 (polyoxyethylene styrenated phenyl ether phosphate, Plysurf A208F).
 表1において、上記した化合物毎に、化合物番号、R、R、R、酸価、及び品名を示す。なお、表において、該当するものがない箇所に「-」と記載する。また、酸価は、上記したとおり、日本工業規格JIS K0070‐1992による酸価測定法により求めた値であり、単位は(mg(KOH)/g)である。 In Table 1, the compound number, R1 , R2 , R3 , acid value, and product name are shown for each of the above compounds. In the table, "-" is entered where there is no corresponding item. As described above, the acid value is a value determined by the acid value measurement method according to Japanese Industrial Standard JIS K0070-1992, and the unit is (mg(KOH)/g).
Figure JPOXMLDOC01-appb-T000007
 
Figure JPOXMLDOC01-appb-T000007
 
 本発明のフィルム用樹脂組成物は、これらに例示される有機化合物を、高分子樹脂100質量部に対して、0.01質量部以上10質量部以下の範囲内で含有することが好ましい。より好ましくは、0.02質量部以上5質量部以下の範囲内であり、さらに好ましくは、0.03質量部以上3質量部以下の範囲内である。特に、高分子樹脂がセルロース誘導体からなる場合は、高分子樹脂100質量部に対して、有機化合物は、0.01質量部以上1質量部以下の範囲内で含むことが好ましい。また、高分子樹脂がポリイミド樹脂からなる場合は、高分子樹脂100質量部に対して、有機化合物は、0.05質量部以上5質量部以下の範囲内で含むことが好ましい。また、高分子樹脂がアクリル樹脂からなる場合は、高分子樹脂100質量部に対して、有機化合物は、0.05質量部以上5質量部以下の範囲内で含むことが好ましい。これらの範囲内で含有することにより、各種の高分子樹脂を含むそれぞれのフィルム用樹脂組成物を流延したフィルムを支持体から剥離する際の剥離促進効果が奏され、また、フィルムを支持体から剥離した後のフィルムの剥ぎ取り面状が良好となる。 The resin composition for films of the present invention preferably contains the organic compounds exemplified above in an amount of 0.01 to 10 parts by mass relative to 100 parts by mass of the polymer resin. More preferably, the amount is in the range of 0.02 to 5 parts by mass, and even more preferably, in the range of 0.03 to 3 parts by mass. In particular, when the polymer resin is made of a cellulose derivative, the organic compound is preferably contained in an amount of 0.01 to 1 part by mass relative to 100 parts by mass of the polymer resin. Furthermore, when the polymer resin is made of a polyimide resin, the organic compound is preferably contained in an amount of 0.05 to 5 parts by mass relative to 100 parts by mass of the polymer resin. Furthermore, when the polymer resin is made of an acrylic resin, the organic compound is preferably contained in an amount of 0.05 to 5 parts by mass relative to 100 parts by mass of the polymer resin. By containing the organic compound within these ranges, a peeling promotion effect is achieved when a film in which each resin composition for films containing various polymer resins is cast is peeled off from a support, and the peeling surface of the film after peeling off from the support is good.
 本発明のフィルム用樹脂組成物は、溶剤を含む。溶剤は、ハロゲン化炭化水素であることが好ましい。溶剤としては、樹脂を溶解するものであれば特に限定されないが、塩素を分子内に含む溶剤(以下、塩素系溶剤と称する)が好ましい。使用できる塩素系溶剤としては、例えば、メチレンクロライド、クロロホルム、1,2-ジクロロエタン、又は1,1,2,2-テトラクロロエタンが挙げられ、本実施例ではメチレンクロライドを用いている。塩素系溶剤の場合、中でもメチレンクロライドの場合には、他の溶剤成分を併用することなく、単独で溶剤として使用することができ、本実施例ではメチレンクロライドのみを溶剤として用いている。溶剤に塩素系溶剤であるメチレンクロライドを用いているから、高分子樹脂は、室温下であっても、溶液成膜法におけるドープとするのに十分な質量割合で溶剤に溶解する。高分子樹脂の溶解性がよいから、透明性に優れたフィルムが得られる。 The resin composition for film of the present invention contains a solvent. The solvent is preferably a halogenated hydrocarbon. The solvent is not particularly limited as long as it dissolves the resin, but a solvent containing chlorine in the molecule (hereinafter referred to as a chlorine-based solvent) is preferable. Examples of chlorine-based solvents that can be used include methylene chloride, chloroform, 1,2-dichloroethane, and 1,1,2,2-tetrachloroethane, and methylene chloride is used in this embodiment. In the case of chlorine-based solvents, especially in the case of methylene chloride, it can be used alone as a solvent without using other solvent components, and in this embodiment, only methylene chloride is used as the solvent. Since methylene chloride, a chlorine-based solvent, is used as the solvent, the polymer resin dissolves in the solvent at a mass ratio sufficient to form a dope in the solution film formation method even at room temperature. Since the solubility of the polymer resin is good, a film with excellent transparency can be obtained.
 メチレンクロライドに、炭素数が1以上3以下の範囲内の1価アルコールを添加してもよい。このような1価アルコールとしては、メタノール、エタノール、又は1-プロパノール等を用いることができる。好ましくは、メタノールを用いる。1価アルコールを添加することにより、特に、溶液製膜法によりフィルムを作成する場合において、フィルム用樹脂組成物からなるドープが流延ダイの金属リップに付着し固まった場合に、極端に取れにくく、フィルムにおいてスジが発生する等の面状故障の原因になるとの固着の問題、又はドープを流延する金属の支持体(バンド)から、フィルムを剥離させる工程にて必要な荷重が非常に高くなるとの剥取りの問題が改善される。 A monohydric alcohol having a carbon number in the range of 1 to 3 may be added to methylene chloride. Examples of such monohydric alcohol include methanol, ethanol, and 1-propanol. Methanol is preferably used. By adding a monohydric alcohol, particularly when a film is produced by a solution casting method, the dope made of the resin composition for film adheres to the metal lip of the casting die and hardens, which makes it extremely difficult to remove, causing surface defects such as streaks in the film, and the peeling problem of the load required in the process of peeling the film from the metal support (band) on which the dope is cast becomes very high.
 メチレンクロライドへの1価アルコールの混合割合は、メチレンクロライドと1価アルコールとを含む全溶剤に対して、質量割合で、0.5%以上10%以下の範囲内であることが好ましい。より好ましくは、1%以上5%以下、さらに好ましくは、1%以上3%以下である。この範囲内であることにより、溶液流延したフィルムの透明性が良好である。本発明において、溶剤として添加した1価アルコールは、フィルム中の残留溶剤量として測定することができる。 The mixing ratio of monohydric alcohol to methylene chloride is preferably within the range of 0.5% to 10% by mass relative to the total solvent including methylene chloride and monohydric alcohol. More preferably, it is within the range of 1% to 5%, and even more preferably, it is within the range of 1% to 3%. By being within this range, the transparency of the solution-cast film is good. In the present invention, the monohydric alcohol added as a solvent can be measured as the amount of residual solvent in the film.
 溶剤としてメチレンクロライドを用いる場合、メチレンクロライドに対して質量パーセント濃度で10%以上溶解する高分子樹脂が好ましく用いられる。15%以上溶解する高分子樹脂がより好ましく用いられ、20%以上溶解する高分子樹脂がさらに好ましく用いられる。少なくとも高分子樹脂を10%溶解すると、溶液製膜において平滑なフィルムを得ることができるからである。 When methylene chloride is used as the solvent, a polymer resin that dissolves in methylene chloride at a mass percent concentration of 10% or more is preferably used. A polymer resin that dissolves at 15% or more is more preferably used, and a polymer resin that dissolves at 20% or more is even more preferably used. This is because a smooth film can be obtained in solution casting when at least 10% of the polymer resin is dissolved.
 フィルム用樹脂組成物には、メチレンクロライドと1価アルコールとからなる溶剤に、高分子樹脂と有機化合物とを添加する他に、可塑剤、紫外線吸収剤、微粒子、又は劣化防止剤等の各種添加剤が含まれていてもよい。 The resin composition for films may contain various additives such as plasticizers, UV absorbers, fine particles, or anti-degradants, in addition to polymer resins and organic compounds added to a solvent consisting of methylene chloride and a monohydric alcohol.
 添加剤としては、微粒子であるマット剤を添加することが好ましい。マット剤は、フィルムの表面の滑り性を向上させるための添加剤である。マット剤として機能する一例はシリカ(SiO)の微粒子である。なお、マット剤は、支持体からの剥離性の向上にも寄与する。 As the additive, it is preferable to add a matting agent which is a fine particle. The matting agent is an additive for improving the slipperiness of the film surface. An example of a matting agent is fine particles of silica (SiO 2 ). The matting agent also contributes to improving the peelability from the support.
 シリカの微粒子は、TMS(trimethylsilyl)基により表面改質(修飾)された微粒子が好ましい。表面改質は、疎水化処理であり、通常行われているように、シリカ微粒子をHMDS(hexamethyldisilazane、ヘキサメチルジシラザン)、又はTMCS(Trimethylsilyl chlorid、トリメチルクロロシラン)等により処理する。これにより、シリカの表面のシラノール基がトリメチルシリル化され、疎水基が導入されるため疎水化処理となる。シリカにおけるトリメチルシリル基の表面被覆率は、0.005以上0.120以下の範囲内であることが好ましい。より好ましくは、0.008以上0.050以下の範囲内であり、さらに好ましくは、0.012以上0.030以下の範囲内である。表面被覆率が0.005以上0.120以下の範囲内であることにより、表面の散乱が抑制され透明性を確保でき、かつ、フィルム同士が接着することが抑制できるため好ましい。 The silica fine particles are preferably surface-modified (modified) with TMS (trimethylsilyl) groups. Surface modification is a hydrophobic treatment, and as is commonly done, silica fine particles are treated with HMDS (hexamethyldisilazane) or TMCS (trimethylsilyl chloride). As a result, the silanol groups on the silica surface are trimethylsilylated and hydrophobic groups are introduced, resulting in a hydrophobic treatment. The surface coverage rate of trimethylsilyl groups on the silica is preferably in the range of 0.005 to 0.120. More preferably, it is in the range of 0.008 to 0.050, and even more preferably, it is in the range of 0.012 to 0.030. A surface coverage ratio in the range of 0.005 to 0.120 is preferable because it suppresses surface scattering, ensures transparency, and prevents films from adhering to each other.
 なお、表面被覆率は、微粒子中の炭素含有率を比表面積で除して求める。すなわち、表面被覆率は、微粒子の炭素含有率をRC、比表面積をSとするときに、RC/Sで求める。炭素含有率RCは、燃焼法による元素分析(例えば、株式会社パーキンエルマージャパン製等の全自動元素分析装置)で求められる。比表面積Sは、BET法(Brunauer、Emmett、及びTellerによる吸着理論方法)に従い測定する。シリカの微粒子は、比表面積として20m/g以上400m/g以下の範囲内であることが好ましく、50m/g以上300m/g以下の範囲内がより好ましく、70m/g以上150m/g以下の範囲内であることが特に好ましい。この範囲であることにより、シリカ微粒子の粒子径として透明性を確保でき、フィルム同士の接着を抑制できるため好ましい。 The surface coverage is calculated by dividing the carbon content in the fine particles by the specific surface area. That is, the surface coverage is calculated by RC/S, where RC is the carbon content of the fine particles and S is the specific surface area. The carbon content RC is calculated by elemental analysis using a combustion method (for example, a fully automatic elemental analyzer manufactured by PerkinElmer Japan Co., Ltd.). The specific surface area S is measured according to the BET method (the adsorption theory method by Brunauer, Emmett, and Teller). The silica fine particles preferably have a specific surface area of 20 m 2 /g or more and 400 m 2 /g or less, more preferably 50 m 2 /g or more and 300 m 2 /g or less, and particularly preferably 70 m 2 /g or more and 150 m 2 /g or less. This range is preferable because the particle diameter of the silica fine particles can ensure transparency and suppress adhesion between films.
 次にフィルムの製造方法について説明する。フィルムの製造方法は、流延工程と、剥離工程と、乾燥工程とを有する。流延工程では、フィルム用樹脂組成物からなるドープを、金属製の支持体に流延することにより流延膜を形成する。剥離工程では、流延膜を支持体から剥がすことによりフィルムを形成する。乾燥工程では、フィルムを段階的に乾燥する。 Next, the method for producing the film will be described. The method for producing the film includes a casting process, a peeling process, and a drying process. In the casting process, a dope made of a resin composition for the film is cast onto a metal support to form a cast film. In the peeling process, the cast film is peeled off from the support to form a film. In the drying process, the film is dried in stages.
 図1に示すフィルム製造設備20は、フィルム10を製造する設備の一例であり、この例を用いてフィルムの製造方法について説明する。フィルム製造設備20は、ドープ調製装置22と、フィルム製造装置23とを備える。ドープ調製装置22は、フィルム用樹脂組成物であるドープ21を調製するためのものである。ドープ調製装置22は、ミキシングタンク26と、ポンプ27と、フィルタ28と、貯留タンク31と、ポンプ32とを備え、これらが上流側からこの順に配管33によって接続している。 The film manufacturing equipment 20 shown in FIG. 1 is an example of equipment for manufacturing a film 10, and the film manufacturing method will be described using this example. The film manufacturing equipment 20 includes a dope preparation device 22 and a film manufacturing device 23. The dope preparation device 22 is for preparing a dope 21, which is a resin composition for a film. The dope preparation device 22 includes a mixing tank 26, a pump 27, a filter 28, a storage tank 31, and a pump 32, which are connected in this order from the upstream side by piping 33.
 ミキシングタンク26は、ドープ21の原材料である高分子樹脂11と有機化合物12と溶剤15とを混合することにより、溶剤15に高分子樹脂11及び有機化合物12を溶解するためのものである。まず、ミキシングタンク26内で、メチレンクロライドと1価アルコールであるメタノールとを混合することにより溶剤15を調整する(溶媒調整工程)。溶剤15が入っているミキシングタンク26に、高分子樹脂11及び有機化合物12を添加する。 The mixing tank 26 is for dissolving the polymer resin 11 and the organic compound 12 in the solvent 15 by mixing the raw materials of the dope 21, the polymer resin 11, the organic compound 12, and the solvent 15. First, in the mixing tank 26, the solvent 15 is adjusted by mixing methylene chloride with methanol, which is a monohydric alcohol (solvent adjustment process). The polymer resin 11 and the organic compound 12 are added to the mixing tank 26 containing the solvent 15.
 ミキシングタンク26に供給する高分子樹脂11は、本実施形態では粉体であるが、高分子樹脂11の態様は粉体に限定されず、例えば、フレーク状、又はペレット状等でもよい。ミキシングタンク26には、案内されてきた高分子樹脂11と有機化合物12と溶剤15との混合物を攪拌する攪拌機構(図示無し)を備えており、これにより溶解を促進している。本実施形態の攪拌機構は、ミキシングタンク内に収容された攪拌羽と、攪拌羽を回転駆動する駆動部とである。ただし攪拌機構は、高分子樹脂11と有機化合物12と溶剤15との混合物を攪拌する機構であれば、特に限定されない。高分子樹脂11と有機化合物12とは、ミキシングタンク26において溶剤15と混合されることにより溶剤15に溶解し、ドープ21がつくられる。有機化合物12は、溶剤15に対する溶解性に優れ、また、高分子樹脂11が溶剤15に溶解した溶液との相溶性も優れるから、透明性に優れたフィルム10が得られる。 In this embodiment, the polymer resin 11 supplied to the mixing tank 26 is a powder, but the form of the polymer resin 11 is not limited to a powder, and may be, for example, a flake or pellet shape. The mixing tank 26 is equipped with a stirring mechanism (not shown) that stirs the mixture of the polymer resin 11, the organic compound 12, and the solvent 15 that has been introduced, thereby promoting dissolution. The stirring mechanism in this embodiment is a stirring blade contained in the mixing tank and a drive unit that rotates and drives the stirring blade. However, the stirring mechanism is not particularly limited as long as it is a mechanism that stirs the mixture of the polymer resin 11, the organic compound 12, and the solvent 15. The polymer resin 11 and the organic compound 12 are dissolved in the solvent 15 by being mixed with the solvent 15 in the mixing tank 26, and the dope 21 is produced. The organic compound 12 has excellent solubility in the solvent 15 and also has excellent compatibility with the solution in which the polymer resin 11 is dissolved in the solvent 15, so that a film 10 with excellent transparency is obtained.
 本発明のミキシングタンクに供給する高分子樹脂11は、供給する前に加熱乾燥し樹脂の含水率を低減することも好ましい。本発明の樹脂は吸湿する場合があり、例えば、ポリイミドでは、含水率が2%以上4%以下の範囲内%程度となる場合がある。高分子樹脂11の含水率が高いまま溶液とすると、溶液が白濁する、又はフィルムの透明性が悪化する場合があり、また、樹脂の含水率の変動により、樹脂濃度の変動、流延時の乾燥、又は剥ぎ取り性が変動する場合がある。本発明の高分子樹脂11の加熱乾燥は、加熱温度として100℃以上180℃以下の範囲内が好ましく、120℃以上160℃以下の範囲内がより好ましい。加熱時間としては、5分以上240分以下の範囲内が好ましく、20分以上180分以下の範囲内がより好ましい。加熱乾燥後の樹脂の含水率は1%以下とすることが好ましく、0.7%以下とすることがより好ましい。 It is also preferable to heat-dry the polymer resin 11 to be supplied to the mixing tank of the present invention to reduce the moisture content of the resin before supply. The resin of the present invention may absorb moisture. For example, in the case of polyimide, the moisture content may be in the range of 2% to 4%. If the polymer resin 11 is made into a solution while its moisture content is high, the solution may become cloudy or the transparency of the film may deteriorate. In addition, fluctuations in the moisture content of the resin may cause fluctuations in the resin concentration, drying during casting, or peelability. The heating temperature for the heating and drying of the polymer resin 11 of the present invention is preferably in the range of 100°C to 180°C, more preferably in the range of 120°C to 160°C. The heating time is preferably in the range of 5 minutes to 240 minutes, more preferably in the range of 20 minutes to 180 minutes. The moisture content of the resin after heating and drying is preferably 1% or less, more preferably 0.7% or less.
 ミキシングタンク26は、内部の温度を調節する温調機構(図示無し)を備えていてもよい。本実施形態のミキシングタンク26も温調機構を備えており、室温(概ね25℃以上30℃以下の範囲内)に上記混合物の温度を保持している。用いる高分子樹脂11と有機化合物12と溶剤15との種類によっては、温調機構により上記混合物の温度が調節されるから、溶解が促進し、変質及び/又は発泡が抑えられる。例えば、溶剤15としてメチレンクロライドを用いる場合には、常圧下においては39℃以下にすることが好ましく、これにより発泡が抑えられる。溶剤15としてメチレンクロライドを用いる場合において、ミキシングタンク26での温度は、15℃以上39℃以下の範囲内がより好ましく、15℃以上37℃以下の範囲内がさらに好ましく、25℃以上35℃以下の範囲内が特に好ましい。ただし、用いる高分子樹脂11と有機化合物12と溶剤15との種類によっては、温度調節しなくても溶解する場合もあり、その場合には温調機構を設けなくてもよい。 The mixing tank 26 may be equipped with a temperature control mechanism (not shown) for controlling the internal temperature. The mixing tank 26 of this embodiment is also equipped with a temperature control mechanism, and the temperature of the mixture is maintained at room temperature (approximately in the range of 25°C to 30°C). Depending on the types of polymer resin 11, organic compound 12, and solvent 15 used, the temperature of the mixture is controlled by the temperature control mechanism, so that dissolution is promoted and deterioration and/or foaming are suppressed. For example, when methylene chloride is used as the solvent 15, it is preferable to set the temperature at 39°C or less under normal pressure, which suppresses foaming. When methylene chloride is used as the solvent 15, the temperature in the mixing tank 26 is more preferably in the range of 15°C to 39°C, even more preferably in the range of 15°C to 37°C, and particularly preferably in the range of 25°C to 35°C. However, depending on the types of polymer resin 11, organic compound 12, and solvent 15 used, dissolution may occur without temperature control, in which case a temperature control mechanism may not be provided.
 前述の各種添加剤をフィルム10に含有させる場合には、ミキシングタンク26にこれらの添加剤を案内してもよい。このように、ミキシングタンク26が混合するドープ21の原材料は、高分子樹脂11と有機化合物12と溶剤15とに限定されない。 If the various additives mentioned above are to be included in the film 10, these additives may be introduced into the mixing tank 26. In this way, the raw materials of the dope 21 mixed in the mixing tank 26 are not limited to the polymer resin 11, the organic compound 12, and the solvent 15.
 原材料によっては不純物が混入している場合もあるし、又はミキシングタンク26の攪拌で溶解せずに不溶解物として残っている場合もある。そこで、本実施形態では、ドープ21をポンプ27によりミキシングタンク26からフィルタ28に送り、このフィルタ28によってこれらの異物を除去している。フィルタ28としては、孔径が20μmのろ紙(東洋濾紙株式会社製63LS)を用いているが、孔径と材質とはこの例に限定されず、フィルム10の用途、又は高分子樹脂11と有機化合物12と溶剤15との種類等に応じて決定すればよい。フィルタ28として用いるろ紙の孔径は、5μm以上100μm以下の範囲内が好ましく、10μm以上50μm以下の範囲内がより好ましく、10μm以上25μm以下の範囲内がさらに好ましい。 Some raw materials may contain impurities, or may remain as insoluble matter without being dissolved by stirring in the mixing tank 26. In this embodiment, the dope 21 is sent from the mixing tank 26 to the filter 28 by the pump 27, and these foreign matters are removed by the filter 28. As the filter 28, a filter paper (63LS manufactured by Toyo Roshi Kaisha, Ltd.) with a pore size of 20 μm is used, but the pore size and material are not limited to this example and may be determined according to the use of the film 10, or the types of the polymer resin 11, the organic compound 12, and the solvent 15. The pore size of the filter paper used as the filter 28 is preferably in the range of 5 μm to 100 μm, more preferably in the range of 10 μm to 50 μm, and even more preferably in the range of 10 μm to 25 μm.
 他のフィルタとしては、金属フィルタが挙げられ、金属フィルタの孔径は3μm以上15μm以下の範囲内が好ましく、3μm以上10μm以下の範囲内がより好ましく、3μm以上5μm以下の範囲内がさらに好ましい。このような孔径をもつ金属フィルタを使用する場合には、フィルタ28の下流に金属フィルタを配し、2段階でろ過してもよい。このような段階的ろ過は、光学フィルムを製造する場合に特に有効である。 Other filters include metal filters, the pore size of which is preferably in the range of 3 μm to 15 μm, more preferably in the range of 3 μm to 10 μm, and even more preferably in the range of 3 μm to 5 μm. When using a metal filter with such a pore size, the metal filter may be disposed downstream of filter 28, and filtration may be performed in two stages. Such staged filtration is particularly effective when manufacturing optical films.
 ポンプ27とフィルタ28との間に、加熱器(図示無し)を設け、この加熱器により、ミキシングタンク26で溶解しなかった未溶解分の溶解を促進してもよい。また、用いる高分子樹脂11の種類によっては、溶剤15に溶解しにくい場合があるから、このような場合にも加熱器を用いてよい。例えば、溶剤15としてメチレンクロライドを用いる場合において、加熱器でのドープ21の温度は、40℃以上120℃以下の範囲内がより好ましく、45℃以上90℃以下の範囲内がさらに好ましく、60℃以上90℃以下の範囲内が特に好ましい。 A heater (not shown) may be provided between the pump 27 and the filter 28 to promote dissolution of the undissolved portion that was not dissolved in the mixing tank 26. In addition, depending on the type of polymer resin 11 used, it may be difficult to dissolve it in the solvent 15, so a heater may be used in such cases as well. For example, when methylene chloride is used as the solvent 15, the temperature of the dope 21 in the heater is preferably in the range of 40°C to 120°C, more preferably in the range of 45°C to 90°C, and particularly preferably in the range of 60°C to 90°C.
 フィルタ28でのろ過を経たドープ21は貯留タンク31へ案内され、流延に供されるまでの間、この貯留タンク31に貯留される。貯留タンク31は攪拌機構(図示無し)を備えることが好ましく、本実施形態でも、ミキシングタンク26の攪拌機構と同様の構成の攪拌機構を備える。この攪拌機構により、ドープ21の均一性が、流延に供されるまでの間、より確実に保持される。この例では、貯留タンク31の個数を1つとしているが、複数にしてもよい。複数にする場合には、複数の貯留タンク31を直列接続にしてもよいし、並列接続にしてもよい。 The dope 21 filtered by the filter 28 is guided to the storage tank 31, where it is stored until it is used for casting. The storage tank 31 is preferably equipped with a stirring mechanism (not shown), and in this embodiment, it is equipped with a stirring mechanism having a similar configuration to the stirring mechanism of the mixing tank 26. This stirring mechanism more reliably maintains the uniformity of the dope 21 until it is used for casting. In this example, there is one storage tank 31, but there may be multiple storage tanks. When there are multiple storage tanks 31, the multiple storage tanks 31 may be connected in series or in parallel.
 ミキシングタンク26と、フィルタ28と、貯留タンク31とは、それぞれ、内部を遮光する遮光部材が設けられていることが好ましく、本実施形態でも設けている。例えば、ミキシングタンク26には、上記混合物を収容するタンク本体部が遮光機能をもつ素材から形成され、かつ、タンク本体部の上部には、同様に遮光機能をもつ遮光部材としての蓋が設けられている。このような遮光部材により、光により変性、反応等が生じる高分子樹脂11を使用する場合には、これらを抑えられる。 The mixing tank 26, the filter 28, and the storage tank 31 are each preferably provided with a light-shielding member that blocks light from entering the interior, and are provided in this embodiment as well. For example, the mixing tank 26 has a tank body that contains the mixture formed from a material with a light-shielding function, and a lid is provided on the top of the tank body as a light-shielding member that also has a light-shielding function. When using a polymer resin 11 that undergoes denaturation, reaction, etc. due to light, such a light-shielding member can suppress these.
 配管33の下流端は、フィルム製造装置23の流延ダイ36に接続しており、貯留タンク31のドープ21は、ポンプ32により流延ダイ36へ送られる。単層構造のフィルム10を製造する場合において、流延に供するドープ21は、質量パーセント濃度で、高分子樹脂11の濃度が15%以上30%以下の範囲内であることが好ましく、本実施形態では20%にしている。15%以上とすることにより、15%未満の場合に比べて、流延ダイ36から出るドープの粘度(圧損(圧力損失)に対応する)が確保されやすい。また、30%以下とすることにより、30%よりも大きい場合に比べて、溶剤15がメチレンクロライドである場合には、高分子樹脂11が溶剤15に、より確実に溶解し、ドープ21の白濁がより確実に防がれる。 The downstream end of the pipe 33 is connected to the casting die 36 of the film manufacturing device 23, and the dope 21 in the storage tank 31 is sent to the casting die 36 by the pump 32. When manufacturing a film 10 with a single-layer structure, the dope 21 used for casting preferably has a polymer resin 11 concentration in the range of 15% to 30% by mass percent, and in this embodiment, it is 20%. By making it 15% or more, the viscosity of the dope coming out of the casting die 36 (corresponding to pressure loss) is more easily ensured than when it is less than 15%. Also, by making it 30% or less, when the solvent 15 is methylene chloride, the polymer resin 11 is more reliably dissolved in the solvent 15, and the dope 21 is more reliably prevented from becoming cloudy, compared to when it is greater than 30%.
 フィルム10を製造する場合には、高分子樹脂11の濃度は、質量パーセント濃度で、15%以上25%以下の範囲内であることがより好ましく、15%以上23%以下の範囲内であることがさらに好ましい。なお、ドープ21は、高分子樹脂11の濃度が8%以上15%未満の範囲内であっても、例えばギーサ(好ましくはG型ギーサ)を用いることにより流延することができる。高分子樹脂11がポリイミドの場合は、ポリイミドの濃度は、質量パーセント濃度で、20%以上30%以下の範囲内であることがより好ましい。 When producing the film 10, the concentration of the polymer resin 11 is preferably in the range of 15% to 25% by mass percent, and more preferably in the range of 15% to 23% by mass percent. Even if the concentration of the polymer resin 11 is in the range of 8% to less than 15%, the dope 21 can be cast by using, for example, a Geesa (preferably a G-type Geesa). When the polymer resin 11 is polyimide, the concentration of the polyimide is more preferably in the range of 20% to 30% by mass percent.
 高分子樹脂11の濃度は、ミキシングタンク26に供給する溶剤15と高分子樹脂11との各供給量を調整することにより、調整することができる。なお、ドープ21の高分子樹脂11の濃度は、質量パーセント濃度であり、高分子樹脂11と溶剤15との質量和に対する高分子樹脂11の質量割合である。すなわち、溶剤15の質量をM15とし、樹脂の質量をM11とするときに、{M11/(M15+M11)}×100で算出している。 The concentration of the polymer resin 11 can be adjusted by adjusting the amount of the solvent 15 and the polymer resin 11 supplied to the mixing tank 26. The concentration of the polymer resin 11 in the dope 21 is a mass percent concentration, which is the mass ratio of the polymer resin 11 to the sum of the masses of the polymer resin 11 and the solvent 15. In other words, when the mass of the solvent 15 is M15 and the mass of the resin is M11, it is calculated as {M11/(M15+M11)}×100.
 本発明のフィルムの製造方法において、流延工程では、走行する支持体にドープ21を連続的に流延し、剥離工程では、流延膜を支持体から連続的に剥がす。そのため、フィルム製造装置23は、ドープ21からフィルム10を製造する。流延ユニット37と、テンタ38と、ローラ乾燥機41と、スリッタ42と、巻取機43とを、上流側から順に備える。流延ユニット37は、環状に形成された支持体としてのバンド46と、バンド46を支持した状態で長手方向へ走行させる1対のローラ47と、流延ダイ36と、剥取ローラ48とを備える。1対のローラ47の少なくとも一方は駆動機構(図示無し)により周方向に回転し、この回転により、1対のローラ47に巻き掛けられたバンド46は長手方向へ循環走行する。流延ダイ36は、この例では1対のローラ47の一方の上方に配しているが、1対のローラ47の一方と他方との間のバンド46の上方に配してもよい。 In the film manufacturing method of the present invention, in the casting process, the dope 21 is continuously cast onto a moving support, and in the peeling process, the cast film is continuously peeled off from the support. Therefore, the film manufacturing apparatus 23 manufactures the film 10 from the dope 21. The apparatus includes a casting unit 37, a tenter 38, a roller dryer 41, a slitter 42, and a winder 43, in this order from the upstream side. The casting unit 37 includes a band 46 formed into an annular shape as a support, a pair of rollers 47 that support the band 46 and run it in the longitudinal direction, a casting die 36, and a peeling roller 48. At least one of the pair of rollers 47 is rotated in the circumferential direction by a driving mechanism (not shown), and this rotation causes the band 46 wrapped around the pair of rollers 47 to circulate and run in the longitudinal direction. In this example, the casting die 36 is disposed above one of the pair of rollers 47, but it may be disposed above the band 46 between one and the other of the pair of rollers 47.
 流延ダイ36は、供給されてきたドープ21を、バンド46に対向する吐出口36aから連続的に吐出する吐出部である。走行中のバンド46にドープ21を連続的に吐出することにより、ドープ21はバンド46上で流延され、バンド46上に流延膜51が連続的に形成される(流延工程)。図1においては、ドープ21がバンド46に接触することにより流延膜51が形成され始める位置(以下、流延位置と称する)に、符号PCを付す。 The casting die 36 is a discharge part that continuously discharges the supplied dope 21 from a discharge port 36a facing the band 46. By continuously discharging the dope 21 onto the moving band 46, the dope 21 is cast onto the band 46, and a casting film 51 is continuously formed on the band 46 (casting process). In FIG. 1, the position where the dope 21 comes into contact with the band 46 and the casting film 51 begins to be formed (hereinafter referred to as the casting position) is marked with the symbol PC.
 バンド46の素材は特に限定されないが、金属が好ましく、金属としてはステンレス(SUS、Steel Use Stainless、ステンレス鋼)、特にハードクロムめっきされたSUSが好ましい。したがって、支持体は、ステンレスバンドであることが好ましい。本実施形態ではバンド46はSUS製としており、フィルム用樹脂組成物等の効果を好ましく発揮しつつ、好適なフィルムを製造することができるためである。SUSは各種のものが使用可能であり、SUS316、SUS316L等を好ましく使用できる。 The material of the band 46 is not particularly limited, but metal is preferable, and as a metal, stainless steel (SUS, Steel Use Stainless, stainless steel), in particular hard chrome plated SUS, is preferable. Therefore, the support is preferably a stainless steel band. In this embodiment, the band 46 is made of SUS, which allows the production of a suitable film while favorably exerting the effects of the resin composition for film, etc. Various types of SUS can be used, and SUS316, SUS316L, etc. are preferably used.
 1対のローラ47は、周面温度を調節する温度コントローラ(図示せず)を備える。周面温度を調節したローラ47により、バンド46を介して流延膜51は温度を調整される。流延膜51を加熱することにより乾燥を促進し、この乾燥により固める(ゲル化する)いわゆる乾燥ゲル化方式の場合には、ローラ47の周面温度は、例えば10℃以上30℃以下の範囲内にする。また、流延膜51を冷却することにより固めるいわゆる冷却ゲル化方式の場合には、ローラ47の周面温度を-15℃以上5℃以下の範囲内にする。こうしたゲル化により流延膜51は搬送可能な程度に固まる。 The pair of rollers 47 are equipped with a temperature controller (not shown) that adjusts the peripheral temperature. The temperature of the casting film 51 is adjusted via the band 46 by the rollers 47 with the adjusted peripheral temperature. In the case of the so-called drying and gelling method in which the casting film 51 is heated to promote drying and solidified (gelled) by this drying, the peripheral temperature of the rollers 47 is set within a range of, for example, 10°C to 30°C. In the case of the so-called cooling and gelling method in which the casting film 51 is solidified by cooling, the peripheral temperature of the rollers 47 is set within a range of -15°C to 5°C. By this gelling, the casting film 51 is solidified to a degree that it can be transported.
 なお、支持体として、バンド46の代わりに、ドラム(図示せず)を用いてもよい。この場合には、ドラムに駆動機構を設け、ドラムを周方向に回転させることにより、周面上に流延膜51を形成する。この場合には、ドラムの周面が、走行する支持体の表面として機能する。ドラムの素材は特に限定されないが、金属が好ましく、金属としてはSUS、特にハードクロムめっきされたSUSが好ましい。ドラムを支持体として用いる場合には、ドラムは、周面温度を調節する温度コントローラ(図示せず)を備えるものとし、ドラムの周面温度を調節することにより、流延膜51の温度を調整するとよい。乾燥ゲル化方式の場合には、支持体としてバンド46を用いることが好ましく、冷却ゲル化方式の場合には、支持体としてドラムを用いることが好ましい。 In addition, a drum (not shown) may be used as the support instead of the band 46. In this case, a driving mechanism is provided on the drum, and the drum is rotated in the circumferential direction to form the casting film 51 on the circumferential surface. In this case, the circumferential surface of the drum functions as the surface of the running support. The material of the drum is not particularly limited, but metal is preferable, and as the metal, SUS, particularly SUS plated with hard chrome, is preferable. When a drum is used as the support, the drum is provided with a temperature controller (not shown) for adjusting the circumferential surface temperature, and the temperature of the casting film 51 can be adjusted by adjusting the circumferential surface temperature of the drum. In the case of the dry gelation method, it is preferable to use the band 46 as the support, and in the case of the cool gelation method, it is preferable to use the drum as the support.
 流延ダイ36からバンド46に至るドープ21、いわゆるビードに関して、バンド46の走行方向における上流には、減圧チャンバ(図示無し)が設けられてもよく、本実施形態でも設けてある。この減圧チャンバは、吐出したドープ21の上流側エリアの雰囲気を吸引し、この吸引によりこのエリアを減圧する。また、バンド46に対向する位置に、流延膜51の乾燥を促進するための送風機(図示無し)を設けてもよい。 A decompression chamber (not shown) may be provided upstream of the dope 21 (the bead) from the casting die 36 to the band 46 in the running direction of the band 46, and is provided in this embodiment as well. This decompression chamber sucks in the atmosphere in the area upstream of the discharged dope 21, and reduces the pressure in this area through this suction. In addition, a blower (not shown) may be provided opposite the band 46 to promote drying of the casting film 51.
 流延膜51を、テンタ38への搬送が可能な程度にまでバンド46上で固くした後に、溶剤を含む状態でバンド46から連続的に剥がす。これによりフィルム10が形成される(剥離工程)。剥取ローラ48は、流延膜51をバンド46から連続的に剥ぎ取るためのものである。剥取ローラ48は、バンド46から剥がすことにより形成されたフィルム10を例えば下方から支持し、流延膜51がバンド46から剥がれる剥取位置PPを一定に保持する。剥ぎ取る手法は、フィルム10を下流側へ引っ張る手法、あるいは、剥取ローラ48を周方向に回転させる手法等のいずれでもよい。 After the casting film 51 is hardened on the band 46 to such an extent that it can be transported to the tenter 38, it is continuously peeled off from the band 46 while still containing the solvent. This forms the film 10 (peeling process). The peeling roller 48 is for continuously peeling off the casting film 51 from the band 46. The peeling roller 48 supports the film 10 formed by peeling off from the band 46, for example, from below, and keeps the peeling position PP where the casting film 51 is peeled off from the band 46 constant. The peeling method may be either a method of pulling the film 10 downstream or a method of rotating the peeling roller 48 in the circumferential direction.
 ドープ21には有機化合物12を含有させているから、バンド46に形成された流延膜51にも有機化合物12が含まれている。そして、有機化合物12は酸を有している。そのため、上記にて推定したように、有機化合物12から酸解離により発生した酸がバンド46の表面に優先的に吸着し、高分子樹脂11がバンド46の表面に吸着することを抑えると推測される。したがって、流延膜51はバンド46からの剥離荷重が小さく抑えられ、その結果、流延膜51はなめらか(スムーズ)にバンド46から連続的に剥がれる。そのため、フィルム面の平滑性に優れたフィルム10が得られる。フィルム面が平滑であるから、光学特性に厳しい要請がある光学フィルムにも用いることができるフィルム10が得られる。また、本実施形態の有機化合物12において、解離する酸が多い場合は、酸が少ない場合に比べて、フィルム10の剥離荷重がより小さく抑えられる。 Since the dope 21 contains the organic compound 12, the casting film 51 formed on the band 46 also contains the organic compound 12. The organic compound 12 has an acid. Therefore, as presumed above, it is presumed that the acid generated by the acid dissociation from the organic compound 12 preferentially adsorbs to the surface of the band 46, suppressing the polymer resin 11 from adsorbing to the surface of the band 46. Therefore, the peel load of the casting film 51 from the band 46 is suppressed to be small, and as a result, the casting film 51 is peeled off smoothly and continuously from the band 46. Therefore, the film 10 having excellent smoothness of the film surface is obtained. Since the film surface is smooth, the film 10 can be used for an optical film having strict requirements for optical properties. In addition, in the organic compound 12 of this embodiment, when there is a large amount of acid to be dissociated, the peel load of the film 10 is suppressed to be smaller than when there is a small amount of acid.
 有機化合物12の質量割合は、ドープ21と流延膜51とにおいてほぼ等しい。したがって、流延膜51またはフィルム10においても、有機化合物12の質量割合が、高分子樹脂11を100重量部とした場合に0.01質量部以上10質量部以下の範囲内となっている。0.01質量部以上になっていることにより、0.01質量部未満である場合に比べて、より確実に、バンド46からの剥離荷重が小さく抑えられる。また、10質量部以下であることにより、10質量部を超えた場合に比べて、白濁がより抑えられた透明なフィルム10となる。 The mass ratio of the organic compound 12 is approximately equal in the dope 21 and the casting film 51. Therefore, the mass ratio of the organic compound 12 in the casting film 51 or the film 10 is also within the range of 0.01 parts by mass or more and 10 parts by mass or less, assuming that the polymer resin 11 is 100 parts by weight. By making it 0.01 parts by mass or more, the peel load from the band 46 is more reliably kept small compared to when it is less than 0.01 parts by mass. Also, by making it 10 parts by mass or less, a transparent film 10 with less cloudiness is obtained compared to when it exceeds 10 parts by mass.
 バンド46からの剥ぎ取りは、乾燥ゲル化方式の場合には、例えば、流延膜51の溶剤含有率が10質量%以上100質量%以下の範囲にある間に行われる。なお、本明細書においては、溶剤含有率(単位;%)は乾量基準の値であり、具体的には、溶剤15の質量をM15、フィルム10の質量をM10とするときに、{M15/(M10-M15)}×100で求める百分率である。 In the case of the drying and gelling method, the casting film 51 is peeled off from the band 46 while the solvent content of the casting film 51 is in the range of 10% by mass to 100% by mass. In this specification, the solvent content (unit: %) is a value based on the dry weight, and specifically, it is a percentage calculated by {M15/(M10-M15)} x 100, where M15 is the mass of the solvent 15 and M10 is the mass of the film 10.
 流延膜51は有機化合物12を含有しており、有機化合物12はリン酸基を含み酸解離性を有する有機化合物であるから、バンド46の表面と高分子樹脂11との相互作用に対する前述の推定作用により、バンド46からの流延膜51の剥離荷重がより小さく抑えられる。また、剥離性が向上することにより、バンド46の走行速度をより大きくすることができるから、フィルム10の製造効率も向上する。さらに、剥離性が向上することにより、フィルム10の剥ぎ取った面の面状の向上のみならず、剥ぎ取り位置が安定することから、剥ぎ取った面と反対の面の面状に問題を及ぼすことも抑えられる。 The casting film 51 contains the organic compound 12, which is an organic compound containing a phosphate group and having acid dissociability, and therefore the peel load of the casting film 51 from the band 46 is reduced by the above-mentioned presumed effect on the interaction between the surface of the band 46 and the polymer resin 11. Also, the improved peelability allows the running speed of the band 46 to be increased, and therefore the production efficiency of the film 10 is improved. Furthermore, the improved peelability not only improves the surface condition of the peeled surface of the film 10, but also stabilizes the peeling position, thereby preventing problems with the surface condition of the surface opposite the peeled surface.
 以上のように流延ユニット37は、ドープ21からフィルム10を形成する。バンド46は流延位置PCと剥取位置PPとを循環して走行することで、ドープ21の流延と流延膜51の剥ぎ取りとが繰り返し行われる。 As described above, the casting unit 37 forms the film 10 from the dope 21. The band 46 travels between the casting position PC and the peeling position PP in a circular manner, so that the casting of the dope 21 and the peeling of the cast film 51 are repeatedly performed.
 流延ユニット37とテンタ38との間の搬送路には、フィルム10の乾燥をすすめるための送風機(図示無し)を配してもよい。剥ぎ取られて形成されたフィルム10は、テンタ38に案内される。テンタ38は、長尺のフィルム10の側部を把持するクリップ52と、1対のレール(図示無し)及びチェーン(図示無し)とを備える。クリップ52の代わりに、複数のピン(図示無し)が台の上面に起立した姿勢で配され、フィルム10の側部に個々のピンを突き刺すことによりフィルム10を保持するピンプレート(図示無し)を用いてもよい。 A blower (not shown) for drying the film 10 may be provided in the transport path between the casting unit 37 and the tenter 38. The peeled film 10 is guided to the tenter 38. The tenter 38 includes clips 52 for holding the sides of the long film 10, a pair of rails (not shown), and a chain (not shown). Instead of the clips 52, a pin plate (not shown) may be used in which multiple pins (not shown) are arranged upright on the top surface of a table, and the film 10 is held by piercing each pin into the side of the film 10.
 レールはフィルム10の搬送路の側部に設置され、1対のレールは離間して配される。チェーンは、原動スプロケット及び従動スプロケット(図示無し)に掛け渡され、レールに沿って移動自在に取り付けられている。クリップ52は、チェーンに所定の間隔で取り付けられており、原動スプロケットの回転により、クリップ52はレールに沿って循環移動する。クリップ52は、テンタ38の入口近傍で、案内されてきたフィルム10の保持を開始し、出口に向かって移動し、出口近傍で保持を解除する。保持を解除したクリップ52は再び入口近傍に移動し、新たに案内されてきたフィルム10を保持する。このように、クリップ52は、フィルム10の各側部を把持した状態で長手方向に搬送する。 The rails are installed on the sides of the transport path for the film 10, and the pair of rails are spaced apart. The chain is hung over a driving sprocket and a driven sprocket (not shown) and is attached so as to be freely movable along the rails. The clips 52 are attached to the chain at predetermined intervals, and as the driving sprocket rotates, the clips 52 move in a circular motion along the rails. The clips 52 begin to hold the film 10 that has been guided near the entrance of the tenter 38, move toward the exit, and release their hold near the exit. After releasing their hold, the clips 52 move again near the entrance and hold the newly guided film 10. In this way, the clips 52 transport the film 10 in the longitudinal direction while gripping each side of the film 10.
 レールの軌道を変化させることにより、クリップ52の走行路を変えることができる。これにより、搬送中のフィルム10を、長手方向と交差する方向(例えば幅方向)に延伸することもできる。 By changing the track of the rail, the travel path of the clip 52 can be changed. This allows the film 10 to be stretched in a direction intersecting the longitudinal direction (e.g., width direction) during transport.
 テンタ38には、フィルム10の搬送路の上方に送風機53が設けられている。送風機53の下面には、乾燥気体を流出する流出口(図示無し)が形成されており、通過するフィルム10に向けて乾燥気体(例えば空気)を吹き出す。送風機53からの乾燥気体の温度は、40℃以上200℃以下の範囲内が好ましい。なお、同様の構造を有する送風機を、フィルム10の搬送路の下方に設けてもよい。このようにテンタ38には送風機53があるから、テンタ38を通過する間もフィルム10は乾燥を進められる(第1の乾燥工程)。ただし、テンタ38を設けない場合もある。 The tenter 38 is provided with a blower 53 above the transport path of the film 10. An outlet (not shown) for letting out dry gas is formed on the underside of the blower 53, and the dry gas (e.g., air) is blown toward the passing film 10. The temperature of the dry gas from the blower 53 is preferably within the range of 40°C or higher and 200°C or lower. A blower having a similar structure may be provided below the transport path of the film 10. As the tenter 38 has the blower 53, the film 10 can be dried even while passing through the tenter 38 (first drying step). However, there are cases where the tenter 38 is not provided.
 ローラ乾燥機41は、複数のローラ41aと空調機(図示無し)とを備える。複数のローラ41aはフィルム10を周面で支持する。フィルム10はローラ41aに巻き掛けられて搬送される。空調機は、ローラ乾燥機41の内部の温度や湿度等を調節する。ローラ乾燥機41の内部の温度は、80℃以上160℃以下の範囲内が好ましい。ローラ乾燥機41の内部の湿度は、相対湿度で0%以上50%以下の範囲内が好ましい。このローラ乾燥機41を通過する間もフィルム10は乾燥を進められる(第2の乾燥工程)。 The roller dryer 41 includes multiple rollers 41a and an air conditioner (not shown). The multiple rollers 41a support the film 10 on their circumferential surfaces. The film 10 is wound around the rollers 41a and transported. The air conditioner adjusts the temperature, humidity, and other factors inside the roller dryer 41. The temperature inside the roller dryer 41 is preferably within the range of 80°C to 160°C. The humidity inside the roller dryer 41 is preferably within the range of 0% to 50% relative humidity. The film 10 continues to dry while passing through this roller dryer 41 (second drying process).
 スリッタ42は、フィルム10の各側端部を切除するためのものである。この切除により、フィルム10は、例えば目的とする製品幅にされる。なお、スリッタ42と同様の構成のスリッタを、他の位置に配してもよい。例えば、流延ユニット37とテンタ38との間、及び/又は、テンタ38とローラ乾燥機41との間等である。流延ユニット37とテンタ38との間に配する場合には、流延ユニット37からテンタ38へ向かうフィルム10の側端部を、テンタ38に導入される直前に切除することにより、例えばクリップ52による把持がより確実になる。また、テンタ38とローラ乾燥機との間に配する場合には、クリップ52による把持跡を切除することにより、ローラ41aによる搬送がより安定する。切除された側端部は、クラッシャ(図示無し)に案内され、クラッシャによりチップ状に細かくされ、新たなドープ21の原材料として用いてもよい。 The slitter 42 is for cutting off each side edge of the film 10. By this cutting, the film 10 is made to have, for example, a desired product width. A slitter with the same configuration as the slitter 42 may be arranged at other positions. For example, between the casting unit 37 and the tenter 38, and/or between the tenter 38 and the roller dryer 41. When the slitter 42 is arranged between the casting unit 37 and the tenter 38, the side edge of the film 10 moving from the casting unit 37 to the tenter 38 is cut off just before being introduced into the tenter 38, so that, for example, the clip 52 can hold the film 10 more reliably. When the slitter 42 is arranged between the tenter 38 and the roller dryer, the clip 52 can cut off the trace of the clip 52, so that the transport by the roller 41a can be more stable. The cut off side edge is guided to a crusher (not shown), where it is crushed into chips, and may be used as a raw material for a new dope 21.
 巻取機43は、フィルム10をロール状に巻き取るためのものである。巻取機43はモータ(図示無し)を備え、巻取機43には、巻き芯54がセットされる。巻き芯54がモータにより回転することにより、フィルム10が巻き芯54に巻き取られる。 The winding machine 43 is used to wind the film 10 into a roll. The winding machine 43 is equipped with a motor (not shown), and a winding core 54 is set in the winding machine 43. The film 10 is wound around the winding core 54 as the winding core 54 rotates due to the motor.
 巻き取られたフィルム10は、フィルム用樹脂組成物からなるドープ21から製造され、上記のような高分子樹脂11及び有機化合物12を含有する。これらの両者を含有するため、前述の推定作用から、バンド46からの剥離性が良好であり、剥離速度を向上させることもできる。また、剥離性が良好であることから、フィルム自体の面状が良好となる。 The wound film 10 is produced from a dope 21 made of a resin composition for films, and contains the polymer resin 11 and organic compound 12 as described above. Because it contains both of these, due to the presumed action described above, it has good peelability from the band 46, and the peeling speed can also be improved. In addition, because it has good peelability, the surface condition of the film itself is good.
 有機化合物12と有機化合物12以外の各種添加剤とは、前述のように、ミキシングタンク26で高分子樹脂11等と混合する手法に限定されない。例えば、これらの添加剤の少なくとも一部を案内する添加用の配管(図示無し)を、配管33に合流する状態に接続し、配管33において添加してもよい。その場合には、周知の静止型混合器(例えば、スルーザミキサ等)を配管33に設けることにより混合してもよい。 As described above, the organic compound 12 and various additives other than the organic compound 12 are not limited to being mixed with the polymer resin 11, etc., in the mixing tank 26. For example, an addition pipe (not shown) for guiding at least a portion of these additives may be connected so as to join the pipe 33, and the additives may be added in the pipe 33. In that case, mixing may be performed by providing a well-known static mixer (e.g., a through-the-pipe mixer, etc.) in the pipe 33.
 フィルム10は単層構造に限定されず、複層構造でもよい。複層構造の場合の層の数は、2層に限定されず、3層以上でもよい。 The film 10 is not limited to a single-layer structure, but may be a multi-layer structure. In the case of a multi-layer structure, the number of layers is not limited to two, but may be three or more.
 本発明のフィルム10は、製造に用いたフィルム用樹脂組成物と同様の組成を有する。したがって、フィルム10は、酸成分を含まない主構成単位と酸成分を含む酸構成単位とをそれぞれ複数含む高分子樹脂と、リン酸基を含み酸解離性を有する有機化合物とを含有する。 The film 10 of the present invention has the same composition as the resin composition for film used in its production. Therefore, the film 10 contains a polymer resin that contains multiple main structural units that do not contain an acid component and multiple acid structural units that contain an acid component, and an organic compound that contains a phosphate group and has acid dissociability.
 また、フィルム10において、有機化合物は、高分子樹脂100質量部に対して0.01質量部以上10質量以下の範囲内で含有されることが好ましい。また、高分子樹脂において、複数の高分子ユニットを平均した場合、高分子ユニットにおける全繰り返し単位のうち酸成分である繰り返し単位が0.4%以上5%以下の範囲内であることが好ましい。 Furthermore, in the film 10, the organic compound is preferably contained in a range of 0.01 parts by mass to 10 parts by mass to 100 parts by mass of the polymer resin. Furthermore, in the polymer resin, when averaging a plurality of polymer units, it is preferable that the repeating units that are acid components out of all the repeating units in the polymer units are in a range of 0.4% to 5%.
 フィルム10を上記のように構成したことから、溶液製膜法によりフィルム10が製造される際に、剥離性を良好な状態でフィルム10が製造される。したがって、フィルム10は、面状が良好なフィルム10となる。また、フィルム用樹脂組成物に含まれる有機化合物12は、フィルム10の性能を低下させることがない。例えば、フィルム10のヘーズに影響を及ぼすことが抑えられ、光学用途にも適用可能なフィルム10とすることができる。例えば、フィルム10は、JIS K7136に基づいて測定したヘーズが、2.0以下である。より好ましくは、ヘーズが1.5以下である。 Since the film 10 is constructed as described above, when the film 10 is produced by the solution casting method, the film 10 is produced in a state where it has good peelability. Therefore, the film 10 has a good surface condition. Furthermore, the organic compound 12 contained in the resin composition for film does not deteriorate the performance of the film 10. For example, the film 10 can be made to have a reduced effect on the haze of the film 10 and be applicable to optical applications. For example, the film 10 has a haze of 2.0 or less as measured based on JIS K7136. More preferably, the haze is 1.5 or less.
 フィルム10の厚みは、フィルム用樹脂組成物を用いた溶液製膜法によりフィルム10を好適に製造可能な範囲であれば特に制限はなく、用途等により適宜設定することができる。光学フィルムとして用いる場合の厚みは10μm以上60μm以下の範囲内が好ましく、例えば、モバイルディスプレイのカバーフィルム用途では、厚みは10μm以上50μm以下、イヤホン等の振動板として用いる場合の厚みは5μm以上15μm以下の範囲内が好ましい。本実施形態では、フィルム10の厚みは、5μm以上150μm以下の範囲内であると問題なく製造可能である。ただし、この範囲に限定されず、各種調整により、フィルム10の厚みは、150μmよりも厚い場合もあるし、5μmよりも薄い場合もある。 The thickness of the film 10 is not particularly limited as long as it is within a range in which the film 10 can be suitably produced by a solution casting method using a resin composition for film, and can be set appropriately depending on the application. When used as an optical film, the thickness is preferably in the range of 10 μm to 60 μm. For example, when used as a cover film for a mobile display, the thickness is preferably in the range of 10 μm to 50 μm, and when used as a diaphragm for earphones, etc., the thickness is preferably in the range of 5 μm to 15 μm. In this embodiment, the film 10 can be produced without problems if the thickness is in the range of 5 μm to 150 μm. However, it is not limited to this range, and the thickness of the film 10 may be thicker than 150 μm or thinner than 5 μm depending on various adjustments.
 本発明の実施例を以下に示す。フィルム製造設備20により、フィルム10を製造し、実施例1~実施例22とした。高分子樹脂は、セルロースエステル樹脂、ポリイミド樹脂、及びアクリル樹脂を用いた。 The following are examples of the present invention. Films 10 were produced using film production equipment 20, resulting in Examples 1 to 22. The polymer resins used were cellulose ester resin, polyimide resin, and acrylic resin.
 実施例に使用したセルロースエステル樹脂はセルロースアシレート樹脂であり、素原料が各種のパルプである。表2に用いたセルロースアシレート樹脂について記載した。用いたセルロースアシレート樹脂の種類は、表2の「セルロースアシレート樹脂」の欄に、「CA-1」から「CA-7」として記載した。表2の「素原料」の欄に、各セルロースアシレート樹脂の素原料を記載した。「パルプ1」は広葉樹であり種類はオーク、ポプラ、ガム、及び/又はメープルのブレンド、「パルプ2」は広葉樹であり種類はオーク、「パルプ3」は広葉樹であり種類はユーカリ、「パルプ4」は針葉樹であり種類はラジアータパイン、「パルプ5」は針葉樹であり種類はスプルースである。なお、参考例として、素原料がリンターであるセルロースエステル樹脂を用いて、「CA-1」とした。 The cellulose ester resin used in the examples was a cellulose acylate resin, and the raw material was various pulps. The cellulose acylate resins used are listed in Table 2. The types of cellulose acylate resins used are listed in the "Cellulose Acylate Resin" column of Table 2 as "CA-1" to "CA-7". The raw materials for each cellulose acylate resin are listed in the "Raw Material" column of Table 2. "Pulp 1" is a hardwood and is a blend of oak, poplar, gum, and/or maple, "Pulp 2" is a hardwood and is oak, "Pulp 3" is a hardwood and is eucalyptus, "Pulp 4" is a softwood and is radiata pine, and "Pulp 5" is a softwood and is spruce. As a reference example, a cellulose ester resin whose raw material is linter was used and named "CA-1".
 各セルロースエステル樹脂において、アシル化度、数平均分子量Mn、高分子樹脂全体に対する酸構成単位の比率を、上述した方法により求めた。すなわち、高分子樹脂全体に対する酸構成単位の比率は、表2に示すように、高分子樹脂が含む高分子ユニットにおける酸構成単位であるヘミセルロースであるマンナンとキシランとの構成比を測定して求めた。なお、高分子ユニットとは、高分子樹脂を構成するポリマー分子の単位であり、複数のポリマー分子により高分子樹脂が構成されているとする。また、この構成比と数平均分子量から高分子ユニット中の平均の酸成分数を算出した。表2において、ヘミセルロースであるマンナンとキシランとの組成比である構成比を「ヘミセルロース構成比」の欄に、高分子ユニットにおける酸構成単位の比率は「酸構成単位比率」の欄に、高分子ユニットにおける平均の酸成分数は「高分子ユニット中の成分数(平均)」の欄に、それぞれ記載した。 For each cellulose ester resin, the degree of acylation, number average molecular weight Mn, and ratio of acid constituent units to the entire polymer resin were determined by the above-mentioned method. That is, the ratio of acid constituent units to the entire polymer resin was determined by measuring the composition ratio of mannan and xylan, which are hemicelluloses that are acid constituent units in the polymer unit contained in the polymer resin, as shown in Table 2. Note that a polymer unit is a unit of polymer molecules that constitute a polymer resin, and a polymer resin is composed of multiple polymer molecules. In addition, the average number of acid components in the polymer unit was calculated from this composition ratio and the number average molecular weight. In Table 2, the composition ratio, which is the composition ratio of mannan and xylan, which are hemicelluloses, is listed in the "hemicellulose composition ratio" column, the ratio of acid constituent units in the polymer unit is listed in the "acid constituent unit ratio" column, and the average number of acid components in the polymer unit is listed in the "number of components in polymer unit (average)".
Figure JPOXMLDOC01-appb-T000008
 
Figure JPOXMLDOC01-appb-T000008
 
 実施例に使用したポリイミド樹脂は、「PI-1」として、2,2′-ビス(トリフルオロメチル)-4,4′-ジアミノジフェニル(TFMB、2,2′-Bis(trifluoromethyl)benzidine)と、「PI-2」として、4,4′-(ヘキサフルオロイソプロピリデン)ジフタル酸二無水物(6FDA、4,4′-(Hexafluoroisopropylidene)diphthalic anhydride)とを用いた。「PI-1」は分子量が約320であり以下の式(3)で示され、「PI-2」は分子量が約444.24であり以下の式(4)で示される。 The polyimide resins used in the examples were 2,2'-bis(trifluoromethyl)-4,4'-diaminodiphenyl (TFMB, 2,2'-Bis(trifluoromethyl)benzidine) as "PI-1" and 4,4'-(hexafluoroisopropylidene)diphthalic anhydride (6FDA, 4,4'-(hexafluoroisopropylidene)diphthalic anhydride) as "PI-2". "PI-1" has a molecular weight of approximately 320 and is represented by the following formula (3), and "PI-2" has a molecular weight of approximately 444.24 and is represented by the following formula (4).
Figure JPOXMLDOC01-appb-C000009
 
Figure JPOXMLDOC01-appb-C000009
 
Figure JPOXMLDOC01-appb-C000010
 
Figure JPOXMLDOC01-appb-C000010
 
 「PI-1」及び「PI-2」の数平均分子量、及びイミド化率を、表3に示した。また、数平均分子量及びイミド化率から、高分子樹脂全体を基準として、高分子樹脂が含む酸構成単位の比率を算出した。また、酸構成単位の比率から、高分子樹脂中が含む高分子ユニット中の平均の酸成分数を算出して、表3に記載した。 The number average molecular weight and imidization rate of "PI-1" and "PI-2" are shown in Table 3. In addition, the ratio of acid constituent units contained in the polymer resin was calculated based on the number average molecular weight and imidization rate, with the entire polymer resin as the standard. In addition, the average number of acid components in the polymer units contained in the polymer resin was calculated from the ratio of acid constituent units, and is shown in Table 3.
Figure JPOXMLDOC01-appb-T000011
 
Figure JPOXMLDOC01-appb-T000011
 
 実施例に使用したアクリル樹脂は、「MA-1」として、MMAとMAとの共重合体(組成比95:5)と、アクリル酸(樹脂全体に対し1%)とからなる樹脂を用い、「MA-2」として、市販品である「ダイヤナールBR73」(三菱ケミカル株式会社製)を用いた。数平均分子量、高分子ユニット中の酸構成単位比率(%)、及び平均の高分子ユニット中の酸成分数(個)を、表4に記載した。 The acrylic resins used in the examples were "MA-1" a resin made of a copolymer of MMA and MA (composition ratio 95:5) and acrylic acid (1% of the total resin), and "MA-2" a commercially available product, "Dianal BR73" (manufactured by Mitsubishi Chemical Corporation). The number average molecular weight, the ratio (%) of acid constituent units in the polymer unit, and the average number (pieces) of acid components in the polymer unit are shown in Table 4.
Figure JPOXMLDOC01-appb-T000012
 
Figure JPOXMLDOC01-appb-T000012
 
 有機化合物12として用いた化合物は、上記の表1に「PA-1」から「PA-7」として示したものを用いた。 The compounds used as organic compound 12 were those shown as "PA-1" to "PA-7" in Table 1 above.
 フィルム製造設備20に供するフィルム用樹脂組成物を含むドープ21は、高分子樹脂を100質量部として、有機化合物を表5に示すそれぞれの量にて含有させた。溶剤は、ジクロロメタンであり、各高分子樹脂に応じて高分子樹脂の濃度を決定した。 The dope 21 containing the resin composition for film to be supplied to the film manufacturing equipment 20 contains 100 parts by mass of polymer resin and the organic compounds in the amounts shown in Table 5. The solvent is dichloromethane, and the concentration of the polymer resin is determined according to each polymer resin.
 流延工程、剥離工程及び乾燥工程における詳細は次のとおりであった。流延ダイ及び金属リップ(ダイリップ)は、SUS316L等からなるものを使用した。ドープ21をそれぞれフィルタ28に通した。まず、30μmのフィルタを通し、次に10μmのフィルタを通した。流延ダイから1450cc/分でドープ21を送液した。バンド46は、5m/分で運転した。したがって、流延速度は5m/分であった。バンド46は、SUS製であった。フィルム製造設備20により、金属バンド上で乾燥をすすめた。剥離工程において、剥離した後、乾燥工程にて、乾燥を進めた。最初50℃にて乾燥し、その後140℃で10~15分乾燥した。巻取りは、FRP(Fiber-Reinforced Plastics)製の巻き芯に、フィルムの幅800mm、フィルムの長さ500mにて、フィルムを巻き取った。 Details of the casting process, peeling process and drying process are as follows. The casting die and metal lip (die lip) used were made of SUS316L or the like. The dope 21 was passed through the filters 28. First, it was passed through a 30 μm filter, and then through a 10 μm filter. The dope 21 was delivered from the casting die at 1450 cc/min. The band 46 was operated at 5 m/min. Therefore, the casting speed was 5 m/min. The band 46 was made of SUS. Drying was carried out on the metal band by the film manufacturing equipment 20. After peeling in the peeling process, drying was carried out in the drying process. It was first dried at 50°C, and then dried at 140°C for 10 to 15 minutes. The film was wound onto a fiber-reinforced plastics (FRP) core with a film width of 800 mm and a length of 500 m.
 [実施例1]~[実施例6]
 実施例1~実施例6では、高分子樹脂11として「CA-2」のセルロースエステルを使用し、有機化合物として、「PA-1」、「PA-2」、「PA-3」、「PA-4」、「PA-6」、又は「PA-7」を、それぞれ高分子樹脂100質量部に対して0.1質量部の割合で用いて、フィルム製造設備20により単層構造のフィルムを製造した。溶剤に対する高分子樹脂及び有機化合物の量は、20%とした。製造したフィルムについて以下に記載した方法により製膜試験を行った。製膜試験により、フィルムの厚み、剥ぎ取り性、剥ぎ取り面状、及びヘーズを測定した。また、別に製膜を行い、以下に記載した方法により剥離荷重試験を行った。剥離荷重試験により、剥離荷重を測定した。測定した結果は、表5に記載した。
[Example 1] to [Example 6]
In Examples 1 to 6, the cellulose ester "CA-2" was used as the polymer resin 11, and "PA-1", "PA-2", "PA-3", "PA-4", "PA-6", or "PA-7" was used as the organic compound in a ratio of 0.1 parts by mass per 100 parts by mass of the polymer resin, respectively, to produce a single-layer film by the film production equipment 20. The amount of the polymer resin and the organic compound relative to the solvent was 20%. The film production test was performed on the produced film by the method described below. The film production test measured the film thickness, peelability, peel surface condition, and haze. In addition, a separate film was produced, and a peel load test was performed by the method described below. The peel load was measured by the peel load test. The measurement results are shown in Table 5.
 [実施例7]~[実施例11]
 実施例7~実施例11では、高分子樹脂11として「CA-2」のセルロースエステルを使用し、有機化合物として、「PA-6」を、それぞれ表5に記載した添加量で用いて、フィルム製造設備20により単層構造のフィルムを製造した。溶剤に対する高分子樹脂及び有機化合物の量は、20%とした。製造したフィルムについて以下に記載した方法により製膜試験を行った。製膜試験により、フィルムの厚み、剥ぎ取り性、剥ぎ取り面状、及びヘーズを測定した。また、別に製膜を行い、以下に記載した方法により剥離荷重試験を行った。剥離荷重試験により、剥離荷重を測定した。測定した結果は、表5に記載した。
[Example 7] to [Example 11]
In Examples 7 to 11, a single-layer film was produced by the film production equipment 20 using the cellulose ester "CA-2" as the polymer resin 11 and "PA-6" as the organic compound in the amounts shown in Table 5. The amount of the polymer resin and the organic compound relative to the solvent was 20%. A film production test was carried out on the produced film by the method described below. In the film production test, the film thickness, peelability, peeled surface condition, and haze were measured. In addition, a separate film was produced, and a peel load test was carried out by the method described below. The peel load was measured by the peel load test. The measurement results are shown in Table 5.
 [実施例12]~[実施例16]
 実施例12~実施例16では、高分子樹脂11としてそれぞれ「CA-3」、「CA-4」、「CA-5」、「CA-6」、又は「CA-7」のセルロースエステルを使用し、有機化合物として、「PA-4」をそれぞれ高分子樹脂100質量部に対して0.1質量部の割合で用いて、フィルム製造設備20により単層構造のフィルムを製造した。溶剤に対する高分子樹脂及び有機化合物の量は、20%とした。製造したフィルムについて以下に記載した方法により製膜試験を行った。製膜試験により、フィルムの厚み、剥ぎ取り性、剥ぎ取り面状、及びヘーズを測定した。また、別に製膜を行い、以下に記載した方法により剥離荷重試験を行った。剥離荷重試験により、剥離荷重を測定した。測定した結果は、表5に記載した。
[Example 12] to [Example 16]
In Examples 12 to 16, cellulose esters of "CA-3", "CA-4", "CA-5", "CA-6", or "CA-7" were used as the polymer resin 11, and "PA-4" was used as the organic compound in a ratio of 0.1 parts by mass per 100 parts by mass of the polymer resin, and a single-layer film was produced by the film production equipment 20. The amount of the polymer resin and the organic compound relative to the solvent was 20%. The film production test was performed on the produced film by the method described below. The film production test was performed to measure the film thickness, peelability, peel surface condition, and haze. In addition, a separate film was produced, and a peel load test was performed by the method described below. The peel load was measured by the peel load test. The measurement results are shown in Table 5.
 [比較例1]~[比較例3]及び[参考例1]
 比較例1~比較例3では、高分子樹脂11として「CA-2」のセルロースエステルを使用し、有機化合物として、比較例1では有機化合物を用いず、比較例2では「PA-1」の塩である「PA-1(K)」を用い、比較例3では「PA-6」の塩である「PA-1(K)」を用いた。「PA-1(K)」及び「PA-6(K)」は、それぞれ0.1PHRの割合で用い、フィルム製造設備20によりフィルムを製造した。なお、「PA-1(K)」及び「PA-1(K)」は、「PA-1」又は「PA-6」を、それぞれ水酸化カリウムで中和後、乾燥して得たカリウム塩である。また、参考例1では、高分子樹脂11として「CA-1」のセルロースエステルを使用し、有機化合物を用いずに、フィルム製造設備20によりフィルムを製造した。製造したフィルムについて以下に記載した方法により製膜試験を行った。製膜試験により、フィルムの厚み、剥ぎ取り性、剥ぎ取り面状、及びヘーズを測定した。また、別に製膜を行い、以下に記載した方法により剥離荷重試験を行った。剥離荷重試験により、剥離荷重を測定した。測定した結果は、表5に記載した。
[Comparative Example 1] to [Comparative Example 3] and [Reference Example 1]
In Comparative Examples 1 to 3, cellulose ester of "CA-2" was used as the polymer resin 11, and as the organic compound, in Comparative Example 1, no organic compound was used, in Comparative Example 2, "PA-1(K)" which is a salt of "PA-1" was used, and in Comparative Example 3, "PA-1(K)" which is a salt of "PA-6" was used. "PA-1(K)" and "PA-6(K)" were used at a ratio of 0.1 PHR, and films were produced by the film production equipment 20. "PA-1(K)" and "PA-1(K)" are potassium salts obtained by neutralizing "PA-1" or "PA-6" with potassium hydroxide and then drying. In Reference Example 1, cellulose ester of "CA-1" was used as the polymer resin 11, and a film was produced by the film production equipment 20 without using an organic compound. A film production test was performed on the produced film by the method described below. The film production test was performed to measure the thickness, peelability, peeled surface state, and haze of the film. Separately, a film was formed and a peel load test was carried out by the method described below. The peel load was measured by the peel load test. The measurement results are shown in Table 5.
1.製膜試験
 製造したフィルム10のそれぞれについて厚みを測定した。また、製造したフィルム10のそれぞれについて、剥ぎ取り性、剥ぎ取り面状、及び、ヘーズを以下に記載した方法により測定した。各試験の結果は、表5に記載した。
1. Film Formation Test The thickness of each of the produced films 10 was measured. In addition, the peelability, peeled surface condition, and haze of each of the produced films 10 were measured by the methods described below. The results of each test are shown in Table 5.
(1)剥ぎ取り性
 上記の実施例と同様の方法にて、フィルム製造設備20を用い、ドープ21をドープをSUS316製の金属バンドに流延し、製膜後の厚みが40μm(実施例1~9及び実施例12~16、参考例1、並びに比較例1~3)となるように製膜した。揮発分20%となるようにして金属バンド上から剥ぎ取り乾燥し巻き取った。実施例10では、製膜後の厚みが80μmとなるように製膜し、揮発分40%となるようにして金属バンド上から剥ぎ取り乾燥し巻き取った。実施例11では、製膜後の厚みが120μmとなるように製膜し、揮発分60%となるようにして金属バンド上から剥ぎ取り乾燥し巻き取った。剥ぎ取り性を以下の観点で評価した。
(1) Peelability Using the film production equipment 20, the dope 21 was cast onto a metal band made of SUS316 in the same manner as in the above examples, and a film was formed so that the thickness after film formation was 40 μm (Examples 1 to 9 and Examples 12 to 16, Reference Example 1, and Comparative Examples 1 to 3). The film was peeled off from the metal band so that the volatile content was 20%, and then dried and wound up. In Example 10, the film was formed so that the thickness after film formation was 80 μm, and the volatile content was 40%, and then peeled off from the metal band, dried and wound up. In Example 11, the film was formed so that the thickness after film formation was 120 μm, and then peeled off from the metal band, dried and wound up with the volatile content being 60%. The peelability was evaluated from the following viewpoints.
 なお、揮発分は、揮発分量(単位;%)として、乾量基準の値であり、具体的には、残留溶剤量を求めるべきフィルム10の質量をx、このフィルム10を完全に乾燥した後の質量をyとするときに、{(x-y)/y}×100で求める百分率である。なお、「完全に乾燥」とは溶剤の残留量が厳格に「0」である必要はなく、例えば本実施形態では、測定対象のフィルム10に対して、120℃以上、かつ、相対湿度10%以下の恒温槽内で3時間以上の乾燥処理を行った後の質量をyとしている。 The volatile content is a value based on the dry weight as the amount of volatile content (unit: %), specifically, where the mass of the film 10 for which the amount of residual solvent is to be determined is x and the mass of this film 10 after it has been completely dried is y, it is a percentage calculated by {(x-y)/y} x 100. Note that "completely dried" does not necessarily mean that the amount of residual solvent is strictly "0". For example, in this embodiment, y is the mass of the film 10 to be measured after it has been dried for 3 hours or more in a thermostatic chamber at 120°C or higher and a relative humidity of 10% or lower.
A:剥ぎ取り性が安定していた。
B:剥ぎ取り位置の変動があるがフィルムの製造には問題の無いレベルであった。
C:剥取位置の変動が明確に見られた。
D:安定にはぎとれなかった。
A: Peelability was stable.
B: There was some variation in the peeling position, but it was not a problem for the production of the film.
C: Variation in the peeling position was clearly observed.
D: I couldn't remove it stably.
(2)剥ぎ取り面状
 得られたフィルム10のそれぞれについて段ムラを反射光で目視により観察して、以下の3段階評価で評価した。
(2) Surface Condition After Peeling The resulting films 10 were visually observed for step unevenness using reflected light and rated according to the following three-level scale.
A:段ムラ発生無し
B:段ムラが弱く発生しているが、製品として問題の無いレベルであった。
C:段ムラが強く発生しており、製品として用いることはできなかった。
A: No step unevenness occurred. B: Step unevenness occurred slightly, but was at a level that did not pose a problem as a product.
C: Significant step unevenness was observed and the product could not be used.
(3)ヘーズ
 得られたフィルム10のそれぞれについて、ヘーズを測定し、白濁の程度として評価した。ヘーズは、日本工業規格JIS K 7136に基づき、日本電色工業株式会社製のヘーズメータNDH 7000で求めた。ヘーズ2%以下は合格であり、ヘーズ2%以上は不合格である。ヘーズ1%以下はフィルムの白濁の程度として特に良好である。
(3) Haze The haze of each of the obtained films 10 was measured and evaluated as the degree of cloudiness. The haze was measured using a haze meter NDH 7000 manufactured by Nippon Denshoku Industries Co., Ltd., based on the Japanese Industrial Standard JIS K 7136. A haze of 2% or less is acceptable, and a haze of 2% or more is unacceptable. A haze of 1% or less is particularly good as the degree of cloudiness of the film.
2.剥離荷重試験
 フィルム製造設備20を用い、20℃に温度を調整した支持体に、ドープ21のそれぞれからなるサンプルを流延することにより流延膜を形成した。用いた支持体は、SUS316のステンレス製であった。流延膜の厚みは、乾燥時のフィルムサンプルの厚みが80μmとなるように設定した。形成した流延膜を、室温下に2分静置した。この静置によって流延膜は流延直後と比べて乾燥していたものの、完全には乾燥していなかった。この静置直後に、流延膜に対して、2cm幅で、カッタを用いて、切断線を13本入れた。切断線により形成した2cm幅の12個の切断片のうちのひとつ(第1の切断片)において、切断片の長手方向における一端部をクリップで把持した。そのクリップを支持体の表面と切断片とのなす角が45°となるように、クリップによって切断片の上記一端部を2cm/秒の速度で引き上げた。この引き上げに要した荷重を、ロードセル(ミネベアミツミ株式会社製、微小荷重小型引張圧縮型UTA-200GR)で測り、第1の切断片の剥離荷重(第1の剥離荷重)とした。その後、残りの11個の切断片について、順次、同様に、剥離荷重を求め、第2の剥離荷重~第12の剥離荷重とした。なお、第1の剥離荷重~第12の剥離荷重を求める時間間隔は、できるだけ等しくなるようにし、最終である第12の剥離荷重の測定が流延膜の形成から概ね30分経過時となるようにした。これら12個の測定結果である第1の剥離荷重から第12の剥離荷重のうち、最も大きい値を、各ドープ21から得た流延膜の剥離荷重とした。それぞれのドープ21について以上のように求めた剥離荷重を表5に記載した。
2. Peel Load Test Using the film production equipment 20, a sample of each of the dopes 21 was cast on a support adjusted to a temperature of 20°C to form a casting film. The support used was made of SUS316 stainless steel. The thickness of the casting film was set so that the thickness of the film sample when dried was 80 μm. The formed casting film was left at room temperature for 2 minutes. Although the casting film was dried compared to the film immediately after casting by this leaving, it was not completely dried. Immediately after this leaving, 13 cutting lines were made in the casting film with a width of 2 cm using a cutter. In one of the 12 cut pieces with a width of 2 cm formed by the cutting lines (first cut piece), one end of the cut piece in the longitudinal direction was held by a clip. The one end of the cut piece was pulled up by the clip at a speed of 2 cm/sec so that the angle between the surface of the support and the cut piece was 45°. The load required for this lifting was measured by a load cell (UTA-200GR, a small-scale tension-compression type, manufactured by MinebeaMitsumi Inc.) and was taken as the peel load of the first cut piece (first peel load). Thereafter, the peel loads of the remaining 11 cut pieces were measured in the same manner, and were taken as the second peel load to the twelfth peel load. The time intervals for measuring the first peel load to the twelfth peel load were set as equal as possible, and the final twelfth peel load was measured approximately 30 minutes after the formation of the casting film. The largest value among the first peel load to the twelfth peel load, which were the measurement results of the 12 pieces, was taken as the peel load of the casting film obtained from each dope 21. The peel loads measured for each dope 21 as described above are shown in Table 5.
Figure JPOXMLDOC01-appb-T000013
 
Figure JPOXMLDOC01-appb-T000013
 
[実施例17]~[実施例20]
 実施例17~実施例20では、高分子樹脂11として「PI-1」及び「PI-2」のポリイミド樹脂を使用し、有機化合物として「PA-4」又は「PA-6」それぞれ表6に記載した添加量で用いて、フィルム製造設備20により単層構造のフィルムを製造した。溶剤に対する高分子樹脂及び有機化合物の量は、20%とした。製造したフィルムについて上記に記載した方法により製膜試験を行った。製膜試験により、フィルムの厚み、剥ぎ取り性、剥ぎ取り面状、及びヘーズを測定した。また、別に製膜を行い、上記に記載した方法により剥離荷重試験を行った。剥離荷重試験により、剥離荷重を測定した。測定した結果等は、表6に記載した。
[Example 17] to [Example 20]
In Examples 17 to 20, polyimide resins "PI-1" and "PI-2" were used as the polymer resin 11, and "PA-4" or "PA-6" was used as the organic compound in the amounts shown in Table 6, to produce a single-layer film by the film production equipment 20. The amount of polymer resin and organic compound relative to the solvent was 20%. The film production test was carried out on the produced film by the method described above. The film production test was carried out to measure the film thickness, peelability, peeled surface condition, and haze. In addition, a separate film was produced, and a peel load test was carried out by the method described above. The peel load was measured by the peel load test. The measurement results are shown in Table 6.
[実施例21]及び[実施例22]
 実施例21及び実施例22では、高分子樹脂11として「MA-1」及び「MA-2」のアクリル樹脂を使用し、有機化合物として、「PA-6」を、それぞれ表6に記載した添加量で用いて、フィルム製造設備20により単層構造のフィルムを製造した。溶剤に対する高分子樹脂及び有機化合物の量は、20%とした。製造したフィルムについて上記に記載した方法により製膜試験を行った。製膜試験により、フィルムの厚み、剥ぎ取り性、剥ぎ取り面状、及びヘーズを測定した。また、別に製膜を行い、上記に記載した方法により剥離荷重試験を行った。剥離荷重試験により、剥離荷重を測定した。測定した結果等は、表6に記載した。
[Example 21] and [Example 22]
In Examples 21 and 22, acrylic resins "MA-1" and "MA-2" were used as the polymer resin 11, and "PA-6" was used as the organic compound in the amounts added shown in Table 6, to produce a single-layer film by film production equipment 20. The amount of polymer resin and organic compound relative to the solvent was 20%. A film production test was conducted on the produced film by the method described above. The film production test measured the film thickness, peelability, peeled surface condition, and haze. In addition, a separate film was produced, and a peel load test was conducted by the method described above. The peel load was measured by the peel load test. The measurement results are shown in Table 6.
[比較例4]及び[比較例5]
 比較例4~比較例5では、高分子樹脂11として「PI-1」及び「PI-2」のポリイミド樹脂を使用し、有機化合物を用いずに、フィルム製造設備20により単層構造のフィルムを製造した。溶剤に対する高分子樹脂及び有機化合物の量は、20%とした。製造したフィルムについて上記に記載した方法により製膜試験を行った。製膜試験により、フィルムの厚み、剥ぎ取り性、剥ぎ取り面状、及びヘーズを測定した。また、別に製膜を行い、上記に記載した方法により剥離荷重試験を行った。剥離荷重試験により、剥離荷重を測定した。測定した結果は、表6に記載した。なお、比較例5では、製造したフィルムが安定に剥ぎ取れなかったため、剥離荷重を測定できず、剥ぎ取り面状、ヘーズの欄も含め「-」と記載した。
[Comparative Example 4] and [Comparative Example 5]
In Comparative Examples 4 to 5, polyimide resins "PI-1" and "PI-2" were used as the polymer resin 11, and a single-layer film was produced by the film production equipment 20 without using any organic compound. The amount of polymer resin and organic compound relative to the solvent was 20%. The produced film was subjected to a film formation test by the method described above. The film formation test measured the film thickness, peelability, peeled surface condition, and haze. In addition, a separate film was produced, and a peel load test was performed by the method described above. The peel load was measured by the peel load test. The measurement results are shown in Table 6. In Comparative Example 5, the produced film could not be peeled off stably, so the peel load could not be measured, and "-" was entered in the columns for peeled surface condition and haze.
[比較例6]及び[比較例7]
 比較例6~比較例7では、高分子樹脂11として「MA-1」及び「MA-2」のアクリル樹脂を使用し、有機化合物を用いずに、フィルム製造設備20により単層構造のフィルムを製造した。溶剤に対する高分子樹脂及び有機化合物の量は、20%とした。製造したフィルムについて上記に記載した方法により製膜試験を行った。製膜試験により、フィルムの厚み、剥ぎ取り性、剥ぎ取り面状、及びヘーズを測定した。また、別に製膜を行い、上記に記載した方法により剥離荷重試験を行った。剥離荷重試験により、剥離荷重を測定した。測定した結果は、表6に記載した。
[Comparative Example 6] and [Comparative Example 7]
In Comparative Examples 6 to 7, acrylic resins "MA-1" and "MA-2" were used as the polymer resin 11, and single-layer films were produced by the film production equipment 20 without using any organic compound. The amount of polymer resin and organic compound relative to the solvent was 20%. A film production test was carried out on the produced films by the method described above. In the film production test, the film thickness, peelability, peeled surface condition, and haze were measured. In addition, a separate film was produced, and a peel load test was carried out by the method described above. The peel load was measured by the peel load test. The measurement results are shown in Table 6.
Figure JPOXMLDOC01-appb-T000014
 
Figure JPOXMLDOC01-appb-T000014
 
 10  フィルム
 11  高分子樹脂
 12  有機化合物
 15  溶剤
 20 フィルム製造設備
 21  ドープ
 22  ドープ調製装置
 23 フィルム製造装置
 26  ミキシングタンク
 27,32 ポンプ
 28  フィルタ
 31  貯留タンク
 33  配管
 36 流延ダイ
 36a 吐出口
 37  流延ユニット
 38  テンタ
 41  ローラ乾燥機
 41a ローラ
 42  スリッタ
 43  巻取機
 46  バンド
 47  ローラ
 48  剥取ローラ
 51  流延膜
 52  クリップ
 53  送風機
 54  巻き芯
 PC 流延位置
 PP 剥取位置
 
REFERENCE SIGNS LIST 10 film 11 polymer resin 12 organic compound 15 solvent 20 film production equipment 21 dope 22 dope preparation device 23 film production device 26 mixing tank 27, 32 pump 28 filter 31 storage tank 33 piping 36 casting die 36a discharge port 37 casting unit 38 tenter 41 roller dryer 41a roller 42 slitter 43 winder 46 band 47 roller 48 peeling roller 51 cast film 52 clip 53 blower 54 winding core PC casting position PP peeling position

Claims (17)

  1.  酸成分を含まない主構成単位と酸成分を含む酸構成単位とをそれぞれ複数含む高分子樹脂と、
     リン酸基を含み酸解離性を有する有機化合物と、
     溶剤とからなるフィルム用樹脂組成物。
    a polymer resin including a plurality of main structural units not including an acid component and a plurality of acid structural units including an acid component;
    an organic compound that contains a phosphate group and has acid dissociability;
    A resin composition for film comprising:
  2.  前記有機化合物は、前記高分子樹脂100質量部に対して0.01質量部以上10質量部以下の範囲内で含有される請求項1に記載のフィルム用樹脂組成物。 The resin composition for films according to claim 1, wherein the organic compound is contained in an amount ranging from 0.01 parts by mass to 10 parts by mass relative to 100 parts by mass of the polymer resin.
  3.  前記高分子樹脂は、セルロース誘導体とヘミセルロース誘導体とを含む請求項1または2に記載のフィルム用樹脂組成物。 The resin composition for films according to claim 1 or 2, wherein the polymer resin contains a cellulose derivative and a hemicellulose derivative.
  4.  前記高分子樹脂は、パルプを原料とするセルロースエステルである請求項1または2に記載のフィルム用樹脂組成物。 The resin composition for films according to claim 1 or 2, wherein the polymer resin is a cellulose ester made from pulp.
  5.  前記高分子樹脂は、ポリイミド又はアクリル樹脂である請求項1または2に記載のフィルム用樹脂組成物。 The resin composition for films according to claim 1 or 2, wherein the polymer resin is a polyimide or acrylic resin.
  6.  前記酸構成単位は、カルボキシル基を含む請求項1または2に記載のフィルム用樹脂組成物。 The resin composition for films according to claim 1 or 2, wherein the acid constituent unit contains a carboxyl group.
  7.  前記酸構成単位は、前記高分子樹脂全体を基準として、組成比で0.4%以上5%以下の範囲内で含まれる請求項1または2に記載のフィルム用樹脂組成物。 The resin composition for films according to claim 1 or 2, wherein the acid constituent units are contained in a composition ratio ranging from 0.4% to 5% based on the entire polymer resin.
  8.  前記有機化合物は、以下の一般式(1)または(2)で表される化合物の少なくとも1つである請求項1または2に記載のフィルム用樹脂組成物。
    Figure JPOXMLDOC01-appb-I000001
    Figure JPOXMLDOC01-appb-I000002
    (上記式(1)又は式(2)において、R1は炭素数が1以上20以下のアルキル基、R2は炭素数が1以上20以下のアルキル基、R3は炭素数が1以上6以下のアルキル基、nは1以上8以下の自然数、Xはヒドロキシ基、Y及びZはそれぞれヒドロキシ基、アルコキシ基、または酸素のいずれか1つである。)
    3. The resin composition for films according to claim 1, wherein the organic compound is at least one of compounds represented by the following general formula (1) or (2):
    Figure JPOXMLDOC01-appb-I000001
    Figure JPOXMLDOC01-appb-I000002
    (In the above formula (1) or (2), R1 is an alkyl group having 1 to 20 carbon atoms, R2 is an alkyl group having 1 to 20 carbon atoms, R3 is an alkyl group having 1 to 6 carbon atoms, n is a natural number of 1 to 8, X is a hydroxy group, and Y and Z are each one of a hydroxy group, an alkoxy group, or oxygen.)
  9.  前記有機化合物は、JIS K0070-1992による酸価測定法に基づいて測定した酸価が100mg(KOH)/g以上である請求項1または2に記載のフィルム用樹脂組成物。 The resin composition for films according to claim 1 or 2, wherein the organic compound has an acid value of 100 mg (KOH)/g or more as measured according to the acid value measurement method according to JIS K0070-1992.
  10.  前記溶剤は、ハロゲン化炭化水素系溶剤である請求項1または2に記載のフィルム用樹脂組成物。 The resin composition for films according to claim 1 or 2, wherein the solvent is a halogenated hydrocarbon solvent.
  11.  請求項1に記載のフィルム用樹脂組成物からなるドープを、金属製の支持体に流延することにより流延膜を形成する流延工程と、
     前記流延膜を前記支持体から剥がすことによりフィルムを形成する剥離工程と、
     前記フィルムを乾燥する乾燥工程と、
    を有するフィルムの製造方法。
    A casting step of forming a casting film by casting a dope made of the resin composition for films according to claim 1 onto a metal support;
    a peeling step of peeling the casting membrane from the support to form a film;
    a drying step of drying the film;
    A method for producing a film having the above structure.
  12.  前記流延工程では、走行する前記支持体に前記ドープを連続的に流延し、
     前記剥離工程では、前記流延膜を前記支持体から連続的に剥がす請求項11に記載のフィルムの製造方法。
    In the casting step, the dope is continuously cast onto the moving support,
    The method for producing a film according to claim 11 , wherein in the peeling step, the casting film is continuously peeled off from the support.
  13.  前記支持体は、ステンレスバンドである請求項11または12に記載のフィルムの製造方法。 The method for producing a film according to claim 11 or 12, wherein the support is a stainless steel band.
  14.  酸成分を含まない主構成単位と酸成分を含む酸構成単位とをそれぞれ複数含む高分子樹脂と、
     リン酸基を含み酸解離性を有する有機化合物とを含有するフィルム。
    a polymer resin including a plurality of main structural units not including an acid component and a plurality of acid structural units including an acid component;
    and an organic compound which contains a phosphate group and is acid dissociable.
  15.  前記有機化合物は、前記高分子樹脂100質量部に対して0.01質量部以上10質量部以下の範囲内で含有される請求項14に記載のフィルム。 The film according to claim 14, wherein the organic compound is contained in a range of 0.01 parts by mass to 10 parts by mass to 100 parts by mass of the polymer resin.
  16.  前記酸構成単位は、前記高分子樹脂全体を基準として、組成比で0.4%以上5%以下の範囲内で含まれる請求項14または15に記載のフィルム。 The film according to claim 14 or 15, wherein the acid structural unit is contained in a composition ratio ranging from 0.4% to 5% based on the entire polymer resin.
  17.  JIS K7136に基づいて測定したヘーズ値が、2.0以下である請求項14または15に記載のフィルム。
     
    16. The film according to claim 14, having a haze value of 2.0 or less as measured in accordance with JIS K7136.
PCT/JP2023/034658 2022-09-30 2023-09-25 Resin composition for film, film production method, and film WO2024071014A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-159115 2022-09-30
JP2022159115 2022-09-30

Publications (1)

Publication Number Publication Date
WO2024071014A1 true WO2024071014A1 (en) 2024-04-04

Family

ID=90477825

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/034658 WO2024071014A1 (en) 2022-09-30 2023-09-25 Resin composition for film, film production method, and film

Country Status (1)

Country Link
WO (1) WO2024071014A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6169845A (en) * 1984-04-04 1986-04-10 アグフア・ゲヴエルト・ナ−ムロゼ・ベンノ−トチヤツプ Release aid for cellulose ester film
JPH05171120A (en) * 1991-12-24 1993-07-09 Mitsui Toatsu Chem Inc Surface protecting film
JPH09316407A (en) * 1996-05-30 1997-12-09 Nitto Denko Corp Rereleasable pressure-sensitive adhesive sheet
WO2012173204A1 (en) * 2011-06-14 2012-12-20 宇部興産株式会社 Method for producing polyimide laminate, and polyimide laminate
JP2017002156A (en) * 2015-06-09 2017-01-05 東洋インキScホールディングス株式会社 Re-peelable type aqueous pressure sensitive adhesive

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6169845A (en) * 1984-04-04 1986-04-10 アグフア・ゲヴエルト・ナ−ムロゼ・ベンノ−トチヤツプ Release aid for cellulose ester film
JPH05171120A (en) * 1991-12-24 1993-07-09 Mitsui Toatsu Chem Inc Surface protecting film
JPH09316407A (en) * 1996-05-30 1997-12-09 Nitto Denko Corp Rereleasable pressure-sensitive adhesive sheet
WO2012173204A1 (en) * 2011-06-14 2012-12-20 宇部興産株式会社 Method for producing polyimide laminate, and polyimide laminate
JP2017002156A (en) * 2015-06-09 2017-01-05 東洋インキScホールディングス株式会社 Re-peelable type aqueous pressure sensitive adhesive

Similar Documents

Publication Publication Date Title
Jiang et al. Effects of adding methods and modification types of cellulose on the physicochemical properties of starch/PBAT blown films
JP5779454B2 (en) Mixing apparatus, casting dope manufacturing method and solution casting method
WO2024071014A1 (en) Resin composition for film, film production method, and film
KR20100036931A (en) Method and apparatus for manufacturing retardation film
KR101775731B1 (en) Casting apparatus, casting method and solution film-formimg method
JP6740198B2 (en) Polyarylate film and method for producing the same
JP5518652B2 (en) Mixing apparatus, casting dope manufacturing method and solution casting method
JP7244627B2 (en) FILM RESIN COMPOSITION, FILM MANUFACTURING METHOD AND FILM
US20130234360A1 (en) Method and apparatus for producing cellulose acylate film
JP2007290370A (en) Polymer film manufacturing apparatus and polymer film manufacturing method
Panatarani et al. Reinforcement of Carrageenan/Starch Based Bio-Composite by Beads-Milled Chitosan
JP2010158787A (en) Method and apparatus for adjusting property and state of polymer film and method for producing optical film
JP2010158833A (en) Method and apparatus for adjusting property and state of polymer film and method for producing optical film
JP5192569B2 (en) Method for producing polymer film
JP4792297B2 (en) Method for producing polymer film
JP2012061677A (en) Mixing apparatus, production method for casting dope and solution film-forming method
WO2023190717A1 (en) Method for producing cellulose acylate film, and cellulose acylate film
JP2002128900A (en) Method for preparing dope and cellulose ester film formed by using the dope
CN116157255B (en) Optical film, polarizing plate and liquid crystal display device
WO2023223903A1 (en) Film roll holding device, method of preventing failure in film roll, and control program
JP5494367B2 (en) Manufacturing method of optical film
JP2007290362A (en) Solution filming facilities/method
JP2006248136A (en) Film making method from solution
JP5412266B2 (en) Casting apparatus and solution casting method
JP4764750B2 (en) Solution casting method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23872237

Country of ref document: EP

Kind code of ref document: A1