WO2024070886A1 - Phosphorus-containing phenol compound, curable resin composition containing said phosphorus-containing phenol compound, cured product, and method for producing said phosphorus-containing phenol compound - Google Patents

Phosphorus-containing phenol compound, curable resin composition containing said phosphorus-containing phenol compound, cured product, and method for producing said phosphorus-containing phenol compound Download PDF

Info

Publication number
WO2024070886A1
WO2024070886A1 PCT/JP2023/034269 JP2023034269W WO2024070886A1 WO 2024070886 A1 WO2024070886 A1 WO 2024070886A1 JP 2023034269 W JP2023034269 W JP 2023034269W WO 2024070886 A1 WO2024070886 A1 WO 2024070886A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphorus
general formula
phenol compound
compound
containing phenol
Prior art date
Application number
PCT/JP2023/034269
Other languages
French (fr)
Japanese (ja)
Inventor
次俊 和佐野
和男 藤本
Original Assignee
日鉄ケミカル&マテリアル株式会社
大八化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日鉄ケミカル&マテリアル株式会社, 大八化学工業株式会社 filed Critical 日鉄ケミカル&マテリアル株式会社
Publication of WO2024070886A1 publication Critical patent/WO2024070886A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/06Phosphorus compounds without P—C bonds
    • C07F9/08Esters of oxyacids of phosphorus
    • C07F9/09Esters of phosphoric acids
    • C07F9/12Esters of phosphoric acids with hydroxyaryl compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K21/00Fireproofing materials
    • C09K21/06Organic materials
    • C09K21/12Organic materials containing phosphorus

Definitions

  • the present invention relates to a reactive phosphorus compound, in particular a phosphorus-containing phenolic compound, which is useful as a flame retardant for thermosetting resins such as epoxy resins.
  • the present invention also relates to a curable resin composition containing the phosphorus-containing phenolic compound and a curable resin composition, and a method for producing the phosphorus-containing phenolic compound.
  • Plastic materials have excellent mechanical properties and moldability, making them suitable for a wide range of applications, from building materials to electrical and electronic equipment. However, most plastic materials are flammable, so flame retardancy is essential for their use in applications such as electrical and electronic products, office automation equipment, and communications equipment, to ensure safety against heat generation and ignition.
  • Additive flame retardants such as halogen-based flame retardants, inorganic flame retardants, and phosphorus-based flame retardants are commonly used as flame retardant technology for plastic materials, regardless of the type of resin or application.
  • halogen-based flame retardants mainly bromine-based
  • inorganic flame retardants such as magnesium hydroxide and aluminum hydroxide have a flame retardant effect due to endothermic heat, but they must be added in large quantities to achieve sufficient flame retardancy, which causes a decrease in various properties of plastic molded products.
  • phosphorus-based flame retardants are widely used, which do not generate harmful substances and can be flame retarded with the addition of relatively small amounts, but they still have unavoidable effects on properties, such as a decrease in processability due to bleed-out, a decrease in glass transition temperature, etc.
  • Patent Document 1 discloses a phosphorus-containing epoxy resin obtained by reacting 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (hereinafter abbreviated as "DOPO") with quinones and then reacting with an epoxy resin.
  • DOPO 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide
  • Patent Document 2 discloses a phenolic resin obtained by reacting bisphenol A with formaldehyde as a curing agent for epoxy resins, to obtain hydroxymethylbisphenol A, and then reacting with DOPO
  • Patent Document 3 discloses a phenolic resin to which phosphorus atoms have been introduced by reacting DOPO with anisaldehyde and then reacting with a triazine skeleton-containing phenolic resin.
  • Patent Document 4 discloses that phosphorus-containing active esters that have been introduced with a DOPO skeleton exhibit flame retardancy and low dielectric properties.
  • epoxy resins and phosphorus-containing curing agents that can be imparted with flame retardancy without reducing general properties such as heat resistance by introducing DOPO into the structure are widely known, but there is a problem that the DOPO skeleton is easily hydrolyzed, and the hydroxyl groups generated by hydrolysis cause a large change in dielectric properties after moisture absorption and water absorption.
  • Patent Document 5 discloses a phosphate ester-type phenolic compound that exhibits minimal change in dielectric properties after absorbing water, but the dielectric properties and heat resistance are insufficient, and there are still no flame retardants that are sufficient to meet high-level requirements.
  • the problem that the present invention aims to solve is to provide a phosphorus-containing phenolic compound that has excellent flame retardancy, heat resistance, and dielectric properties in the cured product, has a small water absorption rate, and exhibits little change in dielectric properties after absorbing water, a curable resin composition that contains the phosphorus-containing phenolic compound and a curable resin, an epoxy resin composition that uses the compound as a curing agent, a cured product thereof, and a method for producing the phosphorus-containing phenolic compound.
  • a phosphorus-containing phenolic compound with a specific structure has excellent heat resistance and dielectric properties, and undergoes little change in dielectric properties after absorbing water, which led to the invention.
  • the present invention relates to a phosphorus-containing phenol compound represented by the following formula (1).
  • Ar is an aromatic ring group having 6 to 30 carbon atoms which may have a substituent
  • R1 is independently hydrogen or a substituent represented by the following general formula (2), with at least one R1 containing a substituent represented by general formula (2).
  • m is an integer of 3 to 6.
  • R2 and R3 each independently represent a linear or branched alkyl group having 1 to 5 carbon atoms, and n2 and n3 each independently represent an integer of 0 to 5.
  • phosphorus-containing phenol compounds in which Ar is an aromatic ring group selected from the group consisting of a benzene skeleton, a naphthalene skeleton, a biphenyl skeleton, and an anthracene skeleton are preferred, and phosphorus-containing phenol compounds in which Ar is a benzene skeleton are more preferred.
  • a phosphorus-containing phenolic compound in which m is 3 is more preferred.
  • Particularly preferred are phosphorus-containing phenolic compounds in which m is 3 and, for three OR1 groups in general formula (1), the compounds contain 10 to 80 mol % of a compound in which two R1s are hydrogen and one R1 is a substituent represented by general formula (2) (monosubstitution), 5 to 50 mol % of a compound in which one R1 is hydrogen and two R1s are substituents represented by general formula (2) (disubstitution), and 1 to 50 mol % of a compound in which three R1s are substituents represented by general formula (2) (trisubstitution).
  • the present invention is a method for producing a phosphorus-containing phenol compound, which comprises reacting 0.1 to 0.9 moles of a compound represented by general formula (4) with 1 mole of a hydroxyl group of a compound represented by general formula (3).
  • Ar and m are the same as those in formula (1).
  • X represents a halogen atom
  • R2, R3, n2, and n3 are each defined as in formula (2).
  • the present invention is a curable resin composition containing the above-mentioned phosphorus-containing phenolic compound and a curable resin.
  • a cured product is obtained by curing the above-mentioned curable resin composition.
  • the phosphorus-containing phenolic compound of the present invention exhibits minimal change in dielectric properties after absorbing water, making it extremely useful as a flame-retardant material for reducing transmission loss at higher frequencies associated with the increased amount of information processed by electronic devices.
  • Example 1 shows a GPC chart of the phosphorus-containing phenol compound obtained in Example 2. (The dotted line is the raw material, and the solid line is the product.)
  • the phosphorus-containing phenol compound of the present invention is represented by the following general formula (1).
  • Ar is an aromatic ring group having 6 to 30 carbon atoms which may have a substituent.
  • the aromatic ring group is not particularly limited, and examples thereof include monocyclic aromatic compounds such as benzene, furan, pyrrole, thiophene, imidazole, pyrazole, oxazole, isoxazole, thiazole, isothiazole, pyridine, pyrimidine, pyridazine, pyrazine, and triazine from which m hydrogen atoms have been removed; and condensed aromatic compounds such as naphthalene, anthracene, phenalene, phenanthrene, quinoline, isoquinoline, quinazoline, phthalazine, pteridine, coumarin, indole, benzimidazole, benzofuran, and a
  • the aromatic ring group may be a combination of a plurality of these aromatic compounds, and examples thereof include ring-assembled aromatic compounds such as biphenyl, binaphthalene, bipyridine, bithiophene, phenylpyridine, phenylthiophene, terphenyl, diphenylthiophene, and quaterphenyl from which m hydrogen atoms have been removed.
  • ring-assembled aromatic compounds such as biphenyl, binaphthalene, bipyridine, bithiophene, phenylpyridine, phenylthiophene, terphenyl, diphenylthiophene, and quaterphenyl from which m hydrogen atoms have been removed.
  • Preferred are benzene, naphthalene, biphenyl and anthracene, and more preferred is benzene.
  • the aromatic ring represented by Ar may contain a substituent other than -OR1.
  • substituents include an alkyl group having 1 to 10 carbon atoms and an alkoxy group having 1 to 10 carbon atoms, preferably an alkyl group having 1 to 10 carbon atoms.
  • the alkyl group having 1 to 10 carbon atoms is not particularly limited, but includes methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, isopentyl, tert-pentyl, neopentyl, 1,2-dimethylpropyl, n-hexyl, isohexyl, n-nonyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, and cyclononyl groups, of which methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, sec-butyl, and tert-butyl groups are preferred, and methyl and ethyl groups are even more preferred.
  • Alkoxy groups having 1 to 10 carbon atoms are not particularly limited, but examples include methoxy groups, ethoxy groups, propoxy groups, isopropoxy groups, butoxy groups, pentyloxy groups, hexyloxy groups, 2-ethylhexyloxy groups, octyloxy groups, and nonyloxy groups. These substituents may be used alone or in combination of two or more types.
  • m is an integer of 3 to 6, preferably 3 or 4, and more preferably 3.
  • R1 is independently hydrogen or a substituent represented by the following formula (2).
  • R2 and R3 each independently represent a linear or branched alkyl group having 1 to 5 carbon atoms.
  • alkyl groups having 1 to 5 carbon atoms include methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, isopentyl, neopentyl, etc.
  • methyl, ethyl, propyl, and isopropyl are preferred from the viewpoint of reactivity in production and ease of availability, with the methyl group being particularly preferred.
  • n2 and n3 are each independently an integer of 0 to 5, preferably 0 or an integer of 2 or more, and more preferably 2.
  • the substitution positions of R2 and R3 on the benzene ring are not particularly limited, but it is preferable that each is independently present at the ortho or meta position with respect to the phosphate ester bond.
  • the presence of an alkyl group at the ortho position hydrophobically blocks the phosphate ester, reducing water absorption and suppressing hydrolysis, thereby further improving the properties of the phosphorus-containing phenol compound of the present invention.
  • alkyl groups are substituted at two ortho positions with respect to the phosphate ester bond, and n2 and n3 are preferably 2 or more.
  • the ratio of hydrogen in R1 and the substituent represented by general formula (2) in the phosphorus-containing phenol compound of the present invention is not particularly limited, but at least one R1 contains a substituent represented by general formula (2).
  • the phosphorus-containing phenol compound of the present invention can exhibit excellent flame retardancy.
  • the ratio of the substituent represented by general formula (2) in R1 as a compound (mixture) is preferably 10 mol % or more, more preferably 30 mol % or more, and even more preferably 50 mol % or more.
  • Examples of phosphorus-containing phenolic compounds of the present invention include, but are not limited to, compounds of the following structures and mixtures thereof:
  • the phosphorus-containing phenol compound of the present invention does not need to be used as a single compound, but may be a mixture containing multiple compounds with different numbers of substituents represented by general formula (2).
  • the phosphorus-containing phenol compound of the present invention can be obtained by reacting a polyhydric phenol compound represented by the general formula (3) described below with a phosphorus compound represented by the general formula (4). Since the raw material polyhydric phenol compound does not contain phosphorus, the introduction of the substituent represented by the general formula (2) can be determined by measuring the phosphorus content of the compound after the reaction.
  • the introduction of the substituent represented by the general formula (2) can be judged by the phosphorus content. If the phosphorus content is not 0, the introduction of the substituent represented by the general formula (2) can be judged, but if the phosphorus content is low, flame retardancy is not expressed, and from the viewpoint of flame retardancy, the higher the phosphorus content, the better. However, as the phosphorus content increases, the number of hydroxyl groups decreases, and heat resistance may be insufficient or bleed-out may occur. Therefore, the phosphorus content of the phosphorus-containing phenolic compound is preferably 1.5 to 15.0 mass%, more preferably 3.0 to 12.0 mass%, and even more preferably 5.0 to 10.0 mass%.
  • the hydroxyl equivalent of the phosphorus-containing phenol compound is in the range of 50 to 1000 g/eq, preferably 80 to 800 g/eq, and more preferably 100 to 600 g/eq.
  • the phosphorus-containing phenol compound of the present invention is preferably a mixture of the following general formulas (5), (6), and (7). More preferably, the compound contains 10 to 80 mol% of a compound (monosubstitution) represented by the following general formula (5) in which two R1s are hydrogen and one R1 is a substituent represented by general formula (2), 5 to 50 mol% of a compound (disubstitution) represented by the following general formula (6) in which one R1 is hydrogen and two R1s are substituents represented by general formula (2), and 1 to 50 mol% of a compound (trisubstitution) represented by the following general formula (7) in which three R1s are substituents represented by general formula (2), thereby obtaining a cured product with excellent balance of flame retardancy, heat resistance, and dielectric properties.
  • a compound (monosubstitution) represented by the following general formula (5) in which two R1s are hydrogen and one R1 is a substituent represented by general formula (2)
  • the monosubstitution is 20 to 70 mol%
  • the disubstitution is 10 to 40 mol%
  • the trisubstitution is 2 to 40 mol%. It is acceptable for unreacted raw material phenols to remain, but it is desirable that the amount is less than 30 mol%.
  • R2, R3, n2, and n3 are defined as in general formula (2).
  • compositions of the above general formulas (5), (6), and (7) can be confirmed by liquid chromatography, size exclusion chromatography, etc.
  • the phosphorus-containing phenolic compound of the present invention is an aromatic phosphate ester having one or more phenolic hydroxyl groups, and its production method conforms to a general method for producing an aromatic phosphate ester. That is, one example of the reaction form is an esterification reaction using phosphorus oxyhalide (phosphoryl halide) and phenols as raw materials, and the corresponding phosphate ester can be obtained by a dehydrohalogenation reaction.
  • phosphorus oxyhalide phosphoryl halide
  • this esterification reaction is carried out using a catalyst and/or removing the released hydrogen halide from the reaction system.
  • the released hydrogen halide e.g., hydrogen chloride
  • the released hydrogen halide is a gas, and since its volume increases when it is gasified, it is easily released outside the reaction system in the case of a highly reactive raw material, but in the case of a less reactive raw material, the amount of hydrogen halide released is small and it tends to remain in the system, which may cause a hydrolysis reaction. In such cases, it is effective to capture the generated hydrogen halide to prevent the hydrolysis reaction from occurring, and amines are sometimes used as hydrogen halide scavengers.
  • the phosphorus-containing phenol compound of the present invention is a compound represented by the above general formula (1), it is necessary to react a polyhydric hydroxy compound represented by the following general formula (3) corresponding to the general formula (1) as a raw material with a phenol and a phosphorus oxyhalide, which are raw materials for the phosphorus halide compound represented by the following general formula (4) corresponding to the above general formula (2).
  • a polyhydric hydroxy compound represented by the following general formula (3) corresponding to the general formula (1) as a raw material with a phenol and a phosphorus oxyhalide, which are raw materials for the phosphorus halide compound represented by the following general formula (4) corresponding to the above general formula (2).
  • Ar and m are the same as those in formula (1).
  • the phosphorus oxyhalide for example, phosphorus oxychloride (POCl3) is reacted with the phenols first to obtain the halogenated phosphorus compound represented by the following general formula (4), and then the obtained halogenated phosphorus compound represented by the general formula (4) is reacted with the polyhydric hydroxy compound represented by the general formula (3), thereby making it possible to efficiently obtain the target compound.
  • the phosphorus oxyhalide for example, phosphorus oxychloride (POCl3) is reacted with the phenols first to obtain the halogenated phosphorus compound represented by the following general formula (4), and then the obtained halogenated phosphorus compound represented by the general formula (4) is reacted with the polyhydric hydroxy compound represented by the general formula (3), thereby making it possible to efficiently obtain the target compound.
  • the phenols are mixed in a ratio of 2 moles per mole of the phosphorus oxyhalide.
  • the phenols are preferably in the range of 1.8 to 2.2 moles, more preferably 1.9 to 2.1 moles.
  • R2, R3, n2, and n3 are the same as those in formula (2), and X represents a halogen atom.
  • the phosphorus-containing phenol compound of the present invention can be obtained by reacting the hydroxyl groups of a polyhydric hydroxy compound represented by general formula (3) with a halogenated phosphorus compound represented by general formula (4). Therefore, by adjusting the molar ratio of the halogenated phosphorus compound of general formula (4) to the hydroxyl groups, it is possible to control the hydroxyl group equivalent and phosphorus content.
  • the molar ratio of the reaction is preferably 0.1 to 0.9 moles, more preferably 0.2 to 0.8 moles, and even more preferably 0.3 to 0.7 moles of the halogenated phosphorus compound represented by general formula (4) per mole of hydroxyl groups of the polyhydric hydroxy compound represented by general formula (3).
  • a ratio of 0.1 moles or less is not preferred because the phosphorus content decreases and flame retardancy is insufficient, while a ratio of 0.9 moles or more is not preferred because the number of hydroxyl groups, which are reactive groups, decreases and heat resistance is insufficient.
  • the curable flame-retardant resin composition of the present invention contains the above-mentioned phosphorus-containing phenolic compound as an essential component, and can be obtained by mixing a curable resin with a phosphorus-containing phenolic compound.
  • a curable resin there are no limitations on the curable resin, so long as it reacts with the hydroxyl group of the phosphorus-containing phenolic compound of the present invention, and examples of the curable resin include epoxy resins and maleimide resins.
  • Epoxy resins that can be used in the present curable resin composition are not particularly limited, but include, for example, bisphenol A type epoxy resins, bisphenol F type epoxy resins, bisphenol S type epoxy resins, bisphenol AF type epoxy resins, phenol novolac type epoxy resins, naphthol novolac type epoxy resins, dicyclopentadiene type epoxy resins, phenol aralkyl type epoxy resins, naphthol type epoxy resins, naphthol aralkyl type epoxy resins, naphthalene type epoxy resins, glycidylamine type epoxy resins, cresol novolac type epoxy resins, biphenyl type epoxy resins, tetramethylbiphenyl type epoxy resins, linear aliphatic epoxy resins, alicyclic epoxy resins, heterocyclic epoxy resins, spiro ring-containing epoxy resins, cyclohexane dimethanol type epoxy resins, trimethylol type epoxy resins, halogenated epoxy resins, triphen
  • the amounts of the phosphorus-containing phenolic compound and the epoxy resin are determined based on the phosphorus content of the resin composition.
  • the phosphorus content in the resin composition is preferably 0.5 to 5.0% by mass, and more preferably 1.0 to 4.0% by mass. If the phosphorus content is 0.5% by mass or less, flame retardancy is not exhibited, and if it is 5.0% by mass or more, the amount of phosphorus-containing phenolic compound is high, resulting in an excess of hydroxyl groups relative to epoxy groups, which is not preferred as it results in insufficient crosslinking and a brittle cured product.
  • an epoxy resin when used as a curable resin, it may contain a curing agent other than the phosphorus-containing phenolic compound of the present invention.
  • the amount of hardener other than the phosphorus-containing phenolic compound of the present invention is preferably such that the phosphorus content of the resin composition of the present invention is 0.5 to 5.0 mass %, and the molar ratio (Nh/Ne) of the total number of moles (Nh) of reaction points between the phosphorus-containing phenolic compound and the epoxy groups of the other hardener to the number of moles (Ne) of the epoxy groups is 0.7 to 1.3, preferably 0.9 to 1.1. Molar ratios outside this range are not preferred because they result in insufficient crosslinking and a brittle cured product.
  • the resin composition of the present invention may also contain a curable resin other than an epoxy resin.
  • curable resins other than an epoxy resin include vinyl ester resins, polyvinylbenzyl resins, unsaturated polyester resins, curable vinyl resins, radical polymerizable resins such as maleimide resins, and cyanate resins.
  • the curable resin composition of the present invention may contain a curing accelerator as necessary.
  • the curing accelerator used here include phosphorus-based compounds, tertiary amines, imidazoles, organic acid metal salts, Lewis acids, and amine complex salts.
  • the amount of the curing accelerator added is preferably 0.1 to 10.0 parts by mass per 100 parts by mass of the total of the phosphorus-containing phenolic compound, the curable resin, and other curing agents.
  • the resin composition of the present invention can contain other components, such as thermosetting resins, thermoplastic resins, organic fillers, inorganic fillers, organic solvents, thickeners, defoamers, adhesion promoters, colorants, and additives, as appropriate.
  • thermoplastic resins include polystyrene, polyphenylene ether resin, polyetherimide resin, polyethersulfone resin, PPS resin, polycyclopentadiene resin, polycycloolefin resin, etc., known thermoplastic elastomers such as styrene-ethylene-propylene copolymer, styrene-ethylene-butylene copolymer, styrene-butadiene copolymer, styrene-isoprene copolymer, hydrogenated styrene-butadiene copolymer, hydrogenated styrene-isoprene copolymer, etc., and rubbers such as polybutadiene and polyisoprene.
  • Preferred examples include polyphenylene ether resin (unmodified) and hydrogenated styrene-butadiene copolymer.
  • a filler can be blended into the curable resin composition of the present invention.
  • fillers include those added to enhance the heat resistance and flame retardancy of the cured product of the curable resin composition, and known fillers can be used, but are not particularly limited.
  • the heat resistance, dimensional stability, flame retardancy, etc. can be further improved.
  • Specific examples include silica such as spherical silica, metal oxides such as alumina, titanium oxide, and mica, metal hydroxides such as aluminum hydroxide and magnesium hydroxide, talc, aluminum borate, barium sulfate, and calcium carbonate.
  • metal hydroxides such as aluminum hydroxide and magnesium hydroxide are used, they act as flame retardant assistants, and flame retardancy can be ensured even with a low phosphorus content.
  • metal hydroxides such as aluminum hydroxide and magnesium hydroxide are used, they act as flame retardant assistants, and flame retardancy can be ensured even with a low phosphorus content.
  • silica, mica, and talc are preferred, and spherical silica is more preferred.
  • one of these may be used alone, or two or more may be used in combination.
  • the filler may be used as is, or may be surface-treated with a silane coupling agent such as a vinyl silane type, methacryloxy silane type, acryloxy silane type, or styryl silane type, or an epoxy silane type, amino silane type, or cationic silane type.
  • a silane coupling agent such as a vinyl silane type, methacryloxy silane type, acryloxy silane type, or styryl silane type, or an epoxy silane type, amino silane type, or cationic silane type.
  • the amount of filler is preferably 10 to 200 parts by mass, and more preferably 30 to 150 parts by mass, per 100 parts by mass of the total solids excluding the filler (including organic components such as monomers and flame retardants, but excluding solvents).
  • the curable resin composition of the present invention may further contain additives other than those mentioned above.
  • additives include defoamers such as silicone-based defoamers and acrylic acid ester-based defoamers, heat stabilizers, antistatic agents, UV absorbers, dyes and pigments, lubricants, dispersants such as wetting dispersants, etc.
  • the cured product obtained by curing the curable resin composition of the present invention can be used as a molded product, laminate, cast product, adhesive, coating, or film.
  • a cured product of a semiconductor encapsulation material is a cast product or molded product, and a method for obtaining a cured product for such applications is to cast the curable resin composition or mold it using a transfer molding machine or injection molding machine, and then heat it at 80 to 230°C for 0.5 to 10 hours to obtain a cured product.
  • the curable resin composition of the present invention can also be used as a prepreg.
  • the composition can be prepared in a varnish form to be used as a resin varnish for the purpose of impregnating a substrate (fibrous substrate) for forming a prepreg or for the purpose of using the composition as a circuit board material for forming a circuit board.
  • This resin varnish is suitable for circuit boards and can be used as a varnish for circuit board materials. Specific applications of the circuit board materials referred to here include printed wiring boards, printed circuit boards, flexible printed wiring boards, build-up wiring boards, etc.
  • the above resin varnish is prepared, for example, as follows. First, each component that can be dissolved in an organic solvent, such as the phosphorus-containing phenol compound of the present invention and the epoxy resin component, is put into an organic solvent and dissolved. At this time, heating may be performed as necessary. Then, as necessary, a component that is not dissolved in an organic solvent, such as an inorganic filler, is added, and dispersed using a ball mill, a bead mill, a planetary mixer, a roll mill, or the like, to prepare a varnish-like curable resin composition.
  • the organic solvent used here is not particularly limited as long as it dissolves the resin component used in the epoxy resin composition of the present invention and does not inhibit the curing reaction.
  • ketones such as acetone, methyl ethyl ketone, and methyl isobutyl ketone
  • esters such as ethyl acetate, propyl acetate, and butyl acetate
  • polar solvents such as dimethylacetamide and dimethylformamide
  • aromatic hydrocarbon solvents such as toluene and xylene, and the like can be used alone or in combination of two or more of them.
  • the amount of organic solvent used is preferably 5 to 900% by mass, more preferably 10 to 700% by mass, and particularly preferably 20 to 500% by mass, relative to 100% by mass of the curable resin composition of the present invention.
  • Suitable materials are used as the substrates used to create prepregs, and examples of such substrates include glass fiber, carbon fiber, polyester fiber, polyamide fiber, alumina fiber, and paper, which may be used alone or in combination of two or more. If necessary, coupling agents may be used with these substrates to improve adhesion at the interface between the resin and the substrate. Common coupling agents include silane coupling agents, titanate coupling agents, aluminum-based coupling agents, and zircoaluminate coupling agents.
  • the prepreg of the present invention can be obtained by impregnating a substrate with the resin varnish and then drying it. Impregnation is performed by dipping, coating, etc. Impregnation can be repeated multiple times as necessary, and in this case, it is also possible to repeat impregnation using multiple solutions with different compositions and concentrations to adjust to the final desired resin composition and resin amount.
  • the substrate can be heated and dried at 100 to 180°C for 1 to 30 minutes to obtain a prepreg.
  • the amount of resin in the prepreg is preferably 30 to 80% by mass.
  • the curable resin composition of the present invention can also be used as a laminate.
  • a laminate is formed using prepregs, one or more prepregs are laminated, metal foil is placed on one or both sides to form a laminate, and the laminate is heated and pressed to laminate and integrate it.
  • the metal foil can be a single metal foil, an alloy metal foil, or a composite metal foil such as copper, aluminum, brass, or nickel.
  • the conditions for heating and pressing the laminate can be appropriately adjusted to the conditions under which the curable resin composition is cured, but if the pressure is too low, air bubbles may remain inside the obtained laminate and the electrical properties may deteriorate, so it is preferable to pressurize under conditions that satisfy the moldability.
  • the temperature can be set to 180 to 230°C, the pressure to 49.0 to 490.3 N/cm2 (5 to 50 kgf/cm2), and the heating and pressing time to 40 to 240 minutes.
  • a multilayer board can be produced by using the single-layer laminate obtained in this way as an inner layer material.
  • a circuit is first formed on the laminate using an additive or subtractive method, and the surface of the formed circuit is then treated with an acid solution for blackening to obtain an inner layer material.
  • An insulating layer is formed on one or both circuit-forming surfaces of this inner layer material using a resin sheet, metal foil with resin, or prepreg, and a conductor layer is formed on the surface of the insulating layer to form a multilayer board.
  • a method for producing a build-up film from the curable composition of the present invention includes, for example, applying the above-mentioned resin varnish onto a support film and drying it to form a film-like insulating layer.
  • the film-like insulating layer thus formed can be used as a build-up film for multilayer printed wiring boards.
  • the drying step is preferably carried out so that the organic solvent content in the build-up film resin composition layer is 10% by mass or less, and preferably 5% by mass or less. Drying conditions vary depending on the type of organic solvent in the varnish and the amount of organic solvent, but drying can be carried out at 50 to 160°C for about 3 to 20 minutes.
  • the thickness of the build-up film formed on the support is usually equal to or greater than the thickness of the conductor layer. Since the thickness of the conductor layer of a circuit board is usually in the range of 5 to 70 ⁇ m, it is preferable that the thickness of the resin composition layer is 10 to 100 ⁇ m.
  • the build-up film of the present invention is protected by a protective film, since this can prevent the adhesion of dirt and the like to the surface and prevent scratches.
  • the above-mentioned support film and protective film may be made of polyolefins such as polyethylene, polypropylene, and polyvinyl chloride; polyesters such as polyethylene terephthalate and polyethylene naphthalate; polycarbonate; polyimide; and even release paper and metal foils such as copper foil and aluminum foil.
  • the support film and protective film may be subjected to a mud treatment, corona treatment, or release treatment.
  • the thickness of the support film is not particularly limited, but is usually in the range of 10 to 150 ⁇ m, and preferably in the range of 25 to 50 ⁇ m.
  • the thickness of the protective film is preferably 1 to 40 ⁇ m.
  • the support film described above is peeled off after laminating it onto the circuit board, or after forming an insulating layer by heat curing. Peeling off the support film after the adhesive film has been heat cured can prevent curing inhibition caused by oxygen during the curing process, and can also prevent the adhesion of dirt, etc. When peeling off after curing, the support film is usually subjected to a release treatment beforehand.
  • Molecular weight and molecular weight distribution of polymer The molecular weight and molecular weight distribution of the phosphorus-containing phenol compound were measured using GPC (Tosoh Corporation, HLC-8120GPC) with tetrahydrofuran as a solvent, a flow rate of 1.0 ml/min, a column temperature of 38° C., and a calibration curve based on monodisperse polystyrene.
  • Phosphorus content Sulfuric acid, hydrochloric acid, and perchloric acid were added to the sample, which was then heated and wet-ashed to convert all phosphorus atoms into orthophosphate. Metavanadate and molybdate were reacted in the sulfuric acid acid solution, and the absorbance at 420 nm of the resulting phosphorus vanadate molybdate complex was measured. The phosphorus atom content was expressed in mass% based on a calibration curve previously prepared using potassium dihydrogen phosphate.
  • Glass transition temperature Measured from the baseline shift using a differential scanning calorimeter manufactured by Hitachi High-Tech Science Corporation at a heating rate of 10° C./min.
  • Dielectric constant and dielectric loss tangent The dielectric constant (Dk) and dielectric loss tangent (Df) at a frequency of 1 GHz were determined by a capacitance method in an environment of 25° C. and humidity of 60% using a material analyzer (manufactured by AGILENT Technologies) in accordance with the IPC-TM-6502.5.5.9 standard.
  • Flame retardancy Evaluated by the vertical method using five test pieces in accordance with UL 94. The evaluation was recorded as V-0, V-1, or V-2.
  • Water absorption In accordance with JIS K 7209, a cured sample was immersed in water at 23° C. and the saturated water content was determined.
  • Rate of change in dielectric properties after water absorption The rate of change was calculated from the measured value (A1) of the cured sample before the water absorption test and the measured value (A2) after water absorption according to the following formula.
  • Dielectric property change rate (%) (A2 - A1) / A1 x 100
  • Synthesis Example 1 Synthesis of di-2,6-xylyl phosphorochloridate (DXPC) Into a 2 L four-neck flask equipped with a stirrer, a thermometer, and a hydrochloric acid recovery device (a condenser connected to a water scrubber), 767 g (5 mol) of phosphorus oxychloride (structural formula below), 2,6-dimethylphenol (structural formula below) 1200 g (9.8 mol), 140 g of xylene as a solvent and 6.2 g (0.065 mol) of magnesium chloride as a catalyst were charged.
  • DXPC di-2,6-xylyl phosphorochloridate
  • the resulting mixed solution was gradually heated to a temperature of 160°C over about 3 hours while stirring to react, and the generated hydrogen chloride gas was collected with a water scrubber. Thereafter, the pressure in the flask was gradually reduced to 20 kPa at the same temperature, and xylene, unreacted phosphorus oxychloride and 2,6-dimethylphenol, and by-product hydrogen chloride were removed to obtain 1700 g of a reaction product mainly composed of di-2,6-xylyl phosphorochloridate (DXPC: structural formula below). The chlorine content of the reaction mixture was 10.9% by mass.
  • DXPC di-2,6-xylyl phosphorochloridate
  • Example 1 Synthesis of Phosphorus-Containing Phenol (Compound A) Into a 200 mL four-neck flask equipped with a stirrer, a thermometer, and a hydrochloric acid recovery device (a condenser connected to a water scrubber), 51.6 g of mesitylene, 12.6 g (0.1 mol) of phloroglucinol (structural formula below), 21.8 g (0.06 mol) of di-2,6-xylyl phosphorochloridate obtained in Synthesis Example 1 and 0.4 g (0.004 mol) of anhydrous magnesium chloride as a catalyst were charged.
  • a hydrochloric acid recovery device a condenser connected to a water scrubber
  • the compound contained 68 mol % of a compound in which one hydroxyl group of phloroglucinol had reacted with di-2,6-xylyl phosphorochloridate (monosubstitution, structural formula below), 10 mol % of a compound in which two hydroxyl groups had reacted (disubstitution, structural formula below), 2 mol % of a compound in which three hydroxyl groups had reacted (trisubstitution, structural formula below), and 20 mol % of phloroglucinol.
  • Example 2 Synthesis of phosphorus-containing phenol (compound B) 110.9 g of mesitylene, 12.6 g (0.1 mol) of phloroglucinol, 54.5 g (0.15 mol) of di-2,6-xylyl phosphorochloridate, and 0.8 g (0.008 mol) of anhydrous magnesium chloride as a catalyst were charged into a 200 mL four-neck flask equipped with a stirrer, a thermometer, and a hydrochloric acid recovery device (a condenser connected to a water scrubber). The resulting mixed solution was gradually heated to 155°C while stirring, and after reaching 155°C, the mixture was reacted for 18 hours and the generated hydrogen chloride was collected.
  • compound B 110.9 g of mesitylene, 12.6 g (0.1 mol) of phloroglucinol, 54.5 g (0.15 mol) of di-2,6-xylyl phosphorochloridate, and 0.8 g
  • Compound B had a hydroxyl equivalent of 412 g/eq and a phosphorus content of 8.4% by mass.
  • the compound contained 39.5 mol % of a compound in which one hydroxyl group of phloroglucinol had reacted with di-2,6-xylyl phosphorochloridate (monosubstitution product), 34.0 mol % of a compound in which two hydroxyl groups had reacted (disubstitution product), 25.0 mol % of a compound in which three hydroxyl groups had reacted (trisubstitution product), and 1.5 mol % of phloroglucinol.
  • the resulting mixed solution was gradually heated to 155°C while stirring, and after reaching 155°C, the mixture was reacted for 18 hours and the generated hydrogen chloride was collected. After cooling to 60°C, 60 g of ethyl acetate was added, and the mixture was subjected to acid washing, neutralization, and two water washings, and the solvent was removed to obtain 51.2 g of compound C.
  • Compound C had a hydroxyl equivalent of 587 g/eq and a phosphorus content of 9.0% by mass.
  • the compound contained 25 mol % of a compound in which one hydroxyl group of phloroglucinol had reacted with di-2,6-xylyl phosphorochloridate (mono-substitution product), 35 mol % of a compound in which two hydroxyl groups had reacted (di-substitution product), and 40 mol % of a compound in which three hydroxyl groups had reacted (tri-substitution product).
  • the mixed solution in the four-neck flask was heated to a temperature of 20° C. while stirring, and while maintaining the same temperature (20° C.), mono 2,6-dimethylphenyl phosphorodichloridate in the dropping funnel was dropped over 2 hours. After the dropwise addition was completed, the mixture was heated to 65° C. and stirred for 5 hours to obtain a reaction product.
  • the obtained reaction product was washed with dilute hydrochloric acid and water, heated to a temperature of 150° C., reduced pressure to 2 kPa to distill off water, toluene, and low boiling points, and cooled to room temperature to obtain 330 g of a black-brown solid (compound D) having the following structure.
  • a varnish was prepared by mixing the various components in the ratios shown in Table 1, and was then applied to a PET film and dried in an oven at 130°C for 5 minutes to prepare a film of the resin composition. The film was then pulverized to obtain a powder of the resin composition. The powder was then sandwiched between a stainless steel mirror plate and a spacer, molded in a vacuum oven at 190°C for 90 minutes, and cured at 200°C for 5 hours to obtain a cured sample. The glass transition temperature and dielectric properties were evaluated using the cured sample.
  • a varnish was prepared by mixing the various components in the ratios shown in Table 1. This resin varnish was impregnated into a glass cloth (manufactured by Nitto Boseki Co., Ltd.; 7628 type; product number H258), which was then dried by heating at 130° C. for 5 minutes to obtain a prepreg. Eight sheets of the obtained prepreg were laminated with copper foil (3EC-III, thickness 35 ⁇ m, manufactured by Mitsui Mining & Smelting Co., Ltd.) on top and bottom, and vacuum pressed at 2 MPa under temperature conditions of 130°C x 15 minutes + 190°C x 80 minutes to obtain a laminated board with a thickness of 1.6 mm. The copper foil was etched and cut to obtain a flame retardant test piece. The flame retardant test piece was used to evaluate the flame retardancy.
  • ESN-475V Naphthalene type epoxy resin (epoxy equivalent: 325 g/eq) manufactured by Nippon Steel Chemical & Material Co., Ltd.
  • SN-485 Naphthol resin (hydroxyl equivalent: 210 g/eq) manufactured by Nippon Steel Chemical & Material Co., Ltd.
  • TPP Triphenyl phosphate (phosphorus content 9.5% by mass) manufactured by Daihachi Chemical Industry Co., Ltd.
  • PX-200 Aromatic condensed phosphate ester (phosphorus content 9.02% by mass) manufactured by Daihachi Chemical Industry Co., Ltd.
  • LC-950PM60 DOPO-BPA manufactured by Shin A Co., Ltd. (hydroxyl equivalent: 570 g/eq, phosphorus content: 10.9% by mass, solid content: 60% by mass)
  • 2E4MZ 2-ethyl-4-methylimidazole manufactured by Shikoku Kasei Co., Ltd.
  • the phosphorus-containing phenol compound of the present invention is useful for imparting flame retardancy to plastic materials, for example, thermosetting resins such as epoxy resins, used in electric and electronic products, office automation equipment, communication equipment, building materials, etc., and is particularly useful as a flame-retardant material for reducing transmission loss at higher frequencies associated with increased information processing volume in electronic devices.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)

Abstract

Provided is a phosphorus-containing phenol compound, a cured product of which has excellent flame retardancy, heat resistance, and dielectric properties, a low moisture absorption rate, and little change in dielectric properties after moisture absorption. A phosphorus-containing phenol compound represented by general formula (1). In general formula (1), Ar is an optionally substituted C6-30 aromatic ring group, R1 each independently are a hydrogen or a substituent represented by general formula (2), and at least one R1 contains a substituent represented by general formula (2). m is an integer of 3 to 6.

Description

リン含有フェノール化合物、前記リン含有フェノール化合物を含む硬化性樹脂組成物、硬化物、前記リン含有フェノール化合物の製造方法Phosphorus-containing phenolic compound, curable resin composition containing said phosphorus-containing phenolic compound, cured product, and method for producing said phosphorus-containing phenolic compound
 本発明は、反応型リン化合物に関し、特にリン含有フェノール化合物に関するもので、エポキシ樹脂等の熱硬化型樹脂の難燃剤として有用である。また本発明は、前記リン含有フェノール化合物と硬化性樹脂組成物とを含む硬化性樹脂組成物、前記リン含有フェノール化合物の製造方法にも関する。 The present invention relates to a reactive phosphorus compound, in particular a phosphorus-containing phenolic compound, which is useful as a flame retardant for thermosetting resins such as epoxy resins. The present invention also relates to a curable resin composition containing the phosphorus-containing phenolic compound and a curable resin composition, and a method for producing the phosphorus-containing phenolic compound.
 プラスチック材料は、優れた機械的特性、成形加工性から、建材や電気電子機器まで幅広い用途に使用されている。しかしながら、大抵のプラスチック材料は、燃えやすいため、使用される用途、例えば電気・電子製品やOA機器、通信機器等では、発熱発火、火災に対する安全性のため難燃化が必須となっている。 Plastic materials have excellent mechanical properties and moldability, making them suitable for a wide range of applications, from building materials to electrical and electronic equipment. However, most plastic materials are flammable, so flame retardancy is essential for their use in applications such as electrical and electronic products, office automation equipment, and communications equipment, to ensure safety against heat generation and ignition.
 プラスチック材料の難燃化技術としては、ハロゲン系難燃剤、無機系難燃剤、リン系難燃剤等の添加型難燃剤の添加が樹脂種、用途に限らず一般的となっている。しかしながら、これらの中で臭素系を主とするハロゲン系難燃剤は、発がん性の高いダイオキシンの発生源となる可能性が指摘されており、昨今の環境負荷物質低減の動きに対応して使用を制限する方向に進んでいる。また、水酸化マグネシウム、水酸化アルミニウム等無機系難燃剤は、吸熱による難燃化効果があるものの、十分な難燃化を達成するためには大量に添加する必要があり、プラスチック成形品の各種特性を低下させる原因となっている。そのため、有害物質を発生させず、比較的少量の添加で難燃化が可能なリン系難燃剤が多く使用されているが、それでもブリードアウト等による加工性の低下や、ガラス転移温度の低下等、特性への影響は避けられない。 Additive flame retardants such as halogen-based flame retardants, inorganic flame retardants, and phosphorus-based flame retardants are commonly used as flame retardant technology for plastic materials, regardless of the type of resin or application. However, it has been pointed out that halogen-based flame retardants, mainly bromine-based, may be a source of highly carcinogenic dioxins, and there is a trend to restrict their use in response to the recent movement to reduce environmentally hazardous substances. In addition, inorganic flame retardants such as magnesium hydroxide and aluminum hydroxide have a flame retardant effect due to endothermic heat, but they must be added in large quantities to achieve sufficient flame retardancy, which causes a decrease in various properties of plastic molded products. For this reason, phosphorus-based flame retardants are widely used, which do not generate harmful substances and can be flame retarded with the addition of relatively small amounts, but they still have unavoidable effects on properties, such as a decrease in processability due to bleed-out, a decrease in glass transition temperature, etc.
 これら添加型難燃剤の問題を解決するために、難燃成分であるリン原子を含み、且つ反応性基を持つ反応型難燃剤が開発され、広く使用されてきた。電子・電機分野で多用されるエポキシ樹脂組成物に適用可能な反応型難燃剤としては、例えば、特許文献1には、9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイド(以下、「DOPO」と略記する。)とキノン類を反応させた後にエポキシ樹脂と反応する事で得られるリン含有エポキシ樹脂が開示されている。特許文献2には、エポキシ樹脂用の硬化剤として、ビスフェノールAとホルムアルデヒドを反応させ、ヒドロキシメチルビスフェノールAを得た後にDOPOを反応させる事で得られるフェノール樹脂、特許文献3にはDOPOとアニスアルデヒドとを反応させた後に、トリアジン骨格含有フェノール樹脂と反応させる事でリン原子を導入したフェノール樹脂が開示されている。これらの樹脂では、難燃剤のブリードアウト等加工性の問題は解決され、耐熱性等熱特性の悪化は見られない。 In order to solve the problems of these additive flame retardants, reactive flame retardants that contain phosphorus atoms, a flame retardant component, and have reactive groups have been developed and widely used. As reactive flame retardants that can be applied to epoxy resin compositions that are widely used in the electronics and electrical fields, for example, Patent Document 1 discloses a phosphorus-containing epoxy resin obtained by reacting 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (hereinafter abbreviated as "DOPO") with quinones and then reacting with an epoxy resin. Patent Document 2 discloses a phenolic resin obtained by reacting bisphenol A with formaldehyde as a curing agent for epoxy resins, to obtain hydroxymethylbisphenol A, and then reacting with DOPO, and Patent Document 3 discloses a phenolic resin to which phosphorus atoms have been introduced by reacting DOPO with anisaldehyde and then reacting with a triazine skeleton-containing phenolic resin. These resins solve the problems of processability such as bleed-out of flame retardants, and do not show any deterioration in thermal properties such as heat resistance.
 しかしながら、近年、難燃性が必須となる電子・電気材料分野では、スマートフォンに代表される電子機器の急激な進化により難燃剤に求められる特性も高度なものへと変化している。特に情報・通信分野では情報処理量の増大に伴い信号の高周波化が進行、伝送損失低減のために難燃材料に対しても低誘電率、低誘電正接が強く求められている。更に、低吸湿で環境の変化に対しその特性が安定している事、耐熱性等、要求事項は多岐にわたっている。低誘電特性を示すエポキシ樹脂組成物に適用可能な難燃剤としては、特許文献4にDOPO骨格を導入したリン含有活性エステルが難燃性と低誘電を発現することが開示されている。この様に、DOPOを構造中に導入する事で、耐熱性等の一般特性を低下させることなく難燃性の付与が可能なエポキシ樹脂やリン含有硬化剤が広く知られているが、DOPO骨格は加水分解が起こり易く、加水分解により生じる水酸基によって、吸湿、吸水後の誘電特性変化が大きくなってしまうという問題がある。その問題に対し、特許文献5には吸水後の誘電特性変化が少ないリン酸エステル型のフェノール化合物が開示されているが、誘電特性、耐熱性の点で十分で無く、高度な要求に対しては未だ十分な難燃剤は存在しない。 However, in recent years, in the field of electronic and electrical materials where flame retardancy is essential, the rapid evolution of electronic devices such as smartphones has led to a change in the properties required of flame retardants. In particular, in the field of information and communications, the increase in the amount of information processed has led to an increase in the frequency of signals, and a strong demand for flame retardant materials with low dielectric constants and low dielectric tangents is being placed on them to reduce transmission loss. In addition, there are a wide variety of requirements, such as low moisture absorption, stable properties against environmental changes, and heat resistance. As a flame retardant that can be applied to epoxy resin compositions exhibiting low dielectric properties, Patent Document 4 discloses that phosphorus-containing active esters that have been introduced with a DOPO skeleton exhibit flame retardancy and low dielectric properties. In this way, epoxy resins and phosphorus-containing curing agents that can be imparted with flame retardancy without reducing general properties such as heat resistance by introducing DOPO into the structure are widely known, but there is a problem that the DOPO skeleton is easily hydrolyzed, and the hydroxyl groups generated by hydrolysis cause a large change in dielectric properties after moisture absorption and water absorption. To address this issue, Patent Document 5 discloses a phosphate ester-type phenolic compound that exhibits minimal change in dielectric properties after absorbing water, but the dielectric properties and heat resistance are insufficient, and there are still no flame retardants that are sufficient to meet high-level requirements.
特許第3533973号Patent No. 3533973 特許第5678109号Patent No. 5678109 特許第5516980号Patent No. 5516980 特許第5637418号Patent No. 5637418 WO2021/256351WO2021/256351
 従って、本発明が解決しようとする課題は、硬化物における難燃性、耐熱性、誘電特性に優れ、吸水率が小さく吸水後の誘電特性変化が小さいリン含有フェノール化合物および前記リン含有フェノール化合物と硬化性樹脂とを含む硬化性樹脂組成物、これを硬化剤とするエポキシ樹脂組成物、その硬化物、前記リン含有フェノール化合物の製造方法を提供することにある。   The problem that the present invention aims to solve is to provide a phosphorus-containing phenolic compound that has excellent flame retardancy, heat resistance, and dielectric properties in the cured product, has a small water absorption rate, and exhibits little change in dielectric properties after absorbing water, a curable resin composition that contains the phosphorus-containing phenolic compound and a curable resin, an epoxy resin composition that uses the compound as a curing agent, a cured product thereof, and a method for producing the phosphorus-containing phenolic compound.
 本発明者は前記課題を鋭意検討した結果、特定の構造を持ったリン含有フェノール化合物が、耐熱性、誘電特性に優れ、吸水後の誘電特性変化が少ないことを見出し、本発明に至った。 As a result of extensive research into the above-mentioned problems, the inventors discovered that a phosphorus-containing phenolic compound with a specific structure has excellent heat resistance and dielectric properties, and undergoes little change in dielectric properties after absorbing water, which led to the invention.
 すなわち、本発明は、下記式(1)で示されるリン含有フェノール化合物である。
Figure JPOXMLDOC01-appb-C000005
 一般式(1)において、Arは置換基を有しても良い炭素原子数6~30の芳香族環基であり、R1はそれぞれ独立に水素または下記一般式(2)で表される置換基であるが、少なくとも1つのR1は一般式(2)で表される置換基を含む。mは、3~6の整数である。
Figure JPOXMLDOC01-appb-C000006
 一般式(2)において、R2およびR3は、それぞれ独立して炭素原子数1~5の直鎖または分岐鎖のアルキル基であり、n2、n3はそれぞれ独立に0~5の整数である。
That is, the present invention relates to a phosphorus-containing phenol compound represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000005
In general formula (1), Ar is an aromatic ring group having 6 to 30 carbon atoms which may have a substituent, and R1 is independently hydrogen or a substituent represented by the following general formula (2), with at least one R1 containing a substituent represented by general formula (2). m is an integer of 3 to 6.
Figure JPOXMLDOC01-appb-C000006
In general formula (2), R2 and R3 each independently represent a linear or branched alkyl group having 1 to 5 carbon atoms, and n2 and n3 each independently represent an integer of 0 to 5.
 本発明において、Arがベンゼン骨格、ナフタレン骨格、ビフェニル骨格およびアントラセン骨格からなる群より選択される芳香族環基であるリン含有フェノール化合物が好ましく、Arがベンゼン骨格であるリン含有フェノール化合物がより好ましい。 In the present invention, phosphorus-containing phenol compounds in which Ar is an aromatic ring group selected from the group consisting of a benzene skeleton, a naphthalene skeleton, a biphenyl skeleton, and an anthracene skeleton are preferred, and phosphorus-containing phenol compounds in which Ar is a benzene skeleton are more preferred.
 本発明において、mが3であるリン含有フェノール化合物がさらに好ましい。mが3であり、かつ、一般式(1)の3つのOR1基について、R1の2つが水素であり、R1の1つが一般式(2)で表される置換基である化合物(1置換体)を10~80モル%、R1の1つが水素、R1の2つが一般式(2)で表される置換基である化合物(2置換体)を5~50モル%、R1の3つが一般式(2)で表される置換基である化合物(3置換体)を1~50モル%含むリン含有フェノール化合物が特に好ましい。 In the present invention, a phosphorus-containing phenolic compound in which m is 3 is more preferred. Particularly preferred are phosphorus-containing phenolic compounds in which m is 3 and, for three OR1 groups in general formula (1), the compounds contain 10 to 80 mol % of a compound in which two R1s are hydrogen and one R1 is a substituent represented by general formula (2) (monosubstitution), 5 to 50 mol % of a compound in which one R1 is hydrogen and two R1s are substituents represented by general formula (2) (disubstitution), and 1 to 50 mol % of a compound in which three R1s are substituents represented by general formula (2) (trisubstitution).
 本発明は、一般式(3)で表される化合物の水酸基1モルに対し、一般式(4)で表される化合物を0.1~0.9モル反応させることを特徴とするリン含有フェノール化合物の製造方法である。
Figure JPOXMLDOC01-appb-C000007
 一般式(3)において、Ar、mは一般式(1)と同義である。
Figure JPOXMLDOC01-appb-C000008
 一般式(4)において、Xはハロゲン原子を表し、R2、R3、n2、n3は一般式(2)と同義である。
The present invention is a method for producing a phosphorus-containing phenol compound, which comprises reacting 0.1 to 0.9 moles of a compound represented by general formula (4) with 1 mole of a hydroxyl group of a compound represented by general formula (3).
Figure JPOXMLDOC01-appb-C000007
In formula (3), Ar and m are the same as those in formula (1).
Figure JPOXMLDOC01-appb-C000008
In formula (4), X represents a halogen atom, and R2, R3, n2, and n3 are each defined as in formula (2).
 本発明は、上記のリン含有フェノール化合物と硬化性樹脂とを含む硬化性樹脂組成物である。上記の硬化性樹脂組成物を硬化して得られる硬化物である。 The present invention is a curable resin composition containing the above-mentioned phosphorus-containing phenolic compound and a curable resin. A cured product is obtained by curing the above-mentioned curable resin composition.
 本発明のリン含有フェノール化合物は、吸水後の誘電特性の変化が小さく、電子機器の情報処理量増大に伴う高周波化における伝送損失低減の難燃材料として非常に有用である。 The phosphorus-containing phenolic compound of the present invention exhibits minimal change in dielectric properties after absorbing water, making it extremely useful as a flame-retardant material for reducing transmission loss at higher frequencies associated with the increased amount of information processed by electronic devices.
実施例2で得られたリン含有フェノール化合物のGPCチャートを示す。(点線が原料、実線が生成物)1 shows a GPC chart of the phosphorus-containing phenol compound obtained in Example 2. (The dotted line is the raw material, and the solid line is the product.)
 以下、本発明を詳細に説明する。
 本発明のリン含有フェノール化合物は、下記一般式(1)で表される。
Figure JPOXMLDOC01-appb-C000009
 一般式(1)において、Arは置換基を有しても良い炭素原子数6~30の芳香族環基である。芳香族環基としては、特に制限されないが、ベンゼン、フラン、ピロール、チオフェン、イミダゾール、ピラゾール、オキサゾール、イソキサゾール、チアゾール、イソチアゾール、ピリジン、ピリミジン、ピリダジン、ピラジン、トリアジン等の単環芳香族化合物から水素原子がm個除かれたもの;ナフタレン、アントラセン、フェナレン、フェナントレン、キノリン、イソキノリン、キナゾリン、フタラジン、プテリジン、クマリン、インドール、ベンゾイミダゾール、ベンゾフラン、アクリジン等の縮環芳香族化合物から水素原子がm個除かれたもの等が挙げられる。また、これらの芳香族化合物を複数組み合わせたものであってもよく、例えば、ビフェニル、ビナフタレン、ビピリジン、ビチオフェン、フェニルピリジン、フェニルチオフェン、テルフェニル、ジフェニルチオフェン、クアテルフェニル等の環集合芳香族化合物から水素原子がm個除かれたもの等が挙げられる。好ましくは、ベンゼン、ナフタレン、ビフェニルおよびアントラセンである。さらに好ましくは、ベンゼンである。
The present invention will be described in detail below.
The phosphorus-containing phenol compound of the present invention is represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000009
In the general formula (1), Ar is an aromatic ring group having 6 to 30 carbon atoms which may have a substituent. The aromatic ring group is not particularly limited, and examples thereof include monocyclic aromatic compounds such as benzene, furan, pyrrole, thiophene, imidazole, pyrazole, oxazole, isoxazole, thiazole, isothiazole, pyridine, pyrimidine, pyridazine, pyrazine, and triazine from which m hydrogen atoms have been removed; and condensed aromatic compounds such as naphthalene, anthracene, phenalene, phenanthrene, quinoline, isoquinoline, quinazoline, phthalazine, pteridine, coumarin, indole, benzimidazole, benzofuran, and acridine from which m hydrogen atoms have been removed. In addition, the aromatic ring group may be a combination of a plurality of these aromatic compounds, and examples thereof include ring-assembled aromatic compounds such as biphenyl, binaphthalene, bipyridine, bithiophene, phenylpyridine, phenylthiophene, terphenyl, diphenylthiophene, and quaterphenyl from which m hydrogen atoms have been removed. Preferred are benzene, naphthalene, biphenyl and anthracene, and more preferred is benzene.
 Arで表される芳香環上には、-OR1以外の置換基を含んでいても良い。置換基としては、炭素原子数1~10のアルキル基および炭素原子数1~10のアルコキシ基を、好ましくは炭素原子数1~10のアルキル基を挙げることができる。 The aromatic ring represented by Ar may contain a substituent other than -OR1. Examples of the substituent include an alkyl group having 1 to 10 carbon atoms and an alkoxy group having 1 to 10 carbon atoms, preferably an alkyl group having 1 to 10 carbon atoms.
 炭素原子数1~10のアルキル基としては、特に制限されないが、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、tert-ペンチル基、ネオペンチル基、1,2-ジメチルプロピル基、n-ヘキシル基、イソヘキシル基、n-ノニル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基が挙げられ、好ましくはメチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基であり、さらに好ましくはメチル基、エチル基である。 The alkyl group having 1 to 10 carbon atoms is not particularly limited, but includes methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, isopentyl, tert-pentyl, neopentyl, 1,2-dimethylpropyl, n-hexyl, isohexyl, n-nonyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, and cyclononyl groups, of which methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, sec-butyl, and tert-butyl groups are preferred, and methyl and ethyl groups are even more preferred.
 炭素原子数1~10のアルコキシ基としては、特に制限されないが、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、2-エチルヘキシルオキシ基、オクチルオキシ基、ノニルオキシ基等が挙げられる。これらの置換基を単独でも、2種以上を組み合わせても良い。 Alkoxy groups having 1 to 10 carbon atoms are not particularly limited, but examples include methoxy groups, ethoxy groups, propoxy groups, isopropoxy groups, butoxy groups, pentyloxy groups, hexyloxy groups, 2-ethylhexyloxy groups, octyloxy groups, and nonyloxy groups. These substituents may be used alone or in combination of two or more types.
 一般式(1)において、mは3~6の整数で、3または4が好ましく、3がより好ましい。R1はそれぞれ独立に水素または下記一般式(2)で表される置換基である。
Figure JPOXMLDOC01-appb-C000010
 一般式(2)において、R2およびR3は、それぞれ独立して炭素原子数1~5の直鎖または分岐鎖のアルキル基である。
In formula (1), m is an integer of 3 to 6, preferably 3 or 4, and more preferably 3. Each R1 is independently hydrogen or a substituent represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000010
In general formula (2), R2 and R3 each independently represent a linear or branched alkyl group having 1 to 5 carbon atoms.
 炭素原子数1~5のアルキル基の具体例としては、メチル、エチル、プロピル、イソプロピルn-ブチル、イソブチル、tert-ブチル、n-ペンチル、イソペンチル、ネオペンチル等が挙げられる。これらの中でも、製造面での反応性および入手のし易さの観点からメチル、エチル、プロピル、イソプロピルが好ましく、メチル基が特に好ましい。 Specific examples of alkyl groups having 1 to 5 carbon atoms include methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, isopentyl, neopentyl, etc. Among these, methyl, ethyl, propyl, and isopropyl are preferred from the viewpoint of reactivity in production and ease of availability, with the methyl group being particularly preferred.
 n2、n3はそれぞれ独立に0~5の整数で、好ましくは0または2以上の整数であり、より好ましくは2である。n2、n3が1以上である場合、R2、R3のベンゼン環上での置換位置は、特に限定されないが、それぞれ独立して、リン酸エステル結合に対して、オルト位またはメタ位に存在することが好ましい。オルト位にアルキル基がある事で、リン酸エステルが疎水的に遮断され、吸水率を低減、加水分解を抑制するため本発明のリン含有フェノール化合物の特性を更に向上する事ができる。そのため、リン酸エステル結合に対し2つのオルト位にアルキル基が置換されている事が特に好ましく、n2、n3は2以上が好ましい。 n2 and n3 are each independently an integer of 0 to 5, preferably 0 or an integer of 2 or more, and more preferably 2. When n2 and n3 are 1 or more, the substitution positions of R2 and R3 on the benzene ring are not particularly limited, but it is preferable that each is independently present at the ortho or meta position with respect to the phosphate ester bond. The presence of an alkyl group at the ortho position hydrophobically blocks the phosphate ester, reducing water absorption and suppressing hydrolysis, thereby further improving the properties of the phosphorus-containing phenol compound of the present invention. For this reason, it is particularly preferable that alkyl groups are substituted at two ortho positions with respect to the phosphate ester bond, and n2 and n3 are preferably 2 or more.
 本発明のリン含有フェノール化合物におけるR1の水素と一般式(2)で表される置換基の割合は、特に限定は無いが、少なくとも1つのR1は一般式(2)で表される置換基を含む。一般式(2)の構造を含むことで、本発明のリン含有フェノール化合物は、優れた難燃性を発現する事が可能となる。本発明のリン含有フェノール化合物(混合物)は、化合物(混合物)として、R1において一般式(2)で表される置換基の割合は、好ましくは10モル%以上、より好ましくは30モル%以上、さらに好ましくは50モル%以上である。
 本発明のリン含有フェノール化合物の例として、下記構造の化合物およびこれらの混合物が挙げられるが、これらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000011
The ratio of hydrogen in R1 and the substituent represented by general formula (2) in the phosphorus-containing phenol compound of the present invention is not particularly limited, but at least one R1 contains a substituent represented by general formula (2). By containing the structure of general formula (2), the phosphorus-containing phenol compound of the present invention can exhibit excellent flame retardancy. In the phosphorus-containing phenol compound (mixture) of the present invention, the ratio of the substituent represented by general formula (2) in R1 as a compound (mixture) is preferably 10 mol % or more, more preferably 30 mol % or more, and even more preferably 50 mol % or more.
Examples of phosphorus-containing phenolic compounds of the present invention include, but are not limited to, compounds of the following structures and mixtures thereof:
Figure JPOXMLDOC01-appb-C000011
 本発明のリン含有フェノール化合物は、単一化合物で用いる必要は無く、一般式(2)で表される置換基の個数が異なる化合物を複数含んだ混合物であっても良い。一般式(2)で表される置換基の個数が増えるほど、難燃性、誘電特性が向上し、一般式(2)の構造が減少するほど反応性基である水酸基が増えるため、耐熱性が向上するとともに、難燃剤のブリードアウトを防止する事ができる。そのため、一般式(2)で表される置換基の個数が異なる化合物を複数含むことにより、バランスの良い特性とすることができる。 The phosphorus-containing phenol compound of the present invention does not need to be used as a single compound, but may be a mixture containing multiple compounds with different numbers of substituents represented by general formula (2). The more the number of substituents represented by general formula (2) increases, the more the flame retardancy and dielectric properties improve, and the fewer the structures of general formula (2), the more reactive hydroxyl groups there are, which improves heat resistance and prevents the bleed-out of the flame retardant. Therefore, by containing multiple compounds with different numbers of substituents represented by general formula (2), well-balanced properties can be achieved.
 下記で製造方法については詳述するが、本発明のリン含有フェノール化合物は、後述する一般式(3)で表される多価フェノール化合物と一般式(4)で表されるリン化合物を反応させることで得ることができる。原料の多価フェノール化合物はリンを含まないため、反応後の化合物のリン含有率を測定する事で、一般式(2)で表される置換基の導入を判断する事ができる。 The manufacturing method is described in detail below, but the phosphorus-containing phenol compound of the present invention can be obtained by reacting a polyhydric phenol compound represented by the general formula (3) described below with a phosphorus compound represented by the general formula (4). Since the raw material polyhydric phenol compound does not contain phosphorus, the introduction of the substituent represented by the general formula (2) can be determined by measuring the phosphorus content of the compound after the reaction.
 一般式(2)で表される置換基の導入は、リン含有率により判断する事ができる。リン含有率が0でなければ一般式(2)で表される置換基の導入を判断できるが、リン含有率が低いと難燃性が発現せず、難燃性の点からは高いほど好ましい。しかしながら、リン含有率が増える程、水酸基が減少し、耐熱性が不足したり、ブリードアウトが発生する事がある。そのため、リン含有フェノール化合物のリン含有率は、好ましくは1.5~15.0質量%であり、より好ましくは3.0~12.0質量%、さらに好ましくは5.0~10.0質量%である。
 リン含有フェノール化合物の水酸基当量としては、50~1000g/eqの範囲であり、好ましくは80~800g/eq、より好ましくは100~600g/eqである。
The introduction of the substituent represented by the general formula (2) can be judged by the phosphorus content. If the phosphorus content is not 0, the introduction of the substituent represented by the general formula (2) can be judged, but if the phosphorus content is low, flame retardancy is not expressed, and from the viewpoint of flame retardancy, the higher the phosphorus content, the better. However, as the phosphorus content increases, the number of hydroxyl groups decreases, and heat resistance may be insufficient or bleed-out may occur. Therefore, the phosphorus content of the phosphorus-containing phenolic compound is preferably 1.5 to 15.0 mass%, more preferably 3.0 to 12.0 mass%, and even more preferably 5.0 to 10.0 mass%.
The hydroxyl equivalent of the phosphorus-containing phenol compound is in the range of 50 to 1000 g/eq, preferably 80 to 800 g/eq, and more preferably 100 to 600 g/eq.
 本発明のリン含有フェノール化合物は、Arがベンゼンで、mが3である事が、原料入手の点から好ましく、その場合、下記一般式(5)、(6)、(7)の混合物であることが好ましい。更に好ましくは、下記一般式(5)で表されるR1の2つが水素であり、R1の1つが一般式(2)で表される置換基である化合物(1置換体)を10~80モル%、下記一般式(6)で表されるR1の1つが水素、R1の2つが一般式(2)で表される置換基である化合物(2置換体)を5~50モル%、下記一般式(7)で表されるR1の3つが一般式(2)で表される置換基である化合物(3置換体)を1~50モル%含むことで、難燃性、耐熱性及び誘電特性のバランスに優れる硬化物を得ることができる。より好ましくは、1置換体20~70モル%、2置換体10~40モル%、3置換体2~40モル%である。なお、未反応の原料フェノール類が残存してもよいが、30モル%未満であることが望ましい。
Figure JPOXMLDOC01-appb-C000012
 上記一般式(5)、(6)、(7)において、R2、R3、n2、n3は一般式(2)と同義である。
In terms of availability of raw materials, the phosphorus-containing phenol compound of the present invention is preferably a mixture of the following general formulas (5), (6), and (7). More preferably, the compound contains 10 to 80 mol% of a compound (monosubstitution) represented by the following general formula (5) in which two R1s are hydrogen and one R1 is a substituent represented by general formula (2), 5 to 50 mol% of a compound (disubstitution) represented by the following general formula (6) in which one R1 is hydrogen and two R1s are substituents represented by general formula (2), and 1 to 50 mol% of a compound (trisubstitution) represented by the following general formula (7) in which three R1s are substituents represented by general formula (2), thereby obtaining a cured product with excellent balance of flame retardancy, heat resistance, and dielectric properties. More preferably, the monosubstitution is 20 to 70 mol%, the disubstitution is 10 to 40 mol%, and the trisubstitution is 2 to 40 mol%. It is acceptable for unreacted raw material phenols to remain, but it is desirable that the amount is less than 30 mol%.
Figure JPOXMLDOC01-appb-C000012
In the above general formulae (5), (6), and (7), R2, R3, n2, and n3 are defined as in general formula (2).
 上記一般式(5)、(6)、(7)の組成は、液体クロマトグラフィー、サイズ排除クロマトグラフィー等で確認する事ができる。 The compositions of the above general formulas (5), (6), and (7) can be confirmed by liquid chromatography, size exclusion chromatography, etc.
 次に、本発明のリン含有フェノール化合物の製造方法について説明する。本発明のリン含有フェノール化合物はフェノール性水酸基を一つ以上有する芳香族リン酸エステルであり、その製造方法は一般的な芳香族リン酸エステルの製造方法に準じる。即ち、反応形態の一例としては、オキシハロゲン化リン(ハロゲン化ホスホリル)とフェノール類を原料とするエステル化反応であり、脱ハロゲン化水素反応により、対応するリン酸エステルを得ることが出来る。 Next, a method for producing the phosphorus-containing phenolic compound of the present invention will be described. The phosphorus-containing phenolic compound of the present invention is an aromatic phosphate ester having one or more phenolic hydroxyl groups, and its production method conforms to a general method for producing an aromatic phosphate ester. That is, one example of the reaction form is an esterification reaction using phosphorus oxyhalide (phosphoryl halide) and phenols as raw materials, and the corresponding phosphate ester can be obtained by a dehydrohalogenation reaction.
 このエステル化反応は副生するハロゲン化水素を触媒とする加水分解反応を防ぐため、かつ効率的に生成物を得るために、触媒を用いたり、脱離したハロゲン化水素を反応系内から除去したりするなどの操作が行われる。
 脱離したハロゲン化水素(例えば、塩化水素)は気体であり、気体化する際に体積が増すため、反応性の良い原料では容易に反応系外へと放出されるが、反応性が低い原料の場合、ハロゲン化水素の脱離量が少なく、系内に留まり易いことで加水分解反応が生じることがある。このような場合、生じたハロゲン化水素を捕捉して加水分解反応を起こさないようにすることが有効で、ハロゲン化水素捕捉剤としてアミン類が使用されることがある。
In order to prevent a hydrolysis reaction catalyzed by the by-product hydrogen halide and to efficiently obtain the product, this esterification reaction is carried out using a catalyst and/or removing the released hydrogen halide from the reaction system.
The released hydrogen halide (e.g., hydrogen chloride) is a gas, and since its volume increases when it is gasified, it is easily released outside the reaction system in the case of a highly reactive raw material, but in the case of a less reactive raw material, the amount of hydrogen halide released is small and it tends to remain in the system, which may cause a hydrolysis reaction. In such cases, it is effective to capture the generated hydrogen halide to prevent the hydrolysis reaction from occurring, and amines are sometimes used as hydrogen halide scavengers.
 本発明のリン含有フェノール化合物は、上記一般式(1)で表される化合物であることから、原料として、一般式(1)に対応する下記一般式(3)で表される多価ヒドロキシ化合物と、上記一般式(2)に対応する下記一般式(4)で表されるハロゲン化リン化合物の原料であるフェノール類およびオキシハロゲン化リンを反応させることが求められる。
Figure JPOXMLDOC01-appb-C000013
 一般式(3)において、Ar、mは一般式(1)と同義である。
Since the phosphorus-containing phenol compound of the present invention is a compound represented by the above general formula (1), it is necessary to react a polyhydric hydroxy compound represented by the following general formula (3) corresponding to the general formula (1) as a raw material with a phenol and a phosphorus oxyhalide, which are raw materials for the phosphorus halide compound represented by the following general formula (4) corresponding to the above general formula (2).
Figure JPOXMLDOC01-appb-C000013
In formula (3), Ar and m are the same as those in formula (1).
 ただし、本発明のリン含有フェノール化合物の必須原料である、水酸基を複数有する一般式(3)で表される多価ヒドロキシ化合物をオキシハロゲン化リンと反応させると、複数の水酸基とオキシハロゲン化リンが反応する副反応が生じるため、反応の順序や原料の仕込み比、反応条件などを適宜調整し、目的化合物を効率的に得るようにする必要がある。 However, when a polyhydric hydroxy compound having multiple hydroxyl groups and represented by general formula (3), which is an essential raw material for the phosphorus-containing phenolic compound of the present invention, is reacted with phosphorus oxyhalide, a side reaction occurs in which multiple hydroxyl groups react with phosphorus oxyhalide, so it is necessary to appropriately adjust the reaction order, raw material charging ratio, reaction conditions, etc., to efficiently obtain the target compound.
 そこで、一般式(3)で表される多価ヒドロキシ化合物、一般式(4)で表されるハロゲン化リン化合物の原料であるフェノール類およびオキシハロゲン化リンの3種の原料を一度に反応させるのではなく、オキシハロゲン化リン例えばオキシ塩化リン(POCl3)とフェノール類を先に反応させて、下記一般式(4)で表されるハロゲン化リン化合物を得、その後、得られた一般式(4)で表されるハロゲン化リン化合物を、一般式(3)で表される多価ヒドロキシ化合物と反応させることで、目的とする化合物を効率的に得ることが出来る。この場合、前段反応において、オキシハロゲン化リン1モルに対して、フェノール類2モルの割合になるように配合する。好ましくはフェノール類1.8~2.2モル、より好ましくは1.9~2.1モルの範囲内である。
Figure JPOXMLDOC01-appb-C000014
 一般式(4)で表される化合物において、R2、R3、n2、n3は一般式(2)と同義である。Xはハロゲン原子を表す。
Therefore, instead of reacting the three raw materials of the polyhydric hydroxy compound represented by the general formula (3), the phenols which are the raw materials of the halogenated phosphorus compound represented by the general formula (4), and the phosphorus oxyhalide at once, the phosphorus oxyhalide, for example, phosphorus oxychloride (POCl3) is reacted with the phenols first to obtain the halogenated phosphorus compound represented by the following general formula (4), and then the obtained halogenated phosphorus compound represented by the general formula (4) is reacted with the polyhydric hydroxy compound represented by the general formula (3), thereby making it possible to efficiently obtain the target compound. In this case, in the first reaction, the phenols are mixed in a ratio of 2 moles per mole of the phosphorus oxyhalide. The phenols are preferably in the range of 1.8 to 2.2 moles, more preferably 1.9 to 2.1 moles.
Figure JPOXMLDOC01-appb-C000014
In the compound represented by formula (4), R2, R3, n2, and n3 are the same as those in formula (2), and X represents a halogen atom.
 本発明のリン含有フェノール化合物は、一般式(3)で表される多価ヒドロキシ化合物の水酸基と一般式(4)で表されるハロゲン化リン化合物を反応させて得ることができることから、水酸基に対する一般式(4)のハロゲン化リン化合物のモル比を調整する事で、水酸基当量およびリン含有率を制御する事が可能である。 The phosphorus-containing phenol compound of the present invention can be obtained by reacting the hydroxyl groups of a polyhydric hydroxy compound represented by general formula (3) with a halogenated phosphorus compound represented by general formula (4). Therefore, by adjusting the molar ratio of the halogenated phosphorus compound of general formula (4) to the hydroxyl groups, it is possible to control the hydroxyl group equivalent and phosphorus content.
 反応のモル比は、一般式(3)で表される多価ヒドロキシ化合物の水酸基1モルに対して、一般式(4)で表されるハロゲン化リン化合物が、好ましくは0.1~0.9モルであり、より好ましくは0.2~0.8モル、さらに好ましくは0.3~0.7モルである。0.1モル以下ではリン含有率が下がり難燃性が不足するため好ましくなく、0.9モル以上では反応性基である水酸基が減少し、耐熱性が不足するため好ましくない。 The molar ratio of the reaction is preferably 0.1 to 0.9 moles, more preferably 0.2 to 0.8 moles, and even more preferably 0.3 to 0.7 moles of the halogenated phosphorus compound represented by general formula (4) per mole of hydroxyl groups of the polyhydric hydroxy compound represented by general formula (3). A ratio of 0.1 moles or less is not preferred because the phosphorus content decreases and flame retardancy is insufficient, while a ratio of 0.9 moles or more is not preferred because the number of hydroxyl groups, which are reactive groups, decreases and heat resistance is insufficient.
 本発明の硬化性難燃樹脂組成物は、前述のリン含有フェノール化合物を必須の成分として含有するものであり、硬化性樹脂にリン含有フェノール化合物を混合することで得ることができる。硬化性樹脂としては、本発明のリン含有フェノール化合物の水酸基と反応するものを含めば制限は無く、例えば、エポキシ樹脂やマレイミド樹脂などがあげられる。 The curable flame-retardant resin composition of the present invention contains the above-mentioned phosphorus-containing phenolic compound as an essential component, and can be obtained by mixing a curable resin with a phosphorus-containing phenolic compound. There are no limitations on the curable resin, so long as it reacts with the hydroxyl group of the phosphorus-containing phenolic compound of the present invention, and examples of the curable resin include epoxy resins and maleimide resins.
 本硬化性樹脂組成物に使用できるエポキシ樹脂としては、特に限定されないが、例えばビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールAF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ナフトール型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、ナフタレン型エポキシ樹脂グリシジルアミン型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、テトラメチルビフェニル型エポキシ樹脂、線状脂肪族エポキシ樹脂、脂環式エポキシ樹脂、複素環式エポキシ樹脂、スピロ環含有エポキシ樹脂、シクロヘキサンジメタノール型エポキシ樹脂、トリメチロール型エポキシ樹脂、ハロゲン化エポキシ樹脂等、トリフェニルメタン型エポキシ樹脂、テトラフェニルエタン型エポキシ樹脂、等が挙げられる。これらのエポキシ樹脂は単独で用いてもよく、2種以上を混合してもよい。 Epoxy resins that can be used in the present curable resin composition are not particularly limited, but include, for example, bisphenol A type epoxy resins, bisphenol F type epoxy resins, bisphenol S type epoxy resins, bisphenol AF type epoxy resins, phenol novolac type epoxy resins, naphthol novolac type epoxy resins, dicyclopentadiene type epoxy resins, phenol aralkyl type epoxy resins, naphthol type epoxy resins, naphthol aralkyl type epoxy resins, naphthalene type epoxy resins, glycidylamine type epoxy resins, cresol novolac type epoxy resins, biphenyl type epoxy resins, tetramethylbiphenyl type epoxy resins, linear aliphatic epoxy resins, alicyclic epoxy resins, heterocyclic epoxy resins, spiro ring-containing epoxy resins, cyclohexane dimethanol type epoxy resins, trimethylol type epoxy resins, halogenated epoxy resins, triphenylmethane type epoxy resins, tetraphenylethane type epoxy resins, etc. These epoxy resins may be used alone or in a mixture of two or more.
 前記リン含有フェノール化合物とエポキシ樹脂との配合量は、樹脂組成物のリン含有率を元に決定される。樹脂組成物中のリン含有率は、好ましくは0.5~5.0質量%であり、より好ましくは1.0~4.0質量%である。0.5質量%以下では難燃性が発現せず、5.0%質量以上ではリン含有フェノール化合物の配合量が多くエポキシ基に対して水酸基が過多となり、架橋が不十分で脆い硬化物となるため好ましくない。また、エポキシ樹脂を硬化性樹脂に用いる場合には、本発明のリン含有フェノール化合物以外の硬化剤を含んでも良い。 The amounts of the phosphorus-containing phenolic compound and the epoxy resin are determined based on the phosphorus content of the resin composition. The phosphorus content in the resin composition is preferably 0.5 to 5.0% by mass, and more preferably 1.0 to 4.0% by mass. If the phosphorus content is 0.5% by mass or less, flame retardancy is not exhibited, and if it is 5.0% by mass or more, the amount of phosphorus-containing phenolic compound is high, resulting in an excess of hydroxyl groups relative to epoxy groups, which is not preferred as it results in insufficient crosslinking and a brittle cured product. In addition, when an epoxy resin is used as a curable resin, it may contain a curing agent other than the phosphorus-containing phenolic compound of the present invention.
 リン含有フェノール化合物と併用できる硬化剤は、例えばフェノール系硬化剤、アミン系化合物、アミド系化合物、酸無水物系化合物、ナフトール系硬化剤、活性エステル系硬化剤、ベンゾオキサジン系硬化剤、シアネートエステル系硬化剤、酸無水物系硬化剤等が挙げられる。これらは1種又は2種以上組み合わせて使用してもよい。 Examples of hardeners that can be used in combination with phosphorus-containing phenolic compounds include phenolic hardeners, amine compounds, amide compounds, acid anhydride compounds, naphthol hardeners, active ester hardeners, benzoxazine hardeners, cyanate ester hardeners, and acid anhydride hardeners. These may be used alone or in combination of two or more.
 本発明のリン含有フェノール化合物以外の硬化剤の配合量としては、本発明の樹脂組成物のリン含有率が、好ましくは0.5~5.0質量%となる量の配合であって、リン含有フェノール化合物とその他硬化剤のエポキシ基との反応点の合計のモル数(Nh)と、エポキシ基のモル数(Ne)のモル比(Nh/Ne)が0.7~1.3であり、0.9~1.1である事が好ましい。範囲外のモル比では、架橋が不十分で脆い硬化物となってしまうため好ましくない。 The amount of hardener other than the phosphorus-containing phenolic compound of the present invention is preferably such that the phosphorus content of the resin composition of the present invention is 0.5 to 5.0 mass %, and the molar ratio (Nh/Ne) of the total number of moles (Nh) of reaction points between the phosphorus-containing phenolic compound and the epoxy groups of the other hardener to the number of moles (Ne) of the epoxy groups is 0.7 to 1.3, preferably 0.9 to 1.1. Molar ratios outside this range are not preferred because they result in insufficient crosslinking and a brittle cured product.
 本発明の樹脂組成物には、エポキシ樹脂以外の硬化性樹脂を含むこともできる。エポキシ樹脂以外の硬化性樹脂としては、例えば、ビニルエステル樹脂、ポリビニルベンジル樹脂、不飽和ポリエステル樹脂、硬化型ビニル樹脂、マレイミド樹脂等のラジカル重合性樹脂、シアネート樹脂を挙げることができる。 The resin composition of the present invention may also contain a curable resin other than an epoxy resin. Examples of curable resins other than an epoxy resin include vinyl ester resins, polyvinylbenzyl resins, unsaturated polyester resins, curable vinyl resins, radical polymerizable resins such as maleimide resins, and cyanate resins.
 本発明の硬化性樹脂組成物は、必要に応じて硬化促進剤を含有していても良い。ここで用いる硬化促進剤は、例えば、リン系化合物、第3級アミン、イミダゾール、有機酸金属塩、ルイス酸、アミン錯塩等が挙げられる。硬化促進剤の添加量は、リン含有フェノール化合物、硬化性樹脂、その他硬化剤の合計100質量部に対して、好ましくは0.1~10.0質量部である。 The curable resin composition of the present invention may contain a curing accelerator as necessary. Examples of the curing accelerator used here include phosphorus-based compounds, tertiary amines, imidazoles, organic acid metal salts, Lewis acids, and amine complex salts. The amount of the curing accelerator added is preferably 0.1 to 10.0 parts by mass per 100 parts by mass of the total of the phosphorus-containing phenolic compound, the curable resin, and other curing agents.
 本発明の樹脂組成物には、上述した成分の他、その他の成分として、熱硬化性樹脂、熱可塑性樹脂、有機充填剤、無機充填剤、有機溶媒、増粘剤、消泡剤、密着性付与剤、着色剤、添加剤などを適宜配合することができる。 In addition to the components described above, the resin composition of the present invention can contain other components, such as thermosetting resins, thermoplastic resins, organic fillers, inorganic fillers, organic solvents, thickeners, defoamers, adhesion promoters, colorants, and additives, as appropriate.
 熱可塑性樹脂としては、例えば、ポリスチレン、ポリフェニレンエーテル樹脂、ポリエーテルイミド樹脂、ポリエーテルサルホン樹脂、PPS樹脂、ポリシクロペンタジエン樹脂、ポリシクロオレフィン樹脂等や、既知の熱可塑性エラストマー、例えば、スチレン-エチレン-プロピレン共重合体、スチレン-エチレン-ブチレン共重合体、スチレン-ブタジエン共重合体、スチレン‐イソプレン共重合体、水添スチレン-ブタジエン共重合体、水添スチレン-イソプレン共重合体等や、あるいはゴム類、例えばポリブタジエン、ポリイソプレンを挙げることができる。好ましくは、ポリフェニレンエーテル樹脂(未変性)、水添スチレン-ブタジエン共重合体を挙げることができる。 Examples of thermoplastic resins include polystyrene, polyphenylene ether resin, polyetherimide resin, polyethersulfone resin, PPS resin, polycyclopentadiene resin, polycycloolefin resin, etc., known thermoplastic elastomers such as styrene-ethylene-propylene copolymer, styrene-ethylene-butylene copolymer, styrene-butadiene copolymer, styrene-isoprene copolymer, hydrogenated styrene-butadiene copolymer, hydrogenated styrene-isoprene copolymer, etc., and rubbers such as polybutadiene and polyisoprene. Preferred examples include polyphenylene ether resin (unmodified) and hydrogenated styrene-butadiene copolymer.
 本発明の硬化性樹脂組成物には、充填剤を配合することができる。充填剤としては、硬化性樹脂組成物の硬化物の、耐熱性や難燃性を高めるために添加するもの等が挙げられ、公知の充填剤を使用することができるが、特に限定されない。また、充填剤を含有させることによって、耐熱性、寸法安定性や難燃性等をさらに高めることができる。具体的には、球状シリカ等のシリカ、アルミナ、酸化チタン、及びマイカ等の金属酸化物、水酸化アルミニウム、水酸化マグネシウム等の金属水酸化物、タルク、ホウ酸アルミニウム、硫酸バリウム、及び炭酸カルシウム等が挙げられる。水酸化アルミニウム、水酸化マグネシウムなどの金属水酸化物を用いた場合、難燃助剤として作用し、リン含有率が少なくても難燃性を確保することが出来る。この中でも、シリカ、マイカ、及びタルクが好ましく、球状シリカがより好ましい。また、これらの1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 A filler can be blended into the curable resin composition of the present invention. Examples of fillers include those added to enhance the heat resistance and flame retardancy of the cured product of the curable resin composition, and known fillers can be used, but are not particularly limited. In addition, by including a filler, the heat resistance, dimensional stability, flame retardancy, etc. can be further improved. Specific examples include silica such as spherical silica, metal oxides such as alumina, titanium oxide, and mica, metal hydroxides such as aluminum hydroxide and magnesium hydroxide, talc, aluminum borate, barium sulfate, and calcium carbonate. When metal hydroxides such as aluminum hydroxide and magnesium hydroxide are used, they act as flame retardant assistants, and flame retardancy can be ensured even with a low phosphorus content. Among these, silica, mica, and talc are preferred, and spherical silica is more preferred. In addition, one of these may be used alone, or two or more may be used in combination.
 充填剤は、そのまま用いてもよいが、ビニルシランタイプ、メタクリロキシシランタイプ、アクリロキシシランタイプ、及びスチリルシランタイプのシランカップリング剤やエポキシシランタイプ、アミノシランタイプまたはカチオニックシランタイプ等のシランカップリング剤で表面処理したものを用いてもよい。これにより、金属箔との接着強度や樹脂同士の層間接着強度が高まる。また、充填剤に予め表面処理する方法でなく、上記シランカップリング剤をインテグラルブレンド法で添加して用いてもよい。 The filler may be used as is, or may be surface-treated with a silane coupling agent such as a vinyl silane type, methacryloxy silane type, acryloxy silane type, or styryl silane type, or an epoxy silane type, amino silane type, or cationic silane type. This increases the adhesive strength with the metal foil and the interlayer adhesive strength between resins. Also, instead of surface-treating the filler in advance, the above silane coupling agent may be added using the integral blend method.
 充填剤の含有量は、充填剤を除く固形分(モノマー等の有機成分と難燃剤を含み、溶剤を除く。)の合計100質量部に対して、10~200質量部であることが好ましく、30~150質量部であることが好ましい。 The amount of filler is preferably 10 to 200 parts by mass, and more preferably 30 to 150 parts by mass, per 100 parts by mass of the total solids excluding the filler (including organic components such as monomers and flame retardants, but excluding solvents).
 本発明の硬化性樹脂組成物には、上記以外の添加剤をさらに含有してもよい。添加剤としては、例えば、シリコーン系消泡剤及びアクリル酸エステル系消泡剤等の消泡剤、熱安定剤、帯電防止剤、紫外線吸収剤、染料や顔料、滑剤、湿潤分散剤等の分散剤等が挙げられる。 The curable resin composition of the present invention may further contain additives other than those mentioned above. Examples of additives include defoamers such as silicone-based defoamers and acrylic acid ester-based defoamers, heat stabilizers, antistatic agents, UV absorbers, dyes and pigments, lubricants, dispersants such as wetting dispersants, etc.
 本発明の硬化性樹脂組成物を硬化させて得られる硬化物は、成型物、積層物、注型物、接着剤、塗膜、フィルムとして使用できる。例えば、半導体封止材料の硬化物は注型物又は成型物であり、かかる用途の硬化物を得る方法としては、硬化性樹脂組成物を注型、或いはトランスファ-成形機、射出成形機などを用いて成形し、さらに80~230℃で0.5~10時間に加熱することにより硬化物を得ることができる。 The cured product obtained by curing the curable resin composition of the present invention can be used as a molded product, laminate, cast product, adhesive, coating, or film. For example, a cured product of a semiconductor encapsulation material is a cast product or molded product, and a method for obtaining a cured product for such applications is to cast the curable resin composition or mold it using a transfer molding machine or injection molding machine, and then heat it at 80 to 230°C for 0.5 to 10 hours to obtain a cured product.
 本発明の硬化性樹脂組成物は、プリプレグとして使用することもできる。プリプレグを製造する際には、プリプレグを形成するための基材(繊維質基材)に含浸する目的、あるいは回路基板を形成する回路基板材料とする目的でワニス状に調製して、樹脂ワニスとすることができる。
 この樹脂ワニスは、回路基板用に適し、回路基板材料用ワニスとして使用できる。なお、ここでいう回路基板材料の用途は、具体的には、プリント配線基板、プリント回路板、フレキシブルプリント配線板、ビルドアップ配線板等が挙げられる。
The curable resin composition of the present invention can also be used as a prepreg. When producing a prepreg, the composition can be prepared in a varnish form to be used as a resin varnish for the purpose of impregnating a substrate (fibrous substrate) for forming a prepreg or for the purpose of using the composition as a circuit board material for forming a circuit board.
This resin varnish is suitable for circuit boards and can be used as a varnish for circuit board materials. Specific applications of the circuit board materials referred to here include printed wiring boards, printed circuit boards, flexible printed wiring boards, build-up wiring boards, etc.
 上記の樹脂ワニスは、例えば、以下のようにして調製される。 
 まず、本発明のリン含有フェノール化合物やエポキシ樹脂成分等の有機溶媒に溶解できる各成分を、有機溶媒に投入して溶解させる。この際、必要に応じて、加熱してもよい。その後、必要に応じて、無機充填材等の有機溶媒に溶解しない成分を添加して、ボールミル、ビーズミル、プラネタリーミキサー、ロールミル等を用いて、分散させることにより、ワニス状の硬化性樹脂組成物が調製される。ここで用いられる有機溶媒としては、本発明のエポキシ樹脂組成物に用いる樹脂成分を溶解させ、硬化反応を阻害しないものであれば、特に限定されない。例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類;酢酸エチル、酢酸プロピル、酢酸ブチル等のエステル類;ジメチルアセトアミド、ジメチルホルムアミド等の極性溶剤類;トルエン、キシレン等の芳香族炭化水素溶剤類等が挙げられ、これらを1種または2種以上を混合して使用することも可能である。
The above resin varnish is prepared, for example, as follows.
First, each component that can be dissolved in an organic solvent, such as the phosphorus-containing phenol compound of the present invention and the epoxy resin component, is put into an organic solvent and dissolved. At this time, heating may be performed as necessary. Then, as necessary, a component that is not dissolved in an organic solvent, such as an inorganic filler, is added, and dispersed using a ball mill, a bead mill, a planetary mixer, a roll mill, or the like, to prepare a varnish-like curable resin composition. The organic solvent used here is not particularly limited as long as it dissolves the resin component used in the epoxy resin composition of the present invention and does not inhibit the curing reaction. For example, ketones such as acetone, methyl ethyl ketone, and methyl isobutyl ketone; esters such as ethyl acetate, propyl acetate, and butyl acetate; polar solvents such as dimethylacetamide and dimethylformamide; aromatic hydrocarbon solvents such as toluene and xylene, and the like can be used alone or in combination of two or more of them.
 樹脂ワニスを作成する際に、使用する有機溶剤の量は、本発明の硬化性樹脂組成物100質量%に対して、好ましくは5~900質量%、より好ましくは10~700質量%、特に好ましくは20~500質量%である。 When preparing a resin varnish, the amount of organic solvent used is preferably 5 to 900% by mass, more preferably 10 to 700% by mass, and particularly preferably 20 to 500% by mass, relative to 100% by mass of the curable resin composition of the present invention.
 プリプレグを作成するのに用いられる基材としては、公知の材料が用いられるが、例えば、ガラス繊維、カーボン繊維、ポリエステル繊維、ポリアミド繊維、アルミナ繊維、紙などの基材がそれぞれ単独で、あるいは2種以上併せて用いられる。これら基材には、必要に応じて樹脂と基材の界面における接着性を改善する目的でカップリング剤を用いることができる。カップリング剤としては、シランカップリング剤、チタネートカップリング剤、アルミニウム系カップリング剤、ジルコアルミネートカップリング剤など一般のものが使用できる。  Known materials are used as the substrates used to create prepregs, and examples of such substrates include glass fiber, carbon fiber, polyester fiber, polyamide fiber, alumina fiber, and paper, which may be used alone or in combination of two or more. If necessary, coupling agents may be used with these substrates to improve adhesion at the interface between the resin and the substrate. Common coupling agents include silane coupling agents, titanate coupling agents, aluminum-based coupling agents, and zircoaluminate coupling agents.
 本発明のプリプレグを得る方法としては、上記樹脂ワニスを基材に含浸させた後、乾燥する方法が挙げられる。含浸は浸漬(ディッピング)、塗布等によって行われる。含浸は必要に応じて複数回繰り返すことも可能であり、またこの際、組成や濃度の異なる複数の溶液を用いて含浸を繰り返し、最終的に希望とする樹脂組成及び樹脂量に調整することも可能である。含浸後に、100~180℃で1~30分加熱乾燥することでプリプレグを得ることができる。ここで、プリプレグ中の樹脂量は、樹脂分30~80質量%とすることが好ましい。 The prepreg of the present invention can be obtained by impregnating a substrate with the resin varnish and then drying it. Impregnation is performed by dipping, coating, etc. Impregnation can be repeated multiple times as necessary, and in this case, it is also possible to repeat impregnation using multiple solutions with different compositions and concentrations to adjust to the final desired resin composition and resin amount. After impregnation, the substrate can be heated and dried at 100 to 180°C for 1 to 30 minutes to obtain a prepreg. Here, the amount of resin in the prepreg is preferably 30 to 80% by mass.
 本発明の硬化性樹脂組成物は、積層板としても使用することもできる。プリプレグを用いて積層板を形成する場合は、プリプレグを一又は複数枚積層し、片側又は両側に金属箔を配置して積層物を構成し、この積層物を加熱・加圧して積層一体化する。ここで金属箔としては、銅、アルミニウム、真鍮、ニッケル等の単独、合金、複合の金属箔を用いることができる。積層物を加熱加圧する条件としては、硬化性樹脂組成物が硬化する条件で適宜調整して加熱加圧すればよいが、加圧の圧力があまり低いと、得られる積層板の内部に気泡が残留し、電気的特性が低下する場合があるため、成形性を満足する条件で加圧することが好ましい。例えば温度を180~230℃、圧力を49.0~490.3N/cm2(5~50kgf/cm2)、加熱加圧時間を40~240分間にそれぞれ設定することができる。更にこのようにして得られた単層の積層板を内層材として、多層板を作製することができる。この場合、まず積層板にアディティブ法やサブトラクティブ法等にて回路形成を施し、形成された回路表面を酸溶液で処理して黒化処理を施して、内層材を得る。この内層材の、片側又は両側の回路形成面に、樹脂シート、樹脂付き金属箔、又はプリプレグにて絶縁層を形成すると共に、絶縁層の表面に導体層を形成して、多層板を形成するものである。 The curable resin composition of the present invention can also be used as a laminate. When a laminate is formed using prepregs, one or more prepregs are laminated, metal foil is placed on one or both sides to form a laminate, and the laminate is heated and pressed to laminate and integrate it. Here, the metal foil can be a single metal foil, an alloy metal foil, or a composite metal foil such as copper, aluminum, brass, or nickel. The conditions for heating and pressing the laminate can be appropriately adjusted to the conditions under which the curable resin composition is cured, but if the pressure is too low, air bubbles may remain inside the obtained laminate and the electrical properties may deteriorate, so it is preferable to pressurize under conditions that satisfy the moldability. For example, the temperature can be set to 180 to 230°C, the pressure to 49.0 to 490.3 N/cm2 (5 to 50 kgf/cm2), and the heating and pressing time to 40 to 240 minutes. Furthermore, a multilayer board can be produced by using the single-layer laminate obtained in this way as an inner layer material. In this case, a circuit is first formed on the laminate using an additive or subtractive method, and the surface of the formed circuit is then treated with an acid solution for blackening to obtain an inner layer material. An insulating layer is formed on one or both circuit-forming surfaces of this inner layer material using a resin sheet, metal foil with resin, or prepreg, and a conductor layer is formed on the surface of the insulating layer to form a multilayer board.
 本発明の硬化性組成物からビルドアップフィルムを製造する方法は、例えば、上記樹脂ワニスを、支持フィルム上に塗布、乾燥させてフィルム状の絶縁層を形成する方法が挙げられる。このようにして形成させたフィルム状の絶縁層は、多層プリント配線板用のビルドアップフィルムとして使用できる。 A method for producing a build-up film from the curable composition of the present invention includes, for example, applying the above-mentioned resin varnish onto a support film and drying it to form a film-like insulating layer. The film-like insulating layer thus formed can be used as a build-up film for multilayer printed wiring boards.
 前記乾燥工程は、ビルドアップフィルム樹脂組成物の層中の有機溶剤の含有率が10質量%以下、好ましくは5質量%以下となるように乾燥させることが好ましい。乾燥条件はワニス中の有機溶剤種、有機溶媒量によっても異なるが、50~160℃で3~20分程度乾燥させることができる。 The drying step is preferably carried out so that the organic solvent content in the build-up film resin composition layer is 10% by mass or less, and preferably 5% by mass or less. Drying conditions vary depending on the type of organic solvent in the varnish and the amount of organic solvent, but drying can be carried out at 50 to 160°C for about 3 to 20 minutes.
 支持体上に形成されるビルドアップフィルムの厚さは、通常、導体層の厚さ以上とする。回路基板が有する導体層の厚さは通常5~70μmの範囲であるので、樹脂組成物層の厚さは10~100μmの厚みを有するのが好ましい。 The thickness of the build-up film formed on the support is usually equal to or greater than the thickness of the conductor layer. Since the thickness of the conductor layer of a circuit board is usually in the range of 5 to 70 μm, it is preferable that the thickness of the resin composition layer is 10 to 100 μm.
 なお、本発明にビルドアップフィルムは、保護フィルムで保護されることが、表面へのゴミ等の付着やキズを防止することができる点から好ましい。 In addition, it is preferable that the build-up film of the present invention is protected by a protective film, since this can prevent the adhesion of dirt and the like to the surface and prevent scratches.
 前記した支持フィルム及び保護フィルムは、ポリエチレン、ポリプロピレン、ポリ塩化ビニル等のポリオレフィン、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル、ポリカーボネート、ポリイミド、更には離型紙や銅箔、アルミニウム箔等の金属箔などを挙げることができる。なお、支持フィルム及び保護フィルムはマッド処理、コロナ処理の他、離型処理を施してあってもよい。 The above-mentioned support film and protective film may be made of polyolefins such as polyethylene, polypropylene, and polyvinyl chloride; polyesters such as polyethylene terephthalate and polyethylene naphthalate; polycarbonate; polyimide; and even release paper and metal foils such as copper foil and aluminum foil. The support film and protective film may be subjected to a mud treatment, corona treatment, or release treatment.
 支持フィルムの厚さは特に限定されないが、通常10~150μmであり、好ましくは25~50μmの範囲で用いられる。また保護フィルムの厚さは1~40μmとするのが好ましい。 The thickness of the support film is not particularly limited, but is usually in the range of 10 to 150 μm, and preferably in the range of 25 to 50 μm. The thickness of the protective film is preferably 1 to 40 μm.
 上記した支持フィルム、回路基板にラミネートした後に、或いは加熱硬化することにより絶縁層を形成した後に、剥離される。接着フィルムを加熱硬化した後に支持フィルムを剥離すれば、硬化工程での酸素による硬化阻害を防ぐことができ、さらにゴミ等の付着を防ぐことができる。硬化後に剥離する場合、通常、支持フィルムには予め離型処理が施される。 The support film described above is peeled off after laminating it onto the circuit board, or after forming an insulating layer by heat curing. Peeling off the support film after the adhesive film has been heat cured can prevent curing inhibition caused by oxygen during the curing process, and can also prevent the adhesion of dirt, etc. When peeling off after curing, the support film is usually subjected to a release treatment beforehand.
 次に、実施例により本発明を説明するが、本発明はこれらにより限定されるものではない。各例中の部はいずれも質量部である。
 なお、実施例中の各硬化物サンプルの物性測定は、以下に示す方法により行った。
The present invention will now be described with reference to examples, but is not limited to these. In each example, all parts are by weight.
The physical properties of each cured sample in the examples were measured by the methods described below.
(1)ポリマーの分子量及び分子量分布:リン含有フェノール化合物の分子量及び分子量分布測定はGPC(東ソー製、HLC-8120GPC)を使用し、溶媒にテトラヒドロフラン、流量1.0ml/min、カラム温度38℃、単分散ポリスチレンによる検量線を用いて行った。
(2)水酸基当量:100mLの共栓付フラスコに約6mg/eqの試料を精秤し、無水酢酸/ピリジン=3/1(容量比)で混合した試薬を3mL加え、冷却管を付け、ホットプレートで5分間加熱還流させ、5分間の放冷の後、1mLの水を加える。その液を、0.5mol/LのKOH/MeOH溶液で電位差滴定する事で算出した。
(3)リン含有率:試料に硫酸、塩酸、過塩素酸を加え、加熱して湿式灰化し、全てのリン原子をオルトリン酸とした。硫酸酸性溶液中でメタバナジン酸塩及びモリブデン酸塩を反応させ、生じたリンバナードモリブデン酸錯体の420nmにおける吸光度を測定し、予めリン酸二水素カリウムを用いて作成した検量線により、求めたリン原子含有率を質量%で表した。
(4)ガラス転移温度:株式会社日立ハイテクサイエンス製、示差走査熱量測定を用いて10℃/分の昇温速度で、ベースラインシフトから求めた。 
(5)比誘電率及び誘電正接:IPC-TM-6502.5.5.9規格に準じてマテリアルアナライザー(AGILENT Technologies社製)を用い、25℃、湿度60%環境下で容量法により、周波数1GHzにおける誘電率(Dk)及び誘電正接(Df)を求めた。
(6)難燃性:UL94に準じ、試験片5本を用いて垂直法により評価した。評価はV-0、V-1、V-2で記した。
(7)吸水率:JIS K 7209に従って、硬化物サンプルを23℃の水に浸漬後、飽和水分量を求めた。
(8)吸水後の誘電特性変化率:硬化物サンプルの吸水試験前の測定値(A1)、および吸水後の測定値(A2)を用いて下記の式から変化率を求めた。
誘電特性の変化率(%)=(A2-A1)/A1×100
(1) Molecular weight and molecular weight distribution of polymer: The molecular weight and molecular weight distribution of the phosphorus-containing phenol compound were measured using GPC (Tosoh Corporation, HLC-8120GPC) with tetrahydrofuran as a solvent, a flow rate of 1.0 ml/min, a column temperature of 38° C., and a calibration curve based on monodisperse polystyrene.
(2) Hydroxyl equivalent: Approximately 6 mg/eq of sample was weighed out into a 100 mL stoppered flask, 3 mL of a mixed reagent of acetic anhydride/pyridine = 3/1 (volume ratio) was added, a cooling tube was attached, the mixture was heated to reflux on a hot plate for 5 minutes, and after cooling for 5 minutes, 1 mL of water was added. The solution was titrated potentiometrically with a 0.5 mol/L KOH/MeOH solution to calculate the hydroxyl equivalent.
(3) Phosphorus content: Sulfuric acid, hydrochloric acid, and perchloric acid were added to the sample, which was then heated and wet-ashed to convert all phosphorus atoms into orthophosphate. Metavanadate and molybdate were reacted in the sulfuric acid acid solution, and the absorbance at 420 nm of the resulting phosphorus vanadate molybdate complex was measured. The phosphorus atom content was expressed in mass% based on a calibration curve previously prepared using potassium dihydrogen phosphate.
(4) Glass transition temperature: Measured from the baseline shift using a differential scanning calorimeter manufactured by Hitachi High-Tech Science Corporation at a heating rate of 10° C./min.
(5) Dielectric constant and dielectric loss tangent: The dielectric constant (Dk) and dielectric loss tangent (Df) at a frequency of 1 GHz were determined by a capacitance method in an environment of 25° C. and humidity of 60% using a material analyzer (manufactured by AGILENT Technologies) in accordance with the IPC-TM-6502.5.5.9 standard.
(6) Flame retardancy: Evaluated by the vertical method using five test pieces in accordance with UL 94. The evaluation was recorded as V-0, V-1, or V-2.
(7) Water absorption: In accordance with JIS K 7209, a cured sample was immersed in water at 23° C. and the saturated water content was determined.
(8) Rate of change in dielectric properties after water absorption: The rate of change was calculated from the measured value (A1) of the cured sample before the water absorption test and the measured value (A2) after water absorption according to the following formula.
Dielectric property change rate (%) = (A2 - A1) / A1 x 100
 合成例において下記の化合物を原料として用いた。
・オキシ塩化リン(東京化成工業株式会社製)
・2,6-ジメチルフェノール(東京化成工業株式会社製)
・フロログルシノール(東京化成工業株式会社製)
In the synthesis examples, the following compounds were used as raw materials.
Phosphorus oxychloride (Tokyo Chemical Industry Co., Ltd.)
・2,6-Dimethylphenol (Tokyo Chemical Industry Co., Ltd.)
・Phloroglucinol (Tokyo Chemical Industry Co., Ltd.)
(合成例1)ジ2,6-キシリルホスホロクロリデート(DXPC)の合成
 撹拌機、温度計および塩酸回収装置(水スクラバーを連結したコンデンサー)を備えた2Lの4つ口フラスコに、オキシ塩化リン(下記構造式)767g(5mol)、
Figure JPOXMLDOC01-appb-C000015
2,6-ジメチルフェノール(下記構造式)1200g(9.8mol)、
Figure JPOXMLDOC01-appb-C000016
溶剤としてのキシレン140g、触媒として塩化マグネシウム6.2g(0.065mol)を充填した。得られた混合溶液を撹拌しながら約3時間かけて温度160℃まで徐々に加熱昇温して反応させ、発生する塩化水素ガスを水スクラバーで回収した。その後、同温度でフラスコ内の圧力を徐々に20kPaまで減圧し、キシレンや未反応のオキシ塩化リンおよび2,6-ジメチルフェノール、副生する塩化水素を除去し、ジ2,6-キシリルホスホロクロリデート(DXPC:下記構造式)を主成分とする反応生成物1700gを得た。また、反応混合物の塩素含有率は10.9質量%であった。
Figure JPOXMLDOC01-appb-C000017
Synthesis Example 1 Synthesis of di-2,6-xylyl phosphorochloridate (DXPC) Into a 2 L four-neck flask equipped with a stirrer, a thermometer, and a hydrochloric acid recovery device (a condenser connected to a water scrubber), 767 g (5 mol) of phosphorus oxychloride (structural formula below),
Figure JPOXMLDOC01-appb-C000015
2,6-dimethylphenol (structural formula below) 1200 g (9.8 mol),
Figure JPOXMLDOC01-appb-C000016
140 g of xylene as a solvent and 6.2 g (0.065 mol) of magnesium chloride as a catalyst were charged. The resulting mixed solution was gradually heated to a temperature of 160°C over about 3 hours while stirring to react, and the generated hydrogen chloride gas was collected with a water scrubber. Thereafter, the pressure in the flask was gradually reduced to 20 kPa at the same temperature, and xylene, unreacted phosphorus oxychloride and 2,6-dimethylphenol, and by-product hydrogen chloride were removed to obtain 1700 g of a reaction product mainly composed of di-2,6-xylyl phosphorochloridate (DXPC: structural formula below). The chlorine content of the reaction mixture was 10.9% by mass.
Figure JPOXMLDOC01-appb-C000017
(実施例1)リン含有フェノール(化合物A)の合成
 撹拌機、温度計、塩酸回収装置(水スクラバーを連結したコンデンサー)を備えた200mLの4つ口フラスコに、メシチレン51.6g、フロログルシノール(下記構造式)12.6g(0.1mol)、
Figure JPOXMLDOC01-appb-C000018
合成例1で得られたジ2,6-キシリルホスホロクロリデート21.8g(0.06mol)、触媒として無水塩化マグネシウム0.4g(0.004mol)を充填した。得られた混合溶液を撹拌しながら155℃まで徐々に加熱昇温し155℃に到達してから18時間反応させ発生する塩化水素を捕集した。60℃に冷却後、酢酸エチル35gを加え、酸洗い、中和、2回の水洗いを行い、溶媒除去を行って化合物Aを26.1g得た。
 化合物Aは、水酸基当量125g/eq、リン含有率が6.4質量%であった。更に、GPCによりフロログルシノールの水酸基の1つがジ2,6-キシリルホスホロクロリデートと反応した化合物(1置換体、下記構造式)を68モル%、水酸基の2つが反応した化合物(2置換体、下記構造式)を10モル%、水酸基の3つと反応した化合物(3置換体、下記構造式)を2モル%、フロログルシノールを20モル%含むことを確認した。
Figure JPOXMLDOC01-appb-C000019
Example 1 Synthesis of Phosphorus-Containing Phenol (Compound A) Into a 200 mL four-neck flask equipped with a stirrer, a thermometer, and a hydrochloric acid recovery device (a condenser connected to a water scrubber), 51.6 g of mesitylene, 12.6 g (0.1 mol) of phloroglucinol (structural formula below),
Figure JPOXMLDOC01-appb-C000018
21.8 g (0.06 mol) of di-2,6-xylyl phosphorochloridate obtained in Synthesis Example 1 and 0.4 g (0.004 mol) of anhydrous magnesium chloride as a catalyst were charged. The resulting mixed solution was gradually heated to 155°C while stirring, and after reaching 155°C, the reaction was carried out for 18 hours and the generated hydrogen chloride was collected. After cooling to 60°C, 35 g of ethyl acetate was added, and the mixture was washed with acid, neutralized, washed twice with water, and the solvent was removed to obtain 26.1 g of compound A.
Compound A had a hydroxyl equivalent of 125 g/eq and a phosphorus content of 6.4% by mass. Furthermore, it was confirmed by GPC that the compound contained 68 mol % of a compound in which one hydroxyl group of phloroglucinol had reacted with di-2,6-xylyl phosphorochloridate (monosubstitution, structural formula below), 10 mol % of a compound in which two hydroxyl groups had reacted (disubstitution, structural formula below), 2 mol % of a compound in which three hydroxyl groups had reacted (trisubstitution, structural formula below), and 20 mol % of phloroglucinol.
Figure JPOXMLDOC01-appb-C000019
(実施例2)リン含有フェノール(化合物B)の合成
 撹拌機、温度計、塩酸回収装置(水スクラバーを連結したコンデンサー)を備えた200mLの4つ口フラスコに、メシチレン110.9g、フロログルシノール12.6g(0.1mol)、ジ2,6-キシリルホスホロクロリデート54.5g(0.15mol)、触媒として無水塩化マグネシウム0.8g(0.008mol)を充填した。得られた混合溶液を撹拌しながら155℃まで徐々に加熱昇温し155℃に到達してから18時間反応させ発生する塩化水素を捕集した。60℃に冷却後、酢酸エチル60gを加え、酸洗い、中和、2回の水洗いを行い、溶媒除去を行って化合物Bを51.2g得た。
 化合物Bは、水酸基当量412g/eq、リン含有率が8.4質量%であった。更に、GPCによりフロログルシノールの水酸基の1つがジ2,6-キシリルホスホロクロリデートと反応した化合物(1置換体)を39.5モル%、水酸基の2つが反応した化合物(2置換体)を34.0モル%、水酸基の3つと反応した化合物(3置換体)を25.0モル%、フロログルシノールを1.5モル%含むことを確認した。
(Example 2) Synthesis of phosphorus-containing phenol (compound B) 110.9 g of mesitylene, 12.6 g (0.1 mol) of phloroglucinol, 54.5 g (0.15 mol) of di-2,6-xylyl phosphorochloridate, and 0.8 g (0.008 mol) of anhydrous magnesium chloride as a catalyst were charged into a 200 mL four-neck flask equipped with a stirrer, a thermometer, and a hydrochloric acid recovery device (a condenser connected to a water scrubber). The resulting mixed solution was gradually heated to 155°C while stirring, and after reaching 155°C, the mixture was reacted for 18 hours and the generated hydrogen chloride was collected. After cooling to 60°C, 60 g of ethyl acetate was added, and the mixture was subjected to acid washing, neutralization, and two water washings, and the solvent was removed to obtain 51.2 g of compound B.
Compound B had a hydroxyl equivalent of 412 g/eq and a phosphorus content of 8.4% by mass. Furthermore, it was confirmed by GPC that the compound contained 39.5 mol % of a compound in which one hydroxyl group of phloroglucinol had reacted with di-2,6-xylyl phosphorochloridate (monosubstitution product), 34.0 mol % of a compound in which two hydroxyl groups had reacted (disubstitution product), 25.0 mol % of a compound in which three hydroxyl groups had reacted (trisubstitution product), and 1.5 mol % of phloroglucinol.
(実施例3)リン含有フェノール(化合物C)の合成
 撹拌機、温度計、塩酸回収装置(水スクラバーを連結したコンデンサー)を備えた300mLの4つ口フラスコに、メシチレン249.5g、フロログルシノール12.6g(0.1mol)、ジ2,6-キシリルホスホロクロリデート87.2g(0.24mol)、触媒として無水塩化マグネシウム1.2g(0.012mol)を充填した。得られた混合溶液を撹拌しながら155℃まで徐々に加熱昇温し155℃に到達してから18時間反応させ発生する塩化水素を捕集した。60℃に冷却後、酢酸エチル60gを加え、酸洗い、中和、2回の水洗いを行い、溶媒除去を行って化合物Cを51.2g得た。
 化合物Cは、水酸基当量587g/eq、リン含有率が9.0質量%であった。更に、GPCによりフロログルシノールの水酸基の1つがジ2,6-キシリルホスホロクロリデートと反応した化合物(1置換体)を25モル%、水酸基の2つが反応した化合物(2置換体)を35モル%、水酸基の3つと反応した化合物(3置換体)を40モル%含むことを確認した。
(Example 3) Synthesis of phosphorus-containing phenol (compound C) 249.5 g of mesitylene, 12.6 g (0.1 mol) of phloroglucinol, 87.2 g (0.24 mol) of di-2,6-xylyl phosphorochloridate, and 1.2 g (0.012 mol) of anhydrous magnesium chloride as a catalyst were charged into a 300 mL four-neck flask equipped with a stirrer, a thermometer, and a hydrochloric acid recovery device (a condenser connected to a water scrubber). The resulting mixed solution was gradually heated to 155°C while stirring, and after reaching 155°C, the mixture was reacted for 18 hours and the generated hydrogen chloride was collected. After cooling to 60°C, 60 g of ethyl acetate was added, and the mixture was subjected to acid washing, neutralization, and two water washings, and the solvent was removed to obtain 51.2 g of compound C.
Compound C had a hydroxyl equivalent of 587 g/eq and a phosphorus content of 9.0% by mass. Furthermore, it was confirmed by GPC that the compound contained 25 mol % of a compound in which one hydroxyl group of phloroglucinol had reacted with di-2,6-xylyl phosphorochloridate (mono-substitution product), 35 mol % of a compound in which two hydroxyl groups had reacted (di-substitution product), and 40 mol % of a compound in which three hydroxyl groups had reacted (tri-substitution product).
(比較例1)リン含有フェノール(化合物D)の合成
 国際公開特許WO2021/256351に記載の方法に従って合成した。具体的には、撹拌機、温度計および塩酸回収装置(水スクラバーを連結したコンデンサー)を備えた容量2リットルの4つ口フラスコに、オキシ塩化リン1500g、2,6-ジメチルフェノール611g、触媒としての塩化マグネシウム1.2g充填した。
 得られた混合溶液を撹拌しながら約3時間かけて温度110℃まで徐々に加熱昇温して反応させ、発生する塩化水素(塩酸ガス)を水スクラバーで回収した。その後、120℃でフラスコ内の圧力を徐々に12kPaまで減圧し、未反応のオキシ塩化リンおよびフェノール、副生する塩化水素を除去し、モノ2,6-ジメチルフェニルホスホロジクロリデート1200gを得た。
 撹拌機、温度計、滴下ロートおよびコンデンサーを備えた容量2リットルの4つ口フラスコに、2,3,5-トリメチルハイドロキノン320g、塩化水素捕捉剤としてピリジン135g、溶剤としてトルエン200gを充填した。また、滴下ロートに上記モノ2,6-ジメチルフェニルホスホロジクロリデート203gを充填した。
 4つ口フラスコ中の混合溶液を撹拌しながら温度20℃まで加熱し、同温度(20℃)で維持しながら、滴下ロート中のモノ2,6-ジメチルフェニルホスホロジクロリデートを2時間かけて滴下した。滴下終了後、65℃まで加熱し、5時間撹拌し反応生成物を得た。得られた反応生成物を希塩酸および水で洗浄後、温度150℃まで加熱し、2kPaまで減圧して水、トルエン、低沸分を留去し、常温まで冷却することで下記構造の黒褐色固体(化合物D)330gを得た。
Figure JPOXMLDOC01-appb-C000020
(Comparative Example 1) Synthesis of phosphorus-containing phenol (compound D) It was synthesized according to the method described in International Publication WO2021/256351. Specifically, 1500 g of phosphorus oxychloride, 611 g of 2,6-dimethylphenol, and 1.2 g of magnesium chloride as a catalyst were charged into a 2-liter four-neck flask equipped with a stirrer, a thermometer, and a hydrochloric acid recovery device (a condenser connected to a water scrubber).
The resulting mixed solution was gradually heated to 110°C over about 3 hours while stirring to react, and the generated hydrogen chloride (hydrochloric acid gas) was collected with a water scrubber. Thereafter, the pressure in the flask was gradually reduced to 12 kPa at 120°C to remove unreacted phosphorus oxychloride and phenol, and by-product hydrogen chloride, yielding 1,200 g of mono-2,6-dimethylphenylphosphorodichloridate.
A 2-liter four-neck flask equipped with a stirrer, a thermometer, a dropping funnel, and a condenser was charged with 320 g of 2,3,5-trimethylhydroquinone, 135 g of pyridine as a hydrogen chloride scavenger, and 200 g of toluene as a solvent. The dropping funnel was charged with 203 g of the mono-2,6-dimethylphenylphosphorodichloridate.
The mixed solution in the four-neck flask was heated to a temperature of 20° C. while stirring, and while maintaining the same temperature (20° C.), mono 2,6-dimethylphenyl phosphorodichloridate in the dropping funnel was dropped over 2 hours. After the dropwise addition was completed, the mixture was heated to 65° C. and stirred for 5 hours to obtain a reaction product. The obtained reaction product was washed with dilute hydrochloric acid and water, heated to a temperature of 150° C., reduced pressure to 2 kPa to distill off water, toluene, and low boiling points, and cooled to room temperature to obtain 330 g of a black-brown solid (compound D) having the following structure.
Figure JPOXMLDOC01-appb-C000020
実施例4~8、比較例2~10
<硬化性樹脂組成物の調整及び硬化物の作成>
 各種成分を表1の割合で配合することでワニスを作成し、ペットフィルム上に塗布、130℃オーブンで5分乾燥させ樹脂組成物のフィルムを作成した。次に、このフィルムを粉砕することで、樹脂組成物の粉末を得た。更に、この粉末をステンレス製の鏡面板にスペーサーと伴に挟み、真空オーブンを用いて190℃90分間で成形、200℃5時間硬化させることで硬化物のサンプルを得た。その硬化物サンプルを用いてガラス転移温度や誘電性を評価した。
<難燃試験片の作成>
 各種成分を表1の割合で配合することでワニスを作成し、この樹脂ワニスをガラスクロス(日東紡績株式会社製;7628タイプ;品番H258)に含浸させた後、130℃で5分間加熱することにより乾燥し、プリプレグを得た。
 得られたプリプレグ8枚と、上下に銅箔(三井金属鉱業株式会社製、3EC-III、厚み35μm)を重ね、130℃×15分+190℃×80分の温度条件で2MPaの真空プレスを行い、1.6mm厚の積層板を得た。銅箔をエッチングし、カットすることで、難燃性試験片を得た。その難燃性試験片を用いて難燃性を評価した。
Examples 4 to 8, Comparative Examples 2 to 10
<Preparation of Curable Resin Composition and Preparation of Cured Product>
A varnish was prepared by mixing the various components in the ratios shown in Table 1, and was then applied to a PET film and dried in an oven at 130°C for 5 minutes to prepare a film of the resin composition. The film was then pulverized to obtain a powder of the resin composition. The powder was then sandwiched between a stainless steel mirror plate and a spacer, molded in a vacuum oven at 190°C for 90 minutes, and cured at 200°C for 5 hours to obtain a cured sample. The glass transition temperature and dielectric properties were evaluated using the cured sample.
<Preparation of flame retardant test specimens>
A varnish was prepared by mixing the various components in the ratios shown in Table 1. This resin varnish was impregnated into a glass cloth (manufactured by Nitto Boseki Co., Ltd.; 7628 type; product number H258), which was then dried by heating at 130° C. for 5 minutes to obtain a prepreg.
Eight sheets of the obtained prepreg were laminated with copper foil (3EC-III, thickness 35 μm, manufactured by Mitsui Mining & Smelting Co., Ltd.) on top and bottom, and vacuum pressed at 2 MPa under temperature conditions of 130°C x 15 minutes + 190°C x 80 minutes to obtain a laminated board with a thickness of 1.6 mm. The copper foil was etched and cut to obtain a flame retardant test piece. The flame retardant test piece was used to evaluate the flame retardancy.
 配合及び結果を表1に示す。表中の略称は、以下の化合物である。
ESN-475V:日鉄ケミカル&マテリアル株式会社製ナフタレン型エポキシ樹脂(エポキシ当量:325g/eq)
SN-485:日鉄ケミカル&マテリアル株式会社製ナフトール樹脂(水酸基当量210g/eq)
TPP:大八化学工業株式会社製トリフェニルホスフェート(リン含有率9.5質量%)
PX-200:大八化学工業株式会社製芳香族縮合リン酸エステル(リン含有率9.02質量%)
LC-950PM60:ShinA社製DOPO-BPA(水酸基当量570g/eq、リン含有率10.9質量%、固形分濃度60質量%)
2E4MZ:四国化成株式会社製2-エチル-4-メチルイミダゾール
The formulations and results are shown in Table 1. The abbreviations in the table represent the following compounds.
ESN-475V: Naphthalene type epoxy resin (epoxy equivalent: 325 g/eq) manufactured by Nippon Steel Chemical & Material Co., Ltd.
SN-485: Naphthol resin (hydroxyl equivalent: 210 g/eq) manufactured by Nippon Steel Chemical & Material Co., Ltd.
TPP: Triphenyl phosphate (phosphorus content 9.5% by mass) manufactured by Daihachi Chemical Industry Co., Ltd.
PX-200: Aromatic condensed phosphate ester (phosphorus content 9.02% by mass) manufactured by Daihachi Chemical Industry Co., Ltd.
LC-950PM60: DOPO-BPA manufactured by Shin A Co., Ltd. (hydroxyl equivalent: 570 g/eq, phosphorus content: 10.9% by mass, solid content: 60% by mass)
2E4MZ: 2-ethyl-4-methylimidazole manufactured by Shikoku Kasei Co., Ltd.
Figure JPOXMLDOC01-appb-T000021
 
Figure JPOXMLDOC01-appb-T000021
 
 本発明のリン含有フェノール化合物は、電気・電子製品やOA機器、通信機器、建材等に使用されるプラスチック材料、例えばエポキシ樹脂等の熱硬化性樹脂の難燃化に有用であり、特に電子機器の情報処理量増大に伴う高周波化における伝送損失低減の難燃材料として有用である。
 
INDUSTRIAL APPLICABILITY The phosphorus-containing phenol compound of the present invention is useful for imparting flame retardancy to plastic materials, for example, thermosetting resins such as epoxy resins, used in electric and electronic products, office automation equipment, communication equipment, building materials, etc., and is particularly useful as a flame-retardant material for reducing transmission loss at higher frequencies associated with increased information processing volume in electronic devices.

Claims (8)

  1.  一般式(1)で表されるリン含有フェノール化合物。
    Figure JPOXMLDOC01-appb-C000001
     一般式(1)において、Arは置換基を有しても良い炭素原子数6~30の芳香族環基であり、R1はそれぞれ独立に水素または下記一般式(2)で表される置換基であるが、少なくとも1つのR1は一般式(2)で表される置換基を含む。mは、3~6の整数である。
    Figure JPOXMLDOC01-appb-C000002
     一般式(2)において、R2およびR3は、それぞれ独立して炭素原子数1~5の直鎖または分岐鎖のアルキル基であり、n2、n3はそれぞれ独立に0~5の整数である。
    A phosphorus-containing phenol compound represented by general formula (1):
    Figure JPOXMLDOC01-appb-C000001
    In general formula (1), Ar is an aromatic ring group having 6 to 30 carbon atoms which may have a substituent, and R1 is independently hydrogen or a substituent represented by the following general formula (2), with at least one R1 containing a substituent represented by general formula (2). m is an integer of 3 to 6.
    Figure JPOXMLDOC01-appb-C000002
    In general formula (2), R2 and R3 each independently represent a linear or branched alkyl group having 1 to 5 carbon atoms, and n2 and n3 each independently represent an integer of 0 to 5.
  2.  Arがベンゼン骨格、ナフタレン骨格、ビフェニル骨格およびアントラセン骨格からなる群より選択される芳香族環基である請求項1に記載のリン含有フェノール化合物。 The phosphorus-containing phenol compound according to claim 1, wherein Ar is an aromatic ring group selected from the group consisting of a benzene skeleton, a naphthalene skeleton, a biphenyl skeleton, and an anthracene skeleton.
  3.  Arがベンゼン環である、請求項2に記載のリン含有フェノール化合物。 The phosphorus-containing phenol compound according to claim 2, wherein Ar is a benzene ring.
  4.  mが3である、請求項3に記載のリン含有フェノール化合物。 The phosphorus-containing phenolic compound according to claim 3, wherein m is 3.
  5.  一般式(1)の3つのOR1基について、R1の2つが水素であり、R1の1つが一般式(2)で表される置換基である化合物を10~80モル%、R1の1つが水素、R1の2つが一般式(2)で表される置換基である化合物を5~50モル%、R1の3つが一般式(2)で表される置換基である化合物を1~50モル%含むことを特徴とする請求項4に記載のリン含有フェノール化合物。 The phosphorus-containing phenol compound according to claim 4, characterized in that it contains 10 to 80 mol % of compounds in which two R1s are hydrogen and one R1 is a substituent represented by general formula (2), 5 to 50 mol % of compounds in which one R1 is hydrogen and two R1s are substituents represented by general formula (2), and 1 to 50 mol % of compounds in which three R1s are substituents represented by general formula (2), for three OR1 groups in general formula (1).
  6.  一般式(3)で表される化合物の水酸基1モルに対し、一般式(4)で表される化合物を0.1~0.9モル反応させることを特徴とする請求項1~5のいずれか1項に記載のリン含有フェノール化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000003
     一般式(3)において、Ar、mは一般式(1)と同義である。
    Figure JPOXMLDOC01-appb-C000004
     一般式(4)において、Xはハロゲン原子を表し、R2、R3、n2、n3は一般式(2)と同義である。
    The method for producing a phosphorus-containing phenol compound according to any one of claims 1 to 5, characterized in that 0.1 to 0.9 moles of a compound represented by general formula (4) are reacted with 1 mole of a hydroxyl group of a compound represented by general formula (3).
    Figure JPOXMLDOC01-appb-C000003
    In formula (3), Ar and m are the same as those in formula (1).
    Figure JPOXMLDOC01-appb-C000004
    In formula (4), X represents a halogen atom, and R2, R3, n2, and n3 are each defined as in formula (2).
  7.  請求項1~5のいずれか1項に記載のリン含有フェノール化合物と硬化性樹脂とを含む硬化性樹脂組成物。 A curable resin composition comprising the phosphorus-containing phenolic compound according to any one of claims 1 to 5 and a curable resin.
  8.  請求項7に記載の硬化性樹脂組成物を硬化して得られる硬化物。
     
    A cured product obtained by curing the curable resin composition according to claim 7.
PCT/JP2023/034269 2022-09-30 2023-09-21 Phosphorus-containing phenol compound, curable resin composition containing said phosphorus-containing phenol compound, cured product, and method for producing said phosphorus-containing phenol compound WO2024070886A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022158686 2022-09-30
JP2022-158686 2022-09-30

Publications (1)

Publication Number Publication Date
WO2024070886A1 true WO2024070886A1 (en) 2024-04-04

Family

ID=90477611

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/034269 WO2024070886A1 (en) 2022-09-30 2023-09-21 Phosphorus-containing phenol compound, curable resin composition containing said phosphorus-containing phenol compound, cured product, and method for producing said phosphorus-containing phenol compound

Country Status (1)

Country Link
WO (1) WO2024070886A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090073474A (en) * 2007-12-31 2009-07-03 제일모직주식회사 Novel phophoric flame retardandt, method for preparing the same and flameproof thermoplastic resin composition containing the same
KR20210037872A (en) * 2019-09-30 2021-04-07 신일화학공업(주) Polycarbonate resin composite having good transparency, flame retardancy, thermal and mechanical properties, method of manufacturing flame retarded polycarbonate sheet using the resin composition
WO2021256351A1 (en) * 2020-06-15 2021-12-23 日鉄ケミカル&マテリアル株式会社 Phosphorus-containing phenol compound, curable resin composition containing same, and cured object obtained therefrom

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090073474A (en) * 2007-12-31 2009-07-03 제일모직주식회사 Novel phophoric flame retardandt, method for preparing the same and flameproof thermoplastic resin composition containing the same
KR20210037872A (en) * 2019-09-30 2021-04-07 신일화학공업(주) Polycarbonate resin composite having good transparency, flame retardancy, thermal and mechanical properties, method of manufacturing flame retarded polycarbonate sheet using the resin composition
WO2021256351A1 (en) * 2020-06-15 2021-12-23 日鉄ケミカル&マテリアル株式会社 Phosphorus-containing phenol compound, curable resin composition containing same, and cured object obtained therefrom

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HAI VOTHI; SOEKMIN HALM; CONGTRANH NGUYEN; IMHYUCK BAE; JINHWAN KIM: "Thermal stabilities and flame retardancies of phloroglucinol‐based organo phosphates when applied to polycarbonate", FIRE AND MATERIALS, NEW YORK, NY, US, vol. 38, no. 1, 24 July 2012 (2012-07-24), US , pages 36 - 45, XP071613339, ISSN: 0308-0501, DOI: 10.1002/fam.2158 *
RAPHAËL MÉNARD: "Synthesis of biobased phosphate flame retardants", PURE & APPLIED CHEMISTRY, PERGAMON PRESS, OXFORD, GB, vol. 86, no. 11, 1 November 2014 (2014-11-01), GB , pages 1637 - 1650, XP093156691, ISSN: 0033-4545, DOI: 10.1515/pac-2014-0703 *

Similar Documents

Publication Publication Date Title
KR101915918B1 (en) Thermosetting Resin Composition and Prepreg and Laminated board Prepared therefrom
JP2024063017A (en) Phenol resin, epoxy resin, epoxy resin composition and cured product thereof
WO2001070844A1 (en) Flame-retardant epoxy resin composition, molded object thereof, and electronic part
TWI585098B (en) Cyanide-containing phosphazene compound, preparation method and use thereof
JP5323780B2 (en) Low-inductive-electricity resin varnish composition for laminated substrate and process for producing the same
TWI786271B (en) Phosphorus-containing phenoxy resin, resin composition thereof, and cured product thereof
WO2021256351A1 (en) Phosphorus-containing phenol compound, curable resin composition containing same, and cured object obtained therefrom
WO2011152412A1 (en) Epoxy resin composition and pre-preg, support-provided resin film, metallic foil clad laminate plate and multilayer printed circuit board utilizing said composition
CN103881302A (en) Resin composition, copper foil substrate using same and printed circuit board
TW202330705A (en) Polyvalent hydroxy resin, epoxy resin, method for producing the same, epoxy resin composition and cured product thereof
KR102642644B1 (en) Oxazine resin composition and cured product thereof
CN108148178B (en) Thermosetting resin composition
CN108368237B (en) Epoxy resin, method for producing epoxy resin, curable resin composition, and cured product thereof
JP5240516B2 (en) Epoxy resin composition, cured product thereof, and build-up film insulating material
EP2368930B1 (en) Novel low dielectric resin varnish composition for laminates and the preparation thereof
JP7132784B2 (en) Epoxy resin composition, prepreg, laminate and printed wiring board
WO2020124673A1 (en) Thermosetting resin composition and prepreg using same, laminate, and metal foil-clad laminate
JP2010077343A (en) Epoxy resin composition, cured product of the same, and buildup film insulating material
TW202130733A (en) Epoxy resin composition, prepreg, laminate, printed circuit board, and cured product
JP7325201B2 (en) Phosphorus-containing epoxy resin, epoxy resin composition, and cured product thereof
WO2024070886A1 (en) Phosphorus-containing phenol compound, curable resin composition containing said phosphorus-containing phenol compound, cured product, and method for producing said phosphorus-containing phenol compound
WO2024071101A1 (en) Phosphorus-containing polycyclic aromatic hydroxy compound, curable resin composition containing same, and method for producing said phosphorus-containing polycyclic aromatic hydroxy compound
JP2022137081A (en) Epoxy resin composition and cured product thereof
JP2009161716A (en) Flame retardant resin composition
JP7211744B2 (en) Epoxy resin composition and cured product thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23872112

Country of ref document: EP

Kind code of ref document: A1