WO2024070681A1 - Electric vehicle - Google Patents

Electric vehicle Download PDF

Info

Publication number
WO2024070681A1
WO2024070681A1 PCT/JP2023/033314 JP2023033314W WO2024070681A1 WO 2024070681 A1 WO2024070681 A1 WO 2024070681A1 JP 2023033314 W JP2023033314 W JP 2023033314W WO 2024070681 A1 WO2024070681 A1 WO 2024070681A1
Authority
WO
WIPO (PCT)
Prior art keywords
drive shaft
vibration
battery
electric vehicle
drive
Prior art date
Application number
PCT/JP2023/033314
Other languages
French (fr)
Japanese (ja)
Inventor
政秀 ▲徳▼田
Original Assignee
株式会社Tokuda-Ard
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Tokuda-Ard filed Critical 株式会社Tokuda-Ard
Publication of WO2024070681A1 publication Critical patent/WO2024070681A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/04Arrangement or mounting of electrical propulsion units of the electric storage means for propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/20Electric propulsion with power supplied within the vehicle using propulsion power generated by humans or animals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a battery charging device and an electric vehicle, and in particular to a battery charging device for charging the battery of an electric vehicle, and an electric vehicle equipped with such a battery charging device.
  • BEVs battery electric vehicles
  • EREVs range extender electric vehicles
  • PHEVs plug-in hybrid electric vehicles
  • HEVs hybrid electric vehicles
  • Patent Documents 1 to 3 disclose examples of this type of technology.
  • Patent Document 1 discloses a technology in which a vibration plate and a power generating plate are attached to a tire, and the vibration plate converts the tire's deflection while the tire is moving into pressure, which causes the power generating plate to generate electricity, and the electricity generated charges a battery.
  • Patent Document 2 discloses a technology in which a vibration generator attached to the vehicle body converts vibrations generated while the vehicle is moving into electricity, which then charges a battery.
  • Patent Document 3 discloses a technology in which a piezoelectric element array or electromagnetic induction vibration generator embedded in the tire converts vibrations generated while the vehicle is moving into electricity, which then charges a battery.
  • Patent Documents 1 to 3 generate electricity by using natural vibrations that occur when an electric vehicle is running. When generating electricity using natural vibrations in this way, it is difficult to stably supply power to the battery because the vibrations themselves are not stable.
  • one of the objects of the present invention is to provide a battery charging device and an electric vehicle that can stably supply power generated by vibration power generation to a battery.
  • the battery charging device is a battery charging device built into an electric vehicle having a battery, an electric motor operated by power from the battery, drive wheels, and a reducer that transmits the rotation of the electric motor to the drive wheels at a predetermined reduction ratio, and includes a drive shaft that transmits the rotation of the electric motor to the reducer, and a vibration generator arranged to be in contact with the outer circumferential surface of the drive shaft, and at least a part of the cross section of the drive shaft in a direction perpendicular to the rotation axis of the drive shaft that contacts the vibration generator is configured with a shape in which the distance from the rotation axis to the outer circumferential surface is not uniform, and the battery is charged with power generated by the vibration generator.
  • the electric vehicle includes a battery, an electric motor that runs on power from the battery, drive wheels, a reducer that transmits the rotation of the electric motor to the drive wheels at a predetermined reduction ratio, a drive shaft that transmits the rotation of the electric motor to the reducer, and a vibration generator that is arranged in contact with the outer circumferential surface of the drive shaft, and at least a portion of the cross section of the drive shaft that is in contact with the vibration generator and is perpendicular to the rotation axis of the drive shaft is configured with a shape in which the distance from the rotation axis to the outer circumferential surface is not uniform, and the battery is charged with power generated by the vibration generator.
  • the stable motion of the rotation of the drive shaft causes the vibration generator to vibrate, which in turn causes the vibration generator to generate electricity, making it possible to stably supply the electricity generated by vibration power generation to the battery.
  • FIG. 1 is a diagram showing a system configuration of an electric vehicle 1 according to a first embodiment of the present invention.
  • 1 is a diagram showing a specific configuration of a drive shaft 10a and a vibration power generator 8 according to a first embodiment of the present invention.
  • FIG. 4 is a diagram showing electrical connections of a plurality of vibration power generation semiconductors 8c included in the vibration power generator 8 according to the first embodiment of the present invention.
  • FIG. 4A to 4C are diagrams showing examples of the cross-sectional shape of a drive shaft 10a.
  • 13 is a diagram showing a specific configuration of a drive shaft 10a and a vibration power generator 8 according to a second embodiment of the present invention.
  • FIG. 7 is a diagram showing the internal configuration and electrical connections of a vibration power generator 8 according to a second embodiment of the present invention.
  • FIG. 1 is a diagram showing the system configuration of an electric vehicle 1 according to a first embodiment of the present invention.
  • the electric vehicle 1 is composed of a traction motor 2, a clutch 3, a reduction gear 4, drive wheels 5, a main battery 6, a sub-battery 7, a vibration generator 8, a power amplifier 9, drive shafts 10 and 11, and an axle 12.
  • the battery charging device according to this embodiment is composed of the vibration generator 8, the power amplifier 9, and the drive shaft 10.
  • the traction motor 2 is an electric motor (motor) that runs on power from the main battery 6, and when the accelerator pedal (not shown) is depressed (powered), it converts the electrical energy from the main battery 6 into motive energy to rotate the drive shaft 10. When the accelerator pedal is not depressed and the electric vehicle 1 is not stopped (regenerative), the traction motor 2 converts the kinetic energy transmitted from the drive wheels 5 to the drive shaft 10 into electrical energy (regenerative energy) and charges the main battery 6.
  • the clutch 3 is a device for switching between a state in which the drive shafts 10, 11 are connected to each other (connected state) and a state in which the drive shafts 10, 11 are not connected to each other (disconnected state). Under normal conditions (including when the vehicle is running and when stopped), the clutch 3 is in a connected state, and the drive shafts 10, 11 rotate as one unit. Therefore, the drive shaft 10 at this time plays the role of transmitting the rotation of the driving motor 2 to the reduction gear 4. On the other hand, in an emergency, such as when an on-board computer (not shown) detects runaway, the clutch 3 goes into a disconnected state and plays the role of separating the drive shaft 11 from the drive shaft 10.
  • the reduction gear 4 is a device that transmits the rotation of the drive shaft 11 to the axle 12 at a predetermined reduction ratio, and has the role of amplifying the torque of the driving motor 2 to ensure acceleration force when starting, as well as realizing a compact driving motor 2.
  • the reduction gear 4 may be configured so that the reduction ratio can be switched, in which case the reduction gear 4 may be referred to as a "transmission.”
  • the drive wheels 5 are wheels that rotate together with the axle 12. Although only one drive wheel 5 is shown in FIG. 1, an actual electric vehicle 1 is provided with two drive wheels 5 (in the case of front-wheel drive or rear-wheel drive) or four drive wheels 5 (in the case of four-wheel drive). In the case of front-wheel drive, the two drive wheels 5 also serve as steering wheels, and two other wheels are provided in addition to the drive wheels 5. In the case of rear-wheel drive, two steering wheels are provided in addition to the two drive wheels 5.
  • the main battery 6 is a battery that stores electric power energy for driving the driving motor 2, and is composed of, for example, a lithium-ion battery or a nickel-metal hydride battery.
  • the sub-battery 7 is a battery that stores electric power energy for driving the audio system, SRS airbag system, headlights, wipers, security circuit, etc. (not shown), and is composed of, for example, a lead-acid battery or a lithium-ion battery.
  • the electric power energy stored in the sub-battery 7 is also used to protect a memory (not shown) and to supply standby power during standby.
  • the main battery 6 is charged by electric power energy supplied from an external charger (including those connected to a normal household outlet and dedicated high-speed chargers), regenerative energy supplied from the driving motor 2, and electric power supplied from a power amplifier 9 (described later).
  • the sub-battery 7 is charged by electric power energy supplied from the main battery 6.
  • the vibration generator 8 is a device that converts vibration energy into electric energy, and is arranged so as to be in contact with the outer circumferential surface of the drive shaft 10.
  • the part of the drive shaft 10 that is in contact with the vibration generator 8 may be referred to as the "drive shaft 10a" to distinguish it from other parts.
  • the vibration generator 8 is suspended from the ceiling and arranged in a swingable state.
  • at least a part of the cross section of the drive shaft 10a in a direction perpendicular to the rotation axis of the drive shaft 10 (hereinafter simply referred to as the "cross section") is configured in a shape in which the distance from the rotation axis to the outer circumferential surface is not uniform.
  • the vibration generator 8 and the drive shaft 10a By configuring the vibration generator 8 and the drive shaft 10a in this way, when the drive shaft 10 rotates, the vibration generator 8 swings, and as a result, power is generated by the vibration generator 8.
  • the electric energy generated by the vibration generator 8 is amplified by the power amplifier 9 and supplied to the main battery 6.
  • FIG. 2 is a diagram showing the specific configuration of the drive shaft 10a and vibration generator 8 according to this embodiment. As shown in the figure, the electric vehicle 1 according to this embodiment is configured with a total of two vibration generators 8, one on each side of the drive shaft 10a in the horizontal direction.
  • each of the two vibration power generators 8 is configured to have a protrusion 8a that protrudes toward the drive shaft 10a, a base portion 8b that is a plate-shaped planar member, and multiple vibration power generation semiconductors 8c attached to the surface of the base portion 8b.
  • the protrusion 8a is the portion that comes into contact with the drive shaft 10a.
  • the contact surface of the protrusion 8a with the drive shaft 10a is configured as a smooth convex curved surface so as not to interfere with the rotation of the drive shaft 10a.
  • the upper end of the base portion 8b is suspended from the ceiling 20 by a string 30, which allows the vibration power generator 8 to swing horizontally.
  • FIG. 3 is a diagram showing the electrical connections of multiple vibration power generation semiconductors 8c included in the vibration power generator 8. As shown in the figure, the multiple vibration power generation semiconductors 8c included in the vibration power generator 8 are connected in series between the positive input terminal and the negative input terminal of the power amplifier 9.
  • the drive shaft 10a in this embodiment is formed so that its cross section forms a rounded triangle (rice ball shape) with its center of gravity at the intersection with the rotation axis C.
  • the outer surface of the drive shaft 10a is formed of a smooth convex curved surface, similar to the surface of the protrusion 8a.
  • a wall surface 21 is provided at a predetermined distance J on the opposite side of each vibration generator 8 from the drive shaft 10a.
  • J is the amplitude of the vibration generator 8 when it oscillates while maintaining contact with the drive shaft 10a.
  • the wall surface 21 may be formed using a partition wall in the engine room, or a dedicated plate-shaped member fixed to the vehicle body.
  • the vibration generator 8 may move away from the drive shaft 10a due to inertia, which would prevent stable oscillation and make the amount of power generated by each vibration power generation semiconductor 8c unstable.
  • the battery charging device vibrates the vibration generator 8 by the stable movement of the rotation of the drive shaft 10, which causes the vibration generator 8 to generate electricity, making it possible to stably supply the electricity generated by vibration power generation to the main battery 6.
  • the cross-sectional shape of the drive shaft 10a is an example of a rounded triangle (rice ball shape) with the intersection with the rotation axis C as the center of gravity, but this shape is not essential, and the cross-sectional shape of the drive shaft 10a may be any shape in which the distance from the rotation axis C to the outer periphery is not uniform.
  • Figures 4(a) to (c) are diagrams showing examples of the cross-sectional shape of the drive shaft 10a.
  • Figure 4(a) shows an example in which the cross-sectional shape is a rounded triangle (rice ball shape) with the intersection with the rotation axis C as the center of gravity.
  • Figure 4(b) shows an example in which the cross-sectional shape is a rounded rectangle with the intersection with the rotation axis C as the center of gravity.
  • Figure 4(c) shows an example in which the cross-sectional shape is a perfect circle with the center of gravity at a position different from the intersection with the rotation axis C.
  • the cross-sectional shape of the drive shaft 10a can be a variety of shapes, including a perfect circle.
  • FIG. 5 is a diagram showing the specific configuration of the drive shaft 10a and vibration generator 8 according to the second embodiment of the present invention.
  • FIG. 6 is a diagram showing the internal configuration and electrical connections of the vibration generator 8 according to this embodiment.
  • the battery charging device according to this embodiment differs from the battery charging device according to the first embodiment in terms of the internal configuration of the vibration generator 8, but is otherwise similar to the battery charging device according to the first embodiment. Therefore, the following explanation will focus on the differences from the battery charging device according to the first embodiment.
  • the vibration generator 8 is configured to have a protruding portion 8a that protrudes toward the drive shaft 10a, a housing 8d, a plurality of gel-like members 8e, and a plurality of vibration piezoelectric elements 8f.
  • the specific configuration of the protruding portion 8a is as described in the first embodiment.
  • the plurality of gel-like members 8e and the plurality of vibration piezoelectric elements 8f are arranged side by side within the housing 8d.
  • the gel-like members 8e and the vibration piezoelectric elements 8f in the housing 8d will be specifically described with reference to FIG. 6.
  • the gel-like members 8e are stacked in the following order: 6 gel-like members 8e, 12 vibration piezoelectric elements 8f, 6 gel-like members 8e, 12 vibration piezoelectric elements 8f, 6 gel-like members 8e, 12 vibration piezoelectric elements 8f, and 6 gel-like members 8e.
  • the number of gel-like members 8e and vibration piezoelectric elements 8f in each layer is not limited to 6 and 12, respectively.
  • the gel-like members 8e and vibration piezoelectric elements 8f in each layer are arranged in a row along the horizontal direction of the drawing, but they may also be arranged in a matrix including the depth direction of the drawing.
  • Each vibration piezoelectric element 8f is arranged so that it generates electricity when pressure is applied in the vertical direction, and each vibration piezoelectric element 8f is fixed (bonded) to the adjacent gel-like material 8e with adhesive 8g. Electrically, each vibration power generation semiconductor 8c is connected in series between the positive input terminal and the negative input terminal of the power amplifier 9.
  • each gel-like member 8e vibrates, and the resulting pressure generates electricity in each vibration piezoelectric element 8f.
  • the resulting current is then supplied to the main battery 6 via the power amplifier 9, thereby charging the main battery 6.
  • the battery charging device can also vibrate the vibration generator 8 by the stable movement of the rotation of the drive shaft 10, thereby causing the vibration generator 8 to generate electricity, so that the electricity generated by vibration power generation can be steadily supplied to the main battery 6.
  • vibration power generation is performed using the vibration power generation semiconductor 8c
  • vibration power generation is performed using the vibration piezoelectric element 8f
  • vibration power generation may be performed using other vibration power generation materials.
  • a highly efficient vibration power generation material may be selected and used from all vibration power generation materials that have already been patented or are already commercially available.
  • the electric vehicle 1 may be provided with a handle for manually rotating the drive shaft 10.
  • the main battery 6 can be charged from the vibration generator 8 even when the electric vehicle 1 is stopped, so that in an emergency such as a long traffic jam caused by heavy snow, it is possible to buy as much time as possible before the battery runs out and protect the lives of the occupants.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

The present invention enables a steady supply of power generated through vibratory power generation to a battery. An electric vehicle (1) according to the present invention comprises: a battery (6); first and second drive shafts (10, 11); an electric motor (2) that rotates the first drive shaft (10) through power from the battery; a clutch (3) that switches between a state in which the first and second drive shafts are connected to each other and a state in which the first and second drive shafts are not connected to each other; driving wheels (5); a reduction gear (4) that transmits rotation of the second drive shaft (11) to the driving wheels at a prescribed reduction ratio; and a vibration power generator (8) that is arranged so as to contact an outer circumferential surface of the first drive shaft. A cross section of at least a part of a portion of the first drive shaft in contact with the vibration power generator, the cross section being in the direction orthogonal to the rotation axis of the first drive shaft, is configured by a shape in which the distance from the rotation axis to the outer circumferential surface in not uniform. The battery is charged by power generated by the vibration power generator.

Description

電気自動車Electric car
 本発明はバッテリー充電装置及び電気自動車に関し、特に、電気自動車のバッテリーを充電するためのバッテリー充電装置、及び、そのようなバッテリー充電装置を備える電気自動車に関する。 The present invention relates to a battery charging device and an electric vehicle, and in particular to a battery charging device for charging the battery of an electric vehicle, and an electric vehicle equipped with such a battery charging device.
 近年、BEV(バッテリー式電気自動車)、EREV(レンジエクステンダー電気自動車)、PHEV(プラグインハイブリッド式電気自動車)、HEV(ハイブリッド式電気自動車)など、バッテリーに蓄積される電力を用いて電動機を駆動することにより走行する機能を有する自動車の普及が進展している。本明細書では、この種の自動車をまとめて「電気自動車」と称する。 In recent years, automobiles that run by driving an electric motor using electricity stored in a battery, such as BEVs (battery electric vehicles), EREVs (range extender electric vehicles), PHEVs (plug-in hybrid electric vehicles), and HEVs (hybrid electric vehicles), have become increasingly popular. In this specification, these types of automobiles are collectively referred to as "electric vehicles."
 電気自動車においては、バッテリーが消耗すると電力による走行ができなくなってしまう。そこで、近年の電気自動車には、外部電源や電動機からの回生電力によってバッテリーを充電する機能が設けられる。また、最近では、車体の振動を電力に代えてバッテリーを充電しようとする技術も提案されている。 In an electric vehicle, when the battery is depleted, it can no longer run on electric power. For this reason, electric vehicles in recent years have been equipped with a function to charge the battery using regenerative power from an external power source or the electric motor. Recently, technology has also been proposed that attempts to charge the battery by converting the vibrations of the vehicle body into electricity.
 特許文献1~3には、この種の技術の例が開示されている。特許文献1は、タイヤに振動板及び発電板を取り付け、振動板により走行中のタイヤのたわみを圧力に変え、この圧力により発電板が発電し、発電によって得られた電力によりバッテリーを充電する技術を開示している。特許文献2は、車体に取り付けた振動発電機により走行中の振動を電力に変換し、バッテリーを充電する技術を開示している。特許文献3は、タイヤに埋め込んだ圧電素子アレイ又は電磁誘導式振動発電機により走行中の振動を電力に変換し、バッテリーを充電する技術を開示している。 Patent Documents 1 to 3 disclose examples of this type of technology. Patent Document 1 discloses a technology in which a vibration plate and a power generating plate are attached to a tire, and the vibration plate converts the tire's deflection while the tire is moving into pressure, which causes the power generating plate to generate electricity, and the electricity generated charges a battery. Patent Document 2 discloses a technology in which a vibration generator attached to the vehicle body converts vibrations generated while the vehicle is moving into electricity, which then charges a battery. Patent Document 3 discloses a technology in which a piezoelectric element array or electromagnetic induction vibration generator embedded in the tire converts vibrations generated while the vehicle is moving into electricity, which then charges a battery.
特開2011-062066号公報JP 2011-062066 A 特開2019-103227号公報JP 2019-103227 A 特開2022-093421号公報JP 2022-093421 A
 上記特許文献1~3の技術はいずれも、電気自動車の走行に伴って発生する自然な振動を利用して発電するものである。このように自然な振動を利用して発電を行う場合、振動自体が安定していないことから、バッテリーに対して電力を安定供給することは困難である。 All of the technologies in Patent Documents 1 to 3 generate electricity by using natural vibrations that occur when an electric vehicle is running. When generating electricity using natural vibrations in this way, it is difficult to stably supply power to the battery because the vibrations themselves are not stable.
 したがって、本発明の目的の一つは、振動発電により生成した電力をバッテリーに対して安定供給することのできるバッテリー充電装置及び電気自動車を提供することにある。 Therefore, one of the objects of the present invention is to provide a battery charging device and an electric vehicle that can stably supply power generated by vibration power generation to a battery.
 本発明によるバッテリー充電装置は、バッテリーと、前記バッテリーからの電力により動作する電動機と、駆動輪と、前記電動機の回転を所定の減速比で前記駆動輪に伝達する減速機と、を有する電気自動車に内蔵されるバッテリー充電装置であって、前記電動機の回転を前記減速機に伝達する駆動軸と、前記駆動軸の外周面に接するように配置される振動発電機と、を含み、前記駆動軸のうち前記振動発電機に接する部分のうちの少なくとも一部の前記駆動軸の回転軸と直交する方向の断面は、前記回転軸から外周面までの距離が均一でない形状により構成され、前記振動発電機により生成された電力により前記バッテリーを充電する、バッテリー充電装置である。 The battery charging device according to the present invention is a battery charging device built into an electric vehicle having a battery, an electric motor operated by power from the battery, drive wheels, and a reducer that transmits the rotation of the electric motor to the drive wheels at a predetermined reduction ratio, and includes a drive shaft that transmits the rotation of the electric motor to the reducer, and a vibration generator arranged to be in contact with the outer circumferential surface of the drive shaft, and at least a part of the cross section of the drive shaft in a direction perpendicular to the rotation axis of the drive shaft that contacts the vibration generator is configured with a shape in which the distance from the rotation axis to the outer circumferential surface is not uniform, and the battery is charged with power generated by the vibration generator.
 本発明による電気自動車は、バッテリーと、前記バッテリーからの電力により動作する電動機と、駆動輪と、前記電動機の回転を所定の減速比で前記駆動輪に伝達する減速機と、前記電動機の回転を前記減速機に伝達する駆動軸と、前記駆動軸の外周面に接するように配置される振動発電機と、を含み、前記駆動軸のうち前記振動発電機に接する部分のうちの少なくとも一部の前記駆動軸の回転軸と直交する方向の断面は、前記回転軸から外周面までの距離が均一でない形状により構成され、前記振動発電機により生成された電力により前記バッテリーを充電する、電気自動車である。 The electric vehicle according to the present invention includes a battery, an electric motor that runs on power from the battery, drive wheels, a reducer that transmits the rotation of the electric motor to the drive wheels at a predetermined reduction ratio, a drive shaft that transmits the rotation of the electric motor to the reducer, and a vibration generator that is arranged in contact with the outer circumferential surface of the drive shaft, and at least a portion of the cross section of the drive shaft that is in contact with the vibration generator and is perpendicular to the rotation axis of the drive shaft is configured with a shape in which the distance from the rotation axis to the outer circumferential surface is not uniform, and the battery is charged with power generated by the vibration generator.
 本発明によれば、駆動軸の回転という安定した動きにより振動発電機を振動させ、それによって振動発電機に発電させることができるので、振動発電により生成した電力をバッテリーに対して安定供給することが可能になる。 According to the present invention, the stable motion of the rotation of the drive shaft causes the vibration generator to vibrate, which in turn causes the vibration generator to generate electricity, making it possible to stably supply the electricity generated by vibration power generation to the battery.
本発明の第1の実施の形態による電気自動車1のシステム構成を示す図である。1 is a diagram showing a system configuration of an electric vehicle 1 according to a first embodiment of the present invention. 本発明の第1の実施の形態による駆動軸10a及び振動発電機8の具体的な構成を示す図である。1 is a diagram showing a specific configuration of a drive shaft 10a and a vibration power generator 8 according to a first embodiment of the present invention. FIG. 本発明の第1の実施の形態による振動発電機8に含まれる複数の振動発電半導体8cの電気的な接続を示す図である。4 is a diagram showing electrical connections of a plurality of vibration power generation semiconductors 8c included in the vibration power generator 8 according to the first embodiment of the present invention. FIG. 駆動軸10aの断面形状の例を示す図である。4A to 4C are diagrams showing examples of the cross-sectional shape of a drive shaft 10a. 本発明の第2の実施の形態による駆動軸10a及び振動発電機8の具体的な構成を示す図である。13 is a diagram showing a specific configuration of a drive shaft 10a and a vibration power generator 8 according to a second embodiment of the present invention. FIG. 本発明の第2の実施の形態による振動発電機8の内部構成及び電気的な接続を示す図である。7 is a diagram showing the internal configuration and electrical connections of a vibration power generator 8 according to a second embodiment of the present invention. FIG.
 以下、添付図面を参照しながら、本発明の実施の形態について詳細に説明する。 Below, an embodiment of the present invention will be described in detail with reference to the attached drawings.
 図1は、本発明の第1の実施の形態による電気自動車1のシステム構成を示す図である。同図に示すように、電気自動車1は、走行用電動機2、クラッチ3、減速機4、駆動輪5、主バッテリー6、サブバッテリー7,振動発電機8、電力増幅器9、駆動軸10,11、車軸12を含んで構成される。本実施の形態によるバッテリー充電装置は、このうち振動発電機8、電力増幅器9、及び駆動軸10を含んで構成される。 FIG. 1 is a diagram showing the system configuration of an electric vehicle 1 according to a first embodiment of the present invention. As shown in the figure, the electric vehicle 1 is composed of a traction motor 2, a clutch 3, a reduction gear 4, drive wheels 5, a main battery 6, a sub-battery 7, a vibration generator 8, a power amplifier 9, drive shafts 10 and 11, and an axle 12. Of these, the battery charging device according to this embodiment is composed of the vibration generator 8, the power amplifier 9, and the drive shaft 10.
 走行用電動機2は、主バッテリー6からのバッテリーからの電力により動作する電動機(モーター)であり、図示しないアクセルペダルが踏まれているとき(力行時)、主バッテリー6からの電力エネルギーを動力エネルギーに変え、駆動軸10を回転させる役割を果たす。アクセルペダルが踏まれておらず、かつ、電気自動車1が停止していないとき(回生時)の走行用電動機2は、駆動輪5から駆動軸10に伝達される運動エネルギーを電力エネルギー(回生エネルギー)に変え、主バッテリー6を充電する役割を果たす。 The traction motor 2 is an electric motor (motor) that runs on power from the main battery 6, and when the accelerator pedal (not shown) is depressed (powered), it converts the electrical energy from the main battery 6 into motive energy to rotate the drive shaft 10. When the accelerator pedal is not depressed and the electric vehicle 1 is not stopped (regenerative), the traction motor 2 converts the kinetic energy transmitted from the drive wheels 5 to the drive shaft 10 into electrical energy (regenerative energy) and charges the main battery 6.
 クラッチ3は、駆動軸10,11が互いに接続されている状態(接続状態)と、駆動軸10,11が互いに接続されていない状態(切断状態)とを切り替えるための装置である。通常の状態(走行中、停止中を含む)においては、クラッチ3は接続状態となっており、駆動軸10,11は一体となって回転する。したがって、このときの駆動軸10は、走行用電動機2の回転を減速機4に伝達する役割を果たす。一方、図示しない車載コンピュータが暴走を検知したときなどの非常時には、クラッチ3は切断状態となり、駆動軸10から駆動軸11を切り離す役割を果たす。 The clutch 3 is a device for switching between a state in which the drive shafts 10, 11 are connected to each other (connected state) and a state in which the drive shafts 10, 11 are not connected to each other (disconnected state). Under normal conditions (including when the vehicle is running and when stopped), the clutch 3 is in a connected state, and the drive shafts 10, 11 rotate as one unit. Therefore, the drive shaft 10 at this time plays the role of transmitting the rotation of the driving motor 2 to the reduction gear 4. On the other hand, in an emergency, such as when an on-board computer (not shown) detects runaway, the clutch 3 goes into a disconnected state and plays the role of separating the drive shaft 11 from the drive shaft 10.
 減速機4は、駆動軸11の回転を所定の減速比で車軸12に伝達する装置であり、走行用電動機2のトルクを増幅して発進時の加速力を確保するとともに、走行用電動機2の小型化を実現する役割を有している。なお、減速比を切り替えることができるように減速機4を構成することとしてもよく、その場合の減速機4は「変速機」と称されることがある。 The reduction gear 4 is a device that transmits the rotation of the drive shaft 11 to the axle 12 at a predetermined reduction ratio, and has the role of amplifying the torque of the driving motor 2 to ensure acceleration force when starting, as well as realizing a compact driving motor 2. The reduction gear 4 may be configured so that the reduction ratio can be switched, in which case the reduction gear 4 may be referred to as a "transmission."
 駆動輪5は、車軸12とともに回転する車輪である。図1には1つの駆動輪5のみを示しているが、実際の電気自動車1には、2つの駆動輪5(前輪駆動又は後輪駆動の場合)、又は、4つの駆動輪5(4輪駆動の場合)が設けられる。前輪駆動の場合、2つの駆動輪5が操舵輪を兼ねており、駆動輪5の他に2つの車輪が設けられる。後輪駆動の場合、2つの駆動輪5とは別に2つの操舵輪が設けられる。 The drive wheels 5 are wheels that rotate together with the axle 12. Although only one drive wheel 5 is shown in FIG. 1, an actual electric vehicle 1 is provided with two drive wheels 5 (in the case of front-wheel drive or rear-wheel drive) or four drive wheels 5 (in the case of four-wheel drive). In the case of front-wheel drive, the two drive wheels 5 also serve as steering wheels, and two other wheels are provided in addition to the drive wheels 5. In the case of rear-wheel drive, two steering wheels are provided in addition to the two drive wheels 5.
 主バッテリー6は、走行用電動機2を駆動するための電力エネルギーを蓄積する電池であり、例えばリチウムイオン電池又はニッケル水素電池によって構成される。サブバッテリー7は、図示しないオーディオシステム、SRSエアバッグシステム、ヘッドライト、ワイパー、セキュリティ回路などを駆動するための電力エネルギーを蓄積する電池であり、例えば鉛蓄電池又はリチウムイオン電池によって構成される。サブバッテリー7に蓄積される電力エネルギーは、図示しないメモリの保護及びスタンバイ時の待機電力供給のためにも利用される。主バッテリー6の充電は、外部の充電器(家庭用通常コンセントに接続されるもの、及び、専用高速充電器を含む)から供給される電力エネルギー、走行用電動機2から供給される回生エネルギー、及び、後述する電力増幅器9から供給される電力エネルギーによって実行される。サブバッテリー7の充電は、主バッテリー6から供給される電力エネルギーによって実行される。 The main battery 6 is a battery that stores electric power energy for driving the driving motor 2, and is composed of, for example, a lithium-ion battery or a nickel-metal hydride battery. The sub-battery 7 is a battery that stores electric power energy for driving the audio system, SRS airbag system, headlights, wipers, security circuit, etc. (not shown), and is composed of, for example, a lead-acid battery or a lithium-ion battery. The electric power energy stored in the sub-battery 7 is also used to protect a memory (not shown) and to supply standby power during standby. The main battery 6 is charged by electric power energy supplied from an external charger (including those connected to a normal household outlet and dedicated high-speed chargers), regenerative energy supplied from the driving motor 2, and electric power supplied from a power amplifier 9 (described later). The sub-battery 7 is charged by electric power energy supplied from the main battery 6.
 振動発電機8は、振動エネルギーを電力エネルギーに変換する装置であり、駆動軸10の外周面に接するように配置される。以下では、駆動軸10のうち振動発電機8に接する部分を「駆動軸10a」と称して、他の部分と区別する場合がある。詳しくは後述するが、振動発電機8は天井から吊り下げられ、揺動可能な状態で配置される。また、駆動軸10aの少なくとも一部の駆動軸10の回転軸と直交する方向の断面(以下、単に「断面」と称する)は、該回転軸から外周面までの距離が均一でない形状により構成される。このように振動発電機8及び駆動軸10aを構成したことにより、駆動軸10が回転すると振動発電機8が揺動し、その結果として、振動発電機8による発電が行われる。振動発電機8によって生成された電力エネルギーは電力増幅器9によって増幅され、主バッテリー6に供給される。 The vibration generator 8 is a device that converts vibration energy into electric energy, and is arranged so as to be in contact with the outer circumferential surface of the drive shaft 10. In the following, the part of the drive shaft 10 that is in contact with the vibration generator 8 may be referred to as the "drive shaft 10a" to distinguish it from other parts. As will be described in detail later, the vibration generator 8 is suspended from the ceiling and arranged in a swingable state. In addition, at least a part of the cross section of the drive shaft 10a in a direction perpendicular to the rotation axis of the drive shaft 10 (hereinafter simply referred to as the "cross section") is configured in a shape in which the distance from the rotation axis to the outer circumferential surface is not uniform. By configuring the vibration generator 8 and the drive shaft 10a in this way, when the drive shaft 10 rotates, the vibration generator 8 swings, and as a result, power is generated by the vibration generator 8. The electric energy generated by the vibration generator 8 is amplified by the power amplifier 9 and supplied to the main battery 6.
 図2は、本実施の形態による駆動軸10a及び振動発電機8の具体的な構成を示す図である。同図に示すように、本実施の形態による電気自動車1は、駆動軸10aの水平方向両側に各1つずつ、計2つの振動発電機8を有して構成される。 FIG. 2 is a diagram showing the specific configuration of the drive shaft 10a and vibration generator 8 according to this embodiment. As shown in the figure, the electric vehicle 1 according to this embodiment is configured with a total of two vibration generators 8, one on each side of the drive shaft 10a in the horizontal direction.
 図2に示すように、2つの振動発電機8はそれぞれ、駆動軸10aに向かって突出する突出部8aと、板状の平面部材であるベース部8bと、ベース部8bの表面に貼付された複数の振動発電半導体8cとを有して構成される。突出部8aは駆動軸10aと接触する部分である。突出部8aの駆動軸10aとの接触面は、駆動軸10aの回転を妨げることのないよう、滑らかな凸曲面により構成される。ベース部8bの上端は紐30によって天井20から吊持されており、これにより振動発電機8は、水平方向に揺動可能に構成される。 As shown in FIG. 2, each of the two vibration power generators 8 is configured to have a protrusion 8a that protrudes toward the drive shaft 10a, a base portion 8b that is a plate-shaped planar member, and multiple vibration power generation semiconductors 8c attached to the surface of the base portion 8b. The protrusion 8a is the portion that comes into contact with the drive shaft 10a. The contact surface of the protrusion 8a with the drive shaft 10a is configured as a smooth convex curved surface so as not to interfere with the rotation of the drive shaft 10a. The upper end of the base portion 8b is suspended from the ceiling 20 by a string 30, which allows the vibration power generator 8 to swing horizontally.
 図3は、振動発電機8に含まれる複数の振動発電半導体8cの電気的な接続を示す図である。同図に示すように、振動発電機8に含まれる複数の振動発電半導体8cは、電力増幅器9のプラス側入力端子とマイナス側入力端子との間に直列に接続される。 FIG. 3 is a diagram showing the electrical connections of multiple vibration power generation semiconductors 8c included in the vibration power generator 8. As shown in the figure, the multiple vibration power generation semiconductors 8c included in the vibration power generator 8 are connected in series between the positive input terminal and the negative input terminal of the power amplifier 9.
 図2に戻り、本実施の形態による駆動軸10aは、断面が回転軸Cとの交点を重心とする角丸三角形(おにぎり形)となるように形成される。また、駆動軸10aの外表面は、突出部8aの表面と同様、滑らかな凸曲面により構成される。駆動軸10aをこのように構成したことで、駆動軸10aの回転(力行時、回生時を含む)に伴い、振動発電機8が水平方向に揺動することになる。振動発電機8が揺動するとその中の各振動発電半導体8cによって発電が行われ、発電により生じた電流が電力増幅器9に入力される。電力増幅器9は、こうして入力された電流により主バッテリー6の充電を行う。 Returning to FIG. 2, the drive shaft 10a in this embodiment is formed so that its cross section forms a rounded triangle (rice ball shape) with its center of gravity at the intersection with the rotation axis C. The outer surface of the drive shaft 10a is formed of a smooth convex curved surface, similar to the surface of the protrusion 8a. By configuring the drive shaft 10a in this way, the vibration generator 8 swings horizontally as the drive shaft 10a rotates (including during power running and regeneration). When the vibration generator 8 swings, electricity is generated by each of the vibration power generation semiconductors 8c therein, and the current generated by the power generation is input to the power amplifier 9. The power amplifier 9 charges the main battery 6 with the current thus input.
 各振動発電機8の駆動軸10aと反対側には、所定距離Jを空けて壁面21が設けられる。ただし、Jは、駆動軸10aに接した状態を維持しながら揺動する場合における振動発電機8の振り幅である。具体的な壁面21の構成材料は特に限定されず、エンジンルームの隔壁を用いて壁面21を構成してもよいし、車体に固定された専用の板状部材を用いて壁面21を構成してもよい。振動発電機8は、慣性により駆動軸10aから離れてしまうことがあり得るが、そうすると安定した揺動が得られなくなり、各振動発電半導体8cの発電量も不安定になる。壁面21を設けることで、振動発電機8が駆動軸10aから離れてしまうことを防止し、各振動発電半導体8cの発電量を安定させることが可能になる。 A wall surface 21 is provided at a predetermined distance J on the opposite side of each vibration generator 8 from the drive shaft 10a. Here, J is the amplitude of the vibration generator 8 when it oscillates while maintaining contact with the drive shaft 10a. There are no particular limitations on the specific material that constitutes the wall surface 21, and the wall surface 21 may be formed using a partition wall in the engine room, or a dedicated plate-shaped member fixed to the vehicle body. The vibration generator 8 may move away from the drive shaft 10a due to inertia, which would prevent stable oscillation and make the amount of power generated by each vibration power generation semiconductor 8c unstable. By providing the wall surface 21, it is possible to prevent the vibration generator 8 from moving away from the drive shaft 10a, and stabilize the amount of power generated by each vibration power generation semiconductor 8c.
 以上説明したように、本実施の形態によるバッテリー充電装置によれば、駆動軸10の回転という安定した動きにより振動発電機8を振動させ、それによって振動発電機8に発電させることができるので、振動発電により生成した電力を主バッテリー6に対して安定供給することが可能になる。 As described above, the battery charging device according to this embodiment vibrates the vibration generator 8 by the stable movement of the rotation of the drive shaft 10, which causes the vibration generator 8 to generate electricity, making it possible to stably supply the electricity generated by vibration power generation to the main battery 6.
 なお、本実施の形態では、駆動軸10aの断面形状を、回転軸Cとの交点を重心とする角丸三角形(おにぎり形)とする例を説明したが、この形状とすることが必須というわけではなく、駆動軸10aの断面形状は、回転軸Cから外周面までの距離が均一でない形状であればよい。 In this embodiment, the cross-sectional shape of the drive shaft 10a is an example of a rounded triangle (rice ball shape) with the intersection with the rotation axis C as the center of gravity, but this shape is not essential, and the cross-sectional shape of the drive shaft 10a may be any shape in which the distance from the rotation axis C to the outer periphery is not uniform.
 図4(a)~(c)は、駆動軸10aの断面形状の例を示す図である。図4(a)は、図2にも示したように、回転軸Cとの交点を重心とする角丸三角形(おにぎり形)とする例を示している。図4(b)は、回転軸Cとの交点を重心とする角丸四角形とする例を示している。図4(c)は、回転軸Cとの交点とは異なる位置を重心とする真円形とする例を示している。これらの例に示すように、駆動軸10aの断面形状は、真円形を含む各種の形状であり得る。 Figures 4(a) to (c) are diagrams showing examples of the cross-sectional shape of the drive shaft 10a. As also shown in Figure 2, Figure 4(a) shows an example in which the cross-sectional shape is a rounded triangle (rice ball shape) with the intersection with the rotation axis C as the center of gravity. Figure 4(b) shows an example in which the cross-sectional shape is a rounded rectangle with the intersection with the rotation axis C as the center of gravity. Figure 4(c) shows an example in which the cross-sectional shape is a perfect circle with the center of gravity at a position different from the intersection with the rotation axis C. As shown in these examples, the cross-sectional shape of the drive shaft 10a can be a variety of shapes, including a perfect circle.
 図5は、本発明の第2の実施の形態による駆動軸10a及び振動発電機8の具体的な構成を示す図である。また、図6は、本実施の形態による振動発電機8の内部構成及び電気的な接続を示す図である。本実施の形態によるバッテリー充電装置は、振動発電機8の内部構成の点で第1の実施の形態によるバッテリー充電装置と異なり、その他の点では、第1の実施の形態によるバッテリー充電装置と同様である。そこで以下では、第1の実施の形態によるバッテリー充電装置との相違点に着目して説明を行う。 FIG. 5 is a diagram showing the specific configuration of the drive shaft 10a and vibration generator 8 according to the second embodiment of the present invention. Also, FIG. 6 is a diagram showing the internal configuration and electrical connections of the vibration generator 8 according to this embodiment. The battery charging device according to this embodiment differs from the battery charging device according to the first embodiment in terms of the internal configuration of the vibration generator 8, but is otherwise similar to the battery charging device according to the first embodiment. Therefore, the following explanation will focus on the differences from the battery charging device according to the first embodiment.
 図5に示すように、本実施の形態による振動発電機8は、駆動軸10aに向かって突出する突出部8aと、筐体8dと、複数のゲル状部材8eと、複数の振動圧電素子8fとを有して構成される。突出部8aの具体的な構成は、第1の実施の形態で説明したとおりである。複数のゲル状部材8e及び複数の振動圧電素子8fは、筐体8dの中に並べて配置される。 As shown in FIG. 5, the vibration generator 8 according to this embodiment is configured to have a protruding portion 8a that protrudes toward the drive shaft 10a, a housing 8d, a plurality of gel-like members 8e, and a plurality of vibration piezoelectric elements 8f. The specific configuration of the protruding portion 8a is as described in the first embodiment. The plurality of gel-like members 8e and the plurality of vibration piezoelectric elements 8f are arranged side by side within the housing 8d.
 筐体8d内におけるゲル状部材8e及び振動圧電素子8fの配置について、図6を参照しながら具体的に説明すると、筐体8dの底部側から順に、6個のゲル状部材8e、12個の振動圧電素子8f、6個のゲル状部材8e、12個の振動圧電素子8f、6個のゲル状部材8e、12個の振動圧電素子8f、6個のゲル状部材8eの順で積層配置される。なお、各層におけるゲル状部材8e及び振動圧電素子8fの数は、それぞれ6個及び12個に限定されるものではない。また、図6では、各層内のゲル状部材8e及び振動圧電素子8fを図面横方向に沿って一列に並べているが、図面奥行き方向も含めてマトリクス状に並べることとしてもよい。 The arrangement of the gel-like members 8e and the vibration piezoelectric elements 8f in the housing 8d will be specifically described with reference to FIG. 6. Starting from the bottom side of the housing 8d, the gel-like members 8e are stacked in the following order: 6 gel- like members 8e, 12 vibration piezoelectric elements 8f, 6 gel- like members 8e, 12 vibration piezoelectric elements 8f, 6 gel- like members 8e, 12 vibration piezoelectric elements 8f, and 6 gel-like members 8e. Note that the number of gel-like members 8e and vibration piezoelectric elements 8f in each layer is not limited to 6 and 12, respectively. Also, in FIG. 6, the gel-like members 8e and vibration piezoelectric elements 8f in each layer are arranged in a row along the horizontal direction of the drawing, but they may also be arranged in a matrix including the depth direction of the drawing.
 各振動圧電素子8fは、垂直方向に圧力が加わった場合に発電する向きで配置され、各振動圧電素子8fと隣接するゲル状部材8eの間は接着剤8gにより固定(接着)される。電気的には、各振動発電半導体8cは、電力増幅器9のプラス側入力端子とマイナス側入力端子との間に直列に接続される Each vibration piezoelectric element 8f is arranged so that it generates electricity when pressure is applied in the vertical direction, and each vibration piezoelectric element 8f is fixed (bonded) to the adjacent gel-like material 8e with adhesive 8g. Electrically, each vibration power generation semiconductor 8c is connected in series between the positive input terminal and the negative input terminal of the power amplifier 9.
 振動発電機8を以上のように構成したことで、駆動軸10aの回転に伴って振動発電機8が揺動すると、各ゲル状部材8eが振動し、それによって生ずる圧力により、各振動圧電素子8fによる発電が行われる。そして、その結果として発生する電流が電力増幅器9を介して主バッテリー6に供給されることにより、主バッテリー6が充電されることになる。 By configuring the vibration generator 8 as described above, when the vibration generator 8 oscillates with the rotation of the drive shaft 10a, each gel-like member 8e vibrates, and the resulting pressure generates electricity in each vibration piezoelectric element 8f. The resulting current is then supplied to the main battery 6 via the power amplifier 9, thereby charging the main battery 6.
 以上説明したように、本実施の形態によるバッテリー充電装置によっても、駆動軸10の回転という安定した動きにより振動発電機8を振動させ、それによって振動発電機8に発電させることができるので、振動発電により生成した電力を主バッテリー6に対して安定供給することが可能になる。 As described above, the battery charging device according to this embodiment can also vibrate the vibration generator 8 by the stable movement of the rotation of the drive shaft 10, thereby causing the vibration generator 8 to generate electricity, so that the electricity generated by vibration power generation can be steadily supplied to the main battery 6.
 以上、本発明の好ましい実施の形態について説明したが、本発明はこうした実施の形態に何等限定されるものではなく、本発明が、その要旨を逸脱しない範囲において、種々なる態様で実施され得ることは勿論である。 The above describes preferred embodiments of the present invention, but the present invention is not limited to these embodiments, and the present invention can be implemented in various forms without departing from the spirit of the invention.
 例えば、上記第1の実施の形態では振動発電半導体8cにより、上記第2の実施の形態では振動圧電素子8fにより、それぞれ振動発電を行う例を説明したが、他の振動発電材料による振動発電を行うこととしてもよい。既に特許が取得されてる全ての振動発電材料や既に市販されているあらゆる振動発電材料の中から、高効率な振動発電材料を選択し、使用すればよい。 For example, in the first embodiment, vibration power generation is performed using the vibration power generation semiconductor 8c, and in the second embodiment, vibration power generation is performed using the vibration piezoelectric element 8f. However, vibration power generation may be performed using other vibration power generation materials. A highly efficient vibration power generation material may be selected and used from all vibration power generation materials that have already been patented or are already commercially available.
 また、駆動軸10を手動で回転させるためのハンドルを電気自動車1に設けることとしてもよい。こうすれば、電気自動車1の停止中であっても振動発電機8から主バッテリー6を充電することができるので、豪雪による長時間渋滞などの緊急時に、電欠に至るまでの時間をできるだけ稼ぎ、乗員の命を守ることが可能になる。 Furthermore, the electric vehicle 1 may be provided with a handle for manually rotating the drive shaft 10. In this way, the main battery 6 can be charged from the vibration generator 8 even when the electric vehicle 1 is stopped, so that in an emergency such as a long traffic jam caused by heavy snow, it is possible to buy as much time as possible before the battery runs out and protect the lives of the occupants.
1     電気自動車
2     走行用電動機
3     クラッチ
4     減速機
5     駆動輪
6     主バッテリー
7     サブバッテリー
8     振動発電機
8a    突出部
8b    ベース部
8c    振動発電半導体
8d    筐体
8e    ゲル状部材
8f    振動圧電素子
8g    接着剤
9     電力増幅器
10,11 駆動軸
10a   駆動軸10の一部
12    車軸
20    天井
21    壁面
30    紐
C     駆動軸10の回転軸
Reference Signs List 1 Electric vehicle 2 Driving motor 3 Clutch 4 Speed reducer 5 Drive wheel 6 Main battery 7 Sub-battery 8 Vibration power generator 8a Protruding portion 8b Base portion 8c Vibration power generation semiconductor 8d Housing 8e Gel-like member 8f Vibration piezoelectric element 8g Adhesive 9 Power amplifier 10, 11 Drive shaft 10a Part of drive shaft 10 12 Axle 20 Ceiling 21 Wall surface 30 Cord C Rotation shaft of drive shaft 10

Claims (9)

  1.  バッテリーと、
     第1及び第2の駆動軸と、
     前記バッテリーからの電力により前記第1の駆動軸を回転させる電動機と、
     前記第1及び第2の駆動軸が互いに接続されている状態と、前記第1及び第2の駆動軸が互いに接続されていない状態とを切り替えるクラッチと、
     駆動輪と、
     前記第2の駆動軸の回転を所定の減速比で前記駆動輪に伝達する減速機と、
     前記第1の駆動軸の外周面に接するように配置される振動発電機と、を含み、
     前記第1の駆動軸のうち前記振動発電機に接する部分のうちの少なくとも一部の前記第1の駆動軸の回転軸と直交する方向の断面は、前記回転軸から外周面までの距離が均一でない形状により構成され、
     前記振動発電機により生成された電力により前記バッテリーを充電する、
     電気自動車。
    Battery and
    First and second drive shafts;
    an electric motor that rotates the first drive shaft using electric power from the battery;
    a clutch that switches between a state in which the first and second drive shafts are connected to each other and a state in which the first and second drive shafts are not connected to each other;
    Drive wheels and
    a reduction gear that transmits rotation of the second drive shaft to the drive wheels at a predetermined reduction ratio;
    a vibration power generator arranged in contact with an outer circumferential surface of the first drive shaft,
    a cross section of at least a part of the first drive shaft in contact with the vibration power generator, the cross section being perpendicular to the rotation axis of the first drive shaft, the cross section being configured to have a shape in which a distance from the rotation axis to an outer circumferential surface is not uniform;
    charging the battery with the power generated by the vibration generator;
    Electric car.
  2.  前記形状は、前記回転軸との交点を重心とする角丸三角形である、
     請求項1に記載の電気自動車。
    The shape is a rounded triangle having a center of gravity at the intersection with the rotation axis.
    2. The electric vehicle of claim 1.
  3.  前記振動発電機は、水平方向に揺動可能に吊持される、
     請求項1又は2に記載の電気自動車。
    The vibration power generator is suspended so as to be swingable in the horizontal direction.
    3. The electric vehicle according to claim 1 or 2.
  4.  前記振動発電機が前記駆動軸の外周面から離れることを防止する壁面、
     をさらに含む請求項3に記載の電気自動車。
    a wall surface that prevents the vibration power generator from separating from the outer circumferential surface of the drive shaft;
    The electric vehicle of claim 3 further comprising:
  5.  前記振動発電機は、1以上の振動発電半導体を含む、
     請求項1又は2に記載の電気自動車。
    The vibration power generator includes one or more vibration power generation semiconductors.
    3. The electric vehicle according to claim 1 or 2.
  6.  前記1以上の振動発電半導体は直列に接続される、
     請求項5に記載の電気自動車。
    The one or more vibration power generation semiconductors are connected in series.
    6. The electric vehicle according to claim 5.
  7.  前記振動発電機は、それぞれゲルに固定された1以上の振動圧電素子を含む、
     請求項1又は2に記載の電気自動車。
    The vibration power generator includes one or more vibration piezoelectric elements each fixed to a gel.
    3. The electric vehicle according to claim 1 or 2.
  8.  前記1以上の振動圧電素子は直列に接続される、
     請求項7に記載の電気自動車。
    The one or more vibration piezoelectric elements are connected in series.
    8. The electric vehicle of claim 7.
  9.  前記駆動軸を手動で回転させるためのハンドル、
     をさらに含む請求項1又は2に記載の電気自動車。
    a handle for manually rotating the drive shaft;
    The electric vehicle of claim 1 or 2, further comprising:
PCT/JP2023/033314 2022-09-26 2023-09-13 Electric vehicle WO2024070681A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-152848 2022-09-26
JP2022152848A JP7214178B1 (en) 2022-09-26 2022-09-26 Electric car

Publications (1)

Publication Number Publication Date
WO2024070681A1 true WO2024070681A1 (en) 2024-04-04

Family

ID=85078884

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/033314 WO2024070681A1 (en) 2022-09-26 2023-09-13 Electric vehicle

Country Status (2)

Country Link
JP (1) JP7214178B1 (en)
WO (1) WO2024070681A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1566630A (en) * 2003-06-16 2005-01-19 罗新红 Rotation type generator
JP2011166894A (en) * 2010-02-05 2011-08-25 Onkyo Corp Oscillating generator
JP2013021888A (en) * 2011-07-14 2013-01-31 Shinsei Shoji Co Ltd Power generator
JP2013223415A (en) * 2012-04-16 2013-10-28 Kano:Kk Linear power generator
JP2020156181A (en) * 2019-03-19 2020-09-24 三菱自動車工業株式会社 vehicle

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007113557A (en) 2005-10-18 2007-05-10 Yoshio Niioka Vehicular wheel gravity generating set
JP5564647B2 (en) 2012-06-13 2014-07-30 有限会社 加納 Power generation and vibration mitigation device
CN113708544B (en) 2021-08-06 2023-12-01 华能通辽风力发电有限公司 Electric generator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1566630A (en) * 2003-06-16 2005-01-19 罗新红 Rotation type generator
JP2011166894A (en) * 2010-02-05 2011-08-25 Onkyo Corp Oscillating generator
JP2013021888A (en) * 2011-07-14 2013-01-31 Shinsei Shoji Co Ltd Power generator
JP2013223415A (en) * 2012-04-16 2013-10-28 Kano:Kk Linear power generator
JP2020156181A (en) * 2019-03-19 2020-09-24 三菱自動車工業株式会社 vehicle

Also Published As

Publication number Publication date
JP7214178B1 (en) 2023-01-30
JP2024047302A (en) 2024-04-05

Similar Documents

Publication Publication Date Title
CN101730966B (en) Mechanical methods for charging a car battery, related systems and infrastructure
CN101376335B (en) Hybrid-power car
US20130110333A1 (en) System for hybrid vehicle to enhance performance during electric mode
US10446894B2 (en) Array plate assemblies for applying compressive spring forces against battery cell stacks
EP3023281A1 (en) Hybrid vehicle
JP2008537922A (en) Electrically variable transmission for all-wheel drive
KR20140049715A (en) Brake generator for vehicle
US10938225B2 (en) Vehicle charge termination system and method
WO2024070681A1 (en) Electric vehicle
US20070107957A1 (en) Automobile propulsion system
JP2024047303A (en) Battery charging device and electric vehicle
JPWO2021111809A5 (en)
US5890555A (en) Electric vehicle
KR200268814Y1 (en) Electric Power Supply Unit in Electricity Vehicles
KR101076874B1 (en) Generator for vehicle
CN205070842U (en) Auxiliary generator and including this auxiliary generator's for vehicle vehicle for vehicle
KR20210001532A (en) Method of chargin an electric vehicle
CN112673508A (en) Vibration assisted charging of electrified vehicle batteries
KR102557963B1 (en) Electric vehicle installed high efficiency generator
JPH08251710A (en) Apparatus for driving car
KR102299447B1 (en) Control Method Of Hybrid Vehicle
CN106004521A (en) Multivariate distribution propelling system
CN109109674B (en) Electric automobile single controller coupling driving device and working method thereof
CN201217386Y (en) Hybrid-power car
KR20220040776A (en) Power generation system for electric vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23871914

Country of ref document: EP

Kind code of ref document: A1