WO2024070598A1 - Terminal, base station, and communication method - Google Patents

Terminal, base station, and communication method Download PDF

Info

Publication number
WO2024070598A1
WO2024070598A1 PCT/JP2023/032899 JP2023032899W WO2024070598A1 WO 2024070598 A1 WO2024070598 A1 WO 2024070598A1 JP 2023032899 W JP2023032899 W JP 2023032899W WO 2024070598 A1 WO2024070598 A1 WO 2024070598A1
Authority
WO
WIPO (PCT)
Prior art keywords
bwp
bandwidth
initial
eredcap
size
Prior art date
Application number
PCT/JP2023/032899
Other languages
French (fr)
Japanese (ja)
Inventor
卓宏 古山
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2024070598A1 publication Critical patent/WO2024070598A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0457Variable allocation of band or rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/232Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the physical layer, e.g. DCI signalling

Definitions

  • This disclosure relates to a terminal, a base station, and a communication method in a mobile communication system.
  • eRedCap UE For eRedCap UE, it has been proposed to (a) reduce the available frequency bandwidth in FR1 (Frequency Range 1) to a predetermined bandwidth (e.g., 5 MHz), and (b) reduce the frequency bandwidth for the data channel in FR1 to a predetermined bandwidth in order to reduce the peak data rate (see, for example, non-patent documents 1 to 4).
  • the data channel refers to a physical channel that transmits data, i.e., the physical downlink shared channel (PDSCH) and/or the physical uplink shared channel (PUSCH).
  • the frequency bandwidth is also simply referred to as the "bandwidth".
  • the above method (a) reduces the bandwidth (i.e., maximum bandwidth) that can be supported by both the RF (Radio Frequency) section and the BB (Base Band) section of the UE, and makes it possible to reduce the complexity of the RF section and the BB section.
  • the above method (b) reduces the bandwidth that can be supported mainly by the BB section of the UE, and makes it possible to reduce the complexity of the BB section.
  • the above method (b) makes it possible to reduce the change in technical specifications for the configuration of physical channels other than the PDSCH and/or PUSCH.
  • one of the objectives of this disclosure is to provide a terminal, a base station, and a communication method that can appropriately perform communication even when a bandwidth that is reduced compared to RedCap UE is used.
  • a terminal includes a communication unit that receives first configuration information regarding an initial downlink bandwidth less than a specific bandwidth, and a processing unit that determines, when the communication unit receives second configuration information regarding an initial uplink bandwidth less than the specific bandwidth and when a control resource set (CORESET) #0 is configured for a cell, a size of a first downlink control information (DCI) format for scheduling a physical downlink shared channel based on the initial downlink bandwidth.
  • CORESET control resource set
  • a base station includes a communication unit that transmits first configuration information regarding an initial downlink bandwidth less than a specific bandwidth, and a processing unit that determines, when the communication unit transmits second configuration information regarding an initial uplink bandwidth less than the specific bandwidth and when a control resource set (CORESET) #0 is configured for a cell, a size of a first downlink control information (DCI) format for scheduling a physical downlink shared channel based on the initial downlink bandwidth.
  • CORESET control resource set
  • a communication method implemented in a terminal includes receiving first configuration information related to an initial downlink bandwidth less than a specific bandwidth, and, when a communication unit receives second configuration information related to an initial uplink bandwidth less than the specific bandwidth, determining a size of a first downlink control information (Downlink Control Information (DCI)) format for scheduling a physical downlink shared channel based on the initial downlink bandwidth when a control resource set (CORESET) #0 is configured for a cell.
  • DCI Downlink Control Information
  • communication can be performed appropriately even when a reduced bandwidth is used compared to RedCap UE.
  • FIG. 1 is a diagram illustrating an example of a schematic configuration of a system according to an embodiment of the present disclosure.
  • FIG. 2 is a diagram illustrating an example of a schematic functional configuration of a base station according to an embodiment of the present disclosure.
  • FIG. 2 is a diagram illustrating an example of a schematic hardware configuration of a base station according to an embodiment of the present disclosure.
  • FIG. 13 is a diagram showing an example of a correspondence relationship between the value of controlResourceSetZero, which is a parameter included in pdcch-ConfigSIB1 included in the MIB, and the parameters for CORESET #0.
  • FIG. 1 illustrates the challenges of applying DCI size alignment up to Rel. 17 NR to eRedCap UEs.
  • the system 1 includes a base station 100, a user equipment (UE) 30, a UE 40, and a UE 200.
  • UE user equipment
  • system 1 is a system that complies with 3GPP TS. More specifically, for example, system 1 is a system that complies with 5G or NR (New Radio) TS. Naturally, system 1 is not limited to this example.
  • the base station 100 is a node in a radio access network (RAN) and communicates with UEs located within a coverage area 10 of the base station 100. For example, the base station 100 communicates with UE30, UE40, and UE200.
  • RAN radio access network
  • the base station 100 communicates with a UE (e.g., UE30, UE40, or UE200) using a protocol stack of the RAN.
  • the protocol stack includes RRC, service data adaptation protocol (SDAP), packet data convergence protocol (PDCP), radio link control (RLC), medium access control (MAC), and physical (PHY) layer protocols.
  • SDAP service data adaptation protocol
  • PDCP packet data convergence protocol
  • RLC radio link control
  • MAC medium access control
  • PHY physical layer protocols
  • the protocol stack may include some of these protocols rather than all of them.
  • the base station 100 is a gNB.
  • the gNB is a node that provides NR user plane and control plane protocol terminations towards the UE and is connected to the 5G Core Network (5GC) via an NG interface.
  • the base station 100 may be an en-gNB.
  • the en-gNB is a node that provides NR user plane and control plane protocol terminations towards the UE and operates as a secondary node in E-UTRA-NR Dual Connectivity (EN-DC).
  • the base station 100 may include a plurality of nodes.
  • the plurality of nodes may include a first node that hosts a higher layer included in the protocol stack, and a second node that hosts a lower layer included in the protocol stack.
  • the higher layer may include RRC, SDAP, and PDCP
  • the lower layer may include RLC, MAC, and a PHY layer.
  • the first node may be a CU (central unit), and the second node may be a DU (distributed unit).
  • the plurality of nodes may include a third node that performs processing below the PHY layer, and the second node may perform processing above the PHY layer.
  • the third node may be a RU (radio unit).
  • the base station 100 may be one of the multiple nodes, and may be connected to other units of the multiple nodes.
  • the base station 100 may be an integrated access and backhaul (IAB) donor or an IAB node.
  • IAB integrated access and backhaul
  • Each of the UE 30, UE 40, and UE 200 communicates with a base station.
  • each of the UE 30, UE 40, and UE 200 communicates with the base station 100 when the UE 30, UE 40, and UE 200 is located within a coverage area 10 of the base station 100.
  • each of UE30, UE40, and UE200 communicates with a base station (e.g., base station 100) using the above protocol stack.
  • a base station e.g., base station 100
  • UE30 is a normal UE that is not a RedCap UE
  • UE40 and UE200 are RedCap UEs.
  • a RedCap UE is a UE with reduced capability.
  • UE40 is a first type of RedCap UE
  • UE200 is a second type of RedCap UE.
  • the first type of RedCap UE is a UE with a maximum bandwidth of 20 MHz for FR1 and 100 MHz for FR2.
  • FR1 is in the frequency range of 410 MHz to 7125 MHz
  • FR2 is in the frequency range of 24250 MHz to 52600 MHz.
  • the second type RedCap UE is a UE with a further reduced capability than the first type RedCap UE.
  • the peak data rate of the second type RedCap UE is lower than the peak data rate of the first type RedCap UE.
  • the peak data rate (e.g., the maximum peak data rate) supported by the second type RedCap UE may be 10 Mbps.
  • the second type RedCap UE communicates with a base station using a narrower band than the first type RedCap UE.
  • the maximum bandwidth of the second type RedCap UE is smaller than the maximum bandwidth of the first type RedCap UE.
  • the maximum bandwidth (e.g., the maximum bandwidth of the downlink and/or uplink) supported by the second type RedCap UE may be up to 5 MHz.
  • the maximum bandwidth is, for example, the maximum bandwidth when transmitting and receiving specific information (e.g., user data, etc.).
  • the first type RedCap UE is a Rel. 17 RedCap UE
  • the second type RedCap UE is a Rel. 18 RedCap UE.
  • the second type RedCap UE may be referred to as an eRedCap UE.
  • RedCap UE in this disclosure may be interpreted as at least one of the first type RedCap UE and the second type RedCap UE.
  • UE200 may perform not only the operations described as UE200 operations, but also the operations described as UE30 operations and/or the operations described as UE40 operations.
  • Base station configuration An example of the configuration of the base station 100 according to an embodiment of the present disclosure will be described with reference to FIG. 2 and FIG. 3 .
  • the base station 100 includes a wireless communication unit 110, a network communication unit 120, a storage unit 130, and a processing unit 140.
  • the wireless communication unit 110 transmits and receives signals wirelessly.
  • the wireless communication unit 110 receives signals from a UE and transmits signals to the UE.
  • the wireless communication unit 110 may be called a transmitting unit, a receiving unit, a transmitting/receiving unit, etc.
  • the network communication unit 120 receives signals from the network and transmits signals to the network.
  • the memory unit 130 stores various information for the base station 100.
  • the processing unit 140 provides various functions of the base station 100.
  • the processing unit 140 may include an information acquisition unit 141 and a communication processing unit 143. Note that the processing unit 140 may further include other components in addition to these components. In other words, the processing unit 140 may also perform operations other than those of these components.
  • the processing unit 140 communicates with UEs (e.g., UE30, UE40, and UE200) via the wireless communication unit 110.
  • the processing unit 140 communicates with core network nodes and other base stations via the network communication unit 120.
  • the processing unit 140 acquires information necessary for processing by the communication processing unit 143 based on information received via the wireless communication unit 110 or the network communication unit 120.
  • the processing unit 140 may be referred to as a control unit.
  • the base station 100 includes an antenna 181, an RF (radio frequency) circuit 183, a network interface 185, a processor 187, a memory 189, and a storage 191.
  • RF radio frequency
  • Antenna 181 converts signals into radio waves and radiates the radio waves into space. Antenna 181 also receives radio waves in space and converts the radio waves into signals. Antenna 181 may include a transmitting antenna and a receiving antenna, or may be a single antenna for both transmission and reception. Antenna 181 may be a directional antenna and may include multiple antenna elements.
  • the RF circuit 183 performs analog processing of signals transmitted and received via the antenna 181.
  • the RF circuit 183 may include a high-frequency filter, an amplifier, a modulator, a low-pass filter, etc.
  • the RF circuit 183 may amplify, filter, demodulate to a baseband signal, etc., of the received radio frequency signal, and output the signal to the processor 187.
  • the RF circuit 183 may modulate to a radio frequency band, filter, amplify, etc., the baseband signal input from the processor 187, and transmit the radio frequency band signal via the transmitting/receiving antenna 181.
  • the network interface 185 is, for example, a network adapter, and transmits signals to the network and receives signals from the network.
  • the processor 187 performs digital processing of signals transmitted and received via the antenna 181 and the RF circuitry 183.
  • the digital processing includes processing of the RAN protocol stack.
  • the processor 187 also processes signals transmitted and received via the network interface 185.
  • the processor 187 may include multiple processors or may be a single processor.
  • the multiple processors may include a baseband processor that performs the digital processing and one or more processors that perform other processing.
  • Memory 189 is a computer-readable non-transitory recording medium that stores programs executed by processor 187, parameters related to the programs, and various other information.
  • Memory 189 may include at least one of ROM (read only memory), EPROM (erasable programmable read only memory), EEPROM (electrically erasable programmable read only memory, registered trademark), RAM (random access memory), and flash memory. All or a portion of memory 189 may be included within processor 187.
  • Storage 191 is a computer-readable non-transitory recording medium that stores various information.
  • Storage 191 may include at least one of an SSD (solid state drive) and an HDD (hard disc drive).
  • the wireless communication unit 110 may be implemented by an antenna 181 and an RF circuit 183.
  • the network communication unit 120 may be implemented by a network interface 185.
  • the memory unit 130 may be implemented by a storage 191.
  • the processing unit 140 may be implemented by a processor 187 and a memory 189.
  • a part or all of the processing unit 140 may be virtualized. In other words, a part or all of the processing unit 140 may be implemented as a virtual machine. In this case, a part or all of the processing unit 140 may operate as a virtual machine on a physical machine (i.e., hardware) including a processor, memory, etc., and a hypervisor.
  • the base station 100 may include a memory (i.e., memory 189) that stores a program, and one or more processors (i.e., processor 187) that can execute the program, and the one or more processors may execute the program to perform the operations of the processing unit 140.
  • the program may be a program for causing the processor to execute the operations of the processing unit 140.
  • the UE 200 includes a wireless communication unit 210, a storage unit 220, and a processing unit 230.
  • the wireless communication unit 210 transmits and receives signals wirelessly.
  • the wireless communication unit 210 receives signals from a base station and transmits signals to the base station.
  • the wireless communication unit 210 may be called a transmitting unit, a receiving unit, a transmitting/receiving unit, etc.
  • the memory unit 220 stores various information for the UE 200.
  • the processing unit 230 provides various functions of the UE 200.
  • the processing unit 230 may include an information acquisition unit 231 and a communication processing unit 233.
  • the processing unit 230 may further include other components in addition to these components. That is, the processing unit 230 may also perform operations other than those of these components.
  • the processing unit 230 communicates with a base station (e.g., base station 100) via the wireless communication unit 210. Furthermore, the processing unit 230 (information acquisition unit 231) acquires information necessary for processing by the communication processing unit 233 based on information received via the wireless communication unit 210.
  • the processing unit 230 may also be referred to as a control unit.
  • the UE 200 includes an antenna 281, an RF circuit 283, a processor 285, a memory 287, and a storage 289.
  • Antenna 281 converts signals into radio waves and radiates the radio waves into space. Antenna 281 also receives radio waves in space and converts the radio waves into signals. Antenna 281 may include a transmitting antenna and a receiving antenna, or may be a single antenna for both transmission and reception. Antenna 281 may be a directional antenna and may include multiple antenna elements.
  • the RF circuit 283 performs analog processing of signals transmitted and received via the antenna 281.
  • the RF circuit 283 may include a high-frequency filter, an amplifier, a modulator, a low-pass filter, etc.
  • the RF circuit 283 may perform amplification, filtering, demodulation to a baseband signal, etc. on the received radio frequency signal, and output the signal to the processor 285.
  • the RF circuit 283 may perform modulation to a radio frequency band, filtering, amplification, etc. on the baseband signal input from the processor 285, and transmit the radio frequency band signal via the transmitting/receiving antenna 281.
  • the processor 285 performs digital processing of signals transmitted and received via the antenna 281 and the RF circuitry 283.
  • the digital processing includes processing of the RAN protocol stack.
  • the processor 285 may include multiple processors or may be a single processor.
  • the multiple processors may include a baseband processor that performs the digital processing and one or more processors that perform other processing.
  • Memory 287 is a computer-readable non-transitory recording medium that stores programs executed by processor 285, parameters related to the programs, and various other information.
  • Memory 287 may include at least one of ROM, EPROM, EEPROM, RAM, and flash memory. All or a portion of memory 287 may be included within processor 285.
  • Storage 289 is a computer-readable non-transitory recording medium that stores various information.
  • Storage 289 may include at least one of an SSD and an HDD.
  • the wireless communication unit 210 may be implemented by an antenna 281 and an RF circuit 283.
  • the memory unit 220 may be implemented by a storage 289.
  • the processing unit 230 may be implemented by a processor 285 and a memory 287.
  • the processing unit 230 may be implemented by a SoC (System on Chip) including a processor 285 and a memory 287.
  • the SoC may include an RF circuit 283, and the wireless communication unit 210 may also be implemented by the SoC.
  • UE 200 may include a memory (i.e., memory 287) that stores a program, and one or more processors (i.e., processor 285) that can execute the program, and the one or more processors may execute the program to perform the operations of processing unit 230.
  • the program may be a program for causing a processor to execute the operations of processing unit 230.
  • a base station in the following description may refer to base station 100.
  • a UE in the following description may be interchangeably read as at least one of UE 30, 40, and 200.
  • each base station may be interpreted as one or more functional blocks (e.g., wireless communication unit 110, processing unit 140) or hardware configurations (e.g., RF circuit 183, processor 187) in base station 100.
  • each "UE” in the following description may be interpreted as one or more functional blocks (e.g., wireless communication unit 210, processing unit 230) or hardware configurations (e.g., RF circuit 283, processor 285) in UE 200.
  • BWP Bandwidth Part
  • BWPs are defined to reduce UE power consumption and to effectively utilize broadband carriers.
  • DL BWP and UL BWP initial downlink
  • dedicated BWPs dedicated DL BWP and dedicated UL BWP
  • up to four DL BWPs and up to four UL BWPs are configured in a serving cell.
  • BWPs when there is no need to distinguish between DL BWPs and UL BWPs, they are simply referred to as BWPs.
  • the "BWP" in this disclosure may be read as DL BWPs and/or UL BWPs.
  • the serving cell is also simply referred to as a cell.
  • the initial BWP is a BWP used at least for initial access.
  • the initial BWP may be used commonly by multiple UEs.
  • Each of the initial DL BWP and the initial UL BWP is specified with a BWP identifier (bwp-id) of "0".
  • SIB System Information Block 1
  • the initial BWP set by the MIB may have a bandwidth according to the Control Resource Set (CORESET) #0 set using parameters included in the MIB.
  • the CORESET may correspond to time-frequency resources for searching for Downlink Control Information (DCI).
  • CORESET #0 corresponds to a CORESET used by the UE to monitor the PDCCH for scheduling SIB1.
  • the initial BWP set by SIB1 is specified based on the initialDownlinkBWP field for the initial DL BWP in SIB1, the initialUplinkBWP field for the initial UL BWP, and the like. More specifically, these fields include BWP information elements including parameters locationAndBandwidth, subcarrierSpacing, and cyclicPrefix.
  • the parameter locationAndBandwidth specifies the location in the frequency domain and the bandwidth
  • the parameter subcarrierSpacing specifies the subcarrier spacing (SubCarrier Spacing (SCS)) for the BWP
  • the parameter cyclicPrefix specifies the cyclic prefix used for each channel and reference signal in the BWP.
  • Figure 6 shows an example of the correspondence between the value of controlResourceSetZero, which is a parameter included in pdcch-ConfigSIB1 in the MIB, and the parameters for CORESET#0.
  • the correspondence is shown when the maximum channel bandwidth is 5 MHz or 10 MHz and the SCS of the synchronization signal block (SSB) and the PDCCH is 15 kHz.
  • the SSB may also be called the SS/PBCH block.
  • the value of the parameter controlResourceSetZero is an index value between 0 and 15.
  • the UE uses the above correspondence relationship to identify the corresponding CORESET#0 parameters (e.g., the number of resource blocks and the number of symbols) from the index value.
  • FIG. 7 shows an example of the correspondence between the value of the parameter searchSpaceZero included in pdcch-ConfigSIB1 in the MIB and the parameters for search space set #0.
  • the value of the parameter searchSpaceZero is an index value between 0 and 15. Using the above correspondence relationship, the UE identifies the corresponding search space set #0 (e.g., the number of search space sets per slot and/or the index of the first symbol, etc.) from the index value.
  • #0 e.g., the number of search space sets per slot and/or the index of the first symbol, etc.
  • a UE that receives an SSB of the cell obtains the bandwidth (24, 48, or 96 resource blocks) of the Type-0 PDCCH CSS set from the setting value of controlResourceSetZero (an integer value between 0 and 15) in pdcch-ConfigSIB1, which is an information element included in the PBCH (MIB) of the SSB.
  • the UE may then monitor the Type-0 PDCCH CSS set to obtain SIB1, and obtain locationAndBandwidth, a parameter indicating the frequency location and/or bandwidth of the initial BWP, from SIB1.
  • the Type-0 PDCCH CSS set corresponds to search space set #0.
  • Msg. 4 may be an RRCSetup message, an RRCResume message, or an RRCReestablishment message.
  • the UE transitions, for example, from an RRC idle state to an RRC connected state by such initial access (random access procedure).
  • the initial DL BWP may be the same as the band of CORESET (control resource set) #0 for scheduling SIB1.
  • base station 100 does not need to include information indicating the initial DL BWP in SIB1, and UE 30 may consider the band of CORESET #0 as the initial DL BWP if there is no such information in SIB1.
  • Rel. 17 NR introduced an initial BWP for RedCap UEs.
  • the initial BWP for RedCap UEs may be called RedCap-specific initial BWP.
  • a normal UE (UE30) that is not a RedCap UE does not use the RedCap-specific initial BWP, but a RedCap UE (e.g., UE40) can use the RedCap-specific initial BWP.
  • the RedCap-specific initial BWP may include an initial DL BWP for the RedCap UE and an initial UL BWP for the RedCap UE.
  • the initial DL BWP for the RedCap UE may be referred to as a RedCap-specific initial DL BWP
  • the initial UL BWP for the RedCap UE may be referred to as a RedCap-specific initial UL BWP.
  • Each of the RedCap UE-specific initial DL BWP and the RedCap UE-specific initial UL BWP is specified with a BWP identifier (bwp-id) of "0".
  • the information on the RedCap-specific initial BWP may be initialDownlinkBWP-RedCap-r17 and/or initialUplinkBWP-RedCap-r17 included in the ServingCellConfigCommonSIB information element in SIB1. These parameters may include at least one of parameters indicating the location and bandwidth of the RedCap-specific initial BWP, parameters indicating the SCS, and parameters indicating the cyclic prefix, similar to the above-mentioned initialDownlinkBWP, initialUplinkBWP, etc.
  • the ServingCellConfigCommonSIB information element may indicate a common setting for the serving cells.
  • initialDownlinkBWP-RedCap-r17 and/or initialUplinkBWP-RedCap-r17 may include parameters of the RedCap-specific initial BWP (for example, parameters used in the RedCap-specific initial BWP).
  • UE30 which is a normal UE, receives SIB1 and determines the initial BWP based on ServingCellConfigCommonSIB included in SIB1. For example, UE30 identifies the initial DL BWP based on initialDownlinkBWP. Also, UE30 identifies the initial UL BWP based on initialUplinkBWP.
  • UE40 receives SIB1 and determines the initial BWP based on the ServingCellConfigCommonSIB included in the SIB1. For example, UE40 identifies the initial DL BWP based on information (initialDownlinkBWP-RedCap-r17) indicating the RedCap-specific initial DL BWP included in the ServingCellConfigCommonSIB. UE40 also identifies the initial UL BWP based on information (initialUplinkBWP-RedCap-r17) indicating the RedCap-specific initial UL BWP included in the ServingCellConfigCommonSIB.
  • the RedCap-specific initial DL BWP may be identified based on the information indicating the initial DL BWP. Also, if SIB1 does not include information indicating the RedCap-specific initial UL BWP, the RedCap-specific initial UL BWP may be identified based on the information indicating the initial UL BWP.
  • SIB1 when SIB1 includes initialDownlinkBWP-RedCap-r17, UE40 may specify the RedCap-specific initial DL BWP based on initialDownlinkBWP-RedCap-r17 instead of initialDownlinkBWP. Also, when SIB1 includes initialUplinkBWP-RedCap-r17, UE40 may specify the RedCap-specific initial UL BWP based on initialUplinkBWP-RedCap-r17 instead of initialUplinkBWP.
  • SIB1 does not include initialDownlinkBWP-RedCap-r17
  • UE40 may determine the initial DL BWP (which may be a RedCap-specific initial DL BWP) based on initialDownlinkBWP. If SIB1 does not include initialUplinkBWP-RedCap-r17, UE40 may determine the initial UL BWP (which may be a RedCap-specific initial UL BWP) based on initialUplinkBWP.
  • a dedicated BWP is a BWP that is dedicated (UE-specific) to a certain UE.
  • a bwp-id other than "0" may be set to the dedicated BWP.
  • a dedicated DL BWP and a dedicated UL BWP may be set based on a BWP-Downlink information element and a BWP-Uplink information element included in a ServingCellConfig information element in an RRC message, which is dedicated signaling transmitted from a base station to a UE.
  • each of the BWP-Downlink and BWP-Uplink may include various parameters (locationAndBandwidth, subcarrierSpacing, cyclicPrefix) for setting the BWP.
  • each of the BWP-Downlink and BWP-Uplink may include parameters of the BWP (for example, parameters used in the BWP).
  • dicated BWP may be interchangeably referred to as "RRC configured BWP,” “configured BWP,” “UE-specific BWP,” “dedicated BWP,” or simply "BWP.”
  • the base station can notify the UE of the BWP to be used for communication with the base station (i.e., the active BWP) among one or more BWPs configured in the UE. For example, the base station can transmit to the UE a BWP identifier indicating the BWP to be activated when the configuration is performed, i.e., the BWP to be used first for communication with the base station.
  • a BWP identifier indicating the BWP to be activated when the configuration is performed, i.e., the BWP to be used first for communication with the base station.
  • switching from an active BWP to a BWP that is not an active BWP (inactive BWP) and switching from an inactive BWP to an active BWP can be controlled, for example, by PDCCH (DCI), RRC signaling, MAC control element (MAC CE), or timer switching.
  • DCI PDCCH
  • RRC signaling MAC control element
  • MAC CE MAC
  • communication in an active BWP may include at least one of the following: transmission on an uplink shared channel (UL-SCH) in the BWP, transmission on a random access channel (RACH) in the BWP (if a physical random access channel (PRACH) opportunity (PRACH occasion) is configured), monitoring of a physical downlink control channel (PDCCH) in the BWP, transmission on a physical uplink control channel (PUCCH) in the BWP (if a PUCCH resource is configured), reporting of channel state information (CSI) for the BWP, and reception of a downlink shared channel (DL-SCH) in the BWP.
  • UL-SCH uplink shared channel
  • RACH random access channel
  • PRACH physical random access channel
  • PUCCH physical downlink control channel
  • PUCCH physical uplink control channel
  • CSI channel state information
  • the UL-SCH is a transport channel and is mapped to the physical uplink shared channel (PUSCH), which is a physical channel.
  • Data transmitted on the UL-SCH is also referred to as UL-SCH data.
  • the UL-SCH data may correspond to uplink user data.
  • the DL-SCH is a transport channel and is mapped to the physical downlink shared channel (PDSCH), which is a physical channel.
  • Data transmitted on the DL-SCH is also referred to as DL-SCH data.
  • the DL-SCH data may correspond to downlink user data.
  • the PUCCH is used to transmit uplink control information (UCI).
  • the uplink control information includes a hybrid automatic repeat request (HARQ)-ACK, CSI, and/or a scheduling request (SR).
  • the HARQ-ACK includes a positive acknowledgment (ACK) or a negative acknowledgment (NACK).
  • the PUCCH is used to transmit a HARQ-ACK for a PDSCH (i.e., DL-SCH (DL-SCH data, downlink user data)).
  • DL-SCH data and/or the downlink user data are also referred to as a downlink transport block.
  • the UE for example, in an active DL BWP, monitors a set of PDCCH candidates in one or more CORESETs. Monitoring the PDCCH may include decoding each of the PDCCH candidates according to a monitored Downlink Control Information (DCI) format.
  • DCI Downlink Control Information
  • the UE may monitor a DCI format with a CRC (Cyclic Redundancy Check, also referred to as CRC parity bit) scrambled by an RNTI set by the base station.
  • the RNTI may include SI-RNTI (System Information-RNTI), RA-RNTI (Random Access RNTI), TC-RNTI (Temporary C-RNTI), P-RNTI (Paging RNTI), and/or C-RNTI (Cell-RNTI).
  • the set of PDCCH candidates monitored by the UE may be defined as a PDCCH search space set.
  • the search space set may include a common search space set (CSS set(s)) and/or a UE-specific search space set (USS set(s)).
  • the base station may configure the CORESET and/or search space set for the UE, and the UE may monitor the PDCCH in the configured CORESET and/or search space set.
  • the base station 100 may configure one or more DL BWPs for one UE in one serving cell.
  • one of the one or more DL BWPs is used by the UE as the active DL BWP.
  • the above RRC message (ServingCellConfig) includes an information element indicating the first active DL BWP, and the UE initially uses the DL BWP indicated by the information element as the active DL BWP.
  • the above information element is firstActiveDownlinkBWP-Id.
  • the active DL BWP may be switched.
  • the base station 100 transmits a DCI including information indicating a DL BWP to the UE, and the UE switches the active DL BWP to the DL BWP indicated by the information.
  • the DCI is a DCI (e.g., DCI format 1_1) used for scheduling the PDSCH, and the information is a Bandwidth Part Indicator.
  • the UE switches the active DL BWP to the default DL BWP.
  • the RRC message includes an information element indicating the default DL BWP, and the UE uses the DL BWP indicated by the information element as the default DL BWP.
  • the timer is bwp-InactivityTimer, and the information element is defaultDownlinkBWP-Id.
  • the default DL BWP may be a dedicated BWP or an initial BWP (for example, if no information element indicating the default DL BWP is included, the initial DL BWP may be the default DL BWP).
  • the base station 100 may configure one or more UL BWPs for one UE in one serving cell.
  • one UL BWP of the one or more UL BWPs is used by the UE as the active UL BWP.
  • the above RRC message includes an information element indicating a first active UL BWP, and the UE first uses the UL BWP indicated by the information element as the active UL BWP.
  • the above information element is firstActiveUplinkBWP-Id.
  • the active UL BWP may be switched.
  • the base station 100 transmits a DCI including information indicating a UL BWP to the UE, and the UE switches the active UL BWP to the UL BWP indicated by the information.
  • the DCI is a DCI (e.g., DCI format 0_1) used for scheduling the PUSCH, and the information is a Bandwidth Part Indicator.
  • switching between active DL BWP, active DL BWP, etc. may be further controlled by a MAC (Medium Access Control) entity.
  • MAC Medium Access Control
  • RedCap UE is introduced as a low-performance UE type suitable for use cases such as industrial sensors, surveillance cameras, and wearables. RedCap UE is also called "reduced capability NR device". RedCap UE is a UE type (terminal type) with reduced equipment cost and complexity compared to general UE types. RedCap UE has mid-range performance and price for IoT, and for example, compared to general UE types, the maximum bandwidth used for wireless communication is set narrower and the number of receivers is smaller. As shown in Figure 8, for FR1, the bandwidth that RedCap UE can support (i.e., the maximum bandwidth supported by RedCap UE) may be 20 MHz.
  • the eRedCap UE has a narrower maximum bandwidth used for wireless communication than the RedCap UE.
  • the eRedCap UE may correspond to a specified UE type (specified terminal type) in which the frequency bandwidth that can be supported for at least the data channel is reduced compared to the RedCap UE.
  • the data channel is a physical channel that transmits data, and may mean, for example, the PDSCH and/or the PUSCH.
  • the maximum bandwidth for a physical channel (e.g., PDSCH and/or PUSCH) or for all physical channels available to an eRedCap UE may be referred to as the reduced bandwidth.
  • the reduced bandwidth may be interchangeable with the further reduced bandwidth.
  • 20 MHz may be interchangeably read as the maximum bandwidth available to a RedCap UE, a specific bandwidth, etc. In this disclosure, 20 MHz may be interchangeably read as any bandwidth value.
  • the reduced bandwidth may be a BWP and may be referred to as the BWP of an eRedCap UE.
  • the reduced bandwidth is not limited to a BWP and may correspond to at least one of one or more subcarriers, one or more resource elements, one or more subbands, one or more resource blocks (Resource Blocks (RBs)), one or more physical RBs (Physical RBs (PRBs)), one or more resource block sets, one or more frequency bands, one or more frequency resources, one or more frequency domain resources, etc.
  • RBs Resource Blocks
  • PRBs Physical RBs
  • eRedCap UE For eRedCap UE, it has been proposed to (a) reduce the available frequency bandwidth in FR1 to the reduced bandwidth described above, and (b) reduce the frequency bandwidth for the data channel in FR1 to reduce the peak data rate.
  • Other methods of reducing UE costs have also been proposed, such as reducing the peak rate while maintaining the available bandwidth of the BB and RF sections at 20 MHz, and relaxing the UE processing time for the data channel.
  • the method (a) reduces the bandwidth (i.e., maximum bandwidth) that can be supported by both the RF section (e.g., RF circuit) and the BB section (e.g., baseband processor) of the UE 200, and can reduce the complexity of the RF section and the BB section.
  • the RF section e.g., RF circuit
  • the BB section e.g., baseband processor
  • the bandwidth that the BB section can support is 20 MHz, thereby reducing the complexity of the BB section.
  • the example in FIG. 9 shows an example in which the maximum RF bandwidth, which is the frequency bandwidth that the RF section of UE200 can support, is 20 MHz, and the maximum BB bandwidth, which is the frequency bandwidth that the BB section of UE200 can support, is a reduced bandwidth (e.g., 5 MHz).
  • the inventors therefore came up with a method for enabling eRedCap UEs to communicate appropriately even when using reduced bandwidth.
  • any of the above-mentioned cost reduction methods may be adopted for eRedCap UE, but it is assumed that the above method (b) is mainly adopted.
  • the size of the BWP, the size of CORESET#0, and the like are assumed to be expressed in terms of the number of resource blocks (RB), but are not limited to this.
  • RB may be interchangeably interpreted as other units related to frequency bandwidth, such as subcarriers, resource elements, subbands, resource block groups, and physical resource blocks (PRBs).
  • DCI size alignment may be performed in both the base station and the UE according to the same rules. That is, DCI size alignment may be performed by the UE or by the base station. For example, when decoding the PDCCH (which may be called blind decoding), the UE performs a process of matching the sizes of DCI format 1_0 and DCI format 0_0.
  • DCI formats 0_0 and 1_0 correspond to DCI formats whose configuration (contents, payload size, etc.) does not change or changes very little due to UE-specific higher layer signaling, and may be called fallback DCI.
  • DCI formats 0_1 and 1_1 correspond to DCI formats whose configuration (contents, payload size, etc.) changes due to UE-specific higher layer signaling or changes more than DCI formats 0_0 and 1_0, and may be called non-fallback DCI.
  • DCI format 0_0 monitored in the CSS is determined based on the size of the initial UL BWP.
  • DCI format 1_0 monitored in the CSS is determined based on the size of CORESET#0 if CORESET#0 is set for this cell, and is determined based on the size of the initial DL BWP if CORESET#0 is not set for this cell.
  • this cell may mean a cell that monitors DCI format 1_0.
  • this cell may mean a cell in which a DL BWP that monitors DCI format 1_0 is set.
  • the base station may transmit higher layer signaling including an information element (e.g., a SearchSpace information element) regarding a search space set and set a search space set and/or a DCI format for the UE to monitor the PDCCH.
  • an information element e.g., a SearchSpace information element
  • the information element regarding the search space set may be set for each of one or more DL BWPs (i.e., for each DL BWP).
  • "when CORESET#0 is set for this cell” may mean that an information element (ControlResourceSetZero) for setting CORESET#0 for this cell is transmitted from the base station or received by the UE.
  • DCI format 0_0 is monitored in the CSS, and if the number of information bits of the DCI format 0_0 before padding is smaller than the payload size of DCI format 1_0 monitored in the CSS for scheduling the same serving cell, multiple zero padding bits are generated for the DCI format 0_0 until the payload size is equal to that of the DCI format 1_0.
  • the bit width of the frequency domain resource allocation field of the DCI format 0_0 is reduced by truncating the first few most significant bits of the frequency domain resource allocation field so that the size of the DCI format 0_0 is equal to the size of the DCI format 1_0.
  • DCI format 0_0 monitored in the USS is determined based on the size of the active UL BWP.
  • DCI format 1_0 monitored in the USS is determined based on the size of the active DL BWP.
  • the size of DCI format 0_0 needs to be zero-padded.
  • ceil(X) means a value obtained by applying a ceiling function to a real number X.
  • DCI format 0_0 4 padding bits are included in DCI format 0_0. If the DCI format contains many padding bits, the efficiency of radio resource usage of the PDCCH decreases and the processing load of the UE increases.
  • the size of DCI format 1_0 monitored in the CSS is determined based on the size of a specific bandwidth. Note that the size of the specific bandwidth may simply be read as a specific bandwidth.
  • the size of the DCI format 1_0 may be determined based on the size of the specific bandwidth, rather than based on the size of CORESET#0.
  • the size of the DCI format 1_0 may be determined based on the size of the specific bandwidth. Note that, when the size of the CORESET#0 is equal to or smaller than the size of the eRedCap-specific initial DL BWP and/or the size of the eRedCap-specific initial UL BWP, the size of the DCI format 1_0 may be determined based on the size of the CORESET#0.
  • the size of DCI formats 0_0 and 1_0 monitored in the CSS may be determined in accordance with the above-mentioned Rel. 15-Rel. 17 NR. That is, the size of DCI formats 0_0 and 1_0 monitored in the CSS may be determined based on the size of CORESET#0 if CORESET#0 is configured for this cell, and may be determined based on the size of the initial DL BWP if CORESET#0 is not configured for this cell.
  • the eRedCap UE performs a process of matching the sizes of these DCI formats based on the sizes of DCI format 0_0 and DCI format 1_0 determined as described above.
  • the UE zero-pads the size of DCI format 0_0. Specifically, if the number of information bits of the DCI format 0_0 before padding is smaller than the payload size of the DCI format 1_0 monitored in the CSS for scheduling the same serving cell, multiple zero padding bits may be generated for the DCI format 0_0 until the payload size is equal to that of the DCI format 1_0.
  • the particular bandwidth may correspond to at least one of the following: The size of the eRedCap-specific initial DL BWP, A value determined based on the location, size, and SCS of the eRedCap-specific initial DL BWP; eRedCap specific initial UL BWP size, A value determined based on the position, size, and SCS of the eRedCap-specific initial UL BWP.
  • the specific bandwidth may be 15 RB (equivalent to approximately 3 MHz), 20 RB (equivalent to approximately 4 MHz), 25 RB (equivalent to approximately 5 MHz), etc.
  • the specific bandwidth may be 8 RB (equivalent to approximately 3 MHz), 10 RB (equivalent to approximately 4 MHz), 11 and/or 12 RB (equivalent to approximately 5 MHz), etc. That is, a specific size of a specific bandwidth may be used to calculate the size of DCI format 1_0 monitored in the CSS.
  • the base station may set the size of the eRedCap-specific initial DL BWP to be equal to a specific value (e.g., 25 RBs equivalent to approximately 5 MHz) or smaller than the specific value (e.g., 25 RBs equivalent to approximately 5 MHz). That is, the specific bandwidth may be equal to 25 RBs or smaller than 25 RBs.
  • the eRedCap-specific initial DL BWP and the eRedCap-specific initial UL BWP may be configured together for the UE using one field (e.g., initialBWP-RedCap-r18) or may be configured respectively using separate fields (e.g., initialDownlinkBWP-RedCap-r18, initialUplinkBWP-RedCap-r18).
  • These fields may be included in the ServingCellConfigCommonSIB of SIB1, or in a SIB other than SIB1.
  • these fields may include BWP information elements including parameters locationAndBandwidth, subcarrierSpacing, and cyclicPrefix, as well as existing fields related to the initial BWP (initialDownlinkBWP, initialUplinkBWP, initialDownlinkBWP-RedCap-r17, initialUplinkBWP-RedCap-r17).
  • the location and size of the eRedCap-specific initial BWP may be set by the locationAndBandwidth described above.
  • the SCS of the eRedCap-specific initial BWP may be set by the subcarrierSpacing described above.
  • the cyclic prefix of the eRedCap-specific initial BWP may be set by the cyclicPrefix described above.
  • the setting of an eRedCap-specific initial DL BWP in a UE may correspond to the UE receiving first configuration information regarding an initial downlink bandwidth (initial Downlink BWP) less than a specific bandwidth (e.g., 20 MHz).
  • the first configuration information is configuration information regarding an eRedCap-specific initial DL BWP, and may be, for example, the above-mentioned initialBWP-RedCap-r18 or initialDownlinkBWP-RedCap-r18.
  • the setting of an eRedCap-specific initial UL BWP in a UE may correspond to the UE receiving second configuration information regarding an initial uplink bandwidth (initial Uplink BWP) less than a specific bandwidth (e.g., 20 MHz).
  • the second configuration information is configuration information regarding an eRedCap-specific initial UL BWP, and may be, for example, the above-mentioned initialBWP-RedCap-r18 or initialUplinkBWP-RedCap-r18.
  • the UE may be configured with the same size (e.g., number of RBs) for the eRedCap-specific initial DL BWP and the eRedCap-specific initial UL BWP, or may be configured with different or independent sizes.
  • the UE may be configured with an eRedCap-specific initial DL BWP having a size of 11 PRBs and an eRedCap-specific initial UL BWP having a size of 12 PRBs.
  • the UE may assume that the size of the eRedCap-specific initial DL BWP is smaller or larger than the size of the eRedCap-specific initial UL BWP.
  • the UE may be notified of information used to determine whether the first number of PRBs (e.g., 11 PRBs) or the second number of PRBs (e.g., 12 PRBs) is used for DCI size alignment.
  • the base station may transmit higher layer signaling including the information to the UE.
  • the information may be notified in association with the eRedCap-specific initial DL BWP and/or the eRedCap-specific initial UL BWP.
  • the information may be included in an information element regarding the BWP (e.g., a BWP information element), an information element regarding the search space set (e.g., a SearchSpace information element), or other information element.
  • the UE may perform the DCI size alignment of (3.3) above based on the first number of PRBs.
  • the eRedCap-specific initial DL BWP may correspond to an eRedCap-specific initial DL BWP for a data channel (e.g., PDSCH).
  • the UE may receive at least the DL-SCH in the eRedCap-specific initial DL BWP for a data channel.
  • the UE may not receive the PDCCH in the eRedCap-specific initial DL BWP for a data channel.
  • the eRedCap-specific initial DL BWP for the data channel may be a different BWP than the RedCap-specific initial DL BWP (e.g., the initial DL BWP set by initialDownlinkBWP-RedCap-r17) and/or the eRedCap-specific initial DL BWP for the control channel (e.g., PDCCH), or may be the same BWP.
  • the RedCap-specific initial DL BWP e.g., the initial DL BWP set by initialDownlinkBWP-RedCap-r17
  • the eRedCap-specific initial DL BWP for the control channel e.g., PDCCH
  • the eRedCap specific initial DL BWP for the data channel may be included in the RedCap specific initial DL BWP and/or the eRedCap specific initial DL BWP for the control channel (the frequency resources may be completely included or may overlap in part).
  • the eRedCap specific initial DL BWP for the data channel may be a BWP set by a field indicating the eRedCap specific initial DL BWP for the data channel (e.g., initialDownlinkBWP-RedCapForData-r18).
  • the eRedCap specific initial DL BWP for the control channel may be a BWP in which at least a CSS is set or a BWP in which the DCI format is monitored in the CSS.
  • the UE does not need to receive the DL-SCH in the eRedCap specific initial DL BWP for the control channel.
  • the eRedCap-specific initial DL BWP for the control channel may be a RedCap-specific initial DL BWP (e.g., the initial DL BWP set by initialDownlinkBWP-RedCap-r17), an eRedCap-specific initial DL BWP (e.g., the initial DL BWP set by initialDownlinkBWP-RedCap-r18), or a BWP set by a field indicating the eRedCap-specific initial DL BWP for the control channel (e.g., initialDownlinkBWP-RedCapForControl-r18).
  • a RedCap-specific initial DL BWP e.g., the initial DL BWP set by initialDownlinkBWP-RedCap-r17
  • an eRedCap-specific initial DL BWP e.g., the initial DL BWP set by initialDownlinkBWP-RedCap-r18
  • the UE may determine that the eRedCap specific initial DL BWP for the control channel is the eRedCap specific initial DL BWP for the data channel. For example, assume a case in which the eRedCap specific initial DL BWP for the data channel is set by the first information (e.g., initialDownlinkBWP-RedCap-r18) and the eRedCap specific initial DL BWP for the control channel is set by the second information (e.g., initialDownlinkBWP-RedCapForControl-r18). In this case, a UE that receives the first information and does not receive the second information may determine the eRedCap specific initial DL BWP for the control channel based on the first information.
  • the first information e.g., initialDownlinkBWP-RedCap-r18
  • the eRedCap specific initial DL BWP for the control channel is set by the second information (e.g., initialDownlinkBWP-Re
  • the eRedCap-specific initial UL BWP may correspond to the eRedCap-specific initial UL BWP for a data channel (e.g., PUSCH).
  • the UE may transmit at least on the UL-SCH and on the RACH in the eRedCap-specific initial UL BWP for a data channel. Note that the transmission on the RACH may be performed when a PRACH opportunity is set.
  • the UE may not transmit on the PUCCH in the eRedCap-specific initial UL BWP for a data channel.
  • the eRedCap-specific initial UL BWP for the data channel may be a different BWP than or the same as the RedCap-specific initial UL BWP (e.g., the initial UL BWP set by initialUplinkBWP-RedCap-r17) and/or the eRedCap-specific initial UL BWP for the control channel (e.g., PUCCH).
  • the RedCap-specific initial UL BWP e.g., the initial UL BWP set by initialUplinkBWP-RedCap-r17
  • the eRedCap-specific initial UL BWP for the control channel e.g., PUCCH
  • the eRedCap specific initial UL BWP for the data channel may be included in the RedCap specific initial UL BWP and/or the eRedCap specific initial UL BWP for the control channel (the frequency resources may be completely included or may overlap in part).
  • the eRedCap specific initial UL BWP for the data channel may be a BWP set by a field indicating the eRedCap specific initial UL BWP for the data channel (e.g., initialUplinkBWP-RedCapForData-r18).
  • the eRedCap specific initial UL BWP for the control channel may be a BWP in which at least UCI or PUCCH is transmitted.
  • the UE may not transmit on the UL-SCH and/or on the RACH in the eRedCap specific initial UL BWP for the control channel.
  • the eRedCap-specific initial UL BWP for the control channel may be a RedCap-specific initial UL BWP (e.g., the initial UL BWP set by initialUplinkBWP-RedCap-r17), an eRedCap-specific initial UL BWP (e.g., the initial UL BWP set by initialUplinkBWP-RedCap-r18), or a BWP set by a field indicating the eRedCap-specific initial UL BWP for the control channel (e.g., initialUplinkBWP-RedCapForControl-r18).
  • a RedCap-specific initial UL BWP e.g., the initial UL BWP set by initialUplinkBWP-RedCap-r17
  • an eRedCap-specific initial UL BWP e.g., the initial UL BWP set by initialUplinkBWP-RedCap-r18
  • the UE may determine that the eRedCap specific initial UL BWP for the control channel is the eRedCap specific initial UL BWP for the data channel. For example, assume a case in which the eRedCap specific initial UL BWP for the data channel is set by the third information (e.g., initialUplinkBWP-RedCap-r18) and the eRedCap specific initial UL BWP for the control channel is set by the fourth information (e.g., initialUplinkBWP-RedCapForControl-r18). In this case, a UE that receives the third information but does not receive the fourth information may determine the eRedCap specific initial UL BWP for the control channel based on the third information.
  • the third information e.g., initialUplinkBWP-RedCap-r18
  • the fourth information e.g., initialUplinkBWP-RedCapForControl-r18
  • DCI Format 0_0/1_0 The DCI formats (e.g., DCI formats 0_0 and 1_0) monitored in the CSS in (3.3) above may be DCI formats monitored in a CSS configured for an eRedCap-specific DL BWP for a control channel (e.g., an eRedCap-specific initial DL BWP for a control channel and/or an eRedCap-specific dedicated DL BWP for a control channel described in (3.4) above), or may be DCI formats monitored in a CSS configured for a RedCap-specific initial DL BWP.
  • the eRedCap-specific BWP may be a concept that includes an eRedCap-specific initial BWP and an eRedCap-specific dedicated BWP.
  • a simple "BWP" (without “initial” or “dedicated") in this disclosure may be read as an initial BWP and/or a dedicated BWP.
  • the eRedCap specific dedicated DL BWP for control channel (which may also be referred to as eRedCap UE specific dedicated DL BWP for control channel) may be configured by the BWP-Downlink information element, BWP-Downlink-RedCap-r18 information element, or BWP-Downlink-RedCapForControl-r18 information element included in the ServingCellConfig information element. These information elements may include a BWP information element that includes parameters locationAndBandwidth, subcarrierSpacing, and cyclicPrefix, etc.
  • the location and size of the eRedCap specific dedicated DL BWP for the control channel may be set by the above locationAndBandwidth.
  • the SCS of the eRedCap specific dedicated DL BWP for the control channel may be set by the above subcarrierSpacing.
  • the cyclic prefix of the eRedCap specific dedicated DL BWP for the control channel may be set by the above cyclicPrefix.
  • At least one PDCCH CSS set of types 0, 0A, 0B, 1, 1A, 2, 2A, and 3 may be configured.
  • the UE may monitor PDCCH candidates according to the configured CSS set in the eRedCap specific DL BWP for the control channel.
  • the DCI format 0_0 monitored in the USS may be determined based on the size of the active UL BWP.
  • the active UL BWP may be at least one of an eRedCap specific initial UL BWP for a control channel, an eRedCap specific dedicated UL BWP for a control channel, an eRedCap specific initial UL BWP for a data channel, an eRedCap specific dedicated UL BWP for a data channel, and a RedCap specific initial UL BWP.
  • the eRedCap specific dedicated UL BWP for the control channel and/or the eRedCap specific dedicated UL BWP for the data channel may be configured by the BWP-Uplink information element, BWP-Uplink-RedCap-r18 information element, BWP-Uplink-RedCapForControl-r18 information element, or BWP-Uplink-RedCapForData-r18 information element included in the ServingCellConfig information element.
  • the DCI format 1_0 monitored in the USS may be determined based on the size of the active DL BWP.
  • the active DL BWP may be at least one of an eRedCap specific initial DL BWP for a control channel, an eRedCap specific dedicated DL BWP for a control channel, an eRedCap specific initial DL BWP for a data channel, an eRedCap specific dedicated DL BWP for a data channel, and a RedCap specific initial DL BWP.
  • the eRedCap specific dedicated DL BWP for the data channel may be set by the BWP-Downlink information element, BWP-Downlink-RedCap-r18 information element, or BWP-Downlink-RedCapForData-r18 information element included in the ServingCellConfig information element.
  • appropriate DCI size alignment can be performed for eRedCap UE.
  • the DCI format 0_0 in the above-described embodiment may be replaced with any DCI (which may be referred to as UL DCI) for scheduling a data channel for uplink (e.g., PUSCH), a first DCI format, etc.
  • the DCI format 1_0 in the above-described embodiment may be replaced with any DCI (which may be referred to as DL DCI) for scheduling a data channel for downlink (e.g., PDSCH), a second DCI format, etc.
  • the DCI formats 0_0 and 1_0 that are targets of the DCI size alignment in the above-described embodiment are DCI formats monitored in the same type of search space set (e.g., CSS, USS) for scheduling the same serving cell, but this is not limited thereto.
  • the present disclosure also covers embodiments in which any eRedCap-specific initial UL BWP in the above embodiment is replaced with an eRedCap-specific dedicated UL BWP or active UL BWP, and any eRedCap-specific initial DL BWP is replaced with an eRedCap-specific dedicated DL BWP or active DL BWP.
  • the frequency range in which the eRedCap UE in this disclosure operates is not limited to FR1.
  • the above-described method in this disclosure may be applied to control of BWP in FR2 (FR2-1, 2-2), FR3, FR4, etc.
  • a parameter indicating the location of the BWP and/or a parameter indicating the bandwidth of the BWP may be used.
  • the ServingCellConfigCommonSIB information element in SIB1 may be interpreted as the ServingCellConfigCommon information element included in another RRC message (e.g., information for reconfiguration with synchronization (ReconfigurationWithSync field) or information for a secondary cell (SCellConfig field) in a CellGroupConfig information element indicating the configuration of a cell group).
  • RRC message e.g., information for reconfiguration with synchronization (ReconfigurationWithSync field) or information for a secondary cell (SCellConfig field) in a CellGroupConfig information element indicating the configuration of a cell group.
  • BWP may be interchangeably read as at least one of the following: subcarrier, resource element, subband, resource block (RB), physical RB (PRB), common RB (CRB), virtual RB (VRB), resource block set, frequency band, bandwidth, frequency bandwidth, frequency resource, frequency domain resource, etc.
  • search space one or more search spaces may be referred to as a search space set.
  • search space “search space,” “search space set,” “search space setting,” “search space set setting,” “CORESET,” “CORESET setting,” etc. may be read as interchangeable.
  • channels and signals may be interpreted interchangeably.
  • Radio Resource Control RRC
  • RRC parameters RRC parameters
  • RRC messages higher layer parameters
  • fields IEs
  • IEs information elements
  • the RedCap-specific BWP (including the RedCap-specific initial BWP) may correspond to a BWP having a bandwidth up to the maximum bandwidth (e.g., 20 MHz) available to the RedCap UE.
  • the eRedCap-specific (initial) BWP for the control channel may correspond to a BWP having a bandwidth up to the maximum bandwidth (e.g., 20 MHz) available to the eRedCap UE.
  • the eRedCap-specific BWP (including the eRedCap-specific initial BWP, the eRedCap-specific (initial) BWP for the data channel, etc.) may correspond to a BWP having a bandwidth up to a reduced bandwidth (e.g., 5 MHz).
  • the information, parameters, etc. described in this disclosure may be represented using absolute values, may be represented using relative values from a predetermined value, or may be represented using other corresponding information.
  • a radio resource may be indicated by a predetermined index.
  • the information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies.
  • the data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, optical fields or photons, or any combination thereof.
  • Input/output information, signals, etc. may be stored in a specific location (e.g., memory) or may be managed using a management table. Input/output information, signals, etc. may be overwritten, updated, or added to. Output information, signals, etc. may be deleted. Input information, signals, etc. may be transmitted to another device.
  • a specific location e.g., memory
  • Input/output information, signals, etc. may be overwritten, updated, or added to.
  • Output information, signals, etc. may be deleted.
  • Input information, signals, etc. may be transmitted to another device.
  • the notification of information is not limited to the aspects/embodiments described in this disclosure, and may be performed using other methods.
  • the notification of information in this disclosure may be performed by physical layer signaling (e.g., Downlink Control Information (DCI), Uplink Control Information (UCI)), higher layer signaling (e.g., Radio Resource Control (RRC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB)), etc.), Medium Access Control (MAC) signaling), other signals, or a combination of these.
  • DCI Downlink Control Information
  • UCI Uplink Control Information
  • RRC Radio Resource Control
  • MIB Master Information Block
  • SIB System Information Block
  • MAC Medium Access Control
  • the physical layer signaling may be called Layer 1/Layer 2 (L1/L2) control information (L1/L2 control signal), L1 control information (L1 control signal), etc.
  • the RRC signaling may be called an RRC message, for example, an RRC Connection Setup message, an RRC Connection Reconfiguration message, etc.
  • the MAC signaling may be notified, for example, using a MAC Control Element (CE).
  • CE MAC Control Element
  • notification of specified information is not limited to explicit notification, but may be implicit (e.g., by not notifying the specified information or by notifying other information).
  • Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executable files, threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
  • Software, instructions, information, etc. may also be transmitted and received via a transmission medium.
  • a transmission medium For example, if the software is transmitted from a website, server, or other remote source using at least one of wired technologies (such as coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL)), and/or wireless technologies (such as infrared, microwave, etc.), then at least one of these wired and wireless technologies is included within the definition of a transmission medium.
  • wired technologies such as coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL)
  • wireless technologies such as infrared, microwave, etc.
  • BS base station
  • eNB eNodeB
  • gNB gNodeB
  • access point "Transmission Point (TP)
  • Reception Point RP
  • Transmission/Reception Point TRP
  • panel "cell", “sector”, “cell group”, “carrier”, “component carrier”, etc.
  • MS Mobile Station
  • UE User Equipment
  • At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a wireless communication device, etc.
  • at least one of the base station and the mobile station may be a device mounted on a moving object, the moving object itself, etc.
  • the moving object may be a vehicle (e.g., a car, an airplane, etc.), an unmanned moving object (e.g., a drone, an autonomous vehicle, etc.), or a robot (manned or unmanned).
  • a vehicle e.g., a car, an airplane, etc.
  • an unmanned moving object e.g., a drone, an autonomous vehicle, etc.
  • a robot manned or unmanned.
  • at least one of the base station and the mobile station may be a device that does not necessarily move during communication operations.
  • each aspect/embodiment described in this disclosure may be used alone, in combination, or switched between depending on the implementation.
  • the processing procedures, sequences, flow charts, etc. of each aspect/embodiment described in this disclosure may be rearranged as long as there is no inconsistency.
  • the methods described in this disclosure present elements of various steps using an exemplary order, and are not limited to the particular order presented.
  • the phrase “based on” does not mean “based only on,” unless expressly stated otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
  • any reference to an element using a designation such as "first,” “second,” etc., used in this disclosure does not generally limit the quantity or order of those elements. These designations may be used in this disclosure as a convenient method of distinguishing between two or more elements. Thus, a reference to a first and second element does not imply that only two elements may be employed or that the first element must precede the second element in some way.
  • A/B and “at least one of A and B” may be interpreted as interchangeable. Also, in this disclosure, “A/B/C” may mean “at least one of A, B, and C.”
  • a and B are different may mean “A and B are different from each other.”
  • the term may also mean “A and B are each different from C.”
  • Terms such as “separate” and “combined” may also be interpreted in the same way as “different.”
  • a communication unit that receives first configuration information related to an initial downlink bandwidth that is less than a specific bandwidth; a processing unit that, when the communication unit receives second configuration information related to an initial uplink bandwidth less than the specific bandwidth, determines a size of a first downlink control information (DCI) format for scheduling a physical downlink shared channel based on the initial downlink bandwidth when a control resource set (CORESET) #0 is configured for a cell.
  • DCI downlink control information
  • the terminal according to any one of Supplementary Note 1 to Supplementary Note 6, wherein the first DCI format is a DCI format monitored in a common search space configured for the initial downlink bandwidth or a dedicated downlink bandwidth for a control channel.
  • Appendix 8 a communication unit that transmits first configuration information regarding an initial downlink bandwidth that is less than a specific bandwidth; a processing unit that determines a size of a first downlink control information (DCI) format for scheduling a physical downlink shared channel based on the initial downlink bandwidth when the communication unit transmits second configuration information related to an initial uplink bandwidth less than the specific bandwidth and when a control resource set (CORESET) #0 is configured for a cell.
  • DCI downlink control information
  • a method implemented in a terminal comprising: receiving first configuration information relating to an initial downlink bandwidth less than a particular bandwidth; and when the communication unit receives second configuration information related to an initial uplink bandwidth less than the specific bandwidth, and when a Control Resource Set (CORESET) #0 is configured for a cell, determining a size of a first Downlink Control Information (DCI) format for scheduling a physical downlink shared channel based on the initial downlink bandwidth.
  • CORESET Control Resource Set

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A terminal according to an aspect of the present disclosure comprises: a communication unit that receives first setting information related to an initial downlink bandwidth less than a particular bandwidth; and a processing unit that, in a case of the communication unit receiving second setting information related to an initial uplink bandwidth less than the particular bandwidth and of a control resource set (CORESET) #0 being set for a cell, determines, on the basis of the initial downlink bandwidth, the size of a first downlink control information (DCI) format used for scheduling a physical downlink shared channel.

Description

端末、基地局、及び通信方法Terminal, base station, and communication method 関連出願の相互参照CROSS-REFERENCE TO RELATED APPLICATIONS
 この出願は、2022年9月26日に日本に出願された特許出願第2022-153148号を基礎としており、基礎の出願の内容を、全体的に、参照により援用している。 This application is based on patent application No. 2022-153148 filed in Japan on September 26, 2022, and the contents of the original application are incorporated by reference in their entirety.
 本開示は、移動通信システムにおける端末、基地局、及び通信方法に関する。 This disclosure relates to a terminal, a base station, and a communication method in a mobile communication system.
 移動通信システムの標準化プロジェクトである3rd Generation Partnership Project(3GPP(登録商標))におけるNew Radio(NR)技術仕様のリリース17(Rel.17)において、産業用センサ、監視カメラ、及びウェアラブル等のユースケースに適した低性能の通信装置(UE:User Equipment)のタイプが導入されている。このような端末タイプ(「UEタイプ」とも称する)は、「低減された能力(Reduced Capablity(RedCap)) UE」とも称される。 In Release 17 (Rel. 17) of the New Radio (NR) technical specifications in the 3rd Generation Partnership Project (3GPP (registered trademark)), a standardization project for mobile communication systems, a type of low-performance communication device (UE: User Equipment) suitable for use cases such as industrial sensors, surveillance cameras, and wearables is introduced. Such terminal types (also called "UE types") are also called "Reduced Capability (RedCap) UEs."
 3GPP NR技術仕様のリリース18において、RedCap UEよりもさらに複雑さが軽減された新たな端末タイプを導入することが検討されている。このような新たな端末タイプは、リリース17で導入されたRedCap UEと、LTE(Long Term Evolution)のLPWA(Low Power Wide Area)との間の性能であることが想定されている。このような新たな端末タイプは、「eRedCap(enhanced RedCap) UE」と称されてもよい。 In Release 18 of the 3GPP NR technical specifications, it is being considered to introduce a new terminal type with even less complexity than RedCap UE. Such a new terminal type is expected to have performance between the RedCap UE introduced in Release 17 and the LPWA (Low Power Wide Area) of LTE (Long Term Evolution). Such a new terminal type may be referred to as "eRedCap (enhanced RedCap) UE".
 eRedCap UEについては、(a)FR1(Frequency Range 1)における対応可能な周波数帯域幅を所定帯域幅(例えば、5MHz)に低減すること、及び、(b)ピークデータレートを削減するためにFR1におけるデータチャネルに対する周波数帯域幅を所定帯域幅に低減することが提案されている(例えば、非特許文献1から4参照)。ここでデータチャネルとは、データを伝送する物理チャネル、すなわち、物理下りリンク共有チャネル(PDSCH:Physical Downlink Shared Channel)及び/又は物理上りリンク共有チャネル(PUSCH:Physical Uplink Shared Channel)をいう。なお、周波数帯域幅は単に「帯域幅」とも称される。 For eRedCap UE, it has been proposed to (a) reduce the available frequency bandwidth in FR1 (Frequency Range 1) to a predetermined bandwidth (e.g., 5 MHz), and (b) reduce the frequency bandwidth for the data channel in FR1 to a predetermined bandwidth in order to reduce the peak data rate (see, for example, non-patent documents 1 to 4). Here, the data channel refers to a physical channel that transmits data, i.e., the physical downlink shared channel (PDSCH) and/or the physical uplink shared channel (PUSCH). The frequency bandwidth is also simply referred to as the "bandwidth".
 上記(a)の方法では、UEのRF(Radio Frequency)部及びBB(Base Band)部の両方について対応可能な帯域幅(すなわち、最大帯域幅)を低減し、RF部及びBB部の複雑さを軽減することが可能である。一方、上記(b)の方法では、主にUEのBB部について対応可能な帯域幅を低減し、BB部の複雑さを軽減することが可能である。また、上記(b)の方法では、PDSCH及び/又はPUSCH以外の物理チャネル構成について技術仕様の変更を小さくすることが可能である。 The above method (a) reduces the bandwidth (i.e., maximum bandwidth) that can be supported by both the RF (Radio Frequency) section and the BB (Base Band) section of the UE, and makes it possible to reduce the complexity of the RF section and the BB section. On the other hand, the above method (b) reduces the bandwidth that can be supported mainly by the BB section of the UE, and makes it possible to reduce the complexity of the BB section. In addition, the above method (b) makes it possible to reduce the change in technical specifications for the configuration of physical channels other than the PDSCH and/or PUSCH.
 しかしながら、eRedCap UEが、RedCap UEよりも低減された帯域幅を利用する場合に、既存のRel.17 NRまでの3GPP規格に従うと、通信スループットが低下するおそれがある。 However, if an eRedCap UE uses a reduced bandwidth compared to a RedCap UE, there is a risk that communication throughput will decrease if the existing 3GPP standards up to Rel. 17 NR are followed.
 そこで、本開示は、RedCap UEよりも低減された帯域幅が利用される場合であっても適切に通信を実施できる端末、基地局、及び通信方法を提供することを目的の1つとする。 Therefore, one of the objectives of this disclosure is to provide a terminal, a base station, and a communication method that can appropriately perform communication even when a bandwidth that is reduced compared to RedCap UE is used.
 本開示の一態様に係る端末は、特定の帯域幅未満の初期下りリンク帯域幅に関する第1の設定情報を受信する通信部と、特定の帯域幅未満の初期上りリンク帯域幅に関する第2の設定情報を通信部が受信する場合であって、制御リソースセット(Control Resource Set(CORESET))#0がセルのために設定される場合、物理下りリンク共有チャネルをスケジューリングするための第1の下りリンク制御情報(Downlink Control Information(DCI))フォーマットのサイズを、初期下りリンク帯域幅に基づいて決定する処理部と、を含む。 A terminal according to one embodiment of the present disclosure includes a communication unit that receives first configuration information regarding an initial downlink bandwidth less than a specific bandwidth, and a processing unit that determines, when the communication unit receives second configuration information regarding an initial uplink bandwidth less than the specific bandwidth and when a control resource set (CORESET) #0 is configured for a cell, a size of a first downlink control information (DCI) format for scheduling a physical downlink shared channel based on the initial downlink bandwidth.
 本開示の一態様に係る基地局は、特定の帯域幅未満の初期下りリンク帯域幅に関する第1の設定情報を送信する通信部と、特定の帯域幅未満の初期上りリンク帯域幅に関する第2の設定情報を通信部が送信する場合であって、制御リソースセット(Control Resource Set(CORESET))#0をセルのために設定する場合、物理下りリンク共有チャネルをスケジューリングするための第1の下りリンク制御情報(Downlink Control Information(DCI))フォーマットのサイズを、初期下りリンク帯域幅に基づいて決定する処理部と、を含む。 A base station according to one embodiment of the present disclosure includes a communication unit that transmits first configuration information regarding an initial downlink bandwidth less than a specific bandwidth, and a processing unit that determines, when the communication unit transmits second configuration information regarding an initial uplink bandwidth less than the specific bandwidth and when a control resource set (CORESET) #0 is configured for a cell, a size of a first downlink control information (DCI) format for scheduling a physical downlink shared channel based on the initial downlink bandwidth.
 本開示の一態様に係る端末において実施される通信方法は、特定の帯域幅未満の初期下りリンク帯域幅に関する第1の設定情報を受信することと、特定の帯域幅未満の初期上りリンク帯域幅に関する第2の設定情報を通信部が受信する場合であって、制御リソースセット(Control Resource Set(CORESET))#0がセルのために設定される場合、物理下りリンク共有チャネルをスケジューリングするための第1の下りリンク制御情報(Downlink Control Information(DCI))フォーマットのサイズを、初期下りリンク帯域幅に基づいて決定することと、を含む。 A communication method implemented in a terminal according to one embodiment of the present disclosure includes receiving first configuration information related to an initial downlink bandwidth less than a specific bandwidth, and, when a communication unit receives second configuration information related to an initial uplink bandwidth less than the specific bandwidth, determining a size of a first downlink control information (Downlink Control Information (DCI)) format for scheduling a physical downlink shared channel based on the initial downlink bandwidth when a control resource set (CORESET) #0 is configured for a cell.
 本開示の一態様によれば、RedCap UEよりも低減された帯域幅が利用される場合であっても適切に通信を実施できる。 According to one aspect of the present disclosure, communication can be performed appropriately even when a reduced bandwidth is used compared to RedCap UE.
本開示の一実施形態に係るシステムの概略的な構成の一例を示す図である。FIG. 1 is a diagram illustrating an example of a schematic configuration of a system according to an embodiment of the present disclosure. 本開示の一実施形態に係る基地局の概略的な機能構成の一例を示す図である。FIG. 2 is a diagram illustrating an example of a schematic functional configuration of a base station according to an embodiment of the present disclosure. 本開示の一実施形態に係る基地局の概略的なハードウェア構成の一例を示す図である。FIG. 2 is a diagram illustrating an example of a schematic hardware configuration of a base station according to an embodiment of the present disclosure. 本開示の一実施形態に係るUEの概略的な機能構成の一例を示す図である。A diagram showing an example of a schematic functional configuration of a UE according to an embodiment of the present disclosure. 本開示の一実施形態に係るUEの概略的なハードウェア構成の一例を示す図である。A figure showing an example of a schematic hardware configuration of a UE according to an embodiment of the present disclosure. MIBに含まれるpdcch-ConfigSIB1に含まれるパラメータであるcontrolResourceSetZeroの値と、CORESET#0に対するパラメータとの対応関係の一例を示す図である。13 is a diagram showing an example of a correspondence relationship between the value of controlResourceSetZero, which is a parameter included in pdcch-ConfigSIB1 included in the MIB, and the parameters for CORESET #0. MIBに含まれるpdcch-ConfigSIB1に含まれるパラメータであるsearchSpaceZeroの値と、サーチスペースセット#0に対するパラメータとの対応関係の一例を示す図である。A figure showing an example of the correspondence between the value of searchSpaceZero, which is a parameter included in pdcch-ConfigSIB1 included in the MIB, and the parameters for search space set #0. 全チャネルに対して低減された帯域幅を用いるeRedCap UEが利用する帯域の一例を示す図である。A figure showing an example of a band used by an eRedCap UE that uses reduced bandwidth for all channels. データチャネルのみに対して低減された帯域幅を用いるeRedCap UEが利用する帯域の一例を示す図である。A figure showing an example of a band used by an eRedCap UE that uses reduced bandwidth for data channels only. Rel.17 NRまでのDCIサイズアラインメントをeRedCap UEに対して適用する場合の課題を示す図である。FIG. 1 illustrates the challenges of applying DCI size alignment up to Rel. 17 NR to eRedCap UEs. 本開示の一実施形態に係るeRedCap UEのためのDCIサイズアラインメントの一例を示す図である。A figure showing an example of DCI size alignment for eRedCap UE in one embodiment of the present disclosure.
 以下、本開示の実施の形態について添付図面を参照して詳細に説明する。なお、本明細書及び図面において、同様に説明されることが可能な要素については、同一の符号を付することによって、重複説明が省略され得る。 Below, the embodiments of the present disclosure will be described in detail with reference to the accompanying drawings. Note that in this specification and drawings, elements that can be described in the same way may be designated by the same reference numerals to avoid redundant description.
 説明は、以下の順序で行われる。
 1.システムの構成
 2.基地局の構成
 3.ユーザ機器の構成
 4.動作例
The explanation will be given in the following order:
1. System configuration 2. Base station configuration 3. User equipment configuration 4. Operation example
 <1.システムの構成>
 図1を参照して、本開示の実施形態に係るシステム1の構成の例を説明する。図1を参照すると、システム1は、基地局100、ユーザ機器(User Equipment:UE)30、UE40及びUE200を含む。
1. System Configuration
An example of the configuration of a system 1 according to an embodiment of the present disclosure will be described with reference to Fig. 1. Referring to Fig. 1, the system 1 includes a base station 100, a user equipment (UE) 30, a UE 40, and a UE 200.
 例えば、システム1は、3GPP TSに準拠したシステムである。より具体的には、例えば、システム1は、5G又はNR(New Radio)のTSに準拠したシステムである。当然ながら、システム1は、この例に限定されない。 For example, system 1 is a system that complies with 3GPP TS. More specifically, for example, system 1 is a system that complies with 5G or NR (New Radio) TS. Naturally, system 1 is not limited to this example.
 (1)基地局100
 基地局100は、無線アクセスネットワーク(radio access network:RAN)のノードであり、基地局100のカバレッジエリア10内に位置するUEと通信する。例えば、基地局100は、UE30、UE40及びUE200と通信する。
(1) Base Station 100
The base station 100 is a node in a radio access network (RAN) and communicates with UEs located within a coverage area 10 of the base station 100. For example, the base station 100 communicates with UE30, UE40, and UE200.
 例えば、基地局100は、RANのプロトコルスタックを使用してUE(例えば、UE30、UE40又はUE200)と通信する。例えば、当該プロトコルスタックは、RRC、SDAP(service data adaptation protocol)、PDCP(packet data convergence protocol)、RLC(radio link control)、MAC(medium access control)、及び、物理(physical:PHY)レイヤのプロトコルを含む。あるいは、上記プロトコルスタックは、これらのプロトコルの全てを含まず、これらのプロトコルの一部を含んでもよい。 For example, the base station 100 communicates with a UE (e.g., UE30, UE40, or UE200) using a protocol stack of the RAN. For example, the protocol stack includes RRC, service data adaptation protocol (SDAP), packet data convergence protocol (PDCP), radio link control (RLC), medium access control (MAC), and physical (PHY) layer protocols. Alternatively, the protocol stack may include some of these protocols rather than all of them.
 例えば、基地局100は、gNBである。gNBは、UEに対するNRユーザプレーン及び制御プレーンプロトコル終端(NR user plane and control plane protocol terminations towards the UE)を提供し、NGインターフェースを介して5GC(5G Core Network)に接続されるノードである。あるいは、基地局100は、en-gNBであってもよい。en-gNBは、UEに対するNRユーザプレーン及び制御プレーンプロトコル終端を提供し、EN-DC(E-UTRA-NR Dual Connectivity)においてセカンダリノードとして動作するノードである。 For example, the base station 100 is a gNB. The gNB is a node that provides NR user plane and control plane protocol terminations towards the UE and is connected to the 5G Core Network (5GC) via an NG interface. Alternatively, the base station 100 may be an en-gNB. The en-gNB is a node that provides NR user plane and control plane protocol terminations towards the UE and operates as a secondary node in E-UTRA-NR Dual Connectivity (EN-DC).
 基地局100は、複数のノードを含んでもよい。当該複数のノードは、上記プロトコルスタックに含まれる上位レイヤ(higher layer)をホストする第1のノードと、当該プロトコルスタックに含まれる下位レイヤ(lower layer)をホストする第2のノードとを含んでもよい。上記上位レイヤは、RRC、SDAP及びPDCPを含んでもよく、上記下位レイヤは、RLC、MAC、及びPHYレイヤを含んでもよい。上記第1のノードは、CU(central unit)であってもよく、上記第2のノードは、DU(distributed unit)であってもよい。なお、上記複数のノードは、PHYレイヤの下位の処理を行う第3のノードを含んでもよく、上記第2のノードは、PHYレイヤの上位の処理を行ってもよい。当該第3のノードは、RU(radio unit)であってもよい。 The base station 100 may include a plurality of nodes. The plurality of nodes may include a first node that hosts a higher layer included in the protocol stack, and a second node that hosts a lower layer included in the protocol stack. The higher layer may include RRC, SDAP, and PDCP, and the lower layer may include RLC, MAC, and a PHY layer. The first node may be a CU (central unit), and the second node may be a DU (distributed unit). The plurality of nodes may include a third node that performs processing below the PHY layer, and the second node may perform processing above the PHY layer. The third node may be a RU (radio unit).
 あるいは、基地局100は、上記複数のノードのうちの1つであってもよく、上記複数のノードのうちの他のユニットと接続されていてもよい。 Alternatively, the base station 100 may be one of the multiple nodes, and may be connected to other units of the multiple nodes.
 基地局100は、IAB(integrated access and backhaul)ドナー又はIABノードであってもよい。 The base station 100 may be an integrated access and backhaul (IAB) donor or an IAB node.
 (2)UE30、UE40及びUE200
 UE30、UE40及びUE200の各々は、基地局と通信する。例えば、UE30、UE40及びUE200の各々は、基地局100のカバレッジエリア10内に位置する場合に、基地局100と通信する。
(2) UE30, UE40, and UE200
Each of the UE 30, UE 40, and UE 200 communicates with a base station. For example, each of the UE 30, UE 40, and UE 200 communicates with the base station 100 when the UE 30, UE 40, and UE 200 is located within a coverage area 10 of the base station 100.
 例えば、UE30、UE40及びUE200の各々は、上記プロトコルスタックを使用して基地局(例えば、基地局100)と通信する。 For example, each of UE30, UE40, and UE200 communicates with a base station (e.g., base station 100) using the above protocol stack.
 例えば、UE30は、RedCap UEではない通常のUEであり、UE40及びUE200は、RedCap UEである。RedCap UEは、低減されたケイパビリティ(reduced capability)をもつUEである。さらに、UE40は、第1のタイプのRedCap UEであり、UE200は、第2のタイプのRedCap UEである。 For example, UE30 is a normal UE that is not a RedCap UE, and UE40 and UE200 are RedCap UEs. A RedCap UE is a UE with reduced capability. Furthermore, UE40 is a first type of RedCap UE, and UE200 is a second type of RedCap UE.
 上記第1のタイプのRedCap UEは、最大帯域幅がFR1については20MHzであり、FR2については100MHzであるUEである。なお、FR1は、410MHzから7125MHzの周波数レンジであり、FR2は、24250MHzから52600MHzの周波数レンジである。 The first type of RedCap UE is a UE with a maximum bandwidth of 20 MHz for FR1 and 100 MHz for FR2. FR1 is in the frequency range of 410 MHz to 7125 MHz, and FR2 is in the frequency range of 24250 MHz to 52600 MHz.
 上記第2のタイプのRedCap UEは、上記第1のタイプのRedCap UEよりもさらに低減された能力をもつUEである。例えば、上記第2のタイプのRedCap UEのピークデータレートは、上記第1のタイプのRedCap UEのピークデータレートよりも低い。例えば、上記第2のタイプのRedCap UEによってサポートされるピークデータレート(例えば、最大のピークデータレート)は、10Mbpsであってもよい。例えば、上記第2のタイプのRedCap UEは、上記第1のタイプのRedCap UEよりも狭い帯域を使用して基地局と通信する。例えば、上記第2のタイプのRedCap UEの最大帯域幅は、上記第1のタイプのRedCap UEの最大帯域幅よりも小さい。例えば、上記第2のタイプのRedCap UEによってサポートされる最大帯域幅(例えば、下りリンク及び/又は上りリンクの最大帯域幅)は、5MHzまでであってもよい。当該最大帯域幅は、例えば、特定の情報(例えば、ユーザデータ等)を送受信する際の最大帯域幅である。 The second type RedCap UE is a UE with a further reduced capability than the first type RedCap UE. For example, the peak data rate of the second type RedCap UE is lower than the peak data rate of the first type RedCap UE. For example, the peak data rate (e.g., the maximum peak data rate) supported by the second type RedCap UE may be 10 Mbps. For example, the second type RedCap UE communicates with a base station using a narrower band than the first type RedCap UE. For example, the maximum bandwidth of the second type RedCap UE is smaller than the maximum bandwidth of the first type RedCap UE. For example, the maximum bandwidth (e.g., the maximum bandwidth of the downlink and/or uplink) supported by the second type RedCap UE may be up to 5 MHz. The maximum bandwidth is, for example, the maximum bandwidth when transmitting and receiving specific information (e.g., user data, etc.).
 例えば、上記第1のタイプのRedCap UEは、Rel.17 RedCap UEであり、上記第2のタイプのRedCap UEは、Rel.18 RedCap UEである。上記第2のタイプのRedCap UEは、eRedCap UEと呼ばれてもよい。 For example, the first type RedCap UE is a Rel. 17 RedCap UE, and the second type RedCap UE is a Rel. 18 RedCap UE. The second type RedCap UE may be referred to as an eRedCap UE.
 なお、本開示における「RedCap UE」は、上記第1のタイプのRedCap UE及び第2のタイプのRedCap UEの少なくとも一方と互いに読み替えられてもよい。 Note that "RedCap UE" in this disclosure may be interpreted as at least one of the first type RedCap UE and the second type RedCap UE.
 なお、本開示の実施形態において、UE200は、UE200の動作として記載される動作だけではなく、UE30の動作として記載される動作、及び/又は、UE40の動作として記載される動作も行ってもよい。 Note that in the embodiment of the present disclosure, UE200 may perform not only the operations described as UE200 operations, but also the operations described as UE30 operations and/or the operations described as UE40 operations.
 <2.基地局の構成>
 図2及び図3を参照して、本開示の実施形態に係る基地局100の構成の例を説明する。
2. Base station configuration
An example of the configuration of the base station 100 according to an embodiment of the present disclosure will be described with reference to FIG. 2 and FIG. 3 .
 (1)機能構成
 まず、図2を参照して、本開示の実施形態に係る基地局100の機能構成の例を説明する。基地局100は、無線通信部110、ネットワーク通信部120、記憶部130及び処理部140を備える。
(1) Functional Configuration First, an example of a functional configuration of the base station 100 according to an embodiment of the present disclosure will be described with reference to Fig. 2. The base station 100 includes a wireless communication unit 110, a network communication unit 120, a storage unit 130, and a processing unit 140.
 無線通信部110は、信号を無線で送受信する。例えば、無線通信部110は、UEからの信号を受信し、UEへの信号を送信する。無線通信部110は、送信部、受信部、送受信部などと呼ばれてもよい。 The wireless communication unit 110 transmits and receives signals wirelessly. For example, the wireless communication unit 110 receives signals from a UE and transmits signals to the UE. The wireless communication unit 110 may be called a transmitting unit, a receiving unit, a transmitting/receiving unit, etc.
 ネットワーク通信部120は、ネットワークから信号を受信し、ネットワークへ信号を送信する。 The network communication unit 120 receives signals from the network and transmits signals to the network.
 記憶部130は、基地局100のために様々な情報を記憶する。 The memory unit 130 stores various information for the base station 100.
 処理部140は、基地局100の様々な機能を提供する。処理部140は、情報取得部141及び通信処理部143を含んでもよい。なお、処理部140は、これらの構成要素以外の他の構成要素をさらに含み得る。即ち、処理部140は、これらの構成要素の動作以外の動作も行い得る。 The processing unit 140 provides various functions of the base station 100. The processing unit 140 may include an information acquisition unit 141 and a communication processing unit 143. Note that the processing unit 140 may further include other components in addition to these components. In other words, the processing unit 140 may also perform operations other than those of these components.
 例えば、処理部140(通信処理部143)は、無線通信部110を介してUE(例えば、UE30、UE40及びUE200)と通信する。例えば、処理部140(通信処理部143)は、ネットワーク通信部120を介してコアネットワークノード及び他の基地局と通信する。また、処理部140(情報取得部141)は、無線通信部110又はネットワーク通信部120を介して受信される情報に基づいて、通信処理部143の処理に必要な情報を取得する。処理部140は、制御部と呼ばれてもよい。 For example, the processing unit 140 (communication processing unit 143) communicates with UEs (e.g., UE30, UE40, and UE200) via the wireless communication unit 110. For example, the processing unit 140 (communication processing unit 143) communicates with core network nodes and other base stations via the network communication unit 120. In addition, the processing unit 140 (information acquisition unit 141) acquires information necessary for processing by the communication processing unit 143 based on information received via the wireless communication unit 110 or the network communication unit 120. The processing unit 140 may be referred to as a control unit.
 (2)ハードウェア構成
 次に、図3を参照して、本開示の実施形態に係る基地局100のハードウェア構成の例を説明する。基地局100は、アンテナ181、RF(radio frequency)回路183、ネットワークインターフェース185、プロセッサ187、メモリ189及びストレージ191を備える。
(2) Hardware Configuration Next, an example of a hardware configuration of the base station 100 according to an embodiment of the present disclosure will be described with reference to Fig. 3. The base station 100 includes an antenna 181, an RF (radio frequency) circuit 183, a network interface 185, a processor 187, a memory 189, and a storage 191.
 アンテナ181は、信号を電波に変換し、当該電波を空間に放射する。また、アンテナ181は、空間における電波を受信し、当該電波を信号に変換する。アンテナ181は、送信アンテナ及び受信アンテナを含んでもよく、又は、送受信用の単一のアンテナであってもよい。アンテナ181は、指向性アンテナであってもよく、複数のアンテナ素子を含んでもよい。 Antenna 181 converts signals into radio waves and radiates the radio waves into space. Antenna 181 also receives radio waves in space and converts the radio waves into signals. Antenna 181 may include a transmitting antenna and a receiving antenna, or may be a single antenna for both transmission and reception. Antenna 181 may be a directional antenna and may include multiple antenna elements.
 RF回路183は、アンテナ181を介して送受信される信号のアナログ処理を行う。RF回路183は、高周波フィルタ、増幅器、変調器及びローパスフィルタ等を含んでもよい。RF回路183は、受信した信号に対して無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行い、プロセッサ187に出力してもよい。RF回路183は、プロセッサ187から入力されるベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ181を介して送信してもよい。 The RF circuit 183 performs analog processing of signals transmitted and received via the antenna 181. The RF circuit 183 may include a high-frequency filter, an amplifier, a modulator, a low-pass filter, etc. The RF circuit 183 may amplify, filter, demodulate to a baseband signal, etc., of the received radio frequency signal, and output the signal to the processor 187. The RF circuit 183 may modulate to a radio frequency band, filter, amplify, etc., the baseband signal input from the processor 187, and transmit the radio frequency band signal via the transmitting/receiving antenna 181.
 ネットワークインターフェース185は、例えばネットワークアダプタであり、ネットワークへ信号を送信し、ネットワークから信号を受信する。 The network interface 185 is, for example, a network adapter, and transmits signals to the network and receives signals from the network.
 プロセッサ187は、アンテナ181及びRF回路183を介して送受信される信号のデジタル処理を行う。当該デジタル処理は、RANのプロトコルスタックの処理を含む。プロセッサ187は、ネットワークインターフェース185を介して送受信される信号の処理も行う。プロセッサ187は、複数のプロセッサを含んでもよく、又は、単一のプロセッサであってもよい。当該複数のプロセッサは、上記デジタル処理を行うベースバンドプロセッサと、他の処理を行う1つ以上のプロセッサとを含んでもよい。 The processor 187 performs digital processing of signals transmitted and received via the antenna 181 and the RF circuitry 183. The digital processing includes processing of the RAN protocol stack. The processor 187 also processes signals transmitted and received via the network interface 185. The processor 187 may include multiple processors or may be a single processor. The multiple processors may include a baseband processor that performs the digital processing and one or more processors that perform other processing.
 メモリ189は、コンピュータ読み取り可能な非一時的記録媒体であり、プロセッサ187により実行されるプログラム、当該プログラムに関するパラメータ、及び、その他の様々な情報を記憶する。メモリ189は、ROM(read only memory)、EPROM(erasable programmable read only memory)、EEPROM(electrically erasable programmable read only memory、登録商標)、RAM(random access memory)及びフラッシュメモリの少なくとも1つを含んでもよい。メモリ189の全部又は一部は、プロセッサ187内に含まれていてもよい。 Memory 189 is a computer-readable non-transitory recording medium that stores programs executed by processor 187, parameters related to the programs, and various other information. Memory 189 may include at least one of ROM (read only memory), EPROM (erasable programmable read only memory), EEPROM (electrically erasable programmable read only memory, registered trademark), RAM (random access memory), and flash memory. All or a portion of memory 189 may be included within processor 187.
 ストレージ191は、コンピュータ読み取り可能な非一時的記録媒体であり、様々な情報を記憶する。ストレージ191は、SSD(solid state drive)及びHDD(hard disc drive)の少なくとも1つを含んでもよい。 Storage 191 is a computer-readable non-transitory recording medium that stores various information. Storage 191 may include at least one of an SSD (solid state drive) and an HDD (hard disc drive).
 無線通信部110は、アンテナ181及びRF回路183により実装されてもよい。ネットワーク通信部120は、ネットワークインターフェース185により実装されてもよい。記憶部130は、ストレージ191により実装されてもよい。処理部140は、プロセッサ187及びメモリ189により実装されてもよい。 The wireless communication unit 110 may be implemented by an antenna 181 and an RF circuit 183. The network communication unit 120 may be implemented by a network interface 185. The memory unit 130 may be implemented by a storage 191. The processing unit 140 may be implemented by a processor 187 and a memory 189.
 処理部140の一部又は全部は、仮想化されていてもよい。換言すると、処理部140の一部又は全部は、仮想マシンとして実装されてもよい。この場合に、処理部140の一部又は全部は、プロセッサ及びメモリ等を含む物理マシン(即ち、ハードウェア)及びハイパーバイザ上で仮想マシンとして動作してもよい。 A part or all of the processing unit 140 may be virtualized. In other words, a part or all of the processing unit 140 may be implemented as a virtual machine. In this case, a part or all of the processing unit 140 may operate as a virtual machine on a physical machine (i.e., hardware) including a processor, memory, etc., and a hypervisor.
 以上のハードウェア構成を考慮すると、基地局100は、プログラムを記憶するメモリ(即ち、メモリ189)と、当該プログラムを実行可能な1つ以上のプロセッサ(即ち、プロセッサ187)とを備えてもよく、当該1つ以上のプロセッサは、上記プログラムを実行して、処理部140の動作を行ってもよい。上記プログラムは、処理部140の動作をプロセッサに実行させるためのプログラムであってもよい。 Taking into consideration the above hardware configuration, the base station 100 may include a memory (i.e., memory 189) that stores a program, and one or more processors (i.e., processor 187) that can execute the program, and the one or more processors may execute the program to perform the operations of the processing unit 140. The program may be a program for causing the processor to execute the operations of the processing unit 140.
 <3.ユーザ機器の構成>
 図4及び図5を参照して、本開示の実施形態に係るUE200の構成の例を説明する。
3. Configuration of user device
An example of the configuration of the UE 200 according to an embodiment of the present disclosure will be described with reference to FIG. 4 and FIG.
 (1)機能構成
 まず、図4を参照して、本開示の実施形態に係るUE200の機能構成の例を説明する。UE200は、無線通信部210、記憶部220及び処理部230を備える。
(1) Functional Configuration First, an example of a functional configuration of the UE 200 according to the embodiment of the present disclosure will be described with reference to Fig. 4. The UE 200 includes a wireless communication unit 210, a storage unit 220, and a processing unit 230.
 無線通信部210は、信号を無線で送受信する。例えば、無線通信部210は、基地局からの信号を受信し、基地局への信号を送信する。無線通信部210は、送信部、受信部、送受信部などと呼ばれてもよい。 The wireless communication unit 210 transmits and receives signals wirelessly. For example, the wireless communication unit 210 receives signals from a base station and transmits signals to the base station. The wireless communication unit 210 may be called a transmitting unit, a receiving unit, a transmitting/receiving unit, etc.
 記憶部220は、UE200のために様々な情報を記憶する。 The memory unit 220 stores various information for the UE 200.
 処理部230は、UE200の様々な機能を提供する。処理部230は、情報取得部231及び通信処理部233を含んでもよい。なお、処理部230は、これらの構成要素以外の他の構成要素をさらに含み得る。即ち、処理部230は、これらの構成要素の動作以外の動作も行い得る。 The processing unit 230 provides various functions of the UE 200. The processing unit 230 may include an information acquisition unit 231 and a communication processing unit 233. The processing unit 230 may further include other components in addition to these components. That is, the processing unit 230 may also perform operations other than those of these components.
 例えば、処理部230(通信処理部233)は、無線通信部210を介して基地局(例えば、基地局100)と通信する。また、処理部230(情報取得部231)は、無線通信部210を介して受信される情報に基づいて、通信処理部233の処理に必要な情報を取得する。処理部230は、制御部と呼ばれてもよい。 For example, the processing unit 230 (communication processing unit 233) communicates with a base station (e.g., base station 100) via the wireless communication unit 210. Furthermore, the processing unit 230 (information acquisition unit 231) acquires information necessary for processing by the communication processing unit 233 based on information received via the wireless communication unit 210. The processing unit 230 may also be referred to as a control unit.
 (2)ハードウェア構成
 次に、図5を参照して、本開示の実施形態に係るUE200のハードウェア構成の例を説明する。UE200は、アンテナ281、RF回路283、プロセッサ285、メモリ287及びストレージ289を備える。
(2) Hardware Configuration Next, an example of a hardware configuration of the UE 200 according to the embodiment of the present disclosure will be described with reference to Fig. 5. The UE 200 includes an antenna 281, an RF circuit 283, a processor 285, a memory 287, and a storage 289.
 アンテナ281は、信号を電波に変換し、当該電波を空間に放射する。また、アンテナ281は、空間における電波を受信し、当該電波を信号に変換する。アンテナ281は、送信アンテナ及び受信アンテナを含んでもよく、又は、送受信用の単一のアンテナであってもよい。アンテナ281は、指向性アンテナであってもよく、複数のアンテナ素子を含んでもよい。 Antenna 281 converts signals into radio waves and radiates the radio waves into space. Antenna 281 also receives radio waves in space and converts the radio waves into signals. Antenna 281 may include a transmitting antenna and a receiving antenna, or may be a single antenna for both transmission and reception. Antenna 281 may be a directional antenna and may include multiple antenna elements.
 RF回路283は、アンテナ281を介して送受信される信号のアナログ処理を行う。RF回路283は、高周波フィルタ、増幅器、変調器及びローパスフィルタ等を含んでもよい。RF回路283は、受信した信号に対して無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行い、プロセッサ285に出力してもよい。RF回路283は、プロセッサ285から入力されるベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ281を介して送信してもよい。 The RF circuit 283 performs analog processing of signals transmitted and received via the antenna 281. The RF circuit 283 may include a high-frequency filter, an amplifier, a modulator, a low-pass filter, etc. The RF circuit 283 may perform amplification, filtering, demodulation to a baseband signal, etc. on the received radio frequency signal, and output the signal to the processor 285. The RF circuit 283 may perform modulation to a radio frequency band, filtering, amplification, etc. on the baseband signal input from the processor 285, and transmit the radio frequency band signal via the transmitting/receiving antenna 281.
 プロセッサ285は、アンテナ281及びRF回路283を介して送受信される信号のデジタル処理を行う。当該デジタル処理は、RANのプロトコルスタックの処理を含む。プロセッサ285は、複数のプロセッサを含んでもよく、又は、単一のプロセッサであってもよい。当該複数のプロセッサは、上記デジタル処理を行うベースバンドプロセッサと、他の処理を行う1つ以上のプロセッサとを含んでもよい。 The processor 285 performs digital processing of signals transmitted and received via the antenna 281 and the RF circuitry 283. The digital processing includes processing of the RAN protocol stack. The processor 285 may include multiple processors or may be a single processor. The multiple processors may include a baseband processor that performs the digital processing and one or more processors that perform other processing.
 メモリ287は、コンピュータ読み取り可能な非一時的記録媒体であり、プロセッサ285により実行されるプログラム、当該プログラムに関するパラメータ、及び、その他の様々な情報を記憶する。メモリ287は、ROM、EPROM、EEPROM、RAM及びフラッシュメモリの少なくとも1つを含んでもよい。メモリ287の全部又は一部は、プロセッサ285内に含まれていてもよい。 Memory 287 is a computer-readable non-transitory recording medium that stores programs executed by processor 285, parameters related to the programs, and various other information. Memory 287 may include at least one of ROM, EPROM, EEPROM, RAM, and flash memory. All or a portion of memory 287 may be included within processor 285.
 ストレージ289は、コンピュータ読み取り可能な非一時的記録媒体であり、様々な情報を記憶する。ストレージ289は、SSD及びHDDの少なくとも1つを含んでもよい。 Storage 289 is a computer-readable non-transitory recording medium that stores various information. Storage 289 may include at least one of an SSD and an HDD.
 無線通信部210は、アンテナ281及びRF回路283により実装されてもよい。記憶部220は、ストレージ289により実装されてもよい。処理部230は、プロセッサ285及びメモリ287により実装されてもよい。 The wireless communication unit 210 may be implemented by an antenna 281 and an RF circuit 283. The memory unit 220 may be implemented by a storage 289. The processing unit 230 may be implemented by a processor 285 and a memory 287.
 処理部230は、プロセッサ285及びメモリ287を含むSoC(System on Chip)により実装されてもよい。当該SoCは、RF回路283を含んでもよく、無線通信部210も、当該SoCにより実装されてもよい。 The processing unit 230 may be implemented by a SoC (System on Chip) including a processor 285 and a memory 287. The SoC may include an RF circuit 283, and the wireless communication unit 210 may also be implemented by the SoC.
 以上のハードウェア構成を考慮すると、UE200は、プログラムを記憶するメモリ(即ち、メモリ287)と、当該プログラムを実行可能な1つ以上のプロセッサ(即ち、プロセッサ285)とを備えてもよく、当該1つ以上のプロセッサは、上記プログラムを実行して、処理部230の動作を行ってもよい。上記プログラムは、処理部230の動作をプロセッサに実行させるためのプログラムであってもよい。 In consideration of the above hardware configuration, UE 200 may include a memory (i.e., memory 287) that stores a program, and one or more processors (i.e., processor 285) that can execute the program, and the one or more processors may execute the program to perform the operations of processing unit 230. The program may be a program for causing a processor to execute the operations of processing unit 230.
 <4.動作例>
 以下、本開示の実施形態に係る基地局100及びUE200の動作の例を説明する。以下で説明する基地局100及びUE200の通信方法(無線通信方法)は、上述のシステム1において適用されてもよい。
<4. Operation example>
Hereinafter, an example of the operation of the base station 100 and the UE 200 according to the embodiment of the present disclosure will be described. A communication method (wireless communication method) of the base station 100 and the UE 200 described below may be applied to the above-mentioned system 1.
 なお、本開示の以下の説明において、参照符号は省略されることがある。例えば、以下の説明における基地局は基地局100を意味してもよい。また、以下の説明におけるUEは、UE30、40、及び200の少なくとも1つと互いに読み替えられてもよい。 Note that in the following description of this disclosure, reference signs may be omitted. For example, a base station in the following description may refer to base station 100. Also, a UE in the following description may be interchangeably read as at least one of UE 30, 40, and 200.
 以下の説明における各「基地局」は、基地局100の中の1つ以上の機能ブロック(例えば、無線通信部110、処理部140)又はハードウェア構成(例えば、RF回路183、プロセッサ187)と互いに読み替えられてもよい。また、以下の説明における各「UE」は、UE200の中の1つ以上の機能ブロック(例えば、無線通信部210、処理部230)又はハードウェア構成(例えば、RF回路283、プロセッサ285)と互いに読み替えられてもよい。 In the following description, each "base station" may be interpreted as one or more functional blocks (e.g., wireless communication unit 110, processing unit 140) or hardware configurations (e.g., RF circuit 183, processor 187) in base station 100. Also, each "UE" in the following description may be interpreted as one or more functional blocks (e.g., wireless communication unit 210, processing unit 230) or hardware configurations (e.g., RF circuit 283, processor 285) in UE 200.
 (1)帯域幅部分(Bandwidth Part(BWP))の概要
 まず、Rel.15、16、17 NRにおけるBWPの概要について説明する。
(1) Overview of Bandwidth Part (BWP) First, an overview of the BWP in Rel. 15, 16, and 17 NR will be described.
 UEの消費電力の削減及び広帯域キャリアの有効活用のためにBWPが規定されている。BWPには、初期BWP(初期下りリンク(Downlink(DL)) BWP及び初期上りリンク(Uplink(UL)) BWP)と、専用BWP(専用DL BWP及び専用UL BWP)と、がある。UEには、その能力に応じて、ある1つのサービングセル内で最大4つまでのDL BWP及び最大4つまでのUL BWPが設定される。なお、本開示において、DL BWP及びUL BWPを区別しないときは単にBWPと称する。つまり、本開示の「BWP」は、DL BWP及び/又はUL BWPと互いに読み替えられてもよい。また、サービングセルを、単に、セルとも称する。 BWPs are defined to reduce UE power consumption and to effectively utilize broadband carriers. There are initial BWPs (initial downlink (DL) BWP and initial uplink (UL) BWP) and dedicated BWPs (dedicated DL BWP and dedicated UL BWP). Depending on the UE's capabilities, up to four DL BWPs and up to four UL BWPs are configured in a serving cell. In this disclosure, when there is no need to distinguish between DL BWPs and UL BWPs, they are simply referred to as BWPs. In other words, the "BWP" in this disclosure may be read as DL BWPs and/or UL BWPs. The serving cell is also simply referred to as a cell.
 (1.1)初期BWPの概要
 初期BWP(initial BWP)は、少なくとも初期アクセスに用いられるBWPである。初期BWPは、複数のUEに共通で用いられてもよい。初期DL BWP及び初期UL BWPのそれぞれは、BWP識別子(bwp-id)が“0”として規定される。
(1.1) Overview of Initial BWP The initial BWP is a BWP used at least for initial access. The initial BWP may be used commonly by multiple UEs. Each of the initial DL BWP and the initial UL BWP is specified with a BWP identifier (bwp-id) of "0".
 初期BWPには、物理ブロードキャストチャネル(Physical Broadcast Channel(PBCH))で伝送されるマスタ情報ブロック(Master Information Block(MIB))により導出及び設定される初期BWPと、システム情報ブロック(System Information Block(SIB))、具体的には、システム情報ブロック1(SIB1)により設定される初期BWPとの2種類がある。 There are two types of initial BWPs: those derived and set by the Master Information Block (MIB) transmitted on the Physical Broadcast Channel (PBCH), and those set by the System Information Block (SIB), specifically, System Information Block 1 (SIB1).
 MIBにより設定される初期BWPは、MIBに含まれるパラメータを用いて設定される制御リソースセット(Control Resource Set(CORESET))#0に応じた帯域幅を有してもよい。なお、CORESETは、下りリンク制御情報(Downlink Control Information(DCI))をサーチするための時間周波数リソースに該当してもよい。CORESET#0は、ID=#0のCORESETであって、Type-0 物理下りリンクチャネル(PDCCH:Physical Downlink Control Channel) 共通サーチスペースセット(Common Search Space(CSS) set)に対するCORESETとも称される。CORESET#0は、SIB1をスケジューリングするためのPDCCHをUEがモニタするのに用いられるCORESETに該当する。 The initial BWP set by the MIB may have a bandwidth according to the Control Resource Set (CORESET) #0 set using parameters included in the MIB. The CORESET may correspond to time-frequency resources for searching for Downlink Control Information (DCI). CORESET #0 is a CORESET with ID=#0, and is also called a CORESET for the Type-0 Physical Downlink Control Channel (PDCCH) Common Search Space (CSS) set. CORESET #0 corresponds to a CORESET used by the UE to monitor the PDCCH for scheduling SIB1.
 SIB1により設定される初期BWPは、SIB1中の初期DL BWPに関するinitialDownlinkBWPフィールド、初期UL BWPに関するinitialUplinkBWPフィールドなどに基づいて特定される。これらのフィールドはより具体的には、パラメータlocationAndBandwidth、subcarrierSpacing及びcyclicPrefixなどを含むBWP情報要素を含む。例えば、パラメータlocationAndBandwidthによって周波数ドメインの位置及び帯域幅が、パラメータsubcarrierSpacingによって当該BWPのためのサブキャリア間隔(SubCarrier Spacing(SCS))が、パラメータcyclicPrefixによって当該BWPにおける各チャネル及び参照信号のために用いられるサイクリックプレフィックスが、それぞれ特定される。 The initial BWP set by SIB1 is specified based on the initialDownlinkBWP field for the initial DL BWP in SIB1, the initialUplinkBWP field for the initial UL BWP, and the like. More specifically, these fields include BWP information elements including parameters locationAndBandwidth, subcarrierSpacing, and cyclicPrefix. For example, the parameter locationAndBandwidth specifies the location in the frequency domain and the bandwidth, the parameter subcarrierSpacing specifies the subcarrier spacing (SubCarrier Spacing (SCS)) for the BWP, and the parameter cyclicPrefix specifies the cyclic prefix used for each channel and reference signal in the BWP.
 図6は、MIBに含まれるpdcch-ConfigSIB1に含まれるパラメータであるcontrolResourceSetZeroの値と、CORESET#0に対するパラメータとの対応関係の一例を示す図である。 Figure 6 shows an example of the correspondence between the value of controlResourceSetZero, which is a parameter included in pdcch-ConfigSIB1 in the MIB, and the parameters for CORESET#0.
 なお、本例では、最大チャネル帯域幅が5MHz又は10MHzであって、且つ、同期信号ブロック(Synchronization Signal Block(SSB))及びPDCCHのそれぞれのSCSが15kHzである場合の対応関係を示している。なお、SSBは、SS/PBCHブロックと呼ばれてもよい。 In this example, the correspondence is shown when the maximum channel bandwidth is 5 MHz or 10 MHz and the SCS of the synchronization signal block (SSB) and the PDCCH is 15 kHz. The SSB may also be called the SS/PBCH block.
 パラメータcontrolResourceSetZeroの値は、0から15までのインデックス値である。UEは、上記対応関係を用いて、当該インデックスの値から、対応するCORESET#0パラメータ(例えば、リソースブロック数及びシンボル数等)を特定する。 The value of the parameter controlResourceSetZero is an index value between 0 and 15. The UE uses the above correspondence relationship to identify the corresponding CORESET#0 parameters (e.g., the number of resource blocks and the number of symbols) from the index value.
 図7は、MIBに含まれるpdcch-ConfigSIB1に含まれるパラメータであるsearchSpaceZeroの値と、サーチスペースセット#0に対するパラメータとの対応関係の一例を示す図である。サーチスペースセット#0は、ID=#0のサーチスペースセットであって、CORESET#0に関連付けられる。 FIG. 7 shows an example of the correspondence between the value of the parameter searchSpaceZero included in pdcch-ConfigSIB1 in the MIB and the parameters for search space set #0. Search space set #0 is a search space set with ID=#0, and is associated with CORESET#0.
 パラメータsearchSpaceZeroの値は、0から15までのインデックス値である。UEは、上記対応関係を用いて、当該インデックスの値から、対応するサーチスペースセット#0(例えば、スロットあたりの当該サーチスペースセットの数、及び/又は最初のシンボルのインデックス等)を特定する。 The value of the parameter searchSpaceZero is an index value between 0 and 15. Using the above correspondence relationship, the UE identifies the corresponding search space set #0 (e.g., the number of search space sets per slot and/or the index of the first symbol, etc.) from the index value.
 なお、図6、図7のような対応関係は技術仕様で予め規定されており、UEは当該対応関係を把握している。 Note that the correspondence relationships shown in Figures 6 and 7 are defined in advance in the technical specifications, and the UE is aware of these correspondence relationships.
 セルに対する初期アクセス時において、当該セルのSSBを受信したUEは、当該SSBのPBCH(MIB)に含まれる情報要素であるpdcch-ConfigSIB1内のcontrolResourceSetZero(0から15までの整数値)の設定値から、Type-0 PDCCH CSS setの帯域幅(24、48、又は96リソースブロック)を取得する。そして、UEは、Type-0 PDCCH CSS setをモニタリングしてSIB1を取得し、SIB1から、初期BWPの周波数位置及び/又は帯域幅を示すパラメータであるlocationAndBandwidthを取得してもよい。ここで、当該Type-0 PDCCH CSS setは、サーチスペースセット#0に対応する。 When initially accessing a cell, a UE that receives an SSB of the cell obtains the bandwidth (24, 48, or 96 resource blocks) of the Type-0 PDCCH CSS set from the setting value of controlResourceSetZero (an integer value between 0 and 15) in pdcch-ConfigSIB1, which is an information element included in the PBCH (MIB) of the SSB. The UE may then monitor the Type-0 PDCCH CSS set to obtain SIB1, and obtain locationAndBandwidth, a parameter indicating the frequency location and/or bandwidth of the initial BWP, from SIB1. Here, the Type-0 PDCCH CSS set corresponds to search space set #0.
 例えば、UEは、初期アクセスにおけるランダムアクセスプロシージャ中のメッセージ4(Msg.4)を受信するまでの間は、MIBにより設定される初期BWP、すなわち、CORESET #0に基づく帯域幅を初期BWPとして用いてもよい。Msg.4の受信後は、UEは、SIB1中のlocationAndBandwidthで設定された帯域幅を初期BWPに用いてもよい。なお、Msg.4は、RRCSetupメッセージ、RRCResumeメッセージ、又はRRCReestablishmentメッセージであってもよい。UEは、このような初期アクセス(ランダムアクセスプロシージャ)により、例えばRRCアイドル状態からRRCコネクティッド状態に遷移する。 For example, until the UE receives message 4 (Msg. 4) during the random access procedure in the initial access, the UE may use the initial BWP set by the MIB, i.e., the bandwidth based on CORESET #0, as the initial BWP. After receiving Msg. 4, the UE may use the bandwidth set in locationAndBandwidth in SIB1 as the initial BWP. Note that Msg. 4 may be an RRCSetup message, an RRCResume message, or an RRCReestablishment message. The UE transitions, for example, from an RRC idle state to an RRC connected state by such initial access (random access procedure).
 なお、SIB1が、初期DL BWPを示す情報を含まない場合に、初期DL BWPは、SIB1をスケジューリングするためのCORESET(control resource set) #0の帯域と同じであってもよい。すなわち、基地局100は、初期DL BWPを示す情報をSIB1に含めなくてもよく、UE30は、SIB1に当該情報がない場合に、CORESET #0の帯域を初期DL BWPとみなしてもよい。 Note that if SIB1 does not include information indicating the initial DL BWP, the initial DL BWP may be the same as the band of CORESET (control resource set) #0 for scheduling SIB1. In other words, base station 100 does not need to include information indicating the initial DL BWP in SIB1, and UE 30 may consider the band of CORESET #0 as the initial DL BWP if there is no such information in SIB1.
 ところで、Rel.17 NRでは、RedCap UE用の初期BWPが導入された。RedCap UE用の初期BWPは、RedCap固有(RedCap-Specific)初期BWPと呼ばれてもよい。RedCap UEではない通常のUE(UE30)は、当該RedCap固有初期BWPを使用せず、RedCap UE(例えば、UE40)が、当該RedCap固有初期BWPを使用することができる。 Incidentally, Rel. 17 NR introduced an initial BWP for RedCap UEs. The initial BWP for RedCap UEs may be called RedCap-specific initial BWP. A normal UE (UE30) that is not a RedCap UE does not use the RedCap-specific initial BWP, but a RedCap UE (e.g., UE40) can use the RedCap-specific initial BWP.
 RedCap固有初期BWPは、RedCap UE用の初期DL BWPとRedCap UE用の初期UL BWPを含んでもよい。ここでは、RedCap UE用の初期DL BWPは、RedCap固有初期DL BWPと呼ばれてもよく、RedCap UE用の初期UL BWPは、RedCap固有初期UL BWPと呼ばれてもよい。RedCap UE固有初期DL BWP及びRedCap UE固有初期UL BWPのそれぞれは、BWP識別子(bwp-id)が“0”として規定される。 The RedCap-specific initial BWP may include an initial DL BWP for the RedCap UE and an initial UL BWP for the RedCap UE. Here, the initial DL BWP for the RedCap UE may be referred to as a RedCap-specific initial DL BWP, and the initial UL BWP for the RedCap UE may be referred to as a RedCap-specific initial UL BWP. Each of the RedCap UE-specific initial DL BWP and the RedCap UE-specific initial UL BWP is specified with a BWP identifier (bwp-id) of "0".
 RedCap固有初期BWPに関する情報は、SIB1内のServingCellConfigCommonSIB情報要素に含まれるinitialDownlinkBWP-RedCap-r17、及び/又は、initialUplinkBWP-RedCap-r17であってもよい。これらのパラメータは、上述のinitialDownlinkBWP、initialUplinkBWPなどと同様に、RedCap固有初期BWPの位置及び帯域幅を示すパラメータ、SCSを示すパラメータ、サイクリックプレフィックスを示すパラメータなどの少なくとも1つを含んでもよい。ServingCellConfigCommonSIB情報要素は、サービングセル共通の設定を示してもよい。また、initialDownlinkBWP-RedCap-r17、及び/又は、initialUplinkBWP-RedCap-r17は、RedCap固有初期BWPのパラメータ(例えば、RedCap固有初期BWPにおいて用いられるパラメータ)を含んでもよい。 The information on the RedCap-specific initial BWP may be initialDownlinkBWP-RedCap-r17 and/or initialUplinkBWP-RedCap-r17 included in the ServingCellConfigCommonSIB information element in SIB1. These parameters may include at least one of parameters indicating the location and bandwidth of the RedCap-specific initial BWP, parameters indicating the SCS, and parameters indicating the cyclic prefix, similar to the above-mentioned initialDownlinkBWP, initialUplinkBWP, etc. The ServingCellConfigCommonSIB information element may indicate a common setting for the serving cells. In addition, initialDownlinkBWP-RedCap-r17 and/or initialUplinkBWP-RedCap-r17 may include parameters of the RedCap-specific initial BWP (for example, parameters used in the RedCap-specific initial BWP).
 例えば、通常のUEであるUE30は、SIB1を受信し、上記SIB1に含まれるServingCellConfigCommonSIBに基づいて、初期BWPを決定する。例えば、UE30は、initialDownlinkBWPに基づいて、上記初期DL BWPを特定する。また、UE30は、initialUplinkBWPに基づいて、上記初期UL BWPを特定する。 For example, UE30, which is a normal UE, receives SIB1 and determines the initial BWP based on ServingCellConfigCommonSIB included in SIB1. For example, UE30 identifies the initial DL BWP based on initialDownlinkBWP. Also, UE30 identifies the initial UL BWP based on initialUplinkBWP.
 例えば、UE40は、SIB1を受信し、上記SIB1に含まれるServingCellConfigCommonSIBに基づいて、初期BWPを決定する。例えば、UE40は、ServingCellConfigCommonSIBに含まれるRedCap固有初期DL BWPを示す情報(initialDownlinkBWP-RedCap-r17)に基づいて、初期DL BWPを特定する。また、UE40は、ServingCellConfigCommonSIBに含まれるRedCap固有初期UL BWPを示す情報(initialUplinkBWP-RedCap-r17)に基づいて、初期UL BWPを特定する。 For example, UE40 receives SIB1 and determines the initial BWP based on the ServingCellConfigCommonSIB included in the SIB1. For example, UE40 identifies the initial DL BWP based on information (initialDownlinkBWP-RedCap-r17) indicating the RedCap-specific initial DL BWP included in the ServingCellConfigCommonSIB. UE40 also identifies the initial UL BWP based on information (initialUplinkBWP-RedCap-r17) indicating the RedCap-specific initial UL BWP included in the ServingCellConfigCommonSIB.
 なお、SIB1に上記RedCap固有初期DL BWPを示す情報が含まれない場合に、上記RedCap固有初期DL BWPは、上記初期DL BWPを示す情報に基づいて特定されてもよい。また、SIB1に上記RedCap固有初期UL BWPを示す情報が含まれない場合に、上記RedCap固有初期UL BWPは、上記初期UL BWPを示す情報に基づいて特定されてもよい。 Note that if SIB1 does not include information indicating the RedCap-specific initial DL BWP, the RedCap-specific initial DL BWP may be identified based on the information indicating the initial DL BWP. Also, if SIB1 does not include information indicating the RedCap-specific initial UL BWP, the RedCap-specific initial UL BWP may be identified based on the information indicating the initial UL BWP.
 すなわち、UE40は、SIB1にinitialDownlinkBWP-RedCap-r17が含まれる場合、initialDownlinkBWPに代えて、initialDownlinkBWP-RedCap-r17に基づいてRedCap固有初期DL BWPを特定してもよい。また、UE40は、SIB1にinitialUplinkBWP-RedCap-r17が含まれる場合、initialUplinkBWPに代えて、initialUplinkBWP-RedCap-r17に基づいてRedCap固有初期UL BWPを特定してもよい。 In other words, when SIB1 includes initialDownlinkBWP-RedCap-r17, UE40 may specify the RedCap-specific initial DL BWP based on initialDownlinkBWP-RedCap-r17 instead of initialDownlinkBWP. Also, when SIB1 includes initialUplinkBWP-RedCap-r17, UE40 may specify the RedCap-specific initial UL BWP based on initialUplinkBWP-RedCap-r17 instead of initialUplinkBWP.
 また、UE40は、SIB1にinitialDownlinkBWP-RedCap-r17が含まれない場合、initialDownlinkBWPに基づいて、初期DL BWP(RedCap固有初期DL BWPでもよい)を特定してもよい。また、UE40は、SIB1にinitialUplinkBWP-RedCap-r17が含まれない場合、initialUplinkBWPに基づいて、初期UL BWP(RedCap固有初期UL BWPでもよい)を特定してもよい。 If SIB1 does not include initialDownlinkBWP-RedCap-r17, UE40 may determine the initial DL BWP (which may be a RedCap-specific initial DL BWP) based on initialDownlinkBWP. If SIB1 does not include initialUplinkBWP-RedCap-r17, UE40 may determine the initial UL BWP (which may be a RedCap-specific initial UL BWP) based on initialUplinkBWP.
 (1.2)専用BWPの概要
 専用BWPは、あるUEに専用(UE固有)に設定されるBWPである。専用BWPには、“0”以外のbwp-idが設定されてもよい。例えば、基地局からUEに送信される専用シグナリングであるRRCメッセージ中のServingCellConfig情報要素に含まれるBWP-Downlink情報要素及びBWP-Uplink情報要素に基づいて、専用DL BWP及び専用UL BWPがそれぞれ設定されてもよい。例えば、BWP-Downlink及びBWP-Uplinkのそれぞれに、当該BWPを設定する各種パラメータ(locationAndBandwidth、subcarrierSpacing、cyclicPrefix)が含まれてもよい。例えば、BWP-Downlink及びBWP-Uplinkのそれぞれに、当該BWPのパラメータ(例えば、当該BWPにおいて用いられるパラメータ)が含まれてもよい。
(1.2) Overview of Dedicated BWP A dedicated BWP is a BWP that is dedicated (UE-specific) to a certain UE. A bwp-id other than "0" may be set to the dedicated BWP. For example, a dedicated DL BWP and a dedicated UL BWP may be set based on a BWP-Downlink information element and a BWP-Uplink information element included in a ServingCellConfig information element in an RRC message, which is dedicated signaling transmitted from a base station to a UE. For example, each of the BWP-Downlink and BWP-Uplink may include various parameters (locationAndBandwidth, subcarrierSpacing, cyclicPrefix) for setting the BWP. For example, each of the BWP-Downlink and BWP-Uplink may include parameters of the BWP (for example, parameters used in the BWP).
 専用BWPは、RRC Configured BWP、Configured BWP、UE固有(UE-Specific)BWP、dedicated BWP、単にBWPなどと互いに読み替えられてもよい。 The term "dedicated BWP" may be interchangeably referred to as "RRC configured BWP," "configured BWP," "UE-specific BWP," "dedicated BWP," or simply "BWP."
 基地局は、UEに設定した1つ又は複数のBWPのうち、基地局との通信に用いるBWP(すなわち、アクティブBWP)をUEへ通知できる。例えば、基地局は、設定の実行時にアクティブにするBWP、すなわち、基地局との通信で最初に用いるBWPを示すBWP識別子をUEへ送信できる。また、アクティブBWPからアクティブBWPでないBWP(非アクティブBWP)への切り替え、及び非アクティブBWPからアクティブBWPへの切り替えの制御には、例えば、PDCCH(DCI)、RRCシグナリング、MAC制御要素(MAC CE)、又はタイマによる切り替えが用いられる。 The base station can notify the UE of the BWP to be used for communication with the base station (i.e., the active BWP) among one or more BWPs configured in the UE. For example, the base station can transmit to the UE a BWP identifier indicating the BWP to be activated when the configuration is performed, i.e., the BWP to be used first for communication with the base station. In addition, switching from an active BWP to a BWP that is not an active BWP (inactive BWP) and switching from an inactive BWP to an active BWP can be controlled, for example, by PDCCH (DCI), RRC signaling, MAC control element (MAC CE), or timer switching.
 なお、アクティブBWPにおける通信とは、当該BWPにおける上りリンク共有チャネル(UL-SCH:Uplink Shared Channel)での送信、当該BWPにおけるランダムアクセスチャネル(RACH:Random Access Channel)での送信(物理ランダムアクセスチャネル(PRACH:Physical Random Access Channel)機会(PRACH occasion)が設定されている場合)、当該BWPにおける物理下りリンク制御チャネル(PDCCH)のモニタ、当該BWPにおける物理上りリンク制御チャネル(PUCCH:Physical Uplink Control Channel)での送信(PUCCHリソースが設定されている場合)、当該BWPに対するチャネル状態情報(CSI:Channel State Information)のレポート、及び、当該BWPにおける下りリンク共有チャネル(DL-SCH:Downlink Shared Channel)の受信の少なくとも1つ含まれてもよい。 Note that communication in an active BWP may include at least one of the following: transmission on an uplink shared channel (UL-SCH) in the BWP, transmission on a random access channel (RACH) in the BWP (if a physical random access channel (PRACH) opportunity (PRACH occasion) is configured), monitoring of a physical downlink control channel (PDCCH) in the BWP, transmission on a physical uplink control channel (PUCCH) in the BWP (if a PUCCH resource is configured), reporting of channel state information (CSI) for the BWP, and reception of a downlink shared channel (DL-SCH) in the BWP.
 ここで、UL-SCHはトランスポートチャネルであり、物理チャネルである物理上りリンク共有チャネル(PUSCH)にマップされる。また、UL-SCHで送信されるデータは、UL-SCHデータとも称される。例えば、UL-SCHデータ、上りリンクユーザデータに対応してもよい。また、DL-SCHはトランスポートチャネルであり、物理チャネルである物理下りリンク共有チャネル(PDSCH:Physical Downlink Shared Channel)にマップされる。また、DL-SCHで送信されるデータは、DL-SCHデータとも称される。例えば、DL-SCHデータ、下りリンクユーザデータに対応してもよい。 Here, the UL-SCH is a transport channel and is mapped to the physical uplink shared channel (PUSCH), which is a physical channel. Data transmitted on the UL-SCH is also referred to as UL-SCH data. For example, the UL-SCH data may correspond to uplink user data. The DL-SCH is a transport channel and is mapped to the physical downlink shared channel (PDSCH), which is a physical channel. Data transmitted on the DL-SCH is also referred to as DL-SCH data. For example, the DL-SCH data may correspond to downlink user data.
 PUCCHは、上りリンク制御情報(Uplink Control Information(UCI))を送信するために用いられる。例えば、上りリンク制御情報は、HARQ(Hybrid Automatic Repeat reQuest)-ACK、CSI、及び/又は、スケジューリング要求(SR)を含む。HARQ-ACKは、肯定応答(positive Acknowledgment(ACK))、又は、否定応答(Negative Acknowledgment(NACK))を含む。例えば、PUCCHは、PDSCH(すなわち、DL-SCH(DL-SCHデータ、下りリンクユーザデータ))に対するHARQ-ACKの送信に用いられる。ここで、DL-SCHデータ、及び/又は、下りリンクユーザデータは、下りトランスポートブロックとも称される。 The PUCCH is used to transmit uplink control information (UCI). For example, the uplink control information includes a hybrid automatic repeat request (HARQ)-ACK, CSI, and/or a scheduling request (SR). The HARQ-ACK includes a positive acknowledgment (ACK) or a negative acknowledgment (NACK). For example, the PUCCH is used to transmit a HARQ-ACK for a PDSCH (i.e., DL-SCH (DL-SCH data, downlink user data)). Here, the DL-SCH data and/or the downlink user data are also referred to as a downlink transport block.
 UEは、例えば、アクティブなDL BWPにおいて、1又は複数のCORESETにおけるPDCCH候補のセットをモニタする。PDCCHのモニタは、モニタされる下りリンク制御情報(DCI)フォーマットに従って、PDCCH候補のそれぞれをデコードすることを含んでもよい。ここで、UEは、基地局によって設定されたRNTIによってスクランブルされたCRC(Cyclic Redundancy Check、CRCパリティビットとも称される)が付加されたDCIフォーマットをモニタしてもよい。ここで、RNTIは、SI-RNTI(System Information-RNTI)、RA-RNTI(Random Access RNTI)、TC-RNTI(Temporary C-RNTI)、P-RNTI(Paging RNTI)、及び/又は、C-RNTI(Cell-RNTI)を含んでもよい。UEがモニタするPDCCH候補のセットは、PDCCHのサーチスペースセットとして規定されてもよい。サーチスペースセットは、共通サーチスペースセット(CSS set(s))及び/又はUE固有サーチスペースセット(UE-specific Search Space(USS) set(s))を含んでもよい。従って、基地局は、CORESET及び/又はサーチスペースセットをUEに設定し、UEは、設定されたCORESET及び/又はサーチスペースセットにおいて、PDCCHをモニタしてもよい。 The UE, for example, in an active DL BWP, monitors a set of PDCCH candidates in one or more CORESETs. Monitoring the PDCCH may include decoding each of the PDCCH candidates according to a monitored Downlink Control Information (DCI) format. Here, the UE may monitor a DCI format with a CRC (Cyclic Redundancy Check, also referred to as CRC parity bit) scrambled by an RNTI set by the base station. Here, the RNTI may include SI-RNTI (System Information-RNTI), RA-RNTI (Random Access RNTI), TC-RNTI (Temporary C-RNTI), P-RNTI (Paging RNTI), and/or C-RNTI (Cell-RNTI). The set of PDCCH candidates monitored by the UE may be defined as a PDCCH search space set. The search space set may include a common search space set (CSS set(s)) and/or a UE-specific search space set (USS set(s)). Thus, the base station may configure the CORESET and/or search space set for the UE, and the UE may monitor the PDCCH in the configured CORESET and/or search space set.
 基地局100は、1つのサービングセルにおいて、1つのUEに1つ又は複数のDL BWPを設定し得る。この場合に、当該1つ又は複数のDL BWPのうちの1つのDL BWPが、アクティブDL BWPとしてUEにより使用される。例えば、上記RRCメッセージ(ServingCellConfig)は、最初のアクティブDL BWPを示す情報要素を含み、UEは、当該情報要素により示されるDL BWPをアクティブDL BWPとして最初に使用する。上記情報要素は、firstActiveDownlinkBWP-Idである。さらに、アクティブDL BWPは、切り替えられ得る。 The base station 100 may configure one or more DL BWPs for one UE in one serving cell. In this case, one of the one or more DL BWPs is used by the UE as the active DL BWP. For example, the above RRC message (ServingCellConfig) includes an information element indicating the first active DL BWP, and the UE initially uses the DL BWP indicated by the information element as the active DL BWP. The above information element is firstActiveDownlinkBWP-Id. Furthermore, the active DL BWP may be switched.
 例えば、基地局100は、DL BWPを示す情報を含むDCIをUEへ送信し、当該UEは、当該情報により示されるDL BWPにアクティブDL BWPを切り替える。当該DCIは、PDSCHのスケジューリングに用いられるDCI(例えば、DCI format 1_1)であり、当該情報は、Bandwidth Part Indicatorである。 For example, the base station 100 transmits a DCI including information indicating a DL BWP to the UE, and the UE switches the active DL BWP to the DL BWP indicated by the information. The DCI is a DCI (e.g., DCI format 1_1) used for scheduling the PDSCH, and the information is a Bandwidth Part Indicator.
 また、例えば、BWPに関するタイマが満了(expire)した場合に、UEは、デフォルト(default) DL BWPにアクティブDL BWPを切り替える。例えば、上記RRCメッセージは、デフォルトDL BWPを示す情報要素を含み、UEは、当該情報要素により示されるDL BWPをデフォルトDL BWPとして使用する。上記タイマは、bwp-InactivityTimerであり、上記情報要素は、defaultDownlinkBWP-Idである。なお、デフォルトDL BWPは、専用BWPであってもよいし、初期BWPであってもよい(例えば、デフォルトDL BWPを示す情報要素が含まれない場合、初期DL BWPがデフォルトDL BWPであってもよい)。 Also, for example, when a timer related to the BWP expires, the UE switches the active DL BWP to the default DL BWP. For example, the RRC message includes an information element indicating the default DL BWP, and the UE uses the DL BWP indicated by the information element as the default DL BWP. The timer is bwp-InactivityTimer, and the information element is defaultDownlinkBWP-Id. The default DL BWP may be a dedicated BWP or an initial BWP (for example, if no information element indicating the default DL BWP is included, the initial DL BWP may be the default DL BWP).
 基地局100は、1つのサービングセルにおいて、1つのUEに1つ又は複数のUL BWPを設定し得る。この場合に、当該1つ又は複数のUL BWPのうちの1つのUL BWPが、アクティブUL BWPとしてUEにより使用される。例えば、上記RRCメッセージは、最初のアクティブUL BWPを示す情報要素を含み、UEは、当該情報要素により示されるUL BWPをアクティブUL BWPとして最初に使用する。上記情報要素は、firstActiveUplinkBWP-Idである。さらに、アクティブUL BWPは、切り替えられ得る。例えば、基地局100は、UL BWPを示す情報を含むDCIをUEへ送信し、当該UEは、当該情報により示されるUL BWPにアクティブUL BWPを切り替える。当該DCIは、PUSCHのスケジューリングに用いられるDCI(例えば、DCI format 0_1)であり、当該情報は、Bandwidth Part Indicatorである。 The base station 100 may configure one or more UL BWPs for one UE in one serving cell. In this case, one UL BWP of the one or more UL BWPs is used by the UE as the active UL BWP. For example, the above RRC message includes an information element indicating a first active UL BWP, and the UE first uses the UL BWP indicated by the information element as the active UL BWP. The above information element is firstActiveUplinkBWP-Id. Furthermore, the active UL BWP may be switched. For example, the base station 100 transmits a DCI including information indicating a UL BWP to the UE, and the UE switches the active UL BWP to the UL BWP indicated by the information. The DCI is a DCI (e.g., DCI format 0_1) used for scheduling the PUSCH, and the information is a Bandwidth Part Indicator.
 なお、アクティブDL BWP、アクティブDL BWPなどの切替えは、MAC(Medium Access Control)エンティティによってさらに制御されてもよい。 In addition, switching between active DL BWP, active DL BWP, etc. may be further controlled by a MAC (Medium Access Control) entity.
 (2)RedCap UE及びeRedCap UEの概要
 次に、図8及び図9を参照して、RedCap UE(UE40)及びeRedCap UE(UE200)の違いについて説明する。
(2) Overview of RedCap UE and eRedCap UE Next, the difference between RedCap UE (UE 40) and eRedCap UE (UE 200) will be described with reference to Figs. 8 and 9 .
 3GPP技術仕様のリリース17において、産業用センサ、監視カメラ、及びウェアラブル等のユースケースに適した低性能のUEタイプとしてRedCap UEが導入されている。RedCap UEは、「Reduced capability NR device」とも称される。RedCap UEは、一般的なUEタイプに比べて装置コスト及び複雑さが軽減されたUEタイプ(端末タイプ)である。RedCap UEは、IoT向けにミドルレンジの性能・価格を有し、例えば、一般的なUEタイプに比べて、無線通信に用いる最大帯域幅が狭く設定されていたり、受信機の数が少なかったりする。図8に示すように、FR1について、RedCap UEが対応可能な帯域幅(すなわち、RedCap UEによってサポートされる最大帯域幅)は、20MHzであってよい。 In Release 17 of the 3GPP technical specifications, RedCap UE is introduced as a low-performance UE type suitable for use cases such as industrial sensors, surveillance cameras, and wearables. RedCap UE is also called "reduced capability NR device". RedCap UE is a UE type (terminal type) with reduced equipment cost and complexity compared to general UE types. RedCap UE has mid-range performance and price for IoT, and for example, compared to general UE types, the maximum bandwidth used for wireless communication is set narrower and the number of receivers is smaller. As shown in Figure 8, for FR1, the bandwidth that RedCap UE can support (i.e., the maximum bandwidth supported by RedCap UE) may be 20 MHz.
 3GPP技術仕様のリリース18において、RedCap UEよりもさらに複雑さが軽減された新たなUEタイプを導入することが検討されている。このような新たなUEタイプは、リリース17で導入されたRedCap UEと、LTEのLPWAとの間の性能であることが想定されている。このような新たなUEタイプは、「eRedCap UE」と称される。 In Release 18 of the 3GPP technical specifications, it is being considered to introduce a new UE type with even less complexity than the RedCap UE. Such a new UE type is expected to have performance between the RedCap UE introduced in Release 17 and the LTE LPWA. Such a new UE type is called "eRedCap UE".
 eRedCap UEは、RedCap UEに比べて無線通信に用いる最大帯域幅が狭い。eRedCap UEは、少なくともデータチャネルについて対応可能な周波数帯域幅がRedCap UEより低減された所定UEタイプ(所定端末タイプ)に相当してもよい。ここで、データチャネルは、データを伝送する物理チャネルであり、例えば、PDSCH及び/又はPUSCHを意味してもよい。 The eRedCap UE has a narrower maximum bandwidth used for wireless communication than the RedCap UE. The eRedCap UE may correspond to a specified UE type (specified terminal type) in which the frequency bandwidth that can be supported for at least the data channel is reduced compared to the RedCap UE. Here, the data channel is a physical channel that transmits data, and may mean, for example, the PDSCH and/or the PUSCH.
 eRedCap UEが利用可能な、ある物理チャネル(例えば、PDSCH及び/又はPUSCH)又は全物理チャネルについての最大帯域幅は、低減された帯域幅(reduced bandwidth)と呼ばれてもよい。低減された帯域幅は、20MHz未満の帯域幅に該当してもよく、XMHz(Xは、整数でもよいし、小数でもよい。例えば、X=0.5、1、2、3、4、5など)であってもよい。低減された帯域幅は、さらに低減された帯域幅(further reduced bandwidth)と互いに読み替えられてもよい。 The maximum bandwidth for a physical channel (e.g., PDSCH and/or PUSCH) or for all physical channels available to an eRedCap UE may be referred to as the reduced bandwidth. The reduced bandwidth may correspond to a bandwidth less than 20 MHz, and may be X MHz (where X may be an integer or a decimal, e.g., X = 0.5, 1, 2, 3, 4, 5, etc.). The reduced bandwidth may be interchangeable with the further reduced bandwidth.
 なお、20MHzは、RedCap UEが利用可能な最大帯域幅、特定の帯域幅、などと互いに読み替えられてもよい。本開示において、20MHzは、任意の帯域幅の値と互いに読み替えられてもよい。 Note that 20 MHz may be interchangeably read as the maximum bandwidth available to a RedCap UE, a specific bandwidth, etc. In this disclosure, 20 MHz may be interchangeably read as any bandwidth value.
 上記低減された帯域幅は、BWPであってもよく、eRedCap UEのBWPと呼ばれてもよい。しかしながら、低減された帯域幅は、BWPに限られず、1つ以上のサブキャリア、1つ以上のリソースエレメント、1つ以上のサブバンド、1つ以上のリソースブロック(Resource Block(RB))、1つ以上の物理RB(Physical RB(PRB))、1つ以上のリソースブロックセット、1つ以上の周波数帯、1つ以上の周波数リソース、1つ以上の周波数ドメインリソースなどの少なくとも1つに該当してもよい。 The reduced bandwidth may be a BWP and may be referred to as the BWP of an eRedCap UE. However, the reduced bandwidth is not limited to a BWP and may correspond to at least one of one or more subcarriers, one or more resource elements, one or more subbands, one or more resource blocks (Resource Blocks (RBs)), one or more physical RBs (Physical RBs (PRBs)), one or more resource block sets, one or more frequency bands, one or more frequency resources, one or more frequency domain resources, etc.
 eRedCap UEについては、(a)FR1における対応可能な周波数帯域幅を上記低減された帯域幅に低減すること、及び、(b)ピークデータレートを削減するためにFR1におけるデータチャネルに対する周波数帯域幅を低減すること、が提案されている。なお、これらとは別のUEコスト低減方法、例えば、BB部及びRF部の対応可能な帯域幅を20MHzに保ちつつピークレートを低減すること、データチャネルに関するUE処理時間の緩和なども提案されている。 For eRedCap UE, it has been proposed to (a) reduce the available frequency bandwidth in FR1 to the reduced bandwidth described above, and (b) reduce the frequency bandwidth for the data channel in FR1 to reduce the peak data rate. Other methods of reducing UE costs have also been proposed, such as reducing the peak rate while maintaining the available bandwidth of the BB and RF sections at 20 MHz, and relaxing the UE processing time for the data channel.
 図8に示すように、上記(a)の方法では、UE200のRF部(例えば、RF回路)及びBB部(例えば、ベースバンドプロセッサ)の両方について対応可能な帯域幅(すなわち、最大帯域幅)を低減し、RF部及びBB部の複雑さを軽減することが可能である。しかしながら、Rel.17 NRまでのSSBの構成、CORESET#0の設定などが利用できないおそれがあり、仕様の複雑さが増加する。 As shown in FIG. 8, the method (a) reduces the bandwidth (i.e., maximum bandwidth) that can be supported by both the RF section (e.g., RF circuit) and the BB section (e.g., baseband processor) of the UE 200, and can reduce the complexity of the RF section and the BB section. However, there is a risk that the SSB configuration up to Rel. 17 NR, the setting of CORESET#0, etc. cannot be used, and the complexity of the specifications increases.
 一方、図9に示すように、上記(b)の方法では、UE200のRF部の対応可能な帯域幅を20MHzに保ちつつ、BB部の対応可能な帯域幅を低減し、BB部の複雑さを軽減することが可能である。図9の例では、UE200のRF部が対応可能な周波数帯域幅である最大RF帯域幅が20MHzであって、UE200のBB部が対応可能な周波数帯域幅である最大BB帯域幅が低減された帯域幅(例えば、5MHz)である一例を示している。 On the other hand, as shown in FIG. 9, in the method (b) above, it is possible to reduce the bandwidth that the BB section can support while keeping the bandwidth that the RF section of UE200 can support at 20 MHz, thereby reducing the complexity of the BB section. The example in FIG. 9 shows an example in which the maximum RF bandwidth, which is the frequency bandwidth that the RF section of UE200 can support, is 20 MHz, and the maximum BB bandwidth, which is the frequency bandwidth that the BB section of UE200 can support, is a reduced bandwidth (e.g., 5 MHz).
 しかしながら、eRedCap UEが低減された帯域幅を利用する場合に、既存のRel.17 NRまでの3GPP規格に従うと、通信スループットが低下するおそれがある。 However, when an eRedCap UE uses a reduced bandwidth, there is a risk that communication throughput will decrease if the existing 3GPP standards up to Rel. 17 NR are followed.
 そこで、本発明者は、eRedCap UEが低減された帯域幅を利用する場合であっても適切に通信を実施するための方法を着想した。 The inventors therefore came up with a method for enabling eRedCap UEs to communicate appropriately even when using reduced bandwidth.
 以下の実施形態では、eRedCap UEについて上述の任意のコスト低減方法が採用されてよいが、主として上記(b)の方法が採用されることを想定する。 In the following embodiment, any of the above-mentioned cost reduction methods may be adopted for eRedCap UE, but it is assumed that the above method (b) is mainly adopted.
 なお、本開示において、BWPのサイズ、CORESET#0のサイズなどは、リソースブロック(Resource Block(RB))数で表されると想定して説明するが、これに限られない。本開示におけるRBは、周波数帯域幅に関する他の単位、例えばサブキャリア、リソースエレメント、サブバンド、リソースブロックグループ、物理リソースブロック(PRB)などと互いに読み替えられてもよい。 In this disclosure, the size of the BWP, the size of CORESET#0, and the like are assumed to be expressed in terms of the number of resource blocks (RB), but are not limited to this. In this disclosure, RB may be interchangeably interpreted as other units related to frequency bandwidth, such as subcarriers, resource elements, subbands, resource block groups, and physical resource blocks (PRBs).
 (3)DCIフォーマット0_0のサイズとDCIフォーマット1_0のサイズのアラインメント
 本開示の一実施形態に係るDCIフォーマットのサイズを合わせる処理(DCIサイズアラインメント、DCIフォーマットサイズアラインメント、単にアラインメントなどと呼ばれてもよい)について、以下で説明する。
(3) Alignment of Sizes of DCI Format 0_0 and DCI Format 1_0 The process of aligning the sizes of DCI formats according to one embodiment of the present disclosure (which may also be referred to as DCI size alignment, DCI format size alignment, or simply alignment) is described below.
 (3.1)Rel.17 NRまでのDCIフォーマット0_0のサイズとDCIフォーマット1_0のサイズのアラインメント
 まず、Rel.15-17 NRのDCIサイズアラインメントについて説明する。Rel.15-17 NRにおいて、PUSCHをスケジューリングするために用いられるDCIフォーマット0_0と、PDSCHをスケジューリングするために用いられるDCIフォーマット1_0とは、必要に応じてビットのパディング又は切り捨てが行われて、両者のサイズが同じになるように調整される。
(3.1) Alignment of the size of DCI format 0_0 and the size of DCI format 1_0 up to Rel. 17 NR First, the DCI size alignment of Rel. 15-17 NR will be described. In Rel. 15-17 NR, DCI format 0_0 used for scheduling PUSCH and DCI format 1_0 used for scheduling PDSCH are padded or truncated as necessary to adjust the sizes of both to be the same.
 なお、本開示において、DCIサイズアラインメントは、基地局及びUEの両方において、同じルールに従って行われてもよい。つまり、DCIサイズアラインメントは、UEによって実施されてもよいし、基地局によって実施されてもよい。例えば、UEは、PDCCHを復号(ブラインド復号と呼ばれてもよい)する際に、DCIフォーマット1_0とDCIフォーマット0_0のサイズを合わせる処理を実行する。 In the present disclosure, DCI size alignment may be performed in both the base station and the UE according to the same rules. That is, DCI size alignment may be performed by the UE or by the base station. For example, when decoding the PDCCH (which may be called blind decoding), the UE performs a process of matching the sizes of DCI format 1_0 and DCI format 0_0.
 なお、DCIフォーマット0_0及び1_0は、UE固有の上位レイヤシグナリングによって構成(内容、ペイロードサイズなど)が変わらない又はほとんど変わらないDCIフォーマットに該当し、フォールバックDCIと呼ばれてもよい。一方で、例えばDCIフォーマット0_1及び1_1(又は0_2及び1_2)は、UE固有の上位レイヤシグナリングによって構成(内容、ペイロードサイズなど)が変わる又はDCIフォーマット0_0及び1_0に比べてより変わるDCIフォーマットに該当し、ノンフォールバックDCIと呼ばれてもよい。 Note that DCI formats 0_0 and 1_0 correspond to DCI formats whose configuration (contents, payload size, etc.) does not change or changes very little due to UE-specific higher layer signaling, and may be called fallback DCI. On the other hand, for example, DCI formats 0_1 and 1_1 (or 0_2 and 1_2) correspond to DCI formats whose configuration (contents, payload size, etc.) changes due to UE-specific higher layer signaling or changes more than DCI formats 0_0 and 1_0, and may be called non-fallback DCI.
 Rel.15-17 NRにおいて、CSSにおいてモニタされるDCIフォーマット0_0は、初期UL BWPのサイズに基づいて決定される。また、CSSにおいてモニタされるDCIフォーマット1_0は、CORESET#0がこのセルのために設定される場合にはCORESET#0のサイズに基づいて決定され、CORESET#0がこのセルのために設定されない場合には初期DL BWPのサイズに基づいて決定される。なお、「このセル」は、DCIフォーマット1_0をモニタするセルを意味してもよい。例えば、「このセル」は、DCIフォーマット1_0をモニタするDL BWPが設定されたセルを意味してもよい。例えば、基地局は、サーチスペースセットに関する情報要素(例えば、SearchSpace情報要素)を含む上位レイヤシグナリングを送信し、UEがPDCCHをモニタするためのサーチスペースセット及び/又はDCIフォーマットを設定してもよい。ここで、サーチスペースセットに関する情報要素は、1つ又は複数のDL BWPのそれぞれに対して(すなわち、DL BWP毎に)設定されてもよい。 In Rel. 15-17 NR, DCI format 0_0 monitored in the CSS is determined based on the size of the initial UL BWP. DCI format 1_0 monitored in the CSS is determined based on the size of CORESET#0 if CORESET#0 is set for this cell, and is determined based on the size of the initial DL BWP if CORESET#0 is not set for this cell. Note that "this cell" may mean a cell that monitors DCI format 1_0. For example, "this cell" may mean a cell in which a DL BWP that monitors DCI format 1_0 is set. For example, the base station may transmit higher layer signaling including an information element (e.g., a SearchSpace information element) regarding a search space set and set a search space set and/or a DCI format for the UE to monitor the PDCCH. Here, the information element regarding the search space set may be set for each of one or more DL BWPs (i.e., for each DL BWP).
 なお、本開示において、「CORESET#0がこのセルのために設定される場合」は、このセルについて、CORESET#0の設定のための情報要素(ControlResourceSetZero)が基地局から送信される又はUEによって受信されることを意味してもよい。 In addition, in this disclosure, "when CORESET#0 is set for this cell" may mean that an information element (ControlResourceSetZero) for setting CORESET#0 for this cell is transmitted from the base station or received by the UE.
 Rel.15-17 NRにおいては、DCIフォーマット0_0がCSSにおいてモニタされ、パディング前の上記DCIフォーマット0_0の情報ビット数が、同じサービングセルをスケジューリングするためにCSSにおいてモニタされるDCIフォーマット1_0のペイロードサイズより小さい場合には、ペイロードサイズが上記DCIフォーマット1_0のものと等しくなるまで、複数のゼロパディングビットが上記DCIフォーマット0_0について生成される。 In Rel. 15-17 NR, DCI format 0_0 is monitored in the CSS, and if the number of information bits of the DCI format 0_0 before padding is smaller than the payload size of DCI format 1_0 monitored in the CSS for scheduling the same serving cell, multiple zero padding bits are generated for the DCI format 0_0 until the payload size is equal to that of the DCI format 1_0.
 Rel.15-17 NRにおいては、DCIフォーマット0_0がCSSにおいてモニタされ、切り捨て前の上記DCIフォーマット0_0の情報ビット数が、同じサービングセルをスケジューリングするためにCSSにおいてモニタされるDCIフォーマット1_0のペイロードサイズより大きい場合、上記DCIフォーマット0_0のサイズが上記DCIフォーマット1_0のサイズに等しくなるように周波数領域リソース割り当てフィールドの最初のいくつかの最上位ビットを切り捨てることによって、上記DCIフォーマット0_0の周波数領域リソース割り当てフィールドのビット幅を減少させる。 In Rel. 15-17 NR, if DCI format 0_0 is monitored in a CSS and the number of information bits of the DCI format 0_0 before truncation is greater than the payload size of DCI format 1_0 monitored in the CSS for scheduling the same serving cell, the bit width of the frequency domain resource allocation field of the DCI format 0_0 is reduced by truncating the first few most significant bits of the frequency domain resource allocation field so that the size of the DCI format 0_0 is equal to the size of the DCI format 1_0.
 また、Rel.15-17 NRにおいて、USSにおいてモニタされるDCIフォーマット0_0は、アクティブUL BWPのサイズに基づいて決定される。また、USSにおいてモニタされるDCIフォーマット1_0は、アクティブDL BWPのサイズに基づいて決定される。 In addition, in Rel. 15-17 NR, DCI format 0_0 monitored in the USS is determined based on the size of the active UL BWP. DCI format 1_0 monitored in the USS is determined based on the size of the active DL BWP.
 Rel.15-17 NRにおいては、DCIフォーマット0_0がUSSにおいてモニタされ、パディング前の上記DCIフォーマット0_0の情報ビット数が、同じサービングセルをスケジューリングするためにUSSにおいてモニタされるDCIフォーマット1_0のペイロードサイズより小さい場合、ペイロードサイズが上記DCIフォーマット1_0のものと等しくなるまで、複数のゼロパディングビットが上記DCIフォーマット0_0について生成される。 In Rel. 15-17 NR, when DCI format 0_0 is monitored in a USS and the number of information bits of the DCI format 0_0 before padding is smaller than the payload size of DCI format 1_0 monitored in the USS for scheduling the same serving cell, multiple zero padding bits are generated for the DCI format 0_0 until the payload size is equal to that of the DCI format 1_0.
 Rel.15-17 NRにおいては、DCIフォーマット1_0がUSSにおいてモニタされ、パディング前の上記DCIフォーマット1_0の情報ビット数が、同じサービングセルをスケジューリングするためにUSSにおいてモニタされるDCIフォーマット 0_0のペイロードサイズより小さい場合、上記DCIフォーマット0_0のペイロードサイズと等しくなるまで、上記DCI フォーマット1_0にゼロが付加される。 In Rel. 15-17 NR, when DCI format 1_0 is monitored in the USS and the number of information bits of the DCI format 1_0 before padding is smaller than the payload size of DCI format 0_0 monitored in the USS for scheduling the same serving cell, zeros are added to the DCI format 1_0 until it is equal to the payload size of the DCI format 0_0.
 (3.2)Rel.17 NRまでのDCIサイズアラインメントをeRedCap UEに対して適用する場合の課題
 上述したRel.17 NRまでのDCIサイズアラインメントをeRedCap UEに対して適用すると、特定のDCIフォーマット(例えば、DCIフォーマット0_0)に不要な(過剰な)パディングビットが含まれる事態が生じるおそれがある。
(3.2) Issues when applying DCI size alignment up to Rel. 17 NR to eRedCap UE When the above-mentioned DCI size alignment up to Rel. 17 NR is applied to eRedCap UE, there is a risk that unnecessary (excessive) padding bits may be included in a specific DCI format (e.g., DCI format 0_0).
 例えば、図10に示すように、CSSにおいてモニタされるDCIフォーマット0_0のサイズ計算に初期UL BWPのRB数(例えば、5MHz BWPに相当する24RBs)が用いられ、CSSにおいてモニタされるDCIフォーマット1_0のサイズ計算にCORESET#0のRB数(例えば、20MHz BWPに相当する96PRBs)が用いられるケースにおいては、DCIフォーマット0_0のサイズをゼロパディングする必要がある。 For example, as shown in FIG. 10, in a case where the number of RBs of the initial UL BWP (e.g., 24 RBs equivalent to a 5 MHz BWP) is used to calculate the size of DCI format 0_0 monitored in the CSS, and the number of RBs of CORESET#0 (e.g., 96 PRBs equivalent to a 20 MHz BWP) is used to calculate the size of DCI format 1_0 monitored in the CSS, the size of DCI format 0_0 needs to be zero-padded.
 上記ケースにおいて、DCIフォーマット0_0の周波数ドメインリソース割り当てフィールドのサイズは例えばceil(log2(NRB UL_BWP(NRB UL_BWP+1)/2))=9であり、DCIフォーマット1_0の周波数ドメインリソース割り当てフィールドのサイズはceil(log2(NRB DL_BWP(NRB DL_BWP+1)/2))=13である。ここで、NRB UL_BWP=24、NRB DL_BWP=96である。なお、ceil(X)は、実数Xに対して天井関数を適用した値を意味する。 In the above case, the size of the frequency-domain resource allocation field of DCI format 0_0 is, for example , ceil( log2(NRUBUL_BWP ( NRUBUL_BWP +1)/2)) = 9, and the size of the frequency-domain resource allocation field of DCI format 1_0 is ceil(log2(NRBDL_BWP(NRBDL_BWP+1)/2)) = 13, where NRBUL_BWP = 24 and NRBDL_BWP = 96. Note that ceil(X) means a value obtained by applying a ceiling function to a real number X.
 図10においては4ビットのパディングビットがDCIフォーマット0_0に含まれる結果になる。DCIフォーマットに多くのパディングビットが含まれる場合、PDCCHの無線リソース利用効率が低下し、またUEの処理負荷が増加する。 In FIG. 10, 4 padding bits are included in DCI format 0_0. If the DCI format contains many padding bits, the efficiency of radio resource usage of the PDCCH decreases and the processing load of the UE increases.
 (3.3)DCIフォーマット0_0のサイズとDCIフォーマット1_0のサイズのeRedCap UE向けのアラインメント
 本開示の一実施形態においては、eRedCap固有初期UL BWP及び/又はeRedCap固有初期DL BWPがUEに設定される場合、CSSにおいてモニタされるDCIフォーマット0_0のサイズは、当該eRedCap固有初期UL BWPのサイズに基づいて決定される。
(3.3) Alignment of Size of DCI Format 0_0 and Size of DCI Format 1_0 for eRedCap UE In one embodiment of the present disclosure, when an eRedCap-specific initial UL BWP and/or an eRedCap-specific initial DL BWP is configured in a UE, the size of DCI format 0_0 monitored in the CSS is determined based on the size of the eRedCap-specific initial UL BWP.
 本開示の一実施形態においては、eRedCap固有初期UL BWP及び/又はeRedCap固有初期DL BWPがUEに設定される場合、CSSにおいてモニタされるDCIフォーマット1_0のサイズは、特定の帯域幅のサイズに基づいて決定される。なお、上記特定の帯域幅のサイズは、単に特定の帯域幅と互いに読み替えられてもよい。 In one embodiment of the present disclosure, when an eRedCap-specific initial UL BWP and/or an eRedCap-specific initial DL BWP is configured in a UE, the size of DCI format 1_0 monitored in the CSS is determined based on the size of a specific bandwidth. Note that the size of the specific bandwidth may simply be read as a specific bandwidth.
 当該DCIフォーマット1_0をモニタするセルのためにCORESET#0が設定される場合であっても、当該DCIフォーマット1_0のサイズは、CORESET#0のサイズに基づいて決定されるのではなく、上記特定の帯域幅のサイズに基づいて決定されてもよい。 Even if CORESET#0 is configured for a cell that monitors the DCI format 1_0, the size of the DCI format 1_0 may be determined based on the size of the specific bandwidth, rather than based on the size of CORESET#0.
 また、当該DCIフォーマット1_0をモニタするセルのためにCORESET#0が設定される場合、かつ、当該CORESET#0のサイズがeRedCap固有初期DL BWP及び/又はeRedCap固有初期UL BWPのサイズよりも大きい場合に、当該DCIフォーマット1_0のサイズは、上記特定の帯域幅のサイズに基づいて決定されてもよい。なお、当該CORESET#0のサイズがeRedCap固有初期DL BWPのサイズ及び/又はeRedCap固有初期UL BWPのサイズ以下の場合、当該DCIフォーマット1_0のサイズは、上記CORESET#0のサイズに基づいて決定されてもよい。 Furthermore, when CORESET#0 is set for a cell that monitors the DCI format 1_0, and when the size of the CORESET#0 is larger than the size of the eRedCap-specific initial DL BWP and/or the eRedCap-specific initial UL BWP, the size of the DCI format 1_0 may be determined based on the size of the specific bandwidth. Note that, when the size of the CORESET#0 is equal to or smaller than the size of the eRedCap-specific initial DL BWP and/or the size of the eRedCap-specific initial UL BWP, the size of the DCI format 1_0 may be determined based on the size of the CORESET#0.
 また、eRedCap固有初期UL BWP及び/又はeRedCap固有初期DL BWPがUEに設定されない場合、CSSにおいてモニタされるDCIフォーマット0_0及び1_0のサイズは、上述のRel.15-Rel.17 NRに従って決定されてもよい。すなわち、CSSにおいてモニタされるDCIフォーマット0_0及び1_0のサイズは、CORESET#0がこのセルのために設定される場合にはCORESET#0のサイズに基づいて決定され、CORESET#0がこのセルのために設定されない場合には初期DL BWPのサイズに基づいて決定されてもよい。 Also, if an eRedCap-specific initial UL BWP and/or an eRedCap-specific initial DL BWP is not configured in the UE, the size of DCI formats 0_0 and 1_0 monitored in the CSS may be determined in accordance with the above-mentioned Rel. 15-Rel. 17 NR. That is, the size of DCI formats 0_0 and 1_0 monitored in the CSS may be determined based on the size of CORESET#0 if CORESET#0 is configured for this cell, and may be determined based on the size of the initial DL BWP if CORESET#0 is not configured for this cell.
 なお、eRedCap固有初期DL BWP及びeRedCap固有初期UL BWPがどのようなBWPであるかについては、後述の(3.4)において詳細に説明する。 The type of BWPs that the eRedCap-specific initial DL BWP and eRedCap-specific initial UL BWP are will be explained in detail later in (3.4).
 本開示の一実施形態においては、eRedCap UEは、上述のように決定されるDCIフォーマット0_0のサイズ及びDCIフォーマット1_0のサイズに基づいて、これらのDCIフォーマットのサイズを合わせる処理を実行する。 In one embodiment of the present disclosure, the eRedCap UE performs a process of matching the sizes of these DCI formats based on the sizes of DCI format 0_0 and DCI format 1_0 determined as described above.
 例えば、図11に示すように、CSSにおいてモニタされるDCIフォーマット0_0のサイズ計算にeRedCap固有初期UL BWPのサイズが用いられ、CSSにおいてモニタされるDCIフォーマット1_0のサイズ計算に特定の帯域幅のサイズが用いられるケースにおいては、UEは、DCIフォーマット0_0のサイズを、ゼロパディングする。具体的には、パディング前の上記DCIフォーマット0_0の情報ビット数が、同じサービングセルをスケジューリングするためにCSSにおいてモニタされる上記DCIフォーマット1_0のペイロードサイズより小さい場合には、ペイロードサイズが上記DCIフォーマット1_0のものと等しくなるまで、複数のゼロパディングビットが上記DCIフォーマット0_0について生成されてもよい。 For example, as shown in FIG. 11, in a case where the size of the eRedCap-specific initial UL BWP is used to calculate the size of DCI format 0_0 monitored in the CSS, and a specific bandwidth size is used to calculate the size of DCI format 1_0 monitored in the CSS, the UE zero-pads the size of DCI format 0_0. Specifically, if the number of information bits of the DCI format 0_0 before padding is smaller than the payload size of the DCI format 1_0 monitored in the CSS for scheduling the same serving cell, multiple zero padding bits may be generated for the DCI format 0_0 until the payload size is equal to that of the DCI format 1_0.
 上記特定の帯域幅は、以下の少なくとも1つに該当してもよい:
 ・eRedCap固有初期DL BWPのサイズ、
 ・eRedCap固有初期DL BWPの位置、サイズ、及びSCSに基づいて決定される値、
 ・eRedCap固有初期UL BWPのサイズ、
 ・eRedCap固有初期UL BWPの位置、サイズ、及びSCSに基づいて決定される値。
The particular bandwidth may correspond to at least one of the following:
The size of the eRedCap-specific initial DL BWP,
A value determined based on the location, size, and SCS of the eRedCap-specific initial DL BWP;
eRedCap specific initial UL BWP size,
A value determined based on the position, size, and SCS of the eRedCap-specific initial UL BWP.
 例えば、上記特定の帯域幅は、当該SCSが15KHzの場合には、15RB(約3MHzに相当)、20RB(約4MHzに相当)、25RB(約5MHzに相当)などであってもよい。 For example, if the SCS is 15 KHz, the specific bandwidth may be 15 RB (equivalent to approximately 3 MHz), 20 RB (equivalent to approximately 4 MHz), 25 RB (equivalent to approximately 5 MHz), etc.
 また、上記特定の帯域幅は、当該SCSが30KHzの場合には、8RB(約3MHzに相当)、10RB(約4MHzに相当)、11及び/又は12RB(約5MHzに相当)などであってもよい。すなわち、CSSにおいてモニタされるDCIフォーマット1_0のサイズ計算に特定の帯域幅の特定のサイズが用いられてもよい。例えば、基地局は、eRedCap固有初期DL BWPのサイズを、特定の値(例えば、約5MHzに相当する25RBs)と等しい、又は、当該特定の値(例えば、約5MHzに相当する25RBs)よりも小さくなるように設定してもよい。すなわち、特定の帯域幅は、25RBsと等しい、又は、25RBsよりも小さい値であってもよい。 Furthermore, when the SCS is 30 KHz, the specific bandwidth may be 8 RB (equivalent to approximately 3 MHz), 10 RB (equivalent to approximately 4 MHz), 11 and/or 12 RB (equivalent to approximately 5 MHz), etc. That is, a specific size of a specific bandwidth may be used to calculate the size of DCI format 1_0 monitored in the CSS. For example, the base station may set the size of the eRedCap-specific initial DL BWP to be equal to a specific value (e.g., 25 RBs equivalent to approximately 5 MHz) or smaller than the specific value (e.g., 25 RBs equivalent to approximately 5 MHz). That is, the specific bandwidth may be equal to 25 RBs or smaller than 25 RBs.
 (3.4)eRedCap固有初期BWP
 上記(3.3)において、eRedCap固有初期DL BWP及びeRedCap固有初期UL BWPは、UEに対して、1つのフィールド(例えば、initialBWP-RedCap-r18)を用いてまとめて設定されてもよいし、別々のフィールド(例えば、initialDownlinkBWP-RedCap-r18、initialUplinkBWP-RedCap-r18)を用いてそれぞれ設定されてもよい。
(3.4) eRedCap-specific initial BWP
In the above (3.3), the eRedCap-specific initial DL BWP and the eRedCap-specific initial UL BWP may be configured together for the UE using one field (e.g., initialBWP-RedCap-r18) or may be configured respectively using separate fields (e.g., initialDownlinkBWP-RedCap-r18, initialUplinkBWP-RedCap-r18).
 これらのフィールドは、SIB1のServingCellConfigCommonSIBに含まれてもよいし、SIB1以外のSIBに含まれてもよい。また、これらのフィールドは、既存の初期BWPに関するフィールド(initialDownlinkBWP、initialUplinkBWP、initialDownlinkBWP-RedCap-r17、initialUplinkBWP-RedCap-r17)と同様に、パラメータlocationAndBandwidth、subcarrierSpacing及びcyclicPrefixなどを含むBWP情報要素を含んでもよい。 These fields may be included in the ServingCellConfigCommonSIB of SIB1, or in a SIB other than SIB1. In addition, these fields may include BWP information elements including parameters locationAndBandwidth, subcarrierSpacing, and cyclicPrefix, as well as existing fields related to the initial BWP (initialDownlinkBWP, initialUplinkBWP, initialDownlinkBWP-RedCap-r17, initialUplinkBWP-RedCap-r17).
 eRedCap固有初期BWPの位置及びサイズは、上記locationAndBandwidthによって設定されてもよい。eRedCap固有初期BWPのSCSは、上記subcarrierSpacingによって設定されてもよい。eRedCap固有初期BWPのサイクリックプレフィックスは、上記cyclicPrefixによって設定されてもよい。 The location and size of the eRedCap-specific initial BWP may be set by the locationAndBandwidth described above. The SCS of the eRedCap-specific initial BWP may be set by the subcarrierSpacing described above. The cyclic prefix of the eRedCap-specific initial BWP may be set by the cyclicPrefix described above.
 本開示において、eRedCap固有初期DL BWPがUEに設定されることは、当該UEが、特定の帯域幅(例えば、20MHz)未満の初期下りリンク帯域幅(initial Downlink BWP)に関する第1の設定情報を受信することに該当してもよい。当該第1の設定情報は、eRedCap固有初期DL BWPに関する設定情報であり、例えば、上述のinitialBWP-RedCap-r18又はinitialDownlinkBWP-RedCap-r18であってもよい。 In the present disclosure, the setting of an eRedCap-specific initial DL BWP in a UE may correspond to the UE receiving first configuration information regarding an initial downlink bandwidth (initial Downlink BWP) less than a specific bandwidth (e.g., 20 MHz). The first configuration information is configuration information regarding an eRedCap-specific initial DL BWP, and may be, for example, the above-mentioned initialBWP-RedCap-r18 or initialDownlinkBWP-RedCap-r18.
 また、本開示において、eRedCap固有初期UL BWPがUEに設定されることは、当該UEが、特定の帯域幅(例えば、20MHz)未満の初期上りリンク帯域幅(initial Uplink BWP)に関する第2の設定情報を受信することに該当してもよい。当該第2の設定情報は、eRedCap固有初期UL BWPに関する設定情報であり、例えば、上述のinitialBWP-RedCap-r18又はinitialUplinkBWP-RedCap-r18であってもよい。 Furthermore, in the present disclosure, the setting of an eRedCap-specific initial UL BWP in a UE may correspond to the UE receiving second configuration information regarding an initial uplink bandwidth (initial Uplink BWP) less than a specific bandwidth (e.g., 20 MHz). The second configuration information is configuration information regarding an eRedCap-specific initial UL BWP, and may be, for example, the above-mentioned initialBWP-RedCap-r18 or initialUplinkBWP-RedCap-r18.
 UEは、eRedCap固有初期DL BWP及びeRedCap固有初期UL BWPについて、同じサイズ(例えば、RB数)を設定されてもよいし、異なる又は独立のサイズを設定されてもよい。例えば、UEは、11PRBのサイズを有するeRedCap固有初期DL BWPと、12PRBのサイズを有するeRedCap固有初期UL BWPと、を設定されてもよい。UEは、eRedCap固有初期DL BWPのサイズはeRedCap固有初期UL BWPのサイズよりも小さいと想定してもよいし、大きいと想定してもよい。 The UE may be configured with the same size (e.g., number of RBs) for the eRedCap-specific initial DL BWP and the eRedCap-specific initial UL BWP, or may be configured with different or independent sizes. For example, the UE may be configured with an eRedCap-specific initial DL BWP having a size of 11 PRBs and an eRedCap-specific initial UL BWP having a size of 12 PRBs. The UE may assume that the size of the eRedCap-specific initial DL BWP is smaller or larger than the size of the eRedCap-specific initial UL BWP.
 UEは、DCIサイズアラインメントに第1のPRB数(例えば、11PRBs)及び第2のPRB数(例えば、12PRBs)のいずれが用いられるのかを特定するために用いられる情報を通知されてもよい。例えば、基地局は、当該情報を含む上位レイヤシグナリングをUEに送信してもよい。当該情報は、eRedCap固有初期DL BWP及び/又はeRedCap固有初期UL BWPに関連付けられて通知されてもよい。当該情報は、BWPに関する情報要素(例えば、BWP情報要素)に含まれてもよいし、サーチスペースセットに関する情報要素(例えば、SearchSpace情報要素)に含まれてもよいし、その他の情報要素に含まれてもよい。UEは、当該情報として第1のPRB数を示す情報を通知される場合、第1のPRB数に基づいて上記(3.3)のDCIサイズアラインメントを実施してもよい。 The UE may be notified of information used to determine whether the first number of PRBs (e.g., 11 PRBs) or the second number of PRBs (e.g., 12 PRBs) is used for DCI size alignment. For example, the base station may transmit higher layer signaling including the information to the UE. The information may be notified in association with the eRedCap-specific initial DL BWP and/or the eRedCap-specific initial UL BWP. The information may be included in an information element regarding the BWP (e.g., a BWP information element), an information element regarding the search space set (e.g., a SearchSpace information element), or other information element. When the UE is notified of information indicating the first number of PRBs as the information, the UE may perform the DCI size alignment of (3.3) above based on the first number of PRBs.
 本開示において、eRedCap固有初期DL BWPは、データチャネル(例えば、PDSCH)用eRedCap固有初期DL BWPに該当してもよい。UEは、データチャネル用eRedCap固有初期DL BWPにおいて、少なくともDL-SCHの受信を行ってもよい。UEは、データチャネル用eRedCap固有初期DL BWPにおいて、PDCCHの受信を行わなくてもよい。 In the present disclosure, the eRedCap-specific initial DL BWP may correspond to an eRedCap-specific initial DL BWP for a data channel (e.g., PDSCH). The UE may receive at least the DL-SCH in the eRedCap-specific initial DL BWP for a data channel. The UE may not receive the PDCCH in the eRedCap-specific initial DL BWP for a data channel.
 データチャネル用eRedCap固有初期DL BWPは、RedCap固有初期DL BWP(例えば、initialDownlinkBWP-RedCap-r17によって設定される初期DL BWP)及び/又は制御チャネル(例えば、PDCCH)用eRedCap固有初期DL BWPと異なるBWPであってもよいし、同じBWPであってもよい。 The eRedCap-specific initial DL BWP for the data channel may be a different BWP than the RedCap-specific initial DL BWP (e.g., the initial DL BWP set by initialDownlinkBWP-RedCap-r17) and/or the eRedCap-specific initial DL BWP for the control channel (e.g., PDCCH), or may be the same BWP.
 データチャネル用eRedCap固有初期DL BWPは、RedCap固有初期DL BWP及び/又は制御チャネル用eRedCap固有初期DL BWPに含まれてもよい(周波数リソースが完全に含まれてもよいし、周波数リソースの一部が重複してもよい)。 The eRedCap specific initial DL BWP for the data channel may be included in the RedCap specific initial DL BWP and/or the eRedCap specific initial DL BWP for the control channel (the frequency resources may be completely included or may overlap in part).
 データチャネル用eRedCap固有初期DL BWPは、データチャネル用eRedCap固有初期DL BWPを示すフィールド(例えば、initialDownlinkBWP-RedCapForData-r18)によって設定されるBWPであってもよい。 The eRedCap specific initial DL BWP for the data channel may be a BWP set by a field indicating the eRedCap specific initial DL BWP for the data channel (e.g., initialDownlinkBWP-RedCapForData-r18).
 なお、制御チャネル用eRedCap固有初期DL BWPは、少なくともCSSが設定されるBWP又はCSSにおいてDCIフォーマットがモニタされるBWPであってもよい。UEは、制御チャネル用eRedCap固有初期DL BWPにおいて、DL-SCHの受信を行わなくてもよい。 The eRedCap specific initial DL BWP for the control channel may be a BWP in which at least a CSS is set or a BWP in which the DCI format is monitored in the CSS. The UE does not need to receive the DL-SCH in the eRedCap specific initial DL BWP for the control channel.
 制御チャネル用eRedCap固有初期DL BWPは、RedCap固有初期DL BWP(例えば、initialDownlinkBWP-RedCap-r17によって設定される初期DL BWP)であってもよいし、eRedCap固有初期DL BWP(例えば、initialDownlinkBWP-RedCap-r18によって設定される初期DL BWP)であってもよいし、制御チャネル用eRedCap固有初期DL BWPを示すフィールド(例えば、initialDownlinkBWP-RedCapForControl-r18)によって設定されるBWPであってもよい。 The eRedCap-specific initial DL BWP for the control channel may be a RedCap-specific initial DL BWP (e.g., the initial DL BWP set by initialDownlinkBWP-RedCap-r17), an eRedCap-specific initial DL BWP (e.g., the initial DL BWP set by initialDownlinkBWP-RedCap-r18), or a BWP set by a field indicating the eRedCap-specific initial DL BWP for the control channel (e.g., initialDownlinkBWP-RedCapForControl-r18).
 なお、データチャネル用eRedCap固有初期DL BWPが設定され、かつ制御チャネル用eRedCap固有初期DL BWPが設定されない場合には、UEは、制御チャネル用eRedCap固有初期DL BWPはデータチャネル用eRedCap固有初期DL BWPであると判断してもよい。例えば、第1の情報(例えば、initialDownlinkBWP-RedCap-r18)によってデータチャネル用eRedCap固有初期DL BWPが設定され、第2の情報(例えば、initialDownlinkBWP-RedCapForControl-r18)によって制御チャネル用eRedCap固有初期DL BWPが設定されるケースを想定する。このケースにおいて、上記第1の情報を受信し、かつ、上記第2の情報を受信していないUEは、制御チャネル用eRedCap固有初期DL BWPを、上記第1の情報に基づいて決定してもよい。 Note that if the eRedCap specific initial DL BWP for the data channel is set and the eRedCap specific initial DL BWP for the control channel is not set, the UE may determine that the eRedCap specific initial DL BWP for the control channel is the eRedCap specific initial DL BWP for the data channel. For example, assume a case in which the eRedCap specific initial DL BWP for the data channel is set by the first information (e.g., initialDownlinkBWP-RedCap-r18) and the eRedCap specific initial DL BWP for the control channel is set by the second information (e.g., initialDownlinkBWP-RedCapForControl-r18). In this case, a UE that receives the first information and does not receive the second information may determine the eRedCap specific initial DL BWP for the control channel based on the first information.
 本開示において、eRedCap固有初期UL BWPは、データチャネル(例えば、PUSCH)用eRedCap固有初期UL BWPに該当してもよい。UEは、データチャネル用eRedCap固有初期UL BWPにおいて、少なくともUL-SCHでの送信及びRACHでの送信を行ってもよい。なお、当該RACHでの送信は、PRACH機会が設定されている場合に行われてもよい。UEは、データチャネル用eRedCap固有初期UL BWPにおいて、PUCCHの送信を行わなくてもよい。 In the present disclosure, the eRedCap-specific initial UL BWP may correspond to the eRedCap-specific initial UL BWP for a data channel (e.g., PUSCH). The UE may transmit at least on the UL-SCH and on the RACH in the eRedCap-specific initial UL BWP for a data channel. Note that the transmission on the RACH may be performed when a PRACH opportunity is set. The UE may not transmit on the PUCCH in the eRedCap-specific initial UL BWP for a data channel.
 データチャネル用eRedCap固有初期UL BWPは、RedCap固有初期UL BWP(例えば、initialUplinkBWP-RedCap-r17によって設定される初期UL BWP)及び/又は制御チャネル(例えば、PUCCH)用eRedCap固有初期UL BWPと異なるBWPであってもよいし、同じBWPであってもよい。 The eRedCap-specific initial UL BWP for the data channel may be a different BWP than or the same as the RedCap-specific initial UL BWP (e.g., the initial UL BWP set by initialUplinkBWP-RedCap-r17) and/or the eRedCap-specific initial UL BWP for the control channel (e.g., PUCCH).
 データチャネル用eRedCap固有初期UL BWPは、RedCap固有初期UL BWP及び/又は制御チャネル用eRedCap固有初期UL BWPに含まれてもよい(周波数リソースが完全に含まれてもよいし、周波数リソースの一部が重複してもよい)。 The eRedCap specific initial UL BWP for the data channel may be included in the RedCap specific initial UL BWP and/or the eRedCap specific initial UL BWP for the control channel (the frequency resources may be completely included or may overlap in part).
 データチャネル用eRedCap固有初期UL BWPは、データチャネル用eRedCap固有初期UL BWPを示すフィールド(例えば、initialUplinkBWP-RedCapForData-r18)によって設定されるBWPであってもよい。 The eRedCap specific initial UL BWP for the data channel may be a BWP set by a field indicating the eRedCap specific initial UL BWP for the data channel (e.g., initialUplinkBWP-RedCapForData-r18).
 なお、制御チャネル用eRedCap固有初期UL BWPは、少なくともUCI又はPUCCHが送信されるBWPであってもよい。UEは、制御チャネル用eRedCap固有初期UL BWPにおいて、UL-SCHでの送信及び/又はRACHでの送信を行わなくてもよい。 The eRedCap specific initial UL BWP for the control channel may be a BWP in which at least UCI or PUCCH is transmitted. The UE may not transmit on the UL-SCH and/or on the RACH in the eRedCap specific initial UL BWP for the control channel.
 制御チャネル用eRedCap固有初期UL BWPは、RedCap固有初期UL BWP(例えば、initialUplinkBWP-RedCap-r17によって設定される初期UL BWP)であってもよいし、eRedCap固有初期UL BWP(例えば、initialUplinkBWP-RedCap-r18によって設定される初期UL BWP)であってもよいし、制御チャネル用eRedCap固有初期UL BWPを示すフィールド(例えば、initialUplinkBWP-RedCapForControl-r18)によって設定されるBWPであってもよい。 The eRedCap-specific initial UL BWP for the control channel may be a RedCap-specific initial UL BWP (e.g., the initial UL BWP set by initialUplinkBWP-RedCap-r17), an eRedCap-specific initial UL BWP (e.g., the initial UL BWP set by initialUplinkBWP-RedCap-r18), or a BWP set by a field indicating the eRedCap-specific initial UL BWP for the control channel (e.g., initialUplinkBWP-RedCapForControl-r18).
 なお、データチャネル用eRedCap固有初期UL BWPが設定され、かつ制御チャネル用eRedCap固有初期UL BWPが設定されない場合には、UEは、制御チャネル用eRedCap固有初期UL BWPはデータチャネル用eRedCap固有初期UL BWPであると判断してもよい。例えば、第3の情報(例えば、initialUplinkBWP-RedCap-r18)によってデータチャネル用eRedCap固有初期UL BWPが設定され、第4の情報(例えば、initialUplinkBWP-RedCapForControl-r18)によって制御チャネル用eRedCap固有初期UL BWPが設定されるケースを想定する。このケースにおいて、上記第3の情報を受信し、かつ、上記第4の情報を受信していないUEは、制御チャネル用eRedCap固有初期UL BWPを、上記第3の情報に基づいて決定してもよい。 Note that if the eRedCap specific initial UL BWP for the data channel is set and the eRedCap specific initial UL BWP for the control channel is not set, the UE may determine that the eRedCap specific initial UL BWP for the control channel is the eRedCap specific initial UL BWP for the data channel. For example, assume a case in which the eRedCap specific initial UL BWP for the data channel is set by the third information (e.g., initialUplinkBWP-RedCap-r18) and the eRedCap specific initial UL BWP for the control channel is set by the fourth information (e.g., initialUplinkBWP-RedCapForControl-r18). In this case, a UE that receives the third information but does not receive the fourth information may determine the eRedCap specific initial UL BWP for the control channel based on the third information.
 (3.5)DCIフォーマット0_0/1_0
 上記(3.3)におけるCSSにおいてモニタされるDCIフォーマット(例えば、DCIフォーマット0_0及び1_0)は、制御チャネル用eRedCap固有DL BWP(例えば、上記(3.4)で述べた制御チャネル用eRedCap固有初期DL BWP及び/又は制御チャネル用eRedCap固有専用DL BWP)について設定されるCSSにおいてモニタされるDCIフォーマットであってもよいし、RedCap固有初期DL BWPについて設定されるCSSにおいてモニタされるDCIフォーマットであってもよい。
(3.5) DCI Format 0_0/1_0
The DCI formats (e.g., DCI formats 0_0 and 1_0) monitored in the CSS in (3.3) above may be DCI formats monitored in a CSS configured for an eRedCap-specific DL BWP for a control channel (e.g., an eRedCap-specific initial DL BWP for a control channel and/or an eRedCap-specific dedicated DL BWP for a control channel described in (3.4) above), or may be DCI formats monitored in a CSS configured for a RedCap-specific initial DL BWP.
 なお、本開示において、eRedCap固有BWPは、eRedCap固有初期BWP及びeRedCap固有専用BWPを含む概念であってもよい。「制御チャネル用」、「データチャネル用」が付く場合や、UL BWP、DL BWPについても同様である。言い換えると、本開示における単なる(「初期」や「専用」の付かない)「BWP」は、初期BWP及び/又は専用BWPと互いに読み替えられてもよい。 In addition, in this disclosure, the eRedCap-specific BWP may be a concept that includes an eRedCap-specific initial BWP and an eRedCap-specific dedicated BWP. The same applies to cases where "for control channel" or "for data channel" is added, and to UL BWP and DL BWP. In other words, a simple "BWP" (without "initial" or "dedicated") in this disclosure may be read as an initial BWP and/or a dedicated BWP.
 制御チャネル用eRedCap固有専用DL BWP(制御チャネル用eRedCap UE固有専用DL BWPと呼ばれてもよい)は、ServingCellConfig情報要素に含まれるBWP-Downlink情報要素又はBWP-Downlink-RedCap-r18情報要素又はBWP-Downlink-RedCapForControl-r18情報要素によって設定されてもよい。これらの情報要素は、パラメータlocationAndBandwidth、subcarrierSpacing及びcyclicPrefixなどを含むBWP情報要素を含んでもよい。 The eRedCap specific dedicated DL BWP for control channel (which may also be referred to as eRedCap UE specific dedicated DL BWP for control channel) may be configured by the BWP-Downlink information element, BWP-Downlink-RedCap-r18 information element, or BWP-Downlink-RedCapForControl-r18 information element included in the ServingCellConfig information element. These information elements may include a BWP information element that includes parameters locationAndBandwidth, subcarrierSpacing, and cyclicPrefix, etc.
 制御チャネル用eRedCap固有専用DL BWPの位置及びサイズは、上記locationAndBandwidthによって設定されてもよい。制御チャネル用eRedCap固有専用DL BWPのSCSは、上記subcarrierSpacingによって設定されてもよい。制御チャネル用eRedCap固有専用DL BWPのサイクリックプレフィックスは、上記cyclicPrefixによって設定されてもよい。 The location and size of the eRedCap specific dedicated DL BWP for the control channel may be set by the above locationAndBandwidth. The SCS of the eRedCap specific dedicated DL BWP for the control channel may be set by the above subcarrierSpacing. The cyclic prefix of the eRedCap specific dedicated DL BWP for the control channel may be set by the above cyclicPrefix.
 制御チャネル用eRedCap固有DL BWPについて、タイプ0、0A、0B、1、1A、2、2A及び3の少なくとも1つのPDCCH CSSセットが設定されてもよい。UEは、制御チャネル用eRedCap固有DL BWPにおいて、設定されたCSSセットに従ってPDCCH候補をモニタしてもよい。 For the eRedCap specific DL BWP for the control channel, at least one PDCCH CSS set of types 0, 0A, 0B, 1, 1A, 2, 2A, and 3 may be configured. The UE may monitor PDCCH candidates according to the configured CSS set in the eRedCap specific DL BWP for the control channel.
 なお、eRedCap固有初期UL BWP及び/又はeRedCap固有初期DL BWPがUEに設定される場合、USSにおいてモニタされるDCIフォーマット0_0は、アクティブUL BWPのサイズに基づいて決定されてもよい。当該アクティブUL BWPは、制御チャネル用eRedCap固有初期UL BWP、制御チャネル用eRedCap固有専用UL BWP、データチャネル用eRedCap固有初期UL BWP、データチャネル用eRedCap固有専用UL BWP、及びRedCap固有初期UL BWPの少なくとも1つであってもよい。 When an eRedCap specific initial UL BWP and/or an eRedCap specific initial DL BWP is configured in the UE, the DCI format 0_0 monitored in the USS may be determined based on the size of the active UL BWP. The active UL BWP may be at least one of an eRedCap specific initial UL BWP for a control channel, an eRedCap specific dedicated UL BWP for a control channel, an eRedCap specific initial UL BWP for a data channel, an eRedCap specific dedicated UL BWP for a data channel, and a RedCap specific initial UL BWP.
 制御チャネル用eRedCap固有専用UL BWP及び/又はデータチャネル用eRedCap固有専用UL BWPは、ServingCellConfig情報要素に含まれるBWP-Uplink情報要素又はBWP-Uplink-RedCap-r18情報要素又はBWP-Uplink-RedCapForControl-r18情報要素又はBWP-Uplink-RedCapForData-r18情報要素によって設定されてもよい。 The eRedCap specific dedicated UL BWP for the control channel and/or the eRedCap specific dedicated UL BWP for the data channel may be configured by the BWP-Uplink information element, BWP-Uplink-RedCap-r18 information element, BWP-Uplink-RedCapForControl-r18 information element, or BWP-Uplink-RedCapForData-r18 information element included in the ServingCellConfig information element.
 また、eRedCap固有初期UL BWP及び/又はeRedCap固有初期DL BWPがUEに設定される場合、USSにおいてモニタされるDCIフォーマット1_0は、アクティブDL BWPのサイズに基づいて決定されてもよい。当該アクティブDL BWPは、制御チャネル用eRedCap固有初期DL BWP、制御チャネル用eRedCap固有専用DL BWP、データチャネル用eRedCap固有初期DL BWP、データチャネル用eRedCap固有専用DL BWP、及びRedCap固有初期DL BWPの少なくとも1つであってもよい。 In addition, when an eRedCap specific initial UL BWP and/or an eRedCap specific initial DL BWP is configured in the UE, the DCI format 1_0 monitored in the USS may be determined based on the size of the active DL BWP. The active DL BWP may be at least one of an eRedCap specific initial DL BWP for a control channel, an eRedCap specific dedicated DL BWP for a control channel, an eRedCap specific initial DL BWP for a data channel, an eRedCap specific dedicated DL BWP for a data channel, and a RedCap specific initial DL BWP.
 データチャネル用eRedCap固有専用DL BWPは、ServingCellConfig情報要素に含まれるBWP-Downlink情報要素又はBWP-Downlink-RedCap-r18情報要素又はBWP-Downlink-RedCapForData-r18情報要素によって設定されてもよい。 The eRedCap specific dedicated DL BWP for the data channel may be set by the BWP-Downlink information element, BWP-Downlink-RedCap-r18 information element, or BWP-Downlink-RedCapForData-r18 information element included in the ServingCellConfig information element.
 以上説明した一実施形態によれば、eRedCap UE向けに適切なDCIサイズアラインメントを実施できる。 According to the embodiment described above, appropriate DCI size alignment can be performed for eRedCap UE.
<補足>
 上述の実施形態におけるDCIフォーマット0_0は、上りリンクのためのデータチャネル(例えば、PUSCH)をスケジューリングするための任意のDCI(UL DCIと呼ばれてもよい)、第1のDCIフォーマットなどと互いに読み替えられてもよい。また、上述の実施形態におけるDCIフォーマット1_0は、下りリンクのためのデータチャネル(例えば、PDSCH)をスケジューリングするための任意のDCI(DL DCIと呼ばれてもよい)、第2のDCIフォーマットなどと互いに読み替えられてもよい。また、上述の実施形態におけるDCIサイズアラインメントの対象であるDCIフォーマット0_0及び1_0は、同じサービングセルをスケジューリングするために同じタイプのサーチスペースセット(例えば、CSS、USS)においてモニタされるDCIフォーマットであると想定したが、これに限られない。
<Additional Information>
The DCI format 0_0 in the above-described embodiment may be replaced with any DCI (which may be referred to as UL DCI) for scheduling a data channel for uplink (e.g., PUSCH), a first DCI format, etc. Also, the DCI format 1_0 in the above-described embodiment may be replaced with any DCI (which may be referred to as DL DCI) for scheduling a data channel for downlink (e.g., PDSCH), a second DCI format, etc. Also, it is assumed that the DCI formats 0_0 and 1_0 that are targets of the DCI size alignment in the above-described embodiment are DCI formats monitored in the same type of search space set (e.g., CSS, USS) for scheduling the same serving cell, but this is not limited thereto.
 また、上述の実施形態では、eRedCap固有初期UL BWP及び/又はeRedCap固有初期DL BWPがUEに設定される場合について記載したが、eRedCap固有専用UL BWP及び/又はeRedCap固有専用DL BWPがUEに設定される場合においても同様の動作が行われてもよい。言い換えると、本開示は、上述の実施形態における任意のeRedCap固有初期UL BWPをeRedCap固有専用UL BWP又はアクティブUL BWPで読み替え、任意のeRedCap固有初期DL BWPをeRedCap固有専用DL BWP又はアクティブDL BWPで読み替えた実施形態もカバーしている。 In addition, in the above embodiment, the case where an eRedCap-specific initial UL BWP and/or an eRedCap-specific initial DL BWP is set in the UE has been described, but similar operations may also be performed when an eRedCap-specific dedicated UL BWP and/or an eRedCap-specific dedicated DL BWP is set in the UE. In other words, the present disclosure also covers embodiments in which any eRedCap-specific initial UL BWP in the above embodiment is replaced with an eRedCap-specific dedicated UL BWP or active UL BWP, and any eRedCap-specific initial DL BWP is replaced with an eRedCap-specific dedicated DL BWP or active DL BWP.
 本開示におけるeRedCap UEが動作する周波数レンジは、FR1に限られない。例えば、FR2(FR2-1、2-2)、FR3、FR4などにおけるBWPに関する制御に、本開示における上述の方法を適用してもよい。 The frequency range in which the eRedCap UE in this disclosure operates is not limited to FR1. For example, the above-described method in this disclosure may be applied to control of BWP in FR2 (FR2-1, 2-2), FR3, FR4, etc.
 本開示において、パラメータlocationAndBandwidthの代わりに、BWPの位置を示すパラメータ及び/又はBWPの帯域幅を示すパラメータが用いられてもよい。 In the present disclosure, instead of the parameter locationAndBandwidth, a parameter indicating the location of the BWP and/or a parameter indicating the bandwidth of the BWP may be used.
 本開示における、SIB1内のServingCellConfigCommonSIB情報要素は、別のRRCメッセージ(例えば、セルグループの設定を示すCellGroupConfig情報要素内の同期を伴う再設定のための情報(ReconfigurationWithSyncフィールド)又はセカンダリセルのための情報(SCellConfigフィールド))に含まれるServingCellConfigCommon情報要素と互いに読み替えられてもよい。 In the present disclosure, the ServingCellConfigCommonSIB information element in SIB1 may be interpreted as the ServingCellConfigCommon information element included in another RRC message (e.g., information for reconfiguration with synchronization (ReconfigurationWithSync field) or information for a secondary cell (SCellConfig field) in a CellGroupConfig information element indicating the configuration of a cell group).
 本開示におけるBWPは、サブキャリア、リソースエレメント、サブバンド、リソースブロック(RB)、物理RB(Physical RB(PRB))、共通RB(Common RB(CRB))、仮想RB(Virtual RB(VRB))、リソースブロックセット、周波数帯、帯域幅、周波数帯域幅、周波数リソース、周波数ドメインリソースなどの少なくとも1つと互いに読み替えられてもよい。 In this disclosure, BWP may be interchangeably read as at least one of the following: subcarrier, resource element, subband, resource block (RB), physical RB (PRB), common RB (CRB), virtual RB (VRB), resource block set, frequency band, bandwidth, frequency bandwidth, frequency resource, frequency domain resource, etc.
 本開示において、1つ又は複数のサーチスペースは、サーチスペースセットと呼ばれてもよい。なお、本開示において、「サーチスペース」、「サーチスペースセット」、「サーチスペース設定」、「サーチスペースセット設定」、「CORESET」、「CORESET設定」などは、互いに読み替えられてもよい。 In the present disclosure, one or more search spaces may be referred to as a search space set. Note that in the present disclosure, "search space," "search space set," "search space setting," "search space set setting," "CORESET," "CORESET setting," etc. may be read as interchangeable.
 本開示において、チャネル及び信号は、互いに読み替えられてもよい。 In this disclosure, channels and signals may be interpreted interchangeably.
 本開示において、無線リソース制御(Radio Resource Control(RRC))、RRCパラメータ、RRCメッセージ、上位レイヤパラメータ、フィールド、情報要素(Information Element(IE))、設定などは、互いに読み替えられてもよい。 In this disclosure, Radio Resource Control (RRC), RRC parameters, RRC messages, higher layer parameters, fields, information elements (IEs), settings, etc. may be interpreted as interchangeable.
 なお、本開示における「-rXX」は、3GPP Rel.XXで規定される又は規定される予定のパラメータであることを示す。パラメータの名称は、例示される名称に限られない(例えば、「-rXX」がなくてもよいし、「-rXX」が付与されてもよいし、XXの数字又は文字が異なってもよい)。本開示が適用される3GPPのリリースは、Rel.18に限られない。 Note that "-rXX" in this disclosure indicates that the parameter is defined or will be defined in 3GPP Rel. XX. The parameter name is not limited to the exemplified names (for example, "-rXX" may not be present, "-rXX" may be added, or the numbers or letters of XX may be different). The 3GPP release to which this disclosure applies is not limited to Rel. 18.
 本開示において、RedCap固有BWP(RedCap固有初期BWPを含む)は、RedCap UEが利用可能な最大帯域幅(例えば、20MHz)までの帯域幅を有するBWPに該当してもよい。また、本開示において、制御チャネル用eRedCap固有(初期)BWPは、eRedCap UEが利用可能な最大帯域幅(例えば、20MHz)までの帯域幅を有するBWPに該当してもよい。また、本開示において、eRedCap固有BWP(eRedCap固有初期BWP、データチャネル用eRedCap固有(初期)BWPなどを含む)は、低減された帯域幅(例えば、5MHz)までの帯域幅を有するBWPに該当してもよい。 In the present disclosure, the RedCap-specific BWP (including the RedCap-specific initial BWP) may correspond to a BWP having a bandwidth up to the maximum bandwidth (e.g., 20 MHz) available to the RedCap UE. Also, in the present disclosure, the eRedCap-specific (initial) BWP for the control channel may correspond to a BWP having a bandwidth up to the maximum bandwidth (e.g., 20 MHz) available to the eRedCap UE. Also, in the present disclosure, the eRedCap-specific BWP (including the eRedCap-specific initial BWP, the eRedCap-specific (initial) BWP for the data channel, etc.) may correspond to a BWP having a bandwidth up to a reduced bandwidth (e.g., 5 MHz).
<変形例>
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。
<Modification>
In addition, terms explained in this disclosure and terms necessary for understanding this disclosure may be replaced with terms having the same or similar meanings.
 本開示において、装置、回路、デバイス、部(section)、ユニットなどの文言は、互いに読み替えることができる。 In this disclosure, terms such as apparatus, circuit, device, section, and unit may be read interchangeably.
 本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。 The information, parameters, etc. described in this disclosure may be represented using absolute values, may be represented using relative values from a predetermined value, or may be represented using other corresponding information. For example, a radio resource may be indicated by a predetermined index.
 本開示においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式などは、本開示において明示的に開示したものと異なってもよい。 The names used for parameters and the like in this disclosure are not limiting in any way. Furthermore, the formulas and the like that use these parameters may differ from those explicitly disclosed in this disclosure.
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。 The information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies. For example, the data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, optical fields or photons, or any combination thereof.
 入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。 Input/output information, signals, etc. may be stored in a specific location (e.g., memory) or may be managed using a management table. Input/output information, signals, etc. may be overwritten, updated, or added to. Output information, signals, etc. may be deleted. Input information, signals, etc. may be transmitted to another device.
 情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、本開示における情報の通知は、物理レイヤシグナリング(例えば、下りリンク制御情報(Downlink Control Information(DCI))、上りリンク制御情報(Uplink Control Information(UCI)))、上位レイヤシグナリング(例えば、Radio Resource Control(RRC)シグナリング、ブロードキャスト情報(マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))など)、Medium Access Control(MAC)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。 The notification of information is not limited to the aspects/embodiments described in this disclosure, and may be performed using other methods. For example, the notification of information in this disclosure may be performed by physical layer signaling (e.g., Downlink Control Information (DCI), Uplink Control Information (UCI)), higher layer signaling (e.g., Radio Resource Control (RRC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB)), etc.), Medium Access Control (MAC) signaling), other signals, or a combination of these.
 なお、物理レイヤシグナリングは、Layer 1/Layer 2(L1/L2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC Control Element(CE))を用いて通知されてもよい。 The physical layer signaling may be called Layer 1/Layer 2 (L1/L2) control information (L1/L2 control signal), L1 control information (L1 control signal), etc. The RRC signaling may be called an RRC message, for example, an RRC Connection Setup message, an RRC Connection Reconfiguration message, etc. The MAC signaling may be notified, for example, using a MAC Control Element (CE).
 また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。 Furthermore, notification of specified information (e.g., notification that "X is the case") is not limited to explicit notification, but may be implicit (e.g., by not notifying the specified information or by notifying other information).
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。 Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executable files, threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line(DSL))など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。 Software, instructions, information, etc. may also be transmitted and received via a transmission medium. For example, if the software is transmitted from a website, server, or other remote source using at least one of wired technologies (such as coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL)), and/or wireless technologies (such as infrared, microwave, etc.), then at least one of these wired and wireless technologies is included within the definition of a transmission medium.
 本開示においては、「基地局(Base Station(BS))」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNB(eNodeB)」、「gNB(gNodeB)」、「アクセスポイント(access point)」、「送信ポイント(Transmission Point(TP))」、「受信ポイント(Reception Point(RP))」、「送受信ポイント(Transmission/Reception Point(TRP))」、「パネル」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。 In this disclosure, terms such as "base station (BS)", "wireless base station", "fixed station", "NodeB", "eNB (eNodeB)", "gNB (gNodeB)", "access point", "Transmission Point (TP)", "Reception Point (RP)", "Transmission/Reception Point (TRP)", "panel", "cell", "sector", "cell group", "carrier", "component carrier", etc. may be used interchangeably.
 本開示においては、「移動局(Mobile Station(MS))」、「ユーザ端末(user terminal)」、「ユーザ機器(User Equipment(UE))」、「端末」などの用語は、互換的に使用され得る。 In this disclosure, terms such as "Mobile Station (MS)", "user terminal", "User Equipment (UE)", and "terminal" may be used interchangeably.
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、無線通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体(moving object)に搭載されたデバイス、移動体自体などであってもよい。 At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a wireless communication device, etc. In addition, at least one of the base station and the mobile station may be a device mounted on a moving object, the moving object itself, etc.
 当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。 The moving object may be a vehicle (e.g., a car, an airplane, etc.), an unmanned moving object (e.g., a drone, an autonomous vehicle, etc.), or a robot (manned or unmanned). Note that at least one of the base station and the mobile station may be a device that does not necessarily move during communication operations.
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。 Each aspect/embodiment described in this disclosure may be used alone, in combination, or switched between depending on the implementation. In addition, the processing procedures, sequences, flow charts, etc. of each aspect/embodiment described in this disclosure may be rearranged as long as there is no inconsistency. For example, the methods described in this disclosure present elements of various steps using an exemplary order, and are not limited to the particular order presented.
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 As used in this disclosure, the phrase "based on" does not mean "based only on," unless expressly stated otherwise. In other words, the phrase "based on" means both "based only on" and "based at least on."
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。 Any reference to an element using a designation such as "first," "second," etc., used in this disclosure does not generally limit the quantity or order of those elements. These designations may be used in this disclosure as a convenient method of distinguishing between two or more elements. Thus, a reference to a first and second element does not imply that only two elements may be employed or that the first element must precede the second element in some way.
 本開示において、「A/B」及び「A及びBの少なくとも一方」は、互いに読み替えられてもよい。また、本開示において、「A/B/C」は、「A、B及びCの少なくとも1つ」を意味してもよい。 In this disclosure, "A/B" and "at least one of A and B" may be interpreted as interchangeable. Also, in this disclosure, "A/B/C" may mean "at least one of A, B, and C."
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。 In this disclosure, the term "A and B are different" may mean "A and B are different from each other." The term may also mean "A and B are each different from C." Terms such as "separate" and "combined" may also be interpreted in the same way as "different."
 本開示において、「含む(include)」、「含んでいる(including)」及びこれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。 When the terms "include," "including," and variations thereof are used in this disclosure, these terms are intended to be inclusive, similar to the term "comprising." Additionally, the term "or," as used in this disclosure, is not intended to be an exclusive or.
 本開示において、例えば、英語でのa, an及びtheのように、翻訳によって冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。 In this disclosure, where articles have been added through translation, such as a, an, and the in English, this disclosure may include that the nouns following these articles are plural.
 本開示において、「以下」、「未満」、「以上」、「より多い」、「と等しい」などは、互いに読み替えられてもよい。また、本開示において、「良い」、「悪い」、「大きい」、「小さい」、「高い」、「低い」、「早い」、「遅い」、「広い」、「狭い」、などを意味する文言は、原級、比較級及び最上級に限らず互いに読み替えられてもよい。また、本開示において、「良い」、「悪い」、「大きい」、「小さい」、「高い」、「低い」、「早い」、「遅い」、「広い」、「狭い」などを意味する文言は、「i番目に」(iは任意の整数)を付けた表現として、原級、比較級及び最上級に限らず互いに読み替えられてもよい(例えば、「最高」は「i番目に最高」と互いに読み替えられてもよい)。 In this disclosure, terms such as "less than", "less than", "greater than", "more than", "equal to", etc. may be read as interchangeable. In addition, in this disclosure, terms meaning "good", "bad", "big", "small", "high", "low", "fast", "slow", "wide", "narrow", etc. may be read as interchangeable, not limited to positive, comparative and superlative. In addition, in this disclosure, terms meaning "good", "bad", "big", "small", "high", "low", "fast", "slow", "wide", "narrow", etc. may be read as interchangeable, not limited to positive, comparative and superlative, as expressions with "ith" (i is any integer) (for example, "best" may be read as "ith best").
 本開示において、「の(of)」、「のための(for)」、「に関する(regarding)」、「に関係する(related to)」、「に関連付けられる(associated with)」などは、互いに読み替えられてもよい。 In this disclosure, the terms "of," "for," "regarding," "related to," "associated with," etc. may be read interchangeably.
 以上、本開示に係る発明について詳細に説明したが、当業者にとっては、本開示に係る発明が本開示中に説明した実施形態に限定されないということは明らかである。本開示の記載は、例示説明を目的とし、本開示に係る発明に対して何ら制限的な意味をもたらさない。 The invention disclosed herein has been described in detail above, but it is clear to those skilled in the art that the invention disclosed herein is not limited to the embodiments described herein. The description of the present disclosure is intended for illustrative purposes only and does not imply any limitation on the invention disclosed herein.
<付記>
 本開示の一実施形態に関して、以下の発明を付記する。
[付記1]
 特定の帯域幅未満の初期下りリンク帯域幅に関する第1の設定情報を受信する通信部と、
 前記特定の帯域幅未満の初期上りリンク帯域幅に関する第2の設定情報を前記通信部が受信する場合であって、制御リソースセット(Control Resource Set(CORESET))#0がセルのために設定される場合、物理下りリンク共有チャネルをスケジューリングするための第1の下りリンク制御情報(Downlink Control Information(DCI))フォーマットのサイズを、前記初期下りリンク帯域幅に基づいて決定する処理部と、を含む端末。
[付記2]
 前記処理部は、前記第2の設定情報を前記通信部が受信する場合、物理上りリンク共有チャネルをスケジューリングするための第2のDCIフォーマットのサイズを、前記初期上りリンク帯域幅に基づいて決定する付記1に記載の端末。
[付記3]
 前記処理部は、決定された前記第1のDCIフォーマットのサイズと、決定された前記第2のDCIフォーマットのサイズと、に基づいて、サイズが同じになるように前記第1のDCIフォーマット又は前記第2のDCIフォーマットを調整する付記2に記載の端末。
[付記4]
 前記CORESET#0のサイズが前記初期下りリンク帯域幅のサイズ及び/又は前記初期上りリンク帯域幅のサイズよりも大きい場合に、前記第1のDCIフォーマットのサイズを、前記初期下りリンク帯域幅に基づいて決定する付記1から付記3のいずれかに記載の端末。
[付記5]
 前記初期下りリンク帯域幅は、データチャネル用である付記1から付記4のいずれかに記載の端末。
[付記6]
 前記初期上りリンク帯域幅は、データチャネル用である付記1から付記5のいずれかに記載の端末。
[付記7]
 前記第1のDCIフォーマットは、制御チャネル用の前記初期下りリンク帯域幅又は専用下りリンク帯域幅について設定される共通サーチスペースにおいてモニタされるDCIフォーマットである付記1から付記6のいずれかに記載の端末。
[付記8]
 特定の帯域幅未満の初期下りリンク帯域幅に関する第1の設定情報を送信する通信部と、
 前記特定の帯域幅未満の初期上りリンク帯域幅に関する第2の設定情報を前記通信部が送信する場合であって、制御リソースセット(Control Resource Set(CORESET))#0をセルのために設定する場合、物理下りリンク共有チャネルをスケジューリングするための第1の下りリンク制御情報(Downlink Control Information(DCI))フォーマットのサイズを、前記初期下りリンク帯域幅に基づいて決定する処理部と、を含む基地局。
[付記9]
 端末において実施される方法であって、
 特定の帯域幅未満の初期下りリンク帯域幅に関する第1の設定情報を受信することと、
 前記特定の帯域幅未満の初期上りリンク帯域幅に関する第2の設定情報を前記通信部が受信する場合であって、制御リソースセット(Control Resource Set(CORESET))#0がセルのために設定される場合、物理下りリンク共有チャネルをスケジューリングするための第1の下りリンク制御情報(Downlink Control Information(DCI))フォーマットのサイズを、前記初期下りリンク帯域幅に基づいて決定することと、を含む通信方法。
<Additional Notes>
With respect to one embodiment of the present disclosure, the following invention is noted.
[Appendix 1]
A communication unit that receives first configuration information related to an initial downlink bandwidth that is less than a specific bandwidth;
a processing unit that, when the communication unit receives second configuration information related to an initial uplink bandwidth less than the specific bandwidth, determines a size of a first downlink control information (DCI) format for scheduling a physical downlink shared channel based on the initial downlink bandwidth when a control resource set (CORESET) #0 is configured for a cell.
[Appendix 2]
The terminal according to claim 1, wherein the processing unit determines a size of a second DCI format for scheduling a physical uplink shared channel based on the initial uplink bandwidth when the communication unit receives the second setting information.
[Appendix 3]
The terminal according to Supplementary Note 2, wherein the processing unit adjusts the first DCI format or the second DCI format based on the determined size of the first DCI format and the determined size of the second DCI format so that the sizes are the same.
[Appendix 4]
The terminal according to any one of Supplementary Note 1 to Supplementary Note 3, wherein when the size of the CORESET #0 is larger than the size of the initial downlink bandwidth and/or the size of the initial uplink bandwidth, the terminal determines the size of the first DCI format based on the initial downlink bandwidth.
[Appendix 5]
5. The terminal of claim 1, wherein the initial downlink bandwidth is for a data channel.
[Appendix 6]
6. The terminal of claim 1, wherein the initial uplink bandwidth is for a data channel.
[Appendix 7]
7. The terminal according to any one of Supplementary Note 1 to Supplementary Note 6, wherein the first DCI format is a DCI format monitored in a common search space configured for the initial downlink bandwidth or a dedicated downlink bandwidth for a control channel.
[Appendix 8]
a communication unit that transmits first configuration information regarding an initial downlink bandwidth that is less than a specific bandwidth;
a processing unit that determines a size of a first downlink control information (DCI) format for scheduling a physical downlink shared channel based on the initial downlink bandwidth when the communication unit transmits second configuration information related to an initial uplink bandwidth less than the specific bandwidth and when a control resource set (CORESET) #0 is configured for a cell.
[Appendix 9]
A method implemented in a terminal, comprising:
receiving first configuration information relating to an initial downlink bandwidth less than a particular bandwidth;
and when the communication unit receives second configuration information related to an initial uplink bandwidth less than the specific bandwidth, and when a Control Resource Set (CORESET) #0 is configured for a cell, determining a size of a first Downlink Control Information (DCI) format for scheduling a physical downlink shared channel based on the initial downlink bandwidth.

Claims (9)

  1.  特定の帯域幅未満の初期下りリンク帯域幅に関する第1の設定情報を受信する通信部と、
     前記特定の帯域幅未満の初期上りリンク帯域幅に関する第2の設定情報を前記通信部が受信する場合であって、制御リソースセット(Control Resource Set(CORESET))#0がセルのために設定される場合、物理下りリンク共有チャネルをスケジューリングするための第1の下りリンク制御情報(Downlink Control Information(DCI))フォーマットのサイズを、前記初期下りリンク帯域幅に基づいて決定する処理部と、を含む端末。
    A communication unit that receives first configuration information related to an initial downlink bandwidth that is less than a specific bandwidth;
    a processing unit that, when the communication unit receives second configuration information related to an initial uplink bandwidth less than the specific bandwidth, determines a size of a first downlink control information (DCI) format for scheduling a physical downlink shared channel based on the initial downlink bandwidth when a control resource set (CORESET) #0 is configured for a cell.
  2.  前記処理部は、前記第2の設定情報を前記通信部が受信する場合、物理上りリンク共有チャネルをスケジューリングするための第2のDCIフォーマットのサイズを、前記初期上りリンク帯域幅に基づいて決定する請求項1に記載の端末。 The terminal according to claim 1, wherein the processing unit determines the size of a second DCI format for scheduling a physical uplink shared channel based on the initial uplink bandwidth when the communication unit receives the second setting information.
  3.  前記処理部は、決定された前記第1のDCIフォーマットのサイズと、決定された前記第2のDCIフォーマットのサイズと、に基づいて、サイズが同じになるように前記第1のDCIフォーマット又は前記第2のDCIフォーマットを調整する請求項2に記載の端末。 The terminal according to claim 2, wherein the processing unit adjusts the first DCI format or the second DCI format based on the determined size of the first DCI format and the determined size of the second DCI format so that the sizes are the same.
  4.  前記CORESET#0のサイズが前記初期下りリンク帯域幅のサイズ及び/又は前記初期上りリンク帯域幅のサイズよりも大きい場合に、前記第1のDCIフォーマットのサイズを、前記初期下りリンク帯域幅に基づいて決定する請求項1から請求項3のいずれかに記載の端末。 The terminal according to any one of claims 1 to 3, wherein when the size of the CORESET#0 is larger than the size of the initial downlink bandwidth and/or the size of the initial uplink bandwidth, the size of the first DCI format is determined based on the initial downlink bandwidth.
  5.  前記初期下りリンク帯域幅は、データチャネル用である請求項1から請求項3のいずれかに記載の端末。 The terminal according to any one of claims 1 to 3, wherein the initial downlink bandwidth is for a data channel.
  6.  前記初期上りリンク帯域幅は、データチャネル用である請求項1から請求項3のいずれかに記載の端末。 The terminal according to any one of claims 1 to 3, wherein the initial uplink bandwidth is for a data channel.
  7.  前記第1のDCIフォーマットは、制御チャネル用の前記初期下りリンク帯域幅又は専用下りリンク帯域幅について設定される共通サーチスペースにおいてモニタされるDCIフォーマットである請求項1から請求項3のいずれかに記載の端末。 The terminal according to any one of claims 1 to 3, wherein the first DCI format is a DCI format monitored in a common search space set for the initial downlink bandwidth or the dedicated downlink bandwidth for a control channel.
  8.  特定の帯域幅未満の初期下りリンク帯域幅に関する第1の設定情報を送信する通信部と、
     前記特定の帯域幅未満の初期上りリンク帯域幅に関する第2の設定情報を前記通信部が送信する場合であって、制御リソースセット(Control Resource Set(CORESET))#0をセルのために設定する場合、物理下りリンク共有チャネルをスケジューリングするための第1の下りリンク制御情報(Downlink Control Information(DCI))フォーマットのサイズを、前記初期下りリンク帯域幅に基づいて決定する処理部と、を含む基地局。
    a communication unit that transmits first configuration information regarding an initial downlink bandwidth that is less than a specific bandwidth;
    a processing unit that determines a size of a first downlink control information (DCI) format for scheduling a physical downlink shared channel based on the initial downlink bandwidth when the communication unit transmits second configuration information related to an initial uplink bandwidth less than the specific bandwidth and when a control resource set (CORESET) #0 is configured for a cell.
  9.  端末において実施される通信方法であって、
     特定の帯域幅未満の初期下りリンク帯域幅に関する第1の設定情報を受信することと、
     前記特定の帯域幅未満の初期上りリンク帯域幅に関する第2の設定情報を通信部が受信する場合であって、制御リソースセット(Control Resource Set(CORESET))#0がセルのために設定される場合、物理下りリンク共有チャネルをスケジューリングするための第1の下りリンク制御情報(Downlink Control Information(DCI))フォーマットのサイズを、前記初期下りリンク帯域幅に基づいて決定することと、を含む通信方法。
    A communication method implemented in a terminal, comprising:
    receiving first configuration information relating to an initial downlink bandwidth less than a particular bandwidth;
    and when a communication unit receives second configuration information related to an initial uplink bandwidth less than the specific bandwidth, and when a Control Resource Set (CORESET) #0 is configured for a cell, determining a size of a first Downlink Control Information (DCI) format for scheduling a physical downlink shared channel based on the initial downlink bandwidth.
PCT/JP2023/032899 2022-09-26 2023-09-08 Terminal, base station, and communication method WO2024070598A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022153148 2022-09-26
JP2022-153148 2022-09-26

Publications (1)

Publication Number Publication Date
WO2024070598A1 true WO2024070598A1 (en) 2024-04-04

Family

ID=90477356

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/032899 WO2024070598A1 (en) 2022-09-26 2023-09-08 Terminal, base station, and communication method

Country Status (1)

Country Link
WO (1) WO2024070598A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020194464A1 (en) * 2019-03-25 2020-10-01 株式会社Nttドコモ User terminal and wireless communication method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020194464A1 (en) * 2019-03-25 2020-10-01 株式会社Nttドコモ User terminal and wireless communication method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
VIVO, GUANGDONG GENIUS: "Remaining issues on reduced maximum UE bandwidth", 3GPP TSG RAN WG1 #108-E R1-2201099, 14 February 2022 (2022-02-14), XP052109162 *

Similar Documents

Publication Publication Date Title
CN111713069B (en) User equipment, base station and method
EP3800815B1 (en) Devices and methods for epdcch monitoring in wireless communication systems
WO2020145223A1 (en) User equipments, base stations and methods for a physical sidelink (sl) control channel monitoring
US20210185649A1 (en) Terminal device, base station device and communication method
US20220132534A1 (en) Method and apparatus for uplink data repetitive transmission and reception for network cooperative communication
US20230180110A1 (en) Method for transmitting and receiving signals for wireless communication, and apparatus therefor
US11924842B2 (en) Method and apparatus for configuring default beam in wireless communication systems
CN114026939A (en) User equipment, base station and method for Downlink Control Information (DCI) of DCI format
CN114175558B (en) User equipment, base station and method
WO2022079876A1 (en) Terminal
WO2024070598A1 (en) Terminal, base station, and communication method
CN108029111B (en) Terminal device and communication method
WO2021162053A1 (en) Terminal apparatus, base station apparatus, and communication method
WO2024070599A1 (en) Terminal and base station
CN114175562B (en) User equipment, base station apparatus and method
WO2024095679A1 (en) Terminal, base station, and communication method
WO2023238686A1 (en) Communication device, base station, and communication method
WO2023238688A1 (en) Communication device and communication method
WO2023238689A1 (en) Communication device, base station, and communication method
WO2023012991A1 (en) Terminal and wireless communication method
WO2022107256A1 (en) User equipment
WO2022208878A1 (en) Terminal, wireless communication system, and wireless communication method
WO2022149269A1 (en) Terminal, base station, and radio communication method
WO2022085201A1 (en) Terminal
WO2022244504A1 (en) Terminal, wireless communication system, and wireless communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23871835

Country of ref document: EP

Kind code of ref document: A1