WO2024070588A1 - Work machine - Google Patents

Work machine Download PDF

Info

Publication number
WO2024070588A1
WO2024070588A1 PCT/JP2023/032839 JP2023032839W WO2024070588A1 WO 2024070588 A1 WO2024070588 A1 WO 2024070588A1 JP 2023032839 W JP2023032839 W JP 2023032839W WO 2024070588 A1 WO2024070588 A1 WO 2024070588A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydraulic
target
pressure
pump
meter
Prior art date
Application number
PCT/JP2023/032839
Other languages
French (fr)
Japanese (ja)
Inventor
裕昭 天野
賢人 熊谷
充彦 金濱
克明 小高
Original Assignee
日立建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立建機株式会社 filed Critical 日立建機株式会社
Publication of WO2024070588A1 publication Critical patent/WO2024070588A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives

Definitions

  • the present invention relates to a work machine equipped with multiple hydraulic actuators.
  • each link of the working device such as the boom and arm, is connected by a rotary or linear joint, and rotates or moves in a translational manner by a hydraulic actuator (e.g., hydraulic motor, hydraulic cylinder).
  • the hydraulic actuator is operated by hydraulic oil supplied from a hydraulic pump that is driven to rotate by a prime mover (e.g., engine, electric motor).
  • Patent Document 1 discloses a method for controlling the pump's discharge capacity within a range that does not exceed the output energy of the prime mover by calculating the flow rate limit value by dividing the energy limit value by the current pump discharge pressure.
  • Patent Document 1 when multiple hydraulic actuators are operated in a combined manner, limiting energy using the method of Patent Document 1 may cause the balance of the operating speeds of the hydraulic actuators to be lost. As a result, there is a problem that the operation of the work machine may not be as intended by the user.
  • the present invention was made in consideration of the above-mentioned circumstances, and its purpose is to provide a work machine that is capable of maintaining a balance between the operating speeds of multiple hydraulic actuators when the output of the prime mover is limited.
  • the present invention provides a work machine including a prime mover that generates a driving force, a hydraulic pump that discharges pressurized oil by the driving force of the prime mover, a discharge pressure sensor that detects the discharge pressure of the hydraulic pump, a plurality of hydraulic actuators that operate by pressurized oil supplied from the hydraulic pump, a plurality of flow control valves that control the supply and discharge amount of pressurized oil to and from each of the plurality of hydraulic actuators, an operating device that operates each of the plurality of hydraulic actuators, an operation amount detection sensor that detects the operation amount by the operating device, and a controller that controls the prime mover, the hydraulic pump, and at least one of the plurality of flow control valves, the controller detecting a predetermined output limit value of the prime mover and the discharge pressure sensor.
  • the system is characterized in that it calculates a pump flow rate limit value of the pressure oil that the hydraulic pump can discharge based on the discharge pressure of the hydraulic pump detected by the hydraulic pump sensor, calculates a required speed for each of the multiple hydraulic actuators based on the operation amount detected by the operation amount detection sensor, calculates a pump flow rate estimate value that is an estimate of the flow rate of the pressure oil that the hydraulic pump should discharge in order to satisfy the calculated multiple required speeds, calculates multiple target speeds by correcting each of the multiple required speeds based on the ratio between the pump flow rate limit value and the pump flow rate estimate value, and controls at least one of the prime mover, the hydraulic pump, and the multiple flow rate control valves so that each of the multiple hydraulic actuators operates at the target speed.
  • FIG. 2 is a side view of the hydraulic excavator.
  • FIG. 2 is a diagram showing a drive circuit of a hydraulic excavator.
  • FIG. 2 is a hardware configuration diagram of the hydraulic excavator 1.
  • FIG. 2 is a functional block diagram of a controller.
  • FIG. 4 is a detailed diagram of a required speed calculation unit.
  • FIG. 4 is a detailed diagram of a rotation speed control unit.
  • FIG. 4 is a detailed diagram of an output limiting unit.
  • FIG. 4 is a detailed diagram of a target pressure calculation unit applied to a hydraulic cylinder.
  • FIG. 4 is a detailed diagram of a target pressure calculation unit applied to the hydraulic motor.
  • FIG. 4 is a detailed diagram of a valve control unit that performs meter-in control.
  • FIG. 4 is a detailed diagram of a valve control unit that performs meter-out control.
  • FIG. 4 is a detailed view of the pump control unit.
  • 1 is a schematic diagram of a hydraulic circuit mounted on a hydraulic excavator.
  • FIG. 11 is a drive path diagram showing another combination of hydraulic actuators for performing a composite operation.
  • FIG. 1 is a side view of a hydraulic excavator 1.
  • the hydraulic excavator 1 comprises a lower running body 2 and an upper rotating body 3 supported by the lower running body 2.
  • the lower running body 2 and the upper rotating body 3 are an example of a vehicle body.
  • the lower running body 2 comprises a pair of left and right crawlers 4 which are endless tracks.
  • the pair of left and right crawlers 4 rotate independently when driven by a traveling motor 5.
  • the hydraulic excavator 1 travels.
  • the lower running body 2 may be of a wheeled type instead of the crawlers 4.
  • the upper rotating body 3 is supported on the lower running body 2 so that it can rotate by a rotating motor 6.
  • the upper rotating body 3 mainly comprises a rotating frame 7 that serves as a base, a cab (driver's seat) 8 located on the front left side of the rotating frame 7, a counterweight 9 located at the rear of the rotating frame 7, and a front work machine 10 (work device) attached to the front center of the rotating frame 7 so that it can rotate up and down.
  • the cab 8 defines an internal space in which an operator who operates the hydraulic excavator 1 sits.
  • the internal space of the cab 8 also contains a seat on which the operator sits, and operating devices that are operated by the operator seated in the seat.
  • the operating device receives operations from the operator to operate the hydraulic excavator 1.
  • the lower traveling body 2 travels, the upper rotating body 3 rotates, and the front working machine 10 operates.
  • the operating device include a lever, a steering wheel, an accelerator pedal, a brake pedal, a switch, etc.
  • the operating device includes at least a boom operating lever 41, an arm operating lever 42, and an EC dial 43, as will be described later with reference to FIG. 3, for example.
  • the front work implement 10 includes a boom 11 supported on the upper rotating body 3 so that it can be raised and lowered, an arm 12 supported rotatably at the end of the boom 11, a bucket 13 supported rotatably at the end of the arm 12, a boom cylinder 14 that drives the boom 11, an arm cylinder 15 that drives the arm 12, and a bucket cylinder 16 that drives the bucket 13.
  • the counterweight 9 is used to balance the weight of the front work implement 10, and is a heavy object that has an arc shape when viewed from above.
  • the travel motor 5, the swing motor 6, the boom cylinder 14, the arm cylinder 15, and the bucket cylinder 16 are examples of hydraulic actuators that operate by supplying and discharging hydraulic oil (pressurized oil).
  • the hydraulic excavator 1 is equipped with multiple hydraulic actuators.
  • specific examples of hydraulic actuators are not limited to these.
  • FIG. 2 is a diagram showing the drive circuit of the hydraulic excavator 1. Note that while FIG. 2 only shows the hydraulic circuits for driving the boom cylinder 14 and the arm cylinder 15, the hydraulic excavator 1 also includes hydraulic circuits for driving other hydraulic actuators (i.e., the travel motor 5, the swing motor 6, and the bucket cylinder 16). As shown in FIG. 2, the hydraulic excavator 1 mainly includes an engine 20 (prime mover), a hydraulic oil tank 21, a hydraulic pump 22 (hydraulic pump), directional control valves 23, 24, meter-in control valves 25, 26, opening control valves 27, 28, a relief valve 29, a bleed-off valve 30, and pressure sensors 31, 32, 33, 34, and 35.
  • an engine 20 primary mover
  • a hydraulic oil tank 21 a hydraulic pump 22 (hydraulic pump)
  • directional control valves 23 24, meter-in control valves 25, 26, opening control valves 27, 28, a relief valve 29, a bleed-off valve 30, and pressure sensors 31, 32, 33, 34, and 35.
  • the engine 20 generates a driving force for driving the hydraulic excavator 1.
  • specific examples of the driving source are not limited to the engine 20, and may be an electric motor or the like.
  • the hydraulic oil tank 21 stores hydraulic oil.
  • the hydraulic pump 22 rotates by the driving force of the engine 20, and discharges the hydraulic oil stored in the hydraulic oil tank 21.
  • the hydraulic pump 22 is a variable displacement type such as a swash plate type or an inclined axis type.
  • the discharge capacity of the hydraulic pump 22 is controlled by a regulator 22a.
  • the directional control valve 23, the meter-in control valve 25, and the opening control valve 27 are hydraulic components for operating (extending and retracting) the boom cylinder 14.
  • the directional control valve 24, the meter-in control valve 26, and the opening control valve 28 are hydraulic components for operating (extending and retracting) the arm cylinder 15. As these hydraulic components have a common configuration, the following will explain the hydraulic components 23, 25, and 27 for operating the boom cylinder 14.
  • the directional control valve 23 is disposed on the flow path from the hydraulic pump 22 to the boom cylinder 14, and on the flow path from the boom cylinder 14 to the hydraulic oil tank 21.
  • the directional control valve 23 is an electromagnetic proportional control valve that controls the supply direction of hydraulic oil to the boom cylinder 14 under the control of the controller 50. More specifically, the directional control valve 23 has a spool that moves between a stop position A, an extended position B, and a retracted position C in response to a command current being supplied to ports 23a and 23b.
  • the stop position A is a position where the supply and discharge of hydraulic oil to the boom cylinder 14 is stopped.
  • the extended position B is a position where the hydraulic oil discharged from the hydraulic pump 22 is supplied to the bottom chamber of the boom cylinder 14, and the hydraulic oil discharged from the rod chamber of the boom cylinder 14 is returned to the hydraulic oil tank 21. This causes the boom cylinder 14 to extend.
  • the retracted position C is a position where the hydraulic oil discharged from the hydraulic pump 22 is supplied to the rod chamber of the boom cylinder 14, and the hydraulic oil discharged from the bottom chamber of the boom cylinder 14 is returned to the hydraulic oil tank 21. This causes the boom cylinder 14 to retract. Also, the closer the spool is to the stop position A, the less hydraulic oil is supplied to and discharged from the boom cylinder 14. On the other hand, the closer the spool is to the extended position B or retracted position C, the more hydraulic oil is supplied to and discharged from the boom cylinder 14.
  • the initial position of the spool of the directional control valve 23 (the position when no command current is supplied to either port 23a or 23b) is the stop position A.
  • the spool of the directional control valve 23 moves from the stop position A toward the extended position B.
  • the spool of the directional control valve 23 moves from the stop position A toward the retracted position C.
  • the spool of the directional control valve 23 moves closer to the extended position B or the retracted position C as the command current supplied to ports 23a and 23b increases.
  • the spool of the directional control valve 23 returns to the stop position A.
  • the meter-in control valve 25 is disposed in the flow path leading from the hydraulic pump 22 to the directional control valve 23. In other words, the meter-in control valve 25 is disposed upstream of the directional control valve 23.
  • the meter-in control valve 25 controls the flow rate of hydraulic oil discharged by the hydraulic pump 22 that is supplied to the boom cylinder 14 through the directional control valve 23. More specifically, the meter-in control valve 25 increases or decreases the flow rate of pressurized oil supplied to the directional control valve 23 by controlling the back pressure with the opening control valve 27.
  • the opening control valve 27 controls the flow rate of hydraulic oil supplied from the hydraulic pump 22 to the directional control valve 23 through the meter-in control valve 25 (i.e., the opening of the meter-in control valve 25) by controlling the back pressure of the meter-in control valve 25.
  • the opening control valve 27 is an electromagnetic proportional control valve that controls the flow rate of hydraulic oil passing through the meter-in control valve 25 under the control of the controller 50.
  • the opening control valve 27 has a spool that moves between a supply position D and a shutoff position E when a command current is supplied.
  • the supply position D is a position where the back pressure port of the meter-in control valve 25 is opened to supply hydraulic oil from the hydraulic pump 22 to the directional control valve 23 through the meter-in control valve 25.
  • the shutoff position E is a position where the back pressure port of the meter-in control valve 25 is closed to shut off the supply of hydraulic oil from the hydraulic pump 22 to the directional control valve 23 through the meter-in control valve 25.
  • the closer the spool of the opening control valve 27 is to the supply position D the more the amount of hydraulic oil supplied to the directional control valve 23 increases, and the closer the spool of the opening control valve 27 is to the shutoff position E, the more the amount of hydraulic oil supplied to the directional control valve 23 decreases.
  • the initial position of the spool of the opening control valve 27 (the position when no command current is being supplied) is the supply position D. Furthermore, when a command current is supplied, the spool of the opening control valve 27 moves from the supply position D to the shutoff position E. Furthermore, the spool of the opening control valve 27 approaches the shutoff position E as the command current supplied increases. On the other hand, when the supply of the command current is stopped, the spool of the opening control valve 27 returns to the supply position D.
  • the directional control valve 23, the meter-in control valve 25, and the opening control valve 27 are examples of flow control valves that control the amount of hydraulic oil supplied to and discharged from the boom cylinder 14.
  • the specific configuration of the flow control valve is not limited to the above-mentioned example, and it may be configured with one or more valves that are directly or indirectly controlled by the controller 50.
  • the flow control valve according to this embodiment performs so-called "meter-in control”, which controls the flow rate of hydraulic oil supplied to the hydraulic actuator.
  • the method of controlling the flow rate of hydraulic oil to the hydraulic actuator is not limited to meter-in control, and may also be so-called “meter-out control", which controls the flow rate of hydraulic oil discharged from the hydraulic actuator.
  • the relief valve 29 returns the pressurized oil to the hydraulic oil tank 21 in order to protect the hydraulic circuit when the discharge pressure from the hydraulic pump 22 reaches the set pressure.
  • the bleed-off valve 30 adjusts the flow rate of a portion of the pressurized oil discharged from the hydraulic pump 22 under the control of the controller 50, and returns the adjusted flow rate to the hydraulic oil tank 21.
  • Pressure sensor 31 detects the discharge pressure discharged from hydraulic pump 22 (hereinafter referred to as "pump discharge pressure Pp"). Furthermore, pressure sensors 32, 34 detect the pressure of hydraulic oil supplied to and discharged from the bottom chambers of boom cylinder 14 and arm cylinder 15. Furthermore, pressure sensors 33, 35 detect the pressure of hydraulic oil supplied to and discharged from the rod chambers of boom cylinder 14 and arm cylinder 15. Hereinafter, the pressures detected by pressure sensors 32 to 35 are referred to as actual measured pressures P act . Then, pressure sensors 31 to 35 output pressure signals indicative of the detected pressures to controller 50.
  • FIG. 3 is a hardware configuration diagram of the hydraulic excavator 1.
  • the hydraulic excavator 1 is equipped with a controller 50 having a CPU 51 (Central Processing Unit) and a memory 52.
  • the memory 52 is, for example, configured with a ROM (Read Only Memory), a RAM (Random Access Memory), a HDD (Hard Disk Drive), or a combination of these.
  • the controller 50 realizes the processing described below by the CPU 51 reading and executing program code stored in the memory 52.
  • controller 50 is not limited to this, and may be realized by hardware such as an ASIC (Application Specific Integrated Circuit) or an FPGA (Field-Programmable Gate Array).
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • the controller 50 controls the engine 20, regulator 22a, directional control valves 23, 24, opening control valves 27, 28, and bleed-off valve 30 based on various signals acquired from pressure sensors 31-35, attitude sensors 36-39, boom operation lever 41, arm operation lever 42, and EC dial 43. That is, the controller 50 controls the rotation speed of the engine 20, the discharge capacity of the hydraulic pump 22, and the opening (the magnitude of the command current supplied) of the directional control valves 23, 24, opening control valves 27, 28, and bleed-off valve 30. The controller 50 also indirectly controls the opening of the meter-in control valves 25, 26 by controlling the opening control valves 27, 28.
  • the attitude sensors 36 to 39 detect the attitude of the joints driven by the hydraulic actuators, and output attitude signals indicating the detection results to the controller 50.
  • the attitude sensor 36 detects the rotation angle of the upper rotating body 3
  • the attitude sensor 37 detects the ground angle of the boom 11
  • the attitude sensor 38 detects the angle of the arm 12 relative to the boom 11
  • the attitude sensor 39 detects the angle of the bucket 13 relative to the arm 12.
  • these angles are referred to as "joint angle ⁇ .”
  • specific examples of the attitudes detected by the attitude sensors 36 to 39 are not limited to the above-mentioned examples.
  • the boom operation lever 41 accepts the operator's operation to raise and lower the boom 11 (in other words, to extend and retract the boom cylinder 14). More specifically, the boom operation lever 41 accepts the operator's operation to instruct the direction in which the boom cylinder 14 extends and retracts, and the amount of extension and retraction (extension and retraction speed) of the boom cylinder 14. For example, the operation of tilting the boom operation lever 41 rearward corresponds to an instruction (positive sign) to extend the boom cylinder 14, and the operation of tilting the boom operation lever 41 forward corresponds to an instruction (negative sign) to retract the boom cylinder 14. Furthermore, the amount of operation of the boom operation lever 41 corresponds to the absolute value of the amount of extension and retraction (extension and retraction speed) of the boom cylinder 14.
  • the arm operating lever 42 accepts an operator's operation to rotate the arm 12 (in other words, extend and retract the arm cylinder 15). More specifically, the arm operating lever 42 accepts an operator's operation to specify the direction in which the arm cylinder 15 extends and retracts, and the amount of extension and retraction (extension and retraction speed) of the arm cylinder 15. For example, an operation to tilt the arm operating lever 42 to the right corresponds to an instruction (positive sign) to extend the arm cylinder 15, and an operation to tilt the arm operating lever 42 to the left corresponds to an instruction (negative sign) to retract the arm cylinder 15. Furthermore, the amount of operation of the arm operating lever 42 corresponds to the absolute value of the amount of extension and retraction (extension and retraction speed) of the arm cylinder 15.
  • the combination of the telescopic direction and telescopic amount (telescopic speed) is an example of the operation amount o.
  • specific examples of the operation amount o are not limited to the above examples.
  • the operation devices such as the boom operation lever 41 and the arm operation lever 42 output operation signals indicating the operation amount o for the operation devices to the controller 50.
  • the boom operation lever 41 and the arm operation lever 42 have operation amount detection sensors that detect the respective operation amounts o and output the operation amounts o.
  • each operation lever that operates the travel motor 5, the swing motor 6, and the bucket cylinder 16 is further equipped with a respective operation amount detection sensor that outputs the respective operation amounts o.
  • the operation devices are not limited to the form of levers, and may be pedals or switches.
  • the operation amount detection sensor is not limited to a configuration that detects the operation amount o based on a current value output from an operation device such as an operation lever provided in the cab 8, but may be a configuration that detects the operation amount o from a remote operation device via a communication line via an external server. Based on the operation signals from each of the above-mentioned operation levers, the operation amount o of each operation lever may be calculated by processing in the controller 50, and the operation amount o may be detected as a result.
  • the EC dial (engine control dial) 43 is used to arbitrarily set the required rotation speed Wr of the engine 20 by dial operation.
  • the EC dial 43 outputs a rotation speed command signal indicating the required rotation speed Wr set by dial operation to the controller 50.
  • the EC dial 43 is an example of an engine rotation speed setting device that sets the required rotation speed Wr of the engine 20.
  • the engine rotation speed setting device is not limited to a dial type, and may be a switch, a touch panel, or the like.
  • the engine rotation speed setting device is not limited to a device that sets the required rotation speed Wr from a dial or the like provided in the cab 8, and may be configured to set the required rotation speed Wr from a remote control device equipped with an engine rotation speed setting device via an external server through a communication line.
  • FIG. 4 is a functional block diagram of the controller 50.
  • the controller 50 mainly comprises a required speed calculation unit 61, a rotation speed control unit 62, a Jacobian matrix calculation unit 63, an output limiting unit 64, a joint torque calculation unit 65, a target pressure calculation unit 66, an actual pressure calculation unit 67, a valve control unit 68, and a pump control unit 69.
  • Each of the functional blocks 61 to 69 shown in FIG. 4 is realized, for example, by the CPU 51 executing a program stored in the memory 52.
  • each of the function blocks 61 to 69 shown in FIG. 4 controls at least one of the engine 20, hydraulic pump 22, directional control valves 23, 24, and opening control valves 27, 28 so that the output of the engine 20 falls within the range of the output limit value E while maintaining a balance between the operating speeds of the hydraulic actuators.
  • An example of combined operation of the boom cylinder 14 and arm cylinder 15 will be described below.
  • the required speed calculation unit 61 calculates a required speed vr of the boom cylinder 14 and the arm cylinder 15 based on the operation amount o acquired through the boom operation lever 41 and the arm operation lever 42.
  • the required speed vr is the extension/retraction speed of the boom cylinder 14 and the arm cylinder 15 corresponding to the operation amount of the boom operation lever 41 and the arm operation lever 42.
  • Fig. 5 is a detailed diagram of the required speed calculation unit 61.
  • the required speed calculation unit 61 has required speed tables 611, 612 corresponding to the respective hydraulic actuators.
  • the required speed table 611 holds a predetermined correspondence relationship between the operation amount o acquired through the boom operation lever 41 and the required speed vr-Bm of the boom 11.
  • the required speed table 612 holds a predetermined correspondence relationship between the operation amount o acquired through the arm operation lever 42 and the required speed vr -Am of the arm 12. More specifically, the required speed tables 611, 612 hold a relationship in which the required speeds vr -Bm , vr-Am become faster as the operation amount o increases.
  • the memory 52 also stores required speed tables corresponding to the travel motor 5, the swing motor 6, and the bucket cylinder 16.
  • the required speed calculation unit 61 may have an individual required speed table for each hydraulic actuator, or may have a multi-dimensional table that outputs multiple required speeds in response to multiple inputs of operation amounts.
  • the required speed calculation unit 61 calculates a required speed v r-Bm corresponding to the operation amount o obtained through the boom operation lever 41, based on a required speed table 611.
  • the required speed calculation unit 61 also calculates a required speed v r-Am corresponding to the operation amount o obtained through the arm operation lever 42, based on a required speed table 612. Then, as shown in FIG 4, the required speed calculation unit 61 outputs the calculated required speed v r (a vector including v r-Bm and v r-Am ) to the output limiting unit 64.
  • the rotation speed control unit 62 calculates a target rotation speed W Et and an output limit value E based on the required rotation speed W r acquired through the EC dial 43.
  • the target rotation speed W Et is a target value of the rotation speed of the engine 20.
  • the output limit value E is a limit value (limit value) of the output when the engine 20 is rotated at the target rotation speed W Et .
  • FIG. 6 is a detailed diagram of the rotation speed control unit 62.
  • the rotation speed control unit 62 has a target rotation speed table 621 and an output limit value table 622.
  • the target rotation speed table 621 holds a predetermined correspondence relationship between the required rotation speed Wr and the target rotation speed W Et . More specifically, the target rotation speed table 621 holds a relationship in which the target rotation speed W Et is constant at a minimum value when the required rotation speed Wr is smaller than a lower limit value, and the target rotation speed W Et is constant at a maximum value when the required rotation speed Wr is larger than an upper limit value, and the target rotation speed W Et increases as the required rotation speed Wr increases between the lower limit value and the upper limit value.
  • the output limit value table 622 holds a predetermined correspondence relationship between the target rotation speed W Et and the output limit value E. More specifically, the output limit value E holds a relationship in which the output limit value E increases as the target rotation speed W Et increases.
  • the rotation speed control unit 62 calculates a target rotation speed W Et corresponding to the required rotation speed Wr based on a target rotation speed table 621.
  • the rotation speed control unit 62 also calculates an output limit value E corresponding to the target rotation speed W Et based on an output limit value table 622. Then, as shown in Fig. 4, the rotation speed control unit 62 outputs the calculated target rotation speed W Et to the pump control unit 69, and outputs the calculated output limit value E to the output limit unit 64.
  • the rotation speed control unit 62 also outputs the calculated target rotation speed W Et to an engine controller (not shown) to control the rotation speed of the engine 20 to the target rotation speed W Et .
  • the Jacobian matrix calculation unit 63 calculates the Jacobian matrix J based on the joint angle ⁇ detected by the attitude sensors 37, 38.
  • the Jacobian matrix J is a conversion coefficient that converts the displacement velocity of the hydraulic actuator into a target joint angular velocity vector ⁇ 't (in other words, converts the link angular velocity system into an actuator velocity system).
  • a specific method for calculating the Jacobian matrix J is already well known, as described in Non-Patent Document 1, for example, and therefore a detailed explanation will be omitted.
  • the Jacobian matrix calculation unit 63 then outputs the calculated Jacobian matrix J to the joint torque calculation unit 65.
  • the output limiting unit 64 calculates a target speed vt, a target acceleration v't , and a target pump flow rate Qpt based on the required speed vr obtained from the required speed calculation unit 61, the output limit value E obtained from the rotation speed control unit 62, and the pump discharge pressure Pp detected by the pressure sensor 31.
  • the target speed vt is a target value (vt- Bm , vt-Am) of the extension and retraction speed of each of the boom cylinder 14 and the arm cylinder 15.
  • the target acceleration v't is a target value ( v't- Bm , v't -Am ) of the acceleration for extending and retracting the boom cylinder 14 and the arm cylinder 15 at the target speeds vt -Bm , vt -Am , respectively.
  • the target pump flow rate Qpt is a target value of the discharge capacity of the hydraulic pump 22 required for extending and retracting the boom cylinder 14 and the arm cylinder 15 at the target speeds vt -Bm, vt -Am, respectively.
  • FIG. 7 is a detailed diagram of the output limiting unit 64. As shown in FIG. 7, the output limiting unit 64 has calculation units 641 to 646.
  • the calculation unit 641 calculates the pump flow rate limit value Qlim by dividing the output limit value E by the pump discharge pressure Pp.
  • the pump flow rate limit value Qlim is the upper limit (limit value) of the discharge capacity of the hydraulic pump 22 at which the output of the engine 20 falls within the output limit value E. Then, the calculation unit 641 outputs the calculated pump flow rate limit value Qlim to the calculation unit 643.
  • the calculation unit 642 calculates a pump flow rate estimate Qest by integrating the product of the required speed vr (vr -Bm , vr -Am ) obtained from the required speed calculation unit 61 and the oil passage cross-sectional area S (S - Bm, S - Am) of the corresponding hydraulic actuator.
  • the pump flow rate estimate Qest is an estimate of the flow rate of hydraulic oil that should be discharged by the hydraulic pump 22 in order to satisfy the multiple required speeds vr-Bm , vr-Am calculated by the required speed calculation unit 61.
  • the calculation unit 642 then outputs the calculated pump flow rate estimate Qest to the calculation units 643, 646.
  • the calculation unit 643 calculates a speed limit gain K by dividing the pump flow rate limit value Qlim by the pump flow rate estimated value Qest (i.e., the ratio of the pump flow rate limit value Qlim and the pump flow rate estimated value Qest ).
  • the speed limit gain K is a correction coefficient for correcting the required speed vr and the pump flow rate estimated value Qest .
  • the pump flow rate limit value Qlim is smaller than the pump flow rate estimated value Qest , so that the speed limit gain K satisfies 0 ⁇ K ⁇ 1.
  • the calculation unit 643 then outputs the speed limit gain K to the minimum value selection unit 647.
  • the calculator 644 calculates a target speed vt (a vector including vt -Bm , vt -Am ) by multiplying each of the multiple required speeds vr -Bm , vr -Am by a speed limit gain K. That is, the calculator 644 corrects each of the multiple required speeds vr -Bm , vr-Am based on the ratio between the pump flow rate limit value Qlim and the pump flow rate estimated value Qest to calculate multiple target speeds vt -Bm , vt -Am . The calculator 644 then outputs the calculated target speed vt to the calculator 645 and the joint torque calculator 65.
  • a target speed vt (a vector including vt -Bm , vt -Am ) by multiplying each of the multiple required speeds vr -Bm , vr -Am by a speed limit gain K. That is, the calculator 644 corrects each of the multiple required speeds vr -Bm , v
  • the calculation unit 645 calculates the required acceleration v'r (a vector including v'r -Bm and v'r-Am ) by differentiating each of the multiple required velocities vr - Bm and vr-Am with respect to time t. Then, the calculation unit 645 outputs the calculated required acceleration v'r to the joint torque calculation unit 65.
  • the calculator 646 calculates the target pump flow rate Qpt by multiplying the pump flow rate estimate Qest by the speed limit gain K. That is, the calculator 646 calculates the target pump flow rate Qpt by correcting the pump flow rate estimate Qest based on the ratio between the pump flow rate limit value Qlim and the pump flow rate estimate Qest . The calculator 646 then outputs the calculated target pump flow rate Qpt to the pump control unit 69.
  • the joint torque calculation unit 65 calculates the target torque ft by substituting the joint angle ⁇ detected by the attitude sensors 37, 38, the joint angular velocity ⁇ ' obtained by time-differentiating the joint angle ⁇ , and the target velocity vt and target acceleration v't obtained from the output limiting unit 64 into the following equations 1 and 2.
  • the target torque ft is the target value (ft - Bm, ft -Bm ) of the torque when the boom cylinder 14 and the arm cylinder 15 are extended and retracted at target velocities vt -Bm and vt-Am .
  • the joint torque calculation unit 65 calculates a target joint angular velocity vector ⁇ 't by substituting the target velocities v t-Bm and v t-Am and the Jacobian matrix J into Equation 1.
  • the joint torque calculation unit 65 also calculates a target torque ft by substituting the joint angle ⁇ , the joint angular velocity ⁇ ', and the target joint angular velocity vector ⁇ 't into the equation of motion of Equation 2.
  • the joint torque calculation unit 65 then outputs the calculated target torque ft to the target pressure calculation unit 66.
  • the first term is the inertia term of the link member
  • the second term is the central force/Coriolis force term (C) and friction term (D)
  • the third term is the gravity term (g is gravitational acceleration).
  • the link member dimensions, weight, friction, and other information used to calculate the coefficients of each term are known.
  • the calculation method used by the joint torque calculation unit 65 is known as the calculated torque method, and is already well known, as described in Non-Patent Document 2, for example, so a detailed explanation will be omitted.
  • the target pressure calculation unit 66 calculates the target pressures of the pressure oil supplied to and discharged from the boom cylinder 14 and the arm cylinder 15 (target meter-in pressure Pmi -t , target meter-out pressure Pmo -t ) based on the corresponding target speeds vt . More specifically, the target pressure calculation unit 66 calculates the target meter-in pressure Pmi-t, the target meter-out pressure Pmo -t , and the meter-in flag ⁇ mi based on the operation amount o acquired through the boom operation lever 41 and the arm operation lever 42, and the target torque ft acquired from the joint torque calculation unit 65.
  • the target meter-in pressure Pmi -t is a target value for the pressure of hydraulic oil supplied to each of the boom cylinder 14 and the arm cylinder 15 to extend and retract the boom cylinder 14 and the arm cylinder 15 at target speeds vt- Bm and vt-Am, respectively.
  • the target meter-out pressure Pmo-t is a target value for the pressure of hydraulic oil discharged from each of the boom cylinder 14 and the arm cylinder 15 to extend and retract the boom cylinder 14 and the arm cylinder 15 at target speeds vt-Bm and vt -Am , respectively.
  • the meter-in flag ⁇ mi is a value indicating whether hydraulic oil is supplied to the bottom chamber or the rod chamber.
  • Fig. 8 is a detailed view of the target pressure calculation unit 66 applied to the hydraulic cylinders (i.e., the boom cylinder 14, the arm cylinder 15, and the bucket cylinder 16) of the hydraulic actuators.
  • Fig. 9 is a detailed view of the target pressure calculation unit 66 applied to the hydraulic motors (i.e., the travel motor 5 and the swing motor 6) of the hydraulic actuators. As shown in Figs. 8 and 9, the target pressure calculation unit 66 has target pressure calculation tables 661, 662.
  • the target pressure calculation tables 661, 662 hold the correspondence between combinations of the operation amount o and the target torque ft and the calculation methods of the target meter-in pressure Pmi -t , the target meter-out pressure Pmo -t , and the meter-in flag ⁇ mi.
  • the target pressure calculation unit 66 outputs the calculated meter-in flag ⁇ mi to the actual pressure calculation unit 67.
  • the target pressure calculation unit 66 calculates the target meter-in pressure P mi-t and the target meter-out pressure P mo-t according to the combination of the operation amount o and the target torque ft.
  • the constants p #buf1 and p #buf2 are fixed values preset as the minimum pressure for preventing cavitation.
  • the constants S b and S r are the cross-sectional areas of the bottom side (S b ) and the rod side (S r ) of the hydraulic cylinder, respectively.
  • the motor volume q m is the motor volume of the hydraulic motor, and is a value taking into account the reduction ratio when a reducer is present.
  • the target pressure calculation unit 66 outputs the calculated target meter-in pressure P mi -t and the target meter-out pressure P mo-t to the valve control unit 68 and the pump control unit 69.
  • the actual pressure calculation unit 67 calculates the actual meter-in pressure P mi and the actual meter-out pressure P mo by substituting the actual pressure P act detected by the pressure sensors 32-35 and the meter -in flag ⁇ mi obtained from the target pressure calculation unit 66 into the following equation 3.
  • the actual meter-in pressure P mi is the actual value of the hydraulic oil supplied to the boom cylinder 14 and the arm cylinder 15.
  • the actual meter-out pressure P mo is the actual value of the hydraulic oil discharged from the boom cylinder 14 and the arm cylinder 15.
  • the actual pressure Pa is the actual pressure detected by the bottom side pressure sensors 32, 34
  • the actual pressure Pb is the actual pressure detected by the rod side pressure sensors 33, 35.
  • the actual pressure calculation unit 67 outputs the calculated actual meter-in pressure Pmi and actual meter-out pressure Pmo to the valve control unit 68.
  • Fig. 10 is a detailed diagram of the valve control unit 68 that performs meter-in control.
  • the valve control unit 68 in Fig. 10 calculates a valve opening command i based on the operation amount o obtained through the boom operation lever 41 and the arm operation lever 42, the target meter-in pressure Pmi -t obtained from the target pressure calculation unit 66, the measured meter-in pressure Pmi obtained from the measured pressure calculation unit 67, the pump discharge pressure Pp detected by the pressure sensor 31, the meter-in oil passage volume Vmi , and the meter-in oil passage volume change amount V'mi .
  • the valve control unit 68 has a meter-in opening limit value table 681A, calculation units 682A to 685A, and a valve opening command table 686A.
  • the meter-in oil passage volume Vmi is the volume of hydraulic oil to be supplied to each of the boom cylinder 14 and the arm cylinder 15.
  • the meter-in oil passage volume change V'mi is the volume of hydraulic oil to be supplied per unit time to each of the boom cylinder 14 and the arm cylinder 15.
  • the valve opening command i is a value indicating the opening of each of the meter-in control valves 25, 26 required to extend and retract the boom cylinder 14 and the arm cylinder 15 at the target speeds vt -Bm and vt -Am , respectively (for example, the magnitude of the command current supplied to each of the opening control valves 27, 28).
  • the meter-in oil passage volume V mi and the meter-in oil passage volume change V' mi are determined by the following formula 4.
  • the meter-in oil passage volume V mi and the meter-in oil passage volume change V' mi are determined by the following formula 5.
  • the initial volumes V a0 and V b0 are the initial values of the oil passage volumes on the bottom side (V a0 ) and rod side (V b0 ) of the hydraulic cylinder, respectively.
  • the cylinder displacement Xc is the displacement amount of the boom cylinder 14 and the arm cylinder 15.
  • Smi and Smo are the meter-in side cylinder cross-sectional area and the meter-out side cylinder cross-sectional area, respectively.
  • q m is the motor volume of the hydraulic motor described above.
  • the meter-in opening limit value table 681A holds a predetermined correspondence relationship between the operation amount o and the meter-in opening limit value A mi-lim . More specifically, the meter-in opening limit value table 681A holds a relationship in which the meter-in opening limit value A mi-lim increases as the operation amount o increases.
  • the meter-in opening limit value A mi-lim is a limit value for the opening area of the meter-in control valves 25, 26.
  • the meter-in opening limit value A mi-lim determined based on the meter-in opening limit value table 681A is output to the calculation unit 685A.
  • the calculation unit 682A subtracts the actual meter-in pressure Pmi from the target meter-in pressure Pmi-t and outputs the result to the calculation unit 683A.
  • the calculation unit 682A calculates a feedback control amount V from the calculation result of the calculation unit 682A by PID (Proportional-Integral-Differential) control, and outputs the calculated feedback control amount V to the calculation unit 684A.
  • the calculation unit 684A calculates the target meter-in opening A'mi-t by substituting the actual meter-in pressure Pmi , the pump discharge pressure Pp, the meter-in oil passage volume Vmi , the meter-in oil passage volume change V'mi , and the feedback control amount V into the following equation 7.
  • the target meter-in opening A'mi - t is a target value for the opening area of the meter-in control valves 25, 26.
  • Equation 6 is established.
  • Equation 7 is obtained by rearranging Equation 6 with respect to the feedback control amount V.
  • calculation unit 684A outputs the calculated target meter-in opening A'mi -t to calculation unit 685A.
  • the calculation unit 685A outputs the smaller of the meter-in opening limit value A mi-lim and the target meter-in opening A' mi-t to a valve opening command table 686A.
  • the valve opening command table 686A holds a predetermined correspondence relationship between the output value of the calculation unit 685A and the valve opening command i. More specifically, the valve opening command table 686A holds a relationship in which the valve opening command i increases as the output value of the calculation unit 685A increases.
  • the valve control unit 68 controls the opening of the opening control valves 27, 28 according to the valve opening command i specified based on the valve opening command table 686A. For example, the valve control unit 68 supplies a command current indicated by the valve opening command i to the opening control valves 27, 28.
  • Fig. 11 is a detailed diagram of the valve control unit 68 that performs meter-out control.
  • the valve control unit 68 in Fig. 11 calculates a valve opening command i based on the operation amount o acquired through the boom operation lever 41 and the arm operation lever 42, the target meter-out pressure P mo-t acquired from the target pressure calculation unit 66, the measured meter-out pressure P mo acquired from the measured pressure calculation unit 67, the discharge side pressure P ret , the meter-out oil passage volume V mo , and the meter-out oil passage volume change amount V' mo .
  • the valve control unit 68 has a meter-out opening limit value table 681B, calculation units 682B to 685B, and a valve opening command table 686B.
  • the meter-out oil passage volume Vmo is the volume of hydraulic oil to be discharged from each of the boom cylinder 14 and the arm cylinder 15.
  • the meter-out oil passage volume change amount V'mo is the volume of hydraulic oil to be discharged per unit time from each of the boom cylinder 14 and the arm cylinder 15.
  • the discharge side pressure Pret is the pressure of the hydraulic oil discharged to the hydraulic oil tank 21 (usually the pressure inside the hydraulic oil tank 21).
  • the valve opening command i is a value indicating the opening amount of the meter-out side flow control valve (for example, flow control valve 72 in FIG . 13) required to extend and retract the boom cylinder 14 and the arm cylinder 15 at the target speeds vt-Bm and vt-Am, respectively.
  • the meter-out oil passage volume V mo and the meter-out oil passage volume change amount V' mo are determined by the above formula 4.
  • the meter-out oil passage volume V mo and the meter-out oil passage volume change amount V' mo are determined by the above formula 5.
  • the meter-out opening limit value table 681B holds a predetermined correspondence relationship between the operation amount o and the meter-out opening limit value A mo-lim . More specifically, the meter-out opening limit value table 681B holds a relationship in which the meter-out opening limit value A mo-lim increases as the operation amount o increases.
  • the meter-out opening limit value A mo-lim is a limit value of the opening area of the flow control valve 72.
  • the meter-out opening limit value A mo-lim specified based on the meter-out opening limit value table 681B is output to the calculation unit 685B.
  • the calculation unit 684B calculates a target meter-out opening A' mo-t by substituting the actual meter-out pressure P mo , the discharge side pressure P ret , the meter-out oil passage volume V mo , the meter-out oil passage volume change V' mo , and the feedback control amount V into the following equation 9.
  • the target meter-out opening A' mo-t is a target value of the opening area in the flow control valve 72. More specifically, equation 9 is obtained by rearranging equation 8 with respect to the feedback control amount V. Then, the calculation unit 684B outputs the calculated target meter-out opening A' mo-t to the calculation unit 685B.
  • valve control unit 68 shown in FIGS. 10 and 11 controls the opening amount of each of a plurality of flow control valves based on the difference between the corresponding target pressure and the actual measured pressure.
  • the pump control unit 69 calculates a target pump capacity qpt based on the pump discharge pressure Pp detected by the pressure sensor 31, the target pump flow rate Qpt obtained from the output limiting unit 64, the target rotation speed W Et obtained from the rotation speed control unit 62, and the target meter-in pressure P mi-t obtained from the target pressure calculation unit 66.
  • the target pump capacity qpt is a target value of the discharge capacity of the hydraulic pump 22 required to extend and retract the boom cylinder 14 and the arm cylinder 15 at target speeds v t-Bm and v t-Am , respectively.
  • FIG. 12 is a detailed diagram of the pump control unit 69. As shown in FIG. 12, the pump control unit 69 has calculation units 691 to 695.
  • the calculation unit 691 outputs the maximum value of the multiple target meter-in pressures P mi-t to the calculation unit 692.
  • the calculation unit 692 subtracts the pump discharge pressure Pp from the maximum value acquired from the calculation unit 691 and outputs the result to the calculation unit 693.
  • the calculation unit 693 calculates a pump flow rate correction value Z from the calculation result of the calculation unit 692 by PID control, and outputs the calculated pump flow rate correction value Z to the calculation unit 694.
  • the calculation unit 693 adds the pump flow rate correction value Z to the target pump flow rate Q pt to calculate a corrected target pump flow rate Q' pt , and outputs the corrected target pump flow rate Q' pt to the calculation unit 695.
  • the calculation unit 695 divides the corrected target pump flow rate Q' pt by the target rotation speed W Et to calculate a target pump capacity q pt . Then, the pump control unit 69 controls the regulator 22a so that hydraulic oil of the calculated target pump capacity q pt is discharged from the hydraulic pump 22.
  • the target speeds vt -Bm , vt - Am are calculated by dividing the required speeds vr-Bm , vr-Am of the boom cylinder 14 and the arm cylinder 15 by a common speed limit gain K. This makes it possible to maintain a balance in the extension and retraction speeds of the boom cylinder 14 and the arm cylinder 15 (i.e., the operating speeds of the boom 11 and the arm 12) even if the output of the engine 20 is limited to the output limit value E.
  • the arm 12 moves along the trajectory intended by the operator, although at a slower moving speed than intended by the operator.
  • This makes it possible to maintain a balance between the operating speeds of the boom cylinder 14 and the arm cylinder 15, even in a horizontal pulling operation in which the boom cylinder 14 and the arm cylinder 15 are operated in combination to move the tip of the bucket 13 horizontally in order to level soil with the tip of the bucket 13.
  • the openings of the meter-in control valves 25, 26 are indirectly controlled by adjusting the magnitude of the command current supplied to the opening control valves 27, 28.
  • the objects that are directly controlled to extend and retract the boom cylinder 14 and the arm cylinder 15 at the target speeds vt -Bm and vt-Am are not limited to the above example.
  • the meter-in control valves 25, 26 may be directly controlled as solenoid proportional valves.
  • FIG. 14 is a drive path diagram showing another combination of hydraulic actuators that perform the combined operation.
  • FIG. 14 another example of a combined operation is to operate the swing motor 6 and boom cylinder 14 in parallel when loading soil scooped up by the bucket 13 onto the bed of a dump truck.
  • the configurations, arrangements, and roles of the directional control valve 74, meter-in control valve 75, opening control valve 76, and pressure sensors 77 and 78 for supplying and discharging hydraulic oil to the swing motor 6 are the same as those of the directional control valve 23, meter-in control valve 25, opening control valve 27, and pressure sensors 32 and 33 described above.
  • the bucket 13 can be moved along the trajectory intended by the operator, thereby preventing the bucket 13 from coming into contact with the dump truck.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Operation Control Of Excavators (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

Provided is a work machine with which it is possible to maintain the balance of operation speeds of a plurality of hydraulic actuators while the output of a motor is restricted. This work machine: computes, on the basis of a predetermined output restriction value for a motor and a discharge pressure of a hydraulic pump as detected by a discharge pressure sensor, a pump flow rate restriction value for a hydraulic oil that can be discharged by the hydraulic pump; computes, on the basis of an operation amount detected by an operation amount detection sensor, a required speed for each of a plurality of hydraulic actuators; computes a pump flow rate estimation value, which is an estimation value pertaining to the flow rate of the hydraulic oil that is to be discharged by the hydraulic pump, so as to satisfy the computed plurality of required speeds; corrects each of the plurality of required speeds, and computes a plurality of target speeds, on the basis of the ratio of the pump flow rate restriction value and the pump flow rate estimation value; and controls the motor, the hydraulic pump, and at least one of a plurality of flow rate control valves such that each of the plurality of actuators acts at a target speed.

Description

作業機械Work Machine
 本発明は、複数の油圧アクチュエータを備える作業機械に関する。 The present invention relates to a work machine equipped with multiple hydraulic actuators.
 油圧ショベルなどの作業機械は、作業装置を構成するブーム、アームなどの各リンクが回転または直進ジョイントにより連結され、油圧アクチュエータ(例えば、油圧モータ、油圧シリンダ)により回転または並進運動する。油圧アクチュエータは、原動機(例えば、エンジン、電動モータ)により回転駆動される油圧ポンプから供給される作動油によって動作する。 In a work machine such as a hydraulic excavator, each link of the working device, such as the boom and arm, is connected by a rotary or linear joint, and rotates or moves in a translational manner by a hydraulic actuator (e.g., hydraulic motor, hydraulic cylinder). The hydraulic actuator is operated by hydraulic oil supplied from a hydraulic pump that is driven to rotate by a prime mover (e.g., engine, electric motor).
 作業装置の速度、加速度、力を制御するためには、各ジョイントに加わる回転トルクまたは推力を制御する必要がある。一方、原動機の出力エネルギー及びトルクには上限があるため、油圧アクチュエータの駆動エネルギーが過大になる場合は、可変容量の油圧ポンプの吐出容量を減じるなどして、原動機の出力エネルギーの上限を上回らないように制御する必要がある。 In order to control the speed, acceleration, and force of the work equipment, it is necessary to control the rotational torque or thrust applied to each joint. On the other hand, there is an upper limit to the output energy and torque of the prime mover, so if the driving energy of the hydraulic actuator becomes excessive, it is necessary to control it so that it does not exceed the upper limit of the output energy of the prime mover, for example by reducing the discharge capacity of the variable capacity hydraulic pump.
 このような課題を解決するために、例えば特許文献1には、エネルギー制限値を現在のポンプ吐出圧で除して流量制限値を算出することで、原動機の出力エネルギーを超えない範囲でポンプの吐出容量を制御する方法が開示されている。 To solve this problem, for example, Patent Document 1 discloses a method for controlling the pump's discharge capacity within a range that does not exceed the output energy of the prime mover by calculating the flow rate limit value by dividing the energy limit value by the current pump discharge pressure.
特許第5985165号公報Japanese Patent No. 5985165
 しかしながら、複数の油圧アクチュエータを複合動作させる場合において、特許文献1の方法でエネルギー制限を行うと、各油圧アクチュエータの動作速度のバランスが崩れる可能性がある。その結果、作業機械の動作がユーザの意図しないものになるという課題を生じる。 However, when multiple hydraulic actuators are operated in a combined manner, limiting energy using the method of Patent Document 1 may cause the balance of the operating speeds of the hydraulic actuators to be lost. As a result, there is a problem that the operation of the work machine may not be as intended by the user.
 本発明は、上記した実状に鑑みてなされたものであり、その目的は、原動機の出力制限下において、複数の油圧アクチュエータの動作速度のバランスを維持することが可能な作業機械を提供することにある。 The present invention was made in consideration of the above-mentioned circumstances, and its purpose is to provide a work machine that is capable of maintaining a balance between the operating speeds of multiple hydraulic actuators when the output of the prime mover is limited.
 上記目的を達成するために、本発明は、駆動力を発生させる原動機と、前記原動機の駆動力によって圧油を吐出する油圧ポンプと、前記油圧ポンプの吐出圧を検出する吐出圧センサと、前記油圧ポンプから供給される圧油によって動作する複数の油圧アクチュエータと、複数の前記油圧アクチュエータそれぞれに対する圧油の給排量を制御する複数の流量制御弁と、複数の前記油圧アクチュエータをそれぞれ操作する操作装置と、前記操作装置による操作量を検出する操作量検出センサと、前記原動機、前記油圧ポンプ、及び複数の前記流量制御弁の少なくとも1つを制御するコントローラとを備える作業機械において、前記コントローラは、予め定められた前記原動機の出力制限値と、前記吐出圧センサによって検出された前記油圧ポンプの吐出圧とに基づいて、前記油圧ポンプが吐出可能な圧油のポンプ流量制限値を演算し、前記操作量検出センサによって検出された前記操作量に基づいて、複数の前記油圧アクチュエータそれぞれの要求速度を演算し、演算した複数の前記要求速度を満たすために、前記油圧ポンプが吐出すべき圧油の流量の推定値であるポンプ流量推定値を演算し、前記ポンプ流量制限値及び前記ポンプ流量推定値の比に基づいて、複数の前記要求速度それぞれを補正して複数の目標速度を演算し、複数の前記油圧アクチュエータそれぞれが前記目標速度で動作するように、前記原動機、前記油圧ポンプ、及び複数の前記流量制御弁の少なくとも1つを制御することを特徴とする。 In order to achieve the above object, the present invention provides a work machine including a prime mover that generates a driving force, a hydraulic pump that discharges pressurized oil by the driving force of the prime mover, a discharge pressure sensor that detects the discharge pressure of the hydraulic pump, a plurality of hydraulic actuators that operate by pressurized oil supplied from the hydraulic pump, a plurality of flow control valves that control the supply and discharge amount of pressurized oil to and from each of the plurality of hydraulic actuators, an operating device that operates each of the plurality of hydraulic actuators, an operation amount detection sensor that detects the operation amount by the operating device, and a controller that controls the prime mover, the hydraulic pump, and at least one of the plurality of flow control valves, the controller detecting a predetermined output limit value of the prime mover and the discharge pressure sensor. The system is characterized in that it calculates a pump flow rate limit value of the pressure oil that the hydraulic pump can discharge based on the discharge pressure of the hydraulic pump detected by the hydraulic pump sensor, calculates a required speed for each of the multiple hydraulic actuators based on the operation amount detected by the operation amount detection sensor, calculates a pump flow rate estimate value that is an estimate of the flow rate of the pressure oil that the hydraulic pump should discharge in order to satisfy the calculated multiple required speeds, calculates multiple target speeds by correcting each of the multiple required speeds based on the ratio between the pump flow rate limit value and the pump flow rate estimate value, and controls at least one of the prime mover, the hydraulic pump, and the multiple flow rate control valves so that each of the multiple hydraulic actuators operates at the target speed.
 本発明によれば、原動機の出力制限下において、複数の油圧アクチュエータの動作速度のバランスを維持することができる。なお、上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。 According to the present invention, it is possible to maintain a balance between the operating speeds of multiple hydraulic actuators when the output of the prime mover is limited. Problems, configurations, and effects other than those described above will become clear from the description of the following embodiments.
油圧ショベルの側面図である。FIG. 2 is a side view of the hydraulic excavator. 油圧ショベルの駆動回路を示す図である。FIG. 2 is a diagram showing a drive circuit of a hydraulic excavator. 油圧ショベル1のハードウェア構成図である。FIG. 2 is a hardware configuration diagram of the hydraulic excavator 1. コントローラの機能ブロック図である。FIG. 2 is a functional block diagram of a controller. 要求速度演算部の詳細図である。FIG. 4 is a detailed diagram of a required speed calculation unit. 回転数制御部の詳細図である。FIG. 4 is a detailed diagram of a rotation speed control unit. 出力制限部の詳細図である。FIG. 4 is a detailed diagram of an output limiting unit. 油圧シリンダに適用される目標圧演算部の詳細図である。FIG. 4 is a detailed diagram of a target pressure calculation unit applied to a hydraulic cylinder. 油圧モータに適用される目標圧演算部の詳細図である。FIG. 4 is a detailed diagram of a target pressure calculation unit applied to the hydraulic motor. メータイン制御を行うバルブ制御部の詳細図である。FIG. 4 is a detailed diagram of a valve control unit that performs meter-in control. メータアウト制御を行うバルブ制御部の詳細図である。FIG. 4 is a detailed diagram of a valve control unit that performs meter-out control. ポンプ制御部の詳細図である。FIG. 4 is a detailed view of the pump control unit. 油圧ショベルに搭載された油圧回路の概略図である。1 is a schematic diagram of a hydraulic circuit mounted on a hydraulic excavator. 複合動作させる油圧アクチュエータの他の組み合わせを示す駆動路図である。FIG. 11 is a drive path diagram showing another combination of hydraulic actuators for performing a composite operation.
 本発明に係る油圧ショベル1(作業機械)の実施形態について、図面を用いて説明する。なお、作業機械の具体例は油圧ショベル1に限定されず、ホイールローダ、クレーン、ダンプトラック等でもよい。また、本明細書中の前後左右は、特に断らない限り、油圧ショベル1に搭乗して操作するオペレータの視点を基準としている。 An embodiment of a hydraulic excavator 1 (work machine) according to the present invention will be described with reference to the drawings. Note that specific examples of the work machine are not limited to the hydraulic excavator 1, and may be a wheel loader, a crane, a dump truck, etc. Furthermore, unless otherwise specified, the terms front, back, left, and right in this specification are based on the viewpoint of an operator who is riding on and operating the hydraulic excavator 1.
 図1は、油圧ショベル1の側面図である。図1に示すように、油圧ショベル1は、下部走行体2と、下部走行体2により支持された上部旋回体3とを備える。下部走行体2及び上部旋回体3は、車体の一例である。下部走行体2は、無限軌道帯である左右一対のクローラ4を備える。そして、走行モータ5の駆動により、左右一対のクローラ4が独立して回転する。その結果、油圧ショベル1が走行する。但し、下部走行体2は、クローラ4に代えて、装輪式であってもよい。 FIG. 1 is a side view of a hydraulic excavator 1. As shown in FIG. 1, the hydraulic excavator 1 comprises a lower running body 2 and an upper rotating body 3 supported by the lower running body 2. The lower running body 2 and the upper rotating body 3 are an example of a vehicle body. The lower running body 2 comprises a pair of left and right crawlers 4 which are endless tracks. The pair of left and right crawlers 4 rotate independently when driven by a traveling motor 5. As a result, the hydraulic excavator 1 travels. However, the lower running body 2 may be of a wheeled type instead of the crawlers 4.
 上部旋回体3は、旋回モータ6によって旋回可能に下部走行体2に支持されている。上部旋回体3は、ベースとなる旋回フレーム7と、旋回フレーム7の前方左側に配置されたキャブ(運転席)8と、旋回フレーム7の後部に配置されたカウンタウェイト9と、旋回フレーム7の前方中央に上下方向に回動可能に取り付けられたフロント作業機10(作業装置)とを主に備える。 The upper rotating body 3 is supported on the lower running body 2 so that it can rotate by a rotating motor 6. The upper rotating body 3 mainly comprises a rotating frame 7 that serves as a base, a cab (driver's seat) 8 located on the front left side of the rotating frame 7, a counterweight 9 located at the rear of the rotating frame 7, and a front work machine 10 (work device) attached to the front center of the rotating frame 7 so that it can rotate up and down.
 キャブ8には、油圧ショベル1を操作するオペレータが搭乗する内部空間が形成されている。そして、キャブ8の内部空間には、オペレータが着席するシートと、シートに着席したオペレータにより操作される操作装置が配置されている。 The cab 8 defines an internal space in which an operator who operates the hydraulic excavator 1 sits. The internal space of the cab 8 also contains a seat on which the operator sits, and operating devices that are operated by the operator seated in the seat.
 操作装置は、油圧ショベル1を動作させるためのオペレータの操作を受け付ける。オペレータによって操作装置が操作されることによって、下部走行体2が走行し、上部旋回体3が旋回し、フロント作業機10が動作する。なお、操作装置の具体例としては、レバー、ステアリングホイール、アクセルペダル、ブレーキペダル、スイッチ等が挙げられる。操作装置は、例えば図3を参照して後述するように、ブーム操作レバー41と、アーム操作レバー42と、ECダイヤル43とを少なくとも含む。 The operating device receives operations from the operator to operate the hydraulic excavator 1. When the operator operates the operating device, the lower traveling body 2 travels, the upper rotating body 3 rotates, and the front working machine 10 operates. Specific examples of the operating device include a lever, a steering wheel, an accelerator pedal, a brake pedal, a switch, etc. The operating device includes at least a boom operating lever 41, an arm operating lever 42, and an EC dial 43, as will be described later with reference to FIG. 3, for example.
 フロント作業機10は、上部旋回体3に起伏可能に支持されたブーム11と、ブーム11の先端に回動可能に支持されたアーム12と、アーム12の先端に回動可能に支持されたバケット13と、ブーム11を駆動させるブームシリンダ14と、アーム12を駆動させるアームシリンダ15と、バケット13を駆動させるバケットシリンダ16とを含む。カウンタウェイト9は、フロント作業機10との重量バランスを取るためのもので、上面視円弧形状を成す重量物である。 The front work implement 10 includes a boom 11 supported on the upper rotating body 3 so that it can be raised and lowered, an arm 12 supported rotatably at the end of the boom 11, a bucket 13 supported rotatably at the end of the arm 12, a boom cylinder 14 that drives the boom 11, an arm cylinder 15 that drives the arm 12, and a bucket cylinder 16 that drives the bucket 13. The counterweight 9 is used to balance the weight of the front work implement 10, and is a heavy object that has an arc shape when viewed from above.
 走行モータ5、旋回モータ6、ブームシリンダ14、アームシリンダ15、及びバケットシリンダ16は、作動油(圧油)が給排されることによって動作する油圧アクチュエータ(油圧アクチュエータ)の一例である。すなわち、油圧ショベル1は、複数の油圧アクチュエータを備える。但し、油圧アクチュエータの具体例は、これらに限定されない。 The travel motor 5, the swing motor 6, the boom cylinder 14, the arm cylinder 15, and the bucket cylinder 16 are examples of hydraulic actuators that operate by supplying and discharging hydraulic oil (pressurized oil). In other words, the hydraulic excavator 1 is equipped with multiple hydraulic actuators. However, specific examples of hydraulic actuators are not limited to these.
 図2は、油圧ショベル1の駆動回路を示す図である。なお、図2では、ブームシリンダ14及びアームシリンダ15を駆動するための油圧回路のみを図示しているが、油圧ショベル1は、他の油圧アクチュエータ(すなわち、走行モータ5、旋回モータ6、バケットシリンダ16)を駆動するための油圧回路も備えている。図2に示すように、油圧ショベル1は、エンジン20(原動機)と、作動油タンク21と、油圧ポンプ22(油圧ポンプ)と、方向制御弁23、24と、メータイン制御弁25、26と、開口量制御弁27、28と、リリーフ弁29と、ブリードオフ弁30と、圧力センサ31、32、33、34、35とを主に備える。 FIG. 2 is a diagram showing the drive circuit of the hydraulic excavator 1. Note that while FIG. 2 only shows the hydraulic circuits for driving the boom cylinder 14 and the arm cylinder 15, the hydraulic excavator 1 also includes hydraulic circuits for driving other hydraulic actuators (i.e., the travel motor 5, the swing motor 6, and the bucket cylinder 16). As shown in FIG. 2, the hydraulic excavator 1 mainly includes an engine 20 (prime mover), a hydraulic oil tank 21, a hydraulic pump 22 (hydraulic pump), directional control valves 23, 24, meter-in control valves 25, 26, opening control valves 27, 28, a relief valve 29, a bleed-off valve 30, and pressure sensors 31, 32, 33, 34, and 35.
 エンジン20は、油圧ショベル1を駆動するための駆動力を発生させる。但し、駆動源の具体例は、エンジン20に限定されず、電動モータなどでもよい。作動油タンク21は、作動油を貯留する。油圧ポンプ22は、エンジン20の駆動力によって回転し、作動油タンク21に貯留された作動油を吐出する。油圧ポンプ22は、斜板式または斜軸式などの可変容量型である。油圧ポンプ22の吐出容量は、レギュレータ22aによって制御される。 The engine 20 generates a driving force for driving the hydraulic excavator 1. However, specific examples of the driving source are not limited to the engine 20, and may be an electric motor or the like. The hydraulic oil tank 21 stores hydraulic oil. The hydraulic pump 22 rotates by the driving force of the engine 20, and discharges the hydraulic oil stored in the hydraulic oil tank 21. The hydraulic pump 22 is a variable displacement type such as a swash plate type or an inclined axis type. The discharge capacity of the hydraulic pump 22 is controlled by a regulator 22a.
 方向制御弁23、メータイン制御弁25、及び開口量制御弁27は、ブームシリンダ14を動作(伸縮)させるための油圧部品である。方向制御弁24、メータイン制御弁26、及び開口量制御弁28は、アームシリンダ15を動作(伸縮)させるための油圧部品である。これらの油圧部品の構成は共通するので、以下、ブームシリンダ14を動作させるための油圧部品23、25、27について説明する。 The directional control valve 23, the meter-in control valve 25, and the opening control valve 27 are hydraulic components for operating (extending and retracting) the boom cylinder 14. The directional control valve 24, the meter-in control valve 26, and the opening control valve 28 are hydraulic components for operating (extending and retracting) the arm cylinder 15. As these hydraulic components have a common configuration, the following will explain the hydraulic components 23, 25, and 27 for operating the boom cylinder 14.
 方向制御弁23は、油圧ポンプ22からブームシリンダ14に至る流路上で、且つブームシリンダ14から作動油タンク21に至る流路上に配置されている。方向制御弁23は、コントローラ50の制御に従って、ブームシリンダ14への作動油の供給方向を制御する電磁比例制御弁である。より詳細には、方向制御弁23は、ポート23a、23bに指令電流が供給されることによって、停止位置Aと、伸長位置B、縮小位置Cとの間を移動するスプールを備える。 The directional control valve 23 is disposed on the flow path from the hydraulic pump 22 to the boom cylinder 14, and on the flow path from the boom cylinder 14 to the hydraulic oil tank 21. The directional control valve 23 is an electromagnetic proportional control valve that controls the supply direction of hydraulic oil to the boom cylinder 14 under the control of the controller 50. More specifically, the directional control valve 23 has a spool that moves between a stop position A, an extended position B, and a retracted position C in response to a command current being supplied to ports 23a and 23b.
 停止位置Aは、ブームシリンダ14への作動油の給排を停止する位置である。伸長位置Bは、油圧ポンプ22から吐出された作動油をブームシリンダ14のボトム室に供給し、ブームシリンダ14のロッド室から排出された作動油を作動油タンク21に還流させる位置である。これにより、ブームシリンダ14が伸長する。縮小位置Cは、油圧ポンプ22から吐出された作動油をブームシリンダ14のロッド室に供給し、ブームシリンダ14のボトム室から排出された作動油を作動油タンク21に還流させる位置である。これにより、ブームシリンダ14が縮小する。また、スプールが停止位置Aに近づくほど、ブームシリンダ14に対する作動油の給排量が減少する。一方、スプールが伸長位置Bまたは縮小位置Cに近づくほど、ブームシリンダ14に対する作動油の給排量が増加する。 The stop position A is a position where the supply and discharge of hydraulic oil to the boom cylinder 14 is stopped. The extended position B is a position where the hydraulic oil discharged from the hydraulic pump 22 is supplied to the bottom chamber of the boom cylinder 14, and the hydraulic oil discharged from the rod chamber of the boom cylinder 14 is returned to the hydraulic oil tank 21. This causes the boom cylinder 14 to extend. The retracted position C is a position where the hydraulic oil discharged from the hydraulic pump 22 is supplied to the rod chamber of the boom cylinder 14, and the hydraulic oil discharged from the bottom chamber of the boom cylinder 14 is returned to the hydraulic oil tank 21. This causes the boom cylinder 14 to retract. Also, the closer the spool is to the stop position A, the less hydraulic oil is supplied to and discharged from the boom cylinder 14. On the other hand, the closer the spool is to the extended position B or retracted position C, the more hydraulic oil is supplied to and discharged from the boom cylinder 14.
 方向制御弁23のスプールの初期位置(ポート23a、23bの両方に指令電流が供給されていないときの位置)は、停止位置Aである。また、方向制御弁23のスプールは、ポート23aに指令電流が供給されることによって、停止位置Aから伸長位置Bに向かって移動する。また、方向制御弁23のスプールは、ポート23bに指令電流が供給されることによって、停止位置Aから縮小位置Cに向かって移動する。さらに、方向制御弁23のスプールは、ポート23a、23bに供給される指令電流が大きくなるほど、伸長位置Bまたは縮小位置Cに近づく。一方、ポート23a、23bへの指令電流の供給が停止されることによって、方向制御弁23のスプールが停止位置Aに戻る。 The initial position of the spool of the directional control valve 23 (the position when no command current is supplied to either port 23a or 23b) is the stop position A. When a command current is supplied to port 23a, the spool of the directional control valve 23 moves from the stop position A toward the extended position B. When a command current is supplied to port 23b, the spool of the directional control valve 23 moves from the stop position A toward the retracted position C. The spool of the directional control valve 23 moves closer to the extended position B or the retracted position C as the command current supplied to ports 23a and 23b increases. On the other hand, when the supply of command current to ports 23a and 23b is stopped, the spool of the directional control valve 23 returns to the stop position A.
 メータイン制御弁25は、油圧ポンプ22から方向制御弁23に至る流路上に配置されている。言い換えると、メータイン制御弁25は、方向制御弁23の上流側に配置されている。メータイン制御弁25は、油圧ポンプ22によって吐出される作動油のうち、方向制御弁23を通じてブームシリンダ14に供給される作動油の流量を制御する。より詳細には、メータイン制御弁25は、開口量制御弁27によって背圧が制御されることによって、方向制御弁23に供給される圧油の流量を増減させる。 The meter-in control valve 25 is disposed in the flow path leading from the hydraulic pump 22 to the directional control valve 23. In other words, the meter-in control valve 25 is disposed upstream of the directional control valve 23. The meter-in control valve 25 controls the flow rate of hydraulic oil discharged by the hydraulic pump 22 that is supplied to the boom cylinder 14 through the directional control valve 23. More specifically, the meter-in control valve 25 increases or decreases the flow rate of pressurized oil supplied to the directional control valve 23 by controlling the back pressure with the opening control valve 27.
 開口量制御弁27は、メータイン制御弁25の背圧を制御することによって、メータイン制御弁25を通じて油圧ポンプ22から方向制御弁23に供給される作動油の流量(すなわち、メータイン制御弁25の開口量)を制御する。開口量制御弁27は、コントローラ50の制御に従って、メータイン制御弁25を通過する作動油の流量を制御する電磁比例制御弁である。開口量制御弁27は、指令電流が供給されることによって、供給位置Dと、遮断位置Eとの間を移動するスプールを備える。 The opening control valve 27 controls the flow rate of hydraulic oil supplied from the hydraulic pump 22 to the directional control valve 23 through the meter-in control valve 25 (i.e., the opening of the meter-in control valve 25) by controlling the back pressure of the meter-in control valve 25. The opening control valve 27 is an electromagnetic proportional control valve that controls the flow rate of hydraulic oil passing through the meter-in control valve 25 under the control of the controller 50. The opening control valve 27 has a spool that moves between a supply position D and a shutoff position E when a command current is supplied.
 供給位置Dは、メータイン制御弁25の背圧ポートを開放して、メータイン制御弁25を通じて油圧ポンプ22から方向制御弁23に作動油を供給する位置である。遮断位置Eは、メータイン制御弁25の背圧ポートを閉塞して、メータイン制御弁25を通じて油圧ポンプ22から方向制御弁23への作動油の供給を遮断する位置である。開口量制御弁27のスプールが供給位置Dに近づくほど方向制御弁23への作動油の供給量が増加し、開口量制御弁27のスプールが遮断位置Eに近づくほど方向制御弁23への作動油の供給量が減少する。 The supply position D is a position where the back pressure port of the meter-in control valve 25 is opened to supply hydraulic oil from the hydraulic pump 22 to the directional control valve 23 through the meter-in control valve 25. The shutoff position E is a position where the back pressure port of the meter-in control valve 25 is closed to shut off the supply of hydraulic oil from the hydraulic pump 22 to the directional control valve 23 through the meter-in control valve 25. The closer the spool of the opening control valve 27 is to the supply position D, the more the amount of hydraulic oil supplied to the directional control valve 23 increases, and the closer the spool of the opening control valve 27 is to the shutoff position E, the more the amount of hydraulic oil supplied to the directional control valve 23 decreases.
 開口量制御弁27のスプールの初期位置(指令電流が供給されていないときの位置)は、供給位置Dである。また、開口量制御弁27のスプールは、指令電流が供給されることによって、供給位置Dから遮断位置Eに移動する。さらに、開口量制御弁27のスプールは、供給される指令電流が大きくなるほど、遮断位置Eに近づく。一方、指令電流の供給が停止されることによって、開口量制御弁27のスプールが供給位置Dに戻る。 The initial position of the spool of the opening control valve 27 (the position when no command current is being supplied) is the supply position D. Furthermore, when a command current is supplied, the spool of the opening control valve 27 moves from the supply position D to the shutoff position E. Furthermore, the spool of the opening control valve 27 approaches the shutoff position E as the command current supplied increases. On the other hand, when the supply of the command current is stopped, the spool of the opening control valve 27 returns to the supply position D.
 方向制御弁23、メータイン制御弁25、及び開口量制御弁27は、ブームシリンダ14に対する作動油の給排量を制御する流量制御弁の一例である。但し、流量制御弁の具体的な構成は前述の例に限定されず、コントローラ50によって直接的または間接的に制御される1以上の弁によって構成されていればよい。また、本実施形態に係る流量制御弁は、油圧アクチュエータに供給する作動油の流量を制御する、所謂「メータイン制御」を行うものである。但し、油圧アクチュエータに対する作動油の流量の制御方法はメータイン制御に限定されず、油圧アクチュエータから排出される作動油の流量を制御する、所謂「メータアウト制御」であってもよい。 The directional control valve 23, the meter-in control valve 25, and the opening control valve 27 are examples of flow control valves that control the amount of hydraulic oil supplied to and discharged from the boom cylinder 14. However, the specific configuration of the flow control valve is not limited to the above-mentioned example, and it may be configured with one or more valves that are directly or indirectly controlled by the controller 50. Furthermore, the flow control valve according to this embodiment performs so-called "meter-in control", which controls the flow rate of hydraulic oil supplied to the hydraulic actuator. However, the method of controlling the flow rate of hydraulic oil to the hydraulic actuator is not limited to meter-in control, and may also be so-called "meter-out control", which controls the flow rate of hydraulic oil discharged from the hydraulic actuator.
 リリーフ弁29は、油圧ポンプ22から吐出される吐出圧が設定圧になった場合、油圧回路を保護する目的により、圧油を作動油タンク21に還流させるものである。また、ブリードオフ弁30は、コントローラ50の制御に従って、油圧ポンプ22から吐出された圧油の一部の流量を調整し、その調整された流量を作動油タンク21に還流させるものである。 The relief valve 29 returns the pressurized oil to the hydraulic oil tank 21 in order to protect the hydraulic circuit when the discharge pressure from the hydraulic pump 22 reaches the set pressure. The bleed-off valve 30 adjusts the flow rate of a portion of the pressurized oil discharged from the hydraulic pump 22 under the control of the controller 50, and returns the adjusted flow rate to the hydraulic oil tank 21.
 圧力センサ31(吐出圧センサ)は、油圧ポンプ22から吐出される吐出圧(以下、「ポンプ吐出圧Pp」と表記する。)を検出する。また、圧力センサ32、34は、ブームシリンダ14及びアームシリンダ15のボトム室に対して給排される作動油の圧力を検出する。さらに、圧力センサ33、35は、ブームシリンダ14及びアームシリンダ15のロッド室に対して給排される作動油の圧力を検出する。以下、圧力センサ32~35によって検出される圧力を、実測圧Pactと表記する。そして、圧力センサ31~35は、検出した圧力を示す圧力信号をコントローラ50に出力する。 Pressure sensor 31 (discharge pressure sensor) detects the discharge pressure discharged from hydraulic pump 22 (hereinafter referred to as "pump discharge pressure Pp"). Furthermore, pressure sensors 32, 34 detect the pressure of hydraulic oil supplied to and discharged from the bottom chambers of boom cylinder 14 and arm cylinder 15. Furthermore, pressure sensors 33, 35 detect the pressure of hydraulic oil supplied to and discharged from the rod chambers of boom cylinder 14 and arm cylinder 15. Hereinafter, the pressures detected by pressure sensors 32 to 35 are referred to as actual measured pressures P act . Then, pressure sensors 31 to 35 output pressure signals indicative of the detected pressures to controller 50.
 図3は、油圧ショベル1のハードウェア構成図である。図3に示すように、油圧ショベル1は、CPU51(Central Processing Unit)と、メモリ52とを有するコントローラ50を備える。メモリ52は、例えば、ROM(Read Only Memory)、RAM(Random Access Memory)、HDD(Hard Disk Drive)、またはこれらの組み合わせで構成される。コントローラ50は、メモリ52に格納されたプログラムコードをCPU51が読み出して実行することによって、後述する処理を実現する。 FIG. 3 is a hardware configuration diagram of the hydraulic excavator 1. As shown in FIG. 3, the hydraulic excavator 1 is equipped with a controller 50 having a CPU 51 (Central Processing Unit) and a memory 52. The memory 52 is, for example, configured with a ROM (Read Only Memory), a RAM (Random Access Memory), a HDD (Hard Disk Drive), or a combination of these. The controller 50 realizes the processing described below by the CPU 51 reading and executing program code stored in the memory 52.
 但し、コントローラ50の具体的な構成はこれに限定されず、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)などのハードウェアによって実現されてもよい。 However, the specific configuration of the controller 50 is not limited to this, and may be realized by hardware such as an ASIC (Application Specific Integrated Circuit) or an FPGA (Field-Programmable Gate Array).
 コントローラ50は、圧力センサ31~35と、姿勢センサ36~39と、ブーム操作レバー41と、アーム操作レバー42と、ECダイヤル43から取得した各種信号に基づいて、エンジン20と、レギュレータ22aと、方向制御弁23、24と、開口量制御弁27、28と、ブリードオフ弁30とを制御する。すなわち、コントローラ50は、エンジン20の回転数と、油圧ポンプ22の吐出容量と、方向制御弁23、24、開口量制御弁27、28、及びブリードオフ弁30の開口量(供給する指令電流の大きさ)とを制御する。また、コントローラ50は、開口量制御弁27、28を制御することによって、メータイン制御弁25、26の開口量を間接的に制御する。 The controller 50 controls the engine 20, regulator 22a, directional control valves 23, 24, opening control valves 27, 28, and bleed-off valve 30 based on various signals acquired from pressure sensors 31-35, attitude sensors 36-39, boom operation lever 41, arm operation lever 42, and EC dial 43. That is, the controller 50 controls the rotation speed of the engine 20, the discharge capacity of the hydraulic pump 22, and the opening (the magnitude of the command current supplied) of the directional control valves 23, 24, opening control valves 27, 28, and bleed-off valve 30. The controller 50 also indirectly controls the opening of the meter-in control valves 25, 26 by controlling the opening control valves 27, 28.
 姿勢センサ36~39は、油圧アクチュエータによって駆動されるジョイントの姿勢を検出し、検出結果を示す姿勢信号をコントローラ50に出力する。例えば、姿勢センサ36は上部旋回体3の旋回角を検出し、姿勢センサ37はブーム11の対地角を検出し、姿勢センサ38はブーム11に対するアーム12の角度を検出し、姿勢センサ39はアーム12に対するバケット13の角度を検出する。以下、これらの角度を「ジョイント角度θ」と表記する。但し、姿勢センサ36~39によって検出される姿勢の具体例は、前述の例に限定されない。 The attitude sensors 36 to 39 detect the attitude of the joints driven by the hydraulic actuators, and output attitude signals indicating the detection results to the controller 50. For example, the attitude sensor 36 detects the rotation angle of the upper rotating body 3, the attitude sensor 37 detects the ground angle of the boom 11, the attitude sensor 38 detects the angle of the arm 12 relative to the boom 11, and the attitude sensor 39 detects the angle of the bucket 13 relative to the arm 12. Hereinafter, these angles are referred to as "joint angle θ." However, specific examples of the attitudes detected by the attitude sensors 36 to 39 are not limited to the above-mentioned examples.
 ブーム操作レバー41は、ブーム11を起伏(換言すれば、ブームシリンダ14を伸縮)させるオペレータの操作を受け付ける。より詳細には、ブーム操作レバー41は、ブームシリンダ14の伸縮方向と、ブームシリンダ14の伸縮量(伸縮速度)とを指示するオペレータの操作を受け付ける。例えば、ブーム操作レバー41を後側に倒伏させる操作は、ブームシリンダ14を伸長させる指示(正の符号)に対応し、ブーム操作レバー41を前側に倒伏させる操作は、ブームシリンダ14を縮小させる指示(負の符号)に対応する。また、ブーム操作レバー41の操作量は、ブームシリンダ14の伸縮量(伸縮速度)の絶対値に対応する。 The boom operation lever 41 accepts the operator's operation to raise and lower the boom 11 (in other words, to extend and retract the boom cylinder 14). More specifically, the boom operation lever 41 accepts the operator's operation to instruct the direction in which the boom cylinder 14 extends and retracts, and the amount of extension and retraction (extension and retraction speed) of the boom cylinder 14. For example, the operation of tilting the boom operation lever 41 rearward corresponds to an instruction (positive sign) to extend the boom cylinder 14, and the operation of tilting the boom operation lever 41 forward corresponds to an instruction (negative sign) to retract the boom cylinder 14. Furthermore, the amount of operation of the boom operation lever 41 corresponds to the absolute value of the amount of extension and retraction (extension and retraction speed) of the boom cylinder 14.
 アーム操作レバー42は、アーム12を回動(換言すれば、アームシリンダ15を伸縮)させるオペレータの操作を受け付ける。より詳細には、アーム操作レバー42は、アームシリンダ15の伸縮方向と、アームシリンダ15の伸縮量(伸縮速度)とを指示するオペレータの操作を受け付ける。例えば、アーム操作レバー42を右側に倒伏させる操作は、アームシリンダ15を伸長させる指示(正の符号)に対応し、アーム操作レバー42を左側に倒伏させる操作は、アームシリンダ15を縮小させる指示(負の符号)に対応する。また、アーム操作レバー42の操作量は、アームシリンダ15の伸縮量(伸縮速度)の絶対値に対応する。 The arm operating lever 42 accepts an operator's operation to rotate the arm 12 (in other words, extend and retract the arm cylinder 15). More specifically, the arm operating lever 42 accepts an operator's operation to specify the direction in which the arm cylinder 15 extends and retracts, and the amount of extension and retraction (extension and retraction speed) of the arm cylinder 15. For example, an operation to tilt the arm operating lever 42 to the right corresponds to an instruction (positive sign) to extend the arm cylinder 15, and an operation to tilt the arm operating lever 42 to the left corresponds to an instruction (negative sign) to retract the arm cylinder 15. Furthermore, the amount of operation of the arm operating lever 42 corresponds to the absolute value of the amount of extension and retraction (extension and retraction speed) of the arm cylinder 15.
 伸縮方向及び伸縮量(伸縮速度)の組み合わせは、操作量oの一例である。但し、操作量oの具体例は、前述の例に限定されない。ブーム操作レバー41及びアーム操作レバー42などの操作装置は、操作装置に対する操作量oを示す操作信号を、コントローラ50に出力する。ブーム操作レバー41及びアーム操作レバー42は、それぞれの操作量oを検出して操作量oを出力する操作量検出センサを有する。なお、走行モータ5、旋回モータ6、及びバケットシリンダ16のそれぞれを操作する各操作レバーは、それぞれの操作量oを出力するそれぞれの操作量検出センサをさらに備える。また、操作装置は、レバーの形態に限定されず、ペダルやスイッチなどでもよい。さらに、操作量検出センサは、キャブ8内に設けられた操作レバー等の操作装置から出力される電流値に基づき操作量oを検出する構成に限定されず、遠隔操作装置から通信回線を通じて外部サーバを介して操作量oを検出する構成としてもよい。上記した各操作レバーからの操作信号に基づき、コントローラ50内での処理にて各操作レバーの操作量oを演算することにより、結果として操作量oを検出する構成としてもよい。 The combination of the telescopic direction and telescopic amount (telescopic speed) is an example of the operation amount o. However, specific examples of the operation amount o are not limited to the above examples. The operation devices such as the boom operation lever 41 and the arm operation lever 42 output operation signals indicating the operation amount o for the operation devices to the controller 50. The boom operation lever 41 and the arm operation lever 42 have operation amount detection sensors that detect the respective operation amounts o and output the operation amounts o. Note that each operation lever that operates the travel motor 5, the swing motor 6, and the bucket cylinder 16 is further equipped with a respective operation amount detection sensor that outputs the respective operation amounts o. In addition, the operation devices are not limited to the form of levers, and may be pedals or switches. Furthermore, the operation amount detection sensor is not limited to a configuration that detects the operation amount o based on a current value output from an operation device such as an operation lever provided in the cab 8, but may be a configuration that detects the operation amount o from a remote operation device via a communication line via an external server. Based on the operation signals from each of the above-mentioned operation levers, the operation amount o of each operation lever may be calculated by processing in the controller 50, and the operation amount o may be detected as a result.
 ECダイヤル(エンジンコントロールダイヤル)43は、ダイヤル操作によりエンジン20の要求回転数Wrを任意に設定するものである。また、ECダイヤル43は、ダイヤル操作により設定された要求回転数Wrを示す回転数指令信号を、コントローラ50に出力する。ECダイヤル43は、エンジン20の要求回転数Wrを設定するエンジン回転数設定装置の一例である。なお、エンジン回転数設定装置は、ダイヤルの形態に限定されず、スイッチ、タッチパネルなどでもよい。さらに、エンジン回転数設定装置は、キャブ8内に設けられたダイヤル等から要求回転数Wrを設定することに限定されず、エンジン回転数設定装置を備えた遠隔操作装置から通信回線を通じて外部サーバを介して要求回転数Wrを設定する構成にしてもよい。 The EC dial (engine control dial) 43 is used to arbitrarily set the required rotation speed Wr of the engine 20 by dial operation. The EC dial 43 outputs a rotation speed command signal indicating the required rotation speed Wr set by dial operation to the controller 50. The EC dial 43 is an example of an engine rotation speed setting device that sets the required rotation speed Wr of the engine 20. The engine rotation speed setting device is not limited to a dial type, and may be a switch, a touch panel, or the like. Furthermore, the engine rotation speed setting device is not limited to a device that sets the required rotation speed Wr from a dial or the like provided in the cab 8, and may be configured to set the required rotation speed Wr from a remote control device equipped with an engine rotation speed setting device via an external server through a communication line.
 図4は、コントローラ50の機能ブロック図である。図4に示すように、コントローラ50は、要求速度演算部61と、回転数制御部62と、ヤコビ行列演算部63と、出力制限部64と、ジョイントトルク演算部65は、目標圧演算部66と、実測圧演算部67と、バルブ制御部68と、ポンプ制御部69とを主に備える。図4に示す各機能ブロック61~69は、例えば、メモリ52に記憶されたプログラムをCPU51が実行することによって実現される。 FIG. 4 is a functional block diagram of the controller 50. As shown in FIG. 4, the controller 50 mainly comprises a required speed calculation unit 61, a rotation speed control unit 62, a Jacobian matrix calculation unit 63, an output limiting unit 64, a joint torque calculation unit 65, a target pressure calculation unit 66, an actual pressure calculation unit 67, a valve control unit 68, and a pump control unit 69. Each of the functional blocks 61 to 69 shown in FIG. 4 is realized, for example, by the CPU 51 executing a program stored in the memory 52.
 図4に示す各機能ブロック61~69は、複数の油圧アクチュエータを並行して動作させる(以下、「複合動作」と表記する。)場合に、各油圧アクチュエータの動作速度のバランスを維持しつつ、エンジン20の出力が出力制限値Eの範囲に収まるように、エンジン20、油圧ポンプ22、方向制御弁23、24、及び開口量制御弁27、28の少なくとも1つを制御する。以下、ブームシリンダ14及びアームシリンダ15の複合動作の例を説明する。 When multiple hydraulic actuators are operated in parallel (hereinafter referred to as "combined operation"), each of the function blocks 61 to 69 shown in FIG. 4 controls at least one of the engine 20, hydraulic pump 22, directional control valves 23, 24, and opening control valves 27, 28 so that the output of the engine 20 falls within the range of the output limit value E while maintaining a balance between the operating speeds of the hydraulic actuators. An example of combined operation of the boom cylinder 14 and arm cylinder 15 will be described below.
 要求速度演算部61は、ブーム操作レバー41及びアーム操作レバー42を通じて取得した操作量oに基づいて、ブームシリンダ14及びアームシリンダ15の要求速度vrを演算する。要求速度vrとは、ブーム操作レバー41及びアーム操作レバー42の操作量に対応するブームシリンダ14及びアームシリンダ15の伸縮速度である。 The required speed calculation unit 61 calculates a required speed vr of the boom cylinder 14 and the arm cylinder 15 based on the operation amount o acquired through the boom operation lever 41 and the arm operation lever 42. The required speed vr is the extension/retraction speed of the boom cylinder 14 and the arm cylinder 15 corresponding to the operation amount of the boom operation lever 41 and the arm operation lever 42.
 図5は、要求速度演算部61の詳細図である。図5に示すように、要求速度演算部61は、油圧アクチュエータそれぞれに対応する要求速度テーブル611、612を有する。要求速度テーブル611は、ブーム操作レバー41を通じて取得した操作量oとブーム11の要求速度vr-Bmとの予め定められた対応関係を保持している。要求速度テーブル612は、アーム操作レバー42を通じて取得した操作量oとアーム12の要求速度vr-Amとの予め定められた対応関係を保持している。より詳細には、要求速度テーブル611、612は、操作量oが大きくなるほど、要求速度vr-Bm、vr-Amが速くなる関係を保持している。 Fig. 5 is a detailed diagram of the required speed calculation unit 61. As shown in Fig. 5, the required speed calculation unit 61 has required speed tables 611, 612 corresponding to the respective hydraulic actuators. The required speed table 611 holds a predetermined correspondence relationship between the operation amount o acquired through the boom operation lever 41 and the required speed vr-Bm of the boom 11. The required speed table 612 holds a predetermined correspondence relationship between the operation amount o acquired through the arm operation lever 42 and the required speed vr -Am of the arm 12. More specifically, the required speed tables 611, 612 hold a relationship in which the required speeds vr -Bm , vr-Am become faster as the operation amount o increases.
 なお、図示は省略するが、メモリ52には、走行モータ5、旋回モータ6、及びバケットシリンダ16に対応する要求速度テーブルも記憶されている。また、要求速度演算部61は、油圧アクチュエータ毎に個別の要求速度テーブルを有していてもよいし、複数の操作量の入力に対して複数の要求速度を出力する多次元テーブルを有していてもよい。 Although not shown in the figure, the memory 52 also stores required speed tables corresponding to the travel motor 5, the swing motor 6, and the bucket cylinder 16. The required speed calculation unit 61 may have an individual required speed table for each hydraulic actuator, or may have a multi-dimensional table that outputs multiple required speeds in response to multiple inputs of operation amounts.
 要求速度演算部61は、要求速度テーブル611に基づいて、ブーム操作レバー41を通じて取得した操作量oに対応する要求速度vr-Bmを演算する。また、要求速度演算部61は、要求速度テーブル612に基づいて、アーム操作レバー42を通じて取得した操作量oに対応する要求速度vr-Amを演算する。そして、図4に示すように、要求速度演算部61は、演算した要求速度vr(vr-Bm、vr-Amを含むベクトル)を、出力制限部64に出力する。 The required speed calculation unit 61 calculates a required speed v r-Bm corresponding to the operation amount o obtained through the boom operation lever 41, based on a required speed table 611. The required speed calculation unit 61 also calculates a required speed v r-Am corresponding to the operation amount o obtained through the arm operation lever 42, based on a required speed table 612. Then, as shown in FIG 4, the required speed calculation unit 61 outputs the calculated required speed v r (a vector including v r-Bm and v r-Am ) to the output limiting unit 64.
 回転数制御部62は、ECダイヤル43を通じて取得した要求回転数Wrに基づいて、目標回転数WE-t及び出力制限値Eを演算する。目標回転数WE-tは、エンジン20の回転数の目標値である。出力制限値Eは、エンジン20を目標回転数WE-tで回転させたときの出力の制限値(限界値)である。 The rotation speed control unit 62 calculates a target rotation speed W Et and an output limit value E based on the required rotation speed W r acquired through the EC dial 43. The target rotation speed W Et is a target value of the rotation speed of the engine 20. The output limit value E is a limit value (limit value) of the output when the engine 20 is rotated at the target rotation speed W Et .
 図6は、回転数制御部62の詳細図である。図6に示すように、回転数制御部62は、目標回転数テーブル621と、出力制限値テーブル622とを有する。目標回転数テーブル621は、要求回転数Wrと目標回転数WE-tとの予め定められた対応関係を保持している。より詳細には、目標回転数テーブル621は、要求回転数Wrが下限値より小さいときに目標回転数WE-tが最小値で一定し、要求回転数Wrが上限値より大きいときに目標回転数WE-tが最大値で一定し、要求回転数Wrが下限値及び上限値の間で要求回転数Wrが大きいほど目標回転数WE-tが大きくなる関係を保持している。出力制限値テーブル622は、目標回転数WE-tと出力制限値Eとの予め定められた対応関係を保持している。より詳細には、出力制限値Eは、目標回転数WE-tが大きくなるほど、出力制限値Eが大きくなる関係を保持している。 FIG. 6 is a detailed diagram of the rotation speed control unit 62. As shown in FIG. 6, the rotation speed control unit 62 has a target rotation speed table 621 and an output limit value table 622. The target rotation speed table 621 holds a predetermined correspondence relationship between the required rotation speed Wr and the target rotation speed W Et . More specifically, the target rotation speed table 621 holds a relationship in which the target rotation speed W Et is constant at a minimum value when the required rotation speed Wr is smaller than a lower limit value, and the target rotation speed W Et is constant at a maximum value when the required rotation speed Wr is larger than an upper limit value, and the target rotation speed W Et increases as the required rotation speed Wr increases between the lower limit value and the upper limit value. The output limit value table 622 holds a predetermined correspondence relationship between the target rotation speed W Et and the output limit value E. More specifically, the output limit value E holds a relationship in which the output limit value E increases as the target rotation speed W Et increases.
 回転数制御部62は、目標回転数テーブル621に基づいて、要求回転数Wrに対応する目標回転数WE-tを演算する。また、回転数制御部62は、出力制限値テーブル622に基づいて、目標回転数WE-tに対応する出力制限値Eを演算する。そして、図4に示すように、回転数制御部62は、演算した目標回転数WE-tをポンプ制御部69に出力し、演算した出力制限値Eを出力制限部64に出力する。また、回転数制御部62は、演算した目標回転数WE-tをエンジンコントローラ(図示省略)に出力して、エンジン20の回転数が目標回転数WE-tになるように制御する。 The rotation speed control unit 62 calculates a target rotation speed W Et corresponding to the required rotation speed Wr based on a target rotation speed table 621. The rotation speed control unit 62 also calculates an output limit value E corresponding to the target rotation speed W Et based on an output limit value table 622. Then, as shown in Fig. 4, the rotation speed control unit 62 outputs the calculated target rotation speed W Et to the pump control unit 69, and outputs the calculated output limit value E to the output limit unit 64. The rotation speed control unit 62 also outputs the calculated target rotation speed W Et to an engine controller (not shown) to control the rotation speed of the engine 20 to the target rotation speed W Et .
 ヤコビ行列演算部63は、姿勢センサ37、38によって検出されたジョイント角度θに基づいて、ヤコビ行列Jを演算する。ヤコビ行列Jは、油圧アクチュエータの変位速度を目標ジョイント角速度ベクトルω'tに変換(換言すれば、リンク角速度系をアクチュエータ速度系に変換)する変換係数である。ヤコビ行列Jを演算する具体的な方法は、例えば非特許文献1に記載されているように既に周知なので、詳細な説明は省略する。そして、ヤコビ行列演算部63は、演算したヤコビ行列Jをジョイントトルク演算部65に出力する。 The Jacobian matrix calculation unit 63 calculates the Jacobian matrix J based on the joint angle θ detected by the attitude sensors 37, 38. The Jacobian matrix J is a conversion coefficient that converts the displacement velocity of the hydraulic actuator into a target joint angular velocity vector ω't (in other words, converts the link angular velocity system into an actuator velocity system). A specific method for calculating the Jacobian matrix J is already well known, as described in Non-Patent Document 1, for example, and therefore a detailed explanation will be omitted. The Jacobian matrix calculation unit 63 then outputs the calculated Jacobian matrix J to the joint torque calculation unit 65.
 出力制限部64は、要求速度演算部61から取得した要求速度vrと、回転数制御部62から取得した出力制限値Eと、圧力センサ31によって検出されたポンプ吐出圧Ppとに基づいて、目標速度vtと、目標加速度v'tと、目標ポンプ流量Qp-tとを演算する。目標速度vtは、ブームシリンダ14及びアームシリンダ15それぞれの伸縮速度の目標値(vt-Bm、vt-Am)である。目標加速度v'tは、ブームシリンダ14及びアームシリンダ15それぞれを目標速度vt-Bm、vt-Amで伸縮させるための加速度の目標値(v't-Bm、v't-Am)である。目標ポンプ流量Qp-tは、ブームシリンダ14及びアームシリンダ15それぞれを目標速度vt-Bm、vt-Amで伸縮させるために必要な油圧ポンプ22の吐出容量の目標値である。 The output limiting unit 64 calculates a target speed vt, a target acceleration v't , and a target pump flow rate Qpt based on the required speed vr obtained from the required speed calculation unit 61, the output limit value E obtained from the rotation speed control unit 62, and the pump discharge pressure Pp detected by the pressure sensor 31. The target speed vt is a target value (vt- Bm , vt-Am) of the extension and retraction speed of each of the boom cylinder 14 and the arm cylinder 15. The target acceleration v't is a target value ( v't- Bm , v't -Am ) of the acceleration for extending and retracting the boom cylinder 14 and the arm cylinder 15 at the target speeds vt -Bm , vt -Am , respectively. The target pump flow rate Qpt is a target value of the discharge capacity of the hydraulic pump 22 required for extending and retracting the boom cylinder 14 and the arm cylinder 15 at the target speeds vt -Bm, vt -Am, respectively.
 図7は、出力制限部64の詳細図である。図7に示すように、出力制限部64は、演算部641~646を有する。 FIG. 7 is a detailed diagram of the output limiting unit 64. As shown in FIG. 7, the output limiting unit 64 has calculation units 641 to 646.
 演算部641は、出力制限値Eをポンプ吐出圧Ppで除すことによって、ポンプ流量制限値Qlimを演算する。ポンプ流量制限値Qlimは、エンジン20の出力が出力制限値Eに収まる油圧ポンプ22の吐出容量の上限値(限界値)である。そして、演算部641は、演算したポンプ流量制限値Qlimを演算部643に出力する。 The calculation unit 641 calculates the pump flow rate limit value Qlim by dividing the output limit value E by the pump discharge pressure Pp. The pump flow rate limit value Qlim is the upper limit (limit value) of the discharge capacity of the hydraulic pump 22 at which the output of the engine 20 falls within the output limit value E. Then, the calculation unit 641 outputs the calculated pump flow rate limit value Qlim to the calculation unit 643.
 演算部642は、要求速度演算部61から取得した要求速度vr(vr-Bm、vr-Am)と、対応する油圧アクチュエータの油路断面積S(S-Bm、S-Am)との積を積算することによって、ポンプ流量推定値Qestを演算する。ポンプ流量推定値Qestは、要求速度演算部61で演算した複数の要求速度vr-Bm、vr-Amを満たすために、油圧ポンプ22が吐出すべき作動油の流量の推定値である。そして、演算部642は、演算したポンプ流量推定値Qestを演算部643、646に出力する。 The calculation unit 642 calculates a pump flow rate estimate Qest by integrating the product of the required speed vr (vr -Bm , vr -Am ) obtained from the required speed calculation unit 61 and the oil passage cross-sectional area S (S - Bm, S - Am) of the corresponding hydraulic actuator. The pump flow rate estimate Qest is an estimate of the flow rate of hydraulic oil that should be discharged by the hydraulic pump 22 in order to satisfy the multiple required speeds vr-Bm , vr-Am calculated by the required speed calculation unit 61. The calculation unit 642 then outputs the calculated pump flow rate estimate Qest to the calculation units 643, 646.
 演算部643は、ポンプ流量制限値Qlimをポンプ流量推定値Qestで除すことによって(すなわち、ポンプ流量制限値Qlim及びポンプ流量推定値Qestの比)、速度制限ゲインKを演算する。速度制限ゲインKは、要求速度vr及びポンプ流量推定値Qestを補正するための補正係数である。出力制限値Eの範囲内で油圧アクチュエータの動作を制限する場合、ポンプ流量制限値Qlimはポンプ流量推定値Qestより小さくなるので、速度制限ゲインKは0≦K<1となる。そして、演算部643は、最小値選択部647に出力する。 The calculation unit 643 calculates a speed limit gain K by dividing the pump flow rate limit value Qlim by the pump flow rate estimated value Qest (i.e., the ratio of the pump flow rate limit value Qlim and the pump flow rate estimated value Qest ). The speed limit gain K is a correction coefficient for correcting the required speed vr and the pump flow rate estimated value Qest . When limiting the operation of the hydraulic actuator within the range of the output limit value E, the pump flow rate limit value Qlim is smaller than the pump flow rate estimated value Qest , so that the speed limit gain K satisfies 0≦K<1. The calculation unit 643 then outputs the speed limit gain K to the minimum value selection unit 647.
 最小値選択部647は、演算部643から出力された速度制限ゲインKと、予め定められた固定値(=1)とのうち、小さい方の値を選択する。そして、最小値選択部647は、選択した値を速度制限ゲインKとして演算部644、646に出力する。すなわち、最小値選択部647は、演算部643から出力された速度制限ゲインKが1未満の場合に、この速度制限ゲインKをそのまま出力する。一方、最小値選択部647は、演算部643から出力された速度制限ゲインKが1以上の場合に、速度制限ゲインKに1を代入して出力する。 The minimum value selection unit 647 selects the smaller of the speed limit gain K output from the calculation unit 643 or a predetermined fixed value (=1). The minimum value selection unit 647 then outputs the selected value as the speed limit gain K to the calculation units 644, 646. That is, when the speed limit gain K output from the calculation unit 643 is less than 1, the minimum value selection unit 647 outputs this speed limit gain K as is. On the other hand, when the speed limit gain K output from the calculation unit 643 is 1 or greater, the minimum value selection unit 647 assigns 1 to the speed limit gain K and outputs it.
 演算部644は、複数の要求速度vr-Bm、vr-Amそれぞれに速度制限ゲインKを乗じることによって、目標速度vt(vt-Bm、vt-Amを含むベクトル)を演算する。すなわち、演算部644は、ポンプ流量制限値Qlim及びポンプ流量推定値Qestの比に基づいて、複数の要求速度vr-Bm、vr-Amそれぞれを補正して、複数の目標速度vt-Bm、vt-Amを演算する。そして、演算部644は、演算した目標速度vtを演算部645及びジョイントトルク演算部65に出力する。 The calculator 644 calculates a target speed vt (a vector including vt -Bm , vt -Am ) by multiplying each of the multiple required speeds vr -Bm , vr -Am by a speed limit gain K. That is, the calculator 644 corrects each of the multiple required speeds vr -Bm , vr-Am based on the ratio between the pump flow rate limit value Qlim and the pump flow rate estimated value Qest to calculate multiple target speeds vt -Bm , vt -Am . The calculator 644 then outputs the calculated target speed vt to the calculator 645 and the joint torque calculator 65.
 演算部645は、複数の要求速度vr-Bm、vr-Amそれぞれを時間tで微分することによって、要求加速度v'r(v'r-Bm、v'r-Amを含むベクトル)を演算する。そして、演算部645は、演算した要求加速度v'rをジョイントトルク演算部65に出力する。 The calculation unit 645 calculates the required acceleration v'r (a vector including v'r -Bm and v'r-Am ) by differentiating each of the multiple required velocities vr - Bm and vr-Am with respect to time t. Then, the calculation unit 645 outputs the calculated required acceleration v'r to the joint torque calculation unit 65.
 演算部646は、ポンプ流量推定値Qestに速度制限ゲインKを乗じることによって、目標ポンプ流量Qp-tを演算する。すなわち、演算部646は、ポンプ流量制限値Qlim及びポンプ流量推定値Qestの比に基づいて、ポンプ流量推定値Qestを補正して目標ポンプ流量Qp-tを演算する。そして、演算部646は、演算した目標ポンプ流量Qp-tをポンプ制御部69に出力する。 The calculator 646 calculates the target pump flow rate Qpt by multiplying the pump flow rate estimate Qest by the speed limit gain K. That is, the calculator 646 calculates the target pump flow rate Qpt by correcting the pump flow rate estimate Qest based on the ratio between the pump flow rate limit value Qlim and the pump flow rate estimate Qest . The calculator 646 then outputs the calculated target pump flow rate Qpt to the pump control unit 69.
 ジョイントトルク演算部65は、姿勢センサ37、38によって検出されたジョイント角度θと、ジョイント角度θを時間微分して得られるジョイント角速度θ'と、出力制限部64から取得した目標速度vt及び目標加速度v'tとを、下記式1、2に代入することによって、目標トルクftを演算する。目標トルクftは、ブームシリンダ14及びアームシリンダ15を目標速度vt-Bm、vt-Amで伸縮させた際のトルクの目標値(ft-Bm、ft-Bm)である。 The joint torque calculation unit 65 calculates the target torque ft by substituting the joint angle θ detected by the attitude sensors 37, 38, the joint angular velocity θ' obtained by time-differentiating the joint angle θ, and the target velocity vt and target acceleration v't obtained from the output limiting unit 64 into the following equations 1 and 2. The target torque ft is the target value (ft - Bm, ft -Bm ) of the torque when the boom cylinder 14 and the arm cylinder 15 are extended and retracted at target velocities vt -Bm and vt-Am .
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 まず、ジョイントトルク演算部65は、目標速度vt-Bm、vt-Amそれぞれと、ヤコビ行列Jとを式1に代入して、目標ジョイント角速度ベクトルω'tを演算する。また、ジョイントトルク演算部65は、ジョイント角度θと、ジョイント角速度θ'と、目標ジョイント角速度ベクトルω'tとを式2の運動方程式に代入して、目標トルクftを演算する。そして、ジョイントトルク演算部65は、演算した目標トルクftを目標圧演算部66に出力する。 First, the joint torque calculation unit 65 calculates a target joint angular velocity vector ω't by substituting the target velocities v t-Bm and v t-Am and the Jacobian matrix J into Equation 1. The joint torque calculation unit 65 also calculates a target torque ft by substituting the joint angle θ, the joint angular velocity θ', and the target joint angular velocity vector ω't into the equation of motion of Equation 2. The joint torque calculation unit 65 then outputs the calculated target torque ft to the target pressure calculation unit 66.
 ここで、式2の右辺のうち、第1項はリンク部材の慣性項であり、第2項は中心力・コリオリ力項(C)及び摩擦項(D)であり、第3項は重力項(gは重力加速度)である。なお、各項の係数を演算するためのリンク部材寸法、重量、摩擦、その他の情報は既知とする。ジョイントトルク演算部65による演算方法は、計算トルク法として知られ、例えば、非特許文献2に記載されているように既に周知なので、詳細な説明は省略する。 Here, on the right-hand side of Equation 2, the first term is the inertia term of the link member, the second term is the central force/Coriolis force term (C) and friction term (D), and the third term is the gravity term (g is gravitational acceleration). Note that the link member dimensions, weight, friction, and other information used to calculate the coefficients of each term are known. The calculation method used by the joint torque calculation unit 65 is known as the calculated torque method, and is already well known, as described in Non-Patent Document 2, for example, so a detailed explanation will be omitted.
 目標圧演算部66は、ブームシリンダ14及びアームシリンダ15それぞれに給排される圧油の目標圧(目標メータイン圧Pmi-t、目標メータアウト圧Pmo-t)を、対応する目標速度vtに基づいて演算する。より詳細には、目標圧演算部66は、ブーム操作レバー41及びアーム操作レバー42を通じて取得した操作量oと、ジョイントトルク演算部65から取得した目標トルクftとに基づいて、目標メータイン圧Pmi-tと、目標メータアウト圧Pmo-tと、メータインフラグσmiとを演算する。 The target pressure calculation unit 66 calculates the target pressures of the pressure oil supplied to and discharged from the boom cylinder 14 and the arm cylinder 15 (target meter-in pressure Pmi -t , target meter-out pressure Pmo -t ) based on the corresponding target speeds vt . More specifically, the target pressure calculation unit 66 calculates the target meter-in pressure Pmi-t, the target meter-out pressure Pmo -t , and the meter-in flag σmi based on the operation amount o acquired through the boom operation lever 41 and the arm operation lever 42, and the target torque ft acquired from the joint torque calculation unit 65.
 目標メータイン圧Pmi-tは、ブームシリンダ14及びアームシリンダ15それぞれを目標速度vt-Bm、vt-Amで伸縮させるために、ブームシリンダ14及びアームシリンダ15それぞれに供給する作動油の圧力の目標値である。目標メータアウト圧Pmo-tは、ブームシリンダ14及びアームシリンダ15それぞれを目標速度vt-Bm、vt-Amで伸縮させるために、ブームシリンダ14及びアームシリンダ15それぞれから排出する作動油の圧力の目標値である。メータインフラグσmiは、ボトム室またはロッド室のどちらに作動油を供給するかを示す値である。 The target meter-in pressure Pmi -t is a target value for the pressure of hydraulic oil supplied to each of the boom cylinder 14 and the arm cylinder 15 to extend and retract the boom cylinder 14 and the arm cylinder 15 at target speeds vt- Bm and vt-Am, respectively. The target meter-out pressure Pmo-t is a target value for the pressure of hydraulic oil discharged from each of the boom cylinder 14 and the arm cylinder 15 to extend and retract the boom cylinder 14 and the arm cylinder 15 at target speeds vt-Bm and vt -Am , respectively. The meter-in flag σmi is a value indicating whether hydraulic oil is supplied to the bottom chamber or the rod chamber.
 図8は、油圧アクチュエータのうち油圧シリンダ(すなわち、ブームシリンダ14、アームシリンダ15、バケットシリンダ16)に適用される目標圧演算部66の詳細図である。図9は、油圧アクチュエータのうち油圧モータ(すなわち、走行モータ5、旋回モータ6)に適用される目標圧演算部66の詳細図である。図8及び図9に示すように、目標圧演算部66は、目標圧演算テーブル661、662を有する。目標圧演算テーブル661、662は、操作量o及び目標トルクftの組み合わせと、目標メータイン圧Pmi-t、目標メータアウト圧Pmo-t、メータインフラグσmiの演算方法との対応関係を保持する。 Fig. 8 is a detailed view of the target pressure calculation unit 66 applied to the hydraulic cylinders (i.e., the boom cylinder 14, the arm cylinder 15, and the bucket cylinder 16) of the hydraulic actuators. Fig. 9 is a detailed view of the target pressure calculation unit 66 applied to the hydraulic motors (i.e., the travel motor 5 and the swing motor 6) of the hydraulic actuators. As shown in Figs. 8 and 9, the target pressure calculation unit 66 has target pressure calculation tables 661, 662. The target pressure calculation tables 661, 662 hold the correspondence between combinations of the operation amount o and the target torque ft and the calculation methods of the target meter-in pressure Pmi -t , the target meter-out pressure Pmo -t , and the meter-in flag σmi.
 図8及び図9に示すように、目標圧演算部66は、操作量oが正の閾値th1以上の場合に、メータインフラグσmiにボトム(=1)を設定する。一方、目標圧演算部66は、操作量oが負の閾値-th1以下の場合に、メータインフラグσmiにロッド(=-1)を設定する。一方、操作量oが正の閾値th1未満で且つ負の閾値-th1より大きい場合は、油圧アクチュエータが停止していると判断される。そして、図4に示すように、目標圧演算部66は、演算したメータインフラグσmiを実測圧演算部67に出力する。 As shown in Figures 8 and 9, when the operation amount o is equal to or greater than the positive threshold th1, the target pressure calculation unit 66 sets the meter-in flag σmi to bottom (=1). On the other hand, when the operation amount o is equal to or less than the negative threshold -th1, the target pressure calculation unit 66 sets the meter-in flag σmi to rod (=-1). On the other hand, when the operation amount o is less than the positive threshold th1 and greater than the negative threshold -th1, it is determined that the hydraulic actuator is stopped. Then, as shown in Figure 4, the target pressure calculation unit 66 outputs the calculated meter-in flag σmi to the actual pressure calculation unit 67.
 また、目標圧演算部66は、操作量o及び目標トルクftの組み合わせに応じて、目標メータイン圧Pmi-t、目標メータアウト圧Pmo-tを演算する。ここで、定数p#buf1、p#buf2は、キャビテーションを起こさないための最低圧として予め設定する固定値ある。また、定数Sb、Srは、それぞれ油圧シリンダのボトム側(Sb)及びロッド側(Sr)の断面積である。さらに、モータ容積qmは、油圧モータのモータ容積であって、減速機がある場合は減速比を考慮した値である。すなわち、油圧シリンダと油圧モータとでは、目標メータイン圧Pmi-t、目標メータアウト圧Pmo-tの演算式が異なる。そして、図4に示すように、目標圧演算部66は、演算した目標メータイン圧Pmi-t、目標メータアウト圧Pmo-tをバルブ制御部68及びポンプ制御部69に出力する。 The target pressure calculation unit 66 calculates the target meter-in pressure P mi-t and the target meter-out pressure P mo-t according to the combination of the operation amount o and the target torque ft. Here, the constants p #buf1 and p #buf2 are fixed values preset as the minimum pressure for preventing cavitation. The constants S b and S r are the cross-sectional areas of the bottom side (S b ) and the rod side (S r ) of the hydraulic cylinder, respectively. The motor volume q m is the motor volume of the hydraulic motor, and is a value taking into account the reduction ratio when a reducer is present. That is, the calculation formulas for the target meter-in pressure P mi-t and the target meter-out pressure P mo-t are different between the hydraulic cylinder and the hydraulic motor. As shown in FIG. 4, the target pressure calculation unit 66 outputs the calculated target meter-in pressure P mi -t and the target meter-out pressure P mo-t to the valve control unit 68 and the pump control unit 69.
 実測圧演算部67は、圧力センサ32~35によって検出された実測圧Pactと、目標圧演算部66から取得したメータインフラグσmiとを、下記式3に代入することによって、実測メータイン圧Pmi、実測メータアウト圧Pmoを演算する。実測メータイン圧Pmiは、ブームシリンダ14及びアームシリンダ15に供給される作動油の実測値である。実測メータアウト圧Pmoは、ブームシリンダ14及びアームシリンダ15から排出される作動油の実測値である。 The actual pressure calculation unit 67 calculates the actual meter-in pressure P mi and the actual meter-out pressure P mo by substituting the actual pressure P act detected by the pressure sensors 32-35 and the meter -in flag σmi obtained from the target pressure calculation unit 66 into the following equation 3. The actual meter-in pressure P mi is the actual value of the hydraulic oil supplied to the boom cylinder 14 and the arm cylinder 15. The actual meter-out pressure P mo is the actual value of the hydraulic oil discharged from the boom cylinder 14 and the arm cylinder 15.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 なお、式3において、実測圧Paはボトム側の圧力センサ32、34によって検出された実測圧であり、実測圧Pbはロッド側の圧力センサ33、35によって検出された実測圧である。そして、実測圧演算部67は、演算した実測メータイン圧Pmi、実測メータアウト圧Pmoをバルブ制御部68に出力する。 In Equation 3, the actual pressure Pa is the actual pressure detected by the bottom side pressure sensors 32, 34, and the actual pressure Pb is the actual pressure detected by the rod side pressure sensors 33, 35. The actual pressure calculation unit 67 outputs the calculated actual meter-in pressure Pmi and actual meter-out pressure Pmo to the valve control unit 68.
 図10は、メータイン制御を行うバルブ制御部68の詳細図である。図10のバルブ制御部68は、ブーム操作レバー41及びアーム操作レバー42を通じて取得した操作量oと、目標圧演算部66から取得した目標メータイン圧Pmi-tと、実測圧演算部67から取得した実測メータイン圧Pmiと、圧力センサ31によって検出されたポンプ吐出圧Ppと、メータイン油路体積Vmiと、メータイン油路体積変化量V'miとに基づいて、バルブ開口指令iを演算する。バルブ制御部68は、メータイン開口制限値テーブル681Aと、演算部682A~685Aと、バルブ開口指令テーブル686Aとを有する。 Fig. 10 is a detailed diagram of the valve control unit 68 that performs meter-in control. The valve control unit 68 in Fig. 10 calculates a valve opening command i based on the operation amount o obtained through the boom operation lever 41 and the arm operation lever 42, the target meter-in pressure Pmi -t obtained from the target pressure calculation unit 66, the measured meter-in pressure Pmi obtained from the measured pressure calculation unit 67, the pump discharge pressure Pp detected by the pressure sensor 31, the meter-in oil passage volume Vmi , and the meter-in oil passage volume change amount V'mi . The valve control unit 68 has a meter-in opening limit value table 681A, calculation units 682A to 685A, and a valve opening command table 686A.
 メータイン油路体積Vmiは、ブームシリンダ14及びアームシリンダ15それぞれに供給すべき作動油の体積である。メータイン油路体積変化量V'miは、ブームシリンダ14及びアームシリンダ15それぞれに単位時間当たりに供給すべき作動油の体積である。バルブ開口指令iは、ブームシリンダ14及びアームシリンダ15それぞれを目標速度vt-Bm、vt-Amで伸縮させるために必要なメータイン制御弁25、26それぞれの開口量を示す値(例えば、開口量制御弁27、28それぞれに供給する指令電流の大きさ)である。 The meter-in oil passage volume Vmi is the volume of hydraulic oil to be supplied to each of the boom cylinder 14 and the arm cylinder 15. The meter-in oil passage volume change V'mi is the volume of hydraulic oil to be supplied per unit time to each of the boom cylinder 14 and the arm cylinder 15. The valve opening command i is a value indicating the opening of each of the meter-in control valves 25, 26 required to extend and retract the boom cylinder 14 and the arm cylinder 15 at the target speeds vt -Bm and vt -Am , respectively (for example, the magnitude of the command current supplied to each of the opening control valves 27, 28).
 油圧アクチュエータが油圧シリンダの場合、メータイン油路体積Vmi、メータイン油路体積変化量V'miは、下記式4によって特定される。一方、油圧アクチュエータが油圧モータの場合、メータイン油路体積Vmi、メータイン油路体積変化量V'miは、下記式5によって特定される。なお、初期体積Va0、Vb0は、それぞれ油圧シリンダのボトム側(Va0)及びロッド側(Vb0)における油路体積の初期値である。また、シリンダ変位Xcは、ブームシリンダ14及びアームシリンダ15の変位量である。また、Smi、Smoは、それぞれメータイン側シリンダ断面積、メータアウト側シリンダ断面積である。さらに、qmは、上述した油圧モータのモータ容積である。 When the hydraulic actuator is a hydraulic cylinder, the meter-in oil passage volume V mi and the meter-in oil passage volume change V' mi are determined by the following formula 4. On the other hand, when the hydraulic actuator is a hydraulic motor, the meter-in oil passage volume V mi and the meter-in oil passage volume change V' mi are determined by the following formula 5. Note that the initial volumes V a0 and V b0 are the initial values of the oil passage volumes on the bottom side (V a0 ) and rod side (V b0 ) of the hydraulic cylinder, respectively. Furthermore, the cylinder displacement Xc is the displacement amount of the boom cylinder 14 and the arm cylinder 15. Furthermore, Smi and Smo are the meter-in side cylinder cross-sectional area and the meter-out side cylinder cross-sectional area, respectively. Furthermore, q m is the motor volume of the hydraulic motor described above.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 メータイン開口制限値テーブル681Aは、操作量oとメータイン開口制限値Ami-limとの予め定められた対応関係を保持している。より詳細には、メータイン開口制限値テーブル681Aは、操作量oが大きいほど、メータイン開口制限値Ami-limが大きくなる関係を保持している。メータイン開口制限値Ami-limは、メータイン制御弁25、26における開口面積の制限値である。そして、メータイン開口制限値テーブル681Aに基づいて特定されたメータイン開口制限値Ami-limは、演算部685Aに出力される。 The meter-in opening limit value table 681A holds a predetermined correspondence relationship between the operation amount o and the meter-in opening limit value A mi-lim . More specifically, the meter-in opening limit value table 681A holds a relationship in which the meter-in opening limit value A mi-lim increases as the operation amount o increases. The meter-in opening limit value A mi-lim is a limit value for the opening area of the meter-in control valves 25, 26. The meter-in opening limit value A mi-lim determined based on the meter-in opening limit value table 681A is output to the calculation unit 685A.
 演算部682Aは、目標メータイン圧Pmi-tから実測メータイン圧Pmiを減じて演算部683Aに出力する。演算部682Aは、PID(Proportional-Integral-Differential)制御によって、演算部682Aの演算結果からフィードバック制御量Vを演算し、演算したフィードバック制御量Vを演算部684Aに出力する。演算部684Aは、実測メータイン圧Pmiと、ポンプ吐出圧Ppと、メータイン油路体積Vmiと、メータイン油路体積変化量V'miと、フィードバック制御量Vとを、下記式7に代入することによって、目標メータイン開口量A'mi-tを演算する。目標メータイン開口量A'mi-tは、メータイン制御弁25、26における開口面積の目標値である。 The calculation unit 682A subtracts the actual meter-in pressure Pmi from the target meter-in pressure Pmi-t and outputs the result to the calculation unit 683A. The calculation unit 682A calculates a feedback control amount V from the calculation result of the calculation unit 682A by PID (Proportional-Integral-Differential) control, and outputs the calculated feedback control amount V to the calculation unit 684A. The calculation unit 684A calculates the target meter-in opening A'mi-t by substituting the actual meter-in pressure Pmi , the pump discharge pressure Pp, the meter-in oil passage volume Vmi , the meter-in oil passage volume change V'mi , and the feedback control amount V into the following equation 7. The target meter-in opening A'mi - t is a target value for the opening area of the meter-in control valves 25, 26.
 より詳細には、フィードバック制御量Vの圧力変化を実現するためのメータイン開口量をAmi、作動油の体積弾性係数をKβ、作動油の密度をρ、定数cとすると、式6が成立する。そして、式6をフィードバック制御量Vについて整理すると、式7が得られる。そして、演算部684Aは、演算した目標メータイン開口量A'mi-tを演算部685Aに出力する。 More specifically, if the meter-in opening for achieving the pressure change of the feedback control amount V is Ami, the bulk modulus of the hydraulic oil is Kβ, the density of the hydraulic oil is ρ, and the constant c is c, then Equation 6 is established. Then, Equation 7 is obtained by rearranging Equation 6 with respect to the feedback control amount V. Then, calculation unit 684A outputs the calculated target meter-in opening A'mi -t to calculation unit 685A.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 演算部685Aは、メータイン開口制限値Ami-lim及び目標メータイン開口量A'mi-tの小さい方の値を、バルブ開口指令テーブル686Aに出力する。バルブ開口指令テーブル686Aは、演算部685Aの出力値とバルブ開口指令iとの予め定められた対応関係を保持している。より詳細には、バルブ開口指令テーブル686Aは、演算部685Aの出力値が大きいほど、バルブ開口指令iが大きくなる関係を保持している。そして、バルブ制御部68は、バルブ開口指令テーブル686Aに基づいて特定されたバルブ開口指令iによって、開口量制御弁27、28の開口量を制御する。例えば、バルブ制御部68は、バルブ開口指令iで示される指令電流を開口量制御弁27、28に供給する。 The calculation unit 685A outputs the smaller of the meter-in opening limit value A mi-lim and the target meter-in opening A' mi-t to a valve opening command table 686A. The valve opening command table 686A holds a predetermined correspondence relationship between the output value of the calculation unit 685A and the valve opening command i. More specifically, the valve opening command table 686A holds a relationship in which the valve opening command i increases as the output value of the calculation unit 685A increases. The valve control unit 68 controls the opening of the opening control valves 27, 28 according to the valve opening command i specified based on the valve opening command table 686A. For example, the valve control unit 68 supplies a command current indicated by the valve opening command i to the opening control valves 27, 28.
 図11は、メータアウト制御を行うバルブ制御部68の詳細図である。図11のバルブ制御部68は、ブーム操作レバー41及びアーム操作レバー42を通じて取得した操作量oと、目標圧演算部66から取得した目標メータアウト圧Pmo-tと、実測圧演算部67から取得した実測メータアウト圧Pmoと、排出側圧Pretと、メータアウト油路体積Vmoと、メータアウト油路体積変化量V'moとに基づいて、バルブ開口指令iを演算する。バルブ制御部68は、メータアウト開口制限値テーブル681Bと、演算部682B~685Bと、バルブ開口指令テーブル686Bとを有する。 Fig. 11 is a detailed diagram of the valve control unit 68 that performs meter-out control. The valve control unit 68 in Fig. 11 calculates a valve opening command i based on the operation amount o acquired through the boom operation lever 41 and the arm operation lever 42, the target meter-out pressure P mo-t acquired from the target pressure calculation unit 66, the measured meter-out pressure P mo acquired from the measured pressure calculation unit 67, the discharge side pressure P ret , the meter-out oil passage volume V mo , and the meter-out oil passage volume change amount V' mo . The valve control unit 68 has a meter-out opening limit value table 681B, calculation units 682B to 685B, and a valve opening command table 686B.
 メータアウト油路体積Vmoは、ブームシリンダ14及びアームシリンダ15それぞれから排出すべき作動油の体積である。メータアウト油路体積変化量V'moは、ブームシリンダ14及びアームシリンダ15それぞれから単位時間当たりに排出すべき作動油の体積である。排出側圧Pretは、作動油タンク21に排出される作動油の圧力(通常は、作動油タンク21内の圧力)である。バルブ開口指令iは、ブームシリンダ14及びアームシリンダ15それぞれを目標速度vt-Bm、vt-Amで伸縮させるために必要なメータアウト側の流量制御弁(例えば、図13の流量制御弁72)の開口量を示す値である。 The meter-out oil passage volume Vmo is the volume of hydraulic oil to be discharged from each of the boom cylinder 14 and the arm cylinder 15. The meter-out oil passage volume change amount V'mo is the volume of hydraulic oil to be discharged per unit time from each of the boom cylinder 14 and the arm cylinder 15. The discharge side pressure Pret is the pressure of the hydraulic oil discharged to the hydraulic oil tank 21 (usually the pressure inside the hydraulic oil tank 21). The valve opening command i is a value indicating the opening amount of the meter-out side flow control valve (for example, flow control valve 72 in FIG . 13) required to extend and retract the boom cylinder 14 and the arm cylinder 15 at the target speeds vt-Bm and vt-Am, respectively.
 油圧アクチュエータが油圧シリンダの場合、メータアウト油路体積Vmo、メータアウト油路体積変化量V'moは、上記式4によって特定される。一方、油圧アクチュエータが油圧モータの場合、メータアウト油路体積Vmo、メータアウト油路体積変化量V'moは、上記式5によって特定される。 When the hydraulic actuator is a hydraulic cylinder, the meter-out oil passage volume V mo and the meter-out oil passage volume change amount V' mo are determined by the above formula 4. On the other hand, when the hydraulic actuator is a hydraulic motor, the meter-out oil passage volume V mo and the meter-out oil passage volume change amount V' mo are determined by the above formula 5.
 メータアウト開口制限値テーブル681Bは、操作量oとメータアウト開口制限値Amo-limとの予め定められた対応関係を保持している。より詳細には、メータアウト開口制限値テーブル681Bは、操作量oが大きいほど、メータアウト開口制限値Amo-limが大きくなる関係を保持している。メータアウト開口制限値Amo-limは、流量制御弁72における開口面積の制限値である。そして、メータアウト開口制限値テーブル681Bに基づいて特定されたメータアウト開口制限値Amo-limは、演算部685Bに出力される。 The meter-out opening limit value table 681B holds a predetermined correspondence relationship between the operation amount o and the meter-out opening limit value A mo-lim . More specifically, the meter-out opening limit value table 681B holds a relationship in which the meter-out opening limit value A mo-lim increases as the operation amount o increases. The meter-out opening limit value A mo-lim is a limit value of the opening area of the flow control valve 72. The meter-out opening limit value A mo-lim specified based on the meter-out opening limit value table 681B is output to the calculation unit 685B.
 演算部684Bは、実測メータアウト圧Pmoと、排出側圧Pretと、メータアウト油路体積Vmoと、メータアウト油路体積変化量V'moと、フィードバック制御量Vとを、下記式9に代入することによって、目標メータアウト開口量A'mo-tを演算する。目標メータアウト開口量A'mo-tは、流量制御弁72における開口面積の目標値である。より詳細には、式8をフィードバック制御量Vについて整理すると、式9が得られる。そして、演算部684Bは、演算した目標メータアウト開口量A'mo-tを演算部685Bに出力する。 The calculation unit 684B calculates a target meter-out opening A' mo-t by substituting the actual meter-out pressure P mo , the discharge side pressure P ret , the meter-out oil passage volume V mo , the meter-out oil passage volume change V' mo , and the feedback control amount V into the following equation 9. The target meter-out opening A' mo-t is a target value of the opening area in the flow control valve 72. More specifically, equation 9 is obtained by rearranging equation 8 with respect to the feedback control amount V. Then, the calculation unit 684B outputs the calculated target meter-out opening A' mo-t to the calculation unit 685B.
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 なお、演算部682B~685Bの処理内容は、使用する具体的なパラメータが異なるものの、図10に示す演算部682A~685Aと共通する。また、バルブ開口指令テーブル686Bは、入力される具体的なパラメータが異なるものの、基本的な内容は図10に示すバルブ開口指令テーブル686Aと共通する。すなわち、図10及び図11に示すバルブ制御部68は、複数の流量制御弁それぞれの開口量を、対応する目標圧及び実測圧に差に基づいて制御する。 Note that the processing contents of calculation units 682B to 685B are the same as those of calculation units 682A to 685A shown in FIG. 10, although the specific parameters used are different. Also, although the specific parameters input to valve opening command table 686B are different, the basic contents are the same as those of valve opening command table 686A shown in FIG. 10. In other words, valve control unit 68 shown in FIGS. 10 and 11 controls the opening amount of each of a plurality of flow control valves based on the difference between the corresponding target pressure and the actual measured pressure.
 ポンプ制御部69は、圧力センサ31によって検出されたポンプ吐出圧Ppと、出力制限部64から取得した目標ポンプ流量Qp-tと、回転数制御部62から取得した目標回転数WE-tと、目標圧演算部66から取得した目標メータイン圧Pmi-tとに基づいて、目標ポンプ容量qp-tを演算する。目標ポンプ容量qp-tは、ブームシリンダ14及びアームシリンダ15それぞれを目標速度vt-Bm、vt-Amで伸縮させるために必要な油圧ポンプ22の吐出容量の目標値である。 The pump control unit 69 calculates a target pump capacity qpt based on the pump discharge pressure Pp detected by the pressure sensor 31, the target pump flow rate Qpt obtained from the output limiting unit 64, the target rotation speed W Et obtained from the rotation speed control unit 62, and the target meter-in pressure P mi-t obtained from the target pressure calculation unit 66. The target pump capacity qpt is a target value of the discharge capacity of the hydraulic pump 22 required to extend and retract the boom cylinder 14 and the arm cylinder 15 at target speeds v t-Bm and v t-Am , respectively.
 図12は、ポンプ制御部69の詳細図である。図12に示すように、ポンプ制御部69は、演算部691~695を有する。 FIG. 12 is a detailed diagram of the pump control unit 69. As shown in FIG. 12, the pump control unit 69 has calculation units 691 to 695.
 演算部691は、複数の目標メータイン圧Pmi-tのうちの最大値を演算部692に出力する。演算部692は、演算部691から取得した最大値からポンプ吐出圧Ppを減じて、演算部693に出力する。演算部693は、PID制御によって、演算部692の演算結果からポンプ流量補正値Zを演算し、演算したポンプ流量補正値Zを演算部694に出力する。演算部693は、目標ポンプ流量Qp-tにポンプ流量補正値Zを加算して、補正後の目標ポンプ流量Q'p-tを演算し、補正後の目標ポンプ流量Q'p-tを演算部695に出力する。演算部695は、補正後の目標ポンプ流量Q'p-tを目標回転数WE-tで除して、目標ポンプ容量qp-tを演算する。そして、ポンプ制御部69は、演算した目標ポンプ容量qp-tの作動油が油圧ポンプ22から吐出されるように、レギュレータ22aを制御する。 The calculation unit 691 outputs the maximum value of the multiple target meter-in pressures P mi-t to the calculation unit 692. The calculation unit 692 subtracts the pump discharge pressure Pp from the maximum value acquired from the calculation unit 691 and outputs the result to the calculation unit 693. The calculation unit 693 calculates a pump flow rate correction value Z from the calculation result of the calculation unit 692 by PID control, and outputs the calculated pump flow rate correction value Z to the calculation unit 694. The calculation unit 693 adds the pump flow rate correction value Z to the target pump flow rate Q pt to calculate a corrected target pump flow rate Q' pt , and outputs the corrected target pump flow rate Q' pt to the calculation unit 695. The calculation unit 695 divides the corrected target pump flow rate Q' pt by the target rotation speed W Et to calculate a target pump capacity q pt . Then, the pump control unit 69 controls the regulator 22a so that hydraulic oil of the calculated target pump capacity q pt is discharged from the hydraulic pump 22.
 上記の実施形態によれば、例えば以下の作用効果を奏する。 The above embodiment provides the following advantages, for example:
 上記の実施形態によれば、ブームシリンダ14及びアームシリンダ15の要求速度vr-Bm、vr-Amを共通の速度制限ゲインKで除して、目標速度vt-Bm、vt-Amを演算する。これにより、エンジン20の出力を出力制限値Eに制限しても、ブームシリンダ14及びアームシリンダ15の伸縮速度(すなわち、ブーム11及びアーム12の動作速度)のバランスを維持することができる。 According to the above embodiment, the target speeds vt -Bm , vt - Am are calculated by dividing the required speeds vr-Bm , vr-Am of the boom cylinder 14 and the arm cylinder 15 by a common speed limit gain K. This makes it possible to maintain a balance in the extension and retraction speeds of the boom cylinder 14 and the arm cylinder 15 (i.e., the operating speeds of the boom 11 and the arm 12) even if the output of the engine 20 is limited to the output limit value E.
 その結果、アーム12は、オペレータが意図するより移動速度が遅くなるものの、オペレータの意図した軌跡に沿って移動する。これにより、例えば、バケット13の先端で土砂をならすために、ブームシリンダ14及びアームシリンダ15を複合動作させてバケット13の先端を水平移動させる水平引き動作のような場合でも、ブームシリンダ14及びアームシリンダ15の互いの動作速度のバランスを維持することができる。 As a result, the arm 12 moves along the trajectory intended by the operator, although at a slower moving speed than intended by the operator. This makes it possible to maintain a balance between the operating speeds of the boom cylinder 14 and the arm cylinder 15, even in a horizontal pulling operation in which the boom cylinder 14 and the arm cylinder 15 are operated in combination to move the tip of the bucket 13 horizontally in order to level soil with the tip of the bucket 13.
 なお、上記の実施形態では、開口量制御弁27、28に供給する指令電流の大きさを調整することによって、間接的にメータイン制御弁25、26の開口量を制御する例を説明した。しかしながら、ブームシリンダ14及びアームシリンダ15を目標速度vt-Bm、vt-Amで伸縮させるために、直接制御する対象は前述の例に限定されない。他の例として、メータイン制御弁25、26を電磁比例弁として直接制御してもよい。 In the above embodiment, an example has been described in which the openings of the meter-in control valves 25, 26 are indirectly controlled by adjusting the magnitude of the command current supplied to the opening control valves 27, 28. However, the objects that are directly controlled to extend and retract the boom cylinder 14 and the arm cylinder 15 at the target speeds vt -Bm and vt-Am are not limited to the above example. As another example, the meter-in control valves 25, 26 may be directly controlled as solenoid proportional valves.
 また、上記の実施形態では、図13に示す油圧回路の概略図において、ブームシリンダ14及びアームシリンダ15への作動油の供給量Amiを制御するメータイン側の流量制御弁71の開口量を制御する例を説明したが、ブームシリンダ14及びアームシリンダ15からの作動油の排出量Amoを制御するメータアウト側の流量制御弁72の開口量を制御してもよい。 In the above embodiment, in the schematic diagram of the hydraulic circuit shown in FIG. 13, an example was described in which the opening amount of the meter-in side flow control valve 71 that controls the supply amount Ami of hydraulic oil to the boom cylinder 14 and the arm cylinder 15 was controlled, but the opening amount of the meter-out side flow control valve 72 that controls the discharge amount Amo of hydraulic oil from the boom cylinder 14 and the arm cylinder 15 may also be controlled.
 さらに、上記の実施形態では、ブームシリンダ14及びアームシリンダ15を複合動作させる例を説明したが、複合動作させる油圧アクチュエータの組み合わせは、前述の例に限定されない。図14は、複合動作させる油圧アクチュエータの他の組み合わせを示す駆動路図である。 Furthermore, in the above embodiment, an example in which the boom cylinder 14 and the arm cylinder 15 are operated in a combined manner has been described, but the combination of hydraulic actuators that perform the combined operation is not limited to the above example. Figure 14 is a drive path diagram showing another combination of hydraulic actuators that perform the combined operation.
 図14に示すように、複合動作の他の例として、バケット13で掬い上げた土砂をダンプトラックの荷台に積み込む際に、旋回モータ6とブームシリンダ14とを並行して動作させることが考えられる。なお、旋回モータ6に対して作動油を給排させるための方向制御弁74、メータイン制御弁75、開口量制御弁76、及び圧力センサ77、78の構成、配置、及び役割は、前述した方向制御弁23、メータイン制御弁25、開口量制御弁27、及び圧力センサ32、33と共通する。 As shown in FIG. 14, another example of a combined operation is to operate the swing motor 6 and boom cylinder 14 in parallel when loading soil scooped up by the bucket 13 onto the bed of a dump truck. The configurations, arrangements, and roles of the directional control valve 74, meter-in control valve 75, opening control valve 76, and pressure sensors 77 and 78 for supplying and discharging hydraulic oil to the swing motor 6 are the same as those of the directional control valve 23, meter-in control valve 25, opening control valve 27, and pressure sensors 32 and 33 described above.
 このような複合動作に前述の処理を適用すれば、バケット13で掬い上げた土砂をダンプトラックの荷台に積み込むような場合でも、オペレータが意図した軌跡に沿ってバケット13を移動させることができるので、バケット13がダンプトラックに接触するのを防止することができる。 By applying the above-mentioned processing to such a combined operation, even when the soil scooped up by the bucket 13 is loaded onto the bed of a dump truck, the bucket 13 can be moved along the trajectory intended by the operator, thereby preventing the bucket 13 from coming into contact with the dump truck.
 上述した実施形態は、本発明の説明のための例示であり、本発明の範囲をそれらの実施形態にのみ限定する趣旨ではない。当業者は、本発明の要旨を逸脱することなしに、他の様々な態様で本発明を実施することができる。 The above-described embodiments are illustrative examples of the present invention, and are not intended to limit the scope of the present invention to these embodiments. Those skilled in the art can implement the present invention in various other forms without departing from the gist of the present invention.
1 油圧ショベル(作業機械)
2 下部走行体
3 上部旋回体
4 クローラ
5 走行モータ(油圧アクチュエータ)
6 旋回モータ(油圧アクチュエータ)
7 旋回フレーム
8 キャブ
9 カウンタウェイト
10 フロント作業機
11 ブーム
12 アーム
13 バケット
14 ブームシリンダ(油圧アクチュエータ)
15 アームシリンダ(油圧アクチュエータ)
16 バケットシリンダ(油圧アクチュエータ)
20 エンジン(原動機)
21 作動油タンク
22 油圧ポンプ(油圧ポンプ)
22a レギュレータ
23,24 方向制御弁(流量制御弁)
25,26 メータイン制御弁(流量制御弁)
27,28 開口量制御弁(流量制御弁)
29 リリーフ弁
30 ブリードオフ弁
31~35,77,78 圧力センサ
36~39 姿勢センサ
41 ブーム操作レバー(操作装置、操作量検出センサ)
42 アーム操作レバー(操作装置、操作量検出センサ)
43 ECダイヤル(エンジン回転数設定装置)
50 コントローラ
51 CPU
52 メモリ
1. Hydraulic excavator (working machine)
2 Lower traveling body 3 Upper rotating body 4 Crawler 5 Travel motor (hydraulic actuator)
6 Swing motor (hydraulic actuator)
7 Swing frame 8 Cab 9 Counterweight 10 Front work unit 11 Boom 12 Arm 13 Bucket 14 Boom cylinder (hydraulic actuator)
15 Arm cylinder (hydraulic actuator)
16 Bucket cylinder (hydraulic actuator)
20 Engine (prime mover)
21 hydraulic oil tank 22 hydraulic pump (hydraulic pump)
22a Regulator 23, 24 Directional control valve (flow control valve)
25, 26 Meter-in control valve (flow control valve)
27, 28 Opening amount control valve (flow control valve)
29 Relief valve 30 Bleed-off valve 31 to 35, 77, 78 Pressure sensors 36 to 39 Attitude sensor 41 Boom operation lever (operation device, operation amount detection sensor)
42 Arm operation lever (operation device, operation amount detection sensor)
43 EC dial (engine speed setting device)
50 Controller 51 CPU
52 Memory

Claims (3)

  1.  駆動力を発生させる原動機と、
     前記原動機の駆動力によって圧油を吐出する油圧ポンプと、
     前記油圧ポンプの吐出圧を検出する吐出圧センサと、
     前記油圧ポンプから供給される圧油によって動作する複数の油圧アクチュエータと、
     複数の前記油圧アクチュエータそれぞれに対する圧油の給排量を制御する複数の流量制御弁と、
     複数の前記油圧アクチュエータをそれぞれ操作する操作装置と、
     前記操作装置による操作量を検出する操作量検出センサと、
     前記原動機、前記油圧ポンプ、及び複数の前記流量制御弁の少なくとも1つを制御するコントローラとを備える作業機械において、
     前記コントローラは、
      予め定められた前記原動機の出力制限値と、前記吐出圧センサによって検出された前記油圧ポンプの吐出圧とに基づいて、前記油圧ポンプが吐出可能な圧油のポンプ流量制限値を演算し、
      前記操作量検出センサによって検出された前記操作量に基づいて、複数の前記油圧アクチュエータそれぞれの要求速度を演算し、
      演算した複数の前記要求速度を満たすために、前記油圧ポンプが吐出すべき圧油の流量の推定値であるポンプ流量推定値を演算し、
      前記ポンプ流量制限値及び前記ポンプ流量推定値の比に基づいて、複数の前記要求速度それぞれを補正して複数の目標速度を演算し、
      複数の前記油圧アクチュエータそれぞれが前記目標速度で動作するように、前記原動機、前記油圧ポンプ、及び複数の前記流量制御弁の少なくとも1つを制御することを特徴とする作業機械。
    A prime mover that generates a driving force;
    a hydraulic pump that discharges pressure oil by the driving force of the prime mover;
    a discharge pressure sensor for detecting a discharge pressure of the hydraulic pump;
    A plurality of hydraulic actuators operated by pressure oil supplied from the hydraulic pump;
    a plurality of flow control valves for controlling the supply and discharge amounts of pressure oil to and from the plurality of hydraulic actuators;
    an operating device that operates each of the hydraulic actuators;
    an operation amount detection sensor for detecting an operation amount of the operation device;
    A working machine including the prime mover, the hydraulic pump, and a controller that controls at least one of the plurality of flow control valves,
    The controller:
    calculating a pump flow rate limit value of pressure oil that can be discharged by the hydraulic pump based on a predetermined output limit value of the prime mover and a discharge pressure of the hydraulic pump detected by the discharge pressure sensor;
    calculating a required speed for each of the hydraulic actuators based on the operation amount detected by the operation amount detection sensor;
    Calculating a pump flow rate estimate value which is an estimate value of a flow rate of pressure oil to be discharged by the hydraulic pump in order to satisfy the calculated multiple required speeds;
    calculating a plurality of target speeds by correcting the plurality of required speeds based on a ratio between the pump flow rate limit value and the pump flow rate estimated value;
    A work machine comprising: a control unit that controls at least one of the prime mover, the hydraulic pump, and the plurality of flow control valves so that each of the plurality of hydraulic actuators operates at the target speed.
  2.  請求項1に記載の作業機械において、
     複数の前記油圧アクチュエータそれぞれに対して給排される圧油の実測圧を検出する複数の圧力センサを備え、
     前記コントローラは、
      複数の前記油圧アクチュエータそれぞれに給排される圧油の目標圧を、前記目標速度に基づいて演算し、
      複数の前記流量制御弁それぞれの開口量を、前記目標圧及び前記実測圧に差に基づいて制御することを特徴とする作業機械。
    2. The work machine according to claim 1,
    a plurality of pressure sensors for detecting actual pressures of pressure oil supplied to and discharged from each of the plurality of hydraulic actuators;
    The controller:
    calculating a target pressure of pressure oil supplied to and discharged from each of the hydraulic actuators based on the target speed;
    A working machine characterized in that the opening amount of each of the plurality of flow control valves is controlled based on a difference between the target pressure and the actually measured pressure.
  3.  請求項1に記載の作業機械において、
     前記流量制御弁は、
      前記油圧アクチュエータへの圧油の供給方向を制御する方向制御弁と、
      前記油圧ポンプから前記方向制御弁に至る流路上に配置されて、前記方向制御弁を通じて前記油圧アクチュエータに供給される圧油の流量を制御するメータイン制御弁とを含み、
     前記コントローラは、前記方向制御弁及び前記メータイン制御弁の少なくとも一方を制御することを特徴とする作業機械。
    2. The work machine according to claim 1,
    The flow control valve is
    a directional control valve for controlling a supply direction of pressure oil to the hydraulic actuator;
    a meter-in control valve that is disposed in a flow path from the hydraulic pump to the directional control valve and controls a flow rate of pressure oil supplied to the hydraulic actuator through the directional control valve,
    The working machine, wherein the controller controls at least one of the directional control valve and the meter-in control valve.
PCT/JP2023/032839 2022-09-30 2023-09-08 Work machine WO2024070588A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-159051 2022-09-30
JP2022159051A JP2024052373A (en) 2022-09-30 2022-09-30 Work Machine

Publications (1)

Publication Number Publication Date
WO2024070588A1 true WO2024070588A1 (en) 2024-04-04

Family

ID=90477414

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/032839 WO2024070588A1 (en) 2022-09-30 2023-09-08 Work machine

Country Status (2)

Country Link
JP (1) JP2024052373A (en)
WO (1) WO2024070588A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07189296A (en) * 1993-12-27 1995-07-28 Hitachi Constr Mach Co Ltd Hydraulic pressure control device of construction machine
JPH09189302A (en) * 1995-11-06 1997-07-22 Kobe Steel Ltd Speed control device of hydraulic actuator
JP2003113805A (en) * 2001-10-01 2003-04-18 Hitachi Constr Mach Co Ltd Hydraulic driving device
JP2005226678A (en) * 2004-02-10 2005-08-25 Hitachi Constr Mach Co Ltd Hydraulic drive mechanism
JP2012158932A (en) * 2011-02-01 2012-08-23 Hitachi Constr Mach Co Ltd Hydraulic drive device for construction machine
JP2015040604A (en) * 2013-08-22 2015-03-02 日立建機株式会社 Hydraulic control device of work machine
JP2015197185A (en) * 2014-04-02 2015-11-09 日立建機株式会社 Hydraulic control device or work machine
JP2020002956A (en) * 2018-06-25 2020-01-09 日立建機株式会社 Construction machine
WO2022202898A1 (en) * 2021-03-26 2022-09-29 住友重機械工業株式会社 Excavator

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07189296A (en) * 1993-12-27 1995-07-28 Hitachi Constr Mach Co Ltd Hydraulic pressure control device of construction machine
JPH09189302A (en) * 1995-11-06 1997-07-22 Kobe Steel Ltd Speed control device of hydraulic actuator
JP2003113805A (en) * 2001-10-01 2003-04-18 Hitachi Constr Mach Co Ltd Hydraulic driving device
JP2005226678A (en) * 2004-02-10 2005-08-25 Hitachi Constr Mach Co Ltd Hydraulic drive mechanism
JP2012158932A (en) * 2011-02-01 2012-08-23 Hitachi Constr Mach Co Ltd Hydraulic drive device for construction machine
JP2015040604A (en) * 2013-08-22 2015-03-02 日立建機株式会社 Hydraulic control device of work machine
JP2015197185A (en) * 2014-04-02 2015-11-09 日立建機株式会社 Hydraulic control device or work machine
JP2020002956A (en) * 2018-06-25 2020-01-09 日立建機株式会社 Construction machine
WO2022202898A1 (en) * 2021-03-26 2022-09-29 住友重機械工業株式会社 Excavator

Also Published As

Publication number Publication date
JP2024052373A (en) 2024-04-11

Similar Documents

Publication Publication Date Title
KR100230691B1 (en) Front control system and recording medium for construction machine
JP6474718B2 (en) Hydraulic control equipment for construction machinery
US8751117B2 (en) Method for controlling a movement of a vehicle component
JP6842856B2 (en) Hydraulic drive system
US7546729B2 (en) Method and system for limiting torque load associated with an implement
WO2019043898A1 (en) Control system for work machinery and control method for work machinery
JP7193288B2 (en) work vehicle
WO2019142481A1 (en) Slewing hydraulic work machine
WO2024070588A1 (en) Work machine
WO2022208694A1 (en) Work machine
JP5639855B2 (en) Hydraulic drive device and work machine equipped with hydraulic drive device
US20140032057A1 (en) Feedforward control system
JP3466371B2 (en) Construction machine interference prevention equipment
JPH09256403A (en) Interference preventing device for construction machine
JP7346647B1 (en) working machine
JP6707053B2 (en) Work machine
JP2020169708A (en) Operation control device for work vehicle
WO2023145182A1 (en) Work machine
US20240254727A1 (en) Uninterrupted automatic position control of work implements during override of target settings
WO2023139885A1 (en) Work machine
WO2024071389A1 (en) Work machine
WO2022071584A1 (en) Work machine
US20210332559A1 (en) Hydraulic circuit for a swing system in a machine
WO2024132201A1 (en) A method of operating a work vehicle according to a maximum allowable swing speed
CN118871643A (en) Work machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23871825

Country of ref document: EP

Kind code of ref document: A1