WO2022071584A1 - Work machine - Google Patents

Work machine Download PDF

Info

Publication number
WO2022071584A1
WO2022071584A1 PCT/JP2021/036453 JP2021036453W WO2022071584A1 WO 2022071584 A1 WO2022071584 A1 WO 2022071584A1 JP 2021036453 W JP2021036453 W JP 2021036453W WO 2022071584 A1 WO2022071584 A1 WO 2022071584A1
Authority
WO
WIPO (PCT)
Prior art keywords
work machine
work
control
bucket
valve
Prior art date
Application number
PCT/JP2021/036453
Other languages
French (fr)
Japanese (ja)
Inventor
修一 廻谷
昭広 楢▲崎▼
輝樹 五十嵐
Original Assignee
日立建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立建機株式会社 filed Critical 日立建機株式会社
Publication of WO2022071584A1 publication Critical patent/WO2022071584A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives

Definitions

  • the present invention relates to a work machine such as a hydraulic excavator.
  • a hydraulic excavator which is one of the work machines, is equipped with a vehicle body, an articulated work machine connected to the vehicle body, and a plurality of operating devices for instructing the operation of the work machine.
  • the vehicle body is composed of a lower traveling body that can travel and an upper rotating body that is provided so as to be able to turn above the lower traveling body.
  • the work equipment includes a boom rotatably connected to the front of the upper swing body, an arm rotatably connected to the tip of the boom, and a bucket rotatably connected to the tip of the arm. It is equipped with a work tool).
  • the boom, arm, and bucket are rotated by the drive of the boom cylinder, arm cylinder, and bucket cylinder.
  • the plurality of operating devices have, for example, an operating lever that can be operated by an operator, and by generating and outputting a pilot pressure corresponding to the operating direction and operating amount of the operating lever, a boom control valve and an arm control valve.
  • the control valve for the bucket is operated.
  • the boom control valve controls the flow of pressure oil from the hydraulic pump to the boom cylinder to drive the boom cylinder.
  • the control valve for the arm controls the flow of pressure oil from the hydraulic pump to the arm cylinder to drive the arm cylinder.
  • the control valve for the bucket controls the flow of pressure oil from the hydraulic pump to the bucket cylinder to drive the bucket cylinder.
  • Some hydraulic excavators have a function (machine control) to operate the work machine automatically or semi-automatically. More specifically, the hydraulic excavator having this function is provided, for example, between a plurality of operating devices and a plurality of control valves, and has a plurality of solenoid valves whose pilot pressure can be adjusted, and a state quantity related to the posture of the working machine.
  • the attitude of the work equipment is calculated based on the attitude detector to be detected and the detection result of the attitude detector, and the operation of the work equipment is controlled by controlling multiple solenoid valves so that the bucket does not enter below the target surface. It is equipped with a control device.
  • the work machine is operated so that the tip of the bucket stops on the target surface at the start of excavation work, and the work machine is moved along the target surface during the cloud (pull-in) operation of the arm. It will be easy to operate.
  • Patent Document 1 discloses a technique for suppressing a decrease in machine control accuracy when a bucket is replaced.
  • the control device described in Patent Document 1 stores a plurality of correlation data showing the relationship between the drive speed of the hydraulic cylinder and the control value for controlling the solenoid valve according to the type of bucket (specifically, the weight of the bucket). do. Then, the correlation data is selected according to the type of bucket input by the operator, and the control value for driving the hydraulic actuator at the target speed is calculated based on the selected correlation data.
  • Patent Document 1 Since the operator inputs the bucket type, the accuracy of machine control is reduced if an incorrect input is made. In addition, it cannot cope with changes in the characteristics of the hydraulic excavator over time, and the accuracy of machine control deteriorates.
  • the present invention has been made in view of the above matters, and an object of the present invention is to provide a working machine capable of suppressing a decrease in accuracy of machine control.
  • the present invention relates to a vehicle body, a boom rotatably connected to the vehicle body, an arm rotatably connected to the tip of the boom, and a rotation to the tip of the arm.
  • An articulated work machine having movably connected work tools, an operation device for instructing the operation of the work machine, a posture detector for detecting a state amount related to the posture of the work machine, and the posture.
  • the normal mode is used in a work machine equipped with a control device that calculates the posture of the work machine based on the detection result of the detector and controls the operation of the work machine so that the work tool does not enter below the target surface.
  • a mode switching device capable of switching between At the same time, the actual moving speed of the working tool is acquired, and a correction value for the control value for controlling the operation of the working machine is calculated based on the preset difference between the reference speed of the working tool and the actual moving speed.
  • the control value is corrected using the correction value.
  • FIG. 1 It is a perspective view which shows the structure of the hydraulic excavator in one Embodiment of this invention. It is a figure which shows the structure of the hydraulic drive device in one Embodiment of this invention. It is a figure which shows the detail of the pilot pressure control block shown in FIG. It is a block diagram which shows the functional structure of the control device in one Embodiment of this invention together with the related equipment. It is a side view for demonstrating the reference operation of the working machine in one Embodiment of this invention. It is a figure for demonstrating the calculation method of the correction value in one Embodiment of this invention. It is a figure which shows the change of the relationship between the pilot pressure and the speed of a hydraulic cylinder in one Embodiment of this invention. It is a flowchart which shows the control procedure of the correction mode in one Embodiment of this invention.
  • FIG. 1 is a perspective view showing the structure of the hydraulic excavator in the present embodiment.
  • the hydraulic excavator of the present embodiment includes a vehicle body 1 and an articulated working machine 2 connected to the vehicle body 1.
  • the vehicle body 1 is composed of a lower traveling body 3 that can travel and an upper rotating body 4 that is provided so as to be able to turn above the lower traveling body 3.
  • the lower traveling body 3 travels by driving a left traveling motor 5 and a right traveling motor (not shown).
  • the upper swivel body 4 is swiveled by the drive of the swivel motor 6.
  • the work machine 2 is rotatably connected to the boom 7 rotatably connected to the front portion of the upper swing body 4, the arm 8 rotatably connected to the tip portion of the boom 7, and the tip portion of the arm 8. It is provided with a bucket 9 (working tool) connected to.
  • the boom 7, arm 8, and bucket 9 are rotated by driving the boom cylinder 10, the arm cylinder 11, and the bucket cylinder 12 (all of which are hydraulic cylinders).
  • a boom angle sensor 13 (see FIG. 4 described later) that detects the rotation angle of the boom 7 with respect to the upper swing body 4 is attached to the base end side of the boom 7.
  • An arm angle sensor 14 for detecting the rotation angle of the arm 8 with respect to the boom 7 is attached to the base end side of the arm 8.
  • a bucket angle sensor 15 (working tool angle sensor) that detects the rotation angle of the bucket 9 with respect to the arm 8 is attached to the base end side of the bucket 9.
  • the upper swing body 4 is equipped with a tilt angle sensor 16 (see FIG. 4 described later) that detects the tilt angle of the upper swing body 4 in the front-rear direction with respect to the horizontal plane.
  • the boom angle sensor 13, the arm angle sensor 14, the bucket angle sensor 15, and the tilt angle sensor 16 constitute a posture detector that detects a state quantity related to the posture of the work equipment 2.
  • a driver's cab 17 on which the operator is boarded is provided.
  • the driver's seat 18 on which the operator sits the traveling operation devices 19a and 19b arranged on the front side of the driver's seat 18, and the work operation device 20a arranged on the right side of the driver's seat 18 are operated.
  • a work operation device 20b arranged on the left side of the seat 18 is provided.
  • the traveling operation devices 19a and 19b instruct the traveling of the lower traveling body 3, and the working operating devices 20a and 20b instruct the operation of the working machine 2 and the turning of the upper turning body 4.
  • the cab 17 is provided with a display device 21 (see FIG. 4 described later) and an input device 22 (see FIG. 4 described later) in which an operator can input information and the like in conjunction with the display of the display device 21. There is.
  • the hydraulic excavator is a hydraulic drive device that drives the left side traveling motor 5, the right side traveling motor, the boom cylinder 10, the arm cylinder 11, the bucket cylinder 12, and the swivel motor 6 in response to the operation of the operating devices 19a, 19b, 20a, 20b. Be prepared.
  • FIG. 2 is a diagram showing the configuration of the hydraulic drive device according to the present embodiment.
  • FIG. 3 is a diagram showing details of the pilot pressure control block shown in FIG. In FIG. 2, the parts related to the drive of the boom cylinder 10, the arm cylinder 11, the bucket cylinder 12, and the swivel motor 6 are shown, and the parts related to the drive of the left side traveling motor 5 and the right side traveling motor are omitted.
  • the hydraulic drive device of the present embodiment has a prime mover 23 (engine in the present embodiment), a hydraulic pump 24 and a pilot pump 25 driven by the prime mover 23, and a flow of pressure oil from the hydraulic pump 24 to the bucket cylinder 12.
  • a control valve 28, a swivel control valve 29 for controlling the flow of pressure oil from the hydraulic pump 24 to the swivel motor 6, working operation devices 20a and 20b, work operation devices 20a and 20b, and control valves 26 to 29. It is provided with a pilot pressure control block 30 and a shuttle valve unit 31 provided between the two, and a control device 32 for controlling the pilot pressure control block 30.
  • the hydraulic pump 24 includes a regulator 33 that adjusts the inclination angle of the swash plate.
  • the shuttle valve unit 31 selects the maximum pilot pressure among the pilot pressures (details will be described later) output from the pilot pressure control block 30 to the control valves 26 to 29, and outputs the maximum pilot pressure to the regulator 33.
  • the regulator 33 adjusts the inclination angle of the swash plate of the hydraulic pump 24 according to the maximum pilot pressure. As a result, the push-out volume of the hydraulic pump 24 is adjusted, and by extension, the flow rate of the hydraulic pump 24 is adjusted.
  • a lock valve 34 is provided on the discharge side of the pilot pump 25.
  • the control device 32 controls the lock valve 34 according to the operation position of the gate lock lever (not shown) provided at the entrance / exit of the driver's cab 17. Specifically, when the gate lock lever is in the descending position (boarding / alighting restricted position), the lock valve 34 is controlled to communicate, and when the gate lock lever is in the ascending position (boarding / alighting permitted position), the lock valve 34 is set. Control to shut off state.
  • the working operation device 20a has an operation lever 35a that can be operated by the operator in the front-rear direction and the left-right direction, and pilot valves 36a to 36d that are operated by operating the operation lever 35a.
  • the pilot valve 36a for the bucket dump uses the pressure oil supplied from the pilot pump 25 via the lock valve 34 to generate a pilot pressure corresponding to the right operating amount of the operating lever 35a.
  • the pilot pressure is output from the pilot valve 36a to the pressure receiving portion on one side of the bucket control valve 26 via the pilot pressure control block 30 and the shuttle valve unit 31, the bucket control valve 26 switches to the switching position on the right side in the figure. Be done.
  • the pressure oil from the hydraulic pump 24 is supplied to the rod side of the bucket cylinder 12, and the bucket cylinder 12 is shortened. As a result, the bucket 9 dumps.
  • the pilot valve 36b for the bucket cloud uses the pressure oil supplied from the pilot pump 25 via the lock valve 34 to generate a pilot pressure corresponding to the left operation amount of the operation lever 35a.
  • the pilot pressure is output from the pilot valve 36b to the pressure receiving portion on the other side of the bucket control valve 26 via the pilot pressure control block 30 and the shuttle valve unit 31, the bucket control valve 26 switches to the switching position on the left side in the figure. Be done.
  • the pressure oil from the hydraulic pump 24 is supplied to the bottom side of the bucket cylinder 12, and the bucket cylinder 12 expands. As a result, the bucket 9 becomes cloud.
  • the boom raising pilot valve 36c uses the pressure oil supplied from the pilot pump 25 via the lock valve 34 to generate a pilot pressure corresponding to the rear operation amount of the operation lever 35a.
  • the pilot pressure is output from the pilot valve 36c to the pressure receiving portion on one side of the boom control valve 27 via the pilot pressure control block 30 and the shuttle valve unit 31, the boom control valve 27 switches to the switching position on the left side in the figure. Be done.
  • the pressure oil from the hydraulic pump 24 is supplied to the bottom side of the boom cylinder 10, and the boom cylinder 10 expands. As a result, the boom 7 goes up.
  • the boom lowering pilot valve 36d uses the pressure oil supplied from the pilot pump 25 via the lock valve 34 to generate a pilot pressure corresponding to the front operating amount of the operating lever 35a.
  • the boom control valve 27 switches to the switching position on the right side in the figure. Be done.
  • the pressure oil from the hydraulic pump 24 is supplied to the rod side of the boom cylinder 10, and the boom cylinder 10 is shortened. As a result, the boom 7 goes down.
  • the working operation device 20b has an operation lever 35b that can be operated by the operator in the front-rear direction and the left-right direction, and pilot valves 36e to 36h that are operated by operating the operation lever 35b.
  • the pilot valve 36e for the arm cloud uses the pressure oil supplied from the pilot pump 25 via the lock valve 34 to generate a pilot pressure corresponding to the operation amount on the right side of the operating lever 35b.
  • the pilot pressure is output from the pilot valve 36e to the pressure receiving portion on one side of the arm control valve 28 via the pilot pressure control block 30 and the shuttle valve unit 31, the arm control valve 28 switches to the switching position on the left side in the figure. Be done.
  • the pressure oil from the hydraulic pump 24 is supplied to the bottom side of the arm cylinder 11, and the arm cylinder 11 extends.
  • the arm 8 becomes cloud.
  • the pilot valve 36f for the arm dump uses the pressure oil supplied from the pilot pump 25 via the lock valve 34 to generate a pilot pressure corresponding to the left operation amount of the operation lever 35b.
  • the pilot pressure is output from the pilot valve 36f to the pressure receiving portion on the other side of the arm control valve 28 via the pilot pressure control block 30 and the shuttle valve unit 31, the arm control valve 28 switches to the switching position on the right side in the figure. Be done.
  • the pressure oil from the hydraulic pump 24 is supplied to the rod side of the arm cylinder 11, and the arm cylinder 11 is shortened.
  • the arm 8 dumps.
  • the left turning pilot valve 36g uses the pressure oil supplied from the pilot pump 25 via the lock valve 34 to generate a pilot pressure corresponding to the rear operation amount of the operation lever 35b.
  • the pilot pressure is output from the pilot valve 36g to the pressure receiving portion on one side of the turning control valve 29 via the shuttle valve unit 31, the turning control valve 29 is switched to the switching position on the right side in the drawing.
  • the pressure oil from the hydraulic pump 24 is supplied to the port on one side of the swivel motor 6, and the swivel motor 6 rotates in one direction.
  • the upper swivel body 4 turns to the left.
  • the pilot valve 36h for turning to the right uses the pressure oil supplied from the pilot pump 25 via the lock valve 34 to generate a pilot pressure corresponding to the front operating amount of the operating lever 35b.
  • the pilot pressure is output from the pilot valve 36h to the pressure receiving portion on the other side of the turning control valve 29 via the shuttle valve unit 31, the turning control valve 29 is switched to the switching position on the left side in the figure.
  • the pressure oil from the hydraulic pump 24 is supplied to the port on the other side of the swivel motor 6, and the swivel motor 6 rotates in the opposite direction.
  • the upper swivel body 4 turns to the right.
  • the pilot pressure control block 30 has pilot pressure sensors 37a to 37f that detect pilot pressures output from the pilot valves 36a to 36f, respectively.
  • the pilot pressure control block 30 includes an electromagnetic isolation valve 38, an electromagnetic proportional valve 39 for a bucket dump, an electromagnetic pressure reducing valve 40 for a bucket dump, a shuttle valve 47 for a bucket dump, an electromagnetic proportional valve 41 for a bucket cloud, and a bucket.
  • the electromagnetic shutoff valve 38 is controlled by the control device 32 in a communication state or a shutoff state.
  • the electromagnetic shutoff valve 38 (or the lock valve 34) is in the shutoff state, the electromagnetic proportional valves 39, 41, 43 are prevented from being supplied with pressure oil from the pilot pump 25.
  • the electromagnetic proportional valve 39 for the bucket dump uses the pressure oil supplied from the pilot pump 25 via the electromagnetic isolation valve 38 and the lock valve 34 to apply the pilot pressure corresponding to the control value (current value) from the control device 32. Generate.
  • the electromagnetic pressure reducing valve 40 for the bucket dump reduces the pilot pressure from the pilot valve 36a to generate a pilot pressure corresponding to the control value (current value) from the control device 32.
  • the shuttle valve 47 for the bucket dump truck selects the larger of the pilot pressure from the electromagnetic proportional valve 39 and the pilot pressure from the electromagnetic pressure reducing valve 40, and receives the selected pilot pressure on one side of the bucket control valve 26. Output to the unit.
  • the electromagnetic proportional valve 41 for the bucket cloud uses the pressure oil supplied from the pilot pump 25 via the electromagnetic shutoff valve 38 and the lock valve 34 to generate a pilot pressure corresponding to the control value from the control device 32.
  • the electromagnetic pressure reducing valve 42 for the bucket cloud reduces the pilot pressure from the pilot valve 36b to generate a pilot pressure corresponding to the control value from the control device 32.
  • the shuttle valve 48 for the bucket cloud selects the larger of the pilot pressure from the electromagnetic proportional valve 41 and the pilot pressure from the electromagnetic pressure reducing valve 42, and receives the selected pilot pressure on the other side of the bucket control valve 26. Output to the unit.
  • the electromagnetic proportional valve 43 for raising the boom uses the pressure oil supplied from the pilot pump 25 via the electromagnetic shutoff valve 38 and the lock valve 34 to generate a pilot pressure corresponding to the control value from the control device 32.
  • the shuttle valve 49 for raising the boom selects the larger of the pilot pressure from the electromagnetic proportional valve 43 and the pilot pressure from the pilot valve 36c, and receives the selected pilot pressure on one side of the boom control valve 27. Output to.
  • the electromagnetic pressure reducing valve 44 for lowering the boom reduces the pilot pressure from the pilot valve 36d to generate a pilot pressure corresponding to the control value from the control device 32, and the generated pilot pressure is used as the other side of the boom control valve 27. Output to the pressure receiving part on the side.
  • the electromagnetic pressure reducing valve 45 for the arm cloud reduces the pilot pressure from the pilot valve 36e to generate a pilot pressure corresponding to the control value from the control device 32, and the generated pilot pressure is used as one of the arm control valves 28. Output to the pressure receiving part on the side.
  • the electromagnetic pressure reducing valve 46 for the arm dump reduces the pilot pressure from the pilot valve 36f to generate a pilot pressure corresponding to the control value from the control device 32, and the generated pilot pressure is used as the other side of the control valve 28 for the arm. Output to the pressure receiving part on the side.
  • the control device 32 controls the above-mentioned solenoid valves 38 to 43 to adjust the pilot pressure. This makes it possible to operate the working machine 2 automatically or semi-automatically. Specifically, for example, when the operator operates the operation lever 35b to the right to perform cloud operation of the arm 8, the electromagnetic proportional valve 43 is controlled to boom so that the bucket 9 does not enter below the target surface. The raising operation of 7 is automatically performed. Further, for example, when the operator operates the operation lever 35a to the front side to lower the boom 7, the electromagnetic pressure reducing valve 44 is controlled to decelerate or decelerate the boom 7 so that the bucket 9 does not enter below the target surface. Stop it.
  • the electromagnetic pressure reducing valve 45 or 46 may be controlled so that the velocity of the bucket 9 becomes constant, or electromagnetic waves may be used so that the posture angle of the bucket 9 with respect to the horizontal plane becomes constant.
  • the proportional valve 39 or 41 may be controlled.
  • the input device 22 can switch from the normal mode to the correction mode in conjunction with the display of the display device 21.
  • the control device 32 When the control device 32 is switched to the correction mode, the control device 32 causes the preset reference operation of the work machine 2 to be performed, and the actual movement speed of the bucket 9 (specifically, the movement of the bucket 9 accompanying the operation of the work machine 2).
  • a control value that is, electromagnetic valves 39 to 46 that acquires the actual speed of the bucket 9 at the time and controls the operation of the work machine 2 based on the difference between the preset reference speed of the bucket 9 and the actual moving speed.
  • the correction value for the control value output to is calculated.
  • the control device 32 may automatically return to the normal mode when the calculation of the correction value described above is completed.
  • the input device 22 may be able to return to the normal mode in conjunction with the display of the display device 21.
  • the control device 32 corrects the control value using the above-mentioned correction value.
  • FIG. 4 is a block diagram showing a functional configuration of the control device 32 in the present embodiment.
  • the control device 32 has an arithmetic control unit (for example, a CPU) that executes arithmetic processing and control processing based on a program, and a storage unit (for example, ROM, RAM) that stores the results of the program and arithmetic processing. be.
  • arithmetic control unit for example, a CPU
  • ROM read-only memory
  • RAM random access memory
  • the control device 32 has a posture calculation unit 50, a target surface setting unit 51, a target operation calculation unit 52, a solenoid valve control unit 53, and a correction mode control unit 54 as functional configurations.
  • the posture calculation unit 50 calculates the posture of the work machine 2 based on the detection results of the boom angle sensor 13, the arm angle sensor 14, the bucket angle sensor 15, and the tilt angle sensor 16.
  • the target surface setting unit 51 sets a target surface that the operator inputs using the display device 21 and the input device 22 or that is captured via a network or the like.
  • the target motion calculation unit 52 is based on the detection results of the pilot pressure sensors 37a to 37f, the posture of the work machine 2 calculated by the attitude calculation unit 50, and the target surface set by the target surface setting unit 51. , Calculates the target motion of the work machine 2 (specifically, the target motion of the boom 7, the target motion of the arm 8, and the target motion of the bucket 9) for the bucket 9 to move without invading below the target surface. ..
  • the solenoid valve control unit 53 controls the solenoid valves 38 to 46 in response to the target operation of the work machine 2 calculated by the target operation calculation unit 52.
  • the correction mode control unit 54 issues a command to the target operation calculation unit 52 to stop the calculation of the target operation of the work machine 2. Further, a command is issued to the solenoid valve control unit 53 to control the solenoid valves 38 to 46 in accordance with a preset reference operation of the working machine 2. In the present embodiment, as the reference operation of the working machine 2, for example, as shown in FIG. 5, the solenoid valves 38 and 43 are controlled in order to raise the boom 7.
  • the correction mode control unit 54 determines the actual moving speed of the bucket 9 based on the posture of the work machine 2 calculated by the posture calculation unit 50 (in other words, the detection result of the posture detector) during the reference operation of the work machine 2. Calculate. Then, based on the difference between the preset reference speed of the bucket 9 and the actual moving speed, a correction value for the control value for controlling the operation of the working machine 2 (that is, the control value output to the solenoid valves 39 to 46) is set. Calculate.
  • the correction value is increased according to the increase in the difference. That is, when the difference ⁇ V1 (however, ⁇ V1> 0), the correction value is H1 (however, H1> H0).
  • the correction value is reduced according to the decrease of the difference. That is, when the difference is ⁇ V2 (however, ⁇ V2 ⁇ 0), the correction value is H2 (however, H2 ⁇ H0).
  • the solenoid valve control unit 53 calculates a control value corresponding to the target operation of the work machine 2 calculated by the target operation calculation unit 52, and the correction mode control unit 54 calculates the control value.
  • the correction value is multiplied and the corrected control value is output to the solenoid valve.
  • FIG. 7 the relationship between the pilot pressure and the speed of the hydraulic cylinder changes according to the correction value.
  • the correction values for the control values of the solenoid valves may be the same as each other, or may be calculated and different using a preset correlation.
  • FIG. 8 is a flowchart showing the control procedure of the correction mode in the present embodiment.
  • step S100 the correction mode control unit 54 of the control device 32 determines whether or not the display device 21 and the input device 22 have switched to the correction mode. If the mode has not been switched to the correction mode, step S100 is repeated. On the other hand, when the mode is switched to the correction mode, the process proceeds to step S101.
  • step S101 the correction mode control unit 54 of the control device 32 determines whether or not the posture of the work machine 2 calculated by the posture calculation unit 50 is the initial posture (see FIG. 5) for starting the reference operation. judge. If the posture of the working machine 2 is not the initial posture, the process proceeds to step S102, and the display device 21 displays that the posture of the working machine 2 is not the initial posture.
  • the display device 21 may display the detection results of the boom angle sensor 13, the arm angle sensor 14, the bucket angle sensor 15, and the tilt angle sensor 16 so that the operator can confirm the posture of the work equipment 2. .. If the posture of the working machine 2 is the initial posture, the process proceeds to step S103.
  • step S103 the correction mode control unit 54 of the control device 32 has, for example, whether or not an instruction from the work operation device 20a has been input as a trigger for starting the operation based on the detection result of the pilot pressure sensor 37c (in other words,). , Whether or not the operation lever 35a is operated to the rear side) is determined.
  • the process proceeds to steps S104 and S105.
  • step S104 the solenoid valve control unit 53 of the control device 32 operates the preset control value (provided that the pilot pressure corresponding to this control value is operated on the rear side of the operation lever 35a) during the preset time. (It is set to be larger than the pilot pressure corresponding to the amount) is output to the solenoid proportional valve 43 to raise the boom 7 (reference operation of the working machine 2).
  • step S105 during the reference operation of the work machine 2, the correction mode control unit 54 of the control device 32 is based on the change in the posture of the work machine 2 calculated by the posture calculation unit 50 (in other words, of the posture detector). (Based on the detection result), the actual movement speed of the bucket 9 is calculated.
  • step S105 the correction mode control unit 54 of the control device 32 calculates a correction value for the control value of each solenoid valve based on the difference between the reference speed of the bucket 9 and the actual moving speed. Then, the process proceeds to step S106, and the solenoid valve control unit 53 of the control device 32 stores the correction value calculated by the correction mode control unit 54.
  • the control device 32 causes the reference operation of the working machine 2 to be performed, acquires the actual moving speed of the bucket 9, and operates the working machine 2 based on the difference between the reference speed of the bucket 9 and the actual moving speed. Calculates the correction value for the control value to be controlled. Then, when returning to the normal mode, the control device 32 corrects the control value using the correction value.
  • control device 32 since the control device 32 performs the reference operation of the work machine 2, it does not take time and effort unlike the case where the operator operates the operation device to perform the reference operation of the work machine 2. Moreover, since it is not necessary to perform a plurality of reference operations, it does not take time and effort.
  • the control device 32 has a bucket 9 based on the detection results of the attitude detector (specifically, the boom angle sensor 13, the arm angle sensor 14, the bucket angle sensor 15, and the tilt angle sensor 16).
  • the attitude detector specifically, the boom angle sensor 13, the arm angle sensor 14, the bucket angle sensor 15, and the tilt angle sensor 16.
  • the hydraulic excavator may include a speed sensor (not shown) for detecting the actual moving speed of the bucket 9, and the control device 32 may input the actual moving speed of the bucket 9 detected by the speed sensor.
  • the hydraulic excavator includes a boom angle sensor 13, an arm angle sensor 14, a bucket angle sensor 15, and an inclination angle sensor 16 as posture detectors has been described as an example. Modification is possible without limitation and within a range that does not deviate from the gist of the present invention.
  • the hydraulic excavator may include a displacement sensor that detects the stroke of the boom cylinder 10 instead of the boom angle sensor 13.
  • the hydraulic excavator may include a displacement sensor that detects the stroke of the arm cylinder 11 instead of the arm angle sensor 14.
  • the hydraulic excavator may include a displacement sensor that detects the stroke of the bucket cylinder 12 instead of the bucket angle sensor 15.
  • the mode switching device capable of switching from the normal mode to the correction mode has been described by taking the case of being composed of the display device 21 and the input device 22 as an example, but the present invention is not limited to this. Deformation is possible within the range that does not deviate from. For example, it may be configured by a mode changeover switch.
  • the control device 32 has described the case where the correction value is calculated so as to be proportional to the difference between the reference speed of the bucket 9 and the actual moving speed. Not limited to this, modifications can be made without departing from the spirit of the present invention.
  • control device 32 has been described by taking the case of calculating the correction value to be multiplied by the control value as an example. It is possible.
  • the control device 32 may calculate a correction value to be added to the control value.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Operation Control Of Excavators (AREA)

Abstract

Provided is a work machine with which it is possible to minimize deterioration of precision in machine control. A hydraulic shovel is provided with: a vehicle body 1; an articulated work machine 2 having a boom 7, an arm 8, and a bucket 9; work manipulation devices 20a, 20b that provide instructions concerning the operation of the work machine 2; sensors 13-16 that detect state quantities relating to the attitude of the work machine 2; and a control device 32 that calculates an attitude of the work machine 2 on the basis of the detection results of the sensors 13-16 and controls the operation of the work machine 2 so as to prevent the bucket 9 from entering an area lower than a target surface. When switched to a correction mode, the control device 32 causes a predetermined reference operation of the work machine 2 to take place and simultaneously acquires an actual moving speed of the bucket 9, calculates a correction value for a control value used to control the operation of the work machine 2 on the basis of the difference between a predetermined reference speed of the bucket 9 and the actual moving speed, and, upon returning to a normal mode, performs a correction on the control value using the calculated correction value.

Description

作業機械Work machine
 本発明は、油圧ショベル等の作業機械に関する。 The present invention relates to a work machine such as a hydraulic excavator.
 作業機械の一つである油圧ショベルは、車体と、車体に連結された多関節型の作業機と、作業機の動作を指示する複数の操作装置とを備える。車体は、走行可能な下部走行体と、下部走行体の上側に旋回可能に設けられた上部旋回体とで構成されている。作業機は、上部旋回体の前部に回動可能に連結されたブームと、ブームの先端部に回動可能に連結されたアームと、アームの先端部に回動可能に連結されたバケット(作業具)とを備える。ブーム、アーム、及びバケットは、ブームシリンダ、アームシリンダ、及びバケットシリンダの駆動によって回動する。 A hydraulic excavator, which is one of the work machines, is equipped with a vehicle body, an articulated work machine connected to the vehicle body, and a plurality of operating devices for instructing the operation of the work machine. The vehicle body is composed of a lower traveling body that can travel and an upper rotating body that is provided so as to be able to turn above the lower traveling body. The work equipment includes a boom rotatably connected to the front of the upper swing body, an arm rotatably connected to the tip of the boom, and a bucket rotatably connected to the tip of the arm. It is equipped with a work tool). The boom, arm, and bucket are rotated by the drive of the boom cylinder, arm cylinder, and bucket cylinder.
 複数の操作装置は、例えば、オペレータが操作可能な操作レバーを有し、操作レバーの操作方向及び操作量に対応するパイロット圧を生成して出力することにより、ブーム用制御弁、アーム用制御弁、及びバケット用制御弁を操作する。ブーム用制御弁は、油圧ポンプからブームシリンダへの圧油の流れを制御して、ブームシリンダを駆動させる。アーム用制御弁は、油圧ポンプからアームシリンダへの圧油の流れを制御して、アームシリンダを駆動させる。バケット用制御弁は、油圧ポンプからバケットシリンダへの圧油の流れを制御して、バケットシリンダを駆動させる。 The plurality of operating devices have, for example, an operating lever that can be operated by an operator, and by generating and outputting a pilot pressure corresponding to the operating direction and operating amount of the operating lever, a boom control valve and an arm control valve. , And the control valve for the bucket is operated. The boom control valve controls the flow of pressure oil from the hydraulic pump to the boom cylinder to drive the boom cylinder. The control valve for the arm controls the flow of pressure oil from the hydraulic pump to the arm cylinder to drive the arm cylinder. The control valve for the bucket controls the flow of pressure oil from the hydraulic pump to the bucket cylinder to drive the bucket cylinder.
 油圧ショベルには、作業機を自動または半自動で動作させる機能(マシンコントロール)を有するものがある。詳しく説明すると、この機能を有する油圧ショベルは、例えば、複数の操作装置と複数の制御弁の間に設けられ、パイロット圧を調整可能な複数の電磁弁と、作業機の姿勢に係る状態量を検出する姿勢検出器と、姿勢検出器の検出結果に基づいて作業機の姿勢を演算し、バケットが目標面より下方に侵入しないように、複数の電磁弁を制御して作業機の動作を制御する制御装置とを備える。これにより、例えば、掘削作業の開始時にバケットの先端が目標面上で停止するように作業機を動作させ、アームのクラウド(引き込み)動作時にバケットが目標面に沿って移動するように作業機を動作させることが容易となる。 Some hydraulic excavators have a function (machine control) to operate the work machine automatically or semi-automatically. More specifically, the hydraulic excavator having this function is provided, for example, between a plurality of operating devices and a plurality of control valves, and has a plurality of solenoid valves whose pilot pressure can be adjusted, and a state quantity related to the posture of the working machine. The attitude of the work equipment is calculated based on the attitude detector to be detected and the detection result of the attitude detector, and the operation of the work equipment is controlled by controlling multiple solenoid valves so that the bucket does not enter below the target surface. It is equipped with a control device. As a result, for example, the work machine is operated so that the tip of the bucket stops on the target surface at the start of excavation work, and the work machine is moved along the target surface during the cloud (pull-in) operation of the arm. It will be easy to operate.
 特許文献1は、バケットが交換された場合にマシンコントロールの精度が低下するのを抑制する技術を開示する。特許文献1に記載の制御装置は、バケットの種別(詳細には、バケットの重量)に応じた、油圧シリンダの駆動速度と電磁弁を制御する制御値との関係を示す複数の相関データを記憶する。そして、オペレータが入力したバケットの種別に応じて相関データを選択し、選択した相関データに基づき、油圧アクチュエータを目標速度で駆動させるための制御値を演算する。 Patent Document 1 discloses a technique for suppressing a decrease in machine control accuracy when a bucket is replaced. The control device described in Patent Document 1 stores a plurality of correlation data showing the relationship between the drive speed of the hydraulic cylinder and the control value for controlling the solenoid valve according to the type of bucket (specifically, the weight of the bucket). do. Then, the correlation data is selected according to the type of bucket input by the operator, and the control value for driving the hydraulic actuator at the target speed is calculated based on the selected correlation data.
特許第5990642号公報Japanese Patent No. 5990642
 しかしながら、特許文献1に記載の従来技術では、次のような課題がある。オペレータがバケットの種別を入力するので、誤入力した場合にマシンコントロールの精度が低下する。また、油圧ショベルの特性が経年変化した場合に対応できず、マシンコントロールの精度が低下する。 However, the conventional technique described in Patent Document 1 has the following problems. Since the operator inputs the bucket type, the accuracy of machine control is reduced if an incorrect input is made. In addition, it cannot cope with changes in the characteristics of the hydraulic excavator over time, and the accuracy of machine control deteriorates.
 本発明は、上記の事柄に鑑みてなされたものであり、その目的は、マシンコントロールの精度の低下を抑制することができる作業機械を提供することにある。 The present invention has been made in view of the above matters, and an object of the present invention is to provide a working machine capable of suppressing a decrease in accuracy of machine control.
 上記目的を達成するために、本発明は、車体と、前記車体に回動可能に連結されたブーム、前記ブームの先端部に回動可能に連結されたアーム、及び前記アームの先端部に回動可能に連結された作業具を有する多関節型の作業機と、前記作業機の動作の指示を行う操作装置と、前記作業機の姿勢に係る状態量を検出する姿勢検出器と、前記姿勢検出器の検出結果に基づいて前記作業機の姿勢を演算し、前記作業具が目標面より下方に侵入しないように前記作業機の動作を制御する制御装置とを備えた作業機械において、通常モードと前記作業機の動作を補正する補正モードとを切り替え可能なモード切替装置を備え、前記制御装置は、前記補正モードに切り替えられたときに、予め設定された前記作業機の基準動作を行わせると共に前記作業具の移動実速度を取得し、予め設定された前記作業具の基準速度と移動実速度との差分に基づいて、前記作業機の動作を制御する制御値に対する補正値を演算し、前記通常モードに復帰したときに、前記補正値を用いて前記制御値を補正する。 In order to achieve the above object, the present invention relates to a vehicle body, a boom rotatably connected to the vehicle body, an arm rotatably connected to the tip of the boom, and a rotation to the tip of the arm. An articulated work machine having movably connected work tools, an operation device for instructing the operation of the work machine, a posture detector for detecting a state amount related to the posture of the work machine, and the posture. In a work machine equipped with a control device that calculates the posture of the work machine based on the detection result of the detector and controls the operation of the work machine so that the work tool does not enter below the target surface, the normal mode is used. A mode switching device capable of switching between At the same time, the actual moving speed of the working tool is acquired, and a correction value for the control value for controlling the operation of the working machine is calculated based on the preset difference between the reference speed of the working tool and the actual moving speed. When the normal mode is restored, the control value is corrected using the correction value.
 本発明によれば、マシンコントロールの精度の低下を抑制することができる。 According to the present invention, it is possible to suppress a decrease in the accuracy of machine control.
本発明の一実施形態における油圧ショベルの構造を表す斜視図である。It is a perspective view which shows the structure of the hydraulic excavator in one Embodiment of this invention. 本発明の一実施形態における油圧駆動装置の構成を表す図である。It is a figure which shows the structure of the hydraulic drive device in one Embodiment of this invention. 図2で示されたパイロット圧制御ブロックの詳細を表す図である。It is a figure which shows the detail of the pilot pressure control block shown in FIG. 本発明の一実施形態における制御装置の機能的構成を関連機器と共に表すブロック図である。It is a block diagram which shows the functional structure of the control device in one Embodiment of this invention together with the related equipment. 本発明の一実施形態における作業機の基準動作を説明するための側面図である。It is a side view for demonstrating the reference operation of the working machine in one Embodiment of this invention. 本発明の一実施形態における補正値の演算方法を説明するための図である。It is a figure for demonstrating the calculation method of the correction value in one Embodiment of this invention. 本発明の一実施形態におけるパイロット圧と油圧シリンダの速度との関係の変化を表す図である。It is a figure which shows the change of the relationship between the pilot pressure and the speed of a hydraulic cylinder in one Embodiment of this invention. 本発明の一実施形態における補正モードの制御手順を表すフローチャートである。It is a flowchart which shows the control procedure of the correction mode in one Embodiment of this invention.
 本発明の適用対象として油圧ショベルを例にとり、本発明の一実施形態を、図面を参照しつつ説明する。 Taking a hydraulic excavator as an example of application of the present invention, an embodiment of the present invention will be described with reference to the drawings.
 図1は、本実施形態における油圧ショベルの構造を表す斜視図である。 FIG. 1 is a perspective view showing the structure of the hydraulic excavator in the present embodiment.
 本実施形態の油圧ショベルは、車体1と、車体1に連結された多関節型の作業機2とを備える。車体1は、走行可能な下部走行体3と、下部走行体3の上側に旋回可能に設けられた上部旋回体4とで構成されている。下部走行体3は、左側走行モータ5及び右側走行モータ(図示せず)の駆動によって走行する。上部旋回体4は、旋回モータ6の駆動によって旋回する。 The hydraulic excavator of the present embodiment includes a vehicle body 1 and an articulated working machine 2 connected to the vehicle body 1. The vehicle body 1 is composed of a lower traveling body 3 that can travel and an upper rotating body 4 that is provided so as to be able to turn above the lower traveling body 3. The lower traveling body 3 travels by driving a left traveling motor 5 and a right traveling motor (not shown). The upper swivel body 4 is swiveled by the drive of the swivel motor 6.
 作業機2は、上部旋回体4の前部に回動可能に連結されたブーム7と、ブーム7の先端部に回動可能に連結されたアーム8と、アーム8の先端部に回動可能に連結されたバケット9(作業具)とを備える。ブーム7、アーム8、及びバケット9は、ブームシリンダ10、アームシリンダ11、及びバケットシリンダ12(いずれも油圧シリンダ)の駆動によってそれぞれ回動する。 The work machine 2 is rotatably connected to the boom 7 rotatably connected to the front portion of the upper swing body 4, the arm 8 rotatably connected to the tip portion of the boom 7, and the tip portion of the arm 8. It is provided with a bucket 9 (working tool) connected to. The boom 7, arm 8, and bucket 9 are rotated by driving the boom cylinder 10, the arm cylinder 11, and the bucket cylinder 12 (all of which are hydraulic cylinders).
 ブーム7の基端側には、上部旋回体4に対するブーム7の回動角を検出するブーム角度センサ13(後述の図4参照)が取り付けられている。アーム8の基端側には、ブーム7に対するアーム8の回動角を検出するアーム角度センサ14が取り付けられている。バケット9の基端側には、アーム8に対するバケット9の回動角を検出するバケット角度センサ15(作業具角度センサ)が取り付けられている。上部旋回体4には、水平面に対する上部旋回体4の前後方向の傾斜角を検出する傾斜角センサ16(後述の図4参照)が取り付けられている。なお、ブーム角度センサ13、アーム角度センサ14、バケット角度センサ15、及び傾斜角センサ16は、作業機2の姿勢に係る状態量を検出する姿勢検出器を構成する。 A boom angle sensor 13 (see FIG. 4 described later) that detects the rotation angle of the boom 7 with respect to the upper swing body 4 is attached to the base end side of the boom 7. An arm angle sensor 14 for detecting the rotation angle of the arm 8 with respect to the boom 7 is attached to the base end side of the arm 8. A bucket angle sensor 15 (working tool angle sensor) that detects the rotation angle of the bucket 9 with respect to the arm 8 is attached to the base end side of the bucket 9. The upper swing body 4 is equipped with a tilt angle sensor 16 (see FIG. 4 described later) that detects the tilt angle of the upper swing body 4 in the front-rear direction with respect to the horizontal plane. The boom angle sensor 13, the arm angle sensor 14, the bucket angle sensor 15, and the tilt angle sensor 16 constitute a posture detector that detects a state quantity related to the posture of the work equipment 2.
 上部旋回体4の前部左側には、オペレータが搭乗する運転室17が設けられている。運転室17には、オペレータが着座する運転席18と、運転席18の前側に配置された走行用操作装置19a,19bと、運転席18の右側に配置された作業用操作装置20aと、運転席18の左側に配置された作業用操作装置20bとが設けられている。走行用操作装置19a,19bは、下部走行体3の走行を指示するものであり、作業用操作装置20a,20bは、作業機2の動作及び上部旋回体4の旋回を指示するものである。運転室17には、表示装置21(後述の図4参照)と、表示装置21の表示と連動して、オペレータが情報の入力等を行える入力装置22(後述の図4参照)が設けられている。 On the left side of the front part of the upper swivel body 4, a driver's cab 17 on which the operator is boarded is provided. In the driver's cab 17, the driver's seat 18 on which the operator sits, the traveling operation devices 19a and 19b arranged on the front side of the driver's seat 18, and the work operation device 20a arranged on the right side of the driver's seat 18 are operated. A work operation device 20b arranged on the left side of the seat 18 is provided. The traveling operation devices 19a and 19b instruct the traveling of the lower traveling body 3, and the working operating devices 20a and 20b instruct the operation of the working machine 2 and the turning of the upper turning body 4. The cab 17 is provided with a display device 21 (see FIG. 4 described later) and an input device 22 (see FIG. 4 described later) in which an operator can input information and the like in conjunction with the display of the display device 21. There is.
 油圧ショベルは、操作装置19a,19b,20a,20bの操作に応じて左側走行モータ5、右側走行モータ、ブームシリンダ10、アームシリンダ11、バケットシリンダ12、及び旋回モータ6を駆動する油圧駆動装置を備える。 The hydraulic excavator is a hydraulic drive device that drives the left side traveling motor 5, the right side traveling motor, the boom cylinder 10, the arm cylinder 11, the bucket cylinder 12, and the swivel motor 6 in response to the operation of the operating devices 19a, 19b, 20a, 20b. Be prepared.
 図2は、本実施形態における油圧駆動装置の構成を表す図である。図3は、図2で示されたパイロット圧制御ブロックの詳細を表す図である。なお、図2においては、ブームシリンダ10、アームシリンダ11、バケットシリンダ12、及び旋回モータ6の駆動に係る部分を示し、左側走行モータ5及び右側走行モータの駆動に係る部分を省略している。 FIG. 2 is a diagram showing the configuration of the hydraulic drive device according to the present embodiment. FIG. 3 is a diagram showing details of the pilot pressure control block shown in FIG. In FIG. 2, the parts related to the drive of the boom cylinder 10, the arm cylinder 11, the bucket cylinder 12, and the swivel motor 6 are shown, and the parts related to the drive of the left side traveling motor 5 and the right side traveling motor are omitted.
 本実施形態の油圧駆動装置は、原動機23(本実施形態では、エンジン)と、原動機23によって駆動される油圧ポンプ24及びパイロットポンプ25と、油圧ポンプ24からバケットシリンダ12への圧油の流れを制御するバケット用制御弁26と、油圧ポンプ24からブームシリンダ10への圧油の流れを制御するブーム用制御弁27と、油圧ポンプ24からアームシリンダ11への圧油の流れを制御するアーム用制御弁28と、油圧ポンプ24から旋回モータ6への圧油の流れを制御する旋回用制御弁29と、作業用操作装置20a,20bと、作業用操作装置20a,20bと制御弁26~29の間に設けられたパイロット圧制御ブロック30及びシャトル弁ユニット31と、パイロット圧制御ブロック30を制御する制御装置32とを備える。 The hydraulic drive device of the present embodiment has a prime mover 23 (engine in the present embodiment), a hydraulic pump 24 and a pilot pump 25 driven by the prime mover 23, and a flow of pressure oil from the hydraulic pump 24 to the bucket cylinder 12. A control valve 26 for a bucket to control, a boom control valve 27 for controlling the flow of pressure oil from the hydraulic pump 24 to the boom cylinder 10, and an arm for controlling the flow of pressure oil from the hydraulic pump 24 to the arm cylinder 11. A control valve 28, a swivel control valve 29 for controlling the flow of pressure oil from the hydraulic pump 24 to the swivel motor 6, working operation devices 20a and 20b, work operation devices 20a and 20b, and control valves 26 to 29. It is provided with a pilot pressure control block 30 and a shuttle valve unit 31 provided between the two, and a control device 32 for controlling the pilot pressure control block 30.
 油圧ポンプ24は、斜板の傾斜角を調整するレギュレータ33を備える。シャトル弁ユニット31は、パイロット圧制御ブロック30から制御弁26~29へ出力されるパイロット圧(詳細は後述)のうちの最大パイロット圧を選択し、最大パイロット圧をレギュレータ33に出力する。レギュレータ33は、最大パイロット圧に応じて油圧ポンプ24の斜板の傾斜角を調整する。これにより、油圧ポンプ24の押しのけ容積を調整し、ひいては、油圧ポンプ24の流量を調整する。 The hydraulic pump 24 includes a regulator 33 that adjusts the inclination angle of the swash plate. The shuttle valve unit 31 selects the maximum pilot pressure among the pilot pressures (details will be described later) output from the pilot pressure control block 30 to the control valves 26 to 29, and outputs the maximum pilot pressure to the regulator 33. The regulator 33 adjusts the inclination angle of the swash plate of the hydraulic pump 24 according to the maximum pilot pressure. As a result, the push-out volume of the hydraulic pump 24 is adjusted, and by extension, the flow rate of the hydraulic pump 24 is adjusted.
 パイロットポンプ25の吐出側にはロック弁34が設けられている。制御装置32は、運転室17の乗降口に設けられたゲートロックレバー(図示せず)の操作位置に応じて、ロック弁34を制御する。詳細には、ゲートロックレバーが下降位置(乗降規制位置)にある場合に、ロック弁34を連通状態に制御し、ゲートロックレバーが上昇位置(乗降許可位置)にある場合に、ロック弁34を遮断状態に制御する。 A lock valve 34 is provided on the discharge side of the pilot pump 25. The control device 32 controls the lock valve 34 according to the operation position of the gate lock lever (not shown) provided at the entrance / exit of the driver's cab 17. Specifically, when the gate lock lever is in the descending position (boarding / alighting restricted position), the lock valve 34 is controlled to communicate, and when the gate lock lever is in the ascending position (boarding / alighting permitted position), the lock valve 34 is set. Control to shut off state.
 作業用操作装置20aは、オペレータが前後方向及び左右方向に操作可能な操作レバー35aと、操作レバー35aの操作によって作動するパイロット弁36a~36dとを有する。 The working operation device 20a has an operation lever 35a that can be operated by the operator in the front-rear direction and the left-right direction, and pilot valves 36a to 36d that are operated by operating the operation lever 35a.
 バケットダンプ用のパイロット弁36aは、ロック弁34を介しパイロットポンプ25から供給された圧油を用いて、操作レバー35aの右側操作量に対応するパイロット圧を生成する。パイロット圧制御ブロック30及びシャトル弁ユニット31を介しパイロット弁36aからバケット用制御弁26の一方側の受圧部にパイロット圧が出力された場合、バケット用制御弁26が図示の右側の切換位置に切換えられる。これにより、油圧ポンプ24からの圧油がバケットシリンダ12のロッド側に供給されて、バケットシリンダ12が縮短する。その結果、バケット9がダンプする。 The pilot valve 36a for the bucket dump uses the pressure oil supplied from the pilot pump 25 via the lock valve 34 to generate a pilot pressure corresponding to the right operating amount of the operating lever 35a. When the pilot pressure is output from the pilot valve 36a to the pressure receiving portion on one side of the bucket control valve 26 via the pilot pressure control block 30 and the shuttle valve unit 31, the bucket control valve 26 switches to the switching position on the right side in the figure. Be done. As a result, the pressure oil from the hydraulic pump 24 is supplied to the rod side of the bucket cylinder 12, and the bucket cylinder 12 is shortened. As a result, the bucket 9 dumps.
 バケットクラウド用のパイロット弁36bは、ロック弁34を介しパイロットポンプ25から供給された圧油を用いて、操作レバー35aの左側操作量に対応するパイロット圧を生成する。パイロット圧制御ブロック30及びシャトル弁ユニット31を介しパイロット弁36bからバケット用制御弁26の他方側の受圧部にパイロット圧が出力された場合、バケット用制御弁26が図示の左側の切換位置に切換えられる。これにより、油圧ポンプ24からの圧油がバケットシリンダ12のボトム側に供給されて、バケットシリンダ12が伸長する。その結果、バケット9がクラウドする。 The pilot valve 36b for the bucket cloud uses the pressure oil supplied from the pilot pump 25 via the lock valve 34 to generate a pilot pressure corresponding to the left operation amount of the operation lever 35a. When the pilot pressure is output from the pilot valve 36b to the pressure receiving portion on the other side of the bucket control valve 26 via the pilot pressure control block 30 and the shuttle valve unit 31, the bucket control valve 26 switches to the switching position on the left side in the figure. Be done. As a result, the pressure oil from the hydraulic pump 24 is supplied to the bottom side of the bucket cylinder 12, and the bucket cylinder 12 expands. As a result, the bucket 9 becomes cloud.
 ブーム上げ用のパイロット弁36cは、ロック弁34を介しパイロットポンプ25から供給された圧油を用いて、操作レバー35aの後側操作量に対応するパイロット圧を生成する。パイロット圧制御ブロック30及びシャトル弁ユニット31を介しパイロット弁36cからブーム用制御弁27の一方側の受圧部にパイロット圧が出力された場合、ブーム用制御弁27が図示の左側の切換位置に切換えられる。これにより、油圧ポンプ24からの圧油がブームシリンダ10のボトム側に供給されて、ブームシリンダ10が伸長する。その結果、ブーム7が上がる。 The boom raising pilot valve 36c uses the pressure oil supplied from the pilot pump 25 via the lock valve 34 to generate a pilot pressure corresponding to the rear operation amount of the operation lever 35a. When the pilot pressure is output from the pilot valve 36c to the pressure receiving portion on one side of the boom control valve 27 via the pilot pressure control block 30 and the shuttle valve unit 31, the boom control valve 27 switches to the switching position on the left side in the figure. Be done. As a result, the pressure oil from the hydraulic pump 24 is supplied to the bottom side of the boom cylinder 10, and the boom cylinder 10 expands. As a result, the boom 7 goes up.
 ブーム下げ用のパイロット弁36dは、ロック弁34を介しパイロットポンプ25から供給された圧油を用いて、操作レバー35aの前側操作量に対応するパイロット圧を生成する。パイロット圧制御ブロック30及びシャトル弁ユニット31を介しパイロット弁36dからブーム用制御弁27の他方側の受圧部にパイロット圧が出力された場合、ブーム用制御弁27が図示の右側の切換位置に切換えられる。これにより、油圧ポンプ24からの圧油がブームシリンダ10のロッド側に供給されて、ブームシリンダ10が縮短する。その結果、ブーム7が下がる。 The boom lowering pilot valve 36d uses the pressure oil supplied from the pilot pump 25 via the lock valve 34 to generate a pilot pressure corresponding to the front operating amount of the operating lever 35a. When the pilot pressure is output from the pilot valve 36d to the pressure receiving portion on the other side of the boom control valve 27 via the pilot pressure control block 30 and the shuttle valve unit 31, the boom control valve 27 switches to the switching position on the right side in the figure. Be done. As a result, the pressure oil from the hydraulic pump 24 is supplied to the rod side of the boom cylinder 10, and the boom cylinder 10 is shortened. As a result, the boom 7 goes down.
 作業用操作装置20bは、オペレータが前後方向及び左右方向に操作可能な操作レバー35bと、操作レバー35bの操作によって作動するパイロット弁36e~36hとを有する。 The working operation device 20b has an operation lever 35b that can be operated by the operator in the front-rear direction and the left-right direction, and pilot valves 36e to 36h that are operated by operating the operation lever 35b.
 アームクラウド(アーム引き込み)用のパイロット弁36eは、ロック弁34を介しパイロットポンプ25から供給された圧油を用いて、操作レバー35bの右側操作量に対応するパイロット圧を生成する。パイロット圧制御ブロック30及びシャトル弁ユニット31を介しパイロット弁36eからアーム用制御弁28の一方側の受圧部にパイロット圧が出力された場合、アーム用制御弁28が図示の左側の切換位置に切換えられる。これにより、油圧ポンプ24からの圧油がアームシリンダ11のボトム側に供給されて、アームシリンダ11が伸長する。その結果、アーム8がクラウドする。 The pilot valve 36e for the arm cloud (arm pull-in) uses the pressure oil supplied from the pilot pump 25 via the lock valve 34 to generate a pilot pressure corresponding to the operation amount on the right side of the operating lever 35b. When the pilot pressure is output from the pilot valve 36e to the pressure receiving portion on one side of the arm control valve 28 via the pilot pressure control block 30 and the shuttle valve unit 31, the arm control valve 28 switches to the switching position on the left side in the figure. Be done. As a result, the pressure oil from the hydraulic pump 24 is supplied to the bottom side of the arm cylinder 11, and the arm cylinder 11 extends. As a result, the arm 8 becomes cloud.
 アームダンプ(アーム押し出し)用のパイロット弁36fは、ロック弁34を介しパイロットポンプ25から供給された圧油を用いて、操作レバー35bの左側操作量に対応するパイロット圧を生成する。パイロット圧制御ブロック30及びシャトル弁ユニット31を介しパイロット弁36fからアーム用制御弁28の他方側の受圧部にパイロット圧が出力された場合、アーム用制御弁28が図示の右側の切換位置に切換えられる。これにより、油圧ポンプ24からの圧油がアームシリンダ11のロッド側に供給されて、アームシリンダ11が縮短する。その結果、アーム8がダンプする。 The pilot valve 36f for the arm dump (arm extrusion) uses the pressure oil supplied from the pilot pump 25 via the lock valve 34 to generate a pilot pressure corresponding to the left operation amount of the operation lever 35b. When the pilot pressure is output from the pilot valve 36f to the pressure receiving portion on the other side of the arm control valve 28 via the pilot pressure control block 30 and the shuttle valve unit 31, the arm control valve 28 switches to the switching position on the right side in the figure. Be done. As a result, the pressure oil from the hydraulic pump 24 is supplied to the rod side of the arm cylinder 11, and the arm cylinder 11 is shortened. As a result, the arm 8 dumps.
 左旋回用のパイロット弁36gは、ロック弁34を介しパイロットポンプ25から供給された圧油を用いて、操作レバー35bの後側操作量に対応するパイロット圧を生成する。シャトル弁ユニット31を介してパイロット弁36gから旋回用制御弁29の一方側の受圧部にパイロット圧が出力された場合、旋回用制御弁29が図示の右側の切換位置に切換えられる。これにより、油圧ポンプ24からの圧油が旋回モータ6の一方側のポートに供給されて、旋回モータ6が一方向に回転する。その結果、上部旋回体4が左方向に旋回する。 The left turning pilot valve 36g uses the pressure oil supplied from the pilot pump 25 via the lock valve 34 to generate a pilot pressure corresponding to the rear operation amount of the operation lever 35b. When the pilot pressure is output from the pilot valve 36g to the pressure receiving portion on one side of the turning control valve 29 via the shuttle valve unit 31, the turning control valve 29 is switched to the switching position on the right side in the drawing. As a result, the pressure oil from the hydraulic pump 24 is supplied to the port on one side of the swivel motor 6, and the swivel motor 6 rotates in one direction. As a result, the upper swivel body 4 turns to the left.
 右旋回用のパイロット弁36hは、ロック弁34を介しパイロットポンプ25から供給された圧油を用いて、操作レバー35bの前側操作量に対応するパイロット圧を生成する。シャトル弁ユニット31を介しパイロット弁36hから旋回用制御弁29の他方側の受圧部にパイロット圧が出力された場合、旋回用制御弁29が図示の左側の切換位置に切換えられる。これにより、油圧ポンプ24からの圧油が旋回モータ6の他方側のポートに供給されて、旋回モータ6が反対方向に回転する。その結果、上部旋回体4が右方向に旋回する。 The pilot valve 36h for turning to the right uses the pressure oil supplied from the pilot pump 25 via the lock valve 34 to generate a pilot pressure corresponding to the front operating amount of the operating lever 35b. When the pilot pressure is output from the pilot valve 36h to the pressure receiving portion on the other side of the turning control valve 29 via the shuttle valve unit 31, the turning control valve 29 is switched to the switching position on the left side in the figure. As a result, the pressure oil from the hydraulic pump 24 is supplied to the port on the other side of the swivel motor 6, and the swivel motor 6 rotates in the opposite direction. As a result, the upper swivel body 4 turns to the right.
 パイロット圧制御ブロック30は、パイロット弁36a~36fから出力されたパイロット圧をそれぞれ検出するパイロット圧センサ37a~37fを有する。また、パイロット圧制御ブロック30は、電磁遮断弁38、バケットダンプ用の電磁比例弁39、バケットダンプ用の電磁減圧弁40、バケットダンプ用のシャトル弁47、バケットクラウド用の電磁比例弁41、バケットクラウド用の電磁減圧弁42、バケットクラウド用のシャトル弁48、ブーム上げ用の電磁比例弁43、ブーム上げ用のシャトル弁49、ブーム下げ用の電磁減圧弁44、アームクラウド用の電磁減圧弁45、及びアームダンプ用の電磁減圧弁46を有する。 The pilot pressure control block 30 has pilot pressure sensors 37a to 37f that detect pilot pressures output from the pilot valves 36a to 36f, respectively. The pilot pressure control block 30 includes an electromagnetic isolation valve 38, an electromagnetic proportional valve 39 for a bucket dump, an electromagnetic pressure reducing valve 40 for a bucket dump, a shuttle valve 47 for a bucket dump, an electromagnetic proportional valve 41 for a bucket cloud, and a bucket. Electromagnetic pressure reducing valve 42 for cloud, shuttle valve 48 for bucket cloud, electromagnetic proportional valve 43 for boom raising, shuttle valve 49 for boom raising, electromagnetic pressure reducing valve 44 for boom lowering, electromagnetic pressure reducing valve 45 for arm cloud , And an electromagnetic pressure reducing valve 46 for arm dump.
 電磁遮断弁38は、制御装置32によって連通状態又は遮断状態に制御される。電磁遮断弁38(又はロック弁34)が遮断状態である場合、電磁比例弁39,41,43は、パイロットポンプ25からの圧油が供給されないようになっている。 The electromagnetic shutoff valve 38 is controlled by the control device 32 in a communication state or a shutoff state. When the electromagnetic shutoff valve 38 (or the lock valve 34) is in the shutoff state, the electromagnetic proportional valves 39, 41, 43 are prevented from being supplied with pressure oil from the pilot pump 25.
 バケットダンプ用の電磁比例弁39は、電磁遮断弁38及びロック弁34を介しパイロットポンプ25から供給された圧油を用いて、制御装置32からの制御値(電流値)に対応するパイロット圧を生成する。バケットダンプ用の電磁減圧弁40は、パイロット弁36aからのパイロット圧を減圧して、制御装置32からの制御値(電流値)に対応するパイロット圧を生成する。バケットダンプ用のシャトル弁47は、電磁比例弁39からのパイロット圧と電磁減圧弁40からのパイロット圧のうちの大きい方を選択し、選択したパイロット圧をバケット用制御弁26の一方側の受圧部に出力する。 The electromagnetic proportional valve 39 for the bucket dump uses the pressure oil supplied from the pilot pump 25 via the electromagnetic isolation valve 38 and the lock valve 34 to apply the pilot pressure corresponding to the control value (current value) from the control device 32. Generate. The electromagnetic pressure reducing valve 40 for the bucket dump reduces the pilot pressure from the pilot valve 36a to generate a pilot pressure corresponding to the control value (current value) from the control device 32. The shuttle valve 47 for the bucket dump truck selects the larger of the pilot pressure from the electromagnetic proportional valve 39 and the pilot pressure from the electromagnetic pressure reducing valve 40, and receives the selected pilot pressure on one side of the bucket control valve 26. Output to the unit.
 バケットクラウド用の電磁比例弁41は、電磁遮断弁38及びロック弁34を介しパイロットポンプ25から供給された圧油を用いて、制御装置32からの制御値に対応するパイロット圧を生成する。バケットクラウド用の電磁減圧弁42は、パイロット弁36bからのパイロット圧を減圧して、制御装置32からの制御値に対応するパイロット圧を生成する。バケットクラウド用のシャトル弁48は、電磁比例弁41からのパイロット圧と電磁減圧弁42からのパイロット圧のうちの大きい方を選択し、選択したパイロット圧をバケット用制御弁26の他方側の受圧部に出力する。 The electromagnetic proportional valve 41 for the bucket cloud uses the pressure oil supplied from the pilot pump 25 via the electromagnetic shutoff valve 38 and the lock valve 34 to generate a pilot pressure corresponding to the control value from the control device 32. The electromagnetic pressure reducing valve 42 for the bucket cloud reduces the pilot pressure from the pilot valve 36b to generate a pilot pressure corresponding to the control value from the control device 32. The shuttle valve 48 for the bucket cloud selects the larger of the pilot pressure from the electromagnetic proportional valve 41 and the pilot pressure from the electromagnetic pressure reducing valve 42, and receives the selected pilot pressure on the other side of the bucket control valve 26. Output to the unit.
 ブーム上げ用の電磁比例弁43は、電磁遮断弁38及びロック弁34を介しパイロットポンプ25から供給された圧油を用いて、制御装置32からの制御値に対応するパイロット圧を生成する。ブーム上げ用のシャトル弁49は、電磁比例弁43からのパイロット圧とパイロット弁36cからのパイロット圧のうちの大きい方を選択し、選択したパイロット圧をブーム用制御弁27の一方側の受圧部に出力する。 The electromagnetic proportional valve 43 for raising the boom uses the pressure oil supplied from the pilot pump 25 via the electromagnetic shutoff valve 38 and the lock valve 34 to generate a pilot pressure corresponding to the control value from the control device 32. The shuttle valve 49 for raising the boom selects the larger of the pilot pressure from the electromagnetic proportional valve 43 and the pilot pressure from the pilot valve 36c, and receives the selected pilot pressure on one side of the boom control valve 27. Output to.
 ブーム下げ用の電磁減圧弁44は、パイロット弁36dからのパイロット圧を減圧して、制御装置32からの制御値に対応するパイロット圧を生成し、生成したパイロット圧をブーム用制御弁27の他方側の受圧部に出力する。 The electromagnetic pressure reducing valve 44 for lowering the boom reduces the pilot pressure from the pilot valve 36d to generate a pilot pressure corresponding to the control value from the control device 32, and the generated pilot pressure is used as the other side of the boom control valve 27. Output to the pressure receiving part on the side.
 アームクラウド用の電磁減圧弁45は、パイロット弁36eからのパイロット圧を減圧して、制御装置32からの制御値に対応するパイロット圧を生成し、生成したパイロット圧をアーム用制御弁28の一方側の受圧部に出力する。 The electromagnetic pressure reducing valve 45 for the arm cloud reduces the pilot pressure from the pilot valve 36e to generate a pilot pressure corresponding to the control value from the control device 32, and the generated pilot pressure is used as one of the arm control valves 28. Output to the pressure receiving part on the side.
 アームダンプ用の電磁減圧弁46は、パイロット弁36fからのパイロット圧を減圧して、制御装置32からの制御値に対応するパイロット圧を生成し、生成したパイロット圧をアーム用制御弁28の他方側の受圧部に出力する。 The electromagnetic pressure reducing valve 46 for the arm dump reduces the pilot pressure from the pilot valve 36f to generate a pilot pressure corresponding to the control value from the control device 32, and the generated pilot pressure is used as the other side of the control valve 28 for the arm. Output to the pressure receiving part on the side.
 制御装置32は、上述した電磁弁38~43を制御してパイロット圧を調整する。これにより、作業機2を自動または半自動で動作させることが可能である。具体的に説明すると、例えばオペレータが操作レバー35bを右側に操作してアーム8のクラウド動作を行う場合に、バケット9が目標面より下方に侵入しないように、電磁比例弁43を制御してブーム7の上げ動作を自動的に行わせる。また、例えばオペレータが操作レバー35aを前側に操作してブーム7の下げ動作を行う場合に、バケット9が目標面より下方に侵入しないように、電磁減圧弁44を制御してブーム7を減速又は停止させる。また、例えば水平掘削を行う場合に、バケット9の速度が一定となるように、電磁減圧弁45又は46を制御してもよいし、水平面に対するバケット9の姿勢角が一定となるように、電磁比例弁39又は41を制御してもよい。 The control device 32 controls the above-mentioned solenoid valves 38 to 43 to adjust the pilot pressure. This makes it possible to operate the working machine 2 automatically or semi-automatically. Specifically, for example, when the operator operates the operation lever 35b to the right to perform cloud operation of the arm 8, the electromagnetic proportional valve 43 is controlled to boom so that the bucket 9 does not enter below the target surface. The raising operation of 7 is automatically performed. Further, for example, when the operator operates the operation lever 35a to the front side to lower the boom 7, the electromagnetic pressure reducing valve 44 is controlled to decelerate or decelerate the boom 7 so that the bucket 9 does not enter below the target surface. Stop it. Further, for example, in the case of horizontal excavation, the electromagnetic pressure reducing valve 45 or 46 may be controlled so that the velocity of the bucket 9 becomes constant, or electromagnetic waves may be used so that the posture angle of the bucket 9 with respect to the horizontal plane becomes constant. The proportional valve 39 or 41 may be controlled.
 ここで、本実施形態の特徴として、入力装置22は、表示装置21の表示と連動して、通常モードから補正モードへの切り替えが行えるようになっている。制御装置32は、補正モードに切り替えられたときに、予め設定された作業機2の基準動作を行わせると共にバケット9の移動実速度(詳細には、作業機2の動作に伴うバケット9の移動時のバケット9の実速度)を取得し、予め設定されたバケット9の基準速度と移動実速度との差分に基づいて、作業機2の動作を制御する制御値(すなわち、電磁弁39~46へ出力する制御値)に対する補正値を演算する。 Here, as a feature of the present embodiment, the input device 22 can switch from the normal mode to the correction mode in conjunction with the display of the display device 21. When the control device 32 is switched to the correction mode, the control device 32 causes the preset reference operation of the work machine 2 to be performed, and the actual movement speed of the bucket 9 (specifically, the movement of the bucket 9 accompanying the operation of the work machine 2). A control value (that is, electromagnetic valves 39 to 46) that acquires the actual speed of the bucket 9 at the time and controls the operation of the work machine 2 based on the difference between the preset reference speed of the bucket 9 and the actual moving speed. The correction value for the control value output to) is calculated.
 制御装置32は、上述した補正値の演算が完了したときに、通常モードに自動的に復帰してもよい。あるいは、入力装置22は、表示装置21の表示と連動して、通常モードへの復帰が行えてもよい。制御装置32は、通常モードに復帰したときに、上述した補正値を用いて制御値を補正する。 The control device 32 may automatically return to the normal mode when the calculation of the correction value described above is completed. Alternatively, the input device 22 may be able to return to the normal mode in conjunction with the display of the display device 21. When the control device 32 returns to the normal mode, the control device 32 corrects the control value using the above-mentioned correction value.
 次に、本実施形態の制御装置32の詳細について説明する。図4は、本実施形態における制御装置32の機能的構成を表すブロック図である。なお、制御装置32は、プログラムに基づいて演算処理や制御処理を実行する演算制御部(例えばCPU)と、プログラムや演算処理の結果を記憶する記憶部(例えばROM、RAM)等を有するものである。 Next, the details of the control device 32 of the present embodiment will be described. FIG. 4 is a block diagram showing a functional configuration of the control device 32 in the present embodiment. The control device 32 has an arithmetic control unit (for example, a CPU) that executes arithmetic processing and control processing based on a program, and a storage unit (for example, ROM, RAM) that stores the results of the program and arithmetic processing. be.
 制御装置32は、機能的構成として、姿勢演算部50、目標面設定部51、目標動作演算部52、電磁弁制御部53、及び補正モード制御部54を有する。 The control device 32 has a posture calculation unit 50, a target surface setting unit 51, a target operation calculation unit 52, a solenoid valve control unit 53, and a correction mode control unit 54 as functional configurations.
 姿勢演算部50は、ブーム角度センサ13、アーム角度センサ14、バケット角度センサ15、及び傾斜角センサ16の検出結果に基づいて、作業機2の姿勢を演算する。目標面設定部51は、オペレータが表示装置21及び入力装置22を用いて入力するか、若しくは、ネットワーク等を介して取り込んだ目標面を設定する。 The posture calculation unit 50 calculates the posture of the work machine 2 based on the detection results of the boom angle sensor 13, the arm angle sensor 14, the bucket angle sensor 15, and the tilt angle sensor 16. The target surface setting unit 51 sets a target surface that the operator inputs using the display device 21 and the input device 22 or that is captured via a network or the like.
 通常モードでは、目標動作演算部52は、パイロット圧センサ37a~37fの検出結果、姿勢演算部50で演算された作業機2の姿勢、及び目標面設定部51で設定された目標面に基づいて、バケット9が目標面より下方に侵入することなく移動するための作業機2の目標動作(詳細には、ブーム7の目標動作、アーム8の目標動作、及びバケット9の目標動作)を演算する。電磁弁制御部53は、目標動作演算部52で演算された作業機2の目標動作に対応して電磁弁38~46を制御する。 In the normal mode, the target motion calculation unit 52 is based on the detection results of the pilot pressure sensors 37a to 37f, the posture of the work machine 2 calculated by the attitude calculation unit 50, and the target surface set by the target surface setting unit 51. , Calculates the target motion of the work machine 2 (specifically, the target motion of the boom 7, the target motion of the arm 8, and the target motion of the bucket 9) for the bucket 9 to move without invading below the target surface. .. The solenoid valve control unit 53 controls the solenoid valves 38 to 46 in response to the target operation of the work machine 2 calculated by the target operation calculation unit 52.
 補正モード制御部54は、補正モードに切り替えられたときに、目標動作演算部52に指令を出し、作業機2の目標動作の演算を停止させる。また、電磁弁制御部53に指令を出し、予め設定された作業機2の基準動作に対応して電磁弁38~46を制御させる。本実施形態では、作業機2の基準動作として、例えば図5で示すようにブーム7の上げ動作を行わせるため、電磁弁38,43を制御させる。 When the correction mode is switched to the correction mode, the correction mode control unit 54 issues a command to the target operation calculation unit 52 to stop the calculation of the target operation of the work machine 2. Further, a command is issued to the solenoid valve control unit 53 to control the solenoid valves 38 to 46 in accordance with a preset reference operation of the working machine 2. In the present embodiment, as the reference operation of the working machine 2, for example, as shown in FIG. 5, the solenoid valves 38 and 43 are controlled in order to raise the boom 7.
 補正モード制御部54は、作業機2の基準動作中、姿勢演算部50で演算された作業機2の姿勢(言い換えれば、姿勢検出器の検出結果)に基づいて、バケット9の移動実速度を演算する。そして、予め設定されたバケット9の基準速度と移動実速度との差分に基づいて、作業機2の動作を制御する制御値(すなわち、電磁弁39~46へ出力する制御値)に対する補正値を演算する。 The correction mode control unit 54 determines the actual moving speed of the bucket 9 based on the posture of the work machine 2 calculated by the posture calculation unit 50 (in other words, the detection result of the posture detector) during the reference operation of the work machine 2. Calculate. Then, based on the difference between the preset reference speed of the bucket 9 and the actual moving speed, a correction value for the control value for controlling the operation of the working machine 2 (that is, the control value output to the solenoid valves 39 to 46) is set. Calculate.
 詳しく説明すると、例えば図6で示すように、バケット9の基準速度と移動実速度との差分がゼロであるとき、制御値に対して乗算する補正値(補正係数)をH0=1とする。バケット9の基準速度が移動実速度より大きく、それらの差分が正の値である場合に、差分の増加に応じて補正値を増加させる。すなわち、差分ΔV1(但し、ΔV1>0)であるとき、補正値をH1(但し、H1>H0)とする。バケット9の基準速度が移動実速度より小さく、それらの差分が負の値である場合に、差分の減少に応じて補正値を減少させる。すなわち、差分ΔV2(但し、ΔV2<0)であるとき、補正値をH2(但し、H2<H0)とする。 To explain in detail, for example, as shown in FIG. 6, when the difference between the reference speed of the bucket 9 and the actual moving speed is zero, the correction value (correction coefficient) to be multiplied with the control value is set to H0 = 1. When the reference speed of the bucket 9 is larger than the actual moving speed and the difference between them is a positive value, the correction value is increased according to the increase in the difference. That is, when the difference ΔV1 (however, ΔV1> 0), the correction value is H1 (however, H1> H0). When the reference speed of the bucket 9 is smaller than the actual moving speed and the difference between them is a negative value, the correction value is reduced according to the decrease of the difference. That is, when the difference is ΔV2 (however, ΔV2 <0), the correction value is H2 (however, H2 <H0).
 電磁弁制御部53は、通常モードでは、目標動作演算部52で演算された作業機2の目標動作に対応する制御値を演算し、この制御値に対して補正モード制御部54で演算された補正値を乗算し、補正後の制御値を電磁弁に出力する。その結果、図7で示すように、パイロット圧と油圧シリンダの速度との関係は、補正値に応じて変化する。なお、各電磁弁の制御値に対する補正値は、互いに同じであるか、若しくは、予め設定された相関関係を用いて演算されて異なってもよい。 In the normal mode, the solenoid valve control unit 53 calculates a control value corresponding to the target operation of the work machine 2 calculated by the target operation calculation unit 52, and the correction mode control unit 54 calculates the control value. The correction value is multiplied and the corrected control value is output to the solenoid valve. As a result, as shown in FIG. 7, the relationship between the pilot pressure and the speed of the hydraulic cylinder changes according to the correction value. The correction values for the control values of the solenoid valves may be the same as each other, or may be calculated and different using a preset correlation.
 次に、本実施形態の補正モードの詳細について説明する。図8は、本実施形態における補正モードの制御手順を表すフローチャートである。 Next, the details of the correction mode of this embodiment will be described. FIG. 8 is a flowchart showing the control procedure of the correction mode in the present embodiment.
 まず、ステップS100にて、制御装置32の補正モード制御部54は、表示装置21及び入力装置22によって補正モードに切り替えられたかどうかを判定する。補正モードに切り替えられていない場合、ステップS100を繰り返す。一方、補正モードに切り替えられた場合は、ステップS101に進む。 First, in step S100, the correction mode control unit 54 of the control device 32 determines whether or not the display device 21 and the input device 22 have switched to the correction mode. If the mode has not been switched to the correction mode, step S100 is repeated. On the other hand, when the mode is switched to the correction mode, the process proceeds to step S101.
 ステップS101にて、制御装置32の補正モード制御部54は、姿勢演算部50で演算された作業機2の姿勢が、基準動作を開始するための初期姿勢(図5参照)であるかどうかを判定する。作業機2の姿勢が初期姿勢でない場合は、ステップS102に進み、作業機2の姿勢が初期姿勢でない旨を表示装置21に表示させる。なお、表示装置21は、ブーム角度センサ13、アーム角度センサ14、バケット角度センサ15、及び傾斜角センサ16の検出結果を表示して、オペレータが作業機2の姿勢を確認できるようにしてもよい。作業機2の姿勢が初期姿勢である場合は、ステップS103に進む。 In step S101, the correction mode control unit 54 of the control device 32 determines whether or not the posture of the work machine 2 calculated by the posture calculation unit 50 is the initial posture (see FIG. 5) for starting the reference operation. judge. If the posture of the working machine 2 is not the initial posture, the process proceeds to step S102, and the display device 21 displays that the posture of the working machine 2 is not the initial posture. The display device 21 may display the detection results of the boom angle sensor 13, the arm angle sensor 14, the bucket angle sensor 15, and the tilt angle sensor 16 so that the operator can confirm the posture of the work equipment 2. .. If the posture of the working machine 2 is the initial posture, the process proceeds to step S103.
 ステップS103にて、制御装置32の補正モード制御部54は、例えば、パイロット圧センサ37cの検出結果に基づいて、動作開始のトリガーとして作業用操作装置20aからの指示が入力されたかどうか(言い換えれば、操作レバー35aが後側に操作されたかどうか)を判定する。動作開始のトリガーとして作業用操作装置20aからの指示が入力された場合は、ステップS104及びS105に進む。 In step S103, the correction mode control unit 54 of the control device 32 has, for example, whether or not an instruction from the work operation device 20a has been input as a trigger for starting the operation based on the detection result of the pilot pressure sensor 37c (in other words,). , Whether or not the operation lever 35a is operated to the rear side) is determined. When an instruction from the working operation device 20a is input as a trigger for starting the operation, the process proceeds to steps S104 and S105.
 ステップS104にて、制御装置32の電磁弁制御部53は、予め設定された時間のあいだ、予め設定された制御値(但し、この制御値に対応するパイロット圧が、操作レバー35aの後側操作量に対応するパイロット圧より大きくなるように設定されている)を電磁比例弁43に出力して、ブーム7の上げ動作(作業機2の基準動作)を行わせる。ステップS105にて、作業機2の基準動作中、制御装置32の補正モード制御部54は、姿勢演算部50で演算された作業機2の姿勢の変化に基づいて(言い換えれば、姿勢検出器の検出結果に基づいて)、バケット9の移動実速度を演算する。 In step S104, the solenoid valve control unit 53 of the control device 32 operates the preset control value (provided that the pilot pressure corresponding to this control value is operated on the rear side of the operation lever 35a) during the preset time. (It is set to be larger than the pilot pressure corresponding to the amount) is output to the solenoid proportional valve 43 to raise the boom 7 (reference operation of the working machine 2). In step S105, during the reference operation of the work machine 2, the correction mode control unit 54 of the control device 32 is based on the change in the posture of the work machine 2 calculated by the posture calculation unit 50 (in other words, of the posture detector). (Based on the detection result), the actual movement speed of the bucket 9 is calculated.
 そして、ステップS105に進み、制御装置32の補正モード制御部54は、バケット9の基準速度と移動実速度との差分に基づいて、各電磁弁の制御値に対する補正値を演算する。そして、ステップS106に進み、制御装置32の電磁弁制御部53は、補正モード制御部54で演算された補正値を記憶する。 Then, the process proceeds to step S105, and the correction mode control unit 54 of the control device 32 calculates a correction value for the control value of each solenoid valve based on the difference between the reference speed of the bucket 9 and the actual moving speed. Then, the process proceeds to step S106, and the solenoid valve control unit 53 of the control device 32 stores the correction value calculated by the correction mode control unit 54.
 本実施形態の動作及び作用効果を説明する。例えばバケット9を交換した場合に、オペレータは、表示装置21及び入力装置22を用いて補正モードに切り替える。そして、作業機2の姿勢が初期姿勢となるように作業用操作装置20a,20bを操作し、更に、動作開始のトリガーとして作業用操作装置20aを操作する。これにより、制御装置32は、作業機2の基準動作を行わせると共にバケット9の移動実速度を取得し、バケット9の基準速度と移動実速度との差分に基づいて、作業機2の動作を制御する制御値に対する補正値を演算する。そして、通常モードに復帰したときに、制御装置32は、補正値を用いて制御値を補正する。したがって、マシンコントロールの精度の低下を抑制することができる。特に、本実施形態では、オペレータが入力したバケットの種別に応じて相関データを選択する従来技術とは異なり、誤入力が生じないため、マシンコントロールの精度の低下を抑制することができる。また、油圧ショベルの特性が経年変化した場合にも対応できるため、マシンコントロールの精度の低下を抑制することができる。 The operation and action effect of this embodiment will be described. For example, when the bucket 9 is replaced, the operator switches to the correction mode using the display device 21 and the input device 22. Then, the work operation devices 20a and 20b are operated so that the posture of the work machine 2 becomes the initial posture, and further, the work operation device 20a is operated as a trigger for starting the operation. As a result, the control device 32 causes the reference operation of the working machine 2 to be performed, acquires the actual moving speed of the bucket 9, and operates the working machine 2 based on the difference between the reference speed of the bucket 9 and the actual moving speed. Calculates the correction value for the control value to be controlled. Then, when returning to the normal mode, the control device 32 corrects the control value using the correction value. Therefore, it is possible to suppress a decrease in the accuracy of machine control. In particular, in the present embodiment, unlike the conventional technique of selecting correlation data according to the type of bucket input by the operator, erroneous input does not occur, so that deterioration of machine control accuracy can be suppressed. In addition, since it is possible to cope with changes in the characteristics of the hydraulic excavator over time, it is possible to suppress a decrease in the accuracy of machine control.
 また、本実施形態では、制御装置32によって作業機2の基準動作を行わせるため、オペレータが操作装置を操作して作業機2の基準動作を行わせる場合とは異なり、手間がかからない。また、複数の基準動作を行う必要がないので、手間がかからない。 Further, in the present embodiment, since the control device 32 performs the reference operation of the work machine 2, it does not take time and effort unlike the case where the operator operates the operation device to perform the reference operation of the work machine 2. Moreover, since it is not necessary to perform a plurality of reference operations, it does not take time and effort.
 なお、上記一実施形態において、制御装置32は、姿勢検出器(詳細には、ブーム角度センサ13、アーム角度センサ14、バケット角度センサ15、及び傾斜角センサ16)の検出結果に基づいてバケット9の移動実速度を演算する場合を例にとって説明したが、これに限られず、本発明の趣旨を逸脱しない範囲内で変形が可能である。例えば、油圧ショベルは、バケット9の移動実速度を検出する速度センサ(図示せず)を備え、制御装置32は、速度センサで検出されたバケット9の移動実速度を入力してもよい。 In the above embodiment, the control device 32 has a bucket 9 based on the detection results of the attitude detector (specifically, the boom angle sensor 13, the arm angle sensor 14, the bucket angle sensor 15, and the tilt angle sensor 16). The case of calculating the actual moving speed of the above has been described as an example, but the present invention is not limited to this, and deformation is possible within a range that does not deviate from the gist of the present invention. For example, the hydraulic excavator may include a speed sensor (not shown) for detecting the actual moving speed of the bucket 9, and the control device 32 may input the actual moving speed of the bucket 9 detected by the speed sensor.
 また、上記一実施形態において、油圧ショベルは、姿勢検出器として、ブーム角度センサ13、アーム角度センサ14、バケット角度センサ15、及び傾斜角センサ16を備えた場合を例にとって説明したが、これに限られず、本発明の趣旨を逸脱しない範囲内で変形が可能である。例えば、油圧ショベルは、ブーム角度センサ13に代えて、ブームシリンダ10のストロークを検出する変位センサを備えてもよい。また、油圧ショベルは、アーム角度センサ14に代えて、アームシリンダ11のストロークを検出する変位センサを備えてもよい。また、油圧ショベルは、バケット角度センサ15に代えて、バケットシリンダ12のストロークを検出する変位センサを備えてもよい。 Further, in the above embodiment, the case where the hydraulic excavator includes a boom angle sensor 13, an arm angle sensor 14, a bucket angle sensor 15, and an inclination angle sensor 16 as posture detectors has been described as an example. Modification is possible without limitation and within a range that does not deviate from the gist of the present invention. For example, the hydraulic excavator may include a displacement sensor that detects the stroke of the boom cylinder 10 instead of the boom angle sensor 13. Further, the hydraulic excavator may include a displacement sensor that detects the stroke of the arm cylinder 11 instead of the arm angle sensor 14. Further, the hydraulic excavator may include a displacement sensor that detects the stroke of the bucket cylinder 12 instead of the bucket angle sensor 15.
 また、上記一実施形態において、通常モードから補正モードに切り替え可能なモード切替装置は、表示装置21及び入力装置22で構成された場合を例にとって説明したが、これに限られず、本発明の趣旨を逸脱しない範囲内で変形が可能である。例えば、モード切替スイッチで構成されてもよい。 Further, in the above embodiment, the mode switching device capable of switching from the normal mode to the correction mode has been described by taking the case of being composed of the display device 21 and the input device 22 as an example, but the present invention is not limited to this. Deformation is possible within the range that does not deviate from. For example, it may be configured by a mode changeover switch.
 また、上記一実施形態において、制御装置32は、図6で示すように、バケット9の基準速度と移動実速度との差分に比例するように補正値を演算する場合を例にとって説明したが、これに限られず、本発明の趣旨を逸脱しない範囲内で変形が可能である。例えば、制御装置32は、バケット9の基準速度と移動実速度との差分が正の値であっても、差分が所定の閾値(正の値)未満であれば補正値をH0=1とし(すなわち、制御値を補正せず)、差分が所定の閾値以上である場合に差分の増加に応じて補正値を増加させてもよい。同様に、バケット9の基準速度と移動実速度との差分が負の値であっても、差分が所定の閾値(負の値)を超えれば補正値をH0=1とし(すなわち、制御値を補正せず)、差分が所定の閾値以下である場合に差分の減少に応じて補正値を減少させてもよい。 Further, in the above embodiment, as shown in FIG. 6, the control device 32 has described the case where the correction value is calculated so as to be proportional to the difference between the reference speed of the bucket 9 and the actual moving speed. Not limited to this, modifications can be made without departing from the spirit of the present invention. For example, the control device 32 sets the correction value to H0 = 1 if the difference between the reference speed of the bucket 9 and the actual moving speed is a positive value but the difference is less than a predetermined threshold value (positive value). That is, the correction value may be increased according to the increase of the difference when the difference is equal to or more than a predetermined threshold value without correcting the control value). Similarly, even if the difference between the reference speed of the bucket 9 and the actual moving speed is a negative value, if the difference exceeds a predetermined threshold value (negative value), the correction value is set to H0 = 1 (that is, the control value is set). (Without correction), the correction value may be reduced according to the decrease in the difference when the difference is equal to or less than a predetermined threshold value.
 また、上記一実施形態において、制御装置32は、制御値に対して乗算する補正値を演算する場合を例にとって説明したが、これに限られず、本発明の趣旨を逸脱しない範囲内で変形が可能である。例えば、制御装置32は、制御値に対して加算する補正値を演算してもよい。 Further, in the above embodiment, the control device 32 has been described by taking the case of calculating the correction value to be multiplied by the control value as an example. It is possible. For example, the control device 32 may calculate a correction value to be added to the control value.
 なお、以上においては、本発明の適用対象として油圧ショベルを例にとって説明したが、これに限られず、他の作業機械であってもよい。 In the above, the hydraulic excavator has been described as an example of the application of the present invention, but the present invention is not limited to this, and other working machines may be used.
 1        車体
 2        作業機
 7        ブーム
 8        アーム
 9        バケット
 13       ブーム角度センサ
 14       アーム角度センサ
 15       バケット角度センサ
 16       傾斜角センサ
 20a,20b  作業用操作装置
 21       表示装置
 22       入力装置
 32       制御装置
1 Body 2 Work equipment 7 Boom 8 Arm 9 Bucket 13 Boom angle sensor 14 Arm angle sensor 15 Bucket angle sensor 16 Tilt angle sensor 20a, 20b Work operation device 21 Display device 22 Input device 32 Control device

Claims (5)

  1.  車体と、
     前記車体に回動可能に連結されたブーム、前記ブームの先端部に回動可能に連結されたアーム、及び前記アームの先端部に回動可能に連結された作業具を有する多関節型の作業機と、
     前記作業機の動作の指示を行う操作装置と、
     前記作業機の姿勢に係る状態量を検出する姿勢検出器と、
     前記姿勢検出器の検出結果に基づいて前記作業機の姿勢を演算し、前記作業具が目標面より下方に侵入しないように前記作業機の動作を制御する制御装置とを備えた作業機械において、
     通常モードと前記作業機の動作を補正する補正モードとを切り替え可能なモード切替装置を備え、
     前記制御装置は、
     前記補正モードに切り替えられたときに、予め設定された前記作業機の基準動作を行わせると共に前記作業具の移動実速度を取得し、予め設定された前記作業具の基準速度と移動実速度との差分に基づいて、前記作業機の動作を制御する制御値に対する補正値を演算し、
     前記通常モードに復帰したときに、前記補正値を用いて前記制御値を補正することを特徴とする作業機械。
    With the car body
    An articulated work having a boom rotatably connected to the vehicle body, an arm rotatably connected to the tip of the boom, and a work tool rotatably connected to the tip of the arm. Machine and
    An operating device that gives instructions for the operation of the work equipment, and
    A posture detector that detects the state quantity related to the posture of the work machine, and
    In a work machine equipped with a control device that calculates the posture of the work machine based on the detection result of the attitude detector and controls the operation of the work machine so that the work tool does not enter below the target surface.
    Equipped with a mode switching device that can switch between the normal mode and the correction mode that corrects the operation of the work equipment.
    The control device is
    When the mode is switched to the correction mode, the preset reference operation of the work equipment is performed and the actual moving speed of the work tool is acquired, and the preset reference speed and the actual movement speed of the work tool are obtained. Based on the difference between, the correction value for the control value that controls the operation of the work machine is calculated.
    A work machine characterized in that when the normal mode is restored, the control value is corrected by using the correction value.
  2.  請求項1に記載の作業機械において、
     前記制御装置は、
     前記補正モードに切り替えられたときに、前記作業機の姿勢が前記基準動作を開始するための初期姿勢であるかどうかを判定し、
     前記作業機の姿勢が前記初期姿勢であって、動作開始のトリガーとして前記操作装置からの指示が入力されたときに、予め設定された制御値を用いて前記作業機の基準動作を行わせることを特徴とする作業機械。
    In the work machine according to claim 1,
    The control device is
    When the mode is switched to the correction mode, it is determined whether or not the posture of the working machine is the initial posture for starting the reference operation.
    When the posture of the work machine is the initial posture and an instruction from the operation device is input as a trigger for starting the operation, the reference operation of the work machine is performed using a preset control value. A work machine characterized by.
  3.  請求項2に記載の作業機械において、
     表示装置を備え、
     前記制御装置は、前記作業機が前記初期姿勢でないときに、その旨を前記表示装置に表示させることを特徴とする作業機械。
    In the work machine according to claim 2,
    Equipped with a display device
    The control device is a work machine characterized in that when the work machine is not in the initial posture, the display device displays to that effect.
  4.  請求項1に記載の作業機械において、
     前記制御装置は、前記姿勢検出器の検出結果に基づいて前記作業具の移動実速度を演算することを特徴とする作業機械。
    In the work machine according to claim 1,
    The control device is a work machine characterized in that the actual moving speed of the work tool is calculated based on the detection result of the posture detector.
  5.  請求項1に記載の作業機械において、
     前記制御装置は、前記作業具の基準速度と移動実速度との差分が正の値である場合に、前記差分の増加に応じて前記補正値を増加させ、前記作業具の基準速度と移動実速度との差分が負の値である場合に、前記差分の減少に応じて前記補正値を減少させることを特徴とする作業機械。
    In the work machine according to claim 1,
    When the difference between the reference speed of the work tool and the actual moving speed is a positive value, the control device increases the correction value according to the increase of the difference, and the reference speed of the work tool and the actual moving speed. A work machine characterized in that when the difference from the speed is a negative value, the correction value is reduced according to the decrease in the difference.
PCT/JP2021/036453 2020-10-01 2021-10-01 Work machine WO2022071584A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-167317 2020-10-01
JP2020167317A JP2023165048A (en) 2020-10-01 2020-10-01 Work machine

Publications (1)

Publication Number Publication Date
WO2022071584A1 true WO2022071584A1 (en) 2022-04-07

Family

ID=80951775

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/036453 WO2022071584A1 (en) 2020-10-01 2021-10-01 Work machine

Country Status (2)

Country Link
JP (1) JP2023165048A (en)
WO (1) WO2022071584A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05118056A (en) * 1991-10-29 1993-05-14 Komatsu Ltd Selection of automatic operation mode of work machine
JPH09291560A (en) * 1996-04-26 1997-11-11 Hitachi Constr Mach Co Ltd Locus controller of construction machine
JP2000034740A (en) * 1998-07-17 2000-02-02 Hitachi Constr Mach Co Ltd Offset hydraulic shovel
WO2015129931A1 (en) * 2014-06-04 2015-09-03 株式会社小松製作所 Construction machine control system, construction machine, and construction machine control method
JP2019019567A (en) * 2017-07-18 2019-02-07 株式会社神戸製鋼所 Control device of construction machine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05118056A (en) * 1991-10-29 1993-05-14 Komatsu Ltd Selection of automatic operation mode of work machine
JPH09291560A (en) * 1996-04-26 1997-11-11 Hitachi Constr Mach Co Ltd Locus controller of construction machine
JP2000034740A (en) * 1998-07-17 2000-02-02 Hitachi Constr Mach Co Ltd Offset hydraulic shovel
WO2015129931A1 (en) * 2014-06-04 2015-09-03 株式会社小松製作所 Construction machine control system, construction machine, and construction machine control method
JP2019019567A (en) * 2017-07-18 2019-02-07 株式会社神戸製鋼所 Control device of construction machine

Also Published As

Publication number Publication date
JP2023165048A (en) 2023-11-15

Similar Documents

Publication Publication Date Title
CN108699801B (en) Working machine
AU2011329243B2 (en) Control system for a machine
JP3811190B2 (en) Area-limited excavation control device for construction machinery
US8340875B1 (en) Lift system implementing velocity-based feedforward control
US8886415B2 (en) System implementing parallel lift for range of angles
JP6807290B2 (en) Work machine
CN107306500B (en) Control device for work machine, and control method for work machine
JPH08333768A (en) Limited area excavation control device for construction machine
US20220186459A1 (en) Hydraulic excavator
WO2018199069A1 (en) Work machine and work machine control method
CN111771027A (en) Working machine
US11118327B2 (en) Work machine
WO2018207267A1 (en) Work machinery
CN111868333B (en) Working machine
US9249555B2 (en) Hydraulic system having fixable multi-actuator relationship
WO2020179204A1 (en) Construction machine
WO2022071584A1 (en) Work machine
WO2022201905A1 (en) Work machine
EP4381141A1 (en) Control of a hydraulic system of a construction machine
WO2023127436A1 (en) Hydraulic system for work machine, and method for controlling hydraulic system for work machine
KR20210013143A (en) Working machine
CN114423907B (en) Engineering machinery
JP7488962B2 (en) Work Machine
WO2023053502A1 (en) Work machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21875880

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21875880

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP