WO2024070585A1 - 家屋モデル生成装置、家屋モデル生成方法、及びプログラム - Google Patents

家屋モデル生成装置、家屋モデル生成方法、及びプログラム Download PDF

Info

Publication number
WO2024070585A1
WO2024070585A1 PCT/JP2023/032834 JP2023032834W WO2024070585A1 WO 2024070585 A1 WO2024070585 A1 WO 2024070585A1 JP 2023032834 W JP2023032834 W JP 2023032834W WO 2024070585 A1 WO2024070585 A1 WO 2024070585A1
Authority
WO
WIPO (PCT)
Prior art keywords
input
house model
house
model
point
Prior art date
Application number
PCT/JP2023/032834
Other languages
English (en)
French (fr)
Inventor
郷太 渡部
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2024070585A1 publication Critical patent/WO2024070585A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • G06Q50/26Government or public services
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T19/00Manipulating 3D models or images for computer graphics
    • G06T19/20Editing of 3D images, e.g. changing shapes or colours, aligning objects or positioning parts

Definitions

  • the present invention relates to a house model generation device, a house model generation method, and a program.
  • Patent Document 1 proposes technology for generating a three-dimensional model from a two-dimensional drawing, with the aim of enabling visual and intuitive recognition of the interior space of a building such as a house from the design stage onwards.
  • 3D models are used for a variety of purposes. For example, 3D models are used in disaster damage certification surveys, property tax-related house surveys (property tax surveys), urban planning surveys, and vacant house management. Furthermore, these 3D models are generated using dedicated generation devices for each intended use. Therefore, when trying to generate 3D models for different intended uses, it was necessary to use different generation devices, which meant that 3D models could not be generated efficiently.
  • Patent Document 1 only mentions the generation of 3D models for the design of buildings such as houses, and does not mention the generation of 3D models for other purposes.
  • the present invention has been made in consideration of these circumstances, and its purpose is to provide a house model generation device, a house model generation method, and a program that can efficiently generate house models for different uses.
  • the house model generating device which is one aspect of the present invention for achieving the above object, is a house model generating device that includes a memory that stores information on the types of part models that constitute multiple house models that can be generated in accordance with each of multiple usage applications of a three-dimensional house model, and interpretation information on the relationship between input points and feature points of the part for each of the multiple part types, and a processor, in which the processor accepts a selection of a usage application of the house model to be generated from among the multiple usage applications, accepts designation of one part type from among the multiple part types that can be generated in accordance with the selected usage application, accepts input points that are input by being designated on a display unit, and generates a part model that constitutes a house model according to the specified part type based on the input points and the interpretation information.
  • the memory stores information regarding a shape input menu for inputting information regarding the shapes of multiple body part types according to each of multiple usage applications
  • the processor accepts input from the shape input menu according to the specified body part type, and generates a body part model that constitutes a house model according to the specified body part type based on the input from the shape input menu.
  • the multiple uses of the house model include two or more of residential damage certification survey work, fixed property tax survey work, urban planning work, and vacant house management work.
  • the interpretation information is information regarding the relationship that when a point on the ground surface is input as an input point on the display unit, the input point constitutes a feature point of the exterior wall of the first floor.
  • the interpretation information is information regarding the relationship that when a point on the ceiling surface of the floor directly below on the display unit is input as an input point, the input point constitutes a feature point of the exterior wall of the second floor or higher.
  • the interpretation information is information regarding the relationship that when a point within the surface of the exterior wall on the display unit is input as an input point, the input point constitutes a feature point of the window.
  • the interpretation information is information regarding the relationship that when a point within the surface of the exterior wall on the display unit is input as an input point, the input point constitutes a feature point of the door.
  • the interpretation information is information regarding the relationship that when a point on the display unit is input as an input point, the input point constitutes a feature point of the exterior wall, and a part model of the exterior wall and the roof provided on the exterior wall is generated based on the input point and the interpretation information.
  • the processor accepts the selection of a location on the part model on the display unit, and stores state information of the part model in association with the selected location.
  • the processor places an image showing the status information of the part model on the surface of the part model displayed on the display unit.
  • the processor displays the generated part model on a display unit and accepts an instruction to move the position of the part model.
  • the part types are exterior walls, interior walls, roofs, foundations, pillars, beams, floors, ceilings, fixtures, windows, doors, and equipment.
  • a house model generation method is a method executed by a processor in a house model generation device having a memory that stores information on the types of part models constituting multiple house models that can be generated in accordance with each of multiple uses of a three-dimensional house model, and interpretation information on the relationship between input points and feature points of the part for each of the multiple part types, and includes the steps of accepting a selection of a use of the house model to be generated from among the multiple uses, accepting designation of one part type from among the multiple part types that can be generated in accordance with the selected use, accepting input points input by designation on a display unit, and generating part models constituting a house model according to the designated part type based on the input points and the interpretation information.
  • a program according to another aspect of the present invention is a program executed by a processor in a house model generating device having a memory that stores information regarding the types of part models that constitute multiple house models that can be generated in accordance with each of multiple uses of a three-dimensional house model, and interpretation information regarding the relationship between input points and feature points of the part for each of the multiple part types, and includes the steps of accepting a selection of a use of the house model to be generated from among the multiple uses, accepting designation of one part type from among the multiple part types that can be generated in accordance with the selected use, accepting input points that are input by designation on a display unit, and generating part models that constitute a house model in accordance with the designated part type based on the input points and the interpretation information.
  • the selection of the intended use of the house model is accepted, and part models that make up the house model are generated according to that intended use, so that part models can be generated efficiently.
  • FIG. 1 is a block diagram showing an embodiment of a hardware configuration of a house model generating device.
  • FIG. 2 is a diagram showing an example of the storage configuration of part type information for a residential damage certification survey.
  • FIG. 3 is a diagram showing an example of a storage configuration of interpretation information of a residential damage certification survey.
  • FIG. 4 is a functional block diagram showing the main functions of the processor.
  • FIG. 5 is a flow diagram showing a house model generating method.
  • FIG. 6 is a diagram illustrating an example of a user interface.
  • FIG. 7 is a diagram for explaining an input point specified on the display unit.
  • FIG. 8 is a diagram showing an example of a part model of a first floor exterior wall.
  • FIG. 9 is a diagram for explaining the position adjustment of a regional model.
  • FIG. 1 is a block diagram showing an embodiment of a hardware configuration of a house model generating device.
  • FIG. 2 is a diagram showing an example of the storage configuration of part type information for a residential
  • FIG. 10 is a diagram for explaining a specific example 1 of storage of state information.
  • FIG. 11 is a diagram for explaining a second specific example of storage of state information.
  • FIG. 12 is a diagram illustrating an example of a user interface.
  • FIG. 13 is a diagram for explaining an input point specified on the display unit.
  • FIG. 14 is a diagram showing an example of a part model of a first floor exterior wall.
  • FIG. 15 is a diagram illustrating an example of a user interface.
  • FIG. 16 is a diagram for explaining a part model of a roof.
  • FIG. 17 is a diagram illustrating an example of a user interface.
  • FIG. 18 is a diagram for explaining another example of the input point receiving step and the part model generating step.
  • FIG. 19 is a diagram for explaining another example of the input point receiving step and the part model generating step.
  • FIG. 1 is a block diagram showing an embodiment of the hardware configuration of the house model generation device 100.
  • the house model generation device 100 is configured using a computer.
  • the computer applied to the house model generation device 100 may be a server, a personal computer, or a workstation.
  • the house model generating device 100 includes a processor 110, a memory 120, a database (inventive memory) 130, a display unit 140, an input/output interface 150, and an operation unit 160.
  • the processor 110 is composed of a CPU (Central Processing Unit) and other components, and controls each part of the house model generation device 100.
  • the processor 110 also performs processes related to the usage selection process, part type selection process, input point reception process, part model generation process, position adjustment process, and damage storage process, which will be described later (see FIG. 5).
  • Memory 120 includes flash memory, ROM (Read-only Memory), RAM (Random Access Memory), a hard disk drive, etc. Flash memory, ROM, or a hard disk drive is a non-volatile memory that stores various programs, including an operating system. RAM functions as a working area for processing by processor 110, and temporarily stores programs, etc. stored in flash memory, etc. Note that processor 110 may have a portion of memory 120 (RAM) built in.
  • RAM Random Access Memory 120
  • the database 130 stores programs and data required for generating a house model.
  • the database 130 stores part type information and interpretation information.
  • the part type information is information about part types that can be generated according to the use of the house model. Specific examples of part types include exterior walls, interior walls, roofs, foundations, columns, beams, floors, ceilings, fittings, windows, doors, and equipment.
  • the interpretation information is information about the relationship between the input points and the feature points of each part type.
  • the database 130 can also store information about the shape input menu.
  • the information about the shape input menu is information about the shape input menu for inputting information about the shape of each part type.
  • the database 130 stores the part type information, interpretation information, and information about the shape input menu for each use.
  • the database 130 can also provide the information stored in the processor 110 via a network (not shown). In that case, the database 130 provides the information stored in the processor 110 via the input/output interface 150.
  • Figure 2 shows an example of the storage configuration of part type information stored in database 130 when the intended use is a residential damage certification survey.
  • the component models that can be generated are the exterior walls of the first floor, the exterior walls of the second floor and above, windows, doors, and roofs. In the case of residential damage assessment surveys, these component models can be used to generate a house model, allowing necessary and sufficient information to be recorded.
  • the house model is composed of one or more component models.
  • Figure 3 shows an example of the storage configuration of interpretation information stored in database 130 when the intended use is a residential damage certification survey.
  • a part model is generated based on the interpretation information shown in FIG. 3 as described below, so that there is a relationship between the input points and the feature points of the generated part model. Note that the input points in the following description are input by the user on the display unit 140 via the operation unit 160.
  • a part model for the exterior wall on the first floor When generating a part model for the exterior wall on the first floor, if a point on the ground surface is specified as the input point, a part model for the exterior wall on the first floor is generated so that the specified input point constitutes the feature point of the exterior wall on the first floor.
  • a part model for the exterior wall on the second floor or higher if a point on the ceiling surface of the floor directly below is specified as the input point, a part model for the exterior wall on the second floor or higher is generated so that the specified input point constitutes the feature point of the exterior wall on the second floor or higher.
  • a part model for a window When generating a part model for a window, if a point on the surface of the exterior wall is specified as the input point, a part model for the window is generated so that the specified input point constitutes the feature point of the window.
  • a part model for a door if a point on the surface of the exterior wall is specified as the input point, a part model for the door is generated so that the specified input point constitutes the feature point of the door.
  • a part model for the roof When generating a part model for a roof, a part model for the roof is generated using a model that is predetermined based on the feature points of the exterior wall.
  • database 130 stores part type information and interpretation information for fixed asset tax survey work, urban planning survey work, and vacant house management work, for example, but the explanation of these will be omitted here.
  • the display unit 140 performs various displays required for generating a house model in response to instructions from the processor 110.
  • the display unit 140 displays a user interface through which the user inputs information when generating a house model, the generated part models, and a house model composed of one or more part models.
  • the display unit 140 can also display status information stored in association with the generated house model, images showing the status information (e.g., damage images), etc.
  • the display unit 140 is also used as part of a GUI (Graphical User Interface) when various information is received from the operation unit 160.
  • the processor 110 functions as a display control unit and controls the display of the display unit 140.
  • the input/output interface 150 includes a connection unit that can be connected to an external device, and a communication unit that can be connected to a network.
  • a connection unit that can be connected to an external device a USB (Universal Serial Bus), HDMI (High-Definition Multimedia Interface) (HDMI is a registered trademark), etc. can be applied.
  • the operation unit 160 includes a pointing device such as a mouse, a keyboard, etc. It also functions as part of the display unit 140 and the operation unit 160 that accepts various information and instruction inputs by user operations.
  • FIG. 4 is a functional block diagram showing the main functions of the processor 110 of the house model generation device 100 shown in FIG. 1.
  • the processor 110 can realize the functions described below by executing a dedicated program stored in the memory 120 or the database 130.
  • the processor 110 comprises a use selection receiving unit 110A, a part type designation receiving unit 110B, an input point receiving unit 110C, a part model generating unit 110D, a position adjustment unit 110E, and a memory control unit 110F.
  • the use selection receiving unit 110A receives a selection of the use of the house model to be generated through input from the user.
  • the part type designation receiving unit 110B receives a designation of one part type from among a plurality of part types that can be generated according to the selected use through input from the user.
  • the input point receiving unit 110C receives an input point input by a user designation on the display unit 140.
  • the part model generating unit 110D generates a part model according to the designated part type based on the input point and interpretation information.
  • the position adjustment unit 110E receives an instruction to move the position of the generated part model displayed on the display unit 140, and moves the position of the part model.
  • the storage control unit 110F accepts the selection of a location on the part model on the display unit 140, and stores the state information of the part model in association with the selected location.
  • the house model generation method is performed by the processor 110 executing a dedicated program stored in the memory 120 or the database 130.
  • FIG. 5 is a flow diagram showing the house model generation method. First, the flow of each process will be explained, followed by a detailed explanation.
  • the use selection receiving unit 110A receives the selection of the use of the house model (use selection process: step S01).
  • the part type designation receiving unit 110B receives the designation of the part type (part type selection process: step S02).
  • the input point receiving unit 110C receives the input point (input point receiving process: step S03).
  • the part model generating unit 110D generates a part model according to the input point (part model generating process: step S04).
  • the position adjustment unit 110E moves the generated part model (position adjustment process: step S05).
  • the memory control unit 110F stores the state information of the part model in association with the part model (damage storage process: step S06).
  • the house model generation device 100 of the present invention can generate house models for various intended uses, as described below. Therefore, the house model generation device 100 can efficiently generate house models according to intended use, without changing the house model generation device.
  • condition information e.g., damage images
  • the user selects the use of the house model. For example, the user selects one use from among residential damage certification survey work, fixed asset tax survey work, urban planning survey work, and vacant house management work.
  • the user uses the operation unit 160 to select residential damage certification survey.
  • FIG. 6 is a diagram illustrating an example of a user interface UI displayed on the display unit 140.
  • the user interface UI is composed of a usage display A, a part type menu display B, and an operation menu display C.
  • the usage display A displays a residential damage certification survey.
  • the part type menu display B displays the part types that can be generated, such as exterior walls, roofs, foundations, and doors, based on the part type information (see FIG. 2).
  • the operation menu display C displays information related to operations when generating part models. For example, an exterior wall part model is added by adding a structural frame. A roof part model is added (automatically) based on the position of an exterior wall when an exterior wall (structural frame) is added for a gable roof. A foundation is displayed for the foundation part model.
  • the user uses the user interface UI to select the type of part to be generated. For example, the user selects exterior wall in part type menu display B, and first floor and add structure in operation menu display C. This causes part type designation receiving unit 110B to accept the designation of the exterior wall for the first floor. Note that the part model of the exterior wall is generated as an exterior wall that constitutes the structure (see Figure 8).
  • FIG. 7 is a diagram explaining the input point specified on the display unit 140.
  • the user inputs a first input point and a second input point on the display unit 140, for example, using a pointing device constituting the operation unit 160, and the input point reception unit 110C receives the positions (for example, coordinates) of the first input point and the second input point.
  • a rectangular shape is set by inputting the first input point and the second input point diagonally opposite the first input point. This rectangular shape is composed of the first input point to the fourth input point (see FIG. 8), which will be described later.
  • a part model of the exterior wall of the first floor is formed with the input points as the four corner points (characteristic points) of the first floor based on the interpretation information (see FIG.
  • the part model of the exterior wall of the first floor generated based on the first input point to the fourth input point will be described.
  • the input points may be input on a map stored in the database 130 in advance, which is displayed on the display unit 140. In that case, the part model is generated at the position on the map where the input points were input.
  • Figure 8 shows an example of a generated partial model of a first floor exterior wall.
  • the part model generation unit 110D generates a part model (structure) of the first floor exterior wall.
  • FIG. 8(A) shows a top view of part model M1 of the first floor exterior wall
  • FIG. 8(B) shows a side view of part model M1.
  • Partial model M1 is a partial model of the first floor exterior wall, with the first input point to the fourth input point as its four corners.
  • partial model 3 of the gable roof is also generated based on exterior walls 1 to 4, which are generated based on the first input point to the fourth input point.
  • Position adjustment unit 110E receives an instruction from the user to move the part model displayed on display unit 140. Then, position adjustment unit 110E moves the part model displayed on display unit 140. This allows the user to adjust the position of the part model.
  • Figure 9 is a diagram explaining how to adjust the position of the part model.
  • the display unit 140 displays a movement input user interface 202 and a house model display 204.
  • the movement input user interface 202 displays a movement adjustment bar 208.
  • the user can input a movement instruction for the window part model 206 by moving the pointer 208a of the movement adjustment bar 208.
  • the position adjustment unit 110E moves the window part model 206 relative to the part model M1 in accordance with the movement instruction input via the movement adjustment bar 208. For example, the position adjustment unit 110E moves the window part model 206 in conjunction with the movement of the pointer 208a.
  • the position adjustment unit 110E receives an instruction to move the part model and moves the part model in accordance with the movement instruction. This makes it possible to adjust the position of the part model and generate a house model as intended by the user.
  • step S06 the damage storage step
  • the generated house model and the state information of the actual house are stored in association with each other.
  • the storage control unit 110F receives a selection of a location on the part model on the display unit 140, and stores the state information of the part model in association with the selected location.
  • Figure 10 is a diagram explaining specific example 1 of storing state information.
  • the display unit 140 displays the first floor exterior wall part model M1.
  • the exterior wall 1 of the first floor exterior wall part model M1 is displayed divided into grids.
  • the display unit 140 also displays a damage image 210 (an image showing condition information).
  • This damage image 210 is an image of the exterior wall corresponding to the part model M1.
  • the user selects one section of the part model M1, and the storage control unit 110F associates the selected grid with the damage image 210 and stores them.
  • the storage control unit 110F associates the locations on the part model M1 with the damage image 210 and stores them in the database 130. This allows the generated house model to be used more effectively when conducting a residential damage assessment survey.
  • Figure 11 is a diagram explaining specific example 2 of storing state information.
  • the display unit 140 displays an image editing display S and a damage image display T.
  • a part model M1 of the first floor exterior wall is displayed, and a damage image 210 is displayed as a texture on the surface (exterior wall) of the part model M1.
  • the texture display of this damage image 210 can be performed at any size and any position. Therefore, the user can display the damage image 210 as a texture according to the position of damage on the actual house.
  • the storage control unit 110F associates the part model M1 with the texture-displayed damage image 210 and stores them in the database 130.
  • the damage image 210 that displays the texture can be edited.
  • the damage image 210 that displays the texture can be cut and edited.
  • the damage image 210 is used as the status information or an image showing the status information, but examples of the status information or an image showing the status information are not limited to the damage image.
  • the storage control unit 110F places the damage image 210 on the surface of the part model M1, associates the part model M1 with the damage image 210, and stores them in the database 130. This allows the generated house model to be used more effectively when conducting a residential damage assessment survey.
  • the house model generating device 100 can generate a house model to be used in a fixed property tax investigation, similar to the house model to be used in the residential damage certification investigation described above. Therefore, the house model generating device 100 can efficiently generate a house model according to the intended use, without changing the house model generating device. Note that the explanation of the parts that have already been explained in the first embodiment described above will be omitted, and the explanation will focus on the parts that differ from the first embodiment.
  • three-dimensional house models are also used in fixed property tax surveys (house surveys related to fixed property tax), which are a local government task.
  • Fixed property tax surveys require a lot of time to create drawings to record the expanded or remodeled parts in three dimensions, enter evaluations, and register the data in the system. Therefore, the house model generation device 100 easily generates a house model that has the necessary and sufficient accuracy for the fixed property tax survey. This allows the fixed property tax survey to be conducted more efficiently.
  • FIG. 12 is a diagram illustrating an example of a user interface UI displayed on the display unit 140.
  • the user interface UI is composed of a usage display A, a part type menu display B, and an operation menu display C.
  • the usage display A displays a fixed asset tax investigation.
  • the part type menu display B displays an exterior wall as a part type that can be generated.
  • the operation menu display C displays a menu display for inputting dimensions.
  • the user then inputs a floor area of 100 m2 via the operation unit 160. This causes the part type designation receiving unit 110B to receive the designation of the exterior wall and the input of the exterior wall shape input menu.
  • the operation menu for the part model is configured as a shape input menu display for inputting dimensions as shown in the figure, and a method is switched to create a part model based on the input dimensions.
  • database 130 stores information regarding the shape input menu for inputting information regarding the shapes of multiple part types according to each use. Specifically, when the use is a property tax survey and a part model of an exterior wall is generated, database 130 stores that a menu display for inputting dimensions is displayed as a shape input menu.
  • FIG. 13 is a diagram explaining the input point specified on the display unit 140.
  • the user specifies the point (feature point) on the map that is the center coordinate of the structure 1 as the first input point.
  • the model of the exterior wall part is generated as the structure.
  • Figure 14 shows an example of a generated partial model of a first floor exterior wall.
  • the part model generation unit 110D generates a part model M2 of the first floor exterior wall that satisfies the specified dimensions (floor area of 100 m2 ) and is centered on the coordinates (input point) specified in Fig. 13.
  • the part model of the first floor exterior wall can be edited by changing the dimensions in the operation menu, or by moving, adding, or deleting vertices of the part model of the first exterior wall.
  • FIG. 15 is a diagram illustrating an example of a user interface UI displayed on the display unit 140.
  • the user interface UI is composed of a use purpose display A, a part type menu display B, and an operation menu display C.
  • the use purpose display A displays a fixed property tax investigation.
  • the part type menu display B displays roofs as part types that can be generated.
  • the operation menu display C displays a menu display for inputting the slope and eaves dimensions.
  • the user then inputs a slope of 5/10 and an eaves overhang of 15 cm via the operation unit 160.
  • This causes the part type designation reception unit 110B to accept the designation of the roof and the input of the roof shape input menu.
  • the database 130 stores that a menu display for inputting the slope and eaves dimensions as a shape input menu is displayed when generating a roof part model.
  • FIG. 16 is a diagram explaining the roof part model in this embodiment.
  • the generated roof part model M3 reflects the slope and overhang dimensions entered in the shape input menu. Specifically, as shown in the enlarged view V, part model M3 has been generated so that the overhang dimensions are 15 cm, and the slope Q is 5/10.
  • ⁇ Third embodiment/urban planning survey>> an example of generating a part model constituting a house model when the usage is urban planning survey will be described.
  • a house model used in urban planning surveys can be generated similarly to the house models used in the above-mentioned residential damage certification survey and fixed property tax survey. Therefore, in the house model generating device 100, a house model can be efficiently generated according to the usage without changing the house model generating device. Note that the explanation of the parts already explained in the first and second embodiments will be omitted, and the explanation will be centered on the parts different from the first and second embodiments.
  • the urban planning survey the purpose is to collect information on the current usage of the building, and detailed shape information is not required. Therefore, a menu of only the minimum necessary exterior walls is displayed in advance.
  • FIG. 17 is a diagram illustrating an example of a user interface UI displayed on the display unit 140.
  • the user interface UI is composed of a usage display A, a part type menu display B, an operation menu display C, and a building structure D.
  • the usage display A displays urban planning surveys.
  • the part type menu display B displays only the minimum necessary exterior walls as part types that can be generated.
  • the operation menu display C displays a menu display for inputting dimensions.
  • Wood construction is selected and displayed as the building structure. Examples of building structure types include wood construction, storehouse construction, steel reinforced concrete construction, reinforced concrete construction, steel construction, light steel construction, brick construction, concrete block construction, and stone construction. The user selects and inputs one of these building structure types via the operation unit 160.
  • FIGS. 18 and 19 are diagrams illustrating other examples of the input point reception process and the part model generation process.
  • the first input point, second input point, third input point, and fourth input point are input so as to form a rectangular shape using the pointing device constituting the operation unit 160.
  • the first input point to the fourth input point are also specified within the ceiling surface of the first floor.
  • the input point receiving unit 110C receives the input of the first input point to the fourth input point.
  • the interpretation information creates a part model M2 of the second floor exterior wall with the first to fourth input points as the four corner points (characteristic points) of the second floor.
  • Figure 19 shows an example of a generated partial model of a second floor exterior wall.
  • Part model M4 is a part model of the second floor exterior wall with the first to fourth input points as its four corners. In this way, for part model M4 of the second floor exterior wall in a residential damage certification survey, a part model with the necessary and sufficient accuracy for the residential damage certification survey can be easily generated.
  • the hardware structure of the processing units (application selection reception unit 110A, part type designation reception unit 110B, input point reception unit 110C, part model generation unit 110D, position adjustment unit 110E, storage control unit 110F, display control unit) that execute various processes is various processors as shown below.
  • the various processors include a CPU (Central Processing Unit), which is a general-purpose processor that executes software (programs) and functions as various processing units, a programmable logic device (PLD), which is a processor whose circuit configuration can be changed after manufacture such as an FPGA (Field Programmable Gate Array), and a dedicated electric circuit, which is a processor having a circuit configuration designed specifically to execute specific processes such as an ASIC (Application Specific Integrated Circuit), and the like.
  • a CPU Central Processing Unit
  • PLD programmable logic device
  • FPGA Field Programmable Gate Array
  • ASIC Application Specific Integrated Circuit
  • a single processing unit may be configured with one of these various processors, or may be configured with two or more processors of the same or different types (e.g., multiple FPGAs, or a combination of a CPU and an FPGA). Multiple processing units may also be configured with one processor. Examples of multiple processing units configured with one processor include, first, a form in which one processor is configured with a combination of one or more CPUs and software, as represented by computers such as clients and servers, and this processor functions as multiple processing units. Second, a form in which a processor is used that realizes the functions of the entire system, including multiple processing units, with a single IC (Integrated Circuit) chip, as represented by a system on chip (SoC). In this way, the various processing units are configured using one or more of the various processors described above as a hardware structure.
  • SoC system on chip
  • the hardware structure of these various processors is an electrical circuit that combines circuit elements such as semiconductor elements.
  • the above-mentioned configurations and functions can be realized as appropriate by any hardware, software, or a combination of both.
  • the present invention can be applied to a program that causes a computer to execute the above-mentioned processing steps (processing procedures), a computer-readable recording medium (non-transitory recording medium) on which such a program is recorded, or a computer on which such a program can be installed.
  • Reference Signs List 100 House model generating device 110: Processor 110A: Use selection receiving unit 110B: Part type designation receiving unit 110C: Input point receiving unit 110D: Part model generating unit 110E: Position adjustment unit 110F: Storage control unit 120: Memory 130: Database 140: Display unit 150: Input/output interface 160: Operation unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Tourism & Hospitality (AREA)
  • General Physics & Mathematics (AREA)
  • Economics (AREA)
  • Health & Medical Sciences (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • General Health & Medical Sciences (AREA)
  • General Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Educational Administration (AREA)
  • Development Economics (AREA)
  • Architecture (AREA)
  • Computer Graphics (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Software Systems (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

利用用途に応じて、必要十分な正確性を有する家屋モデルを簡便に生成することができる家屋モデル生成装置、家屋モデル生成方法、及びプログラムを提供する。家屋モデル生成装置(100)は、プロセッサ(110)を備える。プロセッサ(110)は、複数の利用用途のうち、生成する家屋モデルの利用用途の選択を受け付け、選択された利用用途に応じて、生成可能な複数の部位種別のうちから一つの部位種別の指定を受け付け、表示部上で指定されることにより入力される入力点を受け付け、入力点と解釈情報に基づいて、指定された部位種別に応じた家屋モデルを構成する部位モデルを生成する。

Description

家屋モデル生成装置、家屋モデル生成方法、及びプログラム
 本発明は、家屋モデル生成装置、家屋モデル生成方法、及びプログラムに関する。
 従来、3次元モデルを用途に合わせて生成する技術が提案されてきた。
 例えば特許文献1では、住宅などの建築物の設計段階から、室内空間を視覚的かつ直感的に認識できることを目的として、2次元の図面から3次元モデルを生成するための技術が提案されている。
特開2009-258823号公報
 現在では3次元モデルは、様々な用途に利用されている。例えば、災害時の住家被害認定調査、固定資産税に係る家屋調査(固定資産税調査)、都市計画調査、及び空き家管理業務において、3次元モデルが利用されている。また、これらの3次元モデルは、利用用途毎に専用の生成装置で生成されている。したがって、利用用途が異なる3次元モデルを生成しようとした場合に、別の生成装置を使用して生成しなければならず、効率的な3次元モデルの生成が行われていなかった。
 上述した特許文献1では、住宅などの建築物を設計する場合についての3次元モデルを生成することのみに言及しており、他の用途における3次元モデルの生成に関しては言及されていない。
 本発明はこのような事情に鑑みてなされたもので、その目的は、利用用途の異なる家屋モデルを効率的に生成することができる家屋モデル生成装置、家屋モデル生成方法、及びプログラムを提供することである。
 上記目的を達成するための本発明の一の態様である家屋モデル生成装置は、3次元の家屋モデルの複数の利用用途のそれぞれに応じて、生成可能な複数の家屋モデルを構成する部位モデルの種別に関する情報、及び複数の部位種別のそれぞれに入力点と部位の特徴点との関係性に関する解釈情報を記憶するメモリと、プロセッサとを備える家屋モデル生成装置であって、プロセッサは、複数の利用用途のうち、生成する家屋モデルの利用用途の選択を受け付け、選択された利用用途に応じて、生成可能な複数の部位種別のうちから一つの部位種別の指定を受け付け、表示部上で指定されることにより入力される入力点を受け付け、入力点と解釈情報に基づいて、指定された部位種別に応じた家屋モデルを構成する部位モデルを生成する。
 好ましくは、メモリは、複数の利用用途のそれぞれに応じて、複数の部位種別の形状に関する情報を入力する形状入力メニューに関する情報を記憶し、プロセッサは、指定された部位種別に応じて、形状入力メニューの入力を受け付け、形状入力メニューの入力に基づいて、指定された部位種別に応じた家屋モデルを構成する部位モデルを生成する。
 好ましくは、家屋モデルの複数の利用用途は、住家被害認定調査業務、固定資産税調査業務、都市計画業務、及び空き家管理業務のうち2以上の用途を含む。
 好ましくは、部位種別が1階の外壁である場合の解釈情報は、表示部上において地上面の点が入力点として入力されると、入力点が1階の外壁の特徴点を構成するという関係性に関する情報である。
 好ましくは、部位種別が2階以上の外壁である場合の解釈情報は、表示部上の直下階の天井面内の点が入力点として入力されると、入力点が2階以上の外壁の特徴点を構成するという関係性に関する情報である。
 好ましくは、部位種別が窓である場合の解釈情報は、表示部上の外壁の面内の点が入力点として入力されると、入力点が窓の特徴点を構成するという関係性に関する情報である。
 好ましくは、部位種別がドアである場合の解釈情報は、表示部上の外壁の面内の点が入力点として入力されると、入力点がドアの特徴点を構成するという関係性に関する情報である。
 好ましくは、部位種別が外壁である場合の解釈情報は、表示部上の点が入力点として入力されると、入力点が外壁の特徴点を構成するという関係性に関する情報であり、入力点と解釈情報に基づいて、外壁及び外壁に設けられる屋根の部位モデルを生成する。
 好ましくは、プロセッサは、表示部上において部位モデル上の箇所の選択を受け付け、選択された箇所と関連付けて、部位モデルの状態情報を記憶する。
 好ましくは、プロセッサは、表示部に表示された部位モデルの表面に、部位モデルの状態情報を示す画像を配置する。
 好ましくは、プロセッサは、生成された部位モデルを表示部に表示し、部位モデルの位置の移動指示を受け付ける。
 好ましくは、部位種別は、外壁、内壁、屋根、基礎、柱、梁、床、天井、建具、窓、ドア、及び設備である。
 本発明の他の態様である家屋モデル生成方法は、3次元の家屋モデルの複数の利用用途のそれぞれに応じて、生成可能な複数の家屋モデルを構成する部位モデルの種別に関する情報、及び複数の部位種別のそれぞれに入力点と部位の特徴点との関係性に関する解釈情報を記憶するメモリと、プロセッサとを備える家屋モデル生成装置におけるプロセッサが実行する家屋モデル生成方法であって、複数の利用用途のうち、生成する家屋モデルの利用用途の選択を受け付けるステップと、選択された利用用途に応じて、生成可能な複数の部位種別のうちから一つの部位種別の指定を受け付けるステップと、表示部上で指定されることにより入力される入力点を受け付けるステップと、入力点と解釈情報に基づいて、指定された部位種別に応じた家屋モデルを構成する部位モデルを生成するステップと、を含む。
 本発明の他の態様であるプログラムは、3次元の家屋モデルの複数の利用用途のそれぞれに応じて、生成可能な複数の家屋モデルを構成する部位モデルの種別に関する情報、及び複数の部位種別のそれぞれに入力点と部位の特徴点との関係性に関する解釈情報を記憶するメモリと、プロセッサとを備える家屋モデル生成装置におけるプロセッサが実行するプログラムであって、複数の利用用途のうち、生成する家屋モデルの利用用途の選択を受け付けるステップと、選択された利用用途に応じて、生成可能な複数の部位種別のうちから一つの部位種別の指定を受け付けるステップと、表示部上で指定されることにより入力される入力点を受け付けるステップと、入力点と解釈情報に基づいて、指定された部位種別に応じた家屋モデルを構成する部位モデルを生成するステップと、を含む。
 本発明によれば、家屋モデルの利用用途の選択を受け付け、その利用用途に応じて家屋モデルを構成する部位モデルを生成するので、効率的に部位モデルを生成することができる。
図1は、家屋モデル生成装置のハードウェア構成の実施形態を示すブロック図である。 図2は、住家被害認定調査の部位種別情報の記憶構成例を示す図である。 図3は、住家被害認定調査の解釈情報の記憶構成例を示す図である。 図4は、プロセッサの主な機能を示す機能ブロック図である。 図5は、家屋モデル生成方法を示すフロー図である。 図6は、ユーザインターフェースの一例を説明する図である。 図7は、表示部上で指定される入力点に関して説明する図である。 図8は、1階外壁の部位モデルの例を示す図である。 図9は、部位モデルの位置調整に関して説明する図である。 図10は、状態情報の記憶の具体例1に関して説明する図である。 図11は、状態情報の記憶の具体例2に関して説明する図である。 図12は、ユーザインターフェースの一例を説明する図である。 図13は、表示部上で指定される入力点に関して説明する図である。 図14は、1階外壁の部位モデルの例を示す図である。 図15は、ユーザインターフェースの一例を説明する図である。 図16は、屋根の部位モデルに関して説明する図である。 図17は、ユーザインターフェースの一例を説明する図である。 図18は、入力点受付工程及び部位モデル生成工程の他の例を説明する図である。 図19は、入力点受付工程及び部位モデル生成工程の他の例を説明する図である。
 以下、添付図面にしたがって本発明に係る家屋モデル生成装置、家屋モデル生成方法、及びプログラムの好ましい実施の形態について説明する。
 図1は、家屋モデル生成装置100のハードウェア構成の実施形態を示すブロック図である。なお、家屋モデル生成装置100は、コンピュータを用いて構成される。家屋モデル生成装置100に適用されるコンピュータは、サーバであってもよいし、パーソナルコンピュータであってもよく、ワークステーションであってもよい。
 家屋モデル生成装置100は、プロセッサ110、メモリ120、データベース(発明上のメモリ)130、表示部140、入出力インターフェース150、及び操作部160を備える。
 プロセッサ110は、CPU(Central Processing Unit)等から構成され、家屋モデル生成装置100の各部を統括制御する。また、プロセッサ110は、後で説明する利用用途選択工程、部位種別選択工程、入力点受付工程、部位モデル生成工程、位置調整工程、及び損傷記憶工程に関する処理を行う(図5参照)。
 メモリ120は、フラッシュメモリ、ROM(Read-only Memory)、及びRAM(Random Access Memory)、ハードディスク装置等を含む。フラッシュメモリ、ROM又はハードディスク装置は、オペレーションシステムを含む各種のプログラム等を記憶する不揮発性メモリである。RAMは、プロセッサ110による処理の作業領域として機能するとともに、フラッシュメモリ等に格納されたプログラム等を一時的に記憶する。なお、プロセッサ110が、メモリ120の一部(RAM)を内蔵していてもよい。
 データベース130は、家屋モデルの生成において必要なプログラム及びデータを記憶している。例えば、データベース130は、部位種別情報及び解釈情報を記憶する。ここで、部位種別情報は、家屋モデルの利用用途に応じて生成可能な部位種別に関する情報である。部位種別の具体例として、外壁、内壁、屋根、基礎、柱、梁、床、天井、建具、窓、ドア、及び設備が挙げられる。また、解釈情報は、部位種別のそれぞれに入力点と部位の特徴点との関係性に関する情報である。また、データベース130は、形状入力メニューに関する情報も記憶することができる。ここで、形状入力メニューに関する情報は、部位種別ごとの形状に関する情報を入力する形状入力メニューに関する情報である。データベース130は、利用用途ごとに、上述した部位種別情報、解釈情報、形状入力メニューに関する情報を記憶する。なお、データベース130は、ネットワーク(不図示)を介して、プロセッサ110に記憶されている情報を提供することもできる。その場合には、データベース130は、入出力インターフェース150を介して、プロセッサ110に記憶されている情報を提供する。
 図2は、データベース130に記憶されている、利用用途が住家被害認定調査である場合の部位種別情報の記憶構成例を示す図である。
 住家被害認定調査の場合には、生成可能な部位モデルは、1階の外壁、2階以上の外壁、窓、ドア、及び屋根である。住家被害認定調査の場合には、これらの部位モデルを使用して家屋モデルを生成することにより、必要十分な情報を記録することができる。なお、家屋モデルは、1つ又は2以上の部位モデルで構成される。
 図3は、データベース130に記憶されている、利用用途が住家被害認定調査である場合の解釈情報の記憶構成例を示す図である。
 住家被害認定調査では、以下に説明するように図3で示す解釈情報に基づいて、入力点と生成される部位モデルの特徴点とが関係性を有するように部位モデルが生成される。なお、以下の説明の入力点は表示部140上に操作部160を介してユーザにより入力される。
 1階の外壁の部位モデルを生成する場合には、地上面の点が入力点として指定されると、指定された入力点が1階の外壁の特徴点を構成するように、1階の外壁の部位モデルが生成される。また、2階以上の外壁の部位モデルを生成する場合には、直下階の天井面内の点が入力点として指定されると、指定された入力点が2階以上の外壁の特徴点を構成するように、2階以上の外壁の部位モデルが生成される。また、窓の部位モデルを生成する場合には、外壁の面内の点が入力点として指定されると、指定された入力点が窓の特徴点を構成するように、窓の部位モデルが生成される。また、ドアの部位モデルを生成する場合には、外壁の面内の点が入力点として指定されると、指定された入力点がドアの特徴点を構成するように、ドアの部位モデルが生成される。また、屋根の部位モデルを生成する場合には、外壁の特徴点に基づいて予め決められたモデルで屋根の部位モデルが生成される。
 なお、図2及び図3で説明した住家被害認定調査における部位種別情報及び解釈情報は、具体例でありこれらに限定されるものではない。また、データベース130には、住家被害認定調査と同様に、例えば、固定資産税調査業務、都市計画調査業務、及び空き家管理業務においてそれぞれ、部位種別情報及び解釈情報を記憶しているが、ここではこれらの説明は省略する。
 図1に戻って、表示部140は、プロセッサ110からの指示により、家屋モデルの生成に必要な様々な表示を行う。例えば、表示部140は、家屋モデルの生成の際にユーザが情報を入力するユーザインターフェース、生成された部位モデル、及び1つ又は複数の部位モデルで構成される家屋モデルを表示する。また、表示部140は、生成された家屋モデルに関連づけられて記憶される状態情報、状態情報を示す画像(例えば損傷画像)などを表示することもできる。また、表示部140は、操作部160から各種の情報を受け付ける場合のGUI(Graphical User Interface)の一部としても使用される。なお、プロセッサ110は、表示制御部として機能し、表示部140の表示を制御する。
 入出力インターフェース150は、外部機器と接続可能な接続部、及びネットワークと接続可能な通信部等を含む。外部機器と接続可能な接続部としては、USB(Universal Serial Bus)、HDMI(High-Definition Multimedia Interface)(HDMIは登録商標)等を適用することができる。
 操作部160は、マウス等のポインティングデバイス、キーボード等を含む。また、表示部140、ユーザ操作による各種の情報、指示の入力を受け付ける操作部160の一部としても機能する。
 図4は、図1に示した家屋モデル生成装置100のプロセッサ110の主な機能を示す機能ブロック図である。なお、プロセッサ110は、メモリ120又はデータベース130に記憶されている専用のプログラムを実行することにより、以下に説明する機能を実現することができる。
 プロセッサ110は、用途選択受付部110A、部位種別指定受付部110B、入力点受付部110C、部位モデル生成部110D、位置調整部110E、及び記憶制御部110Fを構成する。用途選択受付部110Aは、ユーザからの入力により、生成する家屋モデルの利用用途の選択を受け付ける。部位種別指定受付部110Bは、ユーザからの入力により、選択された利用用途に応じて、生成可能な複数の部位種別のうちから一つの部位種別の指定を受け付ける。入力点受付部110Cは、表示部140上で、ユーザから指定されることにより入力される入力点を受け付ける。部位モデル生成部110Dは、入力点と解釈情報に基づいて、指定された部位種別に応じた部位モデルを生成する。位置調整部110Eは、表示部140に表示された生成された部位モデルの位置の移動指示を受け付けて、部位モデルの位置を移動させる。記憶制御部110Fは、表示部140上において、部位モデル上の箇所の選択を受け付け、選択された箇所と関連付けて、部位モデルの状態情報を記憶する。
 次に、家屋モデル生成装置100を利用して行われる家屋モデル生成方法に関して説明する。なお、家屋モデル生成方法は、プロセッサ110がメモリ120又はデータベース130に記憶されている専用のプログラムを実行することにより行われる。
 図5は、家屋モデル生成方法を示すフロー図である。なお、先ず各工程の一連の流れを説明し、その後に詳細な説明を行う。
 先ず、用途選択受付部110Aにより、家屋モデルの利用用途の選択が受け付けられる(利用用途選択工程:ステップS01)。次に、部位種別指定受付部110Bにより、部位種別の指定が受け付けられる(部位種別選択工程:ステップS02)。次に、入力点受付部110Cにより、入力点が受け付けられる(入力点受付工程:ステップS03)。次に、部位モデル生成部110Dにより、入力点に応じて部位モデルが生成される(部位モデル生成工程:ステップS04)。次に、位置調整部110Eにより、生成された部位モデルが移動される(位置調整工程:ステップS05)。次に、記憶制御部110Fにより、部位モデルの状態情報が、部位モデルと関連付けて記憶される(損傷記憶工程:ステップS06)。
 次に、利用用途に応じた家屋モデルの生成に関して具体例(住家被害認定調査、固定資産税調査、及び都市計画調査)を用いて説明する。本発明の家屋モデル生成装置100では、以下に説明するように様々な利用用途の家屋モデルを生成することができる。したがって、家屋モデル生成装置100では、利用用途に応じて、家屋モデル生成装置を変えることなく、効率的に家屋モデルの生成を行うことができる。
 <<第1の実施形態/住家被害認定調査>>
 先ず、利用用途が住家被害認定調査である家屋モデルを構成する部位モデルの生成の例に関して説明する。
 災害時に地方自治体によって行われる住家被害認定調査では、被害認定の根拠を残すために、被災した家屋の平面図又は立面図を作成し、作成した図面に損傷箇所を記録する必要がある。しかしながら、紙面での平面図や立面図の作成は時間を要する。特に、大規模な災害が発生した場合には、紙面での図面の作成は負荷が大きくなってしまう。また、紙面での図面では、その粒度や精度は、記入者によって差が出てきてしまう。したがって、家屋モデル生成装置100により、住家被害認定調査に応じた必要十分な正確性を有する家屋モデルを簡便に生成する。そして、その家屋モデルの部位と状態情報(例えば損傷画像)とを関連付けて記憶することにより、紙面での図面の生成の負荷を削減し、記入者によっての差が抑制され、より効率的に住家被害認定調査を行うことができる。以下に、利用用途が住家被害認定調査である家屋モデルを構成する部位モデルの生成の具体例を説明する。
 <利用用途選択工程及び部位種別選択工程>
 利用用途選択工程(ステップS01)及び部位種別選択工程(ステップS02)に関して説明する。
 先ず、ユーザにより、家屋モデルの利用用途が選択される。例えば、ユーザは、住家被害認定調査業務、固定資産税調査業務、都市計画調査業務、及び空き家管理業務のうちから、1つの利用用途を選択する。本実施形態ではユーザは、操作部160を利用して、住家被害認定調査を選択する。
 図6は、表示部140に表示されるユーザインターフェースUIの一例を説明する図である。
 ユーザインターフェースUIは、利用用途表示A、部位種別メニュー表示B、操作メニュー表示Cで構成されている。本実施形態の場合には、利用用途表示Aには、住家被害認定調査が表示されている。また、部位種別メニュー表示Bには、部位種別情報(図2を参照)に基づいて、外壁、屋根、基礎、及びドアの生成可能な部位種別が表示されている。また、操作メニュー表示Cには、部位モデルを生成する際の操作に関する情報が表示されている。例えば、外壁の部位モデルは、躯体を追加することにより外壁の部位モデルが追加される。また、屋根の部位モデルは、切妻屋根が外壁(躯体)を追加することにより、その外壁の位置に基づいて屋根の部位モデルが追加される(自動)。また、基礎の部位モデルは、基礎が表示される。
 ユーザは、ユーザインターフェースUIを用いて、生成する部位種別を選択する。例えば、ユーザは、部位種別メニュー表示Bにおいて外壁、操作メニュー表示Cにおいて1階、躯体を追加、を選択する。これにより、部位種別指定受付部110Bは、1階の外壁の指定を受け付ける。なお、外壁の部位モデルは躯体を構成する外壁として生成される(図8を参照)。
 <入力点受付工程及び部位モデル生成工程>
 次に、入力点受付工程(ステップS03)及び部位モデル生成工程(ステップS04)に関して説明する。
 図7は、表示部140上で指定される入力点に関して説明する図である。
 入力点受付工程では、ユーザは、表示部140上で、例えば操作部160を構成するポインティングデバイスによって、第1入力点及び第2入力点を入力し、入力点受付部110Cは第1入力点及び第2入力点の位置(例えば座標)を受け付ける。なお、本例では、第1入力点及び、第1入力点に対して対角の第2入力点を入力することにより、矩形形状が設定される。この矩形形状は、後で説明する第1入力点~第4入力点により構成される(図8を参照)。ここで、住家被害認定調査において1階の外壁が選択されると、解釈情報(図3を参照)により、入力点が1階の四隅の点(特徴点)として、1階外壁の部位モデルが形成される。次に、第1入力点~第4入力点に基づいて生成される1階外壁の部位モデルに関して説明する。なお、入力点は、予めデータベース130に記憶されている地図を表示部140に表示させ、その地図上に入力されてもよい。その場合には、入力点が入力された地図上の位置に部位モデルが生成されることになる。
 図8は、生成された1階外壁の部位モデルの例を示す図である。
 図7で説明したように、第1入力点及び第2入力点が入力されることにより、矩形を形作る第1入力点~第4入力点が入力される。そして、第1入力点~第4入力点及び解釈情報(図3)に基づいて、部位モデル生成部110Dにより、1階外壁の部位モデル(躯体)が生成される。図8(A)には、1階外壁の部位モデルM1を上から見た図を示しており、図8(B)には、部位モデルM1を横から見た図を示している。
 部位モデルM1は、第1入力点~第4入力点を四隅とした1階外壁の部位モデルである。また、第1入力点~第4入力点に基づいて生成された外壁1~外壁4に基づいて、切妻型の屋根の部位モデル3も合わせて生成される。
 以上で説明したように、本実施形態においては、部位種別が選択され、入力点が入力されることにより、住家被害認定調査に対応して必要十分な正確性を有する部位モデルを簡便に生成することができる。
 <位置調整工程>
 次に、位置調整工程(ステップS05)に関して説明する。位置調整部110Eは、表示部140に表示された部位モデルの移動の指示をユーザから受け付ける。そして、位置調整部110Eは、表示部140に表示されている部位モデルを移動させる。これにより、ユーザは、部位モデルの位置の調整を行うことができる。
 図9は、部位モデルの位置調整に関して説明する図である。
 表示部140には、移動入力ユーザインターフェース202及び家屋モデル表示204が表示される。移動入力ユーザインターフェース202には、移動調節バー208が表示される。ユーザは、移動調節バー208のポインタ208aを移動させることにより、窓の部位モデル206の移動指示を入力することができる。位置調整部110Eは、移動調節バー208を介して入力された移動指示に応じて、窓の部位モデル206を部位モデルM1に対して移動させる。例えば、位置調整部110Eは、ポインタ208aの動きに連動させて、窓の部位モデル206を移動させる。
 このように、位置調整工程では、位置調整部110Eにより、部位モデルの移動指示を受け付け、その移動指示に応じて部位モデルを移動させる。これにより、部位モデルの位置の調整を行うことができ、ユーザの意図する家屋モデルの生成を行うことができる。
 <損傷記憶工程>
 次に、損傷記憶工程(ステップS06)に関して説明する。損傷記憶工程では、生成された家屋モデルと実際の家屋の状態情報を関連付けて記憶させる。例えば、記憶制御部110Fは、表示部140上において、部位モデル上の箇所の選択を受け付け、選択された箇所と関連付けて、部位モデルの状態情報を記憶する。
 図10は、状態情報の記憶の具体例1に関して説明する図である。
 表示部140に1階外壁の部位モデルM1が表示される。この場合、1階外壁の部位モデルM1の外壁1は、グリッドに区分けされて表示されている。また、表示部140には、損傷画像210(状態情報を示す画像)が表示されている。この損傷画像210は、部位モデルM1に対応する外壁を撮影したものである。そしてユーザは、部位モデルM1の一つの区画を選択し、記憶制御部110Fは、選択されたグリッドと損傷画像210とを関連付けて記憶する。
 このように、損傷記憶工程では、記憶制御部110Fにより、部位モデルM1上の箇所と損傷画像210とが関連付けてデータベース130に記憶される。これにより、住家被害認定調査を行う際に、生成された家屋モデルをより有効に使用することができる。
 図11は、状態情報の記憶の具体例2に関して説明する図である。
 表示部140に、画像編集表示Sと損傷画像表示Tが表示される。損傷画像表示Tでは、1階外壁の部位モデルM1が表示され、部位モデルM1の表面(外壁)に損傷画像210がテクスチャ表示される。この損傷画像210のテクスチャ表示は、任意のサイズで任意の位置で行うことができる。したがって、ユーザは、実際の家屋の損傷の位置に合わせて損傷画像210をテクスチャ表示することができる。記憶制御部110Fは、部位モデルM1とテクスチャ表示された損傷画像210とを関連付けて、データベース130に記憶する。
 また、画像編集表示Sでは、テクスチャ表示する損傷画像210の編集を行うことができる。例えば、画像編集表示Sにおいて、テクスチャ表示を行う損傷画像210に関して切り取り編集を行うことができる。
 なお、以上の説明では、状態情報又は状態情報示す画像として損傷画像210を用いた具体例に関して説明を行ったが、状態情報又は状態情報示す画像の例は損傷画像に限定されるものではない。
 このように、損傷記憶工程では、記憶制御部110Fにより、部位モデルM1の表面に損傷画像210を配置し、部位モデルM1と損傷画像210を関連づけて、データベース130に記憶される。これにより、住家被害認定調査を行う際に、生成された家屋モデルをより有効に使用することができる。
 <<第2の実施形態/固定資産税調査>>
 次に、利用用途が固定資産税調査の場合の家屋モデルを構成する部位モデルの生成の例に関して説明する。家屋モデル生成装置100では、上述した住家被害認定調査で利用される家屋モデルと同様に、固定資産税調査で利用される家屋モデルも生成することができる。したがって、家屋モデル生成装置100では、利用用途に応じて、家屋モデル生成装置を変えることなく、効率的に家屋モデルの生成を行うことができる。なお、上述した第1の実施形態で既に説明を行った箇所は説明を省略し、第1の実施形態と異なる部分を中心に説明を行う。
 第1の実施形態で説明した住家被害認定調査と同様に、自治体業務である固定資産税調査(固定資産税に係る家屋調査)においても、3次元の家屋モデルが利用される。固定資産税調査では、増改築部分について立体的に記録するための図面作成、評価記入、及びシステムへのデータ登録に多くの時間が必要とされている。したがって、家屋モデル生成装置100により、固定資産税調査に応じて必要十分な正確性を有する家屋モデルを簡便に生成する。これにより、より効率的に固定資産税調査を行うことができる。
 <1階の外壁の部位モデル>
 先ず、固定資産税調査における1階の外壁の部位モデルの生成に関して説明する。
 図12は、表示部140に表示されるユーザインターフェースUIの一例を説明する図である。
 ユーザインターフェースUIは、利用用途表示A、部位種別メニュー表示B、操作メニュー表示Cで構成されている。本実施形態の場合には、利用用途表示Aには、固定資産税調査が表示されている。また、部位種別メニュー表示Bには、外壁が生成可能な部位種別として表示されている。また、操作メニュー表示Cには、寸法を入力するメニュー表示が表示されている。そしてユーザは、操作部160を介して、床面積100m2を入力する。これにより、部位種別指定受付部110Bは、外壁の指定、及び外壁の形状入力メニューの入力を受け付ける。
 固定資産税の計算では家屋の各部位の寸法と仕上げが重視されるため、部位モデルの操作メニューを図示するように、寸法を入力する形状入力メニュー表示で構成し、入力された寸法に基づいて部位モデルを作成する方式へ切り替える。なお、データベース130には、利用用途のそれぞれに応じて、複数の部位種別の形状に関する情報を入力する形状入力メニューに関する情報が記憶されている。具体的には、利用用途が固定資産税調査であり、外壁の部位モデルを生成する際には、形状入力メニューとして寸法を入力するメニュー表示が表示されることが、データベース130に記憶されている。
 図13は、表示部140上で指定される入力点に関して説明する図である。
 ユーザは、地図上で躯体1の中心座標となる点(特徴点)を、第1入力点として指定する。なお、外壁の部位モデルは躯体として生成される。
 図14は、生成された1階外壁の部位モデルの例を示す図である。
 部位モデル生成部110Dは、図13で指定した座標(入力点)を中心に、指定した寸法(床面積が100m2)を満たす1階外壁の部位モデルM2を生成する。なお、1階外壁の部位モデルは、操作メニューの寸法の変更、又は1外壁の部位モデルの頂点の移動、追加、削除により編集を行うことができる。
 <屋根の部位モデル>
 次に、固定資産税調査における屋根の部位モデルの生成に関して説明する。
 図15は、表示部140に表示されるユーザインターフェースUIの一例を説明する図である。
 ユーザインターフェースUIは、利用用途表示A、部位種別メニュー表示B、操作メニュー表示Cで構成されている。本実施形態の場合には、利用用途表示Aには、固定資産税調査が表示されている。また、部位種別メニュー表示Bには、屋根が生成可能な部位種別として表示されている。また、操作メニュー表示Cには、勾配及び軒出の寸法を入力するメニュー表示が表示されている。そしてユーザは、操作部160を介して、勾配5/10、軒出15cmを入力する。これにより、部位種別指定受付部110Bは、屋根の指定及び屋根の形状入力メニューの入力を受け付ける。なお、利用用途が固定資産税調査である場合には、屋根の部位モデルを生成する際には、形状入力メニューとして勾配及び軒出の寸法を入力するメニュー表示が表示されることが、データベース130に記憶されている。
 図16は、本実施形態の屋根の部位モデルに関して説明する図である。
 生成された屋根の部位モデルM3は、形状入力メニューで入力した勾配、軒出寸法が反映されている。具体的には、拡大図Vに示すように、軒出寸法が15cmとなるように部位モデルM3が生成されており、また勾配Qが5/10となるように部位モデルM3が生成されている。
 以上で説明したように、家屋モデルの利用用途が固定資産税調査の場合でも、固定資産税調査に対応して必要十分な正確性を有する部位モデルを簡便に生成することができる。
 <<第3の実施形態/都市計画調査>>
 次に、利用用途が都市計画調査の場合の家屋モデルを構成する部位モデルの生成の例に関して説明する。家屋モデル生成装置100では、上述した住家被害認定調査及び固定資産税調査で利用される家屋モデルと同様に、都市計画調査で利用される家屋モデルも生成することができる。したがって、家屋モデル生成装置100では、利用用途に応じて、家屋モデル生成装置を変えることなく、効率的に家屋モデルの生成を行うことができる。なお、上述した第1の実施形態及び第2の実施形態で既に説明した箇所は説明を省略し、第1の実施形態及び第2の実施形態とは異なる部分を中心に説明を行う。都市計画調査では、建物の利用現況に関する情報収集を目的としており、詳細な形状情報は不要である。したがって、予め設定において必要最小限の外壁のみのメニューを表示する。
 図17は、表示部140に表示されるユーザインターフェースUIの一例を説明する図である。
 ユーザインターフェースUIは、利用用途表示A、部位種別メニュー表示B、操作メニュー表示C、及び建物構造Dで構成されている。本実施形態の場合には、利用用途表示Aには、都市計画調査が表示されている。また、部位種別メニュー表示Bには、必要最小限の外壁のみが生成可能な部位種別として表示されている。また、操作メニュー表示Cには、寸法を入力するメニュー表示が表示されている。また、建物構造として、木造が選択されて表示されている。なお、建物構造種別としては、木造、土蔵造、鉄骨鉄筋コンクリート造、鉄筋コンクリート造、鉄骨造、軽量鉄骨造、れんが造、コンクリートブロック造、及び石造があげられる。ユーザは、操作部160を介して、これらの建造物種別から一つの建物構造種別を選択して入力する。
 以上で説明したように、家屋モデルの利用用途が都市計画調査の場合でも、都市計画調査に対応して必要十分な正確性を有する部位モデルを簡便に生成することができる。
 <他の部位モデル生成の例/2階外壁の部位モデル>
 次に、利用用途が住家被害認定調査における入力点受付工程及び部位モデル生成工程の他の例を説明する。本例では、住家被害認定調査における2階外壁の部位モデルを生成する場合の例を説明する。
 図18及び図19は、入力点受付工程及び部位モデル生成工程の他の例を説明する図である。
 図18に示す場合では、操作部160を構成するポインティングデバイスによって、第1入力点、第2入力点、第3入力点、第4入力点が矩形形状を成すように、入力される。また、第1入力点~第4入力点は、1階の天井面内に指定されいてる。これにより、入力点受付部110Cは、第1入力点~第4入力点の入力を受け付ける。
 そして、利用用途が住家被害認定調査であり、部位種別として2階の外壁が選択されている場合には、解釈情報(図3参照)により、第1入力点~第4入力点が2階の四隅の点(特徴点)として、2階外壁の部位モデルM2が形成される。
 図19は、生成された2階外壁の部位モデルの例を示す図である。
 図18で説明した第1入力点~第4入力点及び解釈情報(図3)に基づいて、部位モデル生成部110Dにより、部位モデルM4が生成される。部位モデルM4は、第1入力点~第4入力点を四隅とした2階外壁の部位モデルである。このように、住家被害認定調査の2階外壁の部位モデルM4においても、住家被害認定調査に対応して必要十分な正確性を有する部位モデルを簡便に生成することができる。
 <その他>
 上記実施形態において、各種の処理を実行する処理部(用途選択受付部110A、部位種別指定受付部110B、入力点受付部110C、部位モデル生成部110D、位置調整部110E、及び記憶制御部110F、表示制御部)(processing unit)のハードウェア的な構造は、次に示すような各種のプロセッサ(processor)である。各種のプロセッサには、ソフトウェア(プログラム)を実行して各種の処理部として機能する汎用的なプロセッサであるCPU(Central Processing Unit)、FPGA(Field Programmable Gate Array)などの製造後に回路構成を変更可能なプロセッサであるプログラマブルロジックデバイス(Programmable Logic Device:PLD)、ASIC(Application Specific Integrated Circuit)などの特定の処理を実行させるために専用に設計された回路構成を有するプロセッサである専用電気回路などが含まれる。
 1つの処理部は、これら各種のプロセッサのうちの1つで構成されていてもよいし、同種又は異種の2つ以上のプロセッサ(例えば、複数のFPGA、あるいはCPUとFPGAの組み合わせ)で構成されてもよい。また、複数の処理部を1つのプロセッサで構成してもよい。複数の処理部を1つのプロセッサで構成する例としては、第1に、クライアントやサーバなどのコンピュータに代表されるように、1つ以上のCPUとソフトウェアの組合せで1つのプロセッサを構成し、このプロセッサが複数の処理部として機能する形態がある。第2に、システムオンチップ(System On Chip:SoC)などに代表されるように、複数の処理部を含むシステム全体の機能を1つのIC(Integrated Circuit)チップで実現するプロセッサを使用する形態がある。このように、各種の処理部は、ハードウェア的な構造として、上記各種のプロセッサを1つ以上用いて構成される。
 さらに、これらの各種のプロセッサのハードウェア的な構造は、より具体的には、半導体素子などの回路素子を組み合わせた電気回路(circuitry)である。
 上述の各構成及び機能は、任意のハードウェア、ソフトウェア、或いは両者の組み合わせによって適宜実現可能である。例えば、上述の処理ステップ(処理手順)をコンピュータに実行させるプログラム、そのようなプログラムを記録したコンピュータ読み取り可能な記録媒体(非一時的記録媒体)、或いはそのようなプログラムをインストール可能なコンピュータに対しても本発明を適用することが可能である。
 以上で本発明の例に関して説明してきたが、本発明は上述した実施の形態に限定されず、本発明の趣旨を逸脱しない範囲で種々の変形が可能であることは言うまでもない。
100  :家屋モデル生成装置
110  :プロセッサ
110A :用途選択受付部
110B :部位種別指定受付部
110C :入力点受付部
110D :部位モデル生成部
110E :位置調整部
110F :記憶制御部
120  :メモリ
130  :データベース
140  :表示部
150  :入出力インターフェース
160  :操作部

Claims (15)

  1.  3次元の家屋モデルの複数の利用用途のそれぞれに応じて、生成可能な複数の前記家屋モデルを構成する部位モデルの種別に関する情報、及び前記複数の部位種別のそれぞれに入力点と部位の特徴点との関係性に関する解釈情報を記憶するメモリと、プロセッサとを備える家屋モデル生成装置であって、
     前記プロセッサは、
     前記複数の利用用途のうち、生成する前記家屋モデルの利用用途の選択を受け付け、
     選択された前記利用用途に応じて、前記生成可能な前記複数の部位種別のうちから一つの部位種別の指定を受け付け、
     表示部上で指定されることにより入力される前記入力点を受け付け、
     前記入力点と前記解釈情報に基づいて、指定された前記部位種別に応じた前記家屋モデルを構成する部位モデルを生成する、
     家屋モデル生成装置。
  2.  前記メモリは、前記複数の利用用途のそれぞれに応じて、前記複数の部位種別の形状に関する情報を入力する形状入力メニューに関する情報を記憶し、
     前記プロセッサは、
     指定された前記部位種別に応じて、前記形状入力メニューの入力を受け付け、
     前記形状入力メニューの前記入力に基づいて、指定された前記部位種別に応じた前記家屋モデルを構成する部位モデルを生成する、
     請求項1に記載の家屋モデル生成装置。
  3.  前記家屋モデルの前記複数の利用用途は、住家被害認定調査業務、固定資産税調査業務、都市計画業務、及び空き家管理業務のうち2以上の用途を含む請求項1に記載の家屋モデル生成装置。
  4.  前記部位種別が1階の外壁である場合の前記解釈情報は、前記表示部上において地上面の点が前記入力点として入力されると、前記入力点が前記1階の外壁の特徴点を構成するという関係性に関する情報である請求項1に記載の家屋モデル生成装置。
  5.  前記部位種別が2階以上の外壁である場合の前記解釈情報は、前記表示部上の直下階の天井面内の点が前記入力点として入力されると、前記入力点が前記2階以上の外壁の特徴点を構成するという関係性に関する情報である請求項1に記載の家屋モデル生成装置。
  6.  前記部位種別が窓である場合の前記解釈情報は、前記表示部上の外壁の面内の点が前記入力点として入力されると、前記入力点が前記窓の特徴点を構成するという関係性に関する情報である請求項1に記載の家屋モデル生成装置。
  7.  前記部位種別がドアである場合の前記解釈情報は、前記表示部上の外壁の面内の点が前記入力点として入力されると、前記入力点が前記ドアの特徴点を構成するという関係性に関する情報である請求項1に記載の家屋モデル生成装置。
  8.  前記部位種別が外壁である場合の前記解釈情報は、前記表示部上の点が前記入力点として入力されると、前記入力点が前記外壁の特徴点を構成するという関係性に関する情報であり、
     前記入力点と前記解釈情報に基づいて、前記外壁及び前記外壁に設けられる屋根の前記部位モデルを生成する請求項1に記載の家屋モデル生成装置。
  9.  前記プロセッサは、
     前記表示部上において前記部位モデル上の箇所の選択を受け付け、
     前記選択された箇所と関連付けて、前記部位モデルの状態情報を記憶する請求項1に記載の家屋モデル生成装置。
  10.  前記プロセッサは、前記表示部に表示された前記部位モデルの表面に、前記部位モデルの状態情報を示す画像を配置する請求項1に記載の家屋モデル生成装置。
  11.  前記プロセッサは、生成された前記部位モデルを前記表示部に表示し、前記部位モデルの位置の移動指示を受け付ける請求項1に記載の家屋モデル生成装置。
  12.  前記部位種別は、外壁、内壁、屋根、基礎、柱、梁、床、天井、建具、窓、ドア及び設備である請求項1に記載の家屋モデル生成装置。
  13.  3次元の家屋モデルの複数の利用用途のそれぞれに応じて、生成可能な複数の前記家屋モデルを構成する部位モデルの種別に関する情報、及び前記複数の部位種別のそれぞれに入力点と部位の特徴点との関係性に関する解釈情報を記憶するメモリと、プロセッサとを備える家屋モデル生成装置における前記プロセッサが実行する家屋モデル生成方法であって、
     前記複数の利用用途のうち、生成する前記家屋モデルの利用用途の選択を受け付けるステップと、
     選択された前記利用用途に応じて、前記生成可能な前記複数の部位種別のうちから一つの部位種別の指定を受け付けるステップと、
     表示部上で指定されることにより入力される前記入力点を受け付けるステップと、
     前記入力点と前記解釈情報に基づいて、指定された前記部位種別に応じた前記家屋モデルを構成する部位モデルを生成するステップと、
     を含む家屋モデル生成方法。
  14.  3次元の家屋モデルの複数の利用用途のそれぞれに応じて、生成可能な複数の前記家屋モデルを構成する部位モデルの種別に関する情報、及び前記複数の部位種別のそれぞれに入力点と部位の特徴点との関係性に関する解釈情報を記憶するメモリと、プロセッサとを備える家屋モデル生成装置における前記プロセッサが実行するプログラムであって、
     前記複数の利用用途のうち、生成する前記家屋モデルの利用用途の選択を受け付けるステップと、
     選択された前記利用用途に応じて、前記生成可能な前記複数の部位種別のうちから一つの部位種別の指定を受け付けるステップと、
     表示部上で指定されることにより入力される前記入力点を受け付けるステップと、
     前記入力点と前記解釈情報に基づいて、指定された前記部位種別に応じた前記家屋モデルを構成する部位モデルを生成するステップと、
     を含むプログラム。
  15.  非一時的かつコンピュータ読取可能な記録媒体であって、請求項14に記載のプログラムが記録された記録媒体。
PCT/JP2023/032834 2022-09-28 2023-09-08 家屋モデル生成装置、家屋モデル生成方法、及びプログラム WO2024070585A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-154750 2022-09-28
JP2022154750 2022-09-28

Publications (1)

Publication Number Publication Date
WO2024070585A1 true WO2024070585A1 (ja) 2024-04-04

Family

ID=90477405

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/032834 WO2024070585A1 (ja) 2022-09-28 2023-09-08 家屋モデル生成装置、家屋モデル生成方法、及びプログラム

Country Status (1)

Country Link
WO (1) WO2024070585A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11232484A (ja) * 1997-12-05 1999-08-27 Wall:Kk 3次元都市データ生成方法、3次元都市データ生成装置及び3次元都市データ調査用測定装置
US20160350969A1 (en) * 2015-05-29 2016-12-01 Hover Inc. Graphical overlay guide for interface
WO2022059604A1 (ja) * 2020-09-18 2022-03-24 富士フイルム株式会社 判定結果推定装置、判定結果推定方法及びプログラム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11232484A (ja) * 1997-12-05 1999-08-27 Wall:Kk 3次元都市データ生成方法、3次元都市データ生成装置及び3次元都市データ調査用測定装置
US20160350969A1 (en) * 2015-05-29 2016-12-01 Hover Inc. Graphical overlay guide for interface
WO2022059604A1 (ja) * 2020-09-18 2022-03-24 富士フイルム株式会社 判定結果推定装置、判定結果推定方法及びプログラム

Similar Documents

Publication Publication Date Title
US10891405B2 (en) Method, computer program product and apparatus for providing a building options configurator
US11907620B2 (en) Smart plans
KR20180131471A (ko) 3d 스캐닝과 bim을 이용한 시공 오차 통합 관리 장치 및 그 방법
CN111737800B (zh) 图元选择方法、装置及电子设备
Logothetis et al. From OSS CAD to BIM for cultural heritage digital representation
US20160012357A1 (en) Automated Space Layout Based on Business Constraints
KR101356463B1 (ko) Ifc 기반 3차원 랜더링 방법 및 이를 이용한 3차원 가시화 장치
US20200327261A1 (en) Building Material Estimation System, Management Server thereof, and Building Material Estimation Method
KR101356462B1 (ko) Ifc 기반 3차원 빌딩 제어 방법 및 이를 이용한 3차원 빌딩 제어 시스템
WO2024070585A1 (ja) 家屋モデル生成装置、家屋モデル生成方法、及びプログラム
JP6429380B2 (ja) 建物企画設計システムと方法
JP2022155087A (ja) 統合データ生成システム、施工計画管理システム、統合データ生成方法、施工計画管理方法、及びプログラム
JP2014164669A (ja) 建築支援システム、建築支援装置及びコンピュータプログラム
US9177084B2 (en) Generating an analytical energy model
Tong et al. Algorithmic vernacular: A generative design process for hillside settlements and dwellings, optimized for siting, access and prefabricated construction
KR102214204B1 (ko) 3d 스캔을 이용하여 건축물의 3d 모델을 생성하기 위한 기둥부재 생성 시스템 및 그 방법
Diez et al. AUTMOD3: The integration of design and planning tools for automatic modular construction
Khan et al. Evaluating benefits of building information modelling (BIM) using a 5D model for construction project
KR101400215B1 (ko) Ifc 기반 3차원 빌딩 저작 도구 및 이를 이용한 빌딩 제어 장치와 시스템
WO2024070586A1 (ja) 建物データ処理装置及び方法並びに建物データ構造
US20230064228A1 (en) Recording medium, and system
JP6401981B2 (ja) 建物の設計システムおよび設計方法
KR101711274B1 (ko) 섹션을 기반으로 한 구조물 모델링 방법
Su et al. GIS-based buffering for construction workspace management
Nedyalkov Experimental Study of Possibilities for Developing a Building Information Model of a Laser-Scanned Physical Object

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23871822

Country of ref document: EP

Kind code of ref document: A1