WO2024070539A1 - メッセージ制御装置、メッセージ制御方法、及び車両 - Google Patents

メッセージ制御装置、メッセージ制御方法、及び車両 Download PDF

Info

Publication number
WO2024070539A1
WO2024070539A1 PCT/JP2023/032440 JP2023032440W WO2024070539A1 WO 2024070539 A1 WO2024070539 A1 WO 2024070539A1 JP 2023032440 W JP2023032440 W JP 2023032440W WO 2024070539 A1 WO2024070539 A1 WO 2024070539A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
reliability
message
sensor
information
Prior art date
Application number
PCT/JP2023/032440
Other languages
English (en)
French (fr)
Inventor
貴久 山城
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2024070539A1 publication Critical patent/WO2024070539A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/46Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for vehicle-to-vehicle communication [V2V]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management

Definitions

  • This disclosure relates to a message control device, a message control method, and a vehicle in Intelligent Transport Systems (ITS).
  • ITS Intelligent Transport Systems
  • CPS Collective Perception Service
  • ETSI TR 103 562 V2.1.1 2019-12 “Intelligent Transport Systems (ITS); Vehicular Communications; Basic Set of Applications; Analysis of the Collective Perception Service (CPS); Release 2”, December 18, 2019
  • the message used in the CPS described above is called a Collective Perception Message (CPM).
  • the CPM includes the reference sensor starting position, the x distance from the sensor starting position to the target, and the y distance.
  • the x distance is the distance in the x-axis direction parallel to the vehicle's longitudinal direction
  • the y distance is the distance in the y-axis direction parallel to the vehicle's width direction.
  • the x distance and y distance are detected by sensors.
  • the vehicle orientation information on the direction the vehicle is facing (hereinafter simply referred to as the vehicle orientation) is important when determining the absolute position of the target. If there is an error in the vehicle orientation, the absolute position of the target cannot be calculated correctly.
  • V2X systems generally use the Global Navigation Satellite System (GNSS) to obtain the vehicle's direction of travel, so the direction the vehicle is traveling, rather than the direction the vehicle is facing, is used as information on the vehicle's direction of travel.
  • GNSS Global Navigation Satellite System
  • one of the objectives of this disclosure is to provide a message control device, a message control method, and a vehicle that can effectively suppress errors in estimating the position of a target object.
  • a message control device has a control unit that generates a message including the position of a target detected by a sensor and a message indicating the reliability of information related to the orientation of the sensor, and a communication unit that transmits the message.
  • Another message control device has a control unit that generates a message including the position of a target detected by a sensor, and a communication unit that transmits the message, and the control unit determines whether or not to transmit a message from the communication unit based on the reliability of information related to the orientation of the sensor or information for calculating the reliability.
  • Another message control device has a communication unit that receives a message including a target position and the reliability or information for calculating the reliability of the information regarding the sensor orientation, and a control unit that determines the relative position of the target based on the received message, and the control unit determines whether or not to use the target position included in the message for estimating the target position based on the reliability that can be determined from the reliability or the information for calculating the reliability.
  • a message control method generates a message including the position of a target detected by a sensor and a message indicating the reliability of information related to the orientation of the sensor, and transmits the message.
  • a vehicle according to one embodiment of the present disclosure has the above-mentioned message control device.
  • FIG. 1 is a diagram illustrating an example of a schematic configuration of an intelligent road transport system according to an embodiment.
  • FIG. 2 is a diagram showing an example of the distance to a target.
  • FIG. 3A is a diagram showing an example of an error in the position of a detected target based on an error in the orientation of a vehicle.
  • FIG. 3B is a diagram showing an example of an error in the position of a detected target based on an error in the orientation of a vehicle.
  • FIG. 3C is a diagram showing an example of an error in the position of a detected target based on an error in the orientation of a vehicle.
  • FIG. 4A is a diagram illustrating an example of the difference between the direction a vehicle is traveling and the direction the vehicle is facing.
  • FIG. 4B is a diagram illustrating an example of the difference between the direction a vehicle is traveling and the direction the vehicle is facing.
  • FIG. 5 is a diagram illustrating an example of a vehicle according to an embodiment.
  • Fig. 1 is a diagram showing an example of a schematic configuration of an intelligent transport system according to an embodiment.
  • the intelligent transport system 1 shown in Fig. 1 may include a vehicle 10, a roadside unit 20, and an ITS server 30.
  • the intelligent transport system 1 may be interchangeably read as an Intelligent Transport System (hereinafter, ITS), a road transport system, a transport system, and the like.
  • the roadside unit 20 may be called a Road-Side Unit (hereinafter, RSU) 20.
  • RSU Road-Side Unit
  • ITS1 may be called a system in which information (e.g., traffic information, information for autonomous driving, etc.) is shared among multiple vehicles (so-called Cooperative ITS (CITS)).
  • information e.g., traffic information, information for autonomous driving, etc.
  • CITS Cooperative ITS
  • ITS1 communication is carried out using one of the message control methods according to each embodiment of this disclosure described below, or a combination of these.
  • Vehicle 10 is a vehicle that travels on a roadway.
  • Vehicle 10 may be a car, or a vehicle that does not move autonomously (e.g., a bicycle).
  • a car may be one or both of a four-wheeled vehicle and a two-wheeled vehicle.
  • the vehicle 10 has an on-board communication device and can communicate with other vehicles 10, the RSU 20, the ITS server 30, etc. via wireless communication.
  • Wireless communication methods include, for example, Long Term Evolution (LTE), 5th generation mobile communication system (5G), and Wi-Fi (registered trademark).
  • V2V vehicle-to-vehicle
  • V2I vehicle-to-infrastructure
  • V2X vehicle-to-everything
  • the messages transmitted between the vehicles 10 may include, for example, at least one of the following: Cooperative Awareness Message (CAM), which periodically transmits vehicle position, speed, etc. Decentralized Environmental Notification Message (DENM), which notifies when certain events occur; - Collective Perception Message (CPM) for sharing the environment perceived based on perception sensors.
  • CAM Cooperative Awareness Message
  • DENM Decentralized Environmental Notification Message
  • CPM Collective Perception Message
  • CAM is a message sent in the Cooperative Awareness (CA) service proposed by ETSI (European Telecommunications Standards Institute).
  • CA Cooperative Awareness
  • Road users refer to all users on and around the road who are responsible for road safety and control, such as cars, trucks, motorbikes, bicycles, pedestrians, etc.
  • roadside infrastructure refers to facilities such as road signs, traffic lights, barriers, entrances, etc.
  • the CPM is a message sent in the CP service proposed by ETSI.
  • the CP service is a service that notifies the surrounding area of the positions, behavior, and attributes of surrounding road users and other objects detected by the vehicle sending the CPM.
  • the RSU 20 collects information on surrounding road conditions and surrounding traffic lights. Traffic light information can include the color of the traffic lights.
  • the RSU 20 also has the function of communicating the collected information with the vehicle 10, other RSUs 20, the ITS server 30, etc. Traffic lights may be called traffic lights. Traffic light information may be called information indicating the traffic light status.
  • the RSU 20 may be equipped with a sensor and collect information using the sensor. This sensor may include a camera. Examples of road conditions are road congestion, the presence or absence of fallen objects, and the condition of the road surface.
  • the RSU 20 may relay communication between the vehicle 10 and the ITS server 30.
  • the RSU 20 may be connected to one or both of the traffic lights and sensors so as to be able to communicate with them via wires or wirelessly.
  • a mobile communication terminal may be used as the communication unit of the RSU 20.
  • the mobile communication terminal is, for example, a mobile terminal such as a mobile phone, a smartphone, or a tablet terminal.
  • the communication terminal is equipped with one or more sensors such as a camera, and is therefore expected to contribute to providing useful information.
  • the ITS server 30 may provide traffic information, driving assistance information, etc. to the vehicle 10, or control the color of traffic lights based on information received from the vehicle 10, the RSU 20, etc.
  • the ITS server 30 may be a cloud server or an on-premise server.
  • ITS 1 system configuration of ITS 1 shown in FIG. 1 is an example, and the configuration of ITS system 1 is not limited to the configuration shown in FIG. 1. Furthermore, the number of RSUs 20 and ITS servers 30 is not limited to the number shown in FIG. 1.
  • ITS 1 may simply be written as ITS
  • vehicle 10 may simply be written as vehicle.
  • the message used in the above-mentioned CPS is called a CPM.
  • the CPM includes a sensor start position, an x distance from the sensor start position to a target, a y distance, and the like.
  • a receiving vehicle that receives the CPM can calculate the absolute position of the target from the sensor start position, and the x distance and y distance from the sensor start position to the target.
  • the target may be read as a perceived object or the like.
  • the sensor starting position may be calculated from the absolute position of the vehicle, the mounting position of the sensor in the vehicle, the direction in which the vehicle is facing, etc.
  • the absolute position of the vehicle may be, for example, latitude and longitude obtained by a positioning system (e.g., a satellite positioning system (Global Navigation Satellite System (GNSS), Global Positioning System (GPS), etc.)), and may be called a GPS positioning position, etc.
  • a positioning system e.g., a satellite positioning system (Global Navigation Satellite System (GNSS), Global Positioning System (GPS), etc.
  • GNSS Global Navigation Satellite System
  • GPS Global Positioning System
  • the sensor mounting position may also be a position with an offset (e.g., offset in the x-axis/y-axis directions) added based on a reference point for the vehicle.
  • the reference point for the vehicle may be a ground position at the center of the front side of a rectangle (bounding box) surrounding the vehicle, or a GPS positioning position within the vehicle (e.g., the location where the locator is located).
  • the direction of the sensor axis may also be calculated from the direction in which the vehicle is facing.
  • the start and end opening angles of the sensor detection range may also be used instead of the direction of the sensor axis. Because the sensor is fixed to the vehicle, the direction of the sensor axis relative to the direction in which the vehicle is facing or the start and end opening angles of the sensor detection range are fixed values. Therefore, the direction of the sensor axis or the start and end opening angles of the sensor detection range can be calculated by adding or subtracting a fixed value to the direction in which the vehicle is facing. Note that the direction in which the vehicle is traveling is used as the direction in which the vehicle is facing.
  • the distance to the target may be the distance from the sensor starting position to the target, or may be calculated from the sensor detection results.
  • the sensor starting position, sensor mounting position, sensor axis direction, etc. may differ for each sensor, and the CPM may include information regarding these for each of multiple sensors.
  • Figure 2 shows an example of the distance to a target.
  • the x-axis extends in the longitudinal direction of the vehicle
  • the y-axis extends left and right when looking at the vehicle from the front
  • the z-axis is perpendicular to the x-axis and y-axis.
  • S_POS represents the sensor starting position
  • S_DIR represents the direction of the sensor axis.
  • target A is located at a distance 1 in the x-axis direction (Dx1 in the figure) and a distance 1 in the y-axis direction (Dy1 in the figure) from the vehicle's sensor starting point position.
  • Target B is located at a distance 2 in the x-axis direction (Dx2 in the figure) and a distance 2 in the y-axis direction (Dy2 in the figure) from the vehicle's sensor starting point position.
  • the target position is assumed to represent the position with the shortest distance from the sensor starting position, but is not limited to this.
  • a vehicle that receives a CPM from another vehicle may determine the absolute position of the target based on at least one of its own absolute position, the position of the other vehicle (obtained via CAM, etc.), the distance from the other vehicle to the target (obtained via CPM), etc.
  • the vehicle orientation is the direction toward the front of the vehicle on the vehicle longitudinal line, which is, for example, the vehicle width center line. If there is an error in the vehicle orientation, the absolute position of the target cannot be calculated correctly. Note that in this disclosure, "orientation" may also mean azimuth, azimuth angle, etc.
  • Figures 3A-3C are diagrams showing an example of an error in the position of a detected target due to an error in the vehicle's orientation.
  • Figure 3A shows an example where the vehicle's orientation is accurately recognized (there is no error between the vehicle's orientation and reality), the sensor mounting point and sensor starting point position are correctly calculated from the GPS position, and the sensor axis direction is correctly calculated.
  • “Calc_S_POS” in Figures 3A-3C represents the calculated sensor starting point position
  • GPS_POS represents the GPS position.
  • S_DIR represents the sensor axis direction, as mentioned above.
  • FIG. 3B shows a case where the vehicle orientation could not be accurately recognized, i.e., there was an error in the vehicle orientation from reality. Even if the GPS positioning position is the same as in FIG. 3A, if the vehicle orientation is incorrect, the sensor origin position will be a different position from the sensor origin position shown in FIG. 3A.
  • the dashed line in Figure 3C represents the position of the target detected in the case of Figure 3A (dashed line), and the solid line represents the position of the target detected in the case of Figure 3B.
  • the positions of targets A and B relative to the vehicle are the same as in Figure 2. It can be seen that if the vehicle orientation is incorrect, an error will occur in the detected target position, and the further away from the sensor, i.e., the further away from the vehicle, the larger the error.
  • the direction of travel in a V2X system is the "direction in which the vehicle is moving" (also called “heading"), not the “direction in which the vehicle is facing.”
  • Figures 4A and 4B are diagrams showing an example of the difference between the direction the vehicle is moving and the direction the vehicle is facing.
  • "HAED_DIR” represents the direction the vehicle is moving
  • “F_DIR” represents the direction the vehicle is facing.
  • the rotation angle of the steering wheel and the direction/angle of the tires may be interpreted as interchangeable.
  • the steering wheel may be referred to as a handle.
  • the rotation angle of the steering wheel may be interpreted as the steering angle, steering angle, rotation angle of the handle, or the direction of the steering wheel.
  • the direction of the tires may refer to the direction in which the tires roll.
  • the angle of the tires may refer to the angle of the direction of the tires when the direction of the vehicle is taken as the reference (e.g., 0°).
  • One method for determining the "direction in which a vehicle is moving” is to use a positioning system. However, it is known to be difficult to accurately determine the "direction in which a vehicle is moving” when the vehicle is moving at a low speed.
  • C2CCC CAR 2 CAR Communication Consortium
  • BSP Basic System Profile
  • SAE Society of Automotive Engineers J2945
  • the developer of this disclosure therefore came up with a method for suppressing errors in estimating the target's position in a message-receiving vehicle in a situation where there is a difference between the orientation of the message-sending vehicle and the direction in which the vehicle is traveling. According to one aspect of the present disclosure, in such a situation, it is possible to preferably suppress the use of a target's position that may be inappropriate by lowering the reliability of the detected target position or by not sending a message.
  • the message transmitted by the vehicle is assumed to be a CPM, but is not limited to this.
  • the CPM in this disclosure may be interpreted as any message that includes information on at least one of the sensor position, the target position, etc.
  • the message may be a message defined in CPM, CAM, DENM, SAE, Basic Safety Message (BSM), C2CCC BSP, or other standards.
  • a message control method according to an embodiment of the present disclosure is described below. Each message control method may be applied to the above-mentioned ITS.
  • the first embodiment relates to control of the transmit side of CPM.
  • the vehicle may calculate the confidence level (which may be called the confidence value, etc.) of the CPM and transmit the confidence level together with the CPM.
  • the CPM may also include the position of the target detected by the sensor.
  • the reliability of the CPM in the first embodiment may correspond to the reliability of all information contained in the CPM, or may correspond to the reliability of some of the information contained in the CPM.
  • the information contained in the CPM may be a container, a parameter (which may be called a data frame, data element, etc.), etc.
  • the reliability of the CPM may be a value that indicates that the lower the reliability, the lower the reliability of all or some of the information.
  • the reliability of the CPM may relate only to one or more of the containers in Non-Patent Document 1, such as the sensor information container and the perceived object container.
  • the reliability of the CPM may be the reliability of information on the sensor orientation that is the basis for calculating the target position and is transmitted in the CPM.
  • the information on the sensor orientation may be included in the vehicle sensor information included in the sensor information container described above.
  • the information on the sensor orientation may include the opening angle start (OpeningAngleStart)/opening angle end (OpeningAngleEnd) for the horizontal/vertical directions.
  • the reliability of the information regarding the sensor orientation may be included in the sensor information container described above together with the information regarding the sensor orientation.
  • the reliability of the information regarding the sensor orientation may be included in the vehicle sensor information.
  • the reliability of the information regarding the sensor orientation is not limited to the reliability of information that directly indicates the sensor orientation, such as the opening angle start and opening angle end described above.
  • the reliability of the information regarding the sensor orientation may be the reliability of the target position detected by the sensor. This is because the value of the target position detected by the sensor also changes in relation to the sensor orientation. In this case, the target position detected by the sensor is information regarding the sensor orientation.
  • the reliability of the information about the sensor orientation may also be the reliability of free space, which is a space in which no targets are detected by the sensor. This is because the target position, i.e., the position where a target exists, and the free space, i.e., the position where no target exists, are in a complementary relationship.
  • the information specifying the range of the free space is information about the sensor orientation.
  • the confidence regarding CPM may correspond to a value used as the confidence of sensors, targets, etc. in V2V/V2X communication, may correspond to a new value for scaling that value, or may correspond to a value for a confidence different from those.
  • the confidence regarding CPM may include the heading confidence (headingConfidence), free space confidence (freeSpaceConfidence), distance confidence (DistanceConfidence), angle confidence (AngleConfidence), speed confidence (SpeedConfidence), or any other confidence in Non-Patent Document 1.
  • the reliability of a CPM may be expressed as a real number between 0 and 1 (e.g., 1 being high reliability) or may be expressed as several levels (e.g., high, medium, low).
  • the reliability of the CPM may be calculated based on any one of the following embodiments 1.1-1.4 or a combination thereof.
  • the vehicle may change the reliability of the CPM based on the speed of the vehicle.
  • the reliability to be changed may be, in particular, the reliability of the information included in the CPM, regarding the sensor orientation.
  • the vehicle may be controlled so that the lower the vehicle speed is, the lower the reliability is, regardless of the speed range. However, it is preferable to lower the reliability when the vehicle speed is below a threshold value compared to when the speed is equal to or above the threshold value. This is because the "direction in which the vehicle is traveling" used as the vehicle orientation becomes less reliable when the vehicle speed is below the threshold value.
  • the threshold value can be, for example, a walking speed.
  • the threshold value may also be set even lower, to a speed calculated based on the swaying (i.e., acceleration) that occurs in the vehicle when it stops after slowing down.
  • the threshold value for a walking speed is, for example, 1.4 m/s.
  • the threshold value for a speed calculated based on the swaying that occurs in the vehicle when it stops after slowing down is, for example, 0.08 m/s. Note that "less than the threshold" may be read as "below the threshold.”
  • the relationship between reliability and speed may be a constant value regardless of speed. Also, when the vehicle speed is below a threshold, the relationship between reliability and speed may be such that the reliability decreases linearly, curved, or in stages as the speed decreases. When the relationship between reliability and speed is curved, for example, the relationship between speed and reliability may be a downward convex quadratic function. Also, the reliability may be calculated using a calculation formula set in advance. For example, the vehicle may calculate the reliability when the vehicle speed is low by subtracting or multiplying a value corresponding to the speed based on the reliability when the vehicle speed is high and all other conditions are assumed to be the same.
  • the vehicle may change the reliability of the CPM based on whether the vehicle is moving straight or not.
  • the reliability to be changed may be the reliability of the information on the sensor orientation among the information included in the CPM.
  • the reliability of the information on the sensor orientation that changes depending on the orientation of the vehicle decreases compared to when the vehicle is moving straight.
  • the vehicle may control the reliability so that it is lowered when the vehicle is not moving straight.
  • the vehicle may calculate the reliability when the vehicle is not moving straight by subtracting or multiplying a predetermined value based on the reliability when the vehicle is moving straight and other conditions are assumed to be the same.
  • "going straight” may include going almost straight, and may mean, for example, that the angle between the direction in which the vehicle is moving and the direction in which the vehicle is facing is equal to or less than a certain threshold (e.g., 3°), or that the steering angle (or tire angle) is equal to or less than a certain threshold (e.g., 3°).
  • Whether the vehicle is going straight may also be determined based on the time that the straight-line state continues.
  • Whether the vehicle is going straight may be determined based on the linearity of the history of the vehicle position (i.e., the driving trajectory) detected sequentially by a positioning system or the like.
  • the direction in which the vehicle is going may be determined based on the history of the vehicle position detected sequentially by a positioning system or the like.
  • the direction in which the vehicle is going may also be determined from the direction of the velocity vector obtained by the positioning system.
  • the threshold value may be predetermined in the standard, or information regarding the threshold value may be notified to the vehicle from another vehicle, an RSU, or an ITS server.
  • the reliability may be changed according to the degree to which the direction in which the vehicle is moving is curved.
  • the reliability may be lowered the more curved the direction in which the vehicle is moving, in other words, the more the vehicle turns.
  • the relationship between the degree to which the direction in which the vehicle is moving is curved and the reliability may be such that the reliability decreases linearly, curved, or in stages as the degree to which the direction in which the vehicle is moving is curved increases.
  • the reliability may be changed according to the degree to which the direction in which the vehicle is moving is curved only when the vehicle is not moving straight.
  • the vehicle may change the reliability of the CPM based on the time that the steering angle of the vehicle was continuously facing forward.
  • the reliability to be changed may be, in particular, the reliability of the information included in the CPM, related to the sensor orientation. This is because, as described in embodiment 1.2, "going straight" can be determined by the steering angle.
  • Embodiment 1.3 embodies some of the forms shown in embodiment 1.2.
  • the vehicle may change the reliability of the CPM based on the duration that the steering angle has been maintained within a certain range (e.g., ⁇ 3°) of the steering angle when the vehicle is traveling straight (e.g., 0°). If the steering angle changes beyond that range, the duration may be reset to 0.
  • the duration is set to a length of time that allows the vehicle to be determined to be traveling straight. An example duration is on the order of a few seconds.
  • the angle value within the certain range may be predetermined in a standard, or information regarding the threshold value may be notified to the vehicle from another vehicle, an RSU, or an ITS server.
  • the vehicle may control the reliability so that the shorter the duration, the lower the reliability.
  • the vehicle may calculate the reliability when the duration is short by subtracting or multiplying a predetermined value based on the reliability when the duration is long and other conditions are assumed to be the same.
  • the reliability may be changed according to the steering angle.
  • the relationship between the steering angle and the reliability may be such that the reliability decreases linearly, curvedly, or in stages as the steering angle increases.
  • the steering angle in this specification is an absolute value, and the steering angle increases both when the steering wheel is rotated left from 0 degrees, which is the steering angle when traveling straight, and when the steering wheel is rotated right.
  • This embodiment 1.3 or the above embodiment 1.2 can also be combined with embodiment 1.1.
  • the reliability can be varied based on the speed of the vehicle and the degree of curvature or steering angle in the direction the vehicle is traveling.
  • the reliability may be changed according to the steering angle. Also, if the vehicle speed is below a threshold, the reliability may be changed according to the vehicle speed and the steering angle. In this way, the reliability of a target detected when turning right or left at an intersection can be lowered. As a result, even if a pedestrian is mistakenly detected as crossing the road after a right or left turn instead of crossing the road before the turn, the reliability of the pedestrian's position can be lowered.
  • the vehicle may change the reliability of the target position based on the distance to the detected target.
  • the vehicle may control the reliability so that the reliability decreases as the distance to the detected target increases, regardless of the distance range to the target.
  • the relationship between the distance to the target and the reliability may be such that the reliability decreases linearly, curvedly, or in stages as the distance to the target increases.
  • the vehicle may calculate the reliability of a target whose distance is equal to or greater than a certain value by subtracting or multiplying a predetermined value based on the reliability of a target whose distance is less than a certain value (assuming that conditions other than the distance are the same).
  • the vehicle may include information for calculating the reliability in the CPM and transmit it.
  • the receiving vehicle that receives the CPM can calculate the reliability of the CPM based on the information, and the load of calculating the reliability in the CPM transmitting vehicle can be reduced.
  • the information for calculating the reliability may be at least one of the following: information on the vehicle speed in embodiment 1.1; information on whether the vehicle is moving straight or not (or steering angle information) in embodiment 1.2; the above-mentioned time (duration) in embodiment 1.3; and the distance to the target in embodiment 1.4.
  • the vehicle may transmit information for calculating the reliability using a second message (e.g., CAM) different from the first message.
  • a second message e.g., CAM
  • the message including the position of the target detected by the sensor and the message indicating the reliability of the information regarding the sensor orientation may be separate messages.
  • the second message may be transmitted simultaneously with the first message, or may be transmitted at a different time (e.g., relatively close to the first message). It is sufficient that the second message be linked to the first message.
  • the vehicle may control not to transmit the CPM in cases where the reliability is low (for example, when the speed of the vehicle is low, or when the steering angle is equal to or greater than a threshold).
  • the vehicle receiving the CPM may assume that the reliability of the received CPM is high.
  • the vehicle does not need to calculate the reliability in cases where the reliability is low. Whether or not the case is one in which the reliability is low may be determined based on information for calculating the reliability.
  • the vehicle may also calculate the reliability and perform control not to transmit the CPM if the calculated reliability is less than the transmission decision threshold.
  • the transmission decision threshold is a value that is set in advance.
  • the transmission decision threshold may be, for example, a reliability corresponding to the speed threshold shown in embodiment 1.1, or a value lower than that.
  • a vehicle can effectively notify other vehicles via the CPM that, for example, the reliability of the orientation of its own sensor is low.
  • the second embodiment relates to control of the receiving side of the CPM.
  • the vehicle may determine whether or not to use the CPM to estimate the position of a target based on the reliability. For example, the vehicle may decide to use the CPM to estimate the position of a target when the reliability is equal to or greater than a threshold, and may decide not to use the CPM to estimate the position of a target when the reliability is less than the threshold.
  • the vehicle may determine whether or not to use a received CPM for estimating the position of a target based on the state of the vehicle from which the CPM was sent. For example, the vehicle may preferentially trust a CPM received from a vehicle traveling straight over a CPM received from a vehicle turning, in other words, use the CPM for estimating the position of a target.
  • a CPM containing information about the same target is received from both a vehicle traveling straight and a vehicle turning
  • the position of the target can be estimated using the CPM received from the vehicle traveling straight.
  • a CPM containing information about the same target is received from both a vehicle traveling straight and a vehicle turning, and each CPM contains a reliability, the one with the higher reliability can be used to estimate the position of the target.
  • Another example of a vehicle state that determines whether or not to use a CPM to estimate the position of a target is the vehicle speed. If the speed of the vehicle that transmitted the CPM is less than the threshold described in embodiment 1.1, the receiving vehicle may decide not to use the received CPM to estimate the position of the target.
  • the vehicle speed is an example of information for calculating reliability.
  • a vehicle that receives a CPM may decide whether or not to use the received CPM to estimate the position of a target based on the information for calculating reliability.
  • the receiving vehicle may decide whether or not to use the received CPM for estimating the position of the target based on the reliability, without judging the state of the vehicle that transmitted the CPM.
  • the CPM is a first message
  • the state of the vehicle (speed, steering angle, yaw rate, etc.) may be transmitted using a second message (e.g., CAM) different from the first message.
  • the yaw rate is information for judging whether the vehicle that transmitted the CPM is turning.
  • the second message may be transmitted from the same vehicle at the same time as the first message, or at a different time (e.g., relatively close to the first message). It is sufficient that the second message is linked to the first message.
  • the receiving vehicle may calculate the reliability of the CPM based on the information for calculating the reliability described in the modified example of the first embodiment, and may determine whether or not to use the CPM to estimate the position of a target based on the information.
  • the vehicle can appropriately determine, for example, whether or not to use the received CPM to estimate the position of a target.
  • FIG. 5 is a diagram showing an example of a vehicle 10 according to an embodiment.
  • the vehicle 10 includes a control unit 11, a sensor 12, a locator 13, an input/output unit 14, and a communication unit 15.
  • the block diagram shown in this example shows functional blocks. Each of these functional blocks (components) is realized by any combination of at least one of hardware and software. Note that the "vehicle” described in the above embodiment may be read as any one or more functional blocks (e.g., the control unit 11, the communication unit 15) in the vehicle 10.
  • FIG. 5 shows only the parts necessary for explaining the present disclosure.
  • the vehicle 10 includes parts necessary for driving, such as a drive unit and an operating unit.
  • the drive unit is, for example, one or both of an engine and a motor.
  • the operating unit is, for example, a steering wheel.
  • the control unit 11 is composed of a microprocessor (hereinafter simply referred to as the processor) 111, a memory 112, and a communication interface 113.
  • the communication interface 113 is, for example, an input/output (IO) port.
  • the control unit 11 may be called an Electronic Control Unit (ECU), or may be composed of a Central Processing Unit (CPU) including interfaces with peripheral devices, a control device, an arithmetic unit, registers, etc.
  • ECU Electronic Control Unit
  • CPU Central Processing Unit
  • the control unit 11 may be configured to include hardware such as a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), or a field programmable gate array (FPGA), and the processing of the processor 111 may be realized using such hardware.
  • the processor 111 may be implemented using at least one of these pieces of hardware.
  • Each function of the vehicle 10 may be realized by, for example, loading specific software (programs) onto hardware such as the processor 111 and memory 112, causing the processor 111 to perform calculations, control communication via the communication unit 15, and/or control the reading and writing of data in the memory 112.
  • the processor 111 may, for example, operate an operating system to control the entire in-vehicle computer.
  • the processor 111 may also read programs, software modules, data, etc. into the memory 112 and execute various processes according to these.
  • the program may be a program for causing the computer to execute at least a portion of the operations described in the above-mentioned embodiments.
  • the program may be read as program code.
  • Memory 112 is a computer-readable recording medium and may be, for example, at least one of Read Only Memory (ROM), Erasable Programmable ROM (EPROM), Electrically EPROM, Random Access Memory (RAM), or other suitable storage medium.
  • ROM Read Only Memory
  • EPROM Erasable Programmable ROM
  • RAM Random Access Memory
  • Memory 112 may also be referred to as a register, cache, main memory, etc.
  • Memory 112 may store executable programs, software modules, etc. for implementing a method according to one embodiment of the present disclosure.
  • the control unit 11 may include a storage (auxiliary storage device) that is a computer-readable recording medium with a larger capacity than the memory 112.
  • the control unit 11 may read and write data to and from the memory 112 to the storage.
  • the storage is not limited to being provided in the control unit 11, and may be independent of the control unit 11 and connected to the control unit 11 via a communication line.
  • the communication interface 113 may be called an input/output port, and may be used to exchange information between the control unit 11 and other blocks.
  • the other blocks are, for example, blocks used for operation.
  • the control unit 11 may obtain signals from the sensors 12 via the communication interface 113.
  • the control unit 11 may provide driving assistance functions, autonomous driving functions, etc. based on an Inertial Navigation System (INS), an Artificial Intelligence (AI) chip, an AI processor, AI functions, etc.
  • INS Inertial Navigation System
  • AI Artificial Intelligence
  • AI functions etc.
  • the sensors 12 may include, for example, a current sensor, a wheel rotation speed sensor, a tire pressure sensor, a vehicle speed sensor, an acceleration sensor, an angular velocity sensor, an object detection sensor, and the like. Each sensor may provide a signal (on/off signal, analog signal, digital signal, etc.) obtained by measurement to the control unit 11 via the communication interface 113.
  • the object detection sensor may generate a detection signal when it detects a target such as an obstacle, a vehicle, or a pedestrian.
  • the sensor 12 may include a device capable of providing information on the environment surrounding the vehicle 10, such as a millimeter wave radar, a Light Detection and Ranging (LiDAR), a camera, a gyro system (e.g., an Inertial Measurement Unit (IMU)), etc.
  • a plurality of sensors 12 may be mounted on the vehicle 10, and a plurality of sensors 12 of the same type may be mounted on the vehicle.
  • cameras serving as sensors 12 may be mounted on the front, rear, and both sides of the vehicle 10.
  • the locator 13 acquires location information of the vehicle 10.
  • the locator 13 may acquire the location information based on a positioning system (e.g., a satellite positioning system (Global Navigation Satellite System (GNSS), Global Positioning System (GPS)), map information (e.g., a High Definition (HD) map, an Autonomous Vehicle (AV) map, etc.), and the speed, acceleration, angular velocity, etc. obtained from the sensor 12 described above.
  • GNSS Global Navigation Satellite System
  • GPS Global Positioning System
  • map information e.g., a High Definition (HD) map, an Autonomous Vehicle (AV) map, etc.
  • speed, acceleration, angular velocity, etc. obtained from the sensor 12 described above.
  • the input/output unit 14 includes an input device that accepts input from the outside and an output device that performs output to the outside.
  • the input device is, for example, a keyboard, a mouse, a microphone, a switch, a button, or a sensor.
  • the output device is, for example, a display, a speaker, or a Light Emitting Diode (LED) lamp.
  • the input device and the output device may be integrated into one structure (for example, a touch panel).
  • the input/output unit 14 may be composed of various devices for providing various information such as driving information, such as a car navigation system, an audio system, a television, a radio, etc., and one or more ECUs for controlling these devices.
  • the input/output unit 14 may provide various information/services to the occupants of the vehicle 10 by using information obtained from an external device (e.g., an ITS server 30) via the communication unit 15.
  • an external device e.g., an ITS server 30
  • the input/output unit 14 may receive input through user operation, or may be connected to a specific device, storage medium, etc. to receive data input.
  • the input/output unit 14 may output the input result to, for example, the control unit 11.
  • the input/output unit 14 may output data, content, etc. in a format that is perceptible to the user.
  • the communication unit 15 is hardware for communicating wirelessly with an external device (e.g., another vehicle 10, an ITS server 30, etc.), and is also referred to as, for example, a transmission/reception device, a network device, a network controller, a network card, a communication module, etc.
  • the communication unit 15 may be configured to include a high-frequency switch, a duplexer, a filter, an amplifier, a frequency synthesizer, an antenna, etc.
  • the communication unit 15 may be configured with a transmitter, a receiver, a transmission/reception circuit, or a transmission/reception device that are described based on a common understanding in the technical field to which this disclosure relates.
  • the communication unit 15 supports, for example, Long Term Evolution (LTE), LTE-Advanced (LTE-A), LTE-Beyond (LTE-B), SUPER3G, IMT-Advanced, 4th generation mobile communication system (4G), 5th generation mobile communication system (5G), 6th generation mobile communication system (6G), xth generation mobile communication system (xG (x is, for example, an integer or decimal)), Future Radio Access (FRA), New - Radio Communications may be performed using Access Technology (RAT), New Radio (NR), New radio access (NX), Future generation radio access (FX), Global System for Mobile communications (GSM (registered trademark)), CDMA2000, Ultra Mobile Broadband (UMB), IEEE 802.11 (Wi-Fi (registered trademark)), IEEE 802.16 (WiMAX (registered trademark)), IEEE 802.20, Ultra-WideBand (UWB), Bluetooth (registered trademark), or other wireless communication methods, or wireless communication methods extended, modified, created or defined based on these.
  • LTE Long
  • the communication unit 15 may be controllable by the processor 111 of the control unit 11, and the communication unit 15 may be included in the control unit 11.
  • the communication unit 15 may transmit at least one of the signal from the sensor 12, information obtained based on the signal, and information based on the input from the input/output unit 14 to an external device via wireless communication.
  • the communication unit 15 may receive various information (traffic information, signal information, vehicle distance information, etc.) from an external device and provide it to the control unit 11. This information may be output via the input/output unit 14.
  • the control unit 11 may perform control based on this information.
  • each functional block may be realized using one device that is physically or logically combined, or may be realized using two or more devices that are physically or logically separated and connected directly or indirectly (for example, using wires, wirelessly, etc.).
  • the functional block may be realized by combining software with the one device or the multiple devices.
  • processor 111 may be implemented by one or more chips.
  • each functional block may be connected by a bus for communicating information.
  • the bus may be configured using a single bus, or may be configured using different buses between each device.
  • the bus may be realized by a wired or wireless system.
  • the RSU 20, ITS server 30, etc. may have the same configuration as the vehicle 10. A person skilled in the art would be able to understand the descriptions related to the vehicle 10 by appropriately interpreting them.
  • the configuration of the vehicle 10 that includes the control unit 11 or the configuration that includes the control unit 11 and the communication unit 15 may be called a message control device.
  • the control unit 11 may generate a message including the position of the target detected by the sensor 12 and a message indicating the reliability of the information regarding the orientation of the sensor 12.
  • the communication unit 15 may transmit the message.
  • the message may include a reliability.
  • the message may include information for calculating the reliability.
  • the control unit 11 may determine the reliability based on the speed of the vehicle in which the sensor 12 is installed.
  • the control unit 11 may determine the reliability based on the degree to which the direction in which the vehicle in which the sensor 12 is mounted is curved.
  • the control unit 11 may determine the reliability based on the speed of the vehicle and the degree to which the direction in which the vehicle is traveling is curved.
  • the reliability of the information regarding the orientation of the sensor 12 is the reliability of the target position, and the control unit 11 may change the reliability of the target position depending on the distance to the target.
  • the control unit 11 may generate a message including the position of the target detected by the sensor 12.
  • the communication unit 15 may transmit the message.
  • the control unit 11 may determine whether or not to transmit the message from the communication unit 15 based on the reliability of the information about the orientation of the sensor 12 or information for calculating the reliability.
  • the communication unit 15 may receive a message including the target position and the reliability of the information about the orientation of the sensor 12 or information for calculating the reliability.
  • the control unit 11 may determine the relative position of the target based on the message received by the communication unit 15. The control unit 11 may determine whether or not to use the target position included in the message for estimating the target position based on the reliability that can be determined from the reliability or information for calculating the reliability.
  • vehicle in this disclosure may be interpreted as any moving object.
  • moving objects include, but are not limited to, vehicles, transport vehicles, automobiles, motorcycles, bicycles, connected cars, excavators, bulldozers, wheel loaders, dump trucks, forklifts, trains, buses, handcarts, rickshaws, ships and other watercraft, airplanes, rockets, satellites, drones, multicopters, quadcopters, balloons, and objects mounted on these.
  • the moving body may be a moving body that moves autonomously based on an operating command.
  • the moving body may be a moving body that moves with a person on board, in other words a vehicle (e.g., a car, an airplane, etc.), or it may be an unmanned moving body (e.g., a drone, an autonomous vehicle, etc.).
  • the moving body may be a robot.
  • the robot may be either manned or unmanned.
  • the information, parameters, etc. described in this disclosure may be represented using absolute values, may be represented using relative values from a predetermined value, or may be represented using other corresponding information.
  • a radio resource may be indicated by a predetermined index.
  • the information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies.
  • the data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, optical fields or photons, or any combination thereof.
  • Input/output information, signals, etc. may be stored in a specific location (e.g., memory) or may be managed using a management table. Input/output information, signals, etc. may be overwritten, updated, or added to. Output information, signals, etc. may be deleted. Input information, signals, etc. may be transmitted to another device.
  • a specific location e.g., memory
  • Input/output information, signals, etc. may be overwritten, updated, or added to.
  • Output information, signals, etc. may be deleted.
  • Input information, signals, etc. may be transmitted to another device.
  • the notification of information is not limited to the aspects/embodiments described in this disclosure, and may be performed using other methods. Furthermore, the notification of specific information (e.g., notification that "X is the case") is not limited to explicit notification, and may be performed implicitly (e.g., by not notifying the specific information or by notifying other information).
  • Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executable files, threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • a transmission medium For example, if the software is transmitted from a website, server, or other remote source using at least one of wired technologies (such as coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL)), and/or wireless technologies (such as infrared, microwave, etc.), then at least one of these wired and wireless technologies is included within the definition of a transmission medium.
  • wired technologies such as coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL)
  • wireless technologies such as infrared, microwave, etc.
  • each aspect/embodiment described in this disclosure may be used alone, in combination, or switched between depending on the implementation.
  • the processing procedures, sequences, flow charts, etc. of each aspect/embodiment described in this disclosure may be rearranged as long as there is no inconsistency.
  • the methods described in this disclosure present elements of various steps using an exemplary order, and are not limited to the particular order presented.
  • the phrase “based on” does not mean “based only on,” unless expressly stated otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
  • any reference to an element using a designation such as "first,” “second,” etc., used in this disclosure does not generally limit the quantity or order of those elements. These designations may be used in this disclosure as a convenient method of distinguishing between two or more elements. Thus, a reference to a first and second element does not imply that only two elements may be employed or that the first element must precede the second element in some way.
  • A/B and “at least one of A and B” may be interpreted as interchangeable. Also, in this disclosure, “A/B/C” may mean “at least one of A, B, and C.”
  • a and B are different may mean “A and B are different from each other.”
  • the term may also mean “A and B are each different from C.”
  • Terms such as “separate” and “combined” may also be interpreted in the same way as “different.”

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mathematical Physics (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Traffic Control Systems (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本開示の一態様に係るメッセージ制御装置は、センサにより検出された物標の位置を含むメッセージ、および、センサの向きに関する情報の信頼度を示しているメッセージを生成する制御部(11)と、メッセージを送信する通信部(15)と、を有する。このメッセージを受信した装置は、メッセージに含まれているセンサの向きに関する情報の信頼度が低い場合に、メッセージに含まれている物標の位置を物標の位置推定に用いないようにすることができる。これにより、物標の位置推定誤りを抑制できる。

Description

メッセージ制御装置、メッセージ制御方法、及び車両 関連出願の相互参照
 この出願は、2022年9月30日に日本に出願された特許出願第2022-158713号を基礎としており、基礎の出願の内容を、全体的に、参照により援用している。
 本開示は、高度道路交通システム(Intelligent Transport Systems(ITS))におけるメッセージ制御装置、メッセージ制御方法、及び車両に関する。
 自動運転、安全運転支援などのために、車両が取得した情報を他の車両と無線を介して共有することが検討されている。例えば、センサに基づく物標及びフリースペースの検出状況を共有する技術(Collective Perception Service(CPS))がある(非特許文献1)。CPSでは、送信元車両に搭載されたセンサの向きと、送信元車両と当該センサによって検出された物標との相対位置関係と、を通信によって送信し、受信車はそれらの情報から算出した物標の相対位置を、衝突回避のために利用できる。
 上述したCPSで用いられるメッセージは、Collective Perception Message(CPM)と呼ばれる。CPMには、基準となるセンサ起点位置、センサ起点位置から物標までのx距離、y距離などが含まれる。x距離は車両前後方向に平行なx軸方向の距離であり、y距離は車両幅方向に平行なy軸方向の距離である。x距離、y距離は、センサにより検出する。
 物標が動かなくても、車両が向いている方向が変化すると、x距離、y距離は変化する。以上からわかるように、物標の絶対位置を把握するにあたっては、車両の向いている方向(以下、単に車両の向きとも呼ぶ)の情報が重要である。車両の向きに誤差があると、物標の絶対位置が正しく算出できない。
 ところで、V2Xシステムでは一般的に車両の進行方向の取得にGlobal Navigation Satellite System(GNSS)を使うため、車両が向いている方向ではなく、車両が進んでいる方向を、車両の進行方向の情報として用いる。
 車両が進んでいる方向と車両が向いている方向の間に差が生じることがある。この差が生じている場合、車両の向いている方向の代用として車両が進んでいる方向を使い、検出した物標の位置を決定すると、物標の位置に誤差が生じる。このため、当該位置を示す情報を含むCPMを受信した受信車両において、物標の位置推定誤りが生じるおそれがある。
 そこで、本開示は、物標の位置推定誤りを好適に抑制できるメッセージ制御装置、メッセージ制御方法、及び車両を提供することを目的の1つとする。
 本開示の一態様に係るメッセージ制御装置は、センサにより検出された物標の位置を含むメッセージ、および、センサの向きに関する情報の信頼度を示しているメッセージを生成する制御部と、メッセージを送信する通信部と、を有する。
 本開示の一態様に係る他のメッセージ制御装置は、センサにより検出された物標の位置を含むメッセージを生成する制御部と、メッセージを送信する通信部と、を有し、制御部は、センサの向きに関する情報の信頼度または信頼度を算出するための情報に基づいて、通信部からメッセージを送信するか否かを決定する。
 本開示の一態様に係る他のメッセージ制御装置は、物標位置と、センサの向きに関する情報の信頼度または信頼度を算出するための情報とを含むメッセージを受信する通信部と、受信したメッセージに基づいて物標の相対位置を決定する制御部と、を有し、制御部は、信頼度または信頼度を算出するための情報により決定できる信頼度に基づいて、メッセージに含まれる物標位置を、物標の位置推定に用いるか否かを判断する。
 本開示の一態様に係るメッセージ制御方法は、センサにより検出された物標の位置を含むメッセージ、および、センサの向きに関する情報の信頼度を示しているメッセージを生成し、メッセージを送信する。
 本開示の一態様に係る車両は、上記メッセージ制御装置を有する。
 本開示の一態様によれば、物標の位置推定誤りを好適に抑制できる。
図1は、一実施形態に係る高度道路交通システムの概略構成の一例を示す図である。 図2は、物標までの距離の一例を示す図である。 図3Aは、車両の向きの誤差に基づく、検出される物標の位置の誤差の一例を示す図である。 図3Bは、車両の向きの誤差に基づく、検出される物標の位置の誤差の一例を示す図である。 図3Cは、車両の向きの誤差に基づく、検出される物標の位置の誤差の一例を示す図である。 図4Aは、車両が進んでいる方向と車両が向いている方向との違いの一例を示す図である。 図4Bは、車両が進んでいる方向と車両が向いている方向との違いの一例を示す図である。 図5は、一実施形態に係る車両の一例を示す図である。
 以下、本開示の実施の形態について添付図面を参照して詳細に説明する。以下の説明では、同一の部には同一の符号が付される。同一の部は名称、機能などが同じであるため、詳細な説明は繰り返さない。
 (高度道路交通システム)
 図1は、一実施形態に係る高度道路交通システムの概略構成の一例を示す図である。図1に示す高度道路交通システム1は、車両10と、路側機20と、ITSサーバ30と、を含んでもよい。高度道路交通システム1は、Intelligent Transport System(以下、ITS)、道路交通システム、交通システムなどと互いに読み替えられてもよい。路側機20は、Road-Side Unit(以下、RSU)20と呼ばれてもよい。
 ITS1は、情報(例えば、交通情報、自動運転のための情報など)を複数の車両において共有するシステム(いわゆる協調ITS(Cooperative ITS(CITS)))と呼ばれてもよい。
 ITS1において、本開示の後述の各実施形態に係るメッセージ制御方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
 車両10は、車道上を走行する車である。車両10は、自動車であってもよいし、自動では動かない車(例えば自転車)であってもよい。自動車は四輪車両及び二輪車両の一方又は両方であってもよい。
 車両10は、車載の通信装置を有し、無線通信により、他の車両10、RSU20、ITSサーバ30などと通信できる。無線通信の方式は、例えば、Long Term Evolution(LTE)、5th generation mobile communication system(5G)、Wi-Fi(登録商標)である。
 車両10間の直接通信は、Vehicle-to-Vehicle(V2V)通信と呼ばれてもよい。車両10及びRSU20の通信は、Vehicle to Infrastructure(V2I)通信と呼ばれてもよい。V2V通信及びV2I通信は、Vehicle-to-Everything(V2X)通信と呼ばれてもよい。
 車両10間で送信されるメッセージとしては、例えば以下の少なくとも1つが用いられてもよい:
 ・車両の位置、速度などを定期的に送信する協調認識メッセージ(Cooperative Awareness Message(CAM))、
 ・特定の事態が生じるときに通知する分散型環境通報メッセージ(Decentralized Environmental Notification Message(DENM))、
 ・知覚センサに基づいて知覚(認識)される環境を共有するための集団知覚メッセージ(Collective Perception Message(CPM))。
 CAMは、ETSI(European Telecommunications Standards Institute)が提案する協調認識(CA(Cooperative Awareness))サービスにおいて送信されるメッセージである。道路交通における協調認識は、道路利用者及び路側インフラストラクチャが相互の位置、動態及び属性を知ることができることを意味する。道路利用者とは、自動車、トラック、オートバイ、自転車、歩行者等、交通安全や制御を行う道路上や周辺のあらゆる利用者を指し、路側インフラストラクチャとは、道路標識、信号機、障壁、入口などの設備を指す。
 CPMは、ETSIが提案するCPサービスにおいて送信されるメッセージである。CPサービスは、CPMを送信する車両で検出された周囲の道路利用者や他の物標の位置、挙動、属性を、周囲に通知するサービスである。
 RSU20は、周辺の道路状況、周辺の信号機の情報などを収集する。信号機の情報には、信号機の灯色を含めることができる。また、RSU20は、収集した情報を、車両10、他のRSU20、ITSサーバ30などと通信する機能を有する。信号機は交通信号機と呼ばれてもよい。信号機の情報は、交通信号状態を示す情報と呼ばれてもよい。RSU20はセンサを備えて、そのセンサにより情報を収集してもよい。このセンサにはカメラが含まれていてもよい。道路状況の一例は道路の混雑状況、落下物の有無、路面の状況である。RSU20は、車両10及びITSサーバ30間の通信を中継してもよい。
 RSU20は、信号機、センサの一方又は両方と、有線又は無線によって通信可能なように接続されてもよい。
 なお、RSU20が備える通信部として移動通信端末が用いられてもよい。移動通信端末は、例えば、携帯電話、スマートフォン、タブレット型端末などの携帯端末である。通信端末は、カメラなどのセンサを1つ以上搭載しているため、有用な情報の提供に寄与することが期待される。
 ITSサーバ30は、車両10、RSU20などから受信した情報に基づいて、車両10に対して交通情報、運転支援のための情報などを提供したり、信号機の灯色を制御したりしてもよい。ITSサーバ30は、クラウドサーバでもオンプレミスサーバでもよい。
 車両10など各装置の機能構成及びハードウェア構成の一例については、後述する。
 なお、図1に示すITS1のシステム構成は一例であり、ITSシステム1の構成は図1に示す構成に限られない。また、RSU20、ITSサーバ30の数も、図1に示した数に限られない。
 本開示の以下の説明において、参照符号は省略されることがある。例えば、ITS1は単にITSと書かれてもよく、車両10は単に車両と書かれてもよい。
 (Collective Perception Message(CPM))
 上述したCPSで用いられるメッセージはCPMと呼ばれる。CPMには、センサ起点位置、センサ起点位置から物標までのx距離、y距離などが含まれる。CPMを受信した受信車両は、これらセンサ起点位置、センサ起点位置から物標までのx距離、y距離から、物標の絶対位置を算出することができる。なお、本開示において、物標は、知覚物体(perceived object)と互いに読み替えられてもよい。
 ここで、センサ起点位置は、車両の絶対位置、車両の中のセンサ搭載位置(mounting position)、車両の向いている方向などから算出されてもよい。なお、車両の絶対位置は、例えば、測位システム(例えば、衛星測位システム(Global Navigation Satellite System(GNSS)、Global Positioning System(GPS)など))によって得られる緯度経度であってもよく、GPS測位位置などと呼ばれてもよい。
 また、センサ搭載位置は、車両のための参照ポイント(reference point)を基準に、オフセット(例えば、x軸/y軸方向のオフセット)を加えた位置であってもよい。車両のための参照ポイントは、車両を囲む矩形(バウンディングボックス)の前面側中心の地上位置であってもよいし、車両内のGPS測位位置(例えば、ロケータが存在する位置)であってもよい。
 また、センサ軸の方向は、車両が向いている方向から算出されてもよい。また、センサ軸の方向に代えて、センサ検出範囲の開き角度開始と開き角度終了が用いられてもよい。センサは車両に固定されているため、車両が向いている方向に対するセンサ軸の方向あるいはセンサ検出範囲の開き角度開始と開き角度終了は固定値である。よって、センサ軸の方向あるいはセンサ検出範囲の開き角度開始と開き角度終了は、車両が向いている方向に、固定値を加算あるいは減算することで算出できる。なお、車両が向いている方向には、車両が進んでいる方向を用いる。
 また、物標までの距離は、センサ起点位置から物標までの距離であってもよく、センサの検出結果から算出されてもよい。
 なお、センサ起点位置、センサ搭載位置、センサ軸の方向などは、センサごとに異なってもよく、CPMには複数のセンサについてそれぞれこれらに関する情報が含まれてもよい。
 図2は、物標までの距離の一例を示す図である。なお、車両座標系(vehicle coordinate system)では、x軸は車両前後方向に延びる軸、y軸は車両から正面を見たときに左右に延びる軸、z軸はx軸及びy軸と直交する軸である。図中の「S_POS」はセンサ起点位置を表し、「S_DIR」はセンサ軸の方向を表している。
 本例では、物標Aは、車両のセンサ起点位置からx軸方向距離1(図中のDx1)かつy軸方向距離1(図中のDy1)の位置に存在する。物標Bは、車両のセンサ起点位置からx軸方向距離2(図中のDx2)かつy軸方向距離2(図中のDy2)の位置に存在する。
 なお、本開示において、物標の位置は、センサ起点位置からの最短距離の位置を表すと想定するが、これに限られない。
 他の車両からCPMを受信した車両は、自身の絶対位置、当該他の車両の位置(CAMなどを介して得られる)、当該他の車両から物標までの距離(CPMを介して得られる)などの少なくとも1つに基づいて、物標の絶対位置を判断してもよい。
 以上からわかるように、物標の絶対位置を把握するにあたっては、車両の向いている方向(以下、単に車両の向きとも呼ぶ)の情報が重要である。車両の向きは、車両前後方向線において車両前方に向かう方向であり、車両前後方向線は、例えば、車両幅方向中心線である。車両の向きに誤差があると、物標の絶対位置が正しく算出できない。なお、本開示において、「向き」は方位、方位角などを意味してもよい。
 図3A-3Cは、車両の向きの誤差に基づく、検出される物標の位置の誤差の一例を示す図である。図3Aは、車両の向きを正確に認識し(車両の向きに現実との誤差がなく)、GPS測位位置から正しくセンサ搭載点及びセンサ起点位置を算出し、正しくセンサ軸の方向を算出できた例を示す。図3A-3Cにおける「Calc_S_POS」は、算出されるセンサ起点位置を表し、「GPS_POS」はGPS測位位置を表している。「S_DIR」は前述の通り、センサ軸の方向を表している。
 図3Bは、車両の向きを正確に認識できなかった、すなわち、車両の向きに現実との誤差があった場合である。GPS測位位置が図3Aと同じであっても、車両の向きが誤っていると、センサ起点位置は、図3Aに示すセンサ起点位置とは異なる位置になる。
 図3Cにおける破線は、図3Aのケースにおいて検出される物標の位置(破線)を表し、実線は、図3Bのケースにおいて検出される物標の位置を表している。車両に対する物標A及びBの位置は、図2と同様である。車両の向きが誤っていると、検出される物標の位置に誤差が発生し、かつ、センサから離れれば離れるほど、すなわち、車両から離れれば離れるほど、誤差が大きくなっていることがわかる。
 ところで、すでに説明したように、V2Xシステムでいう進行方向は、「車両が進んでいる方向」(headingとも呼ばれる)であって、「車両が向いている方向」ではない。
 図4A及び4Bは、車両が進んでいる方向と車両が向いている方向との違いの一例を示す図である。図4A、4Bにおいて「HAED_DIR」は車両が進んでいる方向を、「F_DIR」は車両が向いている方向をそれぞれ表している。
 図4Aに示されるように、車両が直進しているときは、両者はほぼ一致している。一方で、図4Bに示されるように、車両がカーブを曲がっている時には、車両の向きとタイヤの向きが異なるため、車両の向きと車両が進んでいる方向との間に差分が生じる。なお、車両は遠心力などの影響を受けるため、タイヤの向き、あるいは、タイヤの向きに応じて回転角度が変化するステアリングホイールの回転角度も、車両の向きを示すとは限らない。
 本開示において、ステアリングホイールの回転角度と、タイヤの向き/角度は互いに読み替えられてもよい。なお、ステアリングホイールはハンドルと呼ばれてもよい。ステアリングホイールの回転角度は、ステアリングの角度、ステアリング角度、ハンドルの回転角度、あるいはステアリングホイールの向きと読み替えられてもよい。タイヤの向きは、タイヤが転がる方向を意味してもよい。タイヤの角度は、車両の向きを基準(例えば、0°)とする場合のタイヤの向きの角度を意味してもよい。
 「車両が進んでいる方向」を求める方法としては、測位システムを使う方法がある。しかしながら、車両が低速で移動している場合に「車両が進んでいる方向」を正確に求めることは難しいことが知られている。
 例えば、CAR 2 CAR Communication Consortium(C2CCC)の基本システム構成(Basic System Profile(BSP))、Society of Automotive Engineers(SAE)のJ2945などにおいては、車両速度が一定未満(例えば、0.08m/s未満)になる場合には、車両の進んでいる方向はそれ以前の最後の値にラッチされる(固定される)ことが検討されている。したがって、検討されているこれらの規格における車両が進んでいる方向は、当該車両が低速で移動している場合(例えば、右折/左折待ちの際に、低速で少しずつ動いているようなケース)には、測位システム等で求めた車両が進んでいる方向は、実際の車両の進行方向とは異なる可能性がある。
 このように正確でない「車両が進んでいる方向」を車両の向きとして用いると、図3A-3Cで述べたように、検出される物標の位置に誤差が生じる。このため、当該位置情報を含むCPMを受信した受信車両において、物標の位置推定誤りが生じるおそれがある。
 そこで、本開示の開発者は、メッセージ送信車両の向きとこの車両が進んでいる方向との間に差が生じる状況において、メッセージ受信車両における物標の位置推定誤りを抑制する方法を着想した。本開示の一態様によれば、そのような状況において、物標の検出位置に関する信頼度を下げたり、メッセージ送信をしなかったりすることによって、適切でない可能性がある物標の位置が用いられることを好適に抑制できる。
 なお、以下の実施形態の説明において、車両が送信するメッセージとしてはCPMを想定するが、これに限られない。つまり、本開示におけるCPMは、センサの位置、物標の位置などの少なくとも1つに関する情報を含む任意のメッセージで読み替えられてもよい。当該メッセージは、CPM、CAM、DENM、SAE、Basic Safety Message(BSM)、C2CCC BSPその他の規格において規定されるメッセージであってもよい。
 (メッセージ制御方法)
 本開示の一実施形態に係るメッセージ制御方法について、以下で説明する。各メッセージ制御方法は、上述のITSに適用されてもよい。
 <第1の実施形態>
 第1の実施形態は、CPMの送信側の制御に関する。
 第1の実施形態では、車両は、CPMに関する信頼度(confidence level、confidence valueなどと呼ばれてもよい)を算出し、当該信頼度をCPMに含めて送信してもよい。CPMには、この信頼度の他に、センサにより検出された物標の位置などが含まれる。
 ここで、第1の実施形態におけるCPMに関する信頼度は、CPMに含まれる全ての情報に関する信頼度に該当してもよいし、CPMに含まれる一部の情報に関する信頼度に該当してもよい。CPMに含まれる情報は、コンテナ、パラメータ(データフレーム、データエレメントなどと呼ばれてもよい)などであってもよい。CPMに関する信頼度は、低いほど、上記全ての情報又は一部の情報についての信頼度が低いことを示す値であってもよい。
 CPMに関する信頼度は、例えば、非特許文献1におけるセンサ情報コンテナ(sensor information container)、知覚物体コンテナ(perceived object container)などのコンテナのうち1つ又は複数のコンテナにのみ関連してもよい。
 CPMに関する信頼度は、CPMで送信される物標位置の計算根拠となるセンサの向きに関する情報の信頼度であってもよい。センサの向きに関する情報は、上述のセンサ情報コンテナに含まれる車両センサ(vehicleSensor)情報に含まれてもよい。例えば、センサの向きに関する情報は、水平/垂直方向についての、開き角度開始(OpeningAngleStart)/開き角度終了(OpeningAngleEnd)を含んでもよい。
 センサの向きに関する情報の信頼度は、当該センサの向きに関する情報とともに上述のセンサ情報コンテナに含まれてもよい。また、センサの向きに関する情報の信頼度は車両センサ情報に含まれていてもよい。
 センサの向きに関する情報の信頼度は、上述の開き角度開始、開き角度終了のように、センサの向きを直接示す情報の信頼度に限られない。センサの向きに関する情報の信頼度は、センサにより検出される物標位置の信頼度であってもよい。センサにより検出される物標位置も、センサの向きに関連して値が変化するからである。この場合、センサにより検出される物標位置が、センサの向きに関する情報である。
 また、センサの向きに関する情報の信頼度は、センサにより物標が検出されなかった空間であるフリースペースの信頼度であってもよい。物標位置すなわち物標が存在する位置と、フリースペースすなわち物標が存在しない位置は相補的な関係だからである。この場合、フリースペースの範囲を特定する情報が、センサの向きに関する情報である。
 本開示において、CPMに関する信頼度は、V2V/V2X通信においてセンサ、物標などの信頼度として用いられる値に該当してもよいし、その値をスケーリングするための新たな値に該当してもよいし、それらとは異なる信頼度のための値に該当してもよい。例えば、CPMに関する信頼度は、非特許文献1における向き信頼度(headingConfidence)、フリースペース信頼度(freeSpaceConfidence)、距離信頼度(DistanceConfidence)、角度信頼度(AngleConfidence)、速度信頼度(SpeedConfidence)、その他の任意の信頼度を含んでもよい。
 本開示において、CPMに関する信頼度は、X%(Xは実数、例えばX=95)の信頼度を有する測定値の精度(例えば絶対精度)を示してもよい。
 本開示において、CPMに関する信頼度は、0以上1以下の実数(例えば、1が高信頼度)で表されてもよいし、いくつかのレベル(例えば、高、中、低)で表されてもよい。
 CPMに関する信頼度は、以下の実施形態1.1-1.4のいずれか又はこれらの組み合わせに基づいて算出されてもよい。
 [実施形態1.1]
 実施形態1.1において、車両は、当該車両の速度に基づいて、CPMに関する信頼度を変化させてもよい。変化させる信頼度は、特に、CPMに含まれる情報のうち、センサの向きに関する情報の信頼度であってもよい。
 車両は、速度域によらず、当該車両の速度が低いほど、上記信頼度が低くなるように制御してもよい。ただし、車両は速度が閾値未満の場合に、速度が閾値以上である場合よりも信頼度を下げることが好ましい。車両の向きとして用いる「車両が進んでいる方向」は、車両速度が閾値未満になると信頼性が低くなるからである。
 閾値は、例えば、歩行程度の速度とすることができる。また、さらに閾値を低くして、徐行後に停車する際に車両に生じる揺れ(すなわち加速度)に基づいて算出される速度程度の閾値としてもよい。歩行程度の速度の閾値は、例えば1.4m/sである。徐行後に停車する際に車両に生じる揺れに基づいて算出される速度程度の閾値は、例えば0.08m/sである。なお、閾値未満は閾値以下と読み替えてもよい。
 車両の速度が閾値未満である場合において、信頼度と速度の関係は、速度によらず一定値であってもよい。また、車両の速度が閾値未満である場合において、信頼度と速度の関係は、速度が低くなるほど直線的あるいは曲線的あるいは段階的に信頼度が低くなる関係であってもよい。信頼度と速度の関係を曲線とする場合、例えば、速度と信頼度の関係が下に凸の二次関数となる関係でもよい。また、事前に設定した算出式により信頼度を算出してもよい。例えば、車両は、当該車両の速度が低い場合の信頼度を、当該車両の速度が高く、速度以外の条件が同じと仮定する場合の信頼度を基準として速度に応じた値を減算、乗算などして算出してもよい。
 [実施形態1.2]
 実施形態1.2において、車両は、当該車両が直進しているか否かに基づいて、CPMに関する信頼度を変化させてもよい。実施形態1.1と同様、変化させる信頼度は、特に、CPMに含まれる情報のうち、センサの向きに関する情報の信頼度であってもよい。図4A及び図4Bを用いて説明したように、車両がカーブを曲がっている時には、車両の向きと車両が進んでいる方向との間に差分が生じる。そのため、車両がカーブを曲がっている時には、車両が直進している時と比較して、車両の向きに応じて変化するセンサの向きに関する情報の信頼度が低下する。
 車両は、当該車両が直進している場合以外において、上記信頼度が低くなるように制御してもよい。例えば、車両は、当該車両が直進していない場合の信頼度を、当該車両が直進し、それ以外の条件が同じと仮定する場合の信頼度を基準として所定の値を減算、乗算などして算出してもよい。
 なお、本開示において、「直進」は、ほぼ直進を含んでもよく、例えば、車両が進んでいる方向と車両が向いている方向がある閾値以下の角度(例えば、3°)であることを意味してもよいし、ステアリングの角度(又はタイヤの角度)がある閾値以下の角度(例えば、3°)であることを意味してもよい。また、車両が直進しているか否かを、直進状態が継続している時間も含めて判断してもよい。測位システムなどにより逐次検出される車両位置の履歴(すなわち走行軌跡)の直線性により、車両が直進しているかどうかを判断してもよい。なお、測位システムなどにより逐次検出される車両位置の履歴により車両が進んでいる方向を決定してもよい。また、車両が進んでいる方向は、測位システムにより得られる速度ベクトルの方向から決定してもよい。
 なお、当該閾値の値は、規格において予め定められてもよいし、当該閾値の値に関する情報が、車両に対して他の車両、RSU又はITSサーバから通知されてもよい。
 さらに、「車両が直進している」と「車両が直進していない」とに分けて信頼度を変化させるだけでなく、車両が進んでいる方向が曲がっている程度に応じて信頼度を変化させてもよい。この場合、車両が進んでいる方向が曲がっているほど、換言すれば、車両が大きく旋回しているほど、信頼度を低くしてもよい。車両が進んでいる方向の曲がっている程度と信頼度との関係は、車両が進んでいる方向の曲がっている程度が大きくなるほど直線的あるいは曲線的あるいは段階的に信頼度が低くなる関係であってもよい。車両が進んでいる方向が曲がっている程度に応じて信頼度を変化させるのは、車両が直進していないときのみであってもよい。
 [実施形態1.3]
 実施形態1.3において、車両は、当該車両のステアリングの角度が継続的に前方を向いていた時間に基づいて、CPMに関する信頼度を変化させてもよい。変化させる信頼度は、特に、CPMに含まれる情報のうち、センサの向きに関する情報の信頼度であってもよい。実施形態1.2で説明したように、「直進」はステアリングの角度により判断できるからである。実施形態1.3は実施形態1.2で示した一部の形態を具体化している。
 車両は、ステアリングの角度が、車両が直進している場合のステアリングの角度(例えば、0°)から一定の範囲内の角度(例えば、±3°)に保たれていたこれまでの継続時間に基づいて、CPMに関する信頼度を変化させてもよい。ステアリング角度が当該範囲内の角度を超えて変化する場合には、この継続時間は0にリセットされてもよい。この継続時間は、車両が直進走行していると判断できる程度の時間に設定される。継続時間の一例は数秒程度である。
 なお、当該一定の範囲内の角度の値は、規格において予め定められてもよいし、当該閾値の値に関する情報が、車両に対して他の車両、RSU又はITSサーバから通知されてもよい。
 車両は、上記継続時間が短いほど、上記信頼度が低くなるように制御してもよい。例えば、車両は、上記継続時間が短い場合の信頼度を、上記継続時間が長く、それ以外の条件が同じと仮定する場合の信頼度を基準として所定の値を減算、乗算などして算出してもよい。
 さらに、継続時間に応じて信頼度を変化させることに加えて、あるいは、継続時間に応じて信頼度を変化させることに代えて、ステアリングの角度に応じて信頼度を変化させてもよい。ステアリングの角度と信頼度との関係は、ステアリングの角度が大きいほど直線的あるいは曲線的あるいは段階的に信頼度が低くなる関係であってもよい。なお、本明細書におけるステアリング角度は絶対値であり、直進時のステアリング角度である0度から左にステアリングホイールを回転させた場合及び右にステアリングホイールを回転させた場合ともにステアリング角度は大きくなる。
 この実施形態1.3あるいは前述の実施形態1.2は、実施形態1.1と組み合わせることもできる。したがって、車両の速度と、車両が進んでいる方向の曲がっている程度あるいはステアリングの角度とに基づいて、信頼度を変化させてもよい。
 例えば、車両の速度が閾値未満である場合、ステアリング角度に応じて信頼度を変化させてもよい。また、車両の速度が閾値未満である場合、車両の速度とステアリング角度とに応じて信頼度を変化させてもよい。このようにすれば、交差点での右左折時に検出した物標の信頼度を低くすることができる。これにより、仮に、右左折前の道路を横断する歩行者の位置を誤って右左折後の道路を横断する位置に検出してしまったとしても、その歩行者の位置の信頼度を低くすることができる。
 [実施形態1.4]
 CPMに関する信頼度が物標位置の信頼度である場合、車両は、検出された当該物標までの距離に基づいて、物標位置の信頼度を変化させてもよい。車両は、検出された物標までの距離範囲によらず、その距離が遠いほど、上記信頼度が低くなるように制御してもよい。物標までの距離と信頼度との関係は、物標までの距離が遠いほど、直線的あるいは曲線的あるいは段階的に信頼度が低くなる関係であってもよい。また、車両は、距離が一定以上の物標の信頼度を、距離が一定未満の物標の信頼度(距離以外の条件が同じと仮定)を基準として所定の値を減算、乗算などして算出してもよい。
 [第1の実施形態の変形例]
 車両は、上記信頼度を算出したり上記信頼度をCPMに含めて送信したりする代わりに、上記信頼度を算出するための情報をCPMに含めて送信してもよい。この場合、CPMを受信した受信車両において、当該情報に基づいて当該CPMに関する信頼度を算出することができ、また、CPMの送信車両において信頼度を算出する負荷の増大を抑制できる。
 上記信頼度を算出するための情報は、実施形態1.1に関する車両の速度の情報、実施形態1.2に関する車両が直進しているか否かに関する情報(又はステアリングの角度の情報)、実施形態1.3に関する上記時間(継続時間)、実施形態1.4に関する物標までの距離の少なくとも1つであってもよい。
 車両は、CPMを第1のメッセージとすると、第1のメッセージとは異なる第2のメッセージ(例えば、CAM)を用いて、上記信頼度を算出するための情報を送信してもよい。つまり、センサにより検出された物標の位置を含むメッセージと、センサの向きに関する情報の信頼度を示しているメッセージは、別々のメッセージであってもよい。当該第2のメッセージは、当該第1のメッセージと同時に送信されてもよいし、異なる時間(例えば、比較的近い時間)において送信されてもよい。第2のメッセージは第1のメッセージと紐づけられるようになっていればよい。
 [第1の実施形態の変形例2]
 車両は、上記信頼度が低くなるようなケース(例えば、当該車両の速度が低いケース、ステアリングの角度が閾値以上のケース)において、CPMを送信しない制御を行ってもよい。この場合、CPMの受信車両は、受信されるCPMの信頼性が高いことを想定できる。なお、車両は、上記信頼度が低くなるようなケースにおいて、上記信頼度を求めなくてもよい。上記信頼度が低くなるケースであるか否かは、信頼度を算出するための情報に基づいて決定してもよい。
 また、車両は、信頼度を算出し、算出した信頼度が送信判定閾値未満である場合に、CPMを送信しない制御を行ってもよい。送信判定閾値は事前に設定する値である。送信判定閾値は、例えば、実施形態1.1で示した速度の閾値に対応する信頼度、あるいは、それ以下の値であってよい。
 以上説明した第1の実施形態によれば、車両は、例えば自身のセンサの向きに関する信頼度が低いことを、CPMを介して他の車両に好適に知らせることができる。
 <第2の実施形態>
 第2の実施形態は、CPMの受信側の制御に関する。
 第2の実施形態では、車両は、受信したCPMが第1の実施形態で述べた信頼度を含む場合、当該信頼度に基づいて、当該CPMを物標の位置推定に用いるか否かを判断してもよい。例えば、車両は、上記信頼度が閾値以上である場合に、当該CPMを物標の位置推定に用いると決定し、上記信頼度が閾値未満である場合に、当該CPMを物標の位置推定に用いないと決定してもよい。
 車両は、受信したCPMがどのような状態の車両から送信されたかに基づいて、当該CPMを物標の位置推定に用いるか否かを判断してもよい。例えば、車両は、旋回中の車両から受信したCPMより、直進する車両から受信したCPMを優先的に信頼、換言すれば、優先的に物標の位置推定に用いてもよい。優先的に用いる具体例を説明する。直進する車両と旋回中の車両の両方から同じ物標に関する情報を含むCPMを受信した場合、直進する車両から受信したCPMを用いて当該物標の位置を推定することができる。また、直進する車両と旋回中の車両の両方から同じ物標に関する情報を含むCPMを受信した場合であって、それぞれのCPMに信頼度が含まれている場合、信頼度が高い方を用いて物標の位置を推定してもよい。
 CPMを物標の位置推定に用いるか否かを判断する車両の状態の他の例は、車両の速度がある。CPMを送信した車両の速度が実施形態1.1で説明した閾値未満である場合、受信車両は、受信したCPMを物標の位置推定に用いないと決定してもよい。車両の速度は、信頼度を算出するための情報の一例である。CPMを受信した車両は、信頼度を算出するための情報に基づいて、受信したCPMを物標の位置推定に用いるか否かを決定してもよい。
 また、受信車両は、受信したCPMに、センサの向きに関する情報の信頼度が含まれている場合、CPMを送信した車両の状態を判断することなく、信頼度により、受信したCPMを物標の位置推定に用いるかどうかを決定してもよい。車両の状態(速度、ステアリング角度、ヨーレートなど)は、CPMを第1のメッセージとすると、第1のメッセージとは異なる第2のメッセージ(例えば、CAM)を用いて送信されてもよい。なお、ヨーレートは、CPMを送信した車両が旋回中であるか否かを判断する情報である。当該第2のメッセージは、同じ車両から当該第1のメッセージと同時に送信されてもよいし、異なる時間(例えば、比較的近い時間)において送信されてもよい。第2のメッセージは第1のメッセージと紐づけられるようになっていればよい。
 受信車両は、第1の実施形態の変形例において述べた上記信頼度を算出するための情報に基づいて、CPMに関する信頼度を算出し、当該情報に基づいて、当該CPMを物標の位置推定に用いるか否かを判断してもよい。
 以上説明した第2の実施形態によれば、車両は、例えば、受信したCPMを物標の位置推定に用いるか否かを適切に判断できる。
 (ハードウェア構成)
 図5は、一実施形態に係る車両10の一例を示す図である。車両10は、制御部11、センサ12、ロケータ13、入力/出力部14、通信部15を備える。本例が示すブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)はそれぞれ、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。なお、上述の実施形態において説明した「車両」は、車両10の中のいずれか又は複数の機能ブロック(例えば、制御部11、通信部15)と互いに読み替えられてもよい。
 図5には本開示の説明に必要な部分のみが示されている。車両10は、運転のために必要な部分、例えば、駆動部及び操作部を含む。駆動部は、例えば、エンジン及びモータの一方又は両方である。操作部は、例えば、ステアリングホイールである。
 制御部11は、マイクロプロセッサ(以下、単にプロセッサ)111、メモリ112、通信インターフェース113で構成される。通信インターフェース113は、例えば、入出力(Input/Output(IO))ポートである。制御部11は、電子制御ユニット(Electronic Control Unit(ECU))と呼ばれてもよいし、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(Central Processing Unit(CPU))によって構成されてもよい。
 制御部11は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor(DSP))、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて上記プロセッサ111の処理が実現されてもよい。例えば、プロセッサ111は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
 車両10などにおける各機能(例えば、メッセージの生成、センサ12からの情報に基づく処理)は、例えば、プロセッサ111、メモリ112などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ111が演算を行い、通信部15を介する通信を制御したり、メモリ112におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現されてもよい。
 プロセッサ111は、例えば、オペレーティングシステムを動作させて車載のコンピュータ全体を制御してもよい。また、プロセッサ111は、プログラム、ソフトウェアモジュール、データなどをメモリ112に読み出し、これらに従って各種の処理を実行してもよい。当該プログラムは、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるためのプログラムであってもよい。プログラムはプログラムコードと読み替えてもよい。
 メモリ112は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically EPROM、Random Access Memory(RAM)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ112は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ112は、本開示の一実施形態に係る方法を実施するために実行可能なプログラム、ソフトウェアモジュールなどを保存することができる。
 なお、制御部11には、メモリ112より大容量のコンピュータ読み取り可能な記録媒体であるストレージ(補助記憶装置)が含まれてもよい。制御部11は、メモリ112において読み書きするデータを当該ストレージとの間で読み書きしてもよい。ストレージについては制御部11が備えることに限定されず、制御部11とは独立しており、通信線で制御部11と接続されていてもよい。
 通信インターフェース113は、入出力ポートと呼ばれてもよく、制御部11と他のブロックとの情報のやり取りに用いられてもよい。他のブロックは、例えば運転のために用いられるブロックである。制御部11は、通信インターフェース113を介して、センサ12からの信号を取得してもよい。
 制御部11は、慣性航法装置(Inertial Navigation System(INS))、人工知能(Artificial Intelligence(AI))チップ、AIプロセッサ、AI機能などに基づいて、運転支援機能、自動運転機能などを提供してもよい。
 センサ12は、例えば、電流センサ、車輪の回転数センサ、タイヤの空気圧センサ、車両の速度センサ、加速度センサ、角速度センサ、物体検知センサなどを含んでもよい。各センサは、それぞれ計測によって得られた信号(オンオフ信号、アナログ信号、デジタル信号など)を、通信インターフェース113を介して制御部11に与えてもよい。例えば、物体検知センサは、障害物、車両、歩行者などの物標を検出すると検出信号を生成してもよい。
 なお、センサ12は、車両10の周辺環境の情報を提供できるデバイスを含んでもよく、例えば、ミリ波レーダ、Light Detection and Ranging(LiDAR)、カメラ、ジャイロシステム(例えば、慣性計測装置(Inertial Measurement Unit(IMU)))などを含んでもよい。センサ12は車両10に複数搭載されていてもよく、同一種別のセンサ12が車両に複数搭載されてもよい。たとえば、センサ12としてのカメラが、車両10前方、後方及び両側方に搭載されてもよい。
 ロケータ13は、車両10の位置情報を取得する。ロケータ13は、測位システム(例えば、衛星測位システム(Global Navigation Satellite System(GNSS)、Global Positioning System(GPS)など))、地図情報(例えば、高精細(High Definition(HD))マップ、自動運転車(Autonomous Vehicle(AV))マップなど)、上述のセンサ12から得られる速度、加速度、角速度などに基づいて、上記位置情報を取得してもよい。
 入力/出力部14は、外部からの入力を受け付ける入力デバイス、外部への出力を実施する出力デバイスを含む。入力デバイスは、例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサである。出力デバイスは、例えば、ディスプレイ、スピーカー、Light Emitting Diode(LED)ランプである。入力デバイス及び出力デバイスは、一体となった構成(例えば、タッチパネル)であってもよい。
 入力/出力部14は、カーナビゲーションシステム、オーディオシステム、テレビ、ラジオなどといった、運転情報などの各種情報を提供するための各種機器と、これらの機器を制御する1つ以上のECUとから構成されてもよい。入力/出力部14は。外部装置(例えば、ITSサーバ30)から通信部15を介して取得した情報を利用して、車両10の乗員に各種情報/サービスを提供してもよい。
 入力/出力部14は、ユーザからの操作により入力を受け付けてもよいし、所定の機器、記憶媒体などと接続されてデータの入力を受け付けてもよい。入力/出力部14は、入力結果を例えば制御部11に出力してもよい。
 入力/出力部14は、ユーザに対して知覚できる形式でデータ、コンテンツなどの出力を行ってもよい。
 通信部15は、無線を介して外部装置(例えば、他の車両10、ITSサーバ30など)との通信を行うためのハードウェアであり、例えば、送受信デバイス、ネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信部15は、高周波スイッチ、デュプレクサ、フィルタ、アンプ、周波数シンセサイザ、アンテナなどを含んで構成されてもよい。通信部15は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター、レシーバー、送受信回路又は送受信装置により構成することができる。
 通信部15は、例えば、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、LTE-Beyond(LTE-B)、SUPER3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、6th generation mobile communication system(6G)、xth generation mobile communication system(xG(xは、例えば整数、小数))、Future Radio Access(FRA)、New - Radio Access Technology(RAT)、New Radio(NR)、New radio access(NX)、Future generation radio access(FX)、Global System for Mobile communications(GSM(登録商標))、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の無線通信方式、又はこれらに基づいて拡張、修正、作成又は規定された無線通信方式を用いて通信を行ってもよい。
 通信部15は、制御部11のプロセッサ111によって制御可能であってもよい、通信部15は、制御部11に含まれてもよい。
 通信部15は、センサ12からの信号、当該信号に基づいて得られる情報、入力/出力部14からの入力に基づく情報などの少なくとも1つを、無線通信を介して外部装置へ送信してもよい。
 通信部15は、外部装置から受信した種々の情報(交通情報、信号情報、車間情報など)を受信し、制御部11に提供してもよい。これらの情報は、入力/出力部14を介して出力されてもよい。制御部11は、これらの情報に基づいて制御を行ってもよい。
 なお、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
 例えば、プロセッサ111は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、2以上のプロセッサによって実行されてもよい。なお、プロセッサ111は、1以上のチップによって実装されてもよい。
 各機能ブロックのハードウェアは、情報を通信するためのバスによって接続されてもよい。バスは、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。バスは、有線又は無線によって実現されてもよい。
 なお、RSU20、ITSサーバ30なども、車両10と同様の構成を有してもよい。当業者であれば、車両10関連の記載を、適宜読み替えて理解できる。
 なお、車両10のうち、制御部11を含む構成又は制御部11と通信部15を含む構成は、メッセージ制御装置と呼ばれてもよい。
 制御部11は、センサ12により検出された物標の位置を含むメッセージ、および、センサ12の向きに関する情報の信頼度を示しているメッセージを生成してもよい。通信部15は、そのメッセージを送信してもよい。
 メッセージは信頼度を含んでもよい。メッセージは、信頼度を算出するための情報を含んでもよい。
 制御部11は、センサ12が搭載される車両の速度に基づいて、信頼度を決定してもよい。
 制御部11は、センサ12が搭載される車両が進んでいる方向が曲がっている程度に基づいて、信頼度を決定してもよい。
 制御部11は、車両の速度と、車両が進んでいる方向が曲がっている程度に基づいて、信頼度を決定してもよい。
 センサ12の向きに関する情報の信頼度が物標の位置の信頼度であり、制御部11は、物標の位置の信頼度を物標までの距離に応じて変化させてもよい。
 制御部11は、センサ12により検出された物標の位置を含むメッセージを生成してもよい。通信部15は、そのメッセージを送信してもよい。制御部11は、センサ12の向きに関する情報の信頼度または信頼度を算出するための情報に基づいて、通信部15からメッセージを送信するか否かを決定してもよい。
 通信部15は、物標位置と、センサ12の向きに関する情報の信頼度または信頼度を算出するための情報とを含むメッセージを受信してもよい。
 制御部11は、通信部15が受信したメッセージに基づいて物標の相対位置を決定してもよい。制御部11は、信頼度または信頼度を算出するための情報により決定できる信頼度に基づいて、メッセージに含まれる物標位置を、物標の位置推定に用いるか否かを判断してもよい。
 (変形例)
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。
 本開示において、装置、回路、デバイス、部(section)、ユニットなどの文言は、互いに読み替えることができる。
 本開示の車両は、任意の移動体(moving object)で読み替えられてもよい。移動体は、例えば、車両、輸送車両、自動車、自動二輪車、自転車、コネクテッドカー、ショベルカー、ブルドーザー、ホイールローダー、ダンプトラック、フォークリフト、列車、バス、リヤカー、人力車、船舶(ship and other watercraft)、飛行機、ロケット、人工衛星、ドローン、マルチコプター、クアッドコプター、気球及びこれらに搭載される物を含み、またこれらに限られない。
 移動体は、運行指令に基づいて自律走行する移動体であってもよい。移動体は、人が搭乗して動く移動体、換言すれば乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよい。移動体はロボットであってもよい。ロボットは有人型でも無人型でもよい。
 本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。
 本開示においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式などは、本開示において明示的に開示したものと異なってもよい。
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。
 情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line(DSL))など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
 本開示において、「A/B」及び「A及びBの少なくとも一方」は、互いに読み替えられてもよい。また、本開示において、「A/B/C」は、「A、B及びCの少なくとも1つ」を意味してもよい。
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
 本開示において、「含む(include)」、「含んでいる(including)」及びこれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
 本開示において、例えば、英語でのa, an及びtheのように、翻訳によって冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
 本開示において、「以下」、「未満」、「以上」、「より多い」、「と等しい」などは、互いに読み替えられてもよい。また、本開示において、「良い」、「悪い」、「大きい」、「小さい」、「高い」、「低い」、「早い」、「遅い」、「広い」、「狭い」、などを意味する文言は、原級、比較級及び最上級に限らず互いに読み替えられてもよい。また、本開示において、「良い」、「悪い」、「大きい」、「小さい」、「高い」、「低い」、「早い」、「遅い」、「広い」、「狭い」などを意味する文言は、「i番目に」(iは任意の整数)を付けた表現として、原級、比較級及び最上級に限らず互いに読み替えられてもよい(例えば、「最高」は「i番目に最高」と互いに読み替えられてもよい)。
 本開示において、「の(of)」、「のための(for)」、「に関する(regarding)」、「に関係する(related to)」、「に関連付けられる(associated with)」などは、互いに読み替えられてもよい。
 以上、本開示の実施形態について詳細に説明したが、当業者にとっては、本開示に係る構成が本開示中に明示された実施形態に限定されないということは明らかである。本開示は、本開示の記載に基づいて定まる技術的思想の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とし、本開示の構成に対して何ら制限的な意味をもたらさない。

Claims (11)

  1.  センサにより検出された物標の位置を含むメッセージ、および、前記センサの向きに関する情報の信頼度を示しているメッセージを生成する制御部と、
     前記メッセージを送信する通信部と、を有するメッセージ制御装置。
  2.  前記メッセージは、前記信頼度を含む、請求項1に記載のメッセージ制御装置。
  3.  前記メッセージは、前記信頼度を算出するための情報を含む、請求項1に記載のメッセージ制御装置。
  4.  前記制御部は、前記センサが搭載される車両の速度に基づいて、前記信頼度を決定する請求項2に記載のメッセージ制御装置。
  5.  前記制御部は、前記センサが搭載される車両が進んでいる方向が曲がっている程度に基づいて、前記信頼度を決定する請求項2に記載のメッセージ制御装置。
  6.  前記制御部は、前記車両の速度と、前記車両が進んでいる方向が曲がっている程度に基づいて、前記信頼度を決定する請求項4に記載のメッセージ制御装置。
  7.  前記センサの向きに関する情報の信頼度が前記物標の位置の信頼度であり、
     前記制御部は、前記物標の位置の信頼度を前記物標までの距離に応じて変化させる、請求項2に記載のメッセージ制御装置。
  8.  センサにより検出された物標の位置を含むメッセージを生成する制御部と、
     前記メッセージを送信する通信部と、を有し、
     前記制御部は、前記センサの向きに関する情報の信頼度または前記信頼度を算出するための情報に基づいて、前記通信部から前記メッセージを送信するか否かを決定するメッセージ制御装置。
  9.  物標位置と、センサの向きに関する情報の信頼度または前記信頼度を算出するための情報とを含むメッセージを受信する通信部と、
     受信した前記メッセージに基づいて物標の相対位置を決定する制御部と、を有し、
     前記制御部は、前記信頼度または前記信頼度を算出するための情報により決定できる前記信頼度に基づいて、前記メッセージに含まれる前記物標位置を、物標の位置推定に用いるか否かを判断するメッセージ制御装置。
  10.  センサにより検出された物標の位置を含むメッセージ、および、前記センサの向きに関する情報の信頼度を示しているメッセージを生成し、
     前記メッセージを送信するメッセージ制御方法。
  11.  請求項1から請求項9のいずれか1項に記載のメッセージ制御装置を有する車両。
PCT/JP2023/032440 2022-09-30 2023-09-06 メッセージ制御装置、メッセージ制御方法、及び車両 WO2024070539A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022158713A JP2024052175A (ja) 2022-09-30 2022-09-30 メッセージ制御装置、メッセージ制御方法、及び車両
JP2022-158713 2022-09-30

Publications (1)

Publication Number Publication Date
WO2024070539A1 true WO2024070539A1 (ja) 2024-04-04

Family

ID=90477391

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/032440 WO2024070539A1 (ja) 2022-09-30 2023-09-06 メッセージ制御装置、メッセージ制御方法、及び車両

Country Status (2)

Country Link
JP (1) JP2024052175A (ja)
WO (1) WO2024070539A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010217979A (ja) * 2009-03-13 2010-09-30 Omron Corp 画像処理装置および方法、並びに、プログラム
JP2021060941A (ja) * 2019-10-09 2021-04-15 日産自動車株式会社 物体認識方法及び物体認識システム
WO2022002976A1 (en) * 2020-07-02 2022-01-06 Volkswagen Aktiengesellschaft Method, apparatus and computer program for a vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010217979A (ja) * 2009-03-13 2010-09-30 Omron Corp 画像処理装置および方法、並びに、プログラム
JP2021060941A (ja) * 2019-10-09 2021-04-15 日産自動車株式会社 物体認識方法及び物体認識システム
WO2022002976A1 (en) * 2020-07-02 2022-01-06 Volkswagen Aktiengesellschaft Method, apparatus and computer program for a vehicle

Also Published As

Publication number Publication date
JP2024052175A (ja) 2024-04-11

Similar Documents

Publication Publication Date Title
US11615706B2 (en) System and method for driving assistance along a path
JP6747531B2 (ja) 車両間ミリ波通信における運転意図の共有に基づくビームアライメント
EP3500944B1 (en) Adas horizon and vision supplemental v2x
WO2018159315A1 (ja) 遠隔操縦装置、遠隔操縦方法、及び遠隔操縦プログラム
US11092970B2 (en) Autonomous vehicle systems utilizing vehicle-to-vehicle communication
WO2017145650A1 (ja) 車載機及び道路異常警告システム
US11113969B2 (en) Data-to-camera (D2C) based filters for improved object detection in images based on vehicle-to-everything communication
CN112469970B (zh) 用于估计在车辆的自定位方面的定位质量的方法、用于执行该方法的方法步骤的设备以及计算机程序
US11915452B2 (en) Information processing device and information processing method
CN112511736A (zh) 自主车辆的传感器布局
CN112927524A (zh) 交叉路口信号预测系统及其方法
US20240210939A1 (en) Camera image compression for autonomous driving vehicles
WO2024070539A1 (ja) メッセージ制御装置、メッセージ制御方法、及び車両
US20240068838A1 (en) Methods and systems for distributing high definition map using edge device
US11979805B2 (en) Control method, communication terminal, and communication system
WO2024111388A1 (ja) メッセージ制御装置、及びメッセージ制御方法
WO2024070538A1 (ja) メッセージ制御装置、及び、メッセージ制御方法
US12055405B2 (en) Navigation system with voice assistant mechanism and method of operation thereof
EP4015336A1 (en) Systems, devices, and methods involving driving systems
US20240051569A1 (en) Long-term evolution computing platform for autonomous vehicles based on shell and nut architecture
KR20220155530A (ko) 운전자 보조 시스템의 제어 방법 및 장치
CN116420179A (zh) 通信控制装置、通信控制方法以及通信控制程序
CN116324924A (zh) 通信管理装置、通信管理方法以及通信管理程序
KR20220149870A (ko) 차로변경 제어방법 및 이를 위한 차량용 통합제어기
CN114604241A (zh) 车辆驾驶风险评估方法、装置、电子设备及边缘计算设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23871779

Country of ref document: EP

Kind code of ref document: A1