WO2024070430A1 - Controller and optical interferometric ranging sensor - Google Patents

Controller and optical interferometric ranging sensor Download PDF

Info

Publication number
WO2024070430A1
WO2024070430A1 PCT/JP2023/031329 JP2023031329W WO2024070430A1 WO 2024070430 A1 WO2024070430 A1 WO 2024070430A1 JP 2023031329 W JP2023031329 W JP 2023031329W WO 2024070430 A1 WO2024070430 A1 WO 2024070430A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
signal
interferometer
main
optical
Prior art date
Application number
PCT/JP2023/031329
Other languages
French (fr)
Japanese (ja)
Inventor
和哉 木村
裕介 長崎
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Publication of WO2024070430A1 publication Critical patent/WO2024070430A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02001Interferometers characterised by controlling or generating intrinsic radiation properties
    • G01B9/02002Interferometers characterised by controlling or generating intrinsic radiation properties using two or more frequencies
    • G01B9/02004Interferometers characterised by controlling or generating intrinsic radiation properties using two or more frequencies using frequency scans
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02055Reduction or prevention of errors; Testing; Calibration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques

Definitions

  • the present invention relates to a controller and an optical interferometric distance sensor.
  • optical distance measuring sensors that measure the distance to a measurement object without contact have become widespread.
  • an optical interferometric distance measuring sensor that generates interference light based on a reference light and a measurement light from light projected from a wavelength swept light source, and measures the distance to the measurement object based on the interference light.
  • this type of optical frequency domain reflectometry device has a sweep light source, an auxiliary interferometer that gives a predetermined delay time difference to a portion of the output light of the sweep light source to cause interference and output as an auxiliary interference signal, a measurement interferometer that inputs a portion of the output light of the sweep light source to the optical fiber under test and causes the reflected light from the optical fiber under test and a portion of the output light of the sweep light source to interfere with each other and output as a measurement interference signal, a linearization section that uses the auxiliary interference signal to correct the nonlinearity of the wavelength sweep of the sweep light source for the measurement interference signal, and a Fourier transform section that performs a Fourier transform on the output signal of the linearization section to output a frequency domain signal, in which the linearization section has multiple linearization sections each having a different delay time, and the Fourier transform section has a weighted addition/Fourier transform section that adds the output signals of the multiple linearization sections with different weights and outputs the Fourier transformed result (
  • the present invention was made in consideration of these circumstances, and one of its objectives is to provide a controller and optical interferometric distance sensor that can reduce deviations in sampling timing.
  • a controller is a controller connected via an optical fiber cable to each of a first sensor head and a second sensor head that irradiate light onto a measurement object, and includes a light source that projects light while changing the wavelength, a first main interferometer that receives the light projected from the light source and generates a first main interference signal based on a first measurement light that is irradiated onto the measurement object by the first sensor head and reflected, and a first reference light that follows at least a part of an optical path different from that of the first measurement light, a second main interferometer that receives the light projected from the light source and generates a second main interference signal based on a second measurement light that is irradiated onto the measurement object by the second sensor head and reflected, and a second reference light that follows at least a part of an optical path different from that of the second measurement light, and a sub-interferometer that receives the light projected from the light source and generates a sub-interference signal based on two lights that
  • a delay amount is generated based on the optical path length difference between the optical path length of the first optical fiber and the optical path length of the second optical fiber, and a second correction signal that corrects the sampling period of the second main interference signal is generated based on the sub-interference signal and the delay amount.
  • the delay amount generating unit may include a third optical fiber that propagates the secondary interference signal and has an optical path length based on the optical path length difference.
  • a third optical fiber is included that propagates the secondary interference signal and has an optical path length based on the optical path length difference between the optical path length of the first optical fiber and the optical path length of the second optical fiber. This makes it easy to set the amount of delay by changing the optical path length of the third optical fiber.
  • the delay amount generating unit may include a delay line that generates a delay according to the delay amount in the time axis direction in the sub-interferometer signal obtained by converting the sub-interference signal into an electrical signal, and outputs the delay to the second correction signal generating unit.
  • the sub-interferometer signal obtained by converting the sub-interference signal into an electrical signal includes a delay line that generates a delay in the time axis direction according to the amount of delay and outputs the delay to the second correction signal generation unit.
  • the second correction signal generation unit can easily generate the second correction signal, which is an electrical signal.
  • the second correction signal generating unit may generate a pulse signal, which is the second correction signal, based on a signal in which a delay corresponding to the amount of delay is generated in the time axis direction in the sub-interferometer signal obtained by converting the sub-interference signal into an electrical signal.
  • the second correction signal generating unit generates a pulse signal, which is the second correction signal, based on a signal in which a delay corresponding to the amount of delay is generated in the time axis direction in the sub-interferometer signal obtained by converting the sub-interference signal into an electrical signal. This makes it easy to match (synchronize) the timing of sampling the second main interference signal.
  • the device may further include an AD converter that samples the second main interferometer signal, which is obtained by converting the second main interference signal into an electrical signal, based on the second correction signal and converts the signal into a digital signal.
  • an AD converter that samples the second main interferometer signal, which is obtained by converting the second main interference signal into an electrical signal, based on the second correction signal and converts the signal into a digital signal.
  • the second main interferometer signal which is obtained by converting the second main interference signal into an electrical signal, is further provided with an AD conversion unit that samples the second main interferometer signal based on the second correction signal and converts it into a digital signal. This makes it easy to realize a configuration in which the second main interferometer signal is converted into a digital signal with a corrected sampling period.
  • the delay amount may be set so that the absolute value of the difference between the delay time of the light due to the optical path length difference is smaller than the minimum sampling period of the AD conversion unit.
  • the delay amount is set so that the absolute value of the difference between the delay time of the light due to the optical path length difference is smaller than the minimum sampling period in the AD conversion unit. This makes it possible to suppress the decrease in the signal strength of the sampled digital signal to a predetermined percentage or less, for example, 10% or less.
  • system may further include a processing unit that measures the distance to the measurement object based on at least one of the first main interference signal and the second main interference signal and the sub-interference signal.
  • a processing unit is further provided that measures the distance to the measurement object based on at least one of the first main interference signal and the second main interference signal and the sub-interference signal. This makes it possible to easily realize a configuration that measures the distance to the measurement object.
  • An optical interferometric distance measuring sensor is an optical interferometric distance measuring sensor including a controller and an optical fiber cable connected to the controller, the controller including a light source that projects light while changing the wavelength, a first main interferometer that receives the light projected from the light source and generates a first main interference signal based on a first measurement light that is irradiated on a measurement object by a first sensor head and reflected, and a first reference light that follows at least a part of an optical path different from that of the first measurement light, a second main interferometer that receives the light projected from the light source and generates a second main interference signal based on a second measurement light that is irradiated on a measurement object by a second sensor head and reflected, and a second reference light that follows at least a part of an optical path different from that of the second measurement light, and a sub-interferometer that receives the light projected from the light source and generates a sub-interference signal based on two lights that follow
  • the cable includes a first optical fiber connected to the first main interferometer and propagating light from the first main interferometer to the first sensor head and propagating light from the first sensor head to the first main interferometer, and a second optical fiber connected to the second main interferometer and propagating light from the second main interferometer to the second sensor head and propagating light from the second sensor head to the second main interferometer, the second optical fiber having an optical path length different from that of the first optical fiber, and the controller further includes a first correction signal generating unit that generates a first correction signal for correcting the sampling period of the first main interference signal based on the sub-interference signal, a delay amount generating unit that generates a delay amount based on the optical path length difference between the optical path length of the first optical fiber and the optical path length of the second optical fiber, and a second correction signal generating unit that generates a second correction signal for correcting the sampling period of the second main interference signal based on the sub-interference signal and the delay amount.
  • a first correction signal generating unit that
  • a delay amount is generated based on the optical path length difference between the optical path length of the first optical fiber and the optical path length of the second optical fiber, and a second correction signal that corrects the sampling period of the second main interference signal is generated based on the sub-interference signal and the delay amount.
  • the present invention can reduce the deviation in sampling timing.
  • 1 is a schematic external view showing an overview of a displacement sensor 10 according to the present disclosure.
  • 5 is a flowchart showing a procedure for measuring a measurement object T by the displacement sensor 10 according to the present disclosure.
  • 1 is a functional block diagram showing an overview of a sensor system 1 in which a displacement sensor 10 according to the present disclosure is used.
  • 1 is a flowchart showing a procedure for measuring a measurement object T by a sensor system 1 in which a displacement sensor 10 according to the present disclosure is used.
  • 1 is a diagram for explaining the principle by which a measurement object T is measured by a displacement sensor 10 according to the present disclosure.
  • 11A and 11B are diagrams for explaining another principle by which the measurement object T is measured by the displacement sensor 10 according to the present disclosure.
  • FIG. 2 is a perspective view showing a schematic configuration of a sensor head 20.
  • 2 is a schematic diagram showing the internal structure of a sensor head 20.
  • FIG. FIG. 2 is a block diagram for explaining signal processing in a controller 30.
  • 10 is a flowchart showing a method for calculating a distance to a measurement object T, which is executed by a processing unit 59 in the controller 30.
  • 1 is a diagram showing how a waveform signal (voltage vs. time) is frequency-converted into a spectrum (voltage vs. frequency).
  • FIG. 13 is a diagram showing how a spectrum (voltage vs. frequency) is distance-transformed into a spectrum (voltage vs. distance).
  • FIG. 13 is a diagram showing how a peak is detected based on a spectrum (voltage vs. distance) and a corresponding distance value is calculated.
  • 1 is a schematic diagram showing an outline of the configuration of an optical interferometric distance measuring sensor 100 according to an embodiment of the present invention.
  • FIG. 13 is a schematic diagram showing an outline of the configuration of another optical interferometric distance measuring sensor 101 according to an embodiment of the present invention.
  • FIG. 11 is a diagram for explaining the sampling timing of the first main interferometer signal and the second main interferometer signal. 11 is a diagram for explaining the relationship between the signal intensity of the second main interferometer signal converted into a digital signal and the time difference ⁇ t.
  • FIG. 13 is a schematic diagram showing an example of a specific configuration of a secondary interferometer 160 and its subsequent stages when three sensor heads are provided.
  • FIG. 13 is a schematic diagram showing another example of the specific configuration of the secondary interferometer 160 and the subsequent stages when three sensor heads are provided.
  • 13A and 13B are diagrams showing variations of an interferometer that generates interference light using measurement light and reference light.
  • Fig. 1 is a schematic external view showing an overview of a displacement sensor 10 according to the present disclosure.
  • the displacement sensor 10 includes a sensor head 20 and a controller 30, and measures the displacement of a measurement object T (the distance to the measurement object T).
  • the sensor head 20 and the controller 30 are connected by an optical fiber 40, and an objective lens 21 is attached to the sensor head 20.
  • the controller 30 also includes a display unit 31, a setting unit 32, an external interface (I/F) unit 33, an optical fiber connection unit 34, and an external memory unit 35, and further includes a measurement processing unit 36 inside.
  • the sensor head 20 irradiates the light output from the controller 30 onto the measurement object T and receives the reflected light from the measurement object T.
  • the sensor head 20 has an internal reference surface that reflects the light output from the controller 30 and received via the optical fiber 40 and causes it to interfere with the reflected light from the measurement object T described above.
  • the objective lens 21 is attached to the sensor head 20, but the objective lens 21 is configured to be removable.
  • the objective lens 21 can be replaced with an objective lens having an appropriate focal length depending on the distance between the sensor head 20 and the measurement target T, or a variable-focus objective lens may be used.
  • guide light visible light
  • the sensor head 20 and/or the measurement object T may be installed so that the measurement object T is appropriately positioned within the measurement area of the displacement sensor 10.
  • the optical fiber 40 is connected to and extends from the optical fiber connection section 34 disposed in the controller 30, connecting the controller 30 and the sensor head 20. As a result, the optical fiber 40 is configured to guide the light projected from the controller 30 to the sensor head 20, and further guide the return light from the sensor head 20 to the controller 30.
  • the optical fiber 40 is detachable from the sensor head 20 and the controller 30, and various optical fibers can be used in terms of length, thickness, characteristics, etc.
  • the display unit 31 is configured, for example, with a liquid crystal display or an organic EL display.
  • the display unit 31 displays the set value of the displacement sensor 10, the amount of returned light received from the sensor head 20, and the measurement results such as the displacement of the measurement object T measured by the displacement sensor 10 (the distance to the measurement object T).
  • the setting unit 32 performs the settings necessary for measuring the measurement target T, for example, by the user operating a mechanical button, a touch panel, or the like. All or part of these necessary settings may be set in advance, or may be set from an external connection device (not shown) connected to the external I/F unit 33. In addition, the external connection device may be connected via a network in a wired or wireless manner.
  • the external I/F unit 33 is composed of, for example, Ethernet (registered trademark), RS232C, and analog output.
  • the external I/F unit 33 may be connected to another connected device to allow necessary settings to be made from the external connected device, or may output the measurement results, etc., measured by the displacement sensor 10 to the external connected device.
  • the controller 30 may import data stored in the external memory unit 35 to perform settings required for measuring the measurement object T.
  • the external memory unit 35 is, for example, an auxiliary storage device such as a USB (Universal Serial Bus) memory, and stores in advance settings required for measuring the measurement object T.
  • USB Universal Serial Bus
  • the measurement processing unit 36 in the controller 30 includes, for example, a wavelength swept light source that emits light while continuously changing the wavelength, a light receiving element that receives the return light from the sensor head 20 and converts it into an electrical signal, and a signal processing circuit that processes the electrical signal.
  • various processes are performed using a control unit, a memory unit, etc. based on the return light from the sensor head 20 so that the displacement of the measurement object T (the distance to the measurement object T) is ultimately calculated. Details of these processes will be described later.
  • FIG. 2 is a flowchart showing the procedure for measuring the measurement object T by the displacement sensor 10 according to the present disclosure. As shown in FIG. 2, the procedure includes steps S11 to S14.
  • step S11 the sensor head 20 is installed.
  • guide light is irradiated from the sensor head 20 onto the measurement target T, and the sensor head 20 is installed in an appropriate position based on the guide light.
  • the amount of light received from the sensor head 20 is displayed on the display unit 31 of the controller 30, and the user may adjust the orientation of the sensor head 20 and the distance (height position) from the measurement object T while checking the amount of light received. Basically, if the light from the sensor head 20 can be irradiated perpendicularly (at an angle closer to perpendicular) to the measurement object T, the amount of light reflected from the measurement object T will be large, and the amount of light received from the sensor head 20 will also be large.
  • the objective lens 21 may be replaced with one having an appropriate focal length depending on the distance between the sensor head 20 and the measurement object T.
  • an error or incomplete settings may be displayed on the display unit 31 or output to an externally connected device to notify the user.
  • step S12 various measurement conditions are set when measuring the measurement object T.
  • the user sets the inherent calibration data (such as a function that corrects linearity) of the sensor head 20 by operating the setting unit 32 in the controller 30.
  • the sampling time, the measurement range, and a threshold for determining whether the measurement result is normal or abnormal may be set.
  • the measurement period may be set according to the characteristics of the measurement object T, such as the reflectance and material of the measurement object T, and a measurement mode may be set according to the material of the measurement object T.
  • step S13 the sensor head 20 installed in step S11 measures the measurement object T according to the measurement conditions and various parameters set in step S12.
  • the measurement processing unit 36 of the controller 30 light is projected from the wavelength swept light source, the light returning from the sensor head 20 is received by a light receiving element, and the signal processing circuit performs frequency analysis, distance conversion, peak detection, etc., to calculate the displacement of the measurement object T (the distance to the measurement object T). Specific details of the measurement process will be described later.
  • step S14 the measurement results obtained in step S13 are output.
  • the displacement of the measurement object T (distance to the measurement object T) measured in step S13 is displayed on the display unit 31 in the controller 30, or output to an externally connected device.
  • the displacement of the measurement object T (distance to the measurement object T) measured in step S13 may be displayed or output as a measurement result as to whether it is within a normal range or abnormal based on the threshold value set in step S12.
  • the measurement conditions, various parameters, measurement mode, etc. set in step S12 may also be displayed or output.
  • FIG. 3 is a functional block diagram showing an overview of a sensor system 1 in which a displacement sensor 10 according to the present disclosure is used.
  • the sensor system 1 includes the displacement sensor 10, a control device 11, a control signal input sensor 12, and an external connection device 13.
  • the displacement sensor 10 is connected to the control device 11 and the external connection device 13 by, for example, a communication cable or an external connection cord (including, for example, an external input line, an external output line, a power line, etc.), and the control device 11 and the control signal input sensor 12 are connected by a signal line.
  • the displacement sensor 10 measures the displacement of the measurement object T (the distance to the measurement object T). The displacement sensor 10 may then output the measurement results, etc. to the control device 11 and the externally connected device 13.
  • the control device 11 is, for example, a PLC (Programmable Logic Controller), and provides various instructions to the displacement sensor 10 when the displacement sensor 10 measures the measurement object T.
  • PLC Programmable Logic Controller
  • control device 11 may output a measurement timing signal to the displacement sensor 10 based on an input signal from a control signal input sensor 12 connected to the control device 11, or may output a zero reset command signal (a signal for setting the current measurement value to 0) or the like to the displacement sensor 10.
  • the control signal input sensor 12 outputs an on/off signal to the control device 11, which indicates the timing for the displacement sensor 10 to measure the measurement object T.
  • the control signal input sensor 12 may be installed near a production line along which the measurement object T moves, and upon detecting that the measurement object T has moved to a predetermined position, output an on/off signal to the control device 11.
  • the external connection device 13 is, for example, a PC (Personal Computer), and the user can operate it to configure various settings for the displacement sensor 10.
  • PC Personal Computer
  • Specific examples include the measurement mode, operation mode, measurement period, and the material of the measurement object T.
  • an "internal synchronous measurement mode” in which measurement is started periodically within the control device 11, or an “external synchronous measurement mode” in which measurement is started in response to an input signal from outside the control device 11, etc. can be selected.
  • an “operation mode” for actually measuring the measurement object T, or an “adjustment mode” for setting the measurement conditions for measuring the measurement object T, etc. can be selected.
  • the measurement period is the period for measuring the measurement object T, and may be set according to the reflectance of the measurement object T. Even if the reflectance of the measurement object T is low, the measurement object T can be properly measured by lengthening the measurement period and setting it appropriately.
  • the "rough surface mode” is selected when the reflected light component is relatively high in diffuse reflection
  • the "mirror surface mode” is selected when the reflected light component is relatively high in specular reflection
  • the "standard mode” is selected as an intermediate mode between the two.
  • FIG. 4 is a flowchart showing the procedure for measuring a measurement object T by a sensor system 1 in which a displacement sensor 10 according to the present disclosure is used. As shown in FIG. 4, the procedure is for the external synchronization measurement mode described above, and includes steps S21 to S24.
  • step S21 the sensor system 1 detects the measurement object T, which is the object to be measured. Specifically, the control signal input sensor 12 detects that the measurement object T has moved to a predetermined position on the production line.
  • step S22 the sensor system 1 issues a measurement instruction to have the displacement sensor 10 measure the measurement object T detected in step S21.
  • the control signal input sensor 12 outputs an on/off signal to the control device 11 to instruct the timing of measuring the measurement object T detected in step S21
  • the control device 11 outputs a measurement timing signal to the displacement sensor 10 based on the on/off signal to instruct the displacement sensor 10 to measure the measurement object T.
  • step S23 the measurement object T is measured by the displacement sensor 10. Specifically, the displacement sensor 10 measures the measurement object T based on the measurement instruction received in step S22.
  • step S24 the sensor system 1 outputs the measurement results obtained in step S23.
  • the displacement sensor 10 displays the results of the measurement process on the display unit 31, or outputs the results to the control device 11 or the externally connected device 13 via the external I/F unit 33.
  • FIG. 4 has been used to explain the procedure for the external synchronous measurement mode in which the measurement object T is measured by the control signal input sensor 12 detecting the measurement object T
  • the procedure is not limited to this.
  • a measurement timing signal is generated based on a preset cycle to instruct the displacement sensor 10 to measure the measurement object T.
  • 5A is a diagram for explaining the principle of measuring the measurement target T by the displacement sensor 10 according to the present disclosure.
  • the displacement sensor 10 includes a sensor head 20 and a controller 30.
  • the sensor head 20 includes an objective lens 21 and a plurality of collimator lenses 22a to 22c
  • the controller 30 includes a wavelength swept light source 51, an optical amplifier 52, a plurality of isolators 53 and 53a to 53b, a plurality of optical couplers 54 and 54a to 54e, an attenuator 55, a plurality of light receiving elements (e.g., photodetectors (PD)) 56a to 56c, a plurality of amplifier circuits 57a to 57c, a plurality of analog-to-digital (AD) conversion units (e.g., analog-to-digital converters) 58a to 58c, a processing unit (e.g., a processor) 59, a balance detector 60, and a correction signal generating unit 61.
  • PD photodetectors
  • the wavelength swept light source 51 emits a laser beam with a swept wavelength.
  • a VCSEL Very Cavity Surface Emitting Laser
  • mode hopping is unlikely to occur due to the short resonator length, the wavelength can be easily changed, and it can be realized at low cost.
  • the optical amplifier 52 amplifies the light emitted from the wavelength swept light source 51.
  • the optical amplifier 52 may be, for example, an erbium-doped fiber amplifier (EDFA), and may be, for example, an optical amplifier dedicated to 1550 nm.
  • EDFA erbium-doped fiber amplifier
  • the isolator 53 is an optical element that transmits incident light in one direction, and may be placed immediately after the wavelength swept light source 51 to prevent the effects of noise caused by returned light.
  • the light emitted from the wavelength swept light source 51 is amplified by the optical amplifier 52, passes through the isolator 53, and is branched by the optical coupler 54 to the main interferometer and the sub interferometer.
  • the optical coupler 54 may be configured so that the proportion of light branched to the main interferometer and the sub interferometer is 90% or more on the main interferometer side.
  • the light branched off to the main interferometer is further branched by the first-stage optical coupler 54a in the direction of the sensor head 20 and in the direction of the second-stage optical coupler 54b.
  • the light branched by the first-stage optical coupler 54a toward the sensor head 20 passes from the tip of the optical fiber through the collimator lens 22a and the objective lens 21 in the sensor head 20 and is irradiated onto the measurement object T.
  • the tip (end face) of the optical fiber then becomes the reference surface, and the light reflected from the reference surface interferes with the light reflected from the measurement object T, generating interference light that returns to the first-stage optical coupler 54a, and is then received by the light-receiving element 56a and converted into an electrical signal.
  • the light branched by the first-stage optical coupler 54a in the direction of the second-stage optical coupler 54b travels through the isolator 53a to the second-stage optical coupler 54b, which then branches it further into the direction of the sensor head 20 and the direction of the third-stage optical coupler 54c.
  • the light branched from the optical coupler 54b in the direction of the sensor head 20 passes through the collimator lens 22b and the objective lens 21 from the tip of the optical fiber in the sensor head 20 and is irradiated onto the measurement object T.
  • the tip (end face) of the optical fiber then becomes the reference surface, and the light reflected by the reference surface and the light reflected by the measurement object T interfere with each other to generate interference light, which returns to the second-stage optical coupler 54b and is branched by the optical coupler 54b in the directions of the isolator 53a and the light receiving element 56b.
  • the light branched from the optical coupler 54b in the direction of the light receiving element 56b is received by the light receiving element 56b and converted into an electrical signal.
  • the isolator 53a transmits light from the optical coupler 54a in the front stage to the optical coupler 54b in the rear stage and blocks light from the optical coupler 54b in the rear stage to the optical coupler 54a in the front stage, so the light branched from the optical coupler 54b in the direction of the isolator 53a is blocked.
  • the light branched by the second-stage optical coupler 54b in the direction of the third-stage optical coupler 54c travels through the isolator 53b to the third-stage optical coupler 54c, where it is further branched by the third-stage optical coupler 54c in the direction of the sensor head 20 and the direction of the attenuator 55.
  • the light branched from the optical coupler 54c in the direction of the sensor head 20 passes from the tip of the optical fiber through the collimator lens 22c and the objective lens 21 in the sensor head 20 and is irradiated onto the measurement object T.
  • the tip (end face) of the optical fiber then becomes the reference surface, and the light reflected by the reference surface interferes with the light reflected by the measurement object T to generate interference light, which returns to the third-stage optical coupler 54c and is branched by the optical coupler 54c in the directions of the isolator 53b and the light receiving element 56c.
  • the light branched from the optical coupler 54c in the direction of the light receiving element 56c is received by the light receiving element 56c and converted into an electrical signal.
  • the isolator 53b transmits light from the optical coupler 54b in the front stage to the optical coupler 54c in the rear stage and blocks light from the optical coupler 54c in the rear stage to the optical coupler 54b in the front stage, so the light branched from the optical coupler 54c in the direction of the isolator 53b is blocked.
  • the light branched off by the third-stage optical coupler 54c in a direction other than the sensor head 20 is not used to measure the measurement object T, it is advisable to attenuate it by an attenuator 55 such as a terminator so that it is not reflected back.
  • the main interferometer has three optical paths (three channels), each with an optical path length difference of twice the distance (round trip) from the tip (end face) of the optical fiber of the sensor head 20 to the measurement object T, and generates three interference lights according to the optical path length difference.
  • the light receiving elements 56a to 56c receive the interference light from the main interferometer as described above and generate an electrical signal according to the amount of light received.
  • the amplifier circuits 57a to 57c amplify the electrical signals output from the light receiving elements 56a to 56c, respectively.
  • the AD conversion units 58a to 58c receive the electrical signals amplified by the amplifier circuits 57a to 57c, respectively, and convert the electrical signals from analog to digital (AD conversion).
  • the AD conversion units 58a to 58c perform AD conversion based on the correction signal from the correction signal generation unit 61 in the sub-interferometer.
  • the secondary interferometer acquires an interference signal and generates a correction signal called a K clock.
  • the light branched off to the sub-interferometer by optical coupler 54 is further branched off by optical coupler 54d.
  • the optical paths of the branched lights are configured to have an optical path length difference, for example, by using optical fibers of different lengths between optical couplers 54d and 54e, and interference light according to the optical path length difference is output from optical coupler 54e.
  • the balanced detector 60 receives the interference light from optical coupler 54e and amplifies the optical signal and converts it into an electrical signal while removing noise by taking the difference with the opposite phase signal.
  • optical coupler 54d and optical coupler 54e each need to split light in a 50:50 ratio.
  • the correction signal generator 61 determines the nonlinearity of the wavelength when the wavelength swept light source 51 is swept based on the electrical signal from the balance detector 60, generates a K clock according to the nonlinearity, and outputs it to the AD converters 58a to 58c.
  • the intervals between the waves of the analog signals input to the AD converters 58a to 58c in the main interferometer are not equal.
  • the sampling time is corrected based on the K clock described above and AD conversion (sampling) is performed so that the intervals between the waves become equal.
  • the K clock is a correction signal used to sample the analog signal of the main interferometer, and therefore needs to be generated at a higher frequency than the analog signal of the main interferometer.
  • the optical path length difference between optical couplers 54d and 54e in the sub interferometer may be made longer than the optical path length difference between the tip (end face) of the optical fiber in the main interferometer and the measurement object T, or the frequency may be multiplied (e.g., 8 times) by the correction signal generator 61 to make it higher frequency.
  • the processing unit 59 acquires the digital signals that have been AD converted while the nonlinearity has been corrected by the AD conversion units 58a to 58c, and calculates the displacement of the measurement object T (the distance to the measurement object T) based on the digital signals. Specifically, the processing unit 59 uses a fast Fourier transform (FFT) to frequency convert the digital signals, and calculates the distance by analyzing them.
  • FFT fast Fourier transform
  • processing unit 59 because high-speed processing is required for the processing unit 59, it is often realized by an integrated circuit such as an FPGA (field-programmable gate array).
  • FPGA field-programmable gate array
  • the sensor head 20 irradiates the measurement object T with measurement light from each optical path, and the distance to the measurement object T, etc. are measured based on the interference light (return light) obtained from each (multi-channel).
  • the number of channels in the main interferometer is not limited to three, and may be one or two, or four or more.
  • the displacement sensor 10 includes a sensor head 20 and a controller 30.
  • the sensor head 20 includes an objective lens 21 and a plurality of collimator lenses 22a to 22c
  • the controller 30 includes a wavelength swept light source 51, an optical amplifier 52, a plurality of isolators 53 and 53a to 53b, a plurality of optical couplers 54 and 54a to 54j, an attenuator 55, a plurality of light receiving elements (e.g., photodetectors (PD)) 56a to 56c, a plurality of amplifier circuits 57a to 57c, a plurality of analog-to-digital (AD) conversion units (e.g., analog-to-digital converters) 58a to 58c, a processing unit (e.g., a processor) 59, a balance detector 60, and a correction signal generation unit 61.
  • the sensor head 20 includes an objective lens 21 and a plurality of collimator lenses 22a to 22c
  • the controller 30 includes a wavelength
  • the light emitted from the wavelength swept light source 51 is amplified by the optical amplifier 52, passes through the isolator 53, and is branched by the optical coupler 54 to the main interferometer side and the sub-interferometer side.
  • the light branched to the main interferometer side is further branched by the optical coupler 54f into measurement light and reference light.
  • the measurement light is irradiated onto the measurement object T through the collimator lens 22a and the objective lens 21 by the first-stage optical coupler 54a and is reflected by the measurement object T.
  • the tip (end face) of the optical fiber is used as a reference surface, and the light reflected from the reference surface interferes with the light reflected from the measurement object T to generate interference light, but in FIG. 5B, no reference surface is provided for reflecting light. That is, in FIG. 5B, since no light is reflected from the reference surface as in FIG. 5A, the measurement light reflected from the measurement object T returns to the first-stage optical coupler 54a.
  • the light branched from the first-stage optical coupler 54a in the direction of the second-stage optical coupler 54b passes through the collimator lens 22b and the objective lens 21 by the second-stage optical coupler 54b, is irradiated onto the measurement object T, is reflected by the measurement object T, and returns to the second-stage optical coupler 54b.
  • the light branched from the second-stage optical coupler 54b in the direction of the third-stage optical coupler 54c passes through the collimator lens 22c and the objective lens 21 by the third-stage optical coupler 54c, is irradiated onto the measurement object T, is reflected by the measurement object T, and returns to the third-stage optical coupler 54c.
  • the reference light split by optical coupler 54f is further split by optical coupler 54g to optical couplers 54h, 54i, and 54j.
  • the measurement light reflected by the measurement object T output from the optical coupler 54a interferes with the reference light output from the optical coupler 54g, generating interference light that is received by the light receiving element 56a and converted into an electrical signal.
  • the measurement light and the reference light are split by the optical coupler 54f, and interference light is generated according to the optical path length difference between the optical path of the measurement light (the optical path from the optical coupler 54f through the optical coupler 54a, the collimator lens 22a, the objective lens 21, reflected by the measurement object T, and reaching the optical coupler 54h) and the optical path of the reference light (the optical path from the optical coupler 54f through the optical coupler 54g to the optical coupler 54h), and the interference light is received by the light receiving element 56a and converted into an electrical signal.
  • interference light is generated according to the difference in optical path length between the optical path of the measurement light (the optical path from optical coupler 54f, through optical couplers 54a and 54b, collimating lens 22b, objective lens 21, reflected by the measurement object T, and reaching optical coupler 54i) and the optical path of the reference light (the optical path from optical coupler 54f to optical coupler 54i via optical coupler 54g), and the interference light is received by light-receiving element 56b and converted into an electrical signal.
  • interference light is generated according to the difference in optical path length between the optical path of the measurement light (the optical path from optical coupler 54f through optical couplers 54a, 54b, 54c, collimating lens 22c, objective lens 21, reflected by the measurement object T, and reaching optical coupler 54j) and the optical path of the reference light (the optical path from optical coupler 54f through optical coupler 54g and reaching optical coupler 54j), and the interference light is received by the light receiving element 56c and converted into an electrical signal.
  • the light receiving elements 56a to 56c may be, for example, balanced photodetectors.
  • the main interferometer has three optical paths (three channels) and generates three interference lights according to the optical path length difference between the measurement light reflected by the measurement object T and input to optical couplers 54h, 54i, and 54j, and the reference light input to optical couplers 54h, 54i, and 54j via optical couplers 54f and 54g, respectively.
  • optical path length difference between the measurement light and the reference light may be set to be different for each of the three channels, for example, the optical path lengths of optical coupler 54g and each of optical couplers 54h, 54i, and 54j may be set to be different.
  • the distance to the measurement object T, etc. is measured (multi-channel).
  • FIG. 6A is a perspective view showing a schematic configuration of the sensor head 20
  • FIG. 6B is a schematic view showing the internal structure of the sensor head.
  • the sensor head 20 has the objective lens 21 and collimator lens stored in the lens holder 23.
  • the size of the lens holder 23 is such that the length of one side surrounding the objective lens 21 is about 20 mm, and the length in the optical axis direction is about 40 mm.
  • the lens holder 23 stores one objective lens 21 and three collimating lenses 22a to 22c. Light from the optical fiber is guided to the three collimating lenses 22a to 22c via the optical fiber array 24, and the light that passes through the three collimating lenses 22a to 22c is irradiated onto the measurement object T via the objective lens 21.
  • the lens holder 23 that constitutes the sensor head 20 may also be made of a metal (e.g., A2017) that is strong and can be machined with high precision.
  • FIG. 7 is a block diagram for explaining signal processing in the controller 30.
  • the controller 30 includes a plurality of light receiving elements 71a-71e, a plurality of amplifier circuits 72a-72c, a plurality of AD conversion units 74a-74c, a processing unit 75, a differential amplifier circuit 76, and a correction signal generation unit 77.
  • the controller 30 splits the light emitted from the wavelength swept light source 51 into a main interferometer and a sub-interferometer by the optical coupler 54, and calculates the distance to the measurement object T by processing the main interference signal and the sub-interference signal obtained from each.
  • the multiple light receiving elements 71a to 71c correspond to the light receiving elements 56a to 56c shown in FIG. 5A, and each receive the main interference signal from the main interferometer and output it as a current signal to the amplifier circuits 72a to 72c, respectively.
  • the multiple amplifier circuits 72a to 72c convert the current signal into a voltage signal (IV conversion) and amplify it.
  • the multiple AD conversion units 74a to 74c correspond to the AD conversion units 58a to 58c shown in FIG. 5A, and convert the voltage signal into a digital signal (AD conversion) based on the K clock from the correction signal generation unit 77, which will be described later.
  • the processing unit 75 corresponds to the processing unit 59 shown in FIG. 5A, and converts the digital signals from the AD conversion units 74a to 74c into frequencies using FFT, analyzes them, and calculates the distance value to the measurement target T.
  • the multiple light receiving elements 71d-71e and the differential amplifier circuit 76 correspond to the balanced detector 60 shown in FIG. 5A, and each receives the interference light from the sub-interferometer, one of which outputs an interference signal with an inverted phase, and the interference signal is amplified and converted into a voltage signal while noise is removed by taking the difference between the two signals.
  • the correction signal generating unit 77 corresponds to the correction signal generating unit 61 shown in FIG. 5A, and binarizes the voltage signal using a comparator, generates a K clock, and outputs it to the AD conversion units 74a to 74c. Since the K clock needs to be generated at a higher frequency than the analog signal of the main interferometer, the correction signal generating unit 77 may multiply the frequency (e.g., 8 times) to increase the frequency.
  • FIG. 8 is a flowchart showing a method for calculating the distance to the measurement target T, which is executed by the processing unit 59 in the controller 30. As shown in FIG. 8, the method includes steps S31 to S34.
  • step S31 the processing unit 59 performs frequency conversion of the waveform signal (voltage vs. time) into a spectrum (voltage vs. frequency) using the following FFT:
  • Fig. 9A is a diagram showing how the waveform signal (voltage vs. time) is frequency converted into a spectrum (voltage vs. frequency).
  • step S32 the processing unit 59 performs distance conversion from the spectrum (voltage vs. frequency) to a spectrum (voltage vs. distance).
  • FIG. 9B is a diagram showing how the spectrum (voltage vs. frequency) is distance converted to a spectrum (voltage vs. distance).
  • step S33 the processing unit 59 calculates a distance value corresponding to the peak based on the spectrum (voltage vs. distance).
  • FIG. 9C is a diagram showing how peaks are detected based on the spectrum (voltage vs. distance) and the corresponding distance values are calculated. As shown in FIG. 9C, peaks are detected in each of the three channels based on the spectrum (voltage vs. distance), and distance values corresponding to each peak are calculated.
  • step S34 the processing unit 59 averages the distance values calculated in step S33. Specifically, since peaks have been detected in each of the three channels based on the spectrum (voltage vs. distance) in step S33 and the corresponding distance values have been calculated, the processing unit 59 averages these values and outputs the averaged calculation result as the distance to the measurement object T.
  • step S34 when averaging the distance values calculated in step S33, the processing unit 59 preferably averages distance values whose SNR is equal to or greater than a threshold value. For example, if a peak is detected based on the spectrum (voltage vs. distance) in any of the three channels but the SNR is less than the threshold value, the distance value calculated based on the spectrum is determined to be unreliable and is not adopted.
  • optical interferometric distance measuring sensor corresponds to the displacement sensor 10 described using Figures 1 to 9, and all or part of the basic configuration, functions, and properties included in the optical interferometric distance measuring sensor are common to the configuration, functions, and properties included in the displacement sensor 10 described using Figures 1 to 9.
  • FIG. 10 is a schematic diagram showing an outline of the configuration of an optical interferometric distance measuring sensor 100 according to an embodiment of the present invention.
  • the optical interferometric distance measuring sensor 100 includes a controller 110, and an optical fiber cable 130 that connects the controller 110 to a first sensor head 121 and a second sensor head 122.
  • the optical interferometric distance measuring sensor 100 may further include the first sensor head 121 and the second sensor head 122.
  • the controller 110 includes a wavelength swept light source 140, an optical branching unit 111, a main interferometer 150, a sub interferometer 160, first photodiodes (PD) 112, 113, amplifier circuits 114, 115, second photodiodes (PD) 116, 117, a first correction signal generating unit 171, a second correction signal generating unit 172, AD conversion units 181, 182, and a processing unit 118.
  • the optical fiber cable 130 is an optical fiber group consisting of a plurality of optical fibers.
  • the optical fiber cable 130 is configured to be detachable, that is, to be attached and detached, to each of the controller 110, the first sensor head 121, and the second sensor head 122.
  • the optical fiber cable 130 is configured to include, for example, a first optical fiber 131 and a second optical fiber 132.
  • the first optical fiber 131 has an optical path length proportional to the length L1
  • the second optical fiber 132 has an optical path length proportional to the length L2.
  • the length L1 of the first optical fiber 131 is set based on the distance to the measurement object T1
  • the length L2 of the second optical fiber 132 is set based on the distance to the measurement object T2.
  • the measurement object T2 is assumed to be an object that exists at a different distance from the measurement object T1, that is, at a far distance in the example shown in FIG. 1. Therefore, the optical path length of the second optical fiber 132 is different from the optical path length of the first optical fiber 131 and is longer than the optical path length of the first optical fiber 131.
  • the swept light source 140 emits light while continuously changing the wavelength. That is, the wavelength of the light emitted from the swept light source 140 is continuously changing.
  • the light emitted from the swept light source 140 is supplied to the main interferometer 150 and the sub interferometer 160 via an optical branching unit 111, which is composed of, for example, an optical coupler.
  • the swept light source 140 continuously controls the wavelength by changing the magnitude of the input current.
  • a triangular wave or a sawtooth wave is mainly used as the input current waveform.
  • the main interferometer 150 has multiple optical paths (multiple channels), and in the example shown in FIG. 10, it includes a first main interferometer 151 and a second main interferometer.
  • the first main interferometer 151 is connected to the first optical fiber 131 of the optical fiber cable 130, and supplies the light emitted from the wavelength swept light source 140 to the first sensor head 121 via the first optical fiber 131, and further guides the return light from the first sensor head 121 to the first photodiode 112.
  • the light guided from the first main interferometer 151 to the first sensor head 121 is irradiated as the first measurement light to the measurement object T via, for example, a collimator lens or an objective lens arranged in the first sensor head 121. Then, the reflected light from the measurement object T returns to the first sensor head 121.
  • a part of the light guided from the first main interferometer 151 to the first sensor head 121 is reflected as a first reference light by, for example, a reference surface provided at the tip of the first optical fiber 131. Then, the first measurement light and the first reference light interfere with each other to generate an interference light (also called a "first main interference signal") corresponding to the optical path length difference between the first measurement light and the first reference light.
  • an interference light also called a "first main interference signal”
  • the first main interferometer 151 is supplied with light projected from the swept light source 140, and generates a first main interference signal based on the first measurement light that is irradiated onto the measurement object T and reflected by the first sensor head 121, and the first reference light that follows at least a part of an optical path different from that of the first measurement light.
  • the first main interferometer 151 including the first sensor head 121 can also be called the first main interferometer.
  • the second main interferometer 152 is connected to the second optical fiber 132 of the optical fiber cable 130, and supplies the light emitted from the wavelength swept light source 140 to the second sensor head 122 via the second optical fiber 132, and further guides the return light from the second sensor head 122 to the first photodiode 113.
  • the light guided from the second main interferometer 152 to the second sensor head 122 is irradiated as the second measurement light to the measurement object T via, for example, a collimator lens or an objective lens arranged in the second sensor head 122. Then, the reflected light from the measurement object T returns to the second sensor head 122.
  • a part of the light guided from the second main interferometer 152 to the second sensor head 122 is reflected as a second reference light by, for example, a reference surface provided at the tip of the second optical fiber 132. Then, the second measurement light and the second reference light interfere with each other to generate an interference light (also called a "second main interference signal") corresponding to the optical path length difference between the second measurement light and the second reference light.
  • an interference light also called a "second main interference signal”
  • the second main interferometer 152 is supplied with light projected from the swept light source 140, and generates a second main interference signal based on the second measurement light that is irradiated onto the measurement object T and reflected by the second sensor head 122, and the second reference light that follows at least a part of an optical path different from that of the second measurement light.
  • the second main interferometer 152 is supplied with light projected from the swept light source and generates a second main interference signal
  • the second main interferometer 152 including the second sensor head 122 can also be called the second main interferometer.
  • the first photodiode 112 receives the first main interference signal generated by the first main interferometer 151 and converts it into an electrical signal.
  • the electrical signal converted by the first photodiode 112 is, for example, a current signal.
  • the first photodiode 113 receives the second main interference signal generated by the second main interferometer 152 and converts it into an electrical signal.
  • the electrical signal converted by the first photodiode 113 is similarly, for example, a current signal.
  • the amplifier circuit 114 amplifies the electrical signal input from the first photodiode 112 with a predetermined gain (also called “gain”). When a current signal is input from the first photodiode 112, the amplifier circuit 114 converts the current signal into a voltage signal (also called “I-V conversion") and amplifies it. The amplified electrical signal is output to the AD conversion unit 181.
  • the amplifier circuit 115 amplifies the electrical signal input from the first photodiode 113 with a predetermined gain. When a current signal is input from the first photodiode 113, the amplifier circuit 115 converts the current signal into a voltage signal and amplifies it. The amplified electrical signal is output to the AD conversion unit 182.
  • the sub-interferometer 160 receives light emitted from the wavelength swept light source 140, which is split by the optical splitter 111 and supplied to generate a sub-interference signal based on the two lights that follow optical paths of different optical path lengths. Specifically, the first optical coupler 161 splits the light into two lights that follow optical paths of different optical path lengths, and the two lights are then combined and interfered with by the second optical coupler 162 to generate a sub-interference signal based on the difference in optical path length. The sub-interference signal propagates through the optical fiber 163 and is guided to the second photodiode 116, and also propagates through the optical fiber 164 and is guided to the second photodiode 117.
  • Optical fiber 163 has an optical path length proportional to length L1r
  • optical fiber 164 has an optical path length proportional to length L2r.
  • Optical fiber 164 in this embodiment corresponds to an example of a "delay amount generating unit" in the present invention.
  • Optical fiber 164 in this embodiment also corresponds to an example of a "third optical fiber” in the present invention.
  • the optical fiber 164 is configured to generate a delay amount based on the optical path length difference between the optical path length of the first optical fiber 131 and the optical path length of the second optical fiber 132.
  • the optical fiber 164 propagates the sub-interference signal and has an optical path length based on the optical path length difference between the optical path length of the first optical fiber 131 and the optical path length of the second optical fiber 132. Therefore, the sub-interference signal guided to the second photodetector 117 via the optical fiber 164 is a sub-interferometer signal delayed by the optical fiber 164 (hereinafter also referred to as a "delayed sub-interference signal").
  • the optical fiber 164 propagates the sub-interference signal and has an optical path length based on the optical path length difference between the optical path length of the first optical fiber 131 and the optical path length of the second optical fiber 132, and therefore the amount of delay can be easily set by changing the optical path length of the optical fiber 164.
  • the second photodiode 116 receives the sub-interference signal propagated through the optical fiber 163 of the sub-interferometer 160 and converts it into an electrical signal (hereinafter also referred to as the "sub-interferometer signal”).
  • the electrical signal converted by the second photodiode 116 is, for example, a current signal.
  • the second photodiode 117 receives the sub-interference signal propagated through the optical fiber 164 of the sub-interferometer 160 and converts it into an electrical signal (hereinafter also referred to as the "delayed sub-interferometer signal").
  • the electrical signal converted by the second photodiode 116 is, for example, a current signal.
  • the electrical signals output from the second photodiodes 116 and 117 may be amplified at a predetermined gain by an amplifier circuit (not shown).
  • the amplifier circuit outputs the amplified electrical signals to the first correction signal generating unit 171 and the second correction signal generating unit 172.
  • the first correction signal generating unit 171 is configured to generate a first correction signal (also referred to as the "first K clock signal” or simply the “first K clock”) based on the secondary interference signal.
  • the first correction signal is a signal that corrects the sampling period of the first main interference signal generated by the first main interferometer 151.
  • the secondary interference signal is nonlinear like the first main interference signal due to the nonlinearity of the wavelength during sweeping, so the first correction signal generating unit 171 can grasp the nonlinearity of the wavelength during sweeping based on the secondary interference signal, thereby generating a first correction signal, i.e., a first K clock signal, for appropriately sampling and AD converting the analog signal of the first main interference signal.
  • the first correction signal generating unit 171 In order for the first correction signal generating unit 171 to generate an appropriate first correction signal, the first correction signal generating unit 171 needs to properly grasp the nonlinearity of the first main interference signal received by the first photodiode 112. For this purpose, it is preferable to match the characteristics (nonlinearity) of the first main interference signal and the sub-interference signal, in other words, to synchronize the first main interference signal and the sub-interference signal in time.
  • the second correction signal generating unit 172 is configured to generate a second correction signal (also referred to as a "second K clock signal” or simply a “second K clock”) based on the sub-interference signal and the delay amount.
  • the second correction signal is a signal that corrects the sampling period of the second main interference signal generated by the second main interferometer 152.
  • the sub-interference signal is nonlinear like the second main interference signal due to the nonlinearity of the wavelength during sweeping, so the second correction signal generating unit 172 can grasp the nonlinearity of the wavelength during sweeping based on the sub-interference signal and generate a second correction signal, i.e., a second K clock signal, for appropriately sampling and AD converting the analog signal of the second main interference signal.
  • the second correction signal generating unit 172 is configured to generate the second correction signal based on the delayed sub-interferometer signal. That is, the second correction signal is generated based on a signal in which a delay is generated in the time axis direction in the sub-interferometer signal obtained by converting the sub-interference signal into an electrical signal.
  • the delay is a time according to the delay amount described above.
  • the second correction signal generating unit 172 In order for the second correction signal generating unit 172 to generate an appropriate second correction signal, the second correction signal generating unit 172 needs to properly grasp the nonlinearity of the second main interference signal received by the first photodiode 113. For this purpose, it is preferable to match the characteristics (nonlinearity) of the second main interference signal and the delayed sub-interference signal, in other words, to align the first main interference signal and the sub-interference signal in time.
  • the second correction signal generating unit 172 may generate a pulse signal, which is the second correction signal, based on a signal in which a delay corresponding to the above-mentioned delay amount is generated in the time axis direction in the sub-interferometer signal obtained by converting the sub-interference signal into an electrical signal. This makes it possible to easily match (synchronize) the timing of sampling of the second main interference signal.
  • the first correction signal generated by the first correction signal generating unit 171 may be a pulse signal.
  • the AD conversion unit 181 is configured to sample the first main interferometer signal, which is obtained by converting the first main interference signal into an electrical signal, based on the first correction signal and convert it into a digital signal.
  • the first main interference signal input to the AD conversion unit 181 is an analog signal in which the waves are not spaced at equal intervals.
  • the AD conversion unit 181 samples and AD converts the analog signal of the first main interference signal at a sampling period (sampling interval) corrected based on the above-mentioned first correction signal, i.e., the first K clock signal, so that the waves in the first main interference signal are spaced at equal intervals.
  • the AD conversion unit 182 is configured to sample the second main interferometer signal, which is obtained by converting the second main interference signal into an electrical signal, based on the first correction signal and convert it into a digital signal.
  • the second main interference signal input to the AD conversion unit 182 is an analog signal in which the waves are not spaced at equal intervals.
  • the AD conversion unit 182 samples and AD converts the analog signal of the second main interference signal at a sampling period (sampling interval) corrected based on the above-mentioned second correction signal, i.e., the second K clock signal, so that the waves in the second main interference signal are spaced at equal intervals.
  • the AD converter 182 converts the second main interference signal into an electrical signal, and the second main interferometer signal is sampled based on the second correction signal and converted into a digital signal, thereby easily realizing a configuration in which the second main interferometer signal is converted into a digital signal with a corrected sampling period.
  • the processing unit 118 is configured to calculate the distance to the measurement object T based on at least one of the first main interference signal generated by the first main interferometer 151 and the second main interference signal generated by the second main interferometer 152, and the sub-interference signal generated by the sub-interferometer 160.
  • the processing unit 118 is configured to calculate the distance to the measurement object T based on the first main interference signal received by the first photodiode 112 and amplified by the amplifier circuit 114, the second main interference signal received by the first photodiode 113 and amplified by the amplifier circuit 115, and the sub-interference signal received by the second photodiodes 116 and 117.
  • a nonlinear analog signal based on the first main interference signal is converted into a digital signal at a sampling period corrected by a first correction signal based on the sub-interference signal, and the processing unit 118 converts the digital signal into a frequency using FFT or the like, analyzes them, and calculates the distance value to the measurement target T.
  • the nonlinear analog signal based on the second main interference signal is converted into a digital signal at a sampling period corrected by a second correction signal based on the sub-interference signal and the delay amount, and the processing unit 118 converts the digital signal into a frequency using FFT or the like, analyzes them, and calculates the distance value to the measurement target T.
  • the processing unit 118 calculates the distance to the measurement object T based on at least one of the first main interference signal generated by the first main interferometer 151 and the second main interference signal generated by the second main interferometer 152, and the sub-interference signal generated by the sub-interferometer 160, thereby easily realizing a configuration for measuring the distance to the measurement object T.
  • FIG. 11 is a schematic diagram showing the general configuration of another optical interferometric distance measuring sensor 101 according to one embodiment of the present invention. Note that in FIG. 11, the same or similar components as those in the optical interferometric distance measuring sensor 100 shown in FIG. 10 are denoted by the same or similar reference numerals, and their description will be omitted as appropriate. Furthermore, similar effects and functions due to the same configuration as the optical interferometric distance measuring sensor 100 shown in FIG. 10 will not be mentioned in sequence.
  • the optical interferometric distance measuring sensor 101 includes a controller 110, a first sensor head 121, and a second sensor head 122, and further includes an optical fiber cable 130 that connects the controller 110 to the first sensor head 121 and the second sensor head 122.
  • the controller 110 of the optical interferometric distance measuring sensor 101 shown in FIG. 11 differs from the controller 110 of the optical interferometric distance measuring sensor 100 shown in FIG. 10 in that it does not include an optical fiber 164, but includes a delay line 191.
  • the sub-interferometer 160 of the controller 110 receives light projected from the wavelength swept light source 140, which is split by the optical splitter 111 and supplied to generate a sub-interference signal based on two lights that follow optical paths of different optical path lengths.
  • the first optical coupler 161 splits the light into two lights that follow optical paths of different optical path lengths, and the second optical coupler 162 then combines and causes interference to generate a sub-interference signal based on the optical path length difference.
  • the sub-interference signal propagates through the optical fiber 163 and is guided to the second photodiode 116. Meanwhile, the remaining port of the second optical coupler 162 is connected to an optical fiber with a coreless fiber termination, or to an attenuator.
  • the second photodiode 116 receives the second interference signal propagated through the optical fiber 163 of the sub-interferometer 160 and converts it into a sub-interferometer signal, which is an electrical signal.
  • the electrical signal converted by the second photodiode 116 is, for example, a current signal.
  • the electrical signal output from the second photodiode 116 may be amplified at a predetermined gain by an amplifier circuit (not shown). In this case, the amplifier circuit outputs the amplified electrical signal to the first correction signal generator 171 and the delay line 191.
  • the delay line 191 is configured to generate a delay in the time axis direction according to the delay amount in the sub-interferometer signal obtained by converting the sub-interference signal into an electrical signal, and output the signal to the second correction signal generating unit 172.
  • the delay amount of the delay line 191 is set based on the optical path length difference between the optical path length of the first optical fiber 131 and the optical path length of the second optical fiber 132, similar to the delay amount of the optical fiber 164.
  • the delay line 191 of this embodiment corresponds to an example of a "delay amount generating unit" in the present invention.
  • the delay line 191 outputs a delayed signal, i.e., a "delayed sub-interferometer signal", to the second correction signal generating unit 172.
  • the delay line 191 includes electronic components that delay the propagation of an electrical signal, such as a delay line. Note that the structure, type, number, etc. of the electronic components of the delay line 191 are not important as long as they cause a delay in the secondary interference signal.
  • the delay line 191 generates a delay in the time axis direction according to the amount of delay in the sub-interferometer signal obtained by converting the sub-interference signal into an electrical signal, and outputs the signal to the second correction signal generation unit 172.
  • the second correction signal generation unit 172 can easily generate the second correction signal, which is an electrical signal.
  • Fig. 12 is a diagram for explaining the timing of sampling the first main interferometer signal and the second main interferometer signal.
  • the upper part shows a signal when the first main interferometer signal based on the first interference signal of the first main interferometer 151 is sampled
  • the lower part shows a signal when the second main interferometer signal based on the second interference signal of the second main interferometer 152 is sampled.
  • the optical interferometer sensor 100 shown in Fig. 10 is used for explanation, and the explanation of the case where the optical interferometer sensor 101 shown in Fig. 11 is used is omitted.
  • sampling of the first main interferometer signal begins with a first correction signal generated based on a sub-interferometer signal obtained by converting the sub-interferometer signal into an electrical signal.
  • the first main interferometer signal is then sampled at a period corrected by the first correction signal and converted into a digital signal.
  • the second main interferometer signal is not generated at time t1, but is generated at time t2 (t2>t1).
  • This time difference (hereinafter also referred to as “delay time t12") is the optical delay time caused by the difference in optical path length between the first optical fiber 131 and the second optical fiber 132.
  • the optical fiber 164 of the optical interferometer distance measuring sensor 100 shown in Fig. 10 generates a delay amount tdelay.
  • sampling of the second main interferometer signal begins using the second correction signal generated based on this delay amount tdelay and the sub-interferometer signal obtained by converting the sub-interferometer signal into an electrical signal.
  • the second main interferometer signal is then sampled at a period corrected by the second correction signal and converted into a digital signal.
  • the delay amount tdelay generated by the optical fiber 164 is preferably set so that the absolute value of the difference between the optical path length of the first optical fiber 131 and the optical path length of the second optical fiber 132 and the optical delay time t12 due to the optical path length difference is smaller than the minimum sampling period Tsmin in the AD conversion unit 182.
  • the delay amount tdelay is set so that the time difference ⁇ t between the optical delay time t12 and the delay amount tdelay satisfies the following formula (2).
  • ⁇ t
  • Fig. 13 is a diagram for explaining the relationship between the signal intensity of the second main interferometer signal converted into a digital signal and the time difference ⁇ t.
  • the signal intensity of the second main interferometer signal converted into a digital signal is normalized with the signal intensity when the time difference ⁇ t is zero as a reference value "1".
  • the example shown in Fig. 12 will be explained using the optical interferometric distance measuring sensor 100 shown in Fig. 10, and an explanation of the case where the optical interferometric distance measuring sensor 101 shown in Fig. 11 is used will be omitted.
  • the delay time t12 is calculated to be 8 ⁇ 10 ⁇ 8 [s].
  • the optical interferometric distance measuring sensor 100 includes AD converters 181 and 182 having a maximum sampling time of 100 [MHz], the minimum sampling period Tsmin of the AD converters 181 and 182 is 1 ⁇ 10 ⁇ 8 [s]. These values are substituted into the above-mentioned equation (2), and the delay amount tdelay is set to 7 ⁇ 10 ⁇ 8 [s] or more and 9 ⁇ 10 ⁇ 8 [s] or less.
  • the delay amount tdelay when the delay amount tdelay is set to 7 ⁇ 10 ⁇ 8 [s] or more and 9 ⁇ 10 ⁇ 8 [s] or less, the signal intensity of the second main interferometer signal converted into a digital signal can be suppressed to a decrease of 10% or less.
  • the length L1r of the optical fiber 163 of the secondary interferometer 160 is 1 [m]
  • the length L2r of the optical fiber 164 of the secondary interferometer 160 is set to 14 [m].
  • the delay amount tdelay is set so that the absolute value of the difference between the optical delay time t12 due to the optical path length difference between the optical path length of the first optical fiber 131 and the optical path length of the second optical fiber 132 is smaller than the minimum sampling period Tsmin in the AD conversion unit 182, thereby making it possible to suppress the decrease in signal strength of the sampled digital signal to a predetermined percentage or less, for example, 10% or less.
  • the optical interferometer sensors 100, 101 each have two sensor heads and an optical fiber cable including two optical fibers connecting each sensor head to the controller 110, but this is not limited to the above.
  • the optical interferometer sensor may have three or more sensor heads and an optical fiber cable including the same number of optical fibers.
  • the following description will be given of the configuration of the controller 110, particularly the configuration of the sub-interferometer 160 and the subsequent stage (downstream) when the optical interferometer sensor has three sensor heads and an optical fiber cable including two optical fibers.
  • Figure 14 is a schematic diagram showing an example of the specific configuration of the secondary interferometer 160 and its subsequent stages when it is equipped with three sensor heads
  • Figure 15 is a schematic diagram showing another example of the specific configuration of the secondary interferometer 160 and its subsequent stages when it is equipped with three sensor heads.
  • the sub-interferometer 160 receives light emitted from the wavelength swept light source 140, which is split by the optical splitter 111 and supplied to generate a sub-interference signal based on two lights that follow optical paths of different optical path lengths. Specifically, the first optical coupler 161 splits the light into two lights that follow optical paths of different optical path lengths, and then the second optical coupler 162 combines and interferes with the light to generate a sub-interference signal based on the optical path length difference. The sub-interference signal propagates through the optical fiber 163 and is guided to the second photodiode 116, and also propagates through the optical fiber 164 and is guided to the second photodiode 117.
  • the sub-interference signal generates a delay amount, similar to the optical fiber 164. It propagates through the optical fiber 165 and is guided to the second photodiode 119.
  • the optical fiber 165 and the second photodiode 119 receive the sub-interference signal propagated through the optical fiber 165 of the sub-interferometer 160 and convert it into an electrical signal (hereinafter also referred to as the "delayed sub-interferometer signal").
  • the third correction signal generating unit 173 is configured to generate a third correction signal (also referred to as a "third K clock signal” or simply a “third K clock”) based on the secondary interference signal and the delay amount.
  • the third correction signal is a signal that corrects the sampling period of the third main interference signal generated by a third main interferometer (not shown).
  • the third correction signal generating unit 173 is able to grasp the nonlinearity of the wavelength during sweeping based on the secondary interference signal, and thereby generate a third correction signal, i.e., a third K clock signal, for appropriately sampling and AD converting the analog signal of the third main interference signal.
  • the sub-interferometer 160 receives light emitted from the wavelength swept light source 140, which is branched by the optical branching unit 111 and supplied to generate a sub-interference signal based on two lights that follow optical paths of different optical path lengths.
  • the first optical coupler 161 branches the light into two lights that follow optical paths of different optical path lengths, and then the second optical coupler 162 combines and causes interference to generate a sub-interference signal based on the optical path length difference.
  • the sub-interference signal propagates through the optical fiber 163 and is guided to the second photodiode 116.
  • the remaining port of the second optical coupler 162 may be connected to an optical fiber with a coreless fiber termination, or to an attenuator.
  • the second photodiode 116 receives the second interference signal propagated through the optical fiber 163 of the sub-interferometer 160, converts it into a sub-interferometer signal, which is an electrical signal, and outputs it to the first correction signal generator 171 and the delay line 191.
  • the delay line 191 is configured to generate a delay in the time axis direction according to the amount of delay in the sub-interferometer signal obtained by converting the sub-interference signal into an electrical signal, and output the signal to the second correction signal generating unit 172.
  • the delay line 191 outputs the delayed signal, i.e., the delayed sub-interferometer signal, to the second correction signal generating unit 172 and the delay line 192.
  • the delay line 192 like the delay line 191, is configured to generate a delay in the time axis direction according to the amount of delay in the sub-interferometer signal obtained by converting the sub-interference signal into an electrical signal, and output the signal to the third correction signal generating unit 173.
  • the delayed sub-interferometer signal is input to the delay line 192 from the delay line 191, and the sub-interferometer signal with a further delay is output to the third correction signal generating unit 173.
  • the optical interferometer distance measuring sensors 100, 101 use a Fizeau interferometer in the main interferometer 150 that generates reference light by using the tip of an optical fiber as a reference surface, but the interferometer is not limited to this.
  • FIG. 16 shows a variation of an interferometer that generates interference light using measurement light and reference light.
  • interference light is generated based on the optical path length difference between the reference light, whose reference surface is the tip (end face) of the optical fiber, and the measurement light that is irradiated from the sensor head and reflected by the measurement object T.
  • This is the configuration of the main interferometer 150 of the optical interferometer distance measuring sensor 100, 101 according to the above-mentioned embodiment (Fizeau type interferometer), and the reference surface may be configured to reflect light due to the difference in refractive index between the optical fiber and air (Fresnel reflection).
  • a reflective film may be coated on the tip of the optical fiber, or an anti-reflective coating may be applied to the tip of the optical fiber and a separate reflective surface such as a lens surface may be disposed on the tip of the optical fiber.
  • the optical path passing through the main interferometer 150 is formed with a measurement optical path Lm that guides measurement light to the measurement object T, and a reference optical path Lr that guides reference light, and a reference surface is disposed at the end of the reference optical path Lr (Michelson interferometer).
  • the reference surface may be formed by coating the tip of an optical fiber with a reflective film, or the tip of the optical fiber may be coated with an anti-reflective coating and a mirror or the like disposed separately. In this configuration, interference light is generated by providing an optical path length difference between the optical path length of the measurement optical path Lm and the optical path length of the reference optical path Lr.
  • a measurement optical path Lm that guides measurement light to the measurement object T and a reference optical path Lr that guides reference light are formed, and a balance detector is disposed in the reference optical path Lr (Mach-Zehnder interferometer).
  • interference light is generated by providing an optical path length difference between the measurement optical path Lm and the reference optical path Lr.
  • the main interferometer is not limited to the Fizeau interferometer described in the embodiment, but may be, for example, a Michelson interferometer or a Mach-Zehnder interferometer. Any interferometer may be applied as long as it is possible to generate interference light by setting the optical path length difference between the measurement light and the reference light, or a combination of these or other configurations may be applied.
  • the secondary interferometer (not shown) may be a Fizeau interferometer, a Michelson interferometer, or a Mach-Zehnder interferometer. Any interferometer may be applied as long as it is possible to generate interference light by setting the optical path length difference between the measurement light and the reference light, or a combination of these or other configurations may be applied.
  • An optical interferometric distance measuring sensor (100) including a controller (110) and a fiber optic cable (130) connected to the controller (110), The controller (110) A light source (140) that emits light while changing the wavelength; a first main interferometer (151) that receives light projected from a light source (140), irradiates a first measurement light on a measurement object by a first sensor head (121) and reflects the first measurement light, and generates a first main interference signal based on a first reference light that follows an optical path at least partially different from that of the first measurement light; a second main interferometer (152) that receives light projected from a light source (140), irradiates a measurement object with a second measurement light by a second sensor head (122) and reflects the measurement object, and generates a second main interference signal based on a second reference light that follows an optical path at least partially different from that of the second measurement light; a sub-interferometer (160) that is supplied with light projected from a
  • 1...sensor system 10...displacement sensor, 11...control device, 12...sensor for inputting control signal, 13...external connection device, 20...sensor head, 21...objective lens, 22a...collimating lens, 22b...collimating lens, 22c...collimating lens, 23...lens holder, 24...optical fiber array, 30...controller, 31...display unit, 32...setting unit, 33...external I/F unit, 34...optical fiber connection unit, 35...external memory unit, 36...measurement processing unit, 40...optical fiber, 51...wavelength swept light source, 52...optical Amplifier, 53, 53a, 53b...
  • AD conversion unit 75 ...processing unit, 76...differential amplifier circuit, 77...correction signal generating unit, 100, 101...optical interference distance measuring sensor, 110...controller, 111...optical branching unit, 112, 113...first photodiode, 114, 115...amplification circuit, 116, 116, 119...second photodiode, 118...processing unit, 121...first sensor head, 122...second sensor head, 130...optical fiber cable, 131...first optical fiber, 132...second optical fiber, 140...wavelength swept light source, 150...main interferometer, 151...first main interferometer , 152...second main interferometer, 160...secondary interferometer, 161...first optical coupler, 162...second optical coupler, 163...optical fiber, 164...optical fiber, 165...optical fiber, 171...first correction signal generator, 172...second correction signal generator, 173...third correction signal generator, 181, 182...AD converter, 191, 192...delay

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)

Abstract

The present invention reduces deviation in sampling timing. A controller (110) is connected, via an optical fiber cable (130), to each of a first sensor head (121) and a second sensor head (122) that irradiate an object to be measured with light. The controller (110) is provided with: a light source (140); a first main interferometer (151) that generates a first main interference signal; a second main interferometer (152) that generates a second main interference signal; and a sub-interferometer (160) that generates a sub-interference signal. The controller (110) is further provided with: a first correction signal generation unit (171) that generates a first correction signal; a delay amount generation unit that generates a delay amount based on an optical path length difference between an optical path length of a first optical fiber (131) and an optical path length of a second optical fiber (132); and a second correction signal generation unit (172) that generates, on the basis of the sub-interference signal and the delay amount, a second correction signal for correcting a sampling period of the second main interference signal.

Description

コントローラ及び光干渉測距センサController and optical interference distance measuring sensor
 本発明は、コントローラ及び光干渉測距センサに関する。 The present invention relates to a controller and an optical interferometric distance sensor.
 近年、非接触で計測対象物までの距離を計測する光測距センサが普及している。例えば、光測距センサとして、波長掃引光源から投光される光から、参照光と測定光とに基づく干渉光を生成し、当該干渉光に基づいて計測対象物までの距離を計測する光干渉測距センサが知られている。 In recent years, optical distance measuring sensors that measure the distance to a measurement object without contact have become widespread. For example, an optical interferometric distance measuring sensor is known that generates interference light based on a reference light and a measurement light from light projected from a wavelength swept light source, and measures the distance to the measurement object based on the interference light.
 従来、この種の光周波数領域反射測定装置として、掃引光源と、掃引光源の出力光の一部に所定の遅延時間差を与えて干渉させ補助干渉信号として出力する補助干渉計と、掃引光源の出力光の一部を被測定光ファイバに入力すると共に被測定光ファイバからの反射光と掃引光源の出力光の一部を干渉させ測定干渉信号として出力する測定干渉計と、補助干渉信号を用いて測定干渉信号に対して掃引光源の波長掃引の非線形を補正する線形化部と、線形化部の出力信号をフーリエ変換して周波数領域の信号を出力するフーリエ変換部と、を有する光周波数領域反射測定装置において、線形化部は各々異なる遅延時間を持つ複数の線形化部を有し、フーリエ変換部は複数の線形化部の出力信号に対してそれぞれ異なる重みをつけて加算しフーリエ変換された結果を出力する重み付き加算・フーリエ変換部を有するものが知られている(特許文献1参照)。この光周波数領域反射測定装置では、被測定光ファイバの広い範囲にわたり波長掃引の非線形を補正する。  Conventionally, this type of optical frequency domain reflectometry device has a sweep light source, an auxiliary interferometer that gives a predetermined delay time difference to a portion of the output light of the sweep light source to cause interference and output as an auxiliary interference signal, a measurement interferometer that inputs a portion of the output light of the sweep light source to the optical fiber under test and causes the reflected light from the optical fiber under test and a portion of the output light of the sweep light source to interfere with each other and output as a measurement interference signal, a linearization section that uses the auxiliary interference signal to correct the nonlinearity of the wavelength sweep of the sweep light source for the measurement interference signal, and a Fourier transform section that performs a Fourier transform on the output signal of the linearization section to output a frequency domain signal, in which the linearization section has multiple linearization sections each having a different delay time, and the Fourier transform section has a weighted addition/Fourier transform section that adds the output signals of the multiple linearization sections with different weights and outputs the Fourier transformed result (see Patent Document 1). This optical frequency domain reflectometry device corrects the nonlinearity of the wavelength sweep over a wide range of the optical fiber under test.
特開2017-181115号公報JP 2017-181115 A
 一方、コントローラと複数のセンサヘッドとを備える光干渉測距センサにおいて、複数のセンサヘッドの間で、コントローラとセンサヘッドとを接続する光ファイバの長さを変えることで、異なる距離にある計測対象物に対応することが求められている。 On the other hand, in an optical interferometric distance measuring sensor equipped with a controller and multiple sensor heads, it is necessary to accommodate measurement targets at different distances by changing the length of the optical fiber connecting the controller and the sensor heads among the multiple sensor heads.
 しかしながら、主干渉計における各光ファイバの長さが異なる場合、主干渉計の信号と副干渉計の信号との間でサンプリングのタイミングにずれが生じ、両者の信号の干渉によって生成される信号は、信号強度(信号レベル)の低下を招くことがあった。 However, if the lengths of the optical fibers in the main interferometer are different, a mismatch occurs in the sampling timing between the main interferometer signal and the sub-interferometer signal, and the signal generated by the interference between the two signals can result in a decrease in signal strength (signal level).
 本発明は、このような事情に鑑みてなされたものであり、サンプリングのタイミングのずれを低減することのできるコントローラ及び光干渉測距センサを提供することを目的の1つとする。 The present invention was made in consideration of these circumstances, and one of its objectives is to provide a controller and optical interferometric distance sensor that can reduce deviations in sampling timing.
 本開示の一態様に係るコントローラは、計測対象物に光を照射する第1センサヘッド及び第2センサヘッドのそれぞれに、光ファイバケーブルを介して接続されるコントローラであって、波長を変化させながら光を投光する光源と、光源から投光された光が供給され、第1センサヘッドにより計測対象物に照射して反射される第1測定光と、第1測定光とは少なくとも一部異なる光路を辿る第1参照光とに基づく第1主干渉信号を生成する第1主干渉計と、光源から投光された光が供給され、第2センサヘッドにより計測対象物に照射して反射される第2測定光と、第2測定光とは少なくとも一部異なる光路を辿る第2参照光とに基づく第2主干渉信号を生成する第2主干渉計と、光源から投光された光が供給され、異なる光路を辿る2つの光に基づく副干渉信号を生成する副干渉計と、を備え、光ファイバケーブルは、第1主干渉計に接続され、第1主干渉計からの光を第1センサヘッドに伝搬し、第1センサヘッドからの光を第1主干渉計に伝搬する第1光ファイバと、第2主干渉計に接続され、第2主干渉計からの光を第2センサヘッドに伝搬し、第2センサヘッドからの光を第2主干渉計に伝搬する第2光ファイバと、を含み、第2光ファイバは、第1光ファイバの光路長と異なる光路長を有し、コントローラは、副干渉信号に基づいて、第1主干渉信号のサンプリング周期を補正する第1補正信号を生成する第1補正信号生成部と、第1光ファイバの光路長と第2光ファイバの光路長との光路長差に基づく遅延量を生成する遅延量生成部と、副干渉信号と遅延量とに基づいて、第2主干渉信号のサンプリング周期を補正する第2補正信号を生成する第2補正信号生成部と、をさらに備える。 A controller according to one aspect of the present disclosure is a controller connected via an optical fiber cable to each of a first sensor head and a second sensor head that irradiate light onto a measurement object, and includes a light source that projects light while changing the wavelength, a first main interferometer that receives the light projected from the light source and generates a first main interference signal based on a first measurement light that is irradiated onto the measurement object by the first sensor head and reflected, and a first reference light that follows at least a part of an optical path different from that of the first measurement light, a second main interferometer that receives the light projected from the light source and generates a second main interference signal based on a second measurement light that is irradiated onto the measurement object by the second sensor head and reflected, and a second reference light that follows at least a part of an optical path different from that of the second measurement light, and a sub-interferometer that receives the light projected from the light source and generates a sub-interference signal based on two lights that follow different optical paths, The fiber cable includes a first optical fiber connected to the first main interferometer and transmitting light from the first main interferometer to the first sensor head and transmitting light from the first sensor head to the first main interferometer, and a second optical fiber connected to the second main interferometer and transmitting light from the second main interferometer to the second sensor head and transmitting light from the second sensor head to the second main interferometer, the second optical fiber having an optical path length different from that of the first optical fiber, and the controller further includes a first correction signal generating unit that generates a first correction signal for correcting the sampling period of the first main interference signal based on the sub-interference signal, a delay amount generating unit that generates a delay amount based on the optical path length difference between the optical path length of the first optical fiber and the optical path length of the second optical fiber, and a second correction signal generating unit that generates a second correction signal for correcting the sampling period of the second main interference signal based on the sub-interference signal and the delay amount.
 この態様によれば、第1光ファイバの光路長と第2光ファイバの光路長との光路長差に基づく遅延量が生成され、副干渉信号と遅延量とに基づいて、第2主干渉信号のサンプリング周期を補正する第2補正信号が生成される。これにより、第2主干渉信号において、第1光ファイバの光路長と第2光ファイバの光路長との光路長差に応じた遅延を発生させることが可能となる。従って、第2主干渉信号をサンプリングする際のタイミングのずれを低減し、サンプリングされたデジタル信号の信号強度の低下を抑制することができる。 According to this aspect, a delay amount is generated based on the optical path length difference between the optical path length of the first optical fiber and the optical path length of the second optical fiber, and a second correction signal that corrects the sampling period of the second main interference signal is generated based on the sub-interference signal and the delay amount. This makes it possible to generate a delay in the second main interference signal that corresponds to the optical path length difference between the optical path length of the first optical fiber and the optical path length of the second optical fiber. Therefore, it is possible to reduce the timing deviation when sampling the second main interference signal and suppress a decrease in the signal strength of the sampled digital signal.
 上記態様において、遅延量生成部は、副干渉信号を伝搬し、光路長差に基づく光路長を有する第3光ファイバを含んでいてもよい。 In the above aspect, the delay amount generating unit may include a third optical fiber that propagates the secondary interference signal and has an optical path length based on the optical path length difference.
 この態様によれば、副干渉信号を伝搬し、第1光ファイバの光路長と第2光ファイバの光路長との光路長差に基づく光路長を有する第3光ファイバを含む。これにより、第3光ファイバの光路長を変更することで、遅延量を容易に設定することができる。 According to this aspect, a third optical fiber is included that propagates the secondary interference signal and has an optical path length based on the optical path length difference between the optical path length of the first optical fiber and the optical path length of the second optical fiber. This makes it easy to set the amount of delay by changing the optical path length of the third optical fiber.
 上記態様において、遅延量生成部は、副干渉信号を電気信号に変換させた副干渉計信号において、時間軸方向に遅延量に応じた遅延を発生させて第2補正信号生成部に出力する遅延線を含んでいてもよい。 In the above aspect, the delay amount generating unit may include a delay line that generates a delay according to the delay amount in the time axis direction in the sub-interferometer signal obtained by converting the sub-interference signal into an electrical signal, and outputs the delay to the second correction signal generating unit.
 この態様によれば、副干渉信号を電気信号に変換させた副干渉計信号において、時間軸方向に遅延量に応じた遅延を発生させて第2補正信号生成部に出力する遅延線を含む。これにより、電気的に遅延を発生させた副干渉計信号を出力することで、第2補正信号生成部は、電気信号である第2補正信号を容易に生成することができる。 According to this aspect, the sub-interferometer signal obtained by converting the sub-interference signal into an electrical signal includes a delay line that generates a delay in the time axis direction according to the amount of delay and outputs the delay to the second correction signal generation unit. As a result, by outputting the sub-interferometer signal in which an electrical delay has been generated, the second correction signal generation unit can easily generate the second correction signal, which is an electrical signal.
 上記態様において、第2補正信号生成部は、副干渉信号を電気信号に変換させた副干渉計信号において、時間軸方向に遅延量に応じた遅延を発生させた信号に基づいて、第2補正信号であるパルス信号を生成してもよい。 In the above aspect, the second correction signal generating unit may generate a pulse signal, which is the second correction signal, based on a signal in which a delay corresponding to the amount of delay is generated in the time axis direction in the sub-interferometer signal obtained by converting the sub-interference signal into an electrical signal.
 この態様によれば、第2補正信号生成部が、副干渉信号を電気信号に変換させた副干渉計信号において、時間軸方向に遅延量に応じた遅延を発生させた信号に基づいて、第2補正信号であるパルス信号を生成する。これにより、第2主干渉信号のサンプリングのタイミングを容易に合わせる(同期をとる)ことができる。 According to this aspect, the second correction signal generating unit generates a pulse signal, which is the second correction signal, based on a signal in which a delay corresponding to the amount of delay is generated in the time axis direction in the sub-interferometer signal obtained by converting the sub-interference signal into an electrical signal. This makes it easy to match (synchronize) the timing of sampling the second main interference signal.
 上記態様において、第2主干渉信号を電気信号に変換させた第2主干渉計信号を、第2補正信号に基づいてサンプリングしてデジタル信号に変換するAD変換部をさらに備えていてもよい。 In the above embodiment, the device may further include an AD converter that samples the second main interferometer signal, which is obtained by converting the second main interference signal into an electrical signal, based on the second correction signal and converts the signal into a digital signal.
 この態様によれば、第2主干渉信号を電気信号に変換させた第2主干渉計信号を、第2補正信号に基づいてサンプリングしてデジタル信号に変換するAD変換部をさらに備える。これにより、第2主干渉計信号をサンプリング周期が補正されたデジタル信号に変換する構成を容易に実現することができる。 According to this aspect, the second main interferometer signal, which is obtained by converting the second main interference signal into an electrical signal, is further provided with an AD conversion unit that samples the second main interferometer signal based on the second correction signal and converts it into a digital signal. This makes it easy to realize a configuration in which the second main interferometer signal is converted into a digital signal with a corrected sampling period.
 上記態様において、遅延量は、光路長差による光の遅延時間との差の絶対値が、AD変換部における最小のサンプリング周期よりも小さくなるように設定されていてもよい。 In the above embodiment, the delay amount may be set so that the absolute value of the difference between the delay time of the light due to the optical path length difference is smaller than the minimum sampling period of the AD conversion unit.
 この態様によれば、遅延量は、光路長差による光の遅延時間との差の絶対値が、AD変換部における最小のサンプリング周期よりも小さくなるように設定される。これにより、サンプリングされたデジタル信号の信号強度の低下を所定割合以下、例えば10%以下に抑制することができる。 According to this aspect, the delay amount is set so that the absolute value of the difference between the delay time of the light due to the optical path length difference is smaller than the minimum sampling period in the AD conversion unit. This makes it possible to suppress the decrease in the signal strength of the sampled digital signal to a predetermined percentage or less, for example, 10% or less.
 上記態様において、第1主干渉信号及び第2主干渉信号のうちの少なくとも1つと副干渉信号とに基づいて、計測対象物までの距離を計測する処理部をさらに備えていてもよい。 In the above aspect, the system may further include a processing unit that measures the distance to the measurement object based on at least one of the first main interference signal and the second main interference signal and the sub-interference signal.
 この態様によれば、第1主干渉信号及び第2主干渉信号のうちの少なくとも1つと副干渉信号とに基づいて、計測対象物までの距離を計測する処理部をさらに備える。これにより、計測対象物までの距離を計測する構成を容易に実現することができる。 According to this aspect, a processing unit is further provided that measures the distance to the measurement object based on at least one of the first main interference signal and the second main interference signal and the sub-interference signal. This makes it possible to easily realize a configuration that measures the distance to the measurement object.
 本開示の一態様に係る光干渉測距センサは、コントローラと、該コントローラに接続される光ファイバケーブルとを含む光干渉測距センサであって、コントローラは、波長を変化させながら光を投光する光源と、光源から投光された光が供給され、第1センサヘッドにより計測対象物に照射して反射される第1測定光と、第1測定光とは少なくとも一部異なる光路を辿る第1参照光とに基づく第1主干渉信号を生成する第1主干渉計と、光源から投光された光が供給され、第2センサヘッドにより計測対象物に照射して反射される第2測定光と、第2測定光とは少なくとも一部異なる光路を辿る第2参照光とに基づく第2主干渉信号を生成する第2主干渉計と、光源から投光された光が供給され、異なる光路を辿る2つの光に基づく副干渉信号を生成する副干渉計と、を備え、光ファイバケーブルは、第1主干渉計に接続され、第1主干渉計からの光を第1センサヘッドに伝搬し、第1センサヘッドからの光を第1主干渉計に伝搬する第1光ファイバと、第2主干渉計に接続され、第2主干渉計からの光を第2センサヘッドに伝搬し、第2センサヘッドからの光を第2主干渉計に伝搬する第2光ファイバと、を含み、第2光ファイバは、第1光ファイバの光路長と異なる光路長を有し、コントローラは、副干渉信号に基づいて、第1主干渉信号のサンプリング周期を補正する第1補正信号を生成する第1補正信号生成部と、第1光ファイバの光路長と第2光ファイバの光路長との光路長差に基づく遅延量を生成する遅延量生成部と、副干渉信号と遅延量とに基づいて、第2主干渉信号のサンプリング周期を補正する第2補正信号を生成する第2補正信号生成部と、をさらに備える。 An optical interferometric distance measuring sensor according to one embodiment of the present disclosure is an optical interferometric distance measuring sensor including a controller and an optical fiber cable connected to the controller, the controller including a light source that projects light while changing the wavelength, a first main interferometer that receives the light projected from the light source and generates a first main interference signal based on a first measurement light that is irradiated on a measurement object by a first sensor head and reflected, and a first reference light that follows at least a part of an optical path different from that of the first measurement light, a second main interferometer that receives the light projected from the light source and generates a second main interference signal based on a second measurement light that is irradiated on a measurement object by a second sensor head and reflected, and a second reference light that follows at least a part of an optical path different from that of the second measurement light, and a sub-interferometer that receives the light projected from the light source and generates a sub-interference signal based on two lights that follow different optical paths, and the optical fiber cable is connected to the controller. The cable includes a first optical fiber connected to the first main interferometer and propagating light from the first main interferometer to the first sensor head and propagating light from the first sensor head to the first main interferometer, and a second optical fiber connected to the second main interferometer and propagating light from the second main interferometer to the second sensor head and propagating light from the second sensor head to the second main interferometer, the second optical fiber having an optical path length different from that of the first optical fiber, and the controller further includes a first correction signal generating unit that generates a first correction signal for correcting the sampling period of the first main interference signal based on the sub-interference signal, a delay amount generating unit that generates a delay amount based on the optical path length difference between the optical path length of the first optical fiber and the optical path length of the second optical fiber, and a second correction signal generating unit that generates a second correction signal for correcting the sampling period of the second main interference signal based on the sub-interference signal and the delay amount.
 この態様によれば、第1光ファイバの光路長と第2光ファイバの光路長との光路長差に基づく遅延量が生成され、副干渉信号と遅延量とに基づいて、第2主干渉信号のサンプリング周期を補正する第2補正信号が生成される。これにより、第2主干渉信号において、第1光ファイバの光路長と第2光ファイバの光路長との光路長差に応じた遅延を発生させることが可能となる。従って、第2主干渉信号をサンプリングする際のタイミングのずれを低減し、サンプリングされたデジタル信号の信号強度の低下を抑制することができる。 According to this aspect, a delay amount is generated based on the optical path length difference between the optical path length of the first optical fiber and the optical path length of the second optical fiber, and a second correction signal that corrects the sampling period of the second main interference signal is generated based on the sub-interference signal and the delay amount. This makes it possible to generate a delay in the second main interference signal that corresponds to the optical path length difference between the optical path length of the first optical fiber and the optical path length of the second optical fiber. Therefore, it is possible to reduce the timing deviation when sampling the second main interference signal and suppress a decrease in the signal strength of the sampled digital signal.
 本発明によれば、サンプリングのタイミングのずれを低減することができる。 The present invention can reduce the deviation in sampling timing.
本開示に係る変位センサ10の概要を示す外観模式図である。1 is a schematic external view showing an overview of a displacement sensor 10 according to the present disclosure. 本開示に係る変位センサ10によって計測対象物Tが計測される手順を示すフローチャートである。5 is a flowchart showing a procedure for measuring a measurement object T by the displacement sensor 10 according to the present disclosure. 本開示に係る変位センサ10が用いられるセンサシステム1の概要を示す機能ブロック図である。1 is a functional block diagram showing an overview of a sensor system 1 in which a displacement sensor 10 according to the present disclosure is used. 本開示に係る変位センサ10が用いられるセンサシステム1によって計測対象物Tが計測される手順を示すフローチャートである。1 is a flowchart showing a procedure for measuring a measurement object T by a sensor system 1 in which a displacement sensor 10 according to the present disclosure is used. 本開示に係る変位センサ10によって計測対象物Tが計測される原理を説明するための図である。1 is a diagram for explaining the principle by which a measurement object T is measured by a displacement sensor 10 according to the present disclosure. 本開示に係る変位センサ10によって計測対象物Tが計測される別の原理を説明するための図である。11A and 11B are diagrams for explaining another principle by which the measurement object T is measured by the displacement sensor 10 according to the present disclosure. センサヘッド20の概略構成を示す斜視図である。FIG. 2 is a perspective view showing a schematic configuration of a sensor head 20. センサヘッド20の内部構造を示す模式図である。2 is a schematic diagram showing the internal structure of a sensor head 20. FIG. コントローラ30における信号処理について説明するためのブロック図である。FIG. 2 is a block diagram for explaining signal processing in a controller 30. コントローラ30における処理部59によって実行される、計測対象物Tまでの距離を算出する方法を示すフローチャートである。10 is a flowchart showing a method for calculating a distance to a measurement object T, which is executed by a processing unit 59 in the controller 30. 波形信号(電圧vs時間)がスペクトル(電圧vs周波数)に周波数変換される様子を示す図である。1 is a diagram showing how a waveform signal (voltage vs. time) is frequency-converted into a spectrum (voltage vs. frequency). スペクトル(電圧vs周波数)がスペクトル(電圧vs距離)に距離変換される様子を示す図である。FIG. 13 is a diagram showing how a spectrum (voltage vs. frequency) is distance-transformed into a spectrum (voltage vs. distance). スペクトル(電圧vs距離)に基づいてピークを検出し、それに対応する距離値が算出される様子を示す図である。FIG. 13 is a diagram showing how a peak is detected based on a spectrum (voltage vs. distance) and a corresponding distance value is calculated. 本発明の一実施形態に係る光干渉測距センサ100の構成概要を示す模式図である。1 is a schematic diagram showing an outline of the configuration of an optical interferometric distance measuring sensor 100 according to an embodiment of the present invention. 本発明の一実施形態に係る他の光干渉測距センサ101の構成概要を示す模式図である。FIG. 13 is a schematic diagram showing an outline of the configuration of another optical interferometric distance measuring sensor 101 according to an embodiment of the present invention. 第1主干渉計信号及び第2主干渉計信号のサンプリングのタイミングを説明するための図である。FIG. 11 is a diagram for explaining the sampling timing of the first main interferometer signal and the second main interferometer signal. デジタル信号に変換された第2主干渉計信号の信号強度と時間差Δtとの関係を説明するための図である。11 is a diagram for explaining the relationship between the signal intensity of the second main interferometer signal converted into a digital signal and the time difference Δt. FIG. 3つのセンサヘッドを備える場合の副干渉計160及びその後段の具体的な構成の一例を示す模式図である。FIG. 13 is a schematic diagram showing an example of a specific configuration of a secondary interferometer 160 and its subsequent stages when three sensor heads are provided. 3つのセンサヘッドを備える場合の副干渉計160及びその後段の具体的な構成の他の例を示す模式図である。FIG. 13 is a schematic diagram showing another example of the specific configuration of the secondary interferometer 160 and the subsequent stages when three sensor heads are provided. 測定光と参照光とを用いて干渉光を発生させる干渉計のバリエーションを示す図である。13A and 13B are diagrams showing variations of an interferometer that generates interference light using measurement light and reference light.
 以下、本発明の好適な各実施形態について、添付図面を参照しながら具体的に説明する。なお、以下で説明する各実施形態は、あくまで、本発明を実施するための具体的な一例を挙げるものであって、本発明を限定的に解釈させるものではない。また、説明の理解を容易にするため、各図面において同一の構成要素に対しては可能な限り同一の符号を付して、重複する説明は省略する場合がある。 Below, preferred embodiments of the present invention will be described in detail with reference to the attached drawings. Note that each embodiment described below is merely a specific example for implementing the present invention, and is not intended to limit the interpretation of the present invention. Furthermore, in order to facilitate understanding of the description, the same reference numerals are used as far as possible for the same components in each drawing, and duplicate descriptions may be omitted.
[変位センサの概要]
 先ず、本開示に係る変位センサの概要について説明する。
 図1は、本開示に係る変位センサ10の概要を示す外観模式図である。図1に示されるように、変位センサ10は、センサヘッド20とコントローラ30とを備え、計測対象物Tの変位(計測対象物Tまでの距離)を計測する。
[Displacement sensor overview]
First, an overview of the displacement sensor according to the present disclosure will be described.
Fig. 1 is a schematic external view showing an overview of a displacement sensor 10 according to the present disclosure. As shown in Fig. 1, the displacement sensor 10 includes a sensor head 20 and a controller 30, and measures the displacement of a measurement object T (the distance to the measurement object T).
 センサヘッド20とコントローラ30とは、光ファイバ40で接続されており、センサヘッド20には対物レンズ21が取り付けられている。また、コントローラ30は、表示部31と、設定部32と、外部インタフェース(I/F)部33と、光ファイバ接続部34と、外部記憶部35とを含み、さらに、内部には、計測処理部36を有する。 The sensor head 20 and the controller 30 are connected by an optical fiber 40, and an objective lens 21 is attached to the sensor head 20. The controller 30 also includes a display unit 31, a setting unit 32, an external interface (I/F) unit 33, an optical fiber connection unit 34, and an external memory unit 35, and further includes a measurement processing unit 36 inside.
 センサヘッド20は、コントローラ30から出力される光を計測対象物Tに照射し、当該計測対象物Tからの反射光を受光する。センサヘッド20は、コントローラ30から出力されて光ファイバ40を介して受光した光を反射させ、上述した計測対象物Tからの反射光と干渉させるための参照面を、内部に有している。 The sensor head 20 irradiates the light output from the controller 30 onto the measurement object T and receives the reflected light from the measurement object T. The sensor head 20 has an internal reference surface that reflects the light output from the controller 30 and received via the optical fiber 40 and causes it to interfere with the reflected light from the measurement object T described above.
 なお、センサヘッド20には対物レンズ21が取り付けられているが、当該対物レンズ21は着脱可能な構成となっている。対物レンズ21は、センサヘッド20と計測対象物Tとの距離に応じて、適切な焦点距離を有する対物レンズに交換可能であって、又は可変焦点の対物レンズを適用してもよい。 In addition, the objective lens 21 is attached to the sensor head 20, but the objective lens 21 is configured to be removable. The objective lens 21 can be replaced with an objective lens having an appropriate focal length depending on the distance between the sensor head 20 and the measurement target T, or a variable-focus objective lens may be used.
 さらに、センサヘッド20を設置する際には、ガイド光(可視光)を計測対象物Tに照射して、当該変位センサ10の計測領域内に計測対象物Tが適切に位置するようにセンサヘッド20及び/又は計測対象物Tを設置してもよい。 Furthermore, when installing the sensor head 20, guide light (visible light) may be irradiated onto the measurement object T, and the sensor head 20 and/or the measurement object T may be installed so that the measurement object T is appropriately positioned within the measurement area of the displacement sensor 10.
 光ファイバ40は、コントローラ30に配置される光ファイバ接続部34に接続されて延伸し、当該コントローラ30とセンサヘッド20とを接続する。これにより、光ファイバ40は、コントローラ30から投光される光をセンサヘッド20に導き、さらに、センサヘッド20からの戻り光をコントローラ30へ導くように構成されている。なお、光ファイバ40は、センサヘッド20及びコントローラ30に着脱可能であって、長さ、太さ及び特性等において種々の光ファイバを適用することができる。 The optical fiber 40 is connected to and extends from the optical fiber connection section 34 disposed in the controller 30, connecting the controller 30 and the sensor head 20. As a result, the optical fiber 40 is configured to guide the light projected from the controller 30 to the sensor head 20, and further guide the return light from the sensor head 20 to the controller 30. The optical fiber 40 is detachable from the sensor head 20 and the controller 30, and various optical fibers can be used in terms of length, thickness, characteristics, etc.
 表示部31は、例えば、液晶ディスプレイ又は有機ELディスプレイ等で構成される。表示部31には、変位センサ10の設定値、センサヘッド20からの戻り光の受光量、及び変位センサ10によって計測された計測対象物Tの変位(計測対象物Tまでの距離)等の計測結果が表示される。 The display unit 31 is configured, for example, with a liquid crystal display or an organic EL display. The display unit 31 displays the set value of the displacement sensor 10, the amount of returned light received from the sensor head 20, and the measurement results such as the displacement of the measurement object T measured by the displacement sensor 10 (the distance to the measurement object T).
 設定部32は、例えば、機械式ボタンやタッチパネル等をユーザが操作することによって、計測対象物Tを計測するために必要な設定が行われる。これらの必要な設定の全部又は一部は、予め設定されていてもよいし、外部I/F部33に接続された外部接続機器(図示せず)から設定されてもよい。また、外部接続機器は、ネットワークを介して有線又は無線で接続されていてもよい。 The setting unit 32 performs the settings necessary for measuring the measurement target T, for example, by the user operating a mechanical button, a touch panel, or the like. All or part of these necessary settings may be set in advance, or may be set from an external connection device (not shown) connected to the external I/F unit 33. In addition, the external connection device may be connected via a network in a wired or wireless manner.
 ここで、外部I/F部33は、例えば、Ethernet(登録商標)、RS232C、及びアナログ出力等で構成される。外部I/F部33には、他の接続機器に接続されて当該外部接続機器から必要な設定が行われたり、変位センサ10によって計測された計測結果等を外部接続機器に出力したりしてもよい。 Here, the external I/F unit 33 is composed of, for example, Ethernet (registered trademark), RS232C, and analog output. The external I/F unit 33 may be connected to another connected device to allow necessary settings to be made from the external connected device, or may output the measurement results, etc., measured by the displacement sensor 10 to the external connected device.
 また、コントローラ30が外部記憶部35に記憶されたデータを取り込むことにより、計測対象物Tを計測するために必要な設定が行われてもよい。外部記憶部35は、例えば、USB(Universal Serial Bus)メモリ等の補助記憶装置であって、計測対象物Tを計測するために必要な設定等が予め記憶されている。 In addition, the controller 30 may import data stored in the external memory unit 35 to perform settings required for measuring the measurement object T. The external memory unit 35 is, for example, an auxiliary storage device such as a USB (Universal Serial Bus) memory, and stores in advance settings required for measuring the measurement object T.
 コントローラ30における計測処理部36は、例えば、連続的に波長を変化させながら光を投光する波長掃引光源、センサヘッド20からの戻り光を受光して電気信号に変換する受光素子、及び電気信号を処理する信号処理回路等を含む。計測処理部36では、センサヘッド20からの戻り光に基づいて、最終的には、計測対象物Tの変位(計測対象物Tまでの距離)が算出されるように制御部及び記憶部等を用いて様々な処理がなされている。これらの処理についての詳細は後述する。 The measurement processing unit 36 in the controller 30 includes, for example, a wavelength swept light source that emits light while continuously changing the wavelength, a light receiving element that receives the return light from the sensor head 20 and converts it into an electrical signal, and a signal processing circuit that processes the electrical signal. In the measurement processing unit 36, various processes are performed using a control unit, a memory unit, etc. based on the return light from the sensor head 20 so that the displacement of the measurement object T (the distance to the measurement object T) is ultimately calculated. Details of these processes will be described later.
 図2は、本開示に係る変位センサ10によって計測対象物Tが計測される手順を示すフローチャートである。図2に示されるように、当該手順は、ステップS11~S14を含む。 FIG. 2 is a flowchart showing the procedure for measuring the measurement object T by the displacement sensor 10 according to the present disclosure. As shown in FIG. 2, the procedure includes steps S11 to S14.
 ステップS11では、センサヘッド20を設置する。例えば、センサヘッド20から計測対象物Tにガイド光を照射して、それを参考にして、センサヘッド20を適切な位置に設置する。 In step S11, the sensor head 20 is installed. For example, guide light is irradiated from the sensor head 20 onto the measurement target T, and the sensor head 20 is installed in an appropriate position based on the guide light.
 具体的には、コントローラ30における表示部31に、センサヘッド20からの戻り光の受光量を表示し、ユーザは、当該受光量を確認しながら、センサヘッド20の向き及び計測対象物Tとの距離(高さ位置)等を調整してもよい。基本的には、センサヘッド20からの光を計測対象物Tに対して垂直に(より垂直に近い角度で)照射できれば、当該計測対象物Tからの反射光の光量が大きく、センサヘッド20からの戻り光の受光量も大きくなる。 Specifically, the amount of light received from the sensor head 20 is displayed on the display unit 31 of the controller 30, and the user may adjust the orientation of the sensor head 20 and the distance (height position) from the measurement object T while checking the amount of light received. Basically, if the light from the sensor head 20 can be irradiated perpendicularly (at an angle closer to perpendicular) to the measurement object T, the amount of light reflected from the measurement object T will be large, and the amount of light received from the sensor head 20 will also be large.
 また、センサヘッド20と計測対象物Tとの距離に応じて、適切な焦点距離を有する対物レンズ21に交換してもよい。 In addition, the objective lens 21 may be replaced with one having an appropriate focal length depending on the distance between the sensor head 20 and the measurement object T.
 さらに、計測対象物Tを計測するに際して適切な設定ができない場合(例えば、計測に必要な受光量を得られない、又は対物レンズ21の焦点距離が不適切である等)には、エラー又は設定未完了等を、表示部31に表示したり、外部接続機器に出力したりして、ユーザに通知するようにしてもよい。 Furthermore, if appropriate settings cannot be made when measuring the measurement object T (for example, the amount of light received required for measurement cannot be obtained, or the focal length of the objective lens 21 is inappropriate), an error or incomplete settings may be displayed on the display unit 31 or output to an externally connected device to notify the user.
 ステップS12では、計測対象物Tを計測するに際して種々の計測条件を設定する。例えば、センサヘッド20が有する固有の校正データ(線形性を補正する関数等)を、ユーザがコントローラ30における設定部32を操作することによって設定する。 In step S12, various measurement conditions are set when measuring the measurement object T. For example, the user sets the inherent calibration data (such as a function that corrects linearity) of the sensor head 20 by operating the setting unit 32 in the controller 30.
 また、各種パラメータを設定してもよい。例えば、サンプリング時間、計測範囲、及び計測結果を正常とするか異常とするかの閾値等が設定される。さらに、計測対象物Tの反射率及び材質等の計測対象物Tの特性に応じて測定周期が設定され、及び計測対象物Tの材質に応じた測定モード等が設定されるようにしてもよい。 Various parameters may also be set. For example, the sampling time, the measurement range, and a threshold for determining whether the measurement result is normal or abnormal may be set. Furthermore, the measurement period may be set according to the characteristics of the measurement object T, such as the reflectance and material of the measurement object T, and a measurement mode may be set according to the material of the measurement object T.
 なお、これらの計測条件及び各種パラメータの設定は、コントローラ30における設定部32を操作することによって設定されるが、外部接続機器から設定されてもよいし、外部記憶部35からデータを取り込むことによって設定されてもよい。 These measurement conditions and various parameters are set by operating the setting unit 32 in the controller 30, but they may also be set from an externally connected device or by importing data from the external memory unit 35.
 ステップS13では、ステップS11で設置されたセンサヘッド20で、ステップS12で設定された計測条件及び各種パラメータに従って、計測対象物Tを計測する。 In step S13, the sensor head 20 installed in step S11 measures the measurement object T according to the measurement conditions and various parameters set in step S12.
 具体的には、コントローラ30の計測処理部36において、波長掃引光源から光が投光され、センサヘッド20からの戻り光を受光素子で受光し、信号処理回路によって周波数解析、距離変換及びピーク検出等がなされて、計測対象物Tの変位(計測対象物Tまでの距離)が算出される。具体的な計測処理についての詳細は、後述する。 Specifically, in the measurement processing unit 36 of the controller 30, light is projected from the wavelength swept light source, the light returning from the sensor head 20 is received by a light receiving element, and the signal processing circuit performs frequency analysis, distance conversion, peak detection, etc., to calculate the displacement of the measurement object T (the distance to the measurement object T). Specific details of the measurement process will be described later.
 ステップS14では、ステップS13で計測された計測結果を出力する。例えば、ステップS13で計測された計測対象物Tの変位(計測対象物Tまでの距離)等を、コントローラ30における表示部31に表示したり、外部接続機器に出力したりする。 In step S14, the measurement results obtained in step S13 are output. For example, the displacement of the measurement object T (distance to the measurement object T) measured in step S13 is displayed on the display unit 31 in the controller 30, or output to an externally connected device.
 また、ステップS13で計測された計測対象物Tの変位(計測対象物Tまでの距離)が、ステップS12で設定された閾値に基づいて、正常の範囲内であるか異常かについても計測結果として表示又は出力されてもよい。さらに、ステップS12で設定された計測条件、各種パラメータ及び測定モード等も共に表示又は出力されてもよい。 Furthermore, the displacement of the measurement object T (distance to the measurement object T) measured in step S13 may be displayed or output as a measurement result as to whether it is within a normal range or abnormal based on the threshold value set in step S12. Furthermore, the measurement conditions, various parameters, measurement mode, etc. set in step S12 may also be displayed or output.
[変位センサを含むシステムの概要]
 図3は、本開示に係る変位センサ10が用いられるセンサシステム1の概要を示す機能ブロック図である。図3に示されるように、センサシステム1は、変位センサ10と、制御機器11と、制御信号入力用センサ12と、外部接続機器13とを備える。なお、変位センサ10は、制御機器11及び外部接続機器13とは、例えば、通信ケーブル又は外部接続コード(例えば、外部入力線、外部出力線及び電源線等を含む)で接続され、制御機器11と制御信号入力用センサ12とは信号線で接続される。
[Overview of a system including a displacement sensor]
Fig. 3 is a functional block diagram showing an overview of a sensor system 1 in which a displacement sensor 10 according to the present disclosure is used. As shown in Fig. 3, the sensor system 1 includes the displacement sensor 10, a control device 11, a control signal input sensor 12, and an external connection device 13. Note that the displacement sensor 10 is connected to the control device 11 and the external connection device 13 by, for example, a communication cable or an external connection cord (including, for example, an external input line, an external output line, a power line, etc.), and the control device 11 and the control signal input sensor 12 are connected by a signal line.
 変位センサ10は、図1及び図2を用いて説明したように、計測対象物Tの変位(計測対象物Tまでの距離)を計測する。そして、変位センサ10は、その計測結果等を制御機器11及び外部接続機器13に出力してもよい。 As described with reference to Figures 1 and 2, the displacement sensor 10 measures the displacement of the measurement object T (the distance to the measurement object T). The displacement sensor 10 may then output the measurement results, etc. to the control device 11 and the externally connected device 13.
 制御機器11は、例えば、PLC(Programmable Logic Controller)であって、変位センサ10が計測対象物Tを計測するに際して、当該変位センサ10に対して各種の指示を与える。 The control device 11 is, for example, a PLC (Programmable Logic Controller), and provides various instructions to the displacement sensor 10 when the displacement sensor 10 measures the measurement object T.
 例えば、制御機器11は、制御機器11に接続された制御信号入力用センサ12からの入力信号に基づいて、測定タイミング信号を変位センサ10に出力してもよいし、ゼロリセット命令信号(現在の計測値を0に設定するための信号)等を変位センサ10に出力してもよい。 For example, the control device 11 may output a measurement timing signal to the displacement sensor 10 based on an input signal from a control signal input sensor 12 connected to the control device 11, or may output a zero reset command signal (a signal for setting the current measurement value to 0) or the like to the displacement sensor 10.
 制御信号入力用センサ12は、変位センサ10が計測対象物Tを計測するタイミングを指示するオン/オフ信号を、制御機器11に出力する。例えば、制御信号入力用センサ12は、計測対象物Tが移動する生産ラインの近傍に設置され、計測対象物Tが所定の位置に移動してきたことを検知して、制御機器11にオン/オフ信号を出力すればよい。 The control signal input sensor 12 outputs an on/off signal to the control device 11, which indicates the timing for the displacement sensor 10 to measure the measurement object T. For example, the control signal input sensor 12 may be installed near a production line along which the measurement object T moves, and upon detecting that the measurement object T has moved to a predetermined position, output an on/off signal to the control device 11.
 外部接続機器13は、例えば、PC(Personal Computer)であって、ユーザが操作することによって、変位センサ10に対して様々な設定を行うことができる。 The external connection device 13 is, for example, a PC (Personal Computer), and the user can operate it to configure various settings for the displacement sensor 10.
 具体例としては、測定モード、動作モード、測定周期、及び計測対象物Tの材質等が設定される。 Specific examples include the measurement mode, operation mode, measurement period, and the material of the measurement object T.
 測定モードの設定として、制御機器11内部で周期的に計測開始する「内部同期計測モード」、又は制御機器11外部からの入力信号に応じて計測開始する「外部同期計測モード」等が選択される。 As a measurement mode setting, an "internal synchronous measurement mode" in which measurement is started periodically within the control device 11, or an "external synchronous measurement mode" in which measurement is started in response to an input signal from outside the control device 11, etc. can be selected.
 動作モードの設定として、実際に計測対象物Tを計測する「運転モード」、又は計測対象物Tを計測するための計測条件を設定する「調整モード」等が選択される。 As the operation mode setting, an "operation mode" for actually measuring the measurement object T, or an "adjustment mode" for setting the measurement conditions for measuring the measurement object T, etc. can be selected.
 測定周期は、計測対象物Tを測定する周期であり、計測対象物Tの反射率に応じて設定すればよいが、仮に、計測対象物Tの反射率が低い場合であっても、測定周期を長くして適切に測定周期を設定すれば、計測対象物Tを適切に測定することができる。 The measurement period is the period for measuring the measurement object T, and may be set according to the reflectance of the measurement object T. Even if the reflectance of the measurement object T is low, the measurement object T can be properly measured by lengthening the measurement period and setting it appropriately.
 計測対象物Tについて、反射光の成分として拡散反射が比較的多い場合に適した「粗面モード」、反射光の成分として鏡面反射が比較的多い場合に適した「鏡面モード」、又はこれらの中間的な「標準モード」等が選択される。 For the measurement object T, the "rough surface mode" is selected when the reflected light component is relatively high in diffuse reflection, the "mirror surface mode" is selected when the reflected light component is relatively high in specular reflection, or the "standard mode" is selected as an intermediate mode between the two.
 このように、計測対象物Tの反射率及び材質に応じて、適切な設定を行うことによって、より高精度に計測対象物Tを計測することができる。 In this way, by making appropriate settings according to the reflectance and material of the measurement object T, it is possible to measure the measurement object T with higher accuracy.
 図4は、本開示に係る変位センサ10が用いられるセンサシステム1によって計測対象物Tが計測される手順を示すフローチャートである。図4に示されるように、当該手順は、上述した外部同期計測モードの場合の手順であって、ステップS21~S24を含む。 FIG. 4 is a flowchart showing the procedure for measuring a measurement object T by a sensor system 1 in which a displacement sensor 10 according to the present disclosure is used. As shown in FIG. 4, the procedure is for the external synchronization measurement mode described above, and includes steps S21 to S24.
 ステップS21では、センサシステム1は、計測される対象である計測対象物Tを検知する。具体的には、制御信号入力用センサ12は、生産ライン上において、計測対象物Tが所定の位置に移動してきたことを検知する。 In step S21, the sensor system 1 detects the measurement object T, which is the object to be measured. Specifically, the control signal input sensor 12 detects that the measurement object T has moved to a predetermined position on the production line.
 ステップS22では、センサシステム1は、ステップS21で検知された計測対象物Tを変位センサ10によって計測するように計測指示する。具体的には、制御信号入力用センサ12は、制御機器11にオン/オフ信号を出力することにより、ステップS21で検知された計測対象物Tを測定するタイミングを指示し、制御機器11は、当該オン/オフ信号に基づいて、変位センサ10に測定タイミング信号を出力して、計測対象物Tを計測するように計測指示する。 In step S22, the sensor system 1 issues a measurement instruction to have the displacement sensor 10 measure the measurement object T detected in step S21. Specifically, the control signal input sensor 12 outputs an on/off signal to the control device 11 to instruct the timing of measuring the measurement object T detected in step S21, and the control device 11 outputs a measurement timing signal to the displacement sensor 10 based on the on/off signal to instruct the displacement sensor 10 to measure the measurement object T.
 ステップS23では、変位センサ10によって計測対象物Tが計測される。具体的には、変位センサ10は、ステップS22で受け取った計測指示に基づいて、計測対象物Tを計測する。 In step S23, the measurement object T is measured by the displacement sensor 10. Specifically, the displacement sensor 10 measures the measurement object T based on the measurement instruction received in step S22.
 ステップS24では、センサシステム1は、ステップS23で計測された計測結果を出力する。具体的には、変位センサ10は、計測処理の結果を、表示部31に表示したり、外部I/F部33を経由して制御機器11又は外部接続機器13等に出力したりする。 In step S24, the sensor system 1 outputs the measurement results obtained in step S23. Specifically, the displacement sensor 10 displays the results of the measurement process on the display unit 31, or outputs the results to the control device 11 or the externally connected device 13 via the external I/F unit 33.
 なお、ここでは、図4を用いて、制御信号入力用センサ12によって計測対象物Tが検知されることにより計測対象物Tを計測する外部同期計測モードの場合についての手順を説明したが、これに限定されるものではない。例えば、内部同期計測モードの場合は、ステップS21及びS22に代わって、予め設定された周期に基づいて測定タイミング信号が生成されることにより、計測対象物Tを計測するように変位センサ10に指示する。 Note that, while FIG. 4 has been used to explain the procedure for the external synchronous measurement mode in which the measurement object T is measured by the control signal input sensor 12 detecting the measurement object T, the procedure is not limited to this. For example, in the internal synchronous measurement mode, instead of steps S21 and S22, a measurement timing signal is generated based on a preset cycle to instruct the displacement sensor 10 to measure the measurement object T.
 次に、本開示に係る変位センサ10によって計測対象物Tが計測される原理を説明する。
 図5Aは、本開示に係る変位センサ10によって計測対象物Tが計測される原理を説明するための図である。図5Aに示されるように、変位センサ10は、センサヘッド20及びコントローラ30を備える。センサヘッド20は、対物レンズ21と、複数のコリメートレンズ22a~22cとを含み、コントローラ30は、波長掃引光源51と、光増幅器52と、複数のアイソレータ53及び53a~53bと、複数の光カプラ54及び54a~54eと、減衰器55と、複数の受光素子(例えば、フォトディテクタ(PD))56a~56cと、複数の増幅回路57a~57cと、複数のアナログデジタル(AD)変換部(例えば、アナログデジタルコンバータ)58a~58cと、処理部(例えば、プロセッサ)59と、バランスディテクタ60と、補正信号生成部61とを含む。
Next, the principle of measurement of the measurement target T by the displacement sensor 10 according to the present disclosure will be described.
5A is a diagram for explaining the principle of measuring the measurement target T by the displacement sensor 10 according to the present disclosure. As shown in FIG. 5A, the displacement sensor 10 includes a sensor head 20 and a controller 30. The sensor head 20 includes an objective lens 21 and a plurality of collimator lenses 22a to 22c, and the controller 30 includes a wavelength swept light source 51, an optical amplifier 52, a plurality of isolators 53 and 53a to 53b, a plurality of optical couplers 54 and 54a to 54e, an attenuator 55, a plurality of light receiving elements (e.g., photodetectors (PD)) 56a to 56c, a plurality of amplifier circuits 57a to 57c, a plurality of analog-to-digital (AD) conversion units (e.g., analog-to-digital converters) 58a to 58c, a processing unit (e.g., a processor) 59, a balance detector 60, and a correction signal generating unit 61.
 波長掃引光源51は、波長を掃引したレーザ光を投光する。波長掃引光源51としては、例えば、VCSEL(Vertical Cavity Surface Emitting Laser)を電流で変調する方式を適用すれば、共振器長が短いためにモードホップを起こしにくく、波長を変化させることが容易であり、低コストで実現することができる。 The wavelength swept light source 51 emits a laser beam with a swept wavelength. For example, if a VCSEL (Vertical Cavity Surface Emitting Laser) is used as the wavelength swept light source 51 by modulating the laser current, mode hopping is unlikely to occur due to the short resonator length, the wavelength can be easily changed, and it can be realized at low cost.
 光増幅器52は、波長掃引光源51から投光される光を増幅する。光増幅器52は、例えば、EDFA(erbium-doped fiber amplifier)を適用し、例えば、1550nm専用の光増幅器であってもよい。 The optical amplifier 52 amplifies the light emitted from the wavelength swept light source 51. The optical amplifier 52 may be, for example, an erbium-doped fiber amplifier (EDFA), and may be, for example, an optical amplifier dedicated to 1550 nm.
 アイソレータ53は、入射した光を一方向に透過させる光学素子であって、戻り光によって発生するノイズの影響を防ぐために、波長掃引光源51の直後に配置されてもよい。 The isolator 53 is an optical element that transmits incident light in one direction, and may be placed immediately after the wavelength swept light source 51 to prevent the effects of noise caused by returned light.
 このように、波長掃引光源51から投光された光は、光増幅器52によって増幅され、アイソレータ53を介して、光カプラ54によって主干渉計と副干渉計とに分岐される。例えば、光カプラ54では、主干渉計と副干渉計とに分岐する光の割合は、主干渉計側に90%以上分岐させるようにしてもよい。 In this way, the light emitted from the wavelength swept light source 51 is amplified by the optical amplifier 52, passes through the isolator 53, and is branched by the optical coupler 54 to the main interferometer and the sub interferometer. For example, the optical coupler 54 may be configured so that the proportion of light branched to the main interferometer and the sub interferometer is 90% or more on the main interferometer side.
 主干渉計に分岐された光は、さらに、1段目の光カプラ54aによって、センサヘッド20の方向と2段目の光カプラ54bの方向とに分岐される。 The light branched off to the main interferometer is further branched by the first-stage optical coupler 54a in the direction of the sensor head 20 and in the direction of the second-stage optical coupler 54b.
 1段目の光カプラ54aによってセンサヘッド20の方向に分岐された光は、センサヘッド20において、光ファイバの先端からコリメートレンズ22a及び対物レンズ21を通過して計測対象物Tに照射される。そして、当該光ファイバの先端(端面)が参照面となり、当該参照面で反射した光と、計測対象物Tで反射した光とが干渉し、干渉光が生成されて、1段目の光カプラ54aに戻り、その後、受光素子56aで受光されて電気信号に変換される。 The light branched by the first-stage optical coupler 54a toward the sensor head 20 passes from the tip of the optical fiber through the collimator lens 22a and the objective lens 21 in the sensor head 20 and is irradiated onto the measurement object T. The tip (end face) of the optical fiber then becomes the reference surface, and the light reflected from the reference surface interferes with the light reflected from the measurement object T, generating interference light that returns to the first-stage optical coupler 54a, and is then received by the light-receiving element 56a and converted into an electrical signal.
 1段目の光カプラ54aによって2段目の光カプラ54bの方向に分岐された光は、アイソレータ53aを介して2段目の光カプラ54bに向かい、当該2段目の光カプラ54bによって、さらにセンサヘッド20の方向と3段目の光カプラ54cの方向とに分岐される。光カプラ54bからセンサヘッド20の方向に分岐された光は、1段目と同様に、センサヘッド20において、光ファイバの先端からコリメートレンズ22b及び対物レンズ21を通過して計測対象物Tに照射される。そして、当該光ファイバの先端(端面)が参照面となり、当該参照面で反射した光と、計測対象物Tで反射した光とが干渉し、干渉光が生成されて、2段目の光カプラ54bに戻り、当該光カプラ54bによってアイソレータ53a及び受光素子56bそれぞれの方向へ分岐される。光カプラ54bから受光素子56bの方向へ分岐された光は、受光素子56bで受光されて電気信号に変換される。一方、アイソレータ53aは、前段の光カプラ54aから後段の光カプラ54bへ光を透過し、後段の光カプラ54bから前段の光カプラ54aへの光を遮断するため、光カプラ54bからアイソレータ53aの方向へ分岐された光は、遮断される。 The light branched by the first-stage optical coupler 54a in the direction of the second-stage optical coupler 54b travels through the isolator 53a to the second-stage optical coupler 54b, which then branches it further into the direction of the sensor head 20 and the direction of the third-stage optical coupler 54c. As in the first stage, the light branched from the optical coupler 54b in the direction of the sensor head 20 passes through the collimator lens 22b and the objective lens 21 from the tip of the optical fiber in the sensor head 20 and is irradiated onto the measurement object T. The tip (end face) of the optical fiber then becomes the reference surface, and the light reflected by the reference surface and the light reflected by the measurement object T interfere with each other to generate interference light, which returns to the second-stage optical coupler 54b and is branched by the optical coupler 54b in the directions of the isolator 53a and the light receiving element 56b. The light branched from the optical coupler 54b in the direction of the light receiving element 56b is received by the light receiving element 56b and converted into an electrical signal. On the other hand, the isolator 53a transmits light from the optical coupler 54a in the front stage to the optical coupler 54b in the rear stage and blocks light from the optical coupler 54b in the rear stage to the optical coupler 54a in the front stage, so the light branched from the optical coupler 54b in the direction of the isolator 53a is blocked.
 2段目の光カプラ54bによって3段目の光カプラ54cの方向に分岐された光は、アイソレータ53bを介して3段目の光カプラ54cに向かい、当該3段目の光カプラ54cによって、さらにセンサヘッド20の方向と減衰器55の方向とに分岐される。光カプラ54cからセンサヘッド20の方向に分岐された光は、1段目及び2段目と同様に、センサヘッド20において、光ファイバの先端からコリメートレンズ22c及び対物レンズ21を通過して計測対象物Tに照射される。そして、当該光ファイバの先端(端面)が参照面となり、当該参照面で反射した光と、計測対象物Tで反射した光とが干渉し、干渉光が生成されて、3段目の光カプラ54cに戻り、当該光カプラ54cによってアイソレータ53b及び受光素子56cそれぞれの方向へ分岐される。光カプラ54cから受光素子56cの方向へ分岐された光は、受光素子56cで受光されて電気信号に変換される。一方、アイソレータ53bは、前段の光カプラ54bから後段の光カプラ54cへ光を透過し、後段の光カプラ54cから前段の光カプラ54bへの光を遮断するため、光カプラ54cからアイソレータ53bの方向へ分岐された光は、遮断される。 The light branched by the second-stage optical coupler 54b in the direction of the third-stage optical coupler 54c travels through the isolator 53b to the third-stage optical coupler 54c, where it is further branched by the third-stage optical coupler 54c in the direction of the sensor head 20 and the direction of the attenuator 55. As in the first and second stages, the light branched from the optical coupler 54c in the direction of the sensor head 20 passes from the tip of the optical fiber through the collimator lens 22c and the objective lens 21 in the sensor head 20 and is irradiated onto the measurement object T. The tip (end face) of the optical fiber then becomes the reference surface, and the light reflected by the reference surface interferes with the light reflected by the measurement object T to generate interference light, which returns to the third-stage optical coupler 54c and is branched by the optical coupler 54c in the directions of the isolator 53b and the light receiving element 56c. The light branched from the optical coupler 54c in the direction of the light receiving element 56c is received by the light receiving element 56c and converted into an electrical signal. On the other hand, the isolator 53b transmits light from the optical coupler 54b in the front stage to the optical coupler 54c in the rear stage and blocks light from the optical coupler 54c in the rear stage to the optical coupler 54b in the front stage, so the light branched from the optical coupler 54c in the direction of the isolator 53b is blocked.
 なお、3段目の光カプラ54cによってセンサヘッド20でない方向に分岐された光は、計測対象物Tの計測に用いられないため、反射して戻ってこないように、例えば、ターミネータ等の減衰器55によって減衰されるとよい。 In addition, since the light branched off by the third-stage optical coupler 54c in a direction other than the sensor head 20 is not used to measure the measurement object T, it is advisable to attenuate it by an attenuator 55 such as a terminator so that it is not reflected back.
 このように、主干渉計では、3段の光路(3チャネル)を有し、それぞれセンサヘッド20の光ファイバの先端(端面)から計測対象物Tまでの距離の2倍(往復)を光路長差とした干渉計であり、それぞれ光路長差に応じた3つの干渉光を生成している。 In this way, the main interferometer has three optical paths (three channels), each with an optical path length difference of twice the distance (round trip) from the tip (end face) of the optical fiber of the sensor head 20 to the measurement object T, and generates three interference lights according to the optical path length difference.
 受光素子56a~56cは、上述したように主干渉計からの干渉光を受光し、当該受光した受光量に応じた電気信号を生成する。 The light receiving elements 56a to 56c receive the interference light from the main interferometer as described above and generate an electrical signal according to the amount of light received.
 増幅回路57a~57cは、それぞれ受光素子56a~56cから出力される電気信号を増幅する。 The amplifier circuits 57a to 57c amplify the electrical signals output from the light receiving elements 56a to 56c, respectively.
 AD変換部58a~58cは、それぞれ増幅回路57a~57cによって増幅された電気信号を受信して、当該電気信号に関してアナログ信号からデジタル信号に変換する(AD変換)。ここで、AD変換部58a~58cは、副干渉計における補正信号生成部61からの補正信号に基づいて、AD変換する。 The AD conversion units 58a to 58c receive the electrical signals amplified by the amplifier circuits 57a to 57c, respectively, and convert the electrical signals from analog to digital (AD conversion). Here, the AD conversion units 58a to 58c perform AD conversion based on the correction signal from the correction signal generation unit 61 in the sub-interferometer.
 副干渉計では、波長掃引光源51の掃引時における波長の非線形性を補正するために、副干渉計にて干渉信号を取得し、Kクロックと呼ばれる補正信号を生成する。 In order to correct the nonlinearity of the wavelength when the wavelength swept light source 51 is swept, the secondary interferometer acquires an interference signal and generates a correction signal called a K clock.
 具体的には、光カプラ54によって副干渉計に分岐された光は、光カプラ54dによって、さらに分岐される。ここで、分岐された各光の光路は、例えば、光カプラ54dと光カプラ54eとの間において異なる長さの光ファイバを用いて光路長差を有するように構成されて、当該光路長差に応じた干渉光が光カプラ54eから出力される。そして、バランスディテクタ60は、光カプラ54eからの干渉光を受光し、その逆位相の信号との差分を取ることによってノイズを除去しつつ、光信号を増幅して電気信号に変換する。 Specifically, the light branched off to the sub-interferometer by optical coupler 54 is further branched off by optical coupler 54d. Here, the optical paths of the branched lights are configured to have an optical path length difference, for example, by using optical fibers of different lengths between optical couplers 54d and 54e, and interference light according to the optical path length difference is output from optical coupler 54e. Then, the balanced detector 60 receives the interference light from optical coupler 54e and amplifies the optical signal and converts it into an electrical signal while removing noise by taking the difference with the opposite phase signal.
 なお、光カプラ54d及び光カプラ54eは、いずれも50:50の割合で光を分岐すればよい。 In addition, optical coupler 54d and optical coupler 54e each need to split light in a 50:50 ratio.
 補正信号生成部61は、バランスディテクタ60からの電気信号に基づいて、波長掃引光源51の掃引時における波長の非線形性を把握し、当該非線形に応じたKクロックを生成し、AD変換部58a~58cに出力する。 The correction signal generator 61 determines the nonlinearity of the wavelength when the wavelength swept light source 51 is swept based on the electrical signal from the balance detector 60, generates a K clock according to the nonlinearity, and outputs it to the AD converters 58a to 58c.
 波長掃引光源51の掃引時における波長の非線形性から、主干渉計においてそれぞれAD変換部58a~58cに入力されるアナログ信号の波の間隔は等間隔ではない。AD変換部58a~58cでは、波の間隔が等間隔になるように、上述したKクロックに基づいてサンプリング時間を補正してAD変換(サンプリング)される。 Due to the nonlinearity of the wavelength when the wavelength swept light source 51 is swept, the intervals between the waves of the analog signals input to the AD converters 58a to 58c in the main interferometer are not equal. In the AD converters 58a to 58c, the sampling time is corrected based on the K clock described above and AD conversion (sampling) is performed so that the intervals between the waves become equal.
 なお、Kクロックは、上述したように、主干渉計のアナログ信号をサンプリングするために用いられる補正信号であるため、主干渉計のアナログ信号よりも高周波に生成される必要がある。具体的には、副干渉計における光カプラ54dと光カプラ54eとの間で設けられた光路長差を、主干渉計における光ファイバの先端(端面)と計測対象物Tとの間で設けられた光路長差よりも長くしてもよいし、補正信号生成部61で周波数を逓倍(例えば、8倍等)して高周波化してもよい。 As described above, the K clock is a correction signal used to sample the analog signal of the main interferometer, and therefore needs to be generated at a higher frequency than the analog signal of the main interferometer. Specifically, the optical path length difference between optical couplers 54d and 54e in the sub interferometer may be made longer than the optical path length difference between the tip (end face) of the optical fiber in the main interferometer and the measurement object T, or the frequency may be multiplied (e.g., 8 times) by the correction signal generator 61 to make it higher frequency.
 処理部59は、それぞれAD変換部58a~58cによって非線形性が補正されつつAD変換されたデジタル信号を取得し、当該デジタル信号に基づいて、計測対象物Tの変位(計測対象物Tまでの距離)を算出する。具体的には、処理部59では、高速フーリエ変換(FFT:fast Fourier transform)を用いてデジタル信号を周波数変換し、それらを解析することによって距離が算出される。処理部59における詳細な処理については後述する。 The processing unit 59 acquires the digital signals that have been AD converted while the nonlinearity has been corrected by the AD conversion units 58a to 58c, and calculates the displacement of the measurement object T (the distance to the measurement object T) based on the digital signals. Specifically, the processing unit 59 uses a fast Fourier transform (FFT) to frequency convert the digital signals, and calculates the distance by analyzing them. The detailed processing in the processing unit 59 will be described later.
 なお、処理部59では、高速処理が要求されることから、FPGA(field-programmable gate array)等の集積回路で実現される場合が多い。 In addition, because high-speed processing is required for the processing unit 59, it is often realized by an integrated circuit such as an FPGA (field-programmable gate array).
 また、ここでは、主干渉計において3段の光路を設けて、センサヘッド20によってそれぞれの光路から計測対象物Tに対して測定光が照射され、それぞれから得られる干渉光(戻り光)に基づいて、計測対象物Tまでの距離等が計測される(マルチチャネル)。主干渉計におけるチャネルは、3段に限定されるものではなく、1段又は2段であってもよいし、4段以上であってもよい。 Here, three optical paths are provided in the main interferometer, and the sensor head 20 irradiates the measurement object T with measurement light from each optical path, and the distance to the measurement object T, etc. are measured based on the interference light (return light) obtained from each (multi-channel). The number of channels in the main interferometer is not limited to three, and may be one or two, or four or more.
 図5Bは、本開示に係る変位センサ10によって計測対象物Tが計測される別の原理を説明するための図である。図5Bに示されるように、変位センサ10は、センサヘッド20及びコントローラ30を備える。センサヘッド20は、対物レンズ21と、複数のコリメートレンズ22a~22cとを含み、コントローラ30は、波長掃引光源51と、光増幅器52と、複数のアイソレータ53及び53a~53bと、複数の光カプラ54及び54a~54jと、減衰器55と、複数の受光素子(例えば、フォトディテクタ(PD))56a~56cと、複数の増幅回路57a~57cと、複数のアナログデジタル(AD)変換部(例えば、アナログデジタルコンバータ)58a~58cと、処理部(例えば、プロセッサ)59と、バランスディテクタ60と、補正信号生成部61とを含む。図5Bに示された変位センサ10は、主に、光カプラ54f~54jを備えている点で、図5Aに示された変位センサ10の構成とは異なり、当該異なる構成による原理について、図5Aと比較しながら詳しく説明する。 5B is a diagram for explaining another principle by which the measurement object T is measured by the displacement sensor 10 according to the present disclosure. As shown in FIG. 5B, the displacement sensor 10 includes a sensor head 20 and a controller 30. The sensor head 20 includes an objective lens 21 and a plurality of collimator lenses 22a to 22c, and the controller 30 includes a wavelength swept light source 51, an optical amplifier 52, a plurality of isolators 53 and 53a to 53b, a plurality of optical couplers 54 and 54a to 54j, an attenuator 55, a plurality of light receiving elements (e.g., photodetectors (PD)) 56a to 56c, a plurality of amplifier circuits 57a to 57c, a plurality of analog-to-digital (AD) conversion units (e.g., analog-to-digital converters) 58a to 58c, a processing unit (e.g., a processor) 59, a balance detector 60, and a correction signal generation unit 61. The displacement sensor 10 shown in FIG. 5B differs from the configuration of the displacement sensor 10 shown in FIG. 5A mainly in that it includes optical couplers 54f to 54j, and the principle of this different configuration will be described in detail in comparison with FIG. 5A.
 波長掃引光源51から投光された光は、光増幅器52によって増幅され、アイソレータ53を介して、光カプラ54によって主干渉計側と副干渉計側とに分岐されるが、主干渉計側に分岐された光は、さらに、光カプラ54fによって測定光と参照光とに分岐される。 The light emitted from the wavelength swept light source 51 is amplified by the optical amplifier 52, passes through the isolator 53, and is branched by the optical coupler 54 to the main interferometer side and the sub-interferometer side. The light branched to the main interferometer side is further branched by the optical coupler 54f into measurement light and reference light.
 測定光は、図5Aで説明したように、1段目の光カプラ54aによってコリメートレンズ22a及び対物レンズ21を通過して計測対象物Tに照射され、当該計測対象物Tで反射する。ここで、図5Aでは、光ファイバの先端(端面)を参照面として、当該参照面で反射した光と計測対象物Tで反射した光とが干渉し、干渉光が生成されていたが、図5Bでは、光が反射する参照面を設けていない。すなわち、図5Bでは、図5Aのように参照面で反射する光が発生しないため、計測対象物Tで反射された測定光が1段目の光カプラ54aに戻ることなる。 As explained in FIG. 5A, the measurement light is irradiated onto the measurement object T through the collimator lens 22a and the objective lens 21 by the first-stage optical coupler 54a and is reflected by the measurement object T. Here, in FIG. 5A, the tip (end face) of the optical fiber is used as a reference surface, and the light reflected from the reference surface interferes with the light reflected from the measurement object T to generate interference light, but in FIG. 5B, no reference surface is provided for reflecting light. That is, in FIG. 5B, since no light is reflected from the reference surface as in FIG. 5A, the measurement light reflected from the measurement object T returns to the first-stage optical coupler 54a.
 同様に、1段目の光カプラ54aから2段目の光カプラ54bの方向に分岐された光は、当該2段目の光カプラ54bによってコリメートレンズ22b及び対物レンズ21を通過して計測対象物Tに照射され、当該計測対象物Tで反射して2段目の光カプラ54bに戻る。2段目の光カプラ54bから3段目の光カプラ54cの方向に分岐された光は、当該3段目の光カプラ54cによってコリメートレンズ22c及び対物レンズ21を通過して計測対象物Tに照射され、当該計測対象物Tで反射して3段目の光カプラ54cに戻る。 Similarly, the light branched from the first-stage optical coupler 54a in the direction of the second-stage optical coupler 54b passes through the collimator lens 22b and the objective lens 21 by the second-stage optical coupler 54b, is irradiated onto the measurement object T, is reflected by the measurement object T, and returns to the second-stage optical coupler 54b. The light branched from the second-stage optical coupler 54b in the direction of the third-stage optical coupler 54c passes through the collimator lens 22c and the objective lens 21 by the third-stage optical coupler 54c, is irradiated onto the measurement object T, is reflected by the measurement object T, and returns to the third-stage optical coupler 54c.
 一方、光カプラ54fによって分岐された参照光は、さらに、光カプラ54gによって光カプラ54h、54i及び54jに分岐される。 On the other hand, the reference light split by optical coupler 54f is further split by optical coupler 54g to optical couplers 54h, 54i, and 54j.
 光カプラ54hでは、光カプラ54aから出力される計測対象物Tで反射された測定光と、光カプラ54gから出力される参照光とが干渉し、干渉光が生成されて、受光素子56aで受光されて電気信号に変換される。換言すれば、光カプラ54fによって測定光と参照光とに分岐され、当該測定光の光路(光カプラ54fから、光カプラ54a、コリメートレンズ22a、対物レンズ21を介して計測対象物Tで反射し、光カプラ54hまで到達する光路)と、当該参照光の光路(光カプラ54fから、光カプラ54gを介して光カプラ54hまで到達する光路)との光路長差に応じた干渉光が生成されて、当該干渉光が受光素子56aで受光されて電気信号に変換される。 In the optical coupler 54h, the measurement light reflected by the measurement object T output from the optical coupler 54a interferes with the reference light output from the optical coupler 54g, generating interference light that is received by the light receiving element 56a and converted into an electrical signal. In other words, the measurement light and the reference light are split by the optical coupler 54f, and interference light is generated according to the optical path length difference between the optical path of the measurement light (the optical path from the optical coupler 54f through the optical coupler 54a, the collimator lens 22a, the objective lens 21, reflected by the measurement object T, and reaching the optical coupler 54h) and the optical path of the reference light (the optical path from the optical coupler 54f through the optical coupler 54g to the optical coupler 54h), and the interference light is received by the light receiving element 56a and converted into an electrical signal.
 同様に、光カプラ54iでは、測定光の光路(光カプラ54fから、光カプラ54a、54b、コリメートレンズ22b、対物レンズ21を介して計測対象物Tで反射し、光カプラ54iまで到達する光路)と、参照光の光路(光カプラ54fから、光カプラ54gを介して光カプラ54iまで到達する光路)との光路長差に応じた干渉光が生成されて、当該干渉光が受光素子56bで受光されて電気信号に変換される。 Similarly, in optical coupler 54i, interference light is generated according to the difference in optical path length between the optical path of the measurement light (the optical path from optical coupler 54f, through optical couplers 54a and 54b, collimating lens 22b, objective lens 21, reflected by the measurement object T, and reaching optical coupler 54i) and the optical path of the reference light (the optical path from optical coupler 54f to optical coupler 54i via optical coupler 54g), and the interference light is received by light-receiving element 56b and converted into an electrical signal.
 光カプラ54jでは、測定光の光路(光カプラ54fから、光カプラ54a、54b、54c、コリメートレンズ22c、対物レンズ21を介して計測対象物Tで反射し、光カプラ54jまで到達する光路)と、参照光の光路(光カプラ54fから、光カプラ54gを介して光カプラ54jまで到達する光路)との光路長差に応じた干渉光が生成されて、当該干渉光が受光素子56cで受光されて電気信号に変換される。なお、受光素子56a~56cは、例えば、バランスフォトディテクタであってもよい。 In the optical coupler 54j, interference light is generated according to the difference in optical path length between the optical path of the measurement light (the optical path from optical coupler 54f through optical couplers 54a, 54b, 54c, collimating lens 22c, objective lens 21, reflected by the measurement object T, and reaching optical coupler 54j) and the optical path of the reference light (the optical path from optical coupler 54f through optical coupler 54g and reaching optical coupler 54j), and the interference light is received by the light receiving element 56c and converted into an electrical signal. Note that the light receiving elements 56a to 56c may be, for example, balanced photodetectors.
 このように、主干渉計では、3段の光路(3チャネル)を有し、それぞれ計測対象物Tで反射されて光カプラ54h、54i及び54jに入力される測定光と、光カプラ54f及び54gを介してそれぞれ光カプラ54h、54i及び54jに入力される参照光との光路長差に応じた3つの干渉光を生成している。 In this way, the main interferometer has three optical paths (three channels) and generates three interference lights according to the optical path length difference between the measurement light reflected by the measurement object T and input to optical couplers 54h, 54i, and 54j, and the reference light input to optical couplers 54h, 54i, and 54j via optical couplers 54f and 54g, respectively.
 なお、測定光と参照光との光路長差は、3チャネルにおいてそれぞれ異なるように、例えば、光カプラ54gと、各光カプラ54h、54i及び54jとの光路長を異なるように設定してもよい。 In addition, the optical path length difference between the measurement light and the reference light may be set to be different for each of the three channels, for example, the optical path lengths of optical coupler 54g and each of optical couplers 54h, 54i, and 54j may be set to be different.
 そして、それぞれから得られる干渉光に基づいて、計測対象物Tまでの距離等が計測される(マルチチャネル)。 Then, based on the interference light obtained from each, the distance to the measurement object T, etc. is measured (multi-channel).
[センサヘッドの構造]
 ここで、変位センサ10に用いられるセンサヘッドの構造について説明する。
 図6Aは、センサヘッド20の概略構成を示す斜視図であり、図6Bは、センサヘッドの内部構造を示す模式図である。
[Sensor head structure]
Here, the structure of the sensor head used in the displacement sensor 10 will be described.
FIG. 6A is a perspective view showing a schematic configuration of the sensor head 20, and FIG. 6B is a schematic view showing the internal structure of the sensor head.
 図6Aに示されるように、センサヘッド20は、レンズホルダ23に対物レンズ21及びコリメートレンズが格納されている。例えば、レンズホルダ23のサイズは、対物レンズ21を囲う一辺の長さが20mm程度であり、光軸方向への長さが40mm程度である。 As shown in FIG. 6A, the sensor head 20 has the objective lens 21 and collimator lens stored in the lens holder 23. For example, the size of the lens holder 23 is such that the length of one side surrounding the objective lens 21 is about 20 mm, and the length in the optical axis direction is about 40 mm.
 図6Bに示されるように、レンズホルダ23には、1つの対物レンズ21及び3つのコリメートレンズ22a~22cが格納されている。光ファイバからの光は、光ファイバアレイ24を介して3つのコリメートレンズ22a~22cに導かれるように構成されており、さらに、3つのコリメートレンズ22a~22cを通過した光は、対物レンズ21を介して計測対象物Tに照射される。 As shown in FIG. 6B, the lens holder 23 stores one objective lens 21 and three collimating lenses 22a to 22c. Light from the optical fiber is guided to the three collimating lenses 22a to 22c via the optical fiber array 24, and the light that passes through the three collimating lenses 22a to 22c is irradiated onto the measurement object T via the objective lens 21.
 このように、これらの光ファイバ、コリメートレンズ22a~22c及び光ファイバアレイ24は、対物レンズ21とともに、レンズホルダ23によって保持されて、センサヘッド20を構成している。 In this way, these optical fibers, collimator lenses 22a to 22c, and optical fiber array 24, together with objective lens 21, are held by lens holder 23 to form sensor head 20.
 また、センサヘッド20を構成するレンズホルダ23は、高強度で、また高精度に加工できる金属(例えば、A2017)で作製されていてもよい。 The lens holder 23 that constitutes the sensor head 20 may also be made of a metal (e.g., A2017) that is strong and can be machined with high precision.
 図7は、コントローラ30における信号処理について説明するためのブロック図である。図7に示されるように、コントローラ30は、複数の受光素子71a~71eと、複数の増幅回路72a~72cと、複数のAD変換部74a~74cと、処理部75と、差動増幅回路76と、補正信号生成部77とを備える。 FIG. 7 is a block diagram for explaining signal processing in the controller 30. As shown in FIG. 7, the controller 30 includes a plurality of light receiving elements 71a-71e, a plurality of amplifier circuits 72a-72c, a plurality of AD conversion units 74a-74c, a processing unit 75, a differential amplifier circuit 76, and a correction signal generation unit 77.
 コントローラ30では、図5Aで示されたように、波長掃引光源51から投光された光を光カプラ54によって主干渉計と副干渉計とに分岐し、それぞれより得られる主干渉信号及び副干渉信号を処理することによって、計測対象物Tまでの距離値を算出している。 As shown in FIG. 5A, the controller 30 splits the light emitted from the wavelength swept light source 51 into a main interferometer and a sub-interferometer by the optical coupler 54, and calculates the distance to the measurement object T by processing the main interference signal and the sub-interference signal obtained from each.
 複数の受光素子71a~71cは、図5Aに示された受光素子56a~56cに相当し、主干渉計からの主干渉信号をそれぞれ受光して、電流信号としてそれぞれ増幅回路72a~72cに出力する。 The multiple light receiving elements 71a to 71c correspond to the light receiving elements 56a to 56c shown in FIG. 5A, and each receive the main interference signal from the main interferometer and output it as a current signal to the amplifier circuits 72a to 72c, respectively.
 複数の増幅回路72a~72cは、電流信号を電圧信号に変換(I-V変換)して増幅する。 The multiple amplifier circuits 72a to 72c convert the current signal into a voltage signal (IV conversion) and amplify it.
 複数のAD変換部74a~74cは、図5Aに示されたAD変換部58a~58cに相当し、後述する補正信号生成部77からのKクロックに基づいて、電圧信号をデジタル信号に変換する(AD変換)。 The multiple AD conversion units 74a to 74c correspond to the AD conversion units 58a to 58c shown in FIG. 5A, and convert the voltage signal into a digital signal (AD conversion) based on the K clock from the correction signal generation unit 77, which will be described later.
 処理部75は、図5Aに示された処理部59に相当し、AD変換部74a~74cからのデジタル信号をFFTを用いて周波数に変換し、それらを解析して、計測対象物Tまでの距離値を算出する。 The processing unit 75 corresponds to the processing unit 59 shown in FIG. 5A, and converts the digital signals from the AD conversion units 74a to 74c into frequencies using FFT, analyzes them, and calculates the distance value to the measurement target T.
 複数の受光素子71d~71e及び差動増幅回路76は、図5Aに示されたバランスディテクタ60に相当し、副干渉計における干渉光をそれぞれ受光して、一方は位相の反転した干渉信号を出力し、2つの信号の差分を取ることによってノイズを除去しつつ、干渉信号を増幅して電圧信号に変換する。 The multiple light receiving elements 71d-71e and the differential amplifier circuit 76 correspond to the balanced detector 60 shown in FIG. 5A, and each receives the interference light from the sub-interferometer, one of which outputs an interference signal with an inverted phase, and the interference signal is amplified and converted into a voltage signal while noise is removed by taking the difference between the two signals.
 補正信号生成部77は、図5Aに示された補正信号生成部61に相当し、電圧信号をコンパレータで2値化し、Kクロックを生成し、AD変換部74a~74cに出力する。Kクロックは、主干渉計のアナログ信号よりも高周波に生成される必要があるため、補正信号生成部77で周波数を逓倍(例えば、8倍等)して高周波化してもよい。 The correction signal generating unit 77 corresponds to the correction signal generating unit 61 shown in FIG. 5A, and binarizes the voltage signal using a comparator, generates a K clock, and outputs it to the AD conversion units 74a to 74c. Since the K clock needs to be generated at a higher frequency than the analog signal of the main interferometer, the correction signal generating unit 77 may multiply the frequency (e.g., 8 times) to increase the frequency.
 図8は、コントローラ30における処理部59によって実行される、計測対象物Tまでの距離を算出する方法を示すフローチャートである。図8に示されるように、当該方法は、ステップS31~S34を含む。 FIG. 8 is a flowchart showing a method for calculating the distance to the measurement target T, which is executed by the processing unit 59 in the controller 30. As shown in FIG. 8, the method includes steps S31 to S34.
 ステップS31では、処理部59は、下記FFTを用いて、波形信号(電圧vs時間)をスペクトル(電圧vs周波数)に周波数変換する。図9Aは、波形信号(電圧vs時間)がスペクトル(電圧vs周波数)に周波数変換される様子を示す図である。
Figure JPOXMLDOC01-appb-M000001
In step S31, the processing unit 59 performs frequency conversion of the waveform signal (voltage vs. time) into a spectrum (voltage vs. frequency) using the following FFT: Fig. 9A is a diagram showing how the waveform signal (voltage vs. time) is frequency converted into a spectrum (voltage vs. frequency).
Figure JPOXMLDOC01-appb-M000001
 ステップS32では、処理部59は、スペクトル(電圧vs周波数)をスペクトル(電圧vs距離)に距離変換する。図9Bは、スペクトル(電圧vs周波数)がスペクトル(電圧vs距離)に距離変換される様子を示す図である。 In step S32, the processing unit 59 performs distance conversion from the spectrum (voltage vs. frequency) to a spectrum (voltage vs. distance). FIG. 9B is a diagram showing how the spectrum (voltage vs. frequency) is distance converted to a spectrum (voltage vs. distance).
 ステップS33では、処理部59は、スペクトル(電圧vs距離)に基づいてピークに対応する距離値を算出する。図9Cは、スペクトル(電圧vs距離)に基づいてピークを検出し、それに対応する距離値が算出される様子を示す図である。図9Cに示されるように、ここでは、3チャネルにおいて、それぞれスペクトル(電圧vs距離)に基づいてピークが検出され、それぞれピークに対応する距離値が算出される。 In step S33, the processing unit 59 calculates a distance value corresponding to the peak based on the spectrum (voltage vs. distance). FIG. 9C is a diagram showing how peaks are detected based on the spectrum (voltage vs. distance) and the corresponding distance values are calculated. As shown in FIG. 9C, peaks are detected in each of the three channels based on the spectrum (voltage vs. distance), and distance values corresponding to each peak are calculated.
 ステップS34では、処理部59は、ステップS33で算出された距離値を平均化する。具体的には、処理部59は、ステップS33で3チャネルにおいてそれぞれスペクトル(電圧vs距離)に基づいてピークが検出され、それに対応する距離値が算出されているため、それらを平均化して、当該平均化した算出結果を計測対象物Tまでの距離として出力する。 In step S34, the processing unit 59 averages the distance values calculated in step S33. Specifically, since peaks have been detected in each of the three channels based on the spectrum (voltage vs. distance) in step S33 and the corresponding distance values have been calculated, the processing unit 59 averages these values and outputs the averaged calculation result as the distance to the measurement object T.
 なお、ステップS34では、処理部59は、ステップS33で算出された距離値を平均化する際に、SNRが閾値以上である距離値平均化することが好ましい。例えば、3チャンネルのうち、いずれかのチャンネルにおいて、そのスペクトル(電圧vs距離)に基づいてピークが検出されたものの、SNRが閾値未満の場合には、当該スペクトルに基づいて算出される距離値は、信頼性が低いと判断し、採用しない。 In step S34, when averaging the distance values calculated in step S33, the processing unit 59 preferably averages distance values whose SNR is equal to or greater than a threshold value. For example, if a peak is detected based on the spectrum (voltage vs. distance) in any of the three channels but the SNR is less than the threshold value, the distance value calculated based on the spectrum is determined to be unreliable and is not adopted.
 次に、本開示に関して、より特徴的な構成、機能及び性質を中心に、具体的な実施形態として詳細に説明する。なお、以下に示される光干渉測距センサは、図1~図9を用いて説明した変位センサ10に相当し、当該光干渉測距センサに含まれる基本的な構成、機能及び性質の全部又は一部は、図1~図9を用いて説明した変位センサ10に含まれる構成、機能及び性質と共通している。 Next, the present disclosure will be described in detail as a specific embodiment, focusing on the more characteristic configurations, functions, and properties. Note that the optical interferometric distance measuring sensor shown below corresponds to the displacement sensor 10 described using Figures 1 to 9, and all or part of the basic configuration, functions, and properties included in the optical interferometric distance measuring sensor are common to the configuration, functions, and properties included in the displacement sensor 10 described using Figures 1 to 9.
 <一実施形態>
[光干渉測距センサの構成]
 図10は、本発明の一実施形態に係る光干渉測距センサ100の構成概要を示す模式図である。図10に示されるように、光干渉測距センサ100は、コントローラ110と、コントローラ110と第1センサヘッド121及び第2センサヘッド122とを接続する光ファイバケーブル130と、を含んで構成されている。光干渉測距センサ100は、さらに、第1センサヘッド121及び第2センサヘッド122を含んで構成されていてもよい。
<One embodiment>
[Configuration of optical interferometric distance measuring sensor]
Fig. 10 is a schematic diagram showing an outline of the configuration of an optical interferometric distance measuring sensor 100 according to an embodiment of the present invention. As shown in Fig. 10, the optical interferometric distance measuring sensor 100 includes a controller 110, and an optical fiber cable 130 that connects the controller 110 to a first sensor head 121 and a second sensor head 122. The optical interferometric distance measuring sensor 100 may further include the first sensor head 121 and the second sensor head 122.
 コントローラ110は、波長掃引光源140と、光分岐部111と、主干渉計150と副干渉計160と、第1フォトダイオード(PD)112,113と、増幅回路114,115と、第2フォトダイオード(PD)116,117と、第1補正信号生成部171と、第2補正信号生成部172と、AD変換部181,182と、処理部118と、を備える。 The controller 110 includes a wavelength swept light source 140, an optical branching unit 111, a main interferometer 150, a sub interferometer 160, first photodiodes (PD) 112, 113, amplifier circuits 114, 115, second photodiodes (PD) 116, 117, a first correction signal generating unit 171, a second correction signal generating unit 172, AD conversion units 181, 182, and a processing unit 118.
 光ファイバケーブル130は、複数の光ファイバから構成される光ファイバ群である。光ファイバケーブル130は、コントローラ110並びに第1センサヘッド121及び第2センサヘッド122のそれぞれに、着脱自在、つまり、取り付け及び取り外しが可能に構成されている。光ファイバケーブル130は、例えば、第1光ファイバ131と第2光ファイバ132とを含んで構成される。第1光ファイバ131は、長さL1に比例する光路長を有し、第2光ファイバ132は、長さL2に比例する光路長を有する。第1光ファイバ131の長さL1は、計測対象物T1までの距離に基づいて設定されており、第2光ファイバ132の長さL2は、計測対象物T2までの距離に基づいて設定されている。計測対象物T2は、計測対象物T1とは異なる距離、図1に示す例では遠い距離、に存在する対象物を想定している。そのため、第2光ファイバ132の光路長は、第1光ファイバ131の光路長と異なり、第1光ファイバ131の光路長よりも長くなっている。 The optical fiber cable 130 is an optical fiber group consisting of a plurality of optical fibers. The optical fiber cable 130 is configured to be detachable, that is, to be attached and detached, to each of the controller 110, the first sensor head 121, and the second sensor head 122. The optical fiber cable 130 is configured to include, for example, a first optical fiber 131 and a second optical fiber 132. The first optical fiber 131 has an optical path length proportional to the length L1, and the second optical fiber 132 has an optical path length proportional to the length L2. The length L1 of the first optical fiber 131 is set based on the distance to the measurement object T1, and the length L2 of the second optical fiber 132 is set based on the distance to the measurement object T2. The measurement object T2 is assumed to be an object that exists at a different distance from the measurement object T1, that is, at a far distance in the example shown in FIG. 1. Therefore, the optical path length of the second optical fiber 132 is different from the optical path length of the first optical fiber 131 and is longer than the optical path length of the first optical fiber 131.
 波長掃引光源140は、波長を連続的に変化させながら光を投光する。すなわち、波長掃引光源140から投光される光は、継続して波長が変化している。そして、波長掃引光源140から投光された光は、例えば光カプラ等で構成される光分岐部111を介して、主干渉計150と副干渉計160とに供給される。波長掃引光源140では、入力する電流の大きさを変化させることで波長を連続的に制御する。入力電流波形には主に三角波やのこぎり波が用いられる。 The swept light source 140 emits light while continuously changing the wavelength. That is, the wavelength of the light emitted from the swept light source 140 is continuously changing. The light emitted from the swept light source 140 is supplied to the main interferometer 150 and the sub interferometer 160 via an optical branching unit 111, which is composed of, for example, an optical coupler. The swept light source 140 continuously controls the wavelength by changing the magnitude of the input current. A triangular wave or a sawtooth wave is mainly used as the input current waveform.
 主干渉計150は、複数の光路(複数チャネル)を有しており、図10に示す例では、第1主干渉計151と第2主干渉計とを含んで構成される。 The main interferometer 150 has multiple optical paths (multiple channels), and in the example shown in FIG. 10, it includes a first main interferometer 151 and a second main interferometer.
 第1主干渉計151は、光ファイバケーブル130の第1光ファイバ131に接続されており、波長掃引光源140から投光された光を、第1光ファイバ131を介して第1センサヘッド121に供給し、さらに、第1センサヘッド121からの戻り光を第1フォトダイオード112に導く。 The first main interferometer 151 is connected to the first optical fiber 131 of the optical fiber cable 130, and supplies the light emitted from the wavelength swept light source 140 to the first sensor head 121 via the first optical fiber 131, and further guides the return light from the first sensor head 121 to the first photodiode 112.
 具体的には、第1主干渉計151から第1センサヘッド121に導かれた光は、第1測定光として、例えば、第1センサヘッド121に配置されたコリメートレンズや対物レンズを介して、計測対象物Tに照射される。そして、当該計測対象物Tでの反射光が第1センサヘッド121に戻る。 Specifically, the light guided from the first main interferometer 151 to the first sensor head 121 is irradiated as the first measurement light to the measurement object T via, for example, a collimator lens or an objective lens arranged in the first sensor head 121. Then, the reflected light from the measurement object T returns to the first sensor head 121.
 また、第1主干渉計151から第1センサヘッド121に導かれた光の一部は、第1参照光として、例えば、第1光ファイバ131の先端等に設けられた参照面で反射される。そして、上述した第1測定光と当該第1参照光とが干渉することにより、第1測定光及び第1参照光の光路長差に応じた干渉光(「第1主干渉信号」ともいう)が生成される。 A part of the light guided from the first main interferometer 151 to the first sensor head 121 is reflected as a first reference light by, for example, a reference surface provided at the tip of the first optical fiber 131. Then, the first measurement light and the first reference light interfere with each other to generate an interference light (also called a "first main interference signal") corresponding to the optical path length difference between the first measurement light and the first reference light.
 このように、第1主干渉計151は、波長掃引光源140から投光された光が供給され、第1センサヘッド121により計測対象物Tに照射して反射される第1測定光と、第1測定光とは少なくとも一部異なる光路を辿る第1参照光とに基づく第1主干渉信号を生成する。なお、波長掃引光源から投光された光が供給され、第1主干渉信号を生成するということから、第1主干渉計151に第1センサヘッド121を含めて第1主干渉計と言うこともできる。 In this way, the first main interferometer 151 is supplied with light projected from the swept light source 140, and generates a first main interference signal based on the first measurement light that is irradiated onto the measurement object T and reflected by the first sensor head 121, and the first reference light that follows at least a part of an optical path different from that of the first measurement light. Note that, because the first main interferometer 151 is supplied with light projected from the swept light source and generates a first main interference signal, the first main interferometer 151 including the first sensor head 121 can also be called the first main interferometer.
 第2主干渉計152は、光ファイバケーブル130の第2光ファイバ132に接続されており、波長掃引光源140から投光された光を、第2光ファイバ132を介して第2センサヘッド122に供給し、さらに、第2センサヘッド122からの戻り光を第1フォトダイオード113に導く。 The second main interferometer 152 is connected to the second optical fiber 132 of the optical fiber cable 130, and supplies the light emitted from the wavelength swept light source 140 to the second sensor head 122 via the second optical fiber 132, and further guides the return light from the second sensor head 122 to the first photodiode 113.
 具体的には、第2主干渉計152から第2センサヘッド122に導かれた光は、第2測定光として、例えば、第2センサヘッド122に配置されたコリメートレンズや対物レンズを介して、計測対象物Tに照射される。そして、当該計測対象物Tでの反射光が第2センサヘッド122に戻る。 Specifically, the light guided from the second main interferometer 152 to the second sensor head 122 is irradiated as the second measurement light to the measurement object T via, for example, a collimator lens or an objective lens arranged in the second sensor head 122. Then, the reflected light from the measurement object T returns to the second sensor head 122.
 また、第2主干渉計152から第2センサヘッド122に導かれた光の一部は、第2参照光として、例えば、第2光ファイバ132の先端等に設けられた参照面で反射される。そして、上述した第2測定光と当該第2参照光とが干渉することにより、第2測定光及び第2参照光の光路長差に応じた干渉光(「第2主干渉信号」ともいう)が生成される。 A part of the light guided from the second main interferometer 152 to the second sensor head 122 is reflected as a second reference light by, for example, a reference surface provided at the tip of the second optical fiber 132. Then, the second measurement light and the second reference light interfere with each other to generate an interference light (also called a "second main interference signal") corresponding to the optical path length difference between the second measurement light and the second reference light.
 このように、第2主干渉計152は、波長掃引光源140から投光された光が供給され、第2センサヘッド122により計測対象物Tに照射して反射される第2測定光と、第2測定光とは少なくとも一部異なる光路を辿る第2参照光とに基づく第2主干渉信号を生成する。なお、波長掃引光源から投光された光が供給され、第2主干渉信号を生成するということから、第2主干渉計152に第2センサヘッド122を含めて第2主干渉計と言うこともできる。 In this way, the second main interferometer 152 is supplied with light projected from the swept light source 140, and generates a second main interference signal based on the second measurement light that is irradiated onto the measurement object T and reflected by the second sensor head 122, and the second reference light that follows at least a part of an optical path different from that of the second measurement light. Note that, because the second main interferometer 152 is supplied with light projected from the swept light source and generates a second main interference signal, the second main interferometer 152 including the second sensor head 122 can also be called the second main interferometer.
 第1フォトダイオード112は、第1主干渉計151によって生成された第1主干渉信号を受光して電気信号に変換する。第1フォトダイオード112によって変換された電気信号は、例えば電流信号である。第1フォトダイオード113は、第2主干渉計152によって生成された第2主干渉信号を受光して電気信号に変換する。第1フォトダイオード113によって変換された電気信号は、同様に、例えば電流信号である。 The first photodiode 112 receives the first main interference signal generated by the first main interferometer 151 and converts it into an electrical signal. The electrical signal converted by the first photodiode 112 is, for example, a current signal. The first photodiode 113 receives the second main interference signal generated by the second main interferometer 152 and converts it into an electrical signal. The electrical signal converted by the first photodiode 113 is similarly, for example, a current signal.
 増幅回路114は、第1フォトダイオード112から入力された電気信号を、所定の利得(「ゲイン」ともいう)で増幅する。第1フォトダイオード112から電流信号が入力される場合、増幅回路114は、当該電流信号を電圧信号に変換(「I-V変換」ともいう)して増幅する。増幅された電気信号は、AD変換部181に出力される。増幅回路115は、第1フォトダイオード113から入力された電気信号を、所定の利得で増幅する。第1フォトダイオード113から電流信号が入力される場合、増幅回路115は、当該電流信号を電圧信号に変換して増幅する。増幅された電気信号は、AD変換部182に出力される。 The amplifier circuit 114 amplifies the electrical signal input from the first photodiode 112 with a predetermined gain (also called "gain"). When a current signal is input from the first photodiode 112, the amplifier circuit 114 converts the current signal into a voltage signal (also called "I-V conversion") and amplifies it. The amplified electrical signal is output to the AD conversion unit 181. The amplifier circuit 115 amplifies the electrical signal input from the first photodiode 113 with a predetermined gain. When a current signal is input from the first photodiode 113, the amplifier circuit 115 converts the current signal into a voltage signal and amplifies it. The amplified electrical signal is output to the AD conversion unit 182.
 副干渉計160は、波長掃引光源140から投光された光が光分岐部111によって分岐されて供給され、異なる光路長の光路を辿る2つの光に基づいて副干渉信号を生成する。具体的には、第1光カプラ161によって異なる光路長の光路を辿る2つの光に分岐され、その後、第2光カプラ162によって合成して干渉させることで、その光路長差に基づく副干渉信号が生成される。当該副干渉信号は、光ファイバ163を伝搬して第2フォトダイオード116に導かれるとともに、光ファイバ164を伝搬して第2フォトダイオード117に導かれる。 The sub-interferometer 160 receives light emitted from the wavelength swept light source 140, which is split by the optical splitter 111 and supplied to generate a sub-interference signal based on the two lights that follow optical paths of different optical path lengths. Specifically, the first optical coupler 161 splits the light into two lights that follow optical paths of different optical path lengths, and the two lights are then combined and interfered with by the second optical coupler 162 to generate a sub-interference signal based on the difference in optical path length. The sub-interference signal propagates through the optical fiber 163 and is guided to the second photodiode 116, and also propagates through the optical fiber 164 and is guided to the second photodiode 117.
 光ファイバ163は、長さL1rに比例する光路長を有し、光ファイバ164は、長さL2rに比例する光路長を有する。本実施形態の光ファイバ164は、本発明における「遅延量生成部」の一例に相当する。また、本実施形態の光ファイバ164は、本発明における「第3光ファイバ」の一例にも相当する。 Optical fiber 163 has an optical path length proportional to length L1r, and optical fiber 164 has an optical path length proportional to length L2r. Optical fiber 164 in this embodiment corresponds to an example of a "delay amount generating unit" in the present invention. Optical fiber 164 in this embodiment also corresponds to an example of a "third optical fiber" in the present invention.
 すなわち、光ファイバ164は、第1光ファイバ131の光路長と第2光ファイバ132の光路長との光路長差に基づく遅延量を生成するように構成されている。 In other words, the optical fiber 164 is configured to generate a delay amount based on the optical path length difference between the optical path length of the first optical fiber 131 and the optical path length of the second optical fiber 132.
 具体的には、光ファイバ164は、副干渉信号を伝搬し、第1光ファイバ131の光路長と第2光ファイバ132の光路長との光路長差に基づく光路長を有している。よって、光ファイバ164を介して第2フォトディテクタ117に導かれた副干渉信号は、光ファイバ164によって遅延させた副干渉計信号(以下、「遅延副干渉信号」ともいう)である。このように、光ファイバ164は、副干渉信号を伝搬し、第1光ファイバ131の光路長と第2光ファイバ132の光路長との光路長差に基づく光路長を有することにより、光ファイバ164の光路長を変更することで、遅延量を容易に設定することができる。 Specifically, the optical fiber 164 propagates the sub-interference signal and has an optical path length based on the optical path length difference between the optical path length of the first optical fiber 131 and the optical path length of the second optical fiber 132. Therefore, the sub-interference signal guided to the second photodetector 117 via the optical fiber 164 is a sub-interferometer signal delayed by the optical fiber 164 (hereinafter also referred to as a "delayed sub-interference signal"). In this way, the optical fiber 164 propagates the sub-interference signal and has an optical path length based on the optical path length difference between the optical path length of the first optical fiber 131 and the optical path length of the second optical fiber 132, and therefore the amount of delay can be easily set by changing the optical path length of the optical fiber 164.
 第2フォトダイオード116は、副干渉計160の光ファイバ163を伝搬した副干渉信号を受光して電気信号(以下、「副干渉計信号」ともいう)に変換する。第2フォトダイオード116によって変換された電気信号は、例えば電流信号である。第2フォトダイオード117は、副干渉計160の光ファイバ164を伝搬した副干渉信号を受光して電気信号(以下、「遅延副干渉計信号」ともいう)に変換する。第2フォトダイオード116によって変換された電気信号は、同様に、例えば電流信号である。 The second photodiode 116 receives the sub-interference signal propagated through the optical fiber 163 of the sub-interferometer 160 and converts it into an electrical signal (hereinafter also referred to as the "sub-interferometer signal"). The electrical signal converted by the second photodiode 116 is, for example, a current signal. The second photodiode 117 receives the sub-interference signal propagated through the optical fiber 164 of the sub-interferometer 160 and converts it into an electrical signal (hereinafter also referred to as the "delayed sub-interferometer signal"). The electrical signal converted by the second photodiode 116 is, for example, a current signal.
 なお、第2フォトダイオード116,117から出力される電気信号は、それぞれ、図示を省略した増幅回路によって、所定のゲインで増幅してもよい。この場合、増幅回路は、増幅した電気信号を、第1補正信号生成部171と第2補正信号生成部172とに出力する。 The electrical signals output from the second photodiodes 116 and 117 may be amplified at a predetermined gain by an amplifier circuit (not shown). In this case, the amplifier circuit outputs the amplified electrical signals to the first correction signal generating unit 171 and the second correction signal generating unit 172.
 第1補正信号生成部171は、副干渉信号に基づいて、第1補正信号(「第1Kクロック信号」、又は単に「第1Kクロック」ともいう)を生成するように構成されている。第1補正信号は、第1主干渉計151が生成する第1主干渉信号のサンプリング周期を補正する信号である。副干渉信号は、掃引時における波長の非線形性から、第1主干渉信号と同様に非線形であるため、第1補正信号生成部171は、当該副干渉信号に基づいて掃引時における波長の非線形性を把握することで、第1主干渉信号のアナログ信号を適切にサンプリングしてAD変換するための第1補正信号、つまり、第1Kクロック信号を生成することができる。 The first correction signal generating unit 171 is configured to generate a first correction signal (also referred to as the "first K clock signal" or simply the "first K clock") based on the secondary interference signal. The first correction signal is a signal that corrects the sampling period of the first main interference signal generated by the first main interferometer 151. The secondary interference signal is nonlinear like the first main interference signal due to the nonlinearity of the wavelength during sweeping, so the first correction signal generating unit 171 can grasp the nonlinearity of the wavelength during sweeping based on the secondary interference signal, thereby generating a first correction signal, i.e., a first K clock signal, for appropriately sampling and AD converting the analog signal of the first main interference signal.
 なお、第1補正信号生成部171において適切な第1補正信号を生成するためには、第1フォトダイオード112で受光する第1主干渉信号の非線形性を、第1補正信号生成部171で適切に把握される必要がある。このためには、第1主干渉信号と副干渉信号との特性(非線形性)を整合させておく、言い換えれば、第1主干渉信号と副干渉信号とを時間的に合わせておくことが好ましい。 In order for the first correction signal generating unit 171 to generate an appropriate first correction signal, the first correction signal generating unit 171 needs to properly grasp the nonlinearity of the first main interference signal received by the first photodiode 112. For this purpose, it is preferable to match the characteristics (nonlinearity) of the first main interference signal and the sub-interference signal, in other words, to synchronize the first main interference signal and the sub-interference signal in time.
 第2補正信号生成部172は、副干渉信号と遅延量とに基づいて、第2補正信号(「第2Kクロック信号」、又は単に「第2Kクロック」ともいう)を生成するように構成されている。第2補正信号は、第2主干渉計152が生成する第2主干渉信号のサンプリング周期を補正する信号である。副干渉信号は、掃引時における波長の非線形性から、第2主干渉信号と同様に非線形であるため、第2補正信号生成部172は、当該副干渉信号に基づいて掃引時における波長の非線形性を把握することで、第2主干渉信号のアナログ信号を適切にサンプリングしてAD変換するための第2補正信号、つまり、第2Kクロック信号を生成することができる。 The second correction signal generating unit 172 is configured to generate a second correction signal (also referred to as a "second K clock signal" or simply a "second K clock") based on the sub-interference signal and the delay amount. The second correction signal is a signal that corrects the sampling period of the second main interference signal generated by the second main interferometer 152. The sub-interference signal is nonlinear like the second main interference signal due to the nonlinearity of the wavelength during sweeping, so the second correction signal generating unit 172 can grasp the nonlinearity of the wavelength during sweeping based on the sub-interference signal and generate a second correction signal, i.e., a second K clock signal, for appropriately sampling and AD converting the analog signal of the second main interference signal.
 このように、第1光ファイバ131の光路長と第2光ファイバ132の光路長との光路長差に基づく遅延量を生成し、副干渉信号と遅延量とに基づいて、第2主干渉信号のサンプリング周期を補正する第2補正信号を生成することにより、第2主干渉信号において、第1光ファイバ131の光路長と第2光ファイバ132の光路長との光路長差に応じた遅延を発生させることが可能となる。従って、第2主干渉信号をサンプリングする際のタイミングのずれを低減し、サンプリングされたデジタル信号の信号強度の低下を抑制することができる。 In this way, by generating a delay amount based on the optical path length difference between the optical path length of the first optical fiber 131 and the optical path length of the second optical fiber 132, and generating a second correction signal that corrects the sampling period of the second main interference signal based on the sub-interference signal and the delay amount, it is possible to generate a delay in the second main interference signal according to the optical path length difference between the optical path length of the first optical fiber 131 and the optical path length of the second optical fiber 132. Therefore, it is possible to reduce the timing deviation when sampling the second main interference signal and suppress a decrease in the signal strength of the sampled digital signal.
 より詳細には、第2補正信号生成部172は、遅延副干渉計信号に基づいて、第2補正信号を生成するように構成されている。すなわち、第2補正信号は、副干渉信号を電気信号に変換させた副干渉計信号において、時間軸方向に遅延を発生させた信号に基づいて、生成される。当該遅延は、上述した遅延量に応じた時間である。 More specifically, the second correction signal generating unit 172 is configured to generate the second correction signal based on the delayed sub-interferometer signal. That is, the second correction signal is generated based on a signal in which a delay is generated in the time axis direction in the sub-interferometer signal obtained by converting the sub-interference signal into an electrical signal. The delay is a time according to the delay amount described above.
 なお、第2補正信号生成部172において適切な第2補正信号を生成するためには、第1フォトダイオード113で受光する第2主干渉信号の非線形性を、第2補正信号生成部172で適切に把握される必要がある。このためには、第2主干渉信号と遅延させた副干渉信号との特性(非線形性)を整合させておく、言い換えれば、第1主干渉信号と副干渉信号とを時間的に合わせておくことが好ましい。 In order for the second correction signal generating unit 172 to generate an appropriate second correction signal, the second correction signal generating unit 172 needs to properly grasp the nonlinearity of the second main interference signal received by the first photodiode 113. For this purpose, it is preferable to match the characteristics (nonlinearity) of the second main interference signal and the delayed sub-interference signal, in other words, to align the first main interference signal and the sub-interference signal in time.
 また、第2補正信号生成部172は、副干渉信号を電気信号に変換させた副干渉計信号において、時間軸方向に上述した遅延量に応じた遅延を発生させた信号に基づいて、第2補正信号であるパルス信号を生成してもよい。これにより、第2主干渉信号のサンプリングのタイミングを容易に合わせる(同期をとる)ことができる。 The second correction signal generating unit 172 may generate a pulse signal, which is the second correction signal, based on a signal in which a delay corresponding to the above-mentioned delay amount is generated in the time axis direction in the sub-interferometer signal obtained by converting the sub-interference signal into an electrical signal. This makes it possible to easily match (synchronize) the timing of sampling of the second main interference signal.
 第2補正信号生成部172と同様に、第1補正信号生成部171が生成する第1補正信号は、パルス信号であってもよい。 Similar to the second correction signal generating unit 172, the first correction signal generated by the first correction signal generating unit 171 may be a pulse signal.
 AD変換部181は、第1主干渉信号を電気信号に変換させた第1主干渉計信号を、第1補正信号に基づいてサンプリングしてデジタル信号に変換するように構成されている。AD変換部181に入力される第1主干渉信号は、アナログ信号の波の間隔が等間隔ではない。AD変換部181は、当該第1主干渉信号における波の間隔が等間隔になるように、上述した第1補正信号、つまり、第1Kクロック信号に基づいて補正したサンプリング周期(サンプリング間隔)で、第1主干渉信号のアナログ信号をサンプリングしてAD変換する。 The AD conversion unit 181 is configured to sample the first main interferometer signal, which is obtained by converting the first main interference signal into an electrical signal, based on the first correction signal and convert it into a digital signal. The first main interference signal input to the AD conversion unit 181 is an analog signal in which the waves are not spaced at equal intervals. The AD conversion unit 181 samples and AD converts the analog signal of the first main interference signal at a sampling period (sampling interval) corrected based on the above-mentioned first correction signal, i.e., the first K clock signal, so that the waves in the first main interference signal are spaced at equal intervals.
 AD変換部182は、第2主干渉信号を電気信号に変換させた第2主干渉計信号を、第1補正信号に基づいてサンプリングしてデジタル信号に変換するように構成されている。AD変換部182に入力される第2主干渉信号は、アナログ信号の波の間隔が等間隔ではない。AD変換部182は、当該第2主干渉信号における波の間隔が等間隔になるように、上述した第2補正信号、つまり、第2Kクロック信号に基づいて補正したサンプリング周期(サンプリング間隔)で、第2主干渉信号のアナログ信号をサンプリングしてAD変換する。 The AD conversion unit 182 is configured to sample the second main interferometer signal, which is obtained by converting the second main interference signal into an electrical signal, based on the first correction signal and convert it into a digital signal. The second main interference signal input to the AD conversion unit 182 is an analog signal in which the waves are not spaced at equal intervals. The AD conversion unit 182 samples and AD converts the analog signal of the second main interference signal at a sampling period (sampling interval) corrected based on the above-mentioned second correction signal, i.e., the second K clock signal, so that the waves in the second main interference signal are spaced at equal intervals.
 このように、AD変換部182が第2主干渉信号を電気信号に変換させた第2主干渉計信号を、第2補正信号に基づいてサンプリングしてデジタル信号に変換することにより、第2主干渉計信号をサンプリング周期が補正されたデジタル信号に変換する構成を容易に実現することができる。 In this way, the AD converter 182 converts the second main interference signal into an electrical signal, and the second main interferometer signal is sampled based on the second correction signal and converted into a digital signal, thereby easily realizing a configuration in which the second main interferometer signal is converted into a digital signal with a corrected sampling period.
 処理部118は、第1主干渉計151によって生成された第1主干渉信号及び第2主干渉計152によって生成された第2主干渉信号のうちの少なくとも1つと、副干渉計160によって生成された副干渉信号とに基づいて、計測対象物Tまでの距離を算出するように構成されている。 The processing unit 118 is configured to calculate the distance to the measurement object T based on at least one of the first main interference signal generated by the first main interferometer 151 and the second main interference signal generated by the second main interferometer 152, and the sub-interference signal generated by the sub-interferometer 160.
 より詳細には、処理部118は、第1フォトダイオード112で受光され、増幅回路114で増幅された第1主干渉信号と、第1フォトダイオード113で受光され、増幅回路115で増幅された第2主干渉信号と、第2フォトダイオード116,117で受光された副干渉信号とに基づいて、計測対象物Tまでの距離を算出するように構成されている。 More specifically, the processing unit 118 is configured to calculate the distance to the measurement object T based on the first main interference signal received by the first photodiode 112 and amplified by the amplifier circuit 114, the second main interference signal received by the first photodiode 113 and amplified by the amplifier circuit 115, and the sub-interference signal received by the second photodiodes 116 and 117.
 具体的には、AD変換部181において、第1主干渉信号に基づく非線形なアナログ信号が、副干渉信号に基づく第1補正信号によって補正されたサンプリング周期でデジタル信号に変換されるので、処理部118は、当該デジタル信号を、FFT等を用いて周波数に変換し、それらを解析して計測対象物Tまでの距離値を算出する。 Specifically, in the AD conversion unit 181, a nonlinear analog signal based on the first main interference signal is converted into a digital signal at a sampling period corrected by a first correction signal based on the sub-interference signal, and the processing unit 118 converts the digital signal into a frequency using FFT or the like, analyzes them, and calculates the distance value to the measurement target T.
 また、AD変換部182において、第2主干渉信号に基づく非線形なアナログ信号が、副干渉信号と遅延量とに基づく第2補正信号によって補正されたサンプリング周期でデジタル信号に変換されるので、処理部118は、当該デジタル信号を、FFT等を用いて周波数に変換し、それらを解析して計測対象物Tまでの距離値を算出する。 In addition, in the AD conversion unit 182, the nonlinear analog signal based on the second main interference signal is converted into a digital signal at a sampling period corrected by a second correction signal based on the sub-interference signal and the delay amount, and the processing unit 118 converts the digital signal into a frequency using FFT or the like, analyzes them, and calculates the distance value to the measurement target T.
 このように、処理部118が、第1主干渉計151によって生成された第1主干渉信号及び第2主干渉計152によって生成された第2主干渉信号のうちの少なくとも1つと、副干渉計160によって生成された副干渉信号とに基づいて、計測対象物Tまでの距離を算出することにより、計測対象物Tまでの距離を計測する構成を容易に実現することができる。 In this way, the processing unit 118 calculates the distance to the measurement object T based on at least one of the first main interference signal generated by the first main interferometer 151 and the second main interference signal generated by the second main interferometer 152, and the sub-interference signal generated by the sub-interferometer 160, thereby easily realizing a configuration for measuring the distance to the measurement object T.
 図11は、本発明の一実施形態に係る他の光干渉測距センサ101の構成概要を示す模式図である。なお、図11は、図10に示す光干渉測距センサ100と同一又は類似の構成について同一又は類似の符号を付し、その説明を適宜省略する。また、図10に示す光干渉測距センサ100と同様の構成による同様の作用効果については、逐次言及しない。 FIG. 11 is a schematic diagram showing the general configuration of another optical interferometric distance measuring sensor 101 according to one embodiment of the present invention. Note that in FIG. 11, the same or similar components as those in the optical interferometric distance measuring sensor 100 shown in FIG. 10 are denoted by the same or similar reference numerals, and their description will be omitted as appropriate. Furthermore, similar effects and functions due to the same configuration as the optical interferometric distance measuring sensor 100 shown in FIG. 10 will not be mentioned in sequence.
 図11に示すように、光干渉測距センサ101は、コントローラ110と、第1センサヘッド121及び第2センサヘッド122と、を備え、コントローラ110と第1センサヘッド121及び第2センサヘッド122とを接続する光ファイバケーブル130をさらに備える。図11に示す光干渉測距センサ101のコントローラ110は、図10に示す光干渉測距センサ100のコントローラ110と比較して、光ファイバ164を備えていない代わりに、遅延線191を備える点で相違する。 As shown in FIG. 11, the optical interferometric distance measuring sensor 101 includes a controller 110, a first sensor head 121, and a second sensor head 122, and further includes an optical fiber cable 130 that connects the controller 110 to the first sensor head 121 and the second sensor head 122. The controller 110 of the optical interferometric distance measuring sensor 101 shown in FIG. 11 differs from the controller 110 of the optical interferometric distance measuring sensor 100 shown in FIG. 10 in that it does not include an optical fiber 164, but includes a delay line 191.
 コントローラ110の副干渉計160は、波長掃引光源140から投光された光が光分岐部111によって分岐されて供給され、異なる光路長の光路を辿る2つの光に基づいて副干渉信号を生成する。具体的には、第1光カプラ161によって異なる光路長の光路を辿る2つの光に分岐され、その後、第2光カプラ162によって合成して干渉させることで、その光路長差に基づく副干渉信号が生成される。当該副干渉信号は、光ファイバ163を伝搬して第2フォトダイオード116に導かれる。一方、第2光カプラ162の残りのポートは、コアレスファイバ終端を備えた光ファイバに接続され、又は減衰器に接続される。 The sub-interferometer 160 of the controller 110 receives light projected from the wavelength swept light source 140, which is split by the optical splitter 111 and supplied to generate a sub-interference signal based on two lights that follow optical paths of different optical path lengths. Specifically, the first optical coupler 161 splits the light into two lights that follow optical paths of different optical path lengths, and the second optical coupler 162 then combines and causes interference to generate a sub-interference signal based on the optical path length difference. The sub-interference signal propagates through the optical fiber 163 and is guided to the second photodiode 116. Meanwhile, the remaining port of the second optical coupler 162 is connected to an optical fiber with a coreless fiber termination, or to an attenuator.
 第2フォトダイオード116は、副干渉計160の光ファイバ163を伝搬した第2干渉信号を受光して電気信号である副干渉計信号に変換する。第2フォトダイオード116によって変換された電気信号は、例えば電流信号である。なお、第2フォトダイオード116から出力される電気信号は、図示を省略した増幅回路によって、所定のゲインで増幅してもよい。この場合、増幅回路は、増幅した電気信号を、第1補正信号生成部171と遅延線191とに出力する。 The second photodiode 116 receives the second interference signal propagated through the optical fiber 163 of the sub-interferometer 160 and converts it into a sub-interferometer signal, which is an electrical signal. The electrical signal converted by the second photodiode 116 is, for example, a current signal. The electrical signal output from the second photodiode 116 may be amplified at a predetermined gain by an amplifier circuit (not shown). In this case, the amplifier circuit outputs the amplified electrical signal to the first correction signal generator 171 and the delay line 191.
 遅延線191は、副干渉信号を電気信号に変換させた副干渉計信号において、時間軸方向に遅延量に応じた遅延を発生させて第2補正信号生成部172に出力するように構成されている。遅延線191の遅延量は、光ファイバ164の遅延量と同様に、第1光ファイバ131の光路長と第2光ファイバ132の光路長との光路長差に基づいて、設定される。本実施形態の遅延線191は、本発明における「遅延量生成部」の一例に相当する。遅延線191は、遅延を発生させた信号、つまり、遅延副干渉計信号」を第2補正信号生成部172に出力する。 The delay line 191 is configured to generate a delay in the time axis direction according to the delay amount in the sub-interferometer signal obtained by converting the sub-interference signal into an electrical signal, and output the signal to the second correction signal generating unit 172. The delay amount of the delay line 191 is set based on the optical path length difference between the optical path length of the first optical fiber 131 and the optical path length of the second optical fiber 132, similar to the delay amount of the optical fiber 164. The delay line 191 of this embodiment corresponds to an example of a "delay amount generating unit" in the present invention. The delay line 191 outputs a delayed signal, i.e., a "delayed sub-interferometer signal", to the second correction signal generating unit 172.
 遅延線191は、電気信号の伝搬を遅らせる電子部品、例えばディレイラインを含んで構成される。なお、遅延線191の電子部品は、副干渉信号に遅延を発生させるものであれば、その構造、種類、数等は問わない。 The delay line 191 includes electronic components that delay the propagation of an electrical signal, such as a delay line. Note that the structure, type, number, etc. of the electronic components of the delay line 191 are not important as long as they cause a delay in the secondary interference signal.
 このように、遅延線191、副干渉信号を電気信号に変換させた副干渉計信号において、時間軸方向に遅延量に応じた遅延を発生させて第2補正信号生成部172に出力することにより、電気的に遅延を発生させた副干渉計信号を出力することで、第2補正信号生成部172は、電気信号である第2補正信号を容易に生成することができる。 In this way, the delay line 191 generates a delay in the time axis direction according to the amount of delay in the sub-interferometer signal obtained by converting the sub-interference signal into an electrical signal, and outputs the signal to the second correction signal generation unit 172. By outputting the sub-interferometer signal with an electrical delay, the second correction signal generation unit 172 can easily generate the second correction signal, which is an electrical signal.
[第1主干渉計信号及び第2主干渉計信号のサンプリングのタイミング]
 図12は、第1主干渉計信号及び第2主干渉計信号のサンプリングのタイミングを説明するための図である。図12において、第1主干渉計151の第1干渉信号に基づく第1主干渉計信号のサンプリングする場合の信号を上段に示し、第2主干渉計152の第2干渉信号に基づく第2主干渉計信号のサンプリングする場合の信号を下段に示す。なお、以下の例では、明示する場合を除き、図10に示す光干渉測距センサ100を用いて説明し、図11に示す光干渉測距センサ101を用いる場合の説明は省略する。
[Sampling Timing of First Main Interferometer Signal and Second Main Interferometer Signal]
Fig. 12 is a diagram for explaining the timing of sampling the first main interferometer signal and the second main interferometer signal. In Fig. 12, the upper part shows a signal when the first main interferometer signal based on the first interference signal of the first main interferometer 151 is sampled, and the lower part shows a signal when the second main interferometer signal based on the second interference signal of the second main interferometer 152 is sampled. In the following example, unless otherwise specified, the optical interferometer sensor 100 shown in Fig. 10 is used for explanation, and the explanation of the case where the optical interferometer sensor 101 shown in Fig. 11 is used is omitted.
 図12の上段に示すように、第1主干渉計信号は、時刻t1において、副干渉信号を電気信号に変換させた副干渉計信号に基づいて生成された第1補正信号によるサンプリングが開始される。そして、第1主干渉計信号は、第1補正信号によって補正された周期でサンプリングされ、デジタル信号に変換される。 As shown in the upper part of FIG. 12, at time t1, sampling of the first main interferometer signal begins with a first correction signal generated based on a sub-interferometer signal obtained by converting the sub-interferometer signal into an electrical signal. The first main interferometer signal is then sampled at a period corrected by the first correction signal and converted into a digital signal.
 一方、図12の下段に示すように、第2主干渉計信号は、時刻t1の時点では発生しておらず、時刻t2(t2>t1)において発生している。この時刻のズレ(以下、「遅延時間t12」ともいう)は、第1光ファイバ131の光路長と第2光ファイバ132の光路長との光路長差によって生じた光の遅延時間である。 On the other hand, as shown in the lower part of Figure 12, the second main interferometer signal is not generated at time t1, but is generated at time t2 (t2>t1). This time difference (hereinafter also referred to as "delay time t12") is the optical delay time caused by the difference in optical path length between the first optical fiber 131 and the second optical fiber 132.
 第2主干渉計信号におけるこの遅延時間t12に対応するために、図10に示す光干渉測距センサ100の光ファイバ164は、遅延量tdelayを生成する。遅延量tdelayは、光ファイバ163の長さL1r及び光ファイバ164の長さL2rと、光の速さcとを用いて以下の式(1)で表される。
   tdelay=|L2r-L1r|/c …(1)
In order to correspond to the delay time t12 in the second main interferometer signal, the optical fiber 164 of the optical interferometer distance measuring sensor 100 shown in Fig. 10 generates a delay amount tdelay. The delay amount tdelay is expressed by the following formula (1) using the length L1r of the optical fiber 163, the length L2r of the optical fiber 164, and the speed of light c.
tdelay=|L2r-L1r|/c ... (1)
 そのため、第2主干渉計信号は、時刻t2において、この遅延量tdelayと、副干渉信号を電気信号に変換させた副干渉計信号とに基づいて生成された第2補正信号によるサンプリングが開始される。そして、第2主干渉計信号は、第2補正信号によって補正された周期でサンプリングされ、デジタル信号に変換される。 Therefore, at time t2, sampling of the second main interferometer signal begins using the second correction signal generated based on this delay amount tdelay and the sub-interferometer signal obtained by converting the sub-interferometer signal into an electrical signal. The second main interferometer signal is then sampled at a period corrected by the second correction signal and converted into a digital signal.
 光ファイバ164が生成する遅延量tdelayは、第1光ファイバ131の光路長と第2光ファイバ132の光路長との光路長差による光の遅延時間t12との差の絶対値が、AD変換部182における最小のサンプリング周期Tsminよりも小さくなるように設定されることが好ましい。 The delay amount tdelay generated by the optical fiber 164 is preferably set so that the absolute value of the difference between the optical path length of the first optical fiber 131 and the optical path length of the second optical fiber 132 and the optical delay time t12 due to the optical path length difference is smaller than the minimum sampling period Tsmin in the AD conversion unit 182.
 言い換えれば、光の遅延時間t12と遅延量tdelayとの時間差Δtが以下の式(2)を満たすように、遅延量tdelayを設定する。
   Δt=|t12-tdelay|<Tsmin …(2)
In other words, the delay amount tdelay is set so that the time difference Δt between the optical delay time t12 and the delay amount tdelay satisfies the following formula (2).
Δt = |t12-tdelay| < Tsmin ... (2)
[デジタル信号に変換された第2主干渉計信号の信号強度と時間差との関係]
 図13は、デジタル信号に変換された第2主干渉計信号の信号強度と時間差Δtとの関係を説明するための図である。図12において、デジタル信号に変換された第2主干渉計信号の信号強度は、時間差Δtがゼロである場合の信号強度を基準値「1」として正規化されたものである。また、図12に示す例は、図10に示す光干渉測距センサ100を用いて説明し、図11に示す光干渉測距センサ101を用いる場合の説明は省略する。
[Relationship between signal strength and time difference of second main interferometer signal converted into digital signal]
Fig. 13 is a diagram for explaining the relationship between the signal intensity of the second main interferometer signal converted into a digital signal and the time difference Δt. In Fig. 12, the signal intensity of the second main interferometer signal converted into a digital signal is normalized with the signal intensity when the time difference Δt is zero as a reference value "1". The example shown in Fig. 12 will be explained using the optical interferometric distance measuring sensor 100 shown in Fig. 10, and an explanation of the case where the optical interferometric distance measuring sensor 101 shown in Fig. 11 is used will be omitted.
 図10に示す光干渉測距センサ100において、第1センサヘッド121から計測対象物T1までの距離が1[m]、第1光ファイバ131の長さL1が2[m]、第2センサヘッド122から計測対象物T2までの距離が1[m]、第2光ファイバ132の長さL2が10[m]、第1光ファイバ131及び第2光ファイバ132の屈折率が1.5、光の速さcが3×10[m/s]である場合、遅延時間t12は8×10-8[s]と算出される。ここで、光干渉測距センサ100が、100[MHz]の最大サンプリング時間を有するAD変換部181,182を備える場合、AD変換部181,182における最小のサンプリング周期Tsminは、1×10-8[s]となる。これらの値を上述した式(2)に代入し、遅延量tdelayを7×10-8[s]以上、9×10-8[s]以下に設定する。 10, if the distance from the first sensor head 121 to the measurement object T1 is 1 [m], the length L1 of the first optical fiber 131 is 2 [m], the distance from the second sensor head 122 to the measurement object T2 is 1 [m], the length L2 of the second optical fiber 132 is 10 [m], the refractive index of the first optical fiber 131 and the second optical fiber 132 is 1.5, and the speed of light c is 3×10 8 [m/s], the delay time t12 is calculated to be 8×10 −8 [s]. Here, if the optical interferometric distance measuring sensor 100 includes AD converters 181 and 182 having a maximum sampling time of 100 [MHz], the minimum sampling period Tsmin of the AD converters 181 and 182 is 1×10 −8 [s]. These values are substituted into the above-mentioned equation (2), and the delay amount tdelay is set to 7×10 −8 [s] or more and 9×10 −8 [s] or less.
 図13に示すように、遅延量tdelayを7×10-8[s]以上、9×10-8[s]以下に設定すると、デジタル信号に変換された第2主干渉計信号の信号強度は、10[%]以下の低下に抑制することができる。例えば、副干渉計160の光ファイバ163の長さL1rが1[m]であるときに、副干渉計160の光ファイバ164の長さL2rが14[m]に設定する。 13, when the delay amount tdelay is set to 7×10 −8 [s] or more and 9×10 −8 [s] or less, the signal intensity of the second main interferometer signal converted into a digital signal can be suppressed to a decrease of 10% or less. For example, when the length L1r of the optical fiber 163 of the secondary interferometer 160 is 1 [m], the length L2r of the optical fiber 164 of the secondary interferometer 160 is set to 14 [m].
 このように、遅延量tdelayは、第1光ファイバ131の光路長と第2光ファイバ132の光路長との光路長差による光の遅延時間t12との差の絶対値が、AD変換部182における最小のサンプリング周期Tsminよりも小さくなるように設定されることにより、サンプリングされたデジタル信号の信号強度の低下を所定割合以下、例えば10%以下に抑制することができる。 In this way, the delay amount tdelay is set so that the absolute value of the difference between the optical delay time t12 due to the optical path length difference between the optical path length of the first optical fiber 131 and the optical path length of the second optical fiber 132 is smaller than the minimum sampling period Tsmin in the AD conversion unit 182, thereby making it possible to suppress the decrease in signal strength of the sampled digital signal to a predetermined percentage or less, for example, 10% or less.
 本実施形態では、光干渉測距センサ100,101が、それぞれ、2つのセンサヘッドと、各センサヘッドをコントローラ110に接続する2つの光ファイバを含む光ファイバケーブルとを備える例を示したが、これに限定されるものではない。光干渉測距センサは、3つ以上のセンサヘッド、及び、これと同数の光ファイバを含む光ファイバケーブルとを備えていてもよい。以下、説明の簡略化のため、光干渉測距センサが3つのセンサヘッドと2つの光ファイバを含む光ファイバケーブルとを備える場合に、コントローラ110の構成、特に、副干渉計160とその後段(下流)の構成について説明する。 In this embodiment, the optical interferometer sensors 100, 101 each have two sensor heads and an optical fiber cable including two optical fibers connecting each sensor head to the controller 110, but this is not limited to the above. The optical interferometer sensor may have three or more sensor heads and an optical fiber cable including the same number of optical fibers. For the sake of simplicity, the following description will be given of the configuration of the controller 110, particularly the configuration of the sub-interferometer 160 and the subsequent stage (downstream) when the optical interferometer sensor has three sensor heads and an optical fiber cable including two optical fibers.
[3つのセンサヘッドを備える場合の副干渉計及びその後段の具体的構成]
 図14は、3つのセンサヘッドを備える場合の副干渉計160及びその後段の具体的な構成の一例を示す模式図であり、図15は、3つのセンサヘッドを備える場合の副干渉計160及びその後段の具体的な構成の他の例を示す模式図である。
[Specific configuration of the secondary interferometer and the subsequent stages when three sensor heads are provided]
Figure 14 is a schematic diagram showing an example of the specific configuration of the secondary interferometer 160 and its subsequent stages when it is equipped with three sensor heads, and Figure 15 is a schematic diagram showing another example of the specific configuration of the secondary interferometer 160 and its subsequent stages when it is equipped with three sensor heads.
 図14に示すように、副干渉計160は、波長掃引光源140から投光された光が光分岐部111によって分岐されて供給され、異なる光路長の光路を辿る2つの光に基づいて副干渉信号を生成する。具体的には、第1光カプラ161によって異なる光路長の光路を辿る2つの光に分岐され、その後、第2光カプラ162によって合成して干渉させることで、その光路長差に基づく副干渉信号が生成される。当該副干渉信号は、光ファイバ163を伝搬して第2フォトダイオード116に導かれるとともに、光ファイバ164を伝搬して第2フォトダイオード117に導かれる。さらに、副干渉信号は、光ファイバ164と同様に、遅延量を生成する。光ファイバ165を伝搬して第2フォトダイオード119に導かれる。光ファイバ165は、第2フォトダイオード119は、副干渉計160の光ファイバ165を伝搬した副干渉信号を受光して電気信号(以下、「遅延副干渉計信号」ともいう)に変換する。 14, the sub-interferometer 160 receives light emitted from the wavelength swept light source 140, which is split by the optical splitter 111 and supplied to generate a sub-interference signal based on two lights that follow optical paths of different optical path lengths. Specifically, the first optical coupler 161 splits the light into two lights that follow optical paths of different optical path lengths, and then the second optical coupler 162 combines and interferes with the light to generate a sub-interference signal based on the optical path length difference. The sub-interference signal propagates through the optical fiber 163 and is guided to the second photodiode 116, and also propagates through the optical fiber 164 and is guided to the second photodiode 117. Furthermore, the sub-interference signal generates a delay amount, similar to the optical fiber 164. It propagates through the optical fiber 165 and is guided to the second photodiode 119. The optical fiber 165 and the second photodiode 119 receive the sub-interference signal propagated through the optical fiber 165 of the sub-interferometer 160 and convert it into an electrical signal (hereinafter also referred to as the "delayed sub-interferometer signal").
 第3補正信号生成部173は、副干渉信号と遅延量とに基づいて、第3補正信号(「第3Kクロック信号」、又は単に「第3Kクロック」ともいう)を生成するように構成されている。第3補正信号は、図示を省略する第3主干渉計が生成する第3主干渉信号のサンプリング周期を補正する信号である。第3補正信号生成部173は、副干渉信号に基づいて掃引時における波長の非線形性を把握することで、第3主干渉信号のアナログ信号を適切にサンプリングしてAD変換するための第3補正信号、つまり、第3Kクロック信号を生成することができる。 The third correction signal generating unit 173 is configured to generate a third correction signal (also referred to as a "third K clock signal" or simply a "third K clock") based on the secondary interference signal and the delay amount. The third correction signal is a signal that corrects the sampling period of the third main interference signal generated by a third main interferometer (not shown). The third correction signal generating unit 173 is able to grasp the nonlinearity of the wavelength during sweeping based on the secondary interference signal, and thereby generate a third correction signal, i.e., a third K clock signal, for appropriately sampling and AD converting the analog signal of the third main interference signal.
 また、図15に示すように、副干渉計160は、波長掃引光源140から投光された光が光分岐部111によって分岐されて供給され、異なる光路長の光路を辿る2つの光に基づいて副干渉信号を生成する。具体的には、第1光カプラ161によって異なる光路長の光路を辿る2つの光に分岐され、その後、第2光カプラ162によって合成して干渉させることで、その光路長差に基づく副干渉信号が生成される。当該副干渉信号は、光ファイバ163を伝搬して第2フォトダイオード116に導かれる。一方、第2光カプラ162の残りのポートは、コアレスファイバ終端を備えた光ファイバに接続され、又は減衰器に接続されてもよい。 Also, as shown in FIG. 15, the sub-interferometer 160 receives light emitted from the wavelength swept light source 140, which is branched by the optical branching unit 111 and supplied to generate a sub-interference signal based on two lights that follow optical paths of different optical path lengths. Specifically, the first optical coupler 161 branches the light into two lights that follow optical paths of different optical path lengths, and then the second optical coupler 162 combines and causes interference to generate a sub-interference signal based on the optical path length difference. The sub-interference signal propagates through the optical fiber 163 and is guided to the second photodiode 116. Meanwhile, the remaining port of the second optical coupler 162 may be connected to an optical fiber with a coreless fiber termination, or to an attenuator.
 第2フォトダイオード116は、副干渉計160の光ファイバ163を伝搬した第2干渉信号を受光して電気信号である副干渉計信号に変換し、第1補正信号生成部171と遅延線191とに出力する。 The second photodiode 116 receives the second interference signal propagated through the optical fiber 163 of the sub-interferometer 160, converts it into a sub-interferometer signal, which is an electrical signal, and outputs it to the first correction signal generator 171 and the delay line 191.
 遅延線191は、副干渉信号を電気信号に変換させた副干渉計信号において、時間軸方向に遅延量に応じた遅延を発生させて第2補正信号生成部172に出力するように構成されている。遅延線191は、遅延を発生させた信号、つまり、遅延副干渉計信号を、第2補正信号生成部172と遅延線192とに出力する。遅延線192は、遅延線191と同様に、副干渉信号を電気信号に変換させた副干渉計信号において、時間軸方向に遅延量に応じた遅延を発生させて第3補正信号生成部173に出力するように構成されている。遅延線192には、遅延線191から遅延副干渉計信号が入力され、さらに遅延を発生させた副干渉計信号が第3補正信号生成部173に出力される。 The delay line 191 is configured to generate a delay in the time axis direction according to the amount of delay in the sub-interferometer signal obtained by converting the sub-interference signal into an electrical signal, and output the signal to the second correction signal generating unit 172. The delay line 191 outputs the delayed signal, i.e., the delayed sub-interferometer signal, to the second correction signal generating unit 172 and the delay line 192. The delay line 192, like the delay line 191, is configured to generate a delay in the time axis direction according to the amount of delay in the sub-interferometer signal obtained by converting the sub-interference signal into an electrical signal, and output the signal to the third correction signal generating unit 173. The delayed sub-interferometer signal is input to the delay line 192 from the delay line 191, and the sub-interferometer signal with a further delay is output to the third correction signal generating unit 173.
[干渉計の変形例]
 上述した実施形態では、光干渉測距センサ100,101は、主干渉計150において光ファイバの先端を参照面とすることで参照光を発生させるフィゾー干渉計を用いていたが、干渉計は、これに限定されるものではない。
[Modification of Interferometer]
In the above-described embodiment, the optical interferometer distance measuring sensors 100, 101 use a Fizeau interferometer in the main interferometer 150 that generates reference light by using the tip of an optical fiber as a reference surface, but the interferometer is not limited to this.
 図16は、測定光と参照光とを用いて干渉光を発生させる干渉計のバリエーションを示す図である。図16(a)では、主干渉計150を経由する光路において、光ファイバの先端(端面)を参照面とする参照光と、センサヘッドから照射され計測対象物Tで反射される測定光との光路長差に基づいて干渉光が生成される。上述した実施形態に係る光干渉測距センサ100,101の主干渉計150の構成であり(フィゾー型干渉計)、当該参照面は、光ファイバと空気との屈折率の違いによって光が反射するように構成されていてもよい(フレネル反射)。また、光ファイバの先端に反射膜をコーティングしてもよいし、光ファイバの先端に無反射コーティングを施して、別途、レンズ面等の反射面を配置してもよい。 16 shows a variation of an interferometer that generates interference light using measurement light and reference light. In FIG. 16(a), in the optical path passing through the main interferometer 150, interference light is generated based on the optical path length difference between the reference light, whose reference surface is the tip (end face) of the optical fiber, and the measurement light that is irradiated from the sensor head and reflected by the measurement object T. This is the configuration of the main interferometer 150 of the optical interferometer distance measuring sensor 100, 101 according to the above-mentioned embodiment (Fizeau type interferometer), and the reference surface may be configured to reflect light due to the difference in refractive index between the optical fiber and air (Fresnel reflection). In addition, a reflective film may be coated on the tip of the optical fiber, or an anti-reflective coating may be applied to the tip of the optical fiber and a separate reflective surface such as a lens surface may be disposed on the tip of the optical fiber.
 図16(b)では、主干渉計150を経由する光路において、計測対象物Tに測定光を導く測定光路Lmと、参照光を導く参照光路Lrとを形成し、参照光路Lrの先には参照面が配置されている(マイケルソン型干渉計)。参照面は、光ファイバの先端に反射膜をコーティングしてもよいし、光ファイバの先端に無反射コーティングを施して、別途、ミラー等を配置してもよい。当該構成では、測定光路Lmの光路長と参照光路Lrの光路長とで光路長差を設けることによって干渉光が生成される。 In FIG. 16(b), the optical path passing through the main interferometer 150 is formed with a measurement optical path Lm that guides measurement light to the measurement object T, and a reference optical path Lr that guides reference light, and a reference surface is disposed at the end of the reference optical path Lr (Michelson interferometer). The reference surface may be formed by coating the tip of an optical fiber with a reflective film, or the tip of the optical fiber may be coated with an anti-reflective coating and a mirror or the like disposed separately. In this configuration, interference light is generated by providing an optical path length difference between the optical path length of the measurement optical path Lm and the optical path length of the reference optical path Lr.
 図16(c)では、主干渉計150を経由する光路において、計測対象物Tに測定光を導く測定光路Lmと、参照光を導く参照光路Lrとを形成し、参照光路Lrには、バランスディテクタが配置されている(マッハツェンダ型干渉計)。当該構成では、測定光路Lmと参照光路Lrの光路長とで光路長差を設けることによって、干渉光が生成される。 16(c), in the optical path passing through the main interferometer 150, a measurement optical path Lm that guides measurement light to the measurement object T and a reference optical path Lr that guides reference light are formed, and a balance detector is disposed in the reference optical path Lr (Mach-Zehnder interferometer). In this configuration, interference light is generated by providing an optical path length difference between the measurement optical path Lm and the reference optical path Lr.
 このように、主干渉計は、実施形態で説明したフィゾー型干渉計に限定されるものではなく、例えば、マイケルソン型干渉計やマッハツェンダ型干渉計であってもよいし、測定光と参照光との光路長差を設定することによって干渉光を発生させることができれば、どのような干渉計を適用してもよいし、これらの組み合わせ等やその他の構成を適用してもよい。また、図示しない副干渉計についても、同様に、フィゾー型干渉計、マイケルソン型干渉計、及びマッハツェンダ型干渉計のいずれであってもよいし、測定光と参照光との光路長差を設定することによって干渉光を発生させることができれば、どのような干渉計を適用してもよいし、これらの組み合わせ等やその他の構成を適用してもよい。 In this way, the main interferometer is not limited to the Fizeau interferometer described in the embodiment, but may be, for example, a Michelson interferometer or a Mach-Zehnder interferometer. Any interferometer may be applied as long as it is possible to generate interference light by setting the optical path length difference between the measurement light and the reference light, or a combination of these or other configurations may be applied. Similarly, the secondary interferometer (not shown) may be a Fizeau interferometer, a Michelson interferometer, or a Mach-Zehnder interferometer. Any interferometer may be applied as long as it is possible to generate interference light by setting the optical path length difference between the measurement light and the reference light, or a combination of these or other configurations may be applied.
 なお、以上説明した実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更/改良され得るとともに、本発明にはその等価物も含まれる。すなわち、実施形態に当業者が適宜設計変更を加えたものも、本発明の特徴を備えている限り、本発明の範囲に包含される。例えば、実施形態が備える各要素及びその配置、材料、条件、形状、サイズ等は、例示したものに限定されるわけではなく適宜変更することができる。また、実施形態は例示であり、異なる実施形態で示した構成の部分的な置換又は組み合わせが可能であることは言うまでもなく、これらも本発明の特徴を含む限り本発明の範囲に包含される。 The above-described embodiments are intended to facilitate understanding of the present invention, and are not intended to limit the present invention. The present invention may be modified or improved without departing from the spirit thereof, and equivalents are also included in the present invention. In other words, designs to which a person skilled in the art has made appropriate design changes are also included within the scope of the present invention as long as they include the characteristics of the present invention. For example, the elements of the embodiments and their arrangements, materials, conditions, shapes, sizes, etc. are not limited to those exemplified, and can be modified as appropriate. Furthermore, the embodiments are merely examples, and it goes without saying that partial substitution or combination of the configurations shown in different embodiments is possible, and these are also included within the scope of the present invention as long as they include the characteristics of the present invention.
 [付記1]
 計測対象物に光を照射する第1センサヘッド(121)及び第2センサヘッド(122)のそれぞれに、光ファイバケーブル(130)を介して接続されるコントローラ(110)であって、
 波長を変化させながら光を投光する光源(140)と、
 光源(140)から投光された光が供給され、第1センサヘッド(121)により計測対象物に照射して反射される第1測定光と、第1測定光とは少なくとも一部異なる光路を辿る第1参照光とに基づく第1主干渉信号を生成する第1主干渉計(151)と、
 光源(140)から投光された光が供給され、第2センサヘッド(122)により計測対象物に照射して反射される第2測定光と、第2測定光とは少なくとも一部異なる光路を辿る第2参照光とに基づく第2主干渉信号を生成する第2主干渉計(152)と、
 光源(140)から投光された光が供給され、異なる光路を辿る2つの光に基づく副干渉信号を生成する副干渉計(160)と、
 第1主干渉信号及び第2主干渉信号のうちの少なくとも1つと副干渉信号とに基づいて、計測対象物までの距離を計測する処理部(118)と、を備え、
 光ファイバケーブル(130)は、第1主干渉計(151)に接続され、第1主干渉計(151)からの光を第1センサヘッド(121)に伝搬し、第1センサヘッド(121)からの光を第1主干渉計(151)に伝搬する第1光ファイバ(131)と、第2主干渉計(152)に接続され、第2主干渉計(152)からの光を第2センサヘッド(122)に伝搬し、第2センサヘッド(122)からの光を第2主干渉計(152)に伝搬する第2光ファイバ(132)と、を含み、
 第2光ファイバ(132)は、第1光ファイバ(131)の光路長と異なる光路長を有し、
 コントローラ(110)は、
 副干渉信号に基づいて、第1主干渉信号のサンプリング周期を補正する第1補正信号を生成する第1補正信号生成部(171)と、
 第1光ファイバ(131)の光路長と第2光ファイバ(132)の光路長との光路長差に基づく遅延量を生成する遅延量生成部と、
 副干渉信号と遅延量とに基づいて、第2主干渉信号のサンプリング周期を補正する第2補正信号を生成する第2補正信号生成部(172)と、をさらに備える、
 コントローラ(110)。
 [付記8]
 コントローラ(110)と、該コントローラ(110)に接続される光ファイバケーブル(130)とを含む光干渉測距センサ(100)であって、
 コントローラ(110)は、
 波長を変化させながら光を投光する光源(140)と、
 光源(140)から投光された光が供給され、第1センサヘッド(121)により計測対象物に照射して反射される第1測定光と、第1測定光とは少なくとも一部異なる光路を辿る第1参照光とに基づく第1主干渉信号を生成する第1主干渉計(151)と、
 光源(140)から投光された光が供給され、第2センサヘッド(122)により計測対象物に照射して反射される第2測定光と、第2測定光とは少なくとも一部異なる光路を辿る第2参照光とに基づく第2主干渉信号を生成する第2主干渉計(152)と、
 光源(140)から投光された光が供給され、異なる光路を辿る2つの光に基づく副干渉信号を生成する副干渉計(160)と、を備え、
 光ファイバケーブル(130)は、第1主干渉計(151)に接続され、第1主干渉計(151)からの光を第1センサヘッド(121)に伝搬し、第1センサヘッド(121)からの光を第1主干渉計(151)に伝搬する第1光ファイバ(131)と、第2主干渉計(152)に接続され、第2主干渉計(152)からの光を第2センサヘッド(122)に伝搬し、第2センサヘッド(122)からの光を第2主干渉計(152)に伝搬する第2光ファイバ(132)と、を含み、
 第2光ファイバ(132)は、第1光ファイバ(131)の光路長と異なる光路長を有し、
 コントローラ(110)は、
 副干渉信号に基づいて、第1主干渉信号のサンプリング周期を補正する第1補正信号を生成する第1補正信号生成部(171)と、
 第1光ファイバ(131)の光路長と第2光ファイバ(132)の光路長との光路長差に基づく遅延量を生成する遅延量生成部と、
 副干渉信号と遅延量とに基づいて、第2主干渉信号のサンプリング周期を補正する第2補正信号を生成する第2補正信号生成部(172)と、をさらに備える、
 光干渉測距センサ(100)。
[Appendix 1]
A controller (110) connected via an optical fiber cable (130) to each of a first sensor head (121) and a second sensor head (122) which irradiate a measurement object with light,
A light source (140) that emits light while changing the wavelength;
a first main interferometer (151) that receives light projected from a light source (140), irradiates a first measurement light on a measurement object by a first sensor head (121) and reflects the first measurement light, and generates a first main interference signal based on a first reference light that follows an optical path at least partially different from that of the first measurement light;
a second main interferometer (152) that receives light projected from a light source (140), irradiates a measurement object with a second measurement light by a second sensor head (122) and reflects the measurement object, and generates a second main interference signal based on a second reference light that follows an optical path at least partially different from that of the second measurement light;
a sub-interferometer (160) that is supplied with light projected from a light source (140) and generates a sub-interference signal based on two lights that follow different optical paths;
a processing unit (118) for measuring a distance to a measurement object based on at least one of the first main interference signal and the second main interference signal and the secondary interference signal;
The optical fiber cable (130) includes a first optical fiber (131) connected to the first main interferometer (151) and transmitting light from the first main interferometer (151) to the first sensor head (121) and transmitting light from the first sensor head (121) to the first main interferometer (151), and a second optical fiber (132) connected to the second main interferometer (152) and transmitting light from the second main interferometer (152) to the second sensor head (122) and transmitting light from the second sensor head (122) to the second main interferometer (152);
The second optical fiber (132) has an optical path length different from the optical path length of the first optical fiber (131);
The controller (110)
a first correction signal generating unit (171) that generates a first correction signal for correcting a sampling period of the first main interference signal based on the secondary interference signal;
a delay amount generating unit that generates a delay amount based on an optical path length difference between an optical path length of the first optical fiber (131) and an optical path length of the second optical fiber (132);
and a second correction signal generating unit (172) that generates a second correction signal for correcting a sampling period of the second main interference signal based on the secondary interference signal and the delay amount.
Controller (110).
[Appendix 8]
An optical interferometric distance measuring sensor (100) including a controller (110) and a fiber optic cable (130) connected to the controller (110),
The controller (110)
A light source (140) that emits light while changing the wavelength;
a first main interferometer (151) that receives light projected from a light source (140), irradiates a first measurement light on a measurement object by a first sensor head (121) and reflects the first measurement light, and generates a first main interference signal based on a first reference light that follows an optical path at least partially different from that of the first measurement light;
a second main interferometer (152) that receives light projected from a light source (140), irradiates a measurement object with a second measurement light by a second sensor head (122) and reflects the measurement object, and generates a second main interference signal based on a second reference light that follows an optical path at least partially different from that of the second measurement light;
a sub-interferometer (160) that is supplied with light projected from a light source (140) and generates a sub-interference signal based on two lights that follow different optical paths;
The optical fiber cable (130) includes a first optical fiber (131) connected to the first main interferometer (151) and transmitting light from the first main interferometer (151) to the first sensor head (121) and transmitting light from the first sensor head (121) to the first main interferometer (151), and a second optical fiber (132) connected to the second main interferometer (152) and transmitting light from the second main interferometer (152) to the second sensor head (122) and transmitting light from the second sensor head (122) to the second main interferometer (152);
The second optical fiber (132) has an optical path length different from the optical path length of the first optical fiber (131);
The controller (110)
a first correction signal generating unit (171) that generates a first correction signal for correcting a sampling period of the first main interference signal based on the secondary interference signal;
a delay amount generating unit that generates a delay amount based on an optical path length difference between an optical path length of the first optical fiber (131) and an optical path length of the second optical fiber (132);
and a second correction signal generating unit (172) that generates a second correction signal for correcting a sampling period of the second main interference signal based on the secondary interference signal and the delay amount.
An optical interferometric ranging sensor (100).
 1…センサシステム、10…変位センサ、11…制御機器、12…制御信号入力用センサ、13…外部接続機器、20…センサヘッド、21…対物レンズ、22a…コリメートレンズ、22b…コリメートレンズ、22c…コリメートレンズ、23…レンズホルダ、24…光ファイバアレイ、30…コントローラ、31…表示部、32…設定部、33…外部I/F部、34…光ファイバ接続部、35…外部記憶部、36…計測処理部、40…光ファイバ、51…波長掃引光源、52…光増幅器、53,53a,53b…アイソレータ、54,54a,54b,54c,53d,54e,54f,54g,54h,54i,54j…光カプラ、55…減衰器、56a,56b,56c…受光素子、57a,57b,57c…増幅回路、58a,58b,58c…AD変換部、59…処理部、60…バランスディテクタ、61…補正信号生成部、71a,71b,71c,71d,71e…受光素子、72a72b,72c…増幅回路,74a,74b,74c…AD変換部、75…処理部、76…差動増幅回路、77…補正信号生成部、100,101…光干渉測距センサ、110…コントローラ、111…光分岐部、112,113…第1フォトダイオード、114,115…増幅回路、116,116,119…第2フォトダイオード、118…処理部、121…第1センサヘッド、122…第2センサヘッド、130…光ファイバケーブル、131…第1光ファイバ、132…第2光ファイバ、140…波長掃引光源、150…主干渉計、151…第1主干渉計、152…第2主干渉計、160…副干渉計、161…第1光カプラ、162…第2光カプラ、163…光ファイバ、164…光ファイバ、165…光ファイバ、171…第1補正信号生成部、172…第2補正信号生成部、173…第3補正信号生成部、181,182…AD変換部、191,192…遅延線、Lm…測定光路、Lr…参照光路、T,T1,T2…計測対象物、t1…時刻、t2…時刻、t12…遅延時間、Tsmin…サンプリング周期、vs…電圧、Δt…時間差。 1...sensor system, 10...displacement sensor, 11...control device, 12...sensor for inputting control signal, 13...external connection device, 20...sensor head, 21...objective lens, 22a...collimating lens, 22b...collimating lens, 22c...collimating lens, 23...lens holder, 24...optical fiber array, 30...controller, 31...display unit, 32...setting unit, 33...external I/F unit, 34...optical fiber connection unit, 35...external memory unit, 36...measurement processing unit, 40...optical fiber, 51...wavelength swept light source, 52...optical Amplifier, 53, 53a, 53b... isolator, 54, 54a, 54b, 54c, 53d, 54e, 54f, 54g, 54h, 54i, 54j... optical coupler, 55... attenuator, 56a, 56b, 56c... light receiving element, 57a, 57b, 57c... amplifier circuit, 58a, 58b, 58c... AD conversion unit, 59... processing unit, 60... balance detector, 61... correction signal generation unit, 71a, 71b, 71c, 71d, 71e... light receiving element, 72a 72b, 72c... amplifier circuit, 74a, 74b, 74c... AD conversion unit, 75 ...processing unit, 76...differential amplifier circuit, 77...correction signal generating unit, 100, 101...optical interference distance measuring sensor, 110...controller, 111...optical branching unit, 112, 113...first photodiode, 114, 115...amplification circuit, 116, 116, 119...second photodiode, 118...processing unit, 121...first sensor head, 122...second sensor head, 130...optical fiber cable, 131...first optical fiber, 132...second optical fiber, 140...wavelength swept light source, 150...main interferometer, 151...first main interferometer , 152...second main interferometer, 160...secondary interferometer, 161...first optical coupler, 162...second optical coupler, 163...optical fiber, 164...optical fiber, 165...optical fiber, 171...first correction signal generator, 172...second correction signal generator, 173...third correction signal generator, 181, 182...AD converter, 191, 192...delay line, Lm...measurement optical path, Lr...reference optical path, T, T1, T2...measurement object, t1...time, t2...time, t12...delay time, Tsmin...sampling period, vs...voltage, Δt...time difference.

Claims (8)

  1.  計測対象物に光を照射する第1センサヘッド及び第2センサヘッドのそれぞれに、光ファイバケーブルを介して接続されるコントローラであって、
     波長を変化させながら光を投光する光源と、
     前記光源から投光された光が供給され、前記第1センサヘッドにより前記計測対象物に照射して反射される第1測定光と、前記第1測定光とは少なくとも一部異なる光路を辿る第1参照光とに基づく第1主干渉信号を生成する第1主干渉計と、
     前記光源から投光された光が供給され、前記第2センサヘッドにより前記計測対象物に照射して反射される第2測定光と、前記第2測定光とは少なくとも一部異なる光路を辿る第2参照光とに基づく第2主干渉信号を生成する第2主干渉計と、
     前記光源から投光された光が供給され、異なる光路を辿る2つの光に基づく副干渉信号を生成する副干渉計と、を備え、
     前記光ファイバケーブルは、前記第1主干渉計に接続され、前記第1主干渉計からの光を前記第1センサヘッドに伝搬し、前記第1センサヘッドからの光を前記第1主干渉計に伝搬する第1光ファイバと、前記第2主干渉計に接続され、前記第2主干渉計からの光を前記第2センサヘッドに伝搬し、前記第2センサヘッドからの光を前記第2主干渉計に伝搬する第2光ファイバと、を含み、
     前記第2光ファイバは、前記第1光ファイバの光路長と異なる光路長を有し、
     前記コントローラは、
     前記副干渉信号に基づいて、前記第1主干渉信号のサンプリング周期を補正する第1補正信号を生成する第1補正信号生成部と、
     前記第1光ファイバの光路長と前記第2光ファイバの光路長との光路長差に基づく遅延量を生成する遅延量生成部と、
     前記副干渉信号と前記遅延量とに基づいて、前記第2主干渉信号のサンプリング周期を補正する第2補正信号を生成する第2補正信号生成部と、をさらに備える、
     コントローラ。
    a controller connected via an optical fiber cable to each of a first sensor head and a second sensor head which irradiate a measurement object with light,
    A light source that projects light while changing the wavelength;
    a first main interferometer that receives light projected from the light source, and generates a first main interference signal based on a first measurement light that is irradiated onto the measurement object by the first sensor head and reflected therefrom, and a first reference light that follows an optical path at least partially different from that of the first measurement light;
    a second main interferometer configured to receive light projected from the light source, and generate a second main interference signal based on a second measurement light that is irradiated onto the measurement object by the second sensor head and reflected therefrom, and a second reference light that follows an optical path at least partially different from that of the second measurement light;
    a sub-interferometer that receives light projected from the light source and generates a sub-interference signal based on two lights that follow different optical paths;
    the optical fiber cable includes a first optical fiber connected to the first main interferometer and transmitting light from the first main interferometer to the first sensor head and transmitting light from the first sensor head to the first main interferometer, and a second optical fiber connected to the second main interferometer and transmitting light from the second main interferometer to the second sensor head and transmitting light from the second sensor head to the second main interferometer,
    the second optical fiber has an optical path length different from an optical path length of the first optical fiber;
    The controller:
    a first correction signal generator that generates a first correction signal for correcting a sampling period of the first main interference signal based on the secondary interference signal;
    a delay amount generating unit that generates a delay amount based on an optical path length difference between an optical path length of the first optical fiber and an optical path length of the second optical fiber;
    and a second correction signal generating unit configured to generate a second correction signal for correcting a sampling period of the second main interference signal based on the sub interference signal and the delay amount.
    controller.
  2.  前記遅延量生成部は、前記副干渉信号を伝搬し、前記光路長差に基づく光路長を有する第3光ファイバを含む、
     請求項1に記載のコントローラ。
    The delay amount generating unit includes a third optical fiber that propagates the sub interference signal and has an optical path length based on the optical path length difference.
    The controller of claim 1 .
  3.  前記遅延量生成部は、前記副干渉信号を電気信号に変換させた副干渉計信号において、時間軸方向に前記遅延量に応じた遅延を発生させて前記第2補正信号生成部に出力する遅延線を含む、
     請求項1に記載のコントローラ。
    The delay amount generating unit includes a delay line that generates a delay according to the delay amount in a time axis direction in a sub-interferometer signal obtained by converting the sub-interference signal into an electrical signal and outputs the delay to the second correction signal generating unit.
    The controller of claim 1 .
  4.  前記第2補正信号生成部は、副干渉信号を電気信号に変換させた副干渉計信号において、時間軸方向に前記遅延量に応じた遅延を発生させた信号に基づいて、前記第2補正信号であるパルス信号を生成する、
     請求項1に記載のコントローラ。
    The second correction signal generating unit generates a pulse signal, which is the second correction signal, based on a signal in which a delay corresponding to the delay amount is generated in a time axis direction in a sub-interferometer signal obtained by converting the sub-interference signal into an electrical signal.
    The controller of claim 1 .
  5.  前記第2主干渉信号を電気信号に変換させた第2主干渉計信号を、前記第2補正信号に基づいてサンプリングしてデジタル信号に変換するAD変換部をさらに備える、
     請求項1に記載のコントローラ。
    an AD converter configured to convert the second main interference signal into an electrical signal, and to sample the electrical signal based on the second correction signal to convert the electrical signal into a digital signal;
    The controller of claim 1 .
  6.  前記遅延量は、前記光路長差による光の遅延時間との差の絶対値が、前記AD変換部における最小のサンプリング周期よりも小さくなるように設定される、
     請求項5に記載のコントローラ。
    the delay amount is set so that an absolute value of a difference between the delay time of the light due to the optical path length difference is smaller than a minimum sampling period in the AD conversion unit.
    The controller of claim 5 .
  7.  前記第1主干渉信号及び前記第2主干渉信号のうちの少なくとも1つと前記副干渉信号とに基づいて、前記計測対象物までの距離を計測する処理部をさらに備える、
     請求項1に記載のコントローラ。
    Further comprising a processing unit that measures a distance to the measurement object based on at least one of the first main interference signal and the second main interference signal and the sub-interference signal.
    The controller of claim 1 .
  8.  コントローラと、該コントローラに接続される光ファイバケーブルとを含む光干渉測距センサであって、
     前記コントローラは、
     波長を変化させながら光を投光する光源と、
     前記光源から投光された光が供給され、第1センサヘッドにより計測対象物に照射して反射される第1測定光と、前記第1測定光とは少なくとも一部異なる光路を辿る第1参照光とに基づく第1主干渉信号を生成する第1主干渉計と、
     前記光源から投光された光が供給され、第2センサヘッドにより前記計測対象物に照射して反射される第2測定光と、前記第2測定光とは少なくとも一部異なる光路を辿る第2参照光とに基づく第2主干渉信号を生成する第2主干渉計と、
     前記光源から投光された光が供給され、異なる光路を辿る2つの光に基づく副干渉信号を生成する副干渉計と、を備え、
     前記光ファイバケーブルは、前記第1主干渉計に接続され、前記第1主干渉計からの光を前記第1センサヘッドに伝搬し、前記第1センサヘッドからの光を前記第1主干渉計に伝搬する第1光ファイバと、前記第2主干渉計に接続され、前記第2主干渉計からの光を前記第2センサヘッドに伝搬し、前記第2センサヘッドからの光を前記第2主干渉計に伝搬する第2光ファイバと、を含み、
     前記第2光ファイバは、前記第1光ファイバの光路長と異なる光路長を有し、
     前記コントローラは、
     前記副干渉信号に基づいて、前記第1主干渉信号のサンプリング周期を補正する第1補正信号を生成する第1補正信号生成部と、
     前記第1光ファイバの光路長と前記第2光ファイバの光路長との光路長差に基づく遅延量を生成する遅延量生成部と、
     前記副干渉信号と前記遅延量とに基づいて、前記第2主干渉信号のサンプリング周期を補正する第2補正信号を生成する第2補正信号生成部と、をさらに備える、
     光干渉測距センサ。
    An optical interferometric distance measuring sensor including a controller and a fiber optic cable connected to the controller,
    The controller:
    A light source that projects light while changing the wavelength;
    a first main interferometer configured to generate a first main interference signal based on a first measurement light that is supplied with light projected from the light source and is irradiated onto a measurement object by a first sensor head and reflected therefrom, and a first reference light that follows an optical path at least partially different from that of the first measurement light;
    a second main interferometer configured to receive light projected from the light source, and generate a second main interference signal based on a second measurement light that is irradiated onto the measurement object by a second sensor head and reflected by the second sensor head, and a second reference light that follows an optical path at least partially different from that of the second measurement light;
    a sub-interferometer that receives light projected from the light source and generates a sub-interference signal based on two lights that follow different optical paths;
    the optical fiber cable includes a first optical fiber connected to the first main interferometer and transmitting light from the first main interferometer to the first sensor head and transmitting light from the first sensor head to the first main interferometer, and a second optical fiber connected to the second main interferometer and transmitting light from the second main interferometer to the second sensor head and transmitting light from the second sensor head to the second main interferometer,
    the second optical fiber has an optical path length different from an optical path length of the first optical fiber;
    The controller:
    a first correction signal generator that generates a first correction signal for correcting a sampling period of the first main interference signal based on the secondary interference signal;
    a delay amount generating unit that generates a delay amount based on an optical path length difference between an optical path length of the first optical fiber and an optical path length of the second optical fiber;
    and a second correction signal generating unit configured to generate a second correction signal for correcting a sampling period of the second main interference signal based on the sub interference signal and the delay amount.
    Optical interferometric distance sensor.
PCT/JP2023/031329 2022-09-28 2023-08-29 Controller and optical interferometric ranging sensor WO2024070430A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-154714 2022-09-28
JP2022154714A JP2024048669A (en) 2022-09-28 2022-09-28 Controller and optical interference distance measuring sensor

Publications (1)

Publication Number Publication Date
WO2024070430A1 true WO2024070430A1 (en) 2024-04-04

Family

ID=90477129

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/031329 WO2024070430A1 (en) 2022-09-28 2023-08-29 Controller and optical interferometric ranging sensor

Country Status (2)

Country Link
JP (1) JP2024048669A (en)
WO (1) WO2024070430A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012198230A (en) * 2006-01-23 2012-10-18 Zygo Corp Interferometer system to monitor object
JP2017181115A (en) * 2016-03-28 2017-10-05 アンリツ株式会社 Optical frequency domain reflection measurement device and optical frequency domain reflection measurement method
JP2021143995A (en) * 2020-03-13 2021-09-24 オムロン株式会社 Optical interference measuring device
JP2021143938A (en) * 2020-03-12 2021-09-24 オムロン株式会社 Optical interference measuring device
US20210356249A1 (en) * 2020-05-13 2021-11-18 Eric Swanson Integrated Photonic Chip with Coherent Receiver and Variable Optical Delay for Imaging, Sensing, and Ranging Applications
JP2023132738A (en) * 2022-03-11 2023-09-22 オムロン株式会社 Optical interferometric range sensor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012198230A (en) * 2006-01-23 2012-10-18 Zygo Corp Interferometer system to monitor object
JP2017181115A (en) * 2016-03-28 2017-10-05 アンリツ株式会社 Optical frequency domain reflection measurement device and optical frequency domain reflection measurement method
JP2021143938A (en) * 2020-03-12 2021-09-24 オムロン株式会社 Optical interference measuring device
JP2021143995A (en) * 2020-03-13 2021-09-24 オムロン株式会社 Optical interference measuring device
US20210356249A1 (en) * 2020-05-13 2021-11-18 Eric Swanson Integrated Photonic Chip with Coherent Receiver and Variable Optical Delay for Imaging, Sensing, and Ranging Applications
JP2023132738A (en) * 2022-03-11 2023-09-22 オムロン株式会社 Optical interferometric range sensor

Also Published As

Publication number Publication date
JP2024048669A (en) 2024-04-09

Similar Documents

Publication Publication Date Title
JP5752040B2 (en) Compact optical fiber arrangement for anti-chirp FMCW coherent laser radar
EP4242579B1 (en) Optical interferometric range sensor
WO2024070430A1 (en) Controller and optical interferometric ranging sensor
WO2024070443A1 (en) Controller and optical interferometric range sensor
WO2024070336A1 (en) Optical fiber cable, controller connected to same, and optical interferometric range sensor in which optical fiber cable and controller are used
US20210286055A1 (en) Optical interference measurement apparatus
WO2024048103A1 (en) Optical interferometric ranging sensor
WO2024070358A1 (en) Optical fiber cable, controller connected thereto, and optical interference ranging sensor using same
US20230288561A1 (en) Optical interferometric range sensor
JP2023042778A (en) Light interference distance measuring sensor
US20230288562A1 (en) Optical interferometric range sensor
JP2024033725A (en) Light interference ranging sensor
JP2023042844A (en) Light interference distance measuring sensor
JP2023132668A (en) Optical interferometric range sensor
US20230084723A1 (en) Optical interference range sensor
JP2023132701A (en) Light interference ranging sensor
US20230079837A1 (en) Optical interference range sensor
JP5542255B2 (en) Optical fiber length expansion / contraction measurement and correction method and apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23871671

Country of ref document: EP

Kind code of ref document: A1