WO2024070358A1 - Optical fiber cable, controller connected thereto, and optical interference ranging sensor using same - Google Patents

Optical fiber cable, controller connected thereto, and optical interference ranging sensor using same Download PDF

Info

Publication number
WO2024070358A1
WO2024070358A1 PCT/JP2023/030496 JP2023030496W WO2024070358A1 WO 2024070358 A1 WO2024070358 A1 WO 2024070358A1 JP 2023030496 W JP2023030496 W JP 2023030496W WO 2024070358 A1 WO2024070358 A1 WO 2024070358A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical fiber
optical
measurement
measurement object
Prior art date
Application number
PCT/JP2023/030496
Other languages
French (fr)
Japanese (ja)
Inventor
雅之 早川
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Publication of WO2024070358A1 publication Critical patent/WO2024070358A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02001Interferometers characterised by controlling or generating intrinsic radiation properties
    • G01B9/02002Interferometers characterised by controlling or generating intrinsic radiation properties using two or more frequencies
    • G01B9/02004Interferometers characterised by controlling or generating intrinsic radiation properties using two or more frequencies using frequency scans
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/02Details
    • G01C3/06Use of electric means to obtain final indication
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/32Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S17/34Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal

Definitions

  • the present invention relates to an optical fiber cable, a controller connected to the cable, and an optical interferometric distance sensor using the cable and the controller.
  • optical distance measuring sensors that measure the distance to a measurement object without contact have become widespread.
  • an optical interferometric distance measuring sensor that generates interference light based on a reference light and a measurement light from light projected from a wavelength swept light source, and measures the distance to the measurement object based on the interference light.
  • Patent Document 1 discloses an optical coherence tomography imaging device that includes a light beam controller, a splitting means for splitting a plurality of light beams from the light beam controller into object light and reference light, an irradiating means for irradiating a measurement object with the plurality of object light beams, and an interference means for causing interference between the object light scattered from the measurement object and the reference light and guiding them to a light receiver.
  • a configuration may be adopted in which the measurement light is guided through a fiber optic cable connecting the controller and the sensor head.
  • the optical path length difference between the measurement light and the reference light may deviate from the initial setting, making it difficult to adjust the length of the fiber optic cable according to the measurement environment.
  • the present invention aims to provide an optical fiber cable whose length can be easily adjusted according to the measurement environment, a controller connected to the cable, and an optical interferometric distance measuring sensor using the cable and the controller.
  • the optical fiber cable is an optical fiber cable used in an optical interference distance measuring sensor having a light source unit that supplies light while sweeping the wavelength at a constant cycle, a light splitting means that splits the light supplied from the light source unit into measurement light and reference light, a combining means that combines the reference light and reflected light from the measurement object when the measurement light split by the light splitting means is irradiated onto the measurement object, an interference light detection means that detects interference light between the reflected light and the reference light combined by the combining means, and a distance calculation means that calculates the distance to the measurement object by performing frequency analysis on the interference light detected by the interference light detection means, and has a first optical fiber that guides at least a portion of the light supplied from the light source unit and the measurement light split by the splitting means, and a second optical fiber that guides at least a portion of the light supplied from the light source unit and the reference light split by the splitting means.
  • the optical fiber cable has a first optical fiber that guides at least a portion of the light supplied from the light source unit and the measurement light split by the splitting means, and a second optical fiber that guides at least a portion of the light supplied from the light source unit and the reference light split by the splitting means. Therefore, both the measurement light and the reference light are guided within the optical fiber cable, or the light before being split into the measurement light and the reference light is guided, so that the setting of the optical path length difference between the measurement light and the reference light does not change even when the optical fiber cable is replaced. Therefore, it is possible to easily adjust the length of the optical fiber cable according to the measurement environment.
  • the first optical fiber may include an optical path for the measurement light
  • the second optical fiber may include an optical path for the reference light
  • both the measurement light and the reference light are guided within the optical fiber cable, so the setting of the optical path length difference between the measurement light and the reference light does not change even when the optical fiber cable is replaced, and therefore the length of the optical fiber cable can be easily adjusted according to the measurement environment.
  • the second optical fiber may be the first optical fiber.
  • the above embodiment may further include a light splitting means.
  • This aspect improves the design freedom of the optical fiber cable.
  • the above embodiment may further include a reference surface that reflects the reference light.
  • This aspect improves the design freedom of the optical fiber cable.
  • a controller includes a light source unit that supplies light while sweeping the wavelength at a constant cycle, a light splitting means that splits the light supplied from the light source unit into measurement light and reference light, a combining means that combines the reference light and reflected light from the measurement object when the measurement light split by the light splitting means is irradiated onto the measurement object, an interference light detection means that detects interference light between the reflected light and the reference light combined by the combining means, and a distance calculation means that calculates the distance to the measurement object by performing frequency analysis on the interference light detected by the interference light detection means, and includes a first connection part that is connected to a first optical fiber that guides at least a portion of the light supplied from the light source unit and the measurement light split by the splitting means, and a second connection part that is connected to a second optical fiber that guides at least a portion of the light supplied from the light source unit and the reference light split by the splitting means.
  • the optical fiber cable has a first optical fiber that guides at least a portion of the light supplied from the light source unit and the measurement light split by the splitting means, and a second optical fiber that guides at least a portion of the light supplied from the light source unit and the reference light split by the splitting means. Therefore, both the measurement light and the reference light are guided within the optical fiber cable, or the light before being split into the measurement light and the reference light is guided, so that the setting of the optical path length difference between the measurement light and the reference light does not change even when the optical fiber cable is replaced. Therefore, it is possible to easily adjust the length of the optical fiber cable according to the measurement environment.
  • the optical interferometric distance measuring sensor is an optical interferometric distance measuring sensor having an optical fiber cable and a controller, the controller having a light source unit that supplies light while sweeping the wavelength at a constant cycle, an optical splitting means that splits the light supplied from the light source unit into measurement light and reference light, a combining means that combines the reference light and reflected light from the measurement object when the measurement light split by the optical splitting means is irradiated onto the measurement object, an interference light detection means that detects interference light between the reflected light and the reference light combined by the combining means, and a distance calculation means that calculates the distance to the measurement object by performing frequency analysis on the interference light detected by the interference light detection means, and the optical fiber cable has a first optical fiber that guides at least a part of the light supplied from the light source unit and the measurement light split by the splitting means, and a second optical fiber that guides at least a part of the light supplied from the light source unit and the reference light split by the splitting means.
  • the optical fiber cable has a first optical fiber that guides at least a portion of the light supplied from the light source unit and the measurement light split by the splitting means, and a second optical fiber that guides at least a portion of the light supplied from the light source unit and the reference light split by the splitting means. Therefore, both the measurement light and the reference light are guided within the optical fiber cable, or the light before being split into the measurement light and the reference light is guided, so that the setting of the optical path length difference between the measurement light and the reference light does not change even when the optical fiber cable is replaced. Therefore, it is possible to easily adjust the length of the optical fiber cable according to the measurement environment.
  • the optical fiber cable may further include a reference surface that reflects the reference light.
  • This aspect improves the design freedom of the optical fiber cable.
  • the present invention provides an optical fiber cable capable of connecting an appropriate second optical fiber to a secondary interferometer in correspondence with a first optical fiber connected to a primary interferometer, a controller connected thereto, and an optical interferometric distance sensor using the same.
  • 1 is a schematic external view showing an overview of a displacement sensor 10 according to the present disclosure.
  • 5 is a flowchart showing a procedure for measuring a measurement object T by the displacement sensor 10 according to the present disclosure.
  • 1 is a functional block diagram showing an overview of a sensor system 1 in which a displacement sensor 10 according to the present disclosure is used.
  • 1 is a flowchart showing a procedure for measuring a measurement object T by a sensor system 1 in which a displacement sensor 10 according to the present disclosure is used.
  • 1 is a diagram for explaining the principle by which a measurement object T is measured by a displacement sensor 10 according to the present disclosure.
  • 11A and 11B are diagrams for explaining another principle by which the measurement object T is measured by the displacement sensor 10 according to the present disclosure.
  • FIG. 2 is a perspective view showing a schematic configuration of a sensor head 20.
  • 2 is a schematic diagram showing the internal structure of a sensor head 20.
  • FIG. FIG. 2 is a block diagram for explaining signal processing in a controller 30.
  • 10 is a flowchart showing a method for calculating a distance to a measurement object T, which is executed by a processing unit 59 in the controller 30.
  • 1 is a diagram showing how a waveform signal (voltage vs. time) is frequency-converted into a spectrum (voltage vs. frequency).
  • FIG. 13 is a diagram showing how a spectrum (voltage vs. frequency) is distance-transformed into a spectrum (voltage vs. distance).
  • FIG. 13 is a diagram showing how a peak is detected based on a spectrum (voltage vs. distance) and a corresponding distance value is calculated.
  • FIG. 1 is a schematic diagram showing an example of the configuration of an optical fiber cable.
  • FIG. 1 is a schematic diagram showing an example of the configuration of an optical fiber cable.
  • FIG. 1 is a schematic diagram showing an example of the configuration of an optical fiber cable.
  • FIG. 1 is a schematic diagram showing an example of the configuration of an optical fiber cable.
  • FIG. 1 is a schematic diagram showing an example of the configuration of an optical fiber cable.
  • FIG. 1 is a schematic diagram showing an example of the configuration of an optical fiber cable.
  • FIG. 1 is a schematic diagram showing an example of the configuration of an optical fiber cable.
  • FIG. 1 is a schematic diagram showing an example of the configuration of an optical fiber cable.
  • 11A and 11B are diagrams for explaining modified examples of optical fiber cables.
  • 11A and 11B are diagrams for explaining modified examples of optical fiber cables.
  • Fig. 1 is a schematic external view showing an overview of a displacement sensor 10 according to the present disclosure.
  • the displacement sensor 10 includes a sensor head 20 and a controller 30, and measures the displacement of a measurement object T (the distance to the measurement object T).
  • the sensor head 20 and the controller 30 are connected by an optical fiber cable 40, and an objective lens 21 is attached to the sensor head 20.
  • the controller 30 also includes a display unit 31, a setting unit 32, an external interface (I/F) unit 33, an optical fiber connection unit 34, and an external memory unit 35, and further includes a measurement processing unit 36 inside.
  • the sensor head 20 irradiates the light output from the controller 30 onto the measurement object T and receives the reflected light from the measurement object T.
  • the sensor head 20 has an internal reference surface that reflects the light output from the controller 30 and received via the optical fiber cable 40 and causes it to interfere with the reflected light from the measurement object T described above.
  • the objective lens 21 is attached to the sensor head 20, but the objective lens 21 is configured to be removable.
  • the objective lens 21 can be replaced with an objective lens having an appropriate focal length depending on the distance between the sensor head 20 and the measurement target T, or a variable-focus objective lens may be used.
  • guide light visible light
  • the sensor head 20 and/or the measurement object T may be installed so that the measurement object T is appropriately positioned within the measurement area of the displacement sensor 10.
  • the optical fiber cable 40 is connected to and extends from the optical fiber cable connection section 34 disposed in the controller 30, and connects the controller 30 and the sensor head 20.
  • the optical fiber cable 40 may include at least one optical fiber 41P that guides the reference light and at least one optical fiber 42P that guides the measurement light.
  • the optical fiber cable 40 is configured to guide the light projected from the controller 30 to the sensor head 20 via the optical fiber 42P, and further guide the return light from the sensor head 20 to the controller 30 via the optical fiber 42P.
  • the optical fiber cable 40 is detachable from the sensor head 20 and the controller 30, and various optical fiber cables can be applied in terms of length, thickness, characteristics, etc.
  • the optical fiber cable 40 may be configured as a single core in which one core is formed in one clad, or as a multi-core in which multiple cores are formed in one clad. In the case of a multi-core, the distance between the multiple optical paths is short, so that it is possible to suppress the fluctuation of the measurement optical path and the reference optical path due to bending applied to the optical fiber cable 40 or temperature fluctuation.
  • the display unit 31 is configured, for example, with a liquid crystal display or an organic EL display.
  • the display unit 31 displays the set value of the displacement sensor 10, the amount of returned light received from the sensor head 20, and the measurement results such as the displacement of the measurement object T measured by the displacement sensor 10 (the distance to the measurement object T).
  • the setting unit 32 performs the settings necessary for measuring the measurement target T, for example, by the user operating a mechanical button, a touch panel, or the like. All or part of these necessary settings may be set in advance, or may be set from an external connection device (not shown) connected to the external I/F unit 33. In addition, the external connection device may be connected via a network in a wired or wireless manner.
  • the external I/F unit 33 is composed of, for example, Ethernet (registered trademark), RS232C, and analog output.
  • the external I/F unit 33 may be connected to another connected device to allow necessary settings to be made from the external connected device, or may output the measurement results, etc., measured by the displacement sensor 10 to the external connected device.
  • the controller 30 may import data stored in the external memory unit 35 to perform settings required for measuring the measurement object T.
  • the external memory unit 35 is, for example, an auxiliary storage device such as a USB (Universal Serial Bus) memory, and stores in advance settings required for measuring the measurement object T.
  • USB Universal Serial Bus
  • the measurement processing unit 36 in the controller 30 includes, for example, a wavelength swept light source that emits light while continuously changing the wavelength, a light receiving element that receives the return light from the sensor head 20 and converts it into an electrical signal, and a signal processing circuit that processes the electrical signal.
  • various processes are performed using a control unit, a memory unit, etc. based on the return light from the sensor head 20 so that the displacement of the measurement object T (the distance to the measurement object T) is ultimately calculated. Details of these processes will be described later.
  • FIG. 2 is a flowchart showing the procedure for measuring the measurement object T by the displacement sensor 10 according to the present disclosure. As shown in FIG. 2, the procedure includes steps S11 to S14.
  • step S11 the sensor head 20 is installed.
  • guide light is irradiated from the sensor head 20 onto the measurement target T, and the sensor head 20 is installed in an appropriate position based on the guide light.
  • the amount of light received from the sensor head 20 is displayed on the display unit 31 of the controller 30, and the user may adjust the orientation of the sensor head 20 and the distance (height position) from the measurement object T while checking the amount of light received. Basically, if the light from the sensor head 20 can be irradiated perpendicularly (at an angle closer to perpendicular) to the measurement object T, the amount of light reflected from the measurement object T will be large, and the amount of light received from the sensor head 20 will also be large.
  • the objective lens 21 may be replaced with one having an appropriate focal length depending on the distance between the sensor head 20 and the measurement object T.
  • an error or incomplete settings may be displayed on the display unit 31 or output to an externally connected device to notify the user.
  • step S12 various measurement conditions are set when measuring the measurement object T.
  • the user sets the inherent calibration data (such as a function that corrects linearity) of the sensor head 20 by operating the setting unit 32 in the controller 30.
  • the sampling time, the measurement range, and a threshold for determining whether the measurement result is normal or abnormal may be set.
  • the measurement period may be set according to the characteristics of the measurement object T, such as the reflectance and material of the measurement object T, and a measurement mode may be set according to the material of the measurement object T.
  • step S13 the sensor head 20 installed in step S11 measures the measurement object T according to the measurement conditions and various parameters set in step S12.
  • the measurement processing unit 36 of the controller 30 light is projected from the wavelength swept light source, the light returning from the sensor head 20 is received by a light receiving element, and the signal processing circuit performs frequency analysis, distance conversion, peak detection, etc., to calculate the displacement of the measurement object T (the distance to the measurement object T). Specific details of the measurement process will be described later.
  • step S14 the measurement results obtained in step S13 are output.
  • the displacement of the measurement object T (distance to the measurement object T) measured in step S13 is displayed on the display unit 31 in the controller 30, or output to an externally connected device.
  • the displacement of the measurement object T (distance to the measurement object T) measured in step S13 may be displayed or output as a measurement result as to whether it is within a normal range or abnormal based on the threshold value set in step S12.
  • the measurement conditions, various parameters, measurement mode, etc. set in step S12 may also be displayed or output.
  • FIG. 3 is a functional block diagram showing an overview of a sensor system 1 in which a displacement sensor 10 according to the present disclosure is used.
  • the sensor system 1 includes the displacement sensor 10, a control device 11, a control signal input sensor 12, and an external connection device 13.
  • the displacement sensor 10 is connected to the control device 11 and the external connection device 13 by, for example, a communication cable or an external connection cord (including, for example, an external input line, an external output line, a power line, etc.), and the control device 11 and the control signal input sensor 12 are connected by a signal line.
  • the displacement sensor 10 measures the displacement of the measurement object T (the distance to the measurement object T). The displacement sensor 10 may then output the measurement results, etc. to the control device 11 and the externally connected device 13.
  • the control device 11 is, for example, a PLC (Programmable Logic Controller), and provides various instructions to the displacement sensor 10 when the displacement sensor 10 measures the measurement object T.
  • PLC Programmable Logic Controller
  • control device 11 may output a measurement timing signal to the displacement sensor 10 based on an input signal from a control signal input sensor 12 connected to the control device 11, or may output a zero reset command signal (a signal for setting the current measurement value to 0) or the like to the displacement sensor 10.
  • the control signal input sensor 12 outputs an on/off signal to the control device 11, which indicates the timing for the displacement sensor 10 to measure the measurement object T.
  • the control signal input sensor 12 may be installed near a production line along which the measurement object T moves, and upon detecting that the measurement object T has moved to a predetermined position, output an on/off signal to the control device 11.
  • the external connection device 13 is, for example, a PC (Personal Computer), and the user can operate it to configure various settings for the displacement sensor 10.
  • PC Personal Computer
  • Specific examples include the measurement mode, operation mode, measurement period, and the material of the measurement object T.
  • an "internal synchronous measurement mode” in which measurement is started periodically within the control device 11, or an “external synchronous measurement mode” in which measurement is started in response to an input signal from outside the control device 11, etc. can be selected.
  • an “operation mode” for actually measuring the measurement object T, or an “adjustment mode” for setting the measurement conditions for measuring the measurement object T, etc. can be selected.
  • the measurement period is the period for measuring the measurement object T, and may be set according to the reflectance of the measurement object T. Even if the reflectance of the measurement object T is low, the measurement object T can be properly measured by lengthening the measurement period and setting it appropriately.
  • the "rough surface mode” is selected when the reflected light component is relatively high in diffuse reflection
  • the "mirror surface mode” is selected when the reflected light component is relatively high in specular reflection
  • the "standard mode” is selected as an intermediate mode between the two.
  • FIG. 4 is a flowchart showing the procedure for measuring a measurement object T by a sensor system 1 in which a displacement sensor 10 according to the present disclosure is used. As shown in FIG. 4, the procedure is for the external synchronization measurement mode described above, and includes steps S21 to S24.
  • step S21 the sensor system 1 detects the measurement object T, which is the object to be measured. Specifically, the control signal input sensor 12 detects that the measurement object T has moved to a predetermined position on the production line.
  • step S22 the sensor system 1 issues a measurement instruction to have the displacement sensor 10 measure the measurement object T detected in step S21.
  • the control signal input sensor 12 outputs an on/off signal to the control device 11 to instruct the timing of measuring the measurement object T detected in step S21
  • the control device 11 outputs a measurement timing signal to the displacement sensor 10 based on the on/off signal to instruct the displacement sensor 10 to measure the measurement object T.
  • step S23 the measurement object T is measured by the displacement sensor 10. Specifically, the displacement sensor 10 measures the measurement object T based on the measurement instruction received in step S22.
  • step S24 the sensor system 1 outputs the measurement results obtained in step S23.
  • the displacement sensor 10 displays the results of the measurement process on the display unit 31, or outputs the results to the control device 11 or the externally connected device 13 via the external I/F unit 33.
  • FIG. 4 has been used to explain the procedure for the external synchronous measurement mode in which the measurement object T is measured by the control signal input sensor 12 detecting the measurement object T
  • the procedure is not limited to this.
  • a measurement timing signal is generated based on a preset cycle to instruct the displacement sensor 10 to measure the measurement object T.
  • the displacement sensor 10 includes a sensor head 20, an optical fiber cable 40, and a controller 30.
  • the sensor head 20 includes an objective lens 21 and a plurality of collimator lenses 22a to 22c
  • the controller 30 includes a wavelength swept light source 51, an optical amplifier 52, a plurality of isolators 53 and 53a to 53b, a plurality of optical couplers 54 and 54a to 54e, an attenuator 55, a plurality of light receiving elements (e.g., photodetectors (PD)) 56a to 56c, a plurality of amplifier circuits 57a to 57c, a plurality of analog-to-digital (AD) conversion units (e.g., analog-to-digital converters) 58a to 58c, a processing unit (e.g., a processor) 59, a balance detector 60, and a correction signal generating unit 61.
  • the optical fiber cable 40 includes optical fibers 41Pa to 41Pc and optical fibers 42Pa to 42Pc.
  • the wavelength swept light source 51 emits a laser beam with a swept wavelength.
  • a VCSEL Very Cavity Surface Emitting Laser
  • mode hopping is unlikely to occur due to the short resonator length, the wavelength can be easily changed, and it can be realized at low cost.
  • the optical amplifier 52 amplifies the light emitted from the wavelength swept light source 51.
  • the optical amplifier 52 may be, for example, an erbium-doped fiber amplifier (EDFA), and may be, for example, an optical amplifier dedicated to 1550 nm.
  • EDFA erbium-doped fiber amplifier
  • the isolator 53 is an optical element that transmits incident light in one direction, and may be placed immediately after the wavelength swept light source 51 to prevent the effects of noise caused by returned light.
  • the light emitted from the wavelength swept light source 51 is amplified by the optical amplifier 52, passes through the isolator 53, and is branched by the optical coupler 54 to the main interferometer and the sub interferometer.
  • the optical coupler 54 may be configured so that the proportion of light branched to the main interferometer and the sub interferometer is 90% or more on the main interferometer side.
  • the light branched off to the main interferometer is further branched by the first-stage optical coupler 54a in the direction of the sensor head 20 and in the direction of the second-stage optical coupler 54b.
  • the light branched by the first-stage optical coupler 54a toward the sensor head 20 is branched by the optical coupler 62a toward the first-stage optical fiber 41Pa and optical fiber 42Pa of the optical fiber cable 40.
  • the light branched toward the optical fiber 41Pa becomes reference light
  • the light branched toward the optical fiber 42Pa becomes measurement light. That is, the reference light incident on the optical fiber 41Pa from the end 41Ia is guided inside the optical fiber 41Pa, reflected by the reference surface 41Ra, guided inside the optical fiber 41Pa toward the end 41Ia, and supplied from the end 41Ia to the optical coupler 62a.
  • the measurement light incident on the optical fiber 42Pa from the end 42Ia is guided inside the optical fiber 42Pa and enters the optical fiber in the sensor head 20 from the end 42Oa, and in the sensor head 20, passes through the collimator lens 22a and the objective lens 21 to be irradiated to the measurement object T.
  • the measurement light reflected by the measurement object T enters the end 42Oa of the optical fiber 42Pa via the sensor head 20, is guided through the optical fiber 42Pa, and is supplied from the end 42Ia to the optical coupler 62a.
  • the reference light supplied from the end 41Ia of the optical fiber cable 40 and the measurement light supplied from the end 42Ia of the optical fiber cable 40 interfere with each other in the optical coupler 62a, generating interference light, at least a portion of which is supplied to the light receiving element 56a.
  • the interference light received by the light receiving element 56a is converted into an electrical signal.
  • the light branched by the first-stage optical coupler 54a toward the second-stage optical coupler 54b passes through the isolator 53a and travels to the second-stage optical coupler 54b, which then branches it further toward the sensor head 20 and the third-stage optical coupler 54c.
  • the light branched from the optical coupler 54b toward the sensor head 20 is branched by the optical coupler 62b toward the second-stage optical fiber 41Pb and optical fiber 42Pb of the optical fiber cable 40, as in the first stage.
  • the light branched toward the optical fiber 41Pb becomes the reference light
  • the light branched toward the optical fiber 42Pb becomes the measurement light.
  • the reference light incident on the optical fiber 41Pb from the end 41Ib is guided through the optical fiber 41Pb, reflected by the reference surface 41Rb, guided through the optical fiber 41Pb toward the end 41Ib, and supplied from the end 41Ib to the optical coupler 62b.
  • the measurement light incident on the optical fiber 42Pb from the end 42Ib is guided through the optical fiber 42Pb and enters the optical fiber in the sensor head 20 from the end 42Ob, and passes through the collimator lens 22b and the objective lens 21 in the sensor head 20 to be irradiated onto the measurement object T.
  • the measurement light reflected by the measurement object T enters the end 42Ob of the optical fiber 42Pb via the sensor head 20, is guided through the optical fiber 42Pb, and is supplied from the end 42Ib to the optical coupler 62b.
  • the reference light supplied from the end 41Ib of the optical fiber cable 40 and the measurement light supplied from the end 42Ib of the optical fiber cable 40 interfere with each other in the optical coupler 62b, generating interference light, and at least a part of the interference light is supplied to the light receiving element 56b.
  • the interference light received by the light receiving element 56b is converted into an electrical signal.
  • the light branched by the second-stage optical coupler 54b toward the third-stage optical coupler 54c travels through the isolator 53b to the third-stage optical coupler 54c, which further branches it toward the sensor head 20 and the attenuator 55.
  • the light branched from the optical coupler 54c toward the sensor head 20 is branched by the optical coupler 62c toward the optical fiber 41Pc and optical fiber 42Pc of the third stage of the optical fiber cable 40, as in the first and second stages.
  • the light branched toward the optical fiber 41Pc becomes the reference light
  • the light branched toward the optical fiber 42Pc becomes the measurement light.
  • the reference light incident on the optical fiber 41Pc from the end 41Ic is guided through the optical fiber 41Pc, reflected by the reference surface 41Rc, guided through the optical fiber 41Pc toward the end 41Ic, and supplied from the end 41Ic to the optical coupler 62c.
  • the measurement light incident on the optical fiber 42Pc from the end 42Ic is guided through the optical fiber 42Pc and enters the optical fiber in the sensor head 20 from the end 42Oc, and passes through the collimator lens 22c and the objective lens 21 in the sensor head 20 to be irradiated onto the measurement object T.
  • the measurement light reflected by the measurement object T enters the end 42Oc of the optical fiber 42Pc via the sensor head 20, is guided through the optical fiber 42Pc, and is supplied from the end 42Ic to the optical coupler 62c.
  • the reference light supplied from the end 41Ic of the optical fiber cable 40 and the measurement light supplied from the end 42Ic of the optical fiber cable 40 interfere with each other in the optical coupler 62c, generating interference light, and at least a part of the interference light is supplied to the light receiving element 56c.
  • the interference light received by the light receiving element 56c is converted into an electrical signal.
  • the light branched off by the third-stage optical coupler 54c in a direction other than the sensor head 20 is not used to measure the measurement object T, it is advisable to attenuate it by an attenuator 55 such as a terminator so that it is not reflected back.
  • the main interferometer has three optical paths (three channels), each with an optical path length difference of twice the distance (round trip) from the tip (end face) of the optical fiber of the sensor head 20 to the measurement object T, and generates three interference lights according to the optical path length difference.
  • the light receiving elements 56a to 56c receive the interference light from the main interferometer as described above and generate an electrical signal according to the amount of light received.
  • the amplifier circuits 57a to 57c amplify the electrical signals output from the light receiving elements 56a to 56c, respectively.
  • the AD conversion units 58a to 58c receive the electrical signals amplified by the amplifier circuits 57a to 57c, respectively, and convert the electrical signals from analog to digital (AD conversion).
  • the AD conversion units 58a to 58c perform AD conversion based on the correction signal from the correction signal generation unit 61 in the sub-interferometer.
  • the secondary interferometer acquires an interference signal and generates a correction signal called a K clock.
  • the light branched off to the sub-interferometer by optical coupler 54 is further branched off by optical coupler 54d.
  • the optical paths of the branched lights are configured to have an optical path length difference, for example, by using optical fibers of different lengths between optical couplers 54d and 54e, and interference light according to the optical path length difference is output from optical coupler 54e.
  • the balanced detector 60 receives the interference light from optical coupler 54e and amplifies the optical signal and converts it into an electrical signal while removing noise by taking the difference with the opposite phase signal.
  • optical coupler 54d and optical coupler 54e each need to split light in a 50:50 ratio.
  • the correction signal generator 61 determines the nonlinearity of the wavelength when the wavelength swept light source 51 is swept based on the electrical signal from the balance detector 60, generates a K clock according to the nonlinearity, and outputs it to the AD converters 58a to 58c.
  • the intervals between the waves of the analog signals input to the AD converters 58a to 58c in the main interferometer are not equal.
  • the sampling time is corrected based on the K clock described above and AD conversion (sampling) is performed so that the intervals between the waves become equal.
  • the K clock is a correction signal used to sample the analog signal of the main interferometer, and therefore needs to be generated at a higher frequency than the analog signal of the main interferometer.
  • the optical path length difference between optical couplers 54d and 54e in the sub interferometer may be made longer than the optical path length difference between the tip (end face) of the optical fiber in the main interferometer and the measurement object T, or the frequency may be multiplied (e.g., 8 times) by the correction signal generating unit 61 to make it higher frequency.
  • the processing unit 59 acquires the digital signals that have been AD converted while the nonlinearity has been corrected by the AD conversion units 58a to 58c, and calculates the displacement of the measurement object T (the distance to the measurement object T) based on the digital signals. Specifically, the processing unit 59 uses a fast Fourier transform (FFT) to frequency convert the digital signals, and calculates the distance by analyzing them.
  • FFT fast Fourier transform
  • processing unit 59 because high-speed processing is required for the processing unit 59, it is often realized by an integrated circuit such as an FPGA (field-programmable gate array).
  • FPGA field-programmable gate array
  • the sensor head 20 irradiates the measurement object T with measurement light from each optical path, and the distance to the measurement object T, etc. are measured based on the interference light (return light) obtained from each (multi-channel).
  • the number of channels in the main interferometer is not limited to three, and may be one or two, or four or more.
  • the displacement sensor 10 includes a sensor head 20, an optical fiber cable 40, and a controller 30.
  • the sensor head 20 includes an objective lens 21 and a plurality of collimating lenses 22a to 22c
  • the controller 30 includes a wavelength swept light source 51, an optical amplifier 52, a plurality of isolators 53 and 53a to 53b, a plurality of optical couplers 54 and 54a to 54j, an attenuator 55, a plurality of light receiving elements (e.g., photodetectors (PD)) 56a to 56c, a plurality of amplifier circuits 57a to 57c, a plurality of analog-to-digital (AD) conversion units (e.g., analog-to-digital converters) 58a to 58c, a processing unit (e.g., a processor) 59, a balance detector 60, and a correction signal generating
  • a processing unit e.g., a processor
  • the light emitted from the wavelength swept light source 51 is amplified by the optical amplifier 52, passes through the isolator 53, and is branched by the optical coupler 54 to the main interferometer side and the sub-interferometer side.
  • the light branched to the main interferometer side is further branched by the optical coupler 54f into measurement light and reference light.
  • the measurement light passes through the first-stage optical coupler 54a, the optical fiber 42Pa of the optical fiber cable 40, the collimator lens 22a of the sensor head 20, and the objective lens 21 in sequence, and is irradiated onto the measurement object T, and is reflected by the measurement object T.
  • the measurement light reflected by the measurement object T is incident on the end 42Oa of the optical fiber 42Pa via the sensor head 20, is guided through the optical fiber 42Pa, and is supplied from the end 42Ia to the optical coupler 54h via the optical coupler 54a.
  • the light branched from the first-stage optical coupler 54a toward the second-stage optical coupler 54b passes through the optical fiber 42Pb of the optical fiber cable 40, the collimating lens 22b of the sensor head 20, and the objective lens 21 in sequence via the second-stage optical coupler 54b, is irradiated onto the measurement object T, is reflected by the measurement object T, returns to the second-stage optical coupler 54b, and is supplied to the optical coupler 54i via the optical coupler 54b.
  • the light branched from the second-stage optical coupler 54b toward the third-stage optical coupler 54c passes through the optical fiber 42Pc of the optical fiber cable 40, the collimating lens 22c of the sensor head 20, and the objective lens 21 in sequence via the third-stage optical coupler 54c, is irradiated onto the measurement object T, is reflected by the measurement object T, returns to the third-stage optical coupler 54c, and is supplied to the optical coupler 54j via the optical coupler 54c.
  • the reference light branched by optical coupler 54f is further branched by optical coupler 54g in the direction of each of ends 43Ia to 43Ic of optical fiber cable 40.
  • the reference light incident on each of ends 43Ia to 43Ic of optical fiber cable 40 is guided through optical fibers 43Pa to 43Pc of optical fiber cable 40.
  • Ends 43Oa to 43Oc are provided on the opposite side of optical fibers 43Pa to 43Pc from ends 43Ia to 43Ic.
  • the reference light guided through optical fibers 43Pa to 43Pc is supplied from ends 43Oa to 43Oc to optical couplers 54h, 54i, and 54j, respectively.
  • the measurement light reflected by the measurement object T output from the optical coupler 54a interferes with the reference light output from the optical coupler 54g and guided through the optical fiber 43Pa in the optical fiber cable 40, generating interference light that is received by the light receiving element 56a and converted into an electrical signal.
  • the measurement light and the reference light are split by the optical coupler 54f, and interference light is generated according to the optical path length difference between the optical path of the measurement light (the optical path from the optical coupler 54f through the optical coupler 54a, the optical fiber 42Pa, the collimating lens 22a, the objective lens 21, reflected by the measurement object T, and reaches the optical coupler 54h) and the optical path of the reference light (the optical path from the optical coupler 54f through the optical coupler 54g and guided through the optical fiber 43Pa to reach the optical coupler 54h), and the interference light is received by the light receiving element 56a and converted into an electrical signal.
  • interference light is generated according to the difference in optical path length between the optical path of the measurement light (the optical path from optical coupler 54f through optical couplers 54a and 54b, optical fiber 42Pb, collimating lens 22b, objective lens 21, reflected by the measurement target T, and reaching optical coupler 54i) and the optical path of the reference light (the optical path from optical coupler 54f through optical coupler 54g, guided through optical fiber 43Pb, and reaching optical coupler 54i), and the interference light is received by the light receiving element 56b and converted into an electrical signal.
  • interference light is generated according to the difference in optical path length between the optical path of the measurement light (the optical path from optical coupler 54f through optical couplers 54a, 54b, 54c, optical fiber 42Pc, collimating lens 22c, objective lens 21, reflected by the measurement target T, and reaching optical coupler 54j) and the optical path of the reference light (the optical path from optical coupler 54f through optical coupler 54g, guided through optical fiber 43Pc, and reaching optical coupler 54j).
  • the interference light is received by the light receiving element 56c and converted into an electrical signal.
  • the light receiving elements 56a to 56c may be, for example, balanced photodetectors.
  • the main interferometer has three optical paths (three channels) and generates three interference lights according to the optical path length difference between the measurement light reflected by the measurement object T and input to optical couplers 54h, 54i, and 54j, and the reference light passed through optical couplers 54f and 54g and optical fiber cable 40 and input to optical couplers 54h, 54i, and 54j, respectively.
  • the optical path length difference between the measurement light and the reference light may be set to be different for each of the three channels, for example, the optical path lengths of optical coupler 54g and each of optical couplers 54h, 54i, and 54j may be set to be different.
  • the distance to the measurement object T, etc. is measured (multi-channel).
  • FIG. 6A is a perspective view showing a schematic configuration of the sensor head 20
  • FIG. 6B is a schematic view showing the internal structure of the sensor head.
  • the sensor head 20 has an objective lens 21 and a collimator lens stored in a lens holder 23.
  • the size of the lens holder 23 is such that the length of one side surrounding the objective lens 21 is about 20 mm, and the length in the optical axis direction is about 40 mm.
  • An optical fiber cable 40 is connected to the sensor head 20.
  • the lens holder 23 stores one objective lens 21 and three collimator lenses 22a to 22c.
  • the light from the optical fibers that guide the measurement light contained in the optical fiber cable 40 is configured to be guided to the collimator lenses 22a to 22c, respectively, and the light that passes through the three collimator lenses 22a to 22c is irradiated onto the measurement object T via the objective lens 21.
  • the number of collimator lenses may be a number according to the number of optical fibers that guide the measurement light contained in the optical fiber cable 40.
  • the lens holder 23 that constitutes the sensor head 20 may also be made of a metal (e.g., A2017) that is strong and can be machined with high precision.
  • FIG. 7 is a block diagram for explaining signal processing in the controller 30.
  • the controller 30 includes a plurality of light receiving elements 71a-71e, a plurality of amplifier circuits 72a-72c, a plurality of AD conversion units 74a-74c, a processing unit 75, a differential amplifier circuit 76, and a correction signal generation unit 77.
  • the controller 30 splits the light emitted from the wavelength swept light source 51 into a main interferometer and a sub-interferometer by the optical coupler 54, and calculates the distance to the measurement object T by processing the main interference signal and the sub-interference signal obtained from each.
  • the multiple light receiving elements 71a to 71c correspond to the light receiving elements 56a to 56c shown in FIG. 5A, and each receive the main interference signal from the main interferometer and output it as a current signal to the amplifier circuits 72a to 72c, respectively.
  • the multiple amplifier circuits 72a to 72c convert the current signal into a voltage signal (IV conversion) and amplify it.
  • the multiple AD conversion units 74a to 74c correspond to the AD conversion units 58a to 58c shown in FIG. 5A, and convert the voltage signal into a digital signal (AD conversion) based on the K clock from the correction signal generation unit 77, which will be described later.
  • the processing unit 75 corresponds to the processing unit 59 shown in FIG. 5A, and converts the digital signals from the AD conversion units 74a to 74c into frequencies using FFT, analyzes them, and calculates the distance value to the measurement target T.
  • the multiple light receiving elements 71d-71e and the differential amplifier circuit 76 correspond to the balanced detector 60 shown in FIG. 5A, and each receives the interference light from the sub-interferometer, one of which outputs an interference signal with an inverted phase, and the interference signal is amplified and converted into a voltage signal while noise is removed by taking the difference between the two signals.
  • the correction signal generating unit 77 corresponds to the correction signal generating unit 61 shown in FIG. 5A, and binarizes the voltage signal using a comparator, generates a K clock, and outputs it to the AD conversion units 74a to 74c. Since the K clock needs to be generated at a higher frequency than the analog signal of the main interferometer, the correction signal generating unit 77 may multiply the frequency (e.g., 8 times) to increase the frequency.
  • FIG. 8 is a flowchart showing a method for calculating the distance to the measurement target T, which is executed by the processing unit 59 in the controller 30. As shown in FIG. 8, the method includes steps S31 to S34.
  • step S31 the processing unit 59 performs frequency conversion of the waveform signal (voltage vs. time) into a spectrum (voltage vs. frequency) using the following FFT:
  • Fig. 9A is a diagram showing how the waveform signal (voltage vs. time) is frequency converted into a spectrum (voltage vs. frequency).
  • step S32 the processing unit 59 performs distance conversion from the spectrum (voltage vs. frequency) to a spectrum (voltage vs. distance).
  • FIG. 9B is a diagram showing how the spectrum (voltage vs. frequency) is distance converted to a spectrum (voltage vs. distance).
  • step S33 the processing unit 59 calculates a distance value corresponding to the peak based on the spectrum (voltage vs. distance).
  • FIG. 9C is a diagram showing how peaks are detected based on the spectrum (voltage vs. distance) and the corresponding distance values are calculated. As shown in FIG. 9C, peaks are detected in each of the three channels based on the spectrum (voltage vs. distance), and distance values corresponding to each peak are calculated.
  • step S34 the processing unit 59 averages the distance values calculated in step S33. Specifically, since peaks have been detected in each of the three channels based on the spectrum (voltage vs. distance) in step S33 and the corresponding distance values have been calculated, the processing unit 59 averages these values and outputs the averaged calculation result as the distance to the measurement object T.
  • step S34 when averaging the distance values calculated in step S33, the processing unit 59 preferably averages distance values whose SNR is equal to or greater than a threshold value. For example, if a peak is detected based on the spectrum (voltage vs. distance) in any of the three channels but the SNR is less than the threshold value, the distance value calculated based on that spectrum is determined to be unreliable and is not adopted.
  • optical interferometric distance measuring sensor corresponds to the displacement sensor 10 described using Figures 1 to 9, and all or part of the basic configuration, functions, and properties included in the optical interferometric distance measuring sensor are common to the configuration, functions, and properties included in the displacement sensor 10 described using Figures 1 to 9.
  • optical fiber cables shown in FIGS. 10 to 12 are applicable to the displacement sensor 10 shown in FIG. 5A, for example.
  • FIG. 10 is a schematic diagram showing an example of the configuration of an optical fiber cable.
  • the optical fiber cable 110 has three optical fibers 110Fs for measurement light, three optical fibers 110Fr for reference light, and a connector section 110C connected to the optical fibers 110Fs and 110Fr.
  • Three optical waveguides 111p and three optical waveguides 112p are formed inside the connector section 110C.
  • the optical waveguides 111p and 112p are configured to be able to guide light as a core with a higher refractive index than the surrounding cladding.
  • the optical waveguide 111p is optically connected to the optical fiber 110Fr, and guides the reference light propagating through the optical fiber 110Fr toward the end 111r.
  • the end 111r is coated with a metal such as aluminum, and serves as a reference surface. Therefore, the reference light that is guided through the optical waveguide 111p and reaches the end 111r is reflected by the end 111r, and is guided through the optical waveguide 111p toward the optical fiber 110Fr.
  • the optical waveguide 112p is optically connected to the optical fiber 110Fs, and guides the measurement light propagating through the optical fiber 110Fs toward the end 112o.
  • the measurement light that reaches the end 112o is supplied to the sensor head 20, guided inside the optical waveguide and optical fiber, etc., and irradiated onto the measurement object T.
  • the measurement light reflected by the measurement object T is again incident on the sensor head 20, and the measurement light is guided into the optical waveguide 112p via 112o, and then propagates through the optical fiber 120Fs.
  • the method of producing the connector portion 110C and the optical waveguides 111p and 112p is not particularly limited, but may be produced, for example, by a flame deposition method using glass.
  • the optical waveguides 111p and 112p may be formed as optical fibers, and the optical fibers may be sandwiched between the glass that forms the base of the connector portion 110C.
  • FIG. 11A is a schematic diagram showing an example of the configuration of an optical fiber cable.
  • the optical fiber cable 120 has three optical fibers 120Fs for measurement light, three optical fibers 120Fr for reference light, a connector section 120C connected to the optical fibers 120Fs and 120Fr, and a mirror 123.
  • Three optical waveguides 121p and three optical waveguides 122p are formed inside the connector section 120C.
  • the optical waveguides 121p and 122p are configured to be able to guide light as a core with a higher refractive index than the surrounding cladding.
  • the optical waveguide 121p is optically connected to the optical fiber 120Fr, and guides the reference light propagating through the optical fiber 120Fr toward the end 121o.
  • the reference light that reaches the end 121o is emitted from the end 121o and reflected by the mirror 123 provided in front of the end 121o.
  • the reference light reflected by the mirror 123 is incident on the end 121o and guided through the optical waveguide 121p toward the optical fiber 120Fr.
  • FIG. 11B is a schematic diagram showing an example of the configuration of an optical fiber cable.
  • the reference light emitted from the end 121o of the connector portion 120C may be reflected sequentially by the retroreflector 125 and the mirror 124, and then reflected again by the retroreflector 125 before entering the end 121o and being guided through the optical waveguide 121p toward the optical fiber 120Fr.
  • the optical waveguide 122p is optically connected to the optical fiber 120Fs, and guides the measurement light propagating through the optical fiber 120Fs toward the end 122o.
  • the measurement light that reaches the end 122o is supplied to the sensor head 20, guided inside the optical waveguide and optical fiber, etc., and irradiated onto the measurement object T.
  • the measurement light reflected by the measurement object T is again incident on the sensor head 20, and the measurement light is guided into the optical waveguide 122p via 122o, and then propagates through the optical fiber 120Fs.
  • the method of making the connector portion 120C and the optical waveguides 121p and 122p is not particularly limited, but may be made by flame deposition deposition using glass, for example.
  • the optical waveguides 121p and 122p may be formed as optical fibers, and the optical fibers may be sandwiched between the glass that forms the base of the connector portion 120C.
  • FIG. 12 is a schematic diagram showing an example of the configuration of an optical fiber cable.
  • the optical fiber cable 130 has three optical fibers 130Fs for measurement light and three optical fibers 130Fr for reference light.
  • the three optical fibers 130Fs for measurement light and the three optical fibers 130Fr for reference light are fixed to each other with a resin (not shown) or the like.
  • the optical fibers 130Fs and the optical fibers 130Fr are each attached to a housing with the tip of the optical fiber fixed to a ferrule.
  • the end 131r of the optical fiber 130Fr is coated with a metal such as aluminum and serves as a reference surface. Therefore, the reference light that is guided through the optical fiber 130Fr and reaches the end 131r is reflected by the end 131r and is guided in the opposite direction through the optical fiber 130Fr.
  • the measurement light that reaches the end 132o of the optical fiber 130Fs is supplied into the sensor head 20, guided through the optical waveguide, optical fiber, etc., and irradiated onto the measurement object T.
  • the measurement light reflected by the measurement object T is again incident on the sensor head 20, and the measurement light is guided into the optical fiber 130Fs via 132o, and then propagates through the optical fiber 130Fs.
  • optical fiber cables shown in Figures 13A to 15 can be applied to the displacement sensor 10 shown in Figure 5B, for example.
  • FIG. 13A is a schematic diagram showing an example of the configuration of an optical fiber cable.
  • the optical fiber cable 210 has three optical fibers 210Fs for measurement light, three optical fibers 210Fr for reference light, and a connector section 210C connected to the optical fibers 210Fs and 210Fr.
  • Three optical waveguides 211p and three optical waveguides 212p are formed inside the connector section 210C.
  • the optical waveguides 211p and 212p are configured to be able to guide light as a core with a higher refractive index than the surrounding cladding.
  • the optical waveguide 211p is optically connected to the optical fiber 210Fr, and guides the reference light propagating through the optical fiber 210Fr from one end of the optical fiber 210Fr, and guides the light to the other end of the optical fiber 210Fr via the folded portion 211m formed in a substantially U-shape.
  • the shape of the folded portion 211m is not particularly limited, and may be arbitrarily configured based on the set value of the optical path length difference between the measurement light and the reference light.
  • the optical waveguide 212p is optically connected to the optical fiber 210Fs, and guides the measurement light propagating through the optical fiber 210Fs toward the end 212o.
  • the measurement light that reaches the end 212o is supplied to the sensor head 20, guided inside the optical waveguide and optical fiber, etc., and irradiated onto the measurement object T.
  • the measurement light reflected by the measurement object T is again incident on the sensor head 20, and the measurement light is guided into the optical waveguide 212p via 212o, and then propagates through the optical fiber 210Fs.
  • the method of creating the connector portion 210C and the optical waveguides 211p and 212p is not particularly limited, but may be created, for example, by a flame deposition method using glass.
  • the optical waveguides 211p and 212p may be formed as optical fibers, and the optical fibers may be sandwiched between the glass that forms the base of the connector portion 210C.
  • FIG. 13B is a schematic diagram showing an example of the configuration of an optical fiber cable.
  • the optical fiber cable 220 has three optical fibers 220Fs for measurement light, six optical fibers 220Fr for reference light, and a connector section 220C connected to the optical fibers 220Fs and 220Fr.
  • Six optical waveguides 221p and three optical waveguides 222p are formed inside the connector section 220C.
  • the optical waveguides 221p and 222p are configured to be able to guide light as a core with a higher refractive index than the surrounding cladding.
  • the optical waveguide 221p includes an optical waveguide 221p1 and an optical waveguide 221p2.
  • the optical waveguide 221p1 is optically connected to the optical fiber 220Fr, guides the reference light propagating through the optical fiber 220Fr from one end of the optical fiber 220Fr, and emits it from the end 221s of the optical waveguide 221p1.
  • the reference light emitted from the end 221s is reflected by the retroreflector 224, enters the end 221t, and is guided through the optical waveguide 221p2 toward the optical fiber 120Fr.
  • the optical waveguide 222p is optically connected to the optical fiber 220Fs, and guides the measurement light propagating through the optical fiber 220Fs toward the end 222o.
  • the measurement light that reaches the end 222o is supplied to the sensor head 20, guided inside the optical waveguide and optical fiber, etc., and irradiated onto the measurement object T.
  • the measurement light reflected by the measurement object T is again incident on the sensor head 20, and the measurement light is guided into the optical waveguide 222p via 222o, and then propagates through the optical fiber 220Fs.
  • the method of creating the connector portion 220C and the optical waveguides 221p, 222p is not particularly limited, but may be created, for example, by a flame deposition method using glass.
  • the optical waveguides 221p, 222p may be formed as optical fibers, and the optical fibers may be sandwiched between the glass that forms the base of the connector portion 220C.
  • FIG. 14 is a schematic diagram showing an example of the configuration of an optical fiber cable.
  • the optical fiber cable 230 has three optical fibers 230Fs for measurement light, three optical fibers 230Fr1 for reference light, and three optical fibers 230Fr2 for reference light.
  • the three optical fibers 230Fs for measurement light, the three optical fibers 230Fr1 for reference light, and the three optical fibers 230Fr2 for reference light are fixed to each other by a fixing portion 234 formed of resin or the like.
  • the measurement light that reaches the end 232o of the optical fiber 230Fs is supplied into the sensor head 20, guided through the optical waveguide, optical fiber, etc., and irradiated onto the measurement object T.
  • the measurement light reflected by the measurement object T is again incident on the sensor head 20, and the measurement light is guided into the optical fiber 230Fs via 232o, and then propagates through the optical fiber 230Fs.
  • Optical fiber 230Fr1 guides the reference light propagating through optical fiber 230Fr1 and emits it from end 231s of optical fiber 230Fr1.
  • the reference light emitted from end 231s is reflected by retroreflector 233, enters end 231t, and is guided through optical fiber 230Fr2.
  • FIG. 15 is a schematic diagram showing an example of the configuration of an optical fiber cable.
  • the optical fiber cable 240 has three optical fibers 240Fs for measurement light and three optical fibers 240Fr for reference light.
  • the three optical fibers 240Fs for measurement light and the three optical fibers 240Fr for reference light are fixed to each other by a fixing portion 243 formed of resin or the like.
  • the optical fiber 240Fr guides the reference light that has propagated through the optical fiber 240Fr from one end of the optical fiber 240Fr, and guides it to the other end of the optical fiber 240Fr via a folding section 241m formed in a substantially U-shape.
  • the shape of the folding section 241m is not particularly limited, and may be arbitrarily configured based on the set value of the optical path length difference between the measurement light and the reference light.
  • the optical fiber 240Fs guides the measurement light propagating through the optical fiber 240Fs toward the end 242o.
  • the measurement light that reaches the end 242o is supplied into the sensor head 20, guided inside the optical waveguide and optical fiber, etc., and irradiated onto the measurement object T.
  • the measurement light reflected by the measurement object T is again incident on the sensor head 20, and the measurement light is guided into the optical fiber 240Fs via 242o, and then propagates through the optical fiber 240Fs.
  • FIG. 16 is a diagram for explaining a modified example of the optical fiber cable.
  • the optical fiber cable 41 has optical fibers 44Pa-44Pc, 45Pa-45Pc, 46Pa-46Pc, 47Pa-47Pc, and optical couplers 63a-63c.
  • Light emitted from the wavelength sweep light source 51 is supplied from each of the optical couplers 54a-54c to each of the optical fibers 44Pa-44Pc via the ends 44Ia-44Ic.
  • the optical fibers 44Pa-44Pc guide the light to the optical couplers 63a-63c, which then split the light into reference light passing through the optical fibers 45Pa-45Pc and measurement light passing through the optical fibers 47Pa-47Pc.
  • the reference light guided through the optical fibers 45Pa to 45Pc is reflected by the reference surfaces 45Ra to 45Rc provided at the ends of the optical fibers 45Pa to 45Pc, and is guided through the optical fibers 45Pa to 45Pc and supplied again to the optical couplers 63a to 63c.
  • the measurement light guided through the optical fibers 47Pa to 47Pc is supplied from the ends 47Oa to 47Oc of the optical fibers 47Pa to 47Pc into the sensor head 20, guided through the optical waveguide, optical fiber, etc., and irradiated onto the measurement object T.
  • the measurement light reflected by the measurement object T is again incident on the sensor head 20, and the measurement light is guided through the ends 47Oa to 47Oc into the optical fibers 47Pa to 47Pc and supplied to the optical couplers 63a to 63c.
  • the reference light supplied from the optical fibers 45Pa-45Pc and the measurement light supplied from the optical fibers 47Pa-47Pc interfere with each other in the optical couplers 62a-62c to generate interference light, and at least a portion of the interference light is supplied to the light-receiving elements 56a-56c via the optical fibers 46Pa-46Pc.
  • the interference light received by the light-receiving elements 56a-56c is converted into an electrical signal.
  • Figure 17 is a diagram to explain modified examples of optical fiber cables.
  • the optical fiber cable 42 has optical fibers 48Pa to 48Pc and 49Pa to 49Pc.
  • the light emitted from the wavelength sweep light source 51 is supplied from the optical couplers 54a to 54c to the optical fibers 48Pa to 48Pc via the ends 48Ia to 48Ic.
  • the optical fibers 48Pa to 48Pc guide the light to the ends 48Oa to 48Oc.
  • the light supplied from the ends 48Oa to 48Oc to the sensor head 20 is supplied to the optical couplers 23a to 23c via the optical fibers 24Pa to 24Pc of the sensor head 20.
  • the optical couplers 23a to 23c split the supplied light into reference light that passes through the optical fibers 25Pa to 25Pc and measurement light that passes through the optical fibers 27Pa to 27Pc.
  • the reference light guided through the optical fibers 25Pa-25Pc is reflected by the reference surfaces 25Ra-25Rc provided at the ends of the optical fibers 25Pa-25Pc, and is guided through the optical fibers 25Pa-25Pc and supplied again to the optical couplers 23a-23c.
  • the measurement light guided through the optical fibers 27Pa-27Pc is irradiated onto the measurement object T via the collimator lenses 22a-22c and the objective lens 21.
  • the measurement light reflected by the measurement object T is guided through the optical fibers 27Pa-27Pc and supplied to the optical couplers 23a-23c.
  • the reference light supplied from the optical fibers 25Pa-25Pc and the measurement light supplied from the optical fibers 27Pa-27Pc interfere with each other in the optical couplers 23a-23c to generate interference light, and at least a portion of the interference light is supplied to the light receiving elements 56a-56c via the optical fibers 26Pa-26Pc and the optical fibers 49Pa-49c of the optical fiber cable 42.
  • the interference light received by the light receiving elements 56a-56c is converted into an electrical signal.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

The present invention makes it possible to easily adjust the length of an optical fiber cable in accordance with the measurement environment. An optical fiber cable according to one embodiment of the present invention is used in an optical interference ranging sensor having a light source unit for supplying light while sweeping the wavelength at a fixed periodicity, a light splitting means for splitting the light into measurement light and reference light, an optical multiplexing means for multiplexing the reference light and reflected light from a measurement target, an interference light detection means for detecting interference light multiplexed by the optical multiplexing means, and a distance calculation means for calculating the distance to the measurement target by subjecting the interference light to a frequency analysis, the optical fiber cable having: a first optical fiber for guiding at least a portion of the light supplied from the light source unit and the measurement light that has been split off by the splitting means; and a second optical fiber for guiding at least a portion of the light supplied from the light source unit and the reference light that has been split by the splitting means.

Description

光ファイバケーブル、それに接続されるコントローラ及びそれらを用いた光干渉測距センサOptical fiber cable, controller connected thereto, and optical interference distance measuring sensor using the same
 本発明は、光ファイバケーブル、それに接続されるコントローラ及びそれらを用いた光干渉測距センサに関する。 The present invention relates to an optical fiber cable, a controller connected to the cable, and an optical interferometric distance sensor using the cable and the controller.
 近年、非接触で計測対象物までの距離を計測する光測距センサが普及している。例えば、光測距センサとして、波長掃引光源から投光される光から、参照光と測定光とに基づく干渉光を生成し、当該干渉光に基づいて計測対象物までの距離を計測する光干渉測距センサが知られている。 In recent years, optical distance measuring sensors that measure the distance to a measurement object without contact have become widespread. For example, an optical interferometric distance measuring sensor is known that generates interference light based on a reference light and a measurement light from light projected from a wavelength swept light source, and measures the distance to the measurement object based on the interference light.
 例えば、特許文献1には、光ビーム制御器と、光ビーム制御器からの複数の光ビームを物体光と参照光に分岐する分岐手段と、複数の物体光ビームを測定対象物に照射する照射手段と、測定対象物から散乱された物体光と参照光とを干渉させ受光器に導く干渉手段と、を備える光干渉断層撮像器が開示されている。 For example, Patent Document 1 discloses an optical coherence tomography imaging device that includes a light beam controller, a splitting means for splitting a plurality of light beams from the light beam controller into object light and reference light, an irradiating means for irradiating a measurement object with the plurality of object light beams, and an interference means for causing interference between the object light scattered from the measurement object and the reference light and guiding them to a light receiver.
国際公開第2019/131298号International Publication No. 2019/131298
 上記のような測定光と参照光との干渉光を利用した装置において、例えば、コントローラとセンサヘッドとを繋ぐ光ファイバケーブル内を測定光が導光される構成が採用される場合がある。しかしながら、光ファイバケーブルを交換した場合、測定光と参照光との光路長差が当初の設定からズレてしまうことがあるため、測定環境に応じて光ファイバケーブルの長さを調整することが困難であった。 In devices that use the interference light between measurement light and reference light as described above, for example, a configuration may be adopted in which the measurement light is guided through a fiber optic cable connecting the controller and the sensor head. However, when the fiber optic cable is replaced, the optical path length difference between the measurement light and the reference light may deviate from the initial setting, making it difficult to adjust the length of the fiber optic cable according to the measurement environment.
 そこで、本発明は、測定環境に応じて容易に光ファイバケーブルの長さを調整することが可能な光ファイバケーブル、それに接続されるコントローラ及びそれらを用いた光干渉測距センサを提供することを目的とする。 The present invention aims to provide an optical fiber cable whose length can be easily adjusted according to the measurement environment, a controller connected to the cable, and an optical interferometric distance measuring sensor using the cable and the controller.
 本発明の一態様に係る光ファイバケーブルは、波長を一定の周期で掃引させながら光を供給する光源ユニットと、該光源ユニットから供給された光を測定光と参照光とに分割する光分割手段と、光分割手段により分割された測定光が測定対象に照射されたときの該測定対象からの反射光と参照光とを合波する合波手段と、該合波手段により合波された反射光と参照光との干渉光を検出する干渉光検出手段と、該干渉光検出手段により検出された干渉光を周波数解析することにより測定対象までの距離を算出する距離算出手段と、を有する光干渉測距センサに用いられる光ファイバケーブルであって、光源ユニットから供給された光と分割手段により分割された測定光とのうち少なくとも一部を導光する第1光ファイバと、光源ユニットから供給された光と分割手段により分割された参照光とのうち少なくとも一部が導光する第2光ファイバと、を有する。 The optical fiber cable according to one aspect of the present invention is an optical fiber cable used in an optical interference distance measuring sensor having a light source unit that supplies light while sweeping the wavelength at a constant cycle, a light splitting means that splits the light supplied from the light source unit into measurement light and reference light, a combining means that combines the reference light and reflected light from the measurement object when the measurement light split by the light splitting means is irradiated onto the measurement object, an interference light detection means that detects interference light between the reflected light and the reference light combined by the combining means, and a distance calculation means that calculates the distance to the measurement object by performing frequency analysis on the interference light detected by the interference light detection means, and has a first optical fiber that guides at least a portion of the light supplied from the light source unit and the measurement light split by the splitting means, and a second optical fiber that guides at least a portion of the light supplied from the light source unit and the reference light split by the splitting means.
 この態様によれば、光ファイバケーブルは、光源ユニットから供給された光と分割手段により分割された測定光とのうち少なくとも一部を導光する第1光ファイバと、光源ユニットから供給された光と分割手段により分割された参照光とのうち少なくとも一部が導光する第2光ファイバとを有する。そのため、光ファイバケーブル内において、測定光と参照光とのいずれもが導光され、又は測定光と参照光とに分割される前の光が導光されるため、光ファイバケーブルの交換によっても測定光と参照光との光路長差の設定は変わらない。したがって、測定環境に応じて容易に光ファイバケーブルの長さを調整することが可能となる。 According to this aspect, the optical fiber cable has a first optical fiber that guides at least a portion of the light supplied from the light source unit and the measurement light split by the splitting means, and a second optical fiber that guides at least a portion of the light supplied from the light source unit and the reference light split by the splitting means. Therefore, both the measurement light and the reference light are guided within the optical fiber cable, or the light before being split into the measurement light and the reference light is guided, so that the setting of the optical path length difference between the measurement light and the reference light does not change even when the optical fiber cable is replaced. Therefore, it is possible to easily adjust the length of the optical fiber cable according to the measurement environment.
 上記態様において、第1光ファイバは、測定光の光路を含み、第2光ファイバは、参照光の光路を含んでもよい。 In the above embodiment, the first optical fiber may include an optical path for the measurement light, and the second optical fiber may include an optical path for the reference light.
 この態様によれば、そのため、光ファイバケーブル内において、測定光と参照光とのいずれもが導光されるため、光ファイバケーブルの交換によっても測定光と参照光との光路長差の設定は変わらず、したがって、測定環境に応じて容易に光ファイバケーブルの長さを調整することが可能となる。 According to this aspect, both the measurement light and the reference light are guided within the optical fiber cable, so the setting of the optical path length difference between the measurement light and the reference light does not change even when the optical fiber cable is replaced, and therefore the length of the optical fiber cable can be easily adjusted according to the measurement environment.
 上記態様において、第2光ファイバは、第1光ファイバであってもよい。 In the above embodiment, the second optical fiber may be the first optical fiber.
 この態様によれば、光ファイバケーブルの構成が簡素化される。 This simplifies the configuration of the optical fiber cable.
 上記態様において、光分割手段を更に含んでもよい。 The above embodiment may further include a light splitting means.
 この態様によれば、光ファイバケーブルの設計の自由度が向上する。 This aspect improves the design freedom of the optical fiber cable.
 上記態様において、参照光を反射させる参照面を更に含んでもよい。 The above embodiment may further include a reference surface that reflects the reference light.
 この態様によれば、光ファイバケーブルの設計の自由度が向上する。 This aspect improves the design freedom of the optical fiber cable.
 本発明の一態様に係るコントローラは、波長を一定の周期で掃引させながら光を供給する光源ユニットと、該光源ユニットから供給された光を測定光と参照光とに分割する光分割手段と、光分割手段により分割された測定光が測定対象に照射されたときの該測定対象からの反射光と参照光とを合波する合波手段と、該合波手段により合波された反射光と参照光との干渉光を検出する干渉光検出手段と、該干渉光検出手段により検出された干渉光を周波数解析することにより測定対象までの距離を算出する距離算出手段と、を有するコントローラであって、光源ユニットから供給された光と分割手段により分割された測定光とのうち少なくとも一部を導光する第1光ファイバに接続される第1接続部と、光源ユニットから供給された光と分割手段により分割された参照光とのうち少なくとも一部が導光する第2光ファイバに接続される第2接続部と、を有する。 A controller according to one aspect of the present invention includes a light source unit that supplies light while sweeping the wavelength at a constant cycle, a light splitting means that splits the light supplied from the light source unit into measurement light and reference light, a combining means that combines the reference light and reflected light from the measurement object when the measurement light split by the light splitting means is irradiated onto the measurement object, an interference light detection means that detects interference light between the reflected light and the reference light combined by the combining means, and a distance calculation means that calculates the distance to the measurement object by performing frequency analysis on the interference light detected by the interference light detection means, and includes a first connection part that is connected to a first optical fiber that guides at least a portion of the light supplied from the light source unit and the measurement light split by the splitting means, and a second connection part that is connected to a second optical fiber that guides at least a portion of the light supplied from the light source unit and the reference light split by the splitting means.
 この態様によれば、光ファイバケーブルは、光源ユニットから供給された光と分割手段により分割された測定光とのうち少なくとも一部を導光する第1光ファイバと、光源ユニットから供給された光と分割手段により分割された参照光とのうち少なくとも一部が導光する第2光ファイバとを有する。そのため、光ファイバケーブル内において、測定光と参照光とのいずれもが導光され、又は測定光と参照光とに分割される前の光が導光されるため、光ファイバケーブルの交換によっても測定光と参照光との光路長差の設定は変わらない。したがって、測定環境に応じて容易に光ファイバケーブルの長さを調整することが可能となる。 According to this aspect, the optical fiber cable has a first optical fiber that guides at least a portion of the light supplied from the light source unit and the measurement light split by the splitting means, and a second optical fiber that guides at least a portion of the light supplied from the light source unit and the reference light split by the splitting means. Therefore, both the measurement light and the reference light are guided within the optical fiber cable, or the light before being split into the measurement light and the reference light is guided, so that the setting of the optical path length difference between the measurement light and the reference light does not change even when the optical fiber cable is replaced. Therefore, it is possible to easily adjust the length of the optical fiber cable according to the measurement environment.
 本発明の一態様に係る光干渉測距センサは、光ファイバケーブルと、コントローラと、を有する光干渉測距センサであって、コントローラは、波長を一定の周期で掃引させながら光を供給する光源ユニットと、該光源ユニットから供給された光を測定光と参照光とに分割する光分割手段と、光分割手段により分割された測定光が測定対象に照射されたときの該測定対象からの反射光と参照光とを合波する合波手段と、該合波手段により合波された反射光と参照光との干渉光を検出する干渉光検出手段と、該干渉光検出手段により検出された干渉光を周波数解析することにより測定対象までの距離を算出する距離算出手段と、を有し、光ファイバケーブルは、光源ユニットから供給された光と分割手段により分割された測定光とのうち少なくとも一部を導光する第1光ファイバと、光源ユニットから供給された光と分割手段により分割された参照光とのうち少なくとも一部が導光する第2光ファイバと、を有する、光干渉測距センサ。 The optical interferometric distance measuring sensor according to one aspect of the present invention is an optical interferometric distance measuring sensor having an optical fiber cable and a controller, the controller having a light source unit that supplies light while sweeping the wavelength at a constant cycle, an optical splitting means that splits the light supplied from the light source unit into measurement light and reference light, a combining means that combines the reference light and reflected light from the measurement object when the measurement light split by the optical splitting means is irradiated onto the measurement object, an interference light detection means that detects interference light between the reflected light and the reference light combined by the combining means, and a distance calculation means that calculates the distance to the measurement object by performing frequency analysis on the interference light detected by the interference light detection means, and the optical fiber cable has a first optical fiber that guides at least a part of the light supplied from the light source unit and the measurement light split by the splitting means, and a second optical fiber that guides at least a part of the light supplied from the light source unit and the reference light split by the splitting means.
 この態様によれば、光ファイバケーブルは、光源ユニットから供給された光と分割手段により分割された測定光とのうち少なくとも一部を導光する第1光ファイバと、光源ユニットから供給された光と分割手段により分割された参照光とのうち少なくとも一部が導光する第2光ファイバとを有する。そのため、光ファイバケーブル内において、測定光と参照光とのいずれもが導光され、又は測定光と参照光とに分割される前の光が導光されるため、光ファイバケーブルの交換によっても測定光と参照光との光路長差の設定は変わらない。したがって、測定環境に応じて容易に光ファイバケーブルの長さを調整することが可能となる。 According to this aspect, the optical fiber cable has a first optical fiber that guides at least a portion of the light supplied from the light source unit and the measurement light split by the splitting means, and a second optical fiber that guides at least a portion of the light supplied from the light source unit and the reference light split by the splitting means. Therefore, both the measurement light and the reference light are guided within the optical fiber cable, or the light before being split into the measurement light and the reference light is guided, so that the setting of the optical path length difference between the measurement light and the reference light does not change even when the optical fiber cable is replaced. Therefore, it is possible to easily adjust the length of the optical fiber cable according to the measurement environment.
 上記態様において、光ファイバケーブルは、参照光を反射させる参照面を更に含んでもよい。 In the above embodiment, the optical fiber cable may further include a reference surface that reflects the reference light.
 この態様によれば、光ファイバケーブルの設計の自由度が向上する。 This aspect improves the design freedom of the optical fiber cable.
 本発明によれば、主干渉計に接続される第1光ファイバに対応して、適切な第2光ファイバを副干渉計に接続可能な光ファイバケーブル、それに接続されるコントローラ及びそれらを用いた光干渉測距センサを提供することができる。 The present invention provides an optical fiber cable capable of connecting an appropriate second optical fiber to a secondary interferometer in correspondence with a first optical fiber connected to a primary interferometer, a controller connected thereto, and an optical interferometric distance sensor using the same.
本開示に係る変位センサ10の概要を示す外観模式図である。1 is a schematic external view showing an overview of a displacement sensor 10 according to the present disclosure. 本開示に係る変位センサ10によって計測対象物Tが計測される手順を示すフローチャートである。5 is a flowchart showing a procedure for measuring a measurement object T by the displacement sensor 10 according to the present disclosure. 本開示に係る変位センサ10が用いられるセンサシステム1の概要を示す機能ブロック図である。1 is a functional block diagram showing an overview of a sensor system 1 in which a displacement sensor 10 according to the present disclosure is used. 本開示に係る変位センサ10が用いられるセンサシステム1によって計測対象物Tが計測される手順を示すフローチャートである。1 is a flowchart showing a procedure for measuring a measurement object T by a sensor system 1 in which a displacement sensor 10 according to the present disclosure is used. 本開示に係る変位センサ10によって計測対象物Tが計測される原理を説明するための図である。1 is a diagram for explaining the principle by which a measurement object T is measured by a displacement sensor 10 according to the present disclosure. 本開示に係る変位センサ10によって計測対象物Tが計測される別の原理を説明するための図である。11A and 11B are diagrams for explaining another principle by which the measurement object T is measured by the displacement sensor 10 according to the present disclosure. センサヘッド20の概略構成を示す斜視図である。FIG. 2 is a perspective view showing a schematic configuration of a sensor head 20. センサヘッド20の内部構造を示す模式図である。2 is a schematic diagram showing the internal structure of a sensor head 20. FIG. コントローラ30における信号処理について説明するためのブロック図である。FIG. 2 is a block diagram for explaining signal processing in a controller 30. コントローラ30における処理部59によって実行される、計測対象物Tまでの距離を算出する方法を示すフローチャートである。10 is a flowchart showing a method for calculating a distance to a measurement object T, which is executed by a processing unit 59 in the controller 30. 波形信号(電圧vs時間)がスペクトル(電圧vs周波数)に周波数変換される様子を示す図である。1 is a diagram showing how a waveform signal (voltage vs. time) is frequency-converted into a spectrum (voltage vs. frequency). スペクトル(電圧vs周波数)がスペクトル(電圧vs距離)に距離変換される様子を示す図である。FIG. 13 is a diagram showing how a spectrum (voltage vs. frequency) is distance-transformed into a spectrum (voltage vs. distance). スペクトル(電圧vs距離)に基づいてピークを検出し、それに対応する距離値が算出される様子を示す図である。FIG. 13 is a diagram showing how a peak is detected based on a spectrum (voltage vs. distance) and a corresponding distance value is calculated. 光ファイバケーブルの構成の一例を示す模式図である。FIG. 1 is a schematic diagram showing an example of the configuration of an optical fiber cable. 光ファイバケーブルの構成の一例を示す模式図である。FIG. 1 is a schematic diagram showing an example of the configuration of an optical fiber cable. 光ファイバケーブルの構成の一例を示す模式図である。FIG. 1 is a schematic diagram showing an example of the configuration of an optical fiber cable. 光ファイバケーブルの構成の一例を示す模式図である。FIG. 1 is a schematic diagram showing an example of the configuration of an optical fiber cable. 光ファイバケーブルの構成の一例を示す模式図である。FIG. 1 is a schematic diagram showing an example of the configuration of an optical fiber cable. 光ファイバケーブルの構成の一例を示す模式図である。FIG. 1 is a schematic diagram showing an example of the configuration of an optical fiber cable. 光ファイバケーブルの構成の一例を示す模式図である。FIG. 1 is a schematic diagram showing an example of the configuration of an optical fiber cable. 光ファイバケーブルの構成の一例を示す模式図である。FIG. 1 is a schematic diagram showing an example of the configuration of an optical fiber cable. 光ファイバケーブルの変形例について説明するための図である。11A and 11B are diagrams for explaining modified examples of optical fiber cables. 光ファイバケーブルの変形例について説明するための図である。11A and 11B are diagrams for explaining modified examples of optical fiber cables.
 以下、本発明の好適な各実施形態について、添付図面を参照しながら具体的に説明する。なお、以下で説明する各実施形態は、あくまで、本発明を実施するための具体的な一例を挙げるものであって、本発明を限定的に解釈させるものではない。また、説明の理解を容易にするため、各図面において同一の構成要素に対しては可能な限り同一の符号を付して、重複する説明は省略する場合がある。 Below, preferred embodiments of the present invention will be described in detail with reference to the attached drawings. Note that each embodiment described below is merely a specific example for implementing the present invention, and is not intended to limit the interpretation of the present invention. Furthermore, in order to facilitate understanding of the description, the same reference numerals are used as far as possible for the same components in each drawing, and duplicate descriptions may be omitted.
[変位センサの概要]
 先ず、本開示に係る変位センサの概要について説明する。
 図1は、本開示に係る変位センサ10の概要を示す外観模式図である。図1に示されるように、変位センサ10は、センサヘッド20とコントローラ30とを備え、計測対象物Tの変位(計測対象物Tまでの距離)を計測する。
[Displacement sensor overview]
First, an overview of the displacement sensor according to the present disclosure will be described.
Fig. 1 is a schematic external view showing an overview of a displacement sensor 10 according to the present disclosure. As shown in Fig. 1, the displacement sensor 10 includes a sensor head 20 and a controller 30, and measures the displacement of a measurement object T (the distance to the measurement object T).
 センサヘッド20とコントローラ30とは、光ファイバケーブル40で接続されており、センサヘッド20には対物レンズ21が取り付けられている。また、コントローラ30は、表示部31と、設定部32と、外部インタフェース(I/F)部33と、光ファイバ接続部34と、外部記憶部35とを含み、さらに、内部には、計測処理部36を有する。 The sensor head 20 and the controller 30 are connected by an optical fiber cable 40, and an objective lens 21 is attached to the sensor head 20. The controller 30 also includes a display unit 31, a setting unit 32, an external interface (I/F) unit 33, an optical fiber connection unit 34, and an external memory unit 35, and further includes a measurement processing unit 36 inside.
 センサヘッド20は、コントローラ30から出力される光を計測対象物Tに照射し、当該計測対象物Tからの反射光を受光する。センサヘッド20は、コントローラ30から出力されて光ファイバケーブル40を介して受光した光を反射させ、上述した計測対象物Tからの反射光と干渉させるための参照面を、内部に有している。 The sensor head 20 irradiates the light output from the controller 30 onto the measurement object T and receives the reflected light from the measurement object T. The sensor head 20 has an internal reference surface that reflects the light output from the controller 30 and received via the optical fiber cable 40 and causes it to interfere with the reflected light from the measurement object T described above.
 なお、センサヘッド20には対物レンズ21が取り付けられているが、当該対物レンズ21は着脱可能な構成となっている。対物レンズ21は、センサヘッド20と計測対象物Tとの距離に応じて、適切な焦点距離を有する対物レンズに交換可能であって、又は可変焦点の対物レンズを適用してもよい。 In addition, the objective lens 21 is attached to the sensor head 20, but the objective lens 21 is configured to be removable. The objective lens 21 can be replaced with an objective lens having an appropriate focal length depending on the distance between the sensor head 20 and the measurement target T, or a variable-focus objective lens may be used.
 さらに、センサヘッド20を設置する際には、ガイド光(可視光)を計測対象物Tに照射して、当該変位センサ10の計測領域内に計測対象物Tが適切に位置するようにセンサヘッド20及び/又は計測対象物Tを設置してもよい。 Furthermore, when installing the sensor head 20, guide light (visible light) may be irradiated onto the measurement object T, and the sensor head 20 and/or the measurement object T may be installed so that the measurement object T is appropriately positioned within the measurement area of the displacement sensor 10.
 光ファイバケーブル40は、コントローラ30に配置される光ファイバケーブル接続部34に接続されて延伸し、当該コントローラ30とセンサヘッド20とを接続する。光ファイバケーブル40は、参照光を導光する少なくとも1つの光ファイバ41Pと、測定光を導光する少なくとも1つの光ファイバ42Pとを含んでもよい。これにより、光ファイバケーブル40は、コントローラ30から投光される光を、光ファイバ42Pを介してセンサヘッド20に導き、さらに、センサヘッド20からの戻り光を、光ファイバ42Pを介してコントローラ30へ導くように構成されている。なお、光ファイバケーブル40は、センサヘッド20及びコントローラ30に着脱可能であって、長さ、太さ及び特性等において種々の光ファイバケーブルを適用することができる。また、光ファイバケーブル40は、1つのクラッド内に1つのコアが形成されたシングルコアとして構成されてもよいし、1つのクラッド内に複数のコアが形成されたマルチコアとして構成されてもよい。マルチコアの場合、複数の光路の距離が近くなるため、光ファイバケーブル40に加わる曲げや温度変動による測定光路と参照光路との変動を抑制することが可能となる。 The optical fiber cable 40 is connected to and extends from the optical fiber cable connection section 34 disposed in the controller 30, and connects the controller 30 and the sensor head 20. The optical fiber cable 40 may include at least one optical fiber 41P that guides the reference light and at least one optical fiber 42P that guides the measurement light. As a result, the optical fiber cable 40 is configured to guide the light projected from the controller 30 to the sensor head 20 via the optical fiber 42P, and further guide the return light from the sensor head 20 to the controller 30 via the optical fiber 42P. The optical fiber cable 40 is detachable from the sensor head 20 and the controller 30, and various optical fiber cables can be applied in terms of length, thickness, characteristics, etc. The optical fiber cable 40 may be configured as a single core in which one core is formed in one clad, or as a multi-core in which multiple cores are formed in one clad. In the case of a multi-core, the distance between the multiple optical paths is short, so that it is possible to suppress the fluctuation of the measurement optical path and the reference optical path due to bending applied to the optical fiber cable 40 or temperature fluctuation.
 表示部31は、例えば、液晶ディスプレイ又は有機ELディスプレイ等で構成される。表示部31には、変位センサ10の設定値、センサヘッド20からの戻り光の受光量、及び変位センサ10によって計測された計測対象物Tの変位(計測対象物Tまでの距離)等の計測結果が表示される。 The display unit 31 is configured, for example, with a liquid crystal display or an organic EL display. The display unit 31 displays the set value of the displacement sensor 10, the amount of returned light received from the sensor head 20, and the measurement results such as the displacement of the measurement object T measured by the displacement sensor 10 (the distance to the measurement object T).
 設定部32は、例えば、機械式ボタンやタッチパネル等をユーザが操作することによって、計測対象物Tを計測するために必要な設定が行われる。これらの必要な設定の全部又は一部は、予め設定されていてもよいし、外部I/F部33に接続された外部接続機器(図示せず)から設定されてもよい。また、外部接続機器は、ネットワークを介して有線又は無線で接続されていてもよい。 The setting unit 32 performs the settings necessary for measuring the measurement target T, for example, by the user operating a mechanical button, a touch panel, or the like. All or part of these necessary settings may be set in advance, or may be set from an external connection device (not shown) connected to the external I/F unit 33. In addition, the external connection device may be connected via a network in a wired or wireless manner.
 ここで、外部I/F部33は、例えば、Ethernet(登録商標)、RS232C、及びアナログ出力等で構成される。外部I/F部33には、他の接続機器に接続されて当該外部接続機器から必要な設定が行われたり、変位センサ10によって計測された計測結果等を外部接続機器に出力したりしてもよい。 Here, the external I/F unit 33 is composed of, for example, Ethernet (registered trademark), RS232C, and analog output. The external I/F unit 33 may be connected to another connected device to allow necessary settings to be made from the external connected device, or may output the measurement results, etc., measured by the displacement sensor 10 to the external connected device.
 また、コントローラ30が外部記憶部35に記憶されたデータを取り込むことにより、計測対象物Tを計測するために必要な設定が行われてもよい。外部記憶部35は、例えば、USB(Universal Serial Bus)メモリ等の補助記憶装置であって、計測対象物Tを計測するために必要な設定等が予め記憶されている。 In addition, the controller 30 may import data stored in the external memory unit 35 to perform settings required for measuring the measurement object T. The external memory unit 35 is, for example, an auxiliary storage device such as a USB (Universal Serial Bus) memory, and stores in advance settings required for measuring the measurement object T.
 コントローラ30における計測処理部36は、例えば、連続的に波長を変化させながら光を投光する波長掃引光源、センサヘッド20からの戻り光を受光して電気信号に変換する受光素子、及び電気信号を処理する信号処理回路等を含む。計測処理部36では、センサヘッド20からの戻り光に基づいて、最終的には、計測対象物Tの変位(計測対象物Tまでの距離)が算出されるように制御部及び記憶部等を用いて様々な処理がなされている。これらの処理についての詳細は後述する。 The measurement processing unit 36 in the controller 30 includes, for example, a wavelength swept light source that emits light while continuously changing the wavelength, a light receiving element that receives the return light from the sensor head 20 and converts it into an electrical signal, and a signal processing circuit that processes the electrical signal. In the measurement processing unit 36, various processes are performed using a control unit, a memory unit, etc. based on the return light from the sensor head 20 so that the displacement of the measurement object T (the distance to the measurement object T) is ultimately calculated. Details of these processes will be described later.
 図2は、本開示に係る変位センサ10によって計測対象物Tが計測される手順を示すフローチャートである。図2に示されるように、当該手順は、ステップS11~S14を含む。 FIG. 2 is a flowchart showing the procedure for measuring the measurement object T by the displacement sensor 10 according to the present disclosure. As shown in FIG. 2, the procedure includes steps S11 to S14.
 ステップS11では、センサヘッド20を設置する。例えば、センサヘッド20から計測対象物Tにガイド光を照射して、それを参考にして、センサヘッド20を適切な位置に設置する。 In step S11, the sensor head 20 is installed. For example, guide light is irradiated from the sensor head 20 onto the measurement target T, and the sensor head 20 is installed in an appropriate position based on the guide light.
 具体的には、コントローラ30における表示部31に、センサヘッド20からの戻り光の受光量を表示し、ユーザは、当該受光量を確認しながら、センサヘッド20の向き及び計測対象物Tとの距離(高さ位置)等を調整してもよい。基本的には、センサヘッド20からの光を計測対象物Tに対して垂直に(より垂直に近い角度で)照射できれば、当該計測対象物Tからの反射光の光量が大きく、センサヘッド20からの戻り光の受光量も大きくなる。 Specifically, the amount of light received from the sensor head 20 is displayed on the display unit 31 of the controller 30, and the user may adjust the orientation of the sensor head 20 and the distance (height position) from the measurement object T while checking the amount of light received. Basically, if the light from the sensor head 20 can be irradiated perpendicularly (at an angle closer to perpendicular) to the measurement object T, the amount of light reflected from the measurement object T will be large, and the amount of light received from the sensor head 20 will also be large.
 また、センサヘッド20と計測対象物Tとの距離に応じて、適切な焦点距離を有する対物レンズ21に交換してもよい。 In addition, the objective lens 21 may be replaced with one having an appropriate focal length depending on the distance between the sensor head 20 and the measurement object T.
 さらに、計測対象物Tを計測するに際して適切な設定ができない場合(例えば、計測に必要な受光量を得られない、又は対物レンズ21の焦点距離が不適切である等)には、エラー又は設定未完了等を、表示部31に表示したり、外部接続機器に出力したりして、ユーザに通知するようにしてもよい。 Furthermore, if appropriate settings cannot be made when measuring the measurement object T (for example, the amount of light received required for measurement cannot be obtained, or the focal length of the objective lens 21 is inappropriate), an error or incomplete settings may be displayed on the display unit 31 or output to an externally connected device to notify the user.
 ステップS12では、計測対象物Tを計測するに際して種々の計測条件を設定する。例えば、センサヘッド20が有する固有の校正データ(線形性を補正する関数等)を、ユーザがコントローラ30における設定部32を操作することによって設定する。 In step S12, various measurement conditions are set when measuring the measurement object T. For example, the user sets the inherent calibration data (such as a function that corrects linearity) of the sensor head 20 by operating the setting unit 32 in the controller 30.
 また、各種パラメータを設定してもよい。例えば、サンプリング時間、計測範囲、及び計測結果を正常とするか異常とするかの閾値等が設定される。さらに、計測対象物Tの反射率及び材質等の計測対象物Tの特性に応じて測定周期が設定され、及び計測対象物Tの材質に応じた測定モード等が設定されるようにしてもよい。 Various parameters may also be set. For example, the sampling time, the measurement range, and a threshold for determining whether the measurement result is normal or abnormal may be set. Furthermore, the measurement period may be set according to the characteristics of the measurement object T, such as the reflectance and material of the measurement object T, and a measurement mode may be set according to the material of the measurement object T.
 なお、これらの計測条件及び各種パラメータの設定は、コントローラ30における設定部32を操作することによって設定されるが、外部接続機器から設定されてもよいし、外部記憶部35からデータを取り込むことによって設定されてもよい。 These measurement conditions and various parameters are set by operating the setting unit 32 in the controller 30, but they may also be set from an externally connected device or by importing data from the external memory unit 35.
 ステップS13では、ステップS11で設置されたセンサヘッド20で、ステップS12で設定された計測条件及び各種パラメータに従って、計測対象物Tを計測する。 In step S13, the sensor head 20 installed in step S11 measures the measurement object T according to the measurement conditions and various parameters set in step S12.
 具体的には、コントローラ30の計測処理部36において、波長掃引光源から光が投光され、センサヘッド20からの戻り光を受光素子で受光し、信号処理回路によって周波数解析、距離変換及びピーク検出等がなされて、計測対象物Tの変位(計測対象物Tまでの距離)が算出される。具体的な計測処理についての詳細は、後述する。 Specifically, in the measurement processing unit 36 of the controller 30, light is projected from the wavelength swept light source, the light returning from the sensor head 20 is received by a light receiving element, and the signal processing circuit performs frequency analysis, distance conversion, peak detection, etc., to calculate the displacement of the measurement object T (the distance to the measurement object T). Specific details of the measurement process will be described later.
 ステップS14では、ステップS13で計測された計測結果を出力する。例えば、ステップS13で計測された計測対象物Tの変位(計測対象物Tまでの距離)等を、コントローラ30における表示部31に表示したり、外部接続機器に出力したりする。 In step S14, the measurement results obtained in step S13 are output. For example, the displacement of the measurement object T (distance to the measurement object T) measured in step S13 is displayed on the display unit 31 in the controller 30, or output to an externally connected device.
 また、ステップS13で計測された計測対象物Tの変位(計測対象物Tまでの距離)が、ステップS12で設定された閾値に基づいて、正常の範囲内であるか異常かについても計測結果として表示又は出力されてもよい。さらに、ステップS12で設定された計測条件、各種パラメータ及び測定モード等も共に表示又は出力されてもよい。 Furthermore, the displacement of the measurement object T (distance to the measurement object T) measured in step S13 may be displayed or output as a measurement result as to whether it is within a normal range or abnormal based on the threshold value set in step S12. Furthermore, the measurement conditions, various parameters, measurement mode, etc. set in step S12 may also be displayed or output.
[変位センサを含むシステムの概要]
 図3は、本開示に係る変位センサ10が用いられるセンサシステム1の概要を示す機能ブロック図である。図3に示されるように、センサシステム1は、変位センサ10と、制御機器11と、制御信号入力用センサ12と、外部接続機器13とを備える。なお、変位センサ10は、制御機器11及び外部接続機器13とは、例えば、通信ケーブル又は外部接続コード(例えば、外部入力線、外部出力線及び電源線等を含む)で接続され、制御機器11と制御信号入力用センサ12とは信号線で接続される。
[Overview of a system including a displacement sensor]
Fig. 3 is a functional block diagram showing an overview of a sensor system 1 in which a displacement sensor 10 according to the present disclosure is used. As shown in Fig. 3, the sensor system 1 includes the displacement sensor 10, a control device 11, a control signal input sensor 12, and an external connection device 13. Note that the displacement sensor 10 is connected to the control device 11 and the external connection device 13 by, for example, a communication cable or an external connection cord (including, for example, an external input line, an external output line, a power line, etc.), and the control device 11 and the control signal input sensor 12 are connected by a signal line.
 変位センサ10は、図1及び図2を用いて説明したように、計測対象物Tの変位(計測対象物Tまでの距離)を計測する。そして、変位センサ10は、その計測結果等を制御機器11及び外部接続機器13に出力してもよい。 As described with reference to Figures 1 and 2, the displacement sensor 10 measures the displacement of the measurement object T (the distance to the measurement object T). The displacement sensor 10 may then output the measurement results, etc. to the control device 11 and the externally connected device 13.
 制御機器11は、例えば、PLC(Programmable Logic Controller)であって、変位センサ10が計測対象物Tを計測するに際して、当該変位センサ10に対して各種の指示を与える。 The control device 11 is, for example, a PLC (Programmable Logic Controller), and provides various instructions to the displacement sensor 10 when the displacement sensor 10 measures the measurement object T.
 例えば、制御機器11は、制御機器11に接続された制御信号入力用センサ12からの入力信号に基づいて、測定タイミング信号を変位センサ10に出力してもよいし、ゼロリセット命令信号(現在の計測値を0に設定するための信号)等を変位センサ10に出力してもよい。 For example, the control device 11 may output a measurement timing signal to the displacement sensor 10 based on an input signal from a control signal input sensor 12 connected to the control device 11, or may output a zero reset command signal (a signal for setting the current measurement value to 0) or the like to the displacement sensor 10.
 制御信号入力用センサ12は、変位センサ10が計測対象物Tを計測するタイミングを指示するオン/オフ信号を、制御機器11に出力する。例えば、制御信号入力用センサ12は、計測対象物Tが移動する生産ラインの近傍に設置され、計測対象物Tが所定の位置に移動してきたことを検知して、制御機器11にオン/オフ信号を出力すればよい。 The control signal input sensor 12 outputs an on/off signal to the control device 11, which indicates the timing for the displacement sensor 10 to measure the measurement object T. For example, the control signal input sensor 12 may be installed near a production line along which the measurement object T moves, and upon detecting that the measurement object T has moved to a predetermined position, output an on/off signal to the control device 11.
 外部接続機器13は、例えば、PC(Personal Computer)であって、ユーザが操作することによって、変位センサ10に対して様々な設定を行うことができる。 The external connection device 13 is, for example, a PC (Personal Computer), and the user can operate it to configure various settings for the displacement sensor 10.
 具体例としては、測定モード、動作モード、測定周期、及び計測対象物Tの材質等が設定される。 Specific examples include the measurement mode, operation mode, measurement period, and the material of the measurement object T.
 測定モードの設定として、制御機器11内部で周期的に計測開始する「内部同期計測モード」、又は制御機器11外部からの入力信号に応じて計測開始する「外部同期計測モード」等が選択される。 As a measurement mode setting, an "internal synchronous measurement mode" in which measurement is started periodically within the control device 11, or an "external synchronous measurement mode" in which measurement is started in response to an input signal from outside the control device 11, etc. can be selected.
 動作モードの設定として、実際に計測対象物Tを計測する「運転モード」、又は計測対象物Tを計測するための計測条件を設定する「調整モード」等が選択される。 As the operation mode setting, an "operation mode" for actually measuring the measurement object T, or an "adjustment mode" for setting the measurement conditions for measuring the measurement object T, etc. can be selected.
 測定周期は、計測対象物Tを測定する周期であり、計測対象物Tの反射率に応じて設定すればよいが、仮に、計測対象物Tの反射率が低い場合であっても、測定周期を長くして適切に測定周期を設定すれば、計測対象物Tを適切に測定することができる。 The measurement period is the period for measuring the measurement object T, and may be set according to the reflectance of the measurement object T. Even if the reflectance of the measurement object T is low, the measurement object T can be properly measured by lengthening the measurement period and setting it appropriately.
 計測対象物Tについて、反射光の成分として拡散反射が比較的多い場合に適した「粗面モード」、反射光の成分として鏡面反射が比較的多い場合に適した「鏡面モード」、又はこれらの中間的な「標準モード」等が選択される。 For the measurement object T, the "rough surface mode" is selected when the reflected light component is relatively high in diffuse reflection, the "mirror surface mode" is selected when the reflected light component is relatively high in specular reflection, or the "standard mode" is selected as an intermediate mode between the two.
 このように、計測対象物Tの反射率及び材質に応じて、適切な設定を行うことによって、より高精度に計測対象物Tを計測することができる。 In this way, by making appropriate settings according to the reflectance and material of the measurement object T, it is possible to measure the measurement object T with higher accuracy.
 図4は、本開示に係る変位センサ10が用いられるセンサシステム1によって計測対象物Tが計測される手順を示すフローチャートである。図4に示されるように、当該手順は、上述した外部同期計測モードの場合の手順であって、ステップS21~S24を含む。 FIG. 4 is a flowchart showing the procedure for measuring a measurement object T by a sensor system 1 in which a displacement sensor 10 according to the present disclosure is used. As shown in FIG. 4, the procedure is for the external synchronization measurement mode described above, and includes steps S21 to S24.
 ステップS21では、センサシステム1は、計測される対象である計測対象物Tを検知する。具体的には、制御信号入力用センサ12は、生産ライン上において、計測対象物Tが所定の位置に移動してきたことを検知する。 In step S21, the sensor system 1 detects the measurement object T, which is the object to be measured. Specifically, the control signal input sensor 12 detects that the measurement object T has moved to a predetermined position on the production line.
 ステップS22では、センサシステム1は、ステップS21で検知された計測対象物Tを変位センサ10によって計測するように計測指示する。具体的には、制御信号入力用センサ12は、制御機器11にオン/オフ信号を出力することにより、ステップS21で検知された計測対象物Tを測定するタイミングを指示し、制御機器11は、当該オン/オフ信号に基づいて、変位センサ10に測定タイミング信号を出力して、計測対象物Tを計測するように計測指示する。 In step S22, the sensor system 1 issues a measurement instruction to have the displacement sensor 10 measure the measurement object T detected in step S21. Specifically, the control signal input sensor 12 outputs an on/off signal to the control device 11 to instruct the timing of measuring the measurement object T detected in step S21, and the control device 11 outputs a measurement timing signal to the displacement sensor 10 based on the on/off signal to instruct the displacement sensor 10 to measure the measurement object T.
 ステップS23では、変位センサ10によって計測対象物Tが計測される。具体的には、変位センサ10は、ステップS22で受け取った計測指示に基づいて、計測対象物Tを計測する。 In step S23, the measurement object T is measured by the displacement sensor 10. Specifically, the displacement sensor 10 measures the measurement object T based on the measurement instruction received in step S22.
 ステップS24では、センサシステム1は、ステップS23で計測された計測結果を出力する。具体的には、変位センサ10は、計測処理の結果を、表示部31に表示したり、外部I/F部33を経由して制御機器11又は外部接続機器13等に出力したりする。 In step S24, the sensor system 1 outputs the measurement results obtained in step S23. Specifically, the displacement sensor 10 displays the results of the measurement process on the display unit 31, or outputs the results to the control device 11 or the externally connected device 13 via the external I/F unit 33.
 なお、ここでは、図4を用いて、制御信号入力用センサ12によって計測対象物Tが検知されることにより計測対象物Tを計測する外部同期計測モードの場合についての手順を説明したが、これに限定されるものではない。例えば、内部同期計測モードの場合は、ステップS21及びS22に代わって、予め設定された周期に基づいて測定タイミング信号が生成されることにより、計測対象物Tを計測するように変位センサ10に指示する。 Note that, while FIG. 4 has been used to explain the procedure for the external synchronous measurement mode in which the measurement object T is measured by the control signal input sensor 12 detecting the measurement object T, the procedure is not limited to this. For example, in the internal synchronous measurement mode, instead of steps S21 and S22, a measurement timing signal is generated based on a preset cycle to instruct the displacement sensor 10 to measure the measurement object T.
 次に、本開示に係る変位センサ10によって計測対象物Tが計測される原理を説明する。
 図5Aは、本開示に係る変位センサ10によって計測対象物Tが計測される原理を説明するための図である。図5Aに示されるように、変位センサ10は、センサヘッド20、光ファイバケーブル40、及びコントローラ30を備える。センサヘッド20は、対物レンズ21と、複数のコリメートレンズ22a~22cとを含み、コントローラ30は、波長掃引光源51と、光増幅器52と、複数のアイソレータ53及び53a~53bと、複数の光カプラ54及び54a~54eと、減衰器55と、複数の受光素子(例えば、フォトディテクタ(PD))56a~56cと、複数の増幅回路57a~57cと、複数のアナログデジタル(AD)変換部(例えば、アナログデジタルコンバータ)58a~58cと、処理部(例えば、プロセッサ)59と、バランスディテクタ60と、補正信号生成部61とを含む。光ファイバケーブル40は、光ファイバ41Pa~41Pcと、光ファイバ42Pa~42Pcとを含む。
Next, the principle of measurement of the measurement target T by the displacement sensor 10 according to the present disclosure will be described.
5A is a diagram for explaining the principle of measuring the measurement target T by the displacement sensor 10 according to the present disclosure. As shown in FIG. 5A, the displacement sensor 10 includes a sensor head 20, an optical fiber cable 40, and a controller 30. The sensor head 20 includes an objective lens 21 and a plurality of collimator lenses 22a to 22c, and the controller 30 includes a wavelength swept light source 51, an optical amplifier 52, a plurality of isolators 53 and 53a to 53b, a plurality of optical couplers 54 and 54a to 54e, an attenuator 55, a plurality of light receiving elements (e.g., photodetectors (PD)) 56a to 56c, a plurality of amplifier circuits 57a to 57c, a plurality of analog-to-digital (AD) conversion units (e.g., analog-to-digital converters) 58a to 58c, a processing unit (e.g., a processor) 59, a balance detector 60, and a correction signal generating unit 61. The optical fiber cable 40 includes optical fibers 41Pa to 41Pc and optical fibers 42Pa to 42Pc.
 波長掃引光源51は、波長を掃引したレーザ光を投光する。波長掃引光源51としては、例えば、VCSEL(Vertical Cavity Surface Emitting Laser)を電流で変調する方式を適用すれば、共振器長が短いためにモードホップを起こしにくく、波長を変化させることが容易であり、低コストで実現することができる。 The wavelength swept light source 51 emits a laser beam with a swept wavelength. For example, if a VCSEL (Vertical Cavity Surface Emitting Laser) is used as the wavelength swept light source 51 by modulating the laser current, mode hopping is unlikely to occur due to the short resonator length, the wavelength can be easily changed, and it can be realized at low cost.
 光増幅器52は、波長掃引光源51から投光される光を増幅する。光増幅器52は、例えば、EDFA(erbium-doped fiber amplifier)を適用し、例えば、1550nm専用の光増幅器であってもよい。 The optical amplifier 52 amplifies the light emitted from the wavelength swept light source 51. The optical amplifier 52 may be, for example, an erbium-doped fiber amplifier (EDFA), and may be, for example, an optical amplifier dedicated to 1550 nm.
 アイソレータ53は、入射した光を一方向に透過させる光学素子であって、戻り光によって発生するノイズの影響を防ぐために、波長掃引光源51の直後に配置されてもよい。 The isolator 53 is an optical element that transmits incident light in one direction, and may be placed immediately after the wavelength swept light source 51 to prevent the effects of noise caused by returned light.
 このように、波長掃引光源51から投光された光は、光増幅器52によって増幅され、アイソレータ53を介して、光カプラ54によって主干渉計と副干渉計とに分岐される。例えば、光カプラ54では、主干渉計と副干渉計とに分岐する光の割合は、主干渉計側に90%以上分岐させるようにしてもよい。 In this way, the light emitted from the wavelength swept light source 51 is amplified by the optical amplifier 52, passes through the isolator 53, and is branched by the optical coupler 54 to the main interferometer and the sub interferometer. For example, the optical coupler 54 may be configured so that the proportion of light branched to the main interferometer and the sub interferometer is 90% or more on the main interferometer side.
 主干渉計に分岐された光は、さらに、1段目の光カプラ54aによって、センサヘッド20の方向と2段目の光カプラ54bの方向とに分岐される。 The light branched off to the main interferometer is further branched by the first-stage optical coupler 54a in the direction of the sensor head 20 and in the direction of the second-stage optical coupler 54b.
 1段目の光カプラ54aによってセンサヘッド20の方向に分岐された光は、光カプラ62aによって、光ファイバケーブル40の1段目の光ファイバ41Pa及び光ファイバ42Paの方向に分岐される。光ファイバ41Paの方向に分岐された光は参照光となり、光ファイバ42Paの方向に分岐された光は測定光となる。すなわち、端部41Iaから光ファイバ41Paに入射した参照光は、光ファイバ41Pa内を導光され、参照面41Raで反射されて、端部41Iaに向かって光ファイバ41Pa内を導光され、端部41Iaから光カプラ62aへと供給される。一方、端部42Iaから光ファイバ42Paに入射した測定光は、光ファイバ42Pa内を導光され、端部42Oaからセンサヘッド20内の光ファイバに入射し、センサヘッド20において、コリメートレンズ22a及び対物レンズ21を通過して計測対象物Tに照射される。そして、計測対象物Tによって反射された測定光は、センサヘッド20を介して光ファイバ42Paの端部42Oaに入射し、光ファイバ42Paを導光されて、端部42Iaから光カプラ62aへと供給される。そして、光ファイバケーブル40の端部41Iaから供給された参照光と、光ファイバケーブル40の端部42Iaから供給された測定光とは、光カプラ62aにおいて干渉し、干渉光が生成されて、当該干渉光の少なくとも一部が受光素子56aに供給される。受光素子56aで受光された干渉光は、電気信号に変換される。 The light branched by the first-stage optical coupler 54a toward the sensor head 20 is branched by the optical coupler 62a toward the first-stage optical fiber 41Pa and optical fiber 42Pa of the optical fiber cable 40. The light branched toward the optical fiber 41Pa becomes reference light, and the light branched toward the optical fiber 42Pa becomes measurement light. That is, the reference light incident on the optical fiber 41Pa from the end 41Ia is guided inside the optical fiber 41Pa, reflected by the reference surface 41Ra, guided inside the optical fiber 41Pa toward the end 41Ia, and supplied from the end 41Ia to the optical coupler 62a. On the other hand, the measurement light incident on the optical fiber 42Pa from the end 42Ia is guided inside the optical fiber 42Pa and enters the optical fiber in the sensor head 20 from the end 42Oa, and in the sensor head 20, passes through the collimator lens 22a and the objective lens 21 to be irradiated to the measurement object T. The measurement light reflected by the measurement object T enters the end 42Oa of the optical fiber 42Pa via the sensor head 20, is guided through the optical fiber 42Pa, and is supplied from the end 42Ia to the optical coupler 62a. The reference light supplied from the end 41Ia of the optical fiber cable 40 and the measurement light supplied from the end 42Ia of the optical fiber cable 40 interfere with each other in the optical coupler 62a, generating interference light, at least a portion of which is supplied to the light receiving element 56a. The interference light received by the light receiving element 56a is converted into an electrical signal.
 1段目の光カプラ54aによって2段目の光カプラ54bの方向に分岐された光は、アイソレータ53aを介して2段目の光カプラ54bに向かい、当該2段目の光カプラ54bによって、さらにセンサヘッド20の方向と3段目の光カプラ54cの方向とに分岐される。光カプラ54bからセンサヘッド20の方向に分岐された光は、1段目と同様に、光カプラ62bによって、光ファイバケーブル40の2段目の光ファイバ41Pb及び光ファイバ42Pbの方向に分岐される。光ファイバ41Pbの方向に分岐された光は参照光となり、光ファイバ42Pbの方向に分岐された光は測定光となる。すなわち、端部41Ibから光ファイバ41Pbに入射した参照光は、光ファイバ41Pb内を導光され、参照面41Rbで反射されて、端部41Ibに向かって光ファイバ41Pb内を導光され、端部41Ibから光カプラ62bへと供給される。一方、端部42Ibから光ファイバ42Pbに入射した測定光は、光ファイバ42Pb内を導光され、端部42Obからセンサヘッド20内の光ファイバに入射し、センサヘッド20において、コリメートレンズ22b及び対物レンズ21を通過して計測対象物Tに照射される。そして、計測対象物Tによって反射された測定光は、センサヘッド20を介して光ファイバ42Pbの端部42Obに入射し、光ファイバ42Pbを導光されて、端部42Ibから光カプラ62bへと供給される。そして、光ファイバケーブル40の端部41Ibから供給された参照光と、光ファイバケーブル40の端部42Ibから供給された測定光とは、光カプラ62bにおいて干渉し、干渉光が生成されて、当該干渉光の少なくとも一部が受光素子56bに供給される。受光素子56bで受光された干渉光は、電気信号に変換される。 The light branched by the first-stage optical coupler 54a toward the second-stage optical coupler 54b passes through the isolator 53a and travels to the second-stage optical coupler 54b, which then branches it further toward the sensor head 20 and the third-stage optical coupler 54c. The light branched from the optical coupler 54b toward the sensor head 20 is branched by the optical coupler 62b toward the second-stage optical fiber 41Pb and optical fiber 42Pb of the optical fiber cable 40, as in the first stage. The light branched toward the optical fiber 41Pb becomes the reference light, and the light branched toward the optical fiber 42Pb becomes the measurement light. That is, the reference light incident on the optical fiber 41Pb from the end 41Ib is guided through the optical fiber 41Pb, reflected by the reference surface 41Rb, guided through the optical fiber 41Pb toward the end 41Ib, and supplied from the end 41Ib to the optical coupler 62b. On the other hand, the measurement light incident on the optical fiber 42Pb from the end 42Ib is guided through the optical fiber 42Pb and enters the optical fiber in the sensor head 20 from the end 42Ob, and passes through the collimator lens 22b and the objective lens 21 in the sensor head 20 to be irradiated onto the measurement object T. Then, the measurement light reflected by the measurement object T enters the end 42Ob of the optical fiber 42Pb via the sensor head 20, is guided through the optical fiber 42Pb, and is supplied from the end 42Ib to the optical coupler 62b. Then, the reference light supplied from the end 41Ib of the optical fiber cable 40 and the measurement light supplied from the end 42Ib of the optical fiber cable 40 interfere with each other in the optical coupler 62b, generating interference light, and at least a part of the interference light is supplied to the light receiving element 56b. The interference light received by the light receiving element 56b is converted into an electrical signal.
 2段目の光カプラ54bによって3段目の光カプラ54cの方向に分岐された光は、アイソレータ53bを介して3段目の光カプラ54cに向かい、当該3段目の光カプラ54cによって、さらにセンサヘッド20の方向と減衰器55の方向とに分岐される。光カプラ54cからセンサヘッド20の方向に分岐された光は、1段目及び2段目と同様に、光カプラ62cによって、光ファイバケーブル40の3段目の光ファイバ41Pc及び光ファイバ42Pcの方向に分岐される。光ファイバ41Pcの方向に分岐された光は参照光となり、光ファイバ42Pcの方向に分岐された光は測定光となる。すなわち、端部41Icから光ファイバ41Pcに入射した参照光は、光ファイバ41Pc内を導光され、参照面41Rcで反射されて、端部41Icに向かって光ファイバ41Pc内を導光され、端部41Icから光カプラ62cへと供給される。一方、端部42Icから光ファイバ42Pcに入射した測定光は、光ファイバ42Pc内を導光され、端部42Ocからセンサヘッド20内の光ファイバに入射し、センサヘッド20において、コリメートレンズ22c及び対物レンズ21を通過して計測対象物Tに照射される。そして、計測対象物Tによって反射された測定光は、センサヘッド20を介して光ファイバ42Pcの端部42Ocに入射し、光ファイバ42Pcを導光されて、端部42Icから光カプラ62cへと供給される。そして、光ファイバケーブル40の端部41Icから供給された参照光と、光ファイバケーブル40の端部42Icから供給された測定光とは、光カプラ62cにおいて干渉し、干渉光が生成されて、当該干渉光の少なくとも一部が受光素子56cに供給される。受光素子56cで受光された干渉光は、電気信号に変換される。 The light branched by the second-stage optical coupler 54b toward the third-stage optical coupler 54c travels through the isolator 53b to the third-stage optical coupler 54c, which further branches it toward the sensor head 20 and the attenuator 55. The light branched from the optical coupler 54c toward the sensor head 20 is branched by the optical coupler 62c toward the optical fiber 41Pc and optical fiber 42Pc of the third stage of the optical fiber cable 40, as in the first and second stages. The light branched toward the optical fiber 41Pc becomes the reference light, and the light branched toward the optical fiber 42Pc becomes the measurement light. That is, the reference light incident on the optical fiber 41Pc from the end 41Ic is guided through the optical fiber 41Pc, reflected by the reference surface 41Rc, guided through the optical fiber 41Pc toward the end 41Ic, and supplied from the end 41Ic to the optical coupler 62c. On the other hand, the measurement light incident on the optical fiber 42Pc from the end 42Ic is guided through the optical fiber 42Pc and enters the optical fiber in the sensor head 20 from the end 42Oc, and passes through the collimator lens 22c and the objective lens 21 in the sensor head 20 to be irradiated onto the measurement object T. Then, the measurement light reflected by the measurement object T enters the end 42Oc of the optical fiber 42Pc via the sensor head 20, is guided through the optical fiber 42Pc, and is supplied from the end 42Ic to the optical coupler 62c. Then, the reference light supplied from the end 41Ic of the optical fiber cable 40 and the measurement light supplied from the end 42Ic of the optical fiber cable 40 interfere with each other in the optical coupler 62c, generating interference light, and at least a part of the interference light is supplied to the light receiving element 56c. The interference light received by the light receiving element 56c is converted into an electrical signal.
 なお、3段目の光カプラ54cによってセンサヘッド20でない方向に分岐された光は、計測対象物Tの計測に用いられないため、反射して戻ってこないように、例えば、ターミネータ等の減衰器55によって減衰されるとよい。 In addition, since the light branched off by the third-stage optical coupler 54c in a direction other than the sensor head 20 is not used to measure the measurement object T, it is advisable to attenuate it by an attenuator 55 such as a terminator so that it is not reflected back.
 このように、主干渉計では、3段の光路(3チャネル)を有し、それぞれセンサヘッド20の光ファイバの先端(端面)から計測対象物Tまでの距離の2倍(往復)を光路長差とした干渉計であり、それぞれ光路長差に応じた3つの干渉光を生成している。 In this way, the main interferometer has three optical paths (three channels), each with an optical path length difference of twice the distance (round trip) from the tip (end face) of the optical fiber of the sensor head 20 to the measurement object T, and generates three interference lights according to the optical path length difference.
 受光素子56a~56cは、上述したように主干渉計からの干渉光を受光し、当該受光した受光量に応じた電気信号を生成する。 The light receiving elements 56a to 56c receive the interference light from the main interferometer as described above and generate an electrical signal according to the amount of light received.
 増幅回路57a~57cは、それぞれ受光素子56a~56cから出力される電気信号を増幅する。 The amplifier circuits 57a to 57c amplify the electrical signals output from the light receiving elements 56a to 56c, respectively.
 AD変換部58a~58cは、それぞれ増幅回路57a~57cによって増幅された電気信号を受信して、当該電気信号に関してアナログ信号からデジタル信号に変換する(AD変換)。ここで、AD変換部58a~58cは、副干渉計における補正信号生成部61からの補正信号に基づいて、AD変換する。 The AD conversion units 58a to 58c receive the electrical signals amplified by the amplifier circuits 57a to 57c, respectively, and convert the electrical signals from analog to digital (AD conversion). Here, the AD conversion units 58a to 58c perform AD conversion based on the correction signal from the correction signal generation unit 61 in the sub-interferometer.
 副干渉計では、波長掃引光源51の掃引時における波長の非線形性を補正するために、副干渉計にて干渉信号を取得し、Kクロックと呼ばれる補正信号を生成する。 In order to correct the nonlinearity of the wavelength when the wavelength swept light source 51 is swept, the secondary interferometer acquires an interference signal and generates a correction signal called a K clock.
 具体的には、光カプラ54によって副干渉計に分岐された光は、光カプラ54dによって、さらに分岐される。ここで、分岐された各光の光路は、例えば、光カプラ54dと光カプラ54eとの間において異なる長さの光ファイバを用いて光路長差を有するように構成されて、当該光路長差に応じた干渉光が光カプラ54eから出力される。そして、バランスディテクタ60は、光カプラ54eからの干渉光を受光し、その逆位相の信号との差分を取ることによってノイズを除去しつつ、光信号を増幅して電気信号に変換する。 Specifically, the light branched off to the sub-interferometer by optical coupler 54 is further branched off by optical coupler 54d. Here, the optical paths of the branched lights are configured to have an optical path length difference, for example, by using optical fibers of different lengths between optical couplers 54d and 54e, and interference light according to the optical path length difference is output from optical coupler 54e. Then, the balanced detector 60 receives the interference light from optical coupler 54e and amplifies the optical signal and converts it into an electrical signal while removing noise by taking the difference with the opposite phase signal.
 なお、光カプラ54d及び光カプラ54eは、いずれも50:50の割合で光を分岐すればよい。 In addition, optical coupler 54d and optical coupler 54e each need to split light in a 50:50 ratio.
 補正信号生成部61は、バランスディテクタ60からの電気信号に基づいて、波長掃引光源51の掃引時における波長の非線形性を把握し、当該非線形に応じたKクロックを生成し、AD変換部58a~58cに出力する。 The correction signal generator 61 determines the nonlinearity of the wavelength when the wavelength swept light source 51 is swept based on the electrical signal from the balance detector 60, generates a K clock according to the nonlinearity, and outputs it to the AD converters 58a to 58c.
 波長掃引光源51の掃引時における波長の非線形性から、主干渉計においてそれぞれAD変換部58a~58cに入力されるアナログ信号の波の間隔は等間隔ではない。AD変換部58a~58cでは、波の間隔が等間隔になるように、上述したKクロックに基づいてサンプリング時間を補正してAD変換(サンプリング)される。 Due to the nonlinearity of the wavelength when the wavelength swept light source 51 is swept, the intervals between the waves of the analog signals input to the AD converters 58a to 58c in the main interferometer are not equal. In the AD converters 58a to 58c, the sampling time is corrected based on the K clock described above and AD conversion (sampling) is performed so that the intervals between the waves become equal.
 なお、Kクロックは、上述したように、主干渉計のアナログ信号をサンプリングするために用いられる補正信号であるため、主干渉計のアナログ信号よりも高周波に生成される必要がある。具体的には、副干渉計における光カプラ54dと光カプラ54eとの間で設けられた光路長差を、主干渉計における光ファイバの先端(端面)と計測対象物Tとの間で設けられた光路長差よりも長くしてもよいし、補正信号生成部61で周波数を逓倍(例えば、8倍等)して高周波化してもよい。 As described above, the K clock is a correction signal used to sample the analog signal of the main interferometer, and therefore needs to be generated at a higher frequency than the analog signal of the main interferometer. Specifically, the optical path length difference between optical couplers 54d and 54e in the sub interferometer may be made longer than the optical path length difference between the tip (end face) of the optical fiber in the main interferometer and the measurement object T, or the frequency may be multiplied (e.g., 8 times) by the correction signal generating unit 61 to make it higher frequency.
 処理部59は、それぞれAD変換部58a~58cによって非線形性が補正されつつAD変換されたデジタル信号を取得し、当該デジタル信号に基づいて、計測対象物Tの変位(計測対象物Tまでの距離)を算出する。具体的には、処理部59では、高速フーリエ変換(FFT:fast Fourier transform)を用いてデジタル信号を周波数変換し、それらを解析することによって距離が算出される。処理部59における詳細な処理については後述する。 The processing unit 59 acquires the digital signals that have been AD converted while the nonlinearity has been corrected by the AD conversion units 58a to 58c, and calculates the displacement of the measurement object T (the distance to the measurement object T) based on the digital signals. Specifically, the processing unit 59 uses a fast Fourier transform (FFT) to frequency convert the digital signals, and calculates the distance by analyzing them. The detailed processing in the processing unit 59 will be described later.
 なお、処理部59では、高速処理が要求されることから、FPGA(field-programmable gate array)等の集積回路で実現される場合が多い。 In addition, because high-speed processing is required for the processing unit 59, it is often realized by an integrated circuit such as an FPGA (field-programmable gate array).
 また、ここでは、主干渉計において3段の光路を設けて、センサヘッド20によってそれぞれの光路から計測対象物Tに対して測定光が照射され、それぞれから得られる干渉光(戻り光)に基づいて、計測対象物Tまでの距離等が計測される(マルチチャネル)。主干渉計におけるチャネルは、3段に限定されるものではなく、1段又は2段であってもよいし、4段以上であってもよい。 Here, three optical paths are provided in the main interferometer, and the sensor head 20 irradiates the measurement object T with measurement light from each optical path, and the distance to the measurement object T, etc. are measured based on the interference light (return light) obtained from each (multi-channel). The number of channels in the main interferometer is not limited to three, and may be one or two, or four or more.
 図5Bは、本開示に係る変位センサ10によって計測対象物Tが計測される別の原理を説明するための図である。図5Bに示されるように、変位センサ10は、センサヘッド20、光ファイバケーブル40、及びコントローラ30を備える。センサヘッド20は、対物レンズ21と、複数のコリメートレンズ22a~22cとを含み、コントローラ30は、波長掃引光源51と、光増幅器52と、複数のアイソレータ53及び53a~53bと、複数の光カプラ54及び54a~54jと、減衰器55と、複数の受光素子(例えば、フォトディテクタ(PD))56a~56cと、複数の増幅回路57a~57cと、複数のアナログデジタル(AD)変換部(例えば、アナログデジタルコンバータ)58a~58cと、処理部(例えば、プロセッサ)59と、バランスディテクタ60と、補正信号生成部61とを含む。光ファイバケーブル40は、光ファイバ42Pa~42Pcと、光ファイバ43Pa~43Pcとを含む。 5B is a diagram for explaining another principle of measuring the measurement object T by the displacement sensor 10 according to the present disclosure. As shown in FIG. 5B, the displacement sensor 10 includes a sensor head 20, an optical fiber cable 40, and a controller 30. The sensor head 20 includes an objective lens 21 and a plurality of collimating lenses 22a to 22c, and the controller 30 includes a wavelength swept light source 51, an optical amplifier 52, a plurality of isolators 53 and 53a to 53b, a plurality of optical couplers 54 and 54a to 54j, an attenuator 55, a plurality of light receiving elements (e.g., photodetectors (PD)) 56a to 56c, a plurality of amplifier circuits 57a to 57c, a plurality of analog-to-digital (AD) conversion units (e.g., analog-to-digital converters) 58a to 58c, a processing unit (e.g., a processor) 59, a balance detector 60, and a correction signal generating unit 61. The optical fiber cable 40 includes optical fibers 42Pa-42Pc and optical fibers 43Pa-43Pc.
 波長掃引光源51から投光された光は、光増幅器52によって増幅され、アイソレータ53を介して、光カプラ54によって主干渉計側と副干渉計側とに分岐されるが、主干渉計側に分岐された光は、さらに、光カプラ54fによって測定光と参照光とに分岐される。 The light emitted from the wavelength swept light source 51 is amplified by the optical amplifier 52, passes through the isolator 53, and is branched by the optical coupler 54 to the main interferometer side and the sub-interferometer side. The light branched to the main interferometer side is further branched by the optical coupler 54f into measurement light and reference light.
 測定光は、1段目の光カプラ54aを介して、光ファイバケーブル40の光ファイバ42Pa、センサヘッド20のコリメートレンズ22a及び対物レンズ21を順次に通過して計測対象物Tに照射され、当該計測対象物Tで反射する。計測対象物Tによって反射された測定光は、センサヘッド20を介して光ファイバ42Paの端部42Oaに入射し、光ファイバ42Paを導光されて、端部42Iaから光カプラ54aを介して光カプラ54hへと供給される。 The measurement light passes through the first-stage optical coupler 54a, the optical fiber 42Pa of the optical fiber cable 40, the collimator lens 22a of the sensor head 20, and the objective lens 21 in sequence, and is irradiated onto the measurement object T, and is reflected by the measurement object T. The measurement light reflected by the measurement object T is incident on the end 42Oa of the optical fiber 42Pa via the sensor head 20, is guided through the optical fiber 42Pa, and is supplied from the end 42Ia to the optical coupler 54h via the optical coupler 54a.
 同様に、1段目の光カプラ54aから2段目の光カプラ54bの方向に分岐された光は、当該2段目の光カプラ54bを介して、光ファイバケーブル40の光ファイバ42Pb、センサヘッド20のコリメートレンズ22b及び対物レンズ21を順次に通過して計測対象物Tに照射され、当該計測対象物Tで反射した上で、2段目の光カプラ54bに戻り、光カプラ54bを介して光カプラ54iへと供給される。2段目の光カプラ54bから3段目の光カプラ54cの方向に分岐された光は、当該3段目の光カプラ54cを介して、光ファイバケーブル40の光ファイバ42Pc、センサヘッド20のコリメートレンズ22c及び対物レンズ21を順次に通過して計測対象物Tに照射され、当該計測対象物Tで反射した上で、3段目の光カプラ54cに戻り、光カプラ54cを介して光カプラ54jへと供給される。 Similarly, the light branched from the first-stage optical coupler 54a toward the second-stage optical coupler 54b passes through the optical fiber 42Pb of the optical fiber cable 40, the collimating lens 22b of the sensor head 20, and the objective lens 21 in sequence via the second-stage optical coupler 54b, is irradiated onto the measurement object T, is reflected by the measurement object T, returns to the second-stage optical coupler 54b, and is supplied to the optical coupler 54i via the optical coupler 54b. The light branched from the second-stage optical coupler 54b toward the third-stage optical coupler 54c passes through the optical fiber 42Pc of the optical fiber cable 40, the collimating lens 22c of the sensor head 20, and the objective lens 21 in sequence via the third-stage optical coupler 54c, is irradiated onto the measurement object T, is reflected by the measurement object T, returns to the third-stage optical coupler 54c, and is supplied to the optical coupler 54j via the optical coupler 54c.
 一方、光カプラ54fによって分岐された参照光は、さらに、光カプラ54gによって光ファイバケーブル40の端部43Ia~43Icのそれぞれの方向に分岐される。光ファイバケーブル40の端部43Ia~43Icのそれぞれに入射した参照光は、光ファイバケーブル40の光ファイバ43Pa~43Pc内をそれぞれ導光される。光ファイバ43Pa~43Pcの端部43Ia~43Icとは反対側には、端部43Oa~43Ocが設けられている。光ファイバ43Pa~43Pc内を導光された参照光は、端部43Oa~43Ocから光カプラ54h、54i及び54jのそれぞれに供給される。 Meanwhile, the reference light branched by optical coupler 54f is further branched by optical coupler 54g in the direction of each of ends 43Ia to 43Ic of optical fiber cable 40. The reference light incident on each of ends 43Ia to 43Ic of optical fiber cable 40 is guided through optical fibers 43Pa to 43Pc of optical fiber cable 40. Ends 43Oa to 43Oc are provided on the opposite side of optical fibers 43Pa to 43Pc from ends 43Ia to 43Ic. The reference light guided through optical fibers 43Pa to 43Pc is supplied from ends 43Oa to 43Oc to optical couplers 54h, 54i, and 54j, respectively.
 光カプラ54hでは、光カプラ54aから出力される計測対象物Tで反射された測定光と、光カプラ54gから出力され光ファイバケーブル40内の光ファイバ43Paを導光された参照光とが干渉し、干渉光が生成されて、受光素子56aで受光されて電気信号に変換される。換言すれば、光カプラ54fによって測定光と参照光とに分岐され、当該測定光の光路(光カプラ54fから、光カプラ54a、光ファイバ42Pa、コリメートレンズ22a、対物レンズ21を介して計測対象物Tで反射し、光カプラ54hまで到達する光路)と、当該参照光の光路(光カプラ54fから、光カプラ54gを介して光ファイバ43Paを導光された上で光カプラ54hまで到達する光路)との光路長差に応じた干渉光が生成されて、当該干渉光が受光素子56aで受光されて電気信号に変換される。 In the optical coupler 54h, the measurement light reflected by the measurement object T output from the optical coupler 54a interferes with the reference light output from the optical coupler 54g and guided through the optical fiber 43Pa in the optical fiber cable 40, generating interference light that is received by the light receiving element 56a and converted into an electrical signal. In other words, the measurement light and the reference light are split by the optical coupler 54f, and interference light is generated according to the optical path length difference between the optical path of the measurement light (the optical path from the optical coupler 54f through the optical coupler 54a, the optical fiber 42Pa, the collimating lens 22a, the objective lens 21, reflected by the measurement object T, and reaches the optical coupler 54h) and the optical path of the reference light (the optical path from the optical coupler 54f through the optical coupler 54g and guided through the optical fiber 43Pa to reach the optical coupler 54h), and the interference light is received by the light receiving element 56a and converted into an electrical signal.
 光カプラ54iでは、測定光の光路(光カプラ54fから、光カプラ54a、54b、光ファイバ42Pb、コリメートレンズ22b、対物レンズ21を介して計測対象物Tで反射し、光カプラ54iまで到達する光路)と、参照光の光路(光カプラ54fから、光カプラ54gを介して光ファイバ43Pbを導光された上で光カプラ54iまで到達する光路)との光路長差に応じた干渉光が生成されて、当該干渉光が受光素子56bで受光されて電気信号に変換される。 In the optical coupler 54i, interference light is generated according to the difference in optical path length between the optical path of the measurement light (the optical path from optical coupler 54f through optical couplers 54a and 54b, optical fiber 42Pb, collimating lens 22b, objective lens 21, reflected by the measurement target T, and reaching optical coupler 54i) and the optical path of the reference light (the optical path from optical coupler 54f through optical coupler 54g, guided through optical fiber 43Pb, and reaching optical coupler 54i), and the interference light is received by the light receiving element 56b and converted into an electrical signal.
 光カプラ54jでは、測定光の光路(光カプラ54fから、光カプラ54a、54b、54c、光ファイバ42Pc、コリメートレンズ22c、対物レンズ21を介して計測対象物Tで反射し、光カプラ54jまで到達する光路)と、参照光の光路(光カプラ54fから、光カプラ54gを介して光ファイバ43Pcを導光された上で光カプラ54jまで到達する光路)との光路長差に応じた干渉光が生成されて、当該干渉光が受光素子56cで受光されて電気信号に変換される。なお、受光素子56a~56cは、例えば、バランスフォトディテクタであってもよい。 In the optical coupler 54j, interference light is generated according to the difference in optical path length between the optical path of the measurement light (the optical path from optical coupler 54f through optical couplers 54a, 54b, 54c, optical fiber 42Pc, collimating lens 22c, objective lens 21, reflected by the measurement target T, and reaching optical coupler 54j) and the optical path of the reference light (the optical path from optical coupler 54f through optical coupler 54g, guided through optical fiber 43Pc, and reaching optical coupler 54j). The interference light is received by the light receiving element 56c and converted into an electrical signal. The light receiving elements 56a to 56c may be, for example, balanced photodetectors.
 このように、主干渉計では、3段の光路(3チャネル)を有し、それぞれ計測対象物Tで反射されて光カプラ54h、54i及び54jに入力される測定光と、光カプラ54f及び54gを介して光ファイバケーブル40を経由してそれぞれ光カプラ54h、54i及び54jに入力される参照光との光路長差に応じた3つの干渉光を生成している。 In this way, the main interferometer has three optical paths (three channels) and generates three interference lights according to the optical path length difference between the measurement light reflected by the measurement object T and input to optical couplers 54h, 54i, and 54j, and the reference light passed through optical couplers 54f and 54g and optical fiber cable 40 and input to optical couplers 54h, 54i, and 54j, respectively.
 なお、測定光と参照光との光路長差は、3チャネルにおいてそれぞれ異なるように、例えば、光カプラ54gと、各光カプラ54h、54i及び54jとの光路長を異なるように設定してもよい。 The optical path length difference between the measurement light and the reference light may be set to be different for each of the three channels, for example, the optical path lengths of optical coupler 54g and each of optical couplers 54h, 54i, and 54j may be set to be different.
 そして、それぞれから得られる干渉光に基づいて、計測対象物Tまでの距離等が計測される(マルチチャネル)。 Then, based on the interference light obtained from each, the distance to the measurement object T, etc. is measured (multi-channel).
[センサヘッドの構造]
 ここで、変位センサ10に用いられるセンサヘッドの構造について説明する。
 図6Aは、センサヘッド20の概略構成を示す斜視図であり、図6Bは、センサヘッドの内部構造を示す模式図である。
[Sensor head structure]
Here, the structure of the sensor head used in the displacement sensor 10 will be described.
FIG. 6A is a perspective view showing a schematic configuration of the sensor head 20, and FIG. 6B is a schematic view showing the internal structure of the sensor head.
 図6Aに示されるように、センサヘッド20は、レンズホルダ23に対物レンズ21及びコリメートレンズが格納されている。例えば、レンズホルダ23のサイズは、対物レンズ21を囲う一辺の長さが20mm程度であり、光軸方向への長さが40mm程度である。センサヘッド20には、光ファイバケーブル40が接続される。 As shown in FIG. 6A, the sensor head 20 has an objective lens 21 and a collimator lens stored in a lens holder 23. For example, the size of the lens holder 23 is such that the length of one side surrounding the objective lens 21 is about 20 mm, and the length in the optical axis direction is about 40 mm. An optical fiber cable 40 is connected to the sensor head 20.
 図6Bに示されるように、レンズホルダ23には、1つの対物レンズ21及び3つのコリメートレンズ22a~22cが格納されている。光ファイバケーブル40に含まれる測定光を導光する光ファイバからの光は、それぞれがコリメートレンズ22a~22cに導かれるように構成されており、さらに、3つのコリメートレンズ22a~22cを通過した光は、対物レンズ21を介して計測対象物Tに照射される。なお、図6Bに示す例では、コリメートレンズの数は3つを示したが、コリメートレンズの数は、光ファイバケーブル40が含む測定光を導光する光ファイバの数に応じた数であってよい。 As shown in FIG. 6B, the lens holder 23 stores one objective lens 21 and three collimator lenses 22a to 22c. The light from the optical fibers that guide the measurement light contained in the optical fiber cable 40 is configured to be guided to the collimator lenses 22a to 22c, respectively, and the light that passes through the three collimator lenses 22a to 22c is irradiated onto the measurement object T via the objective lens 21. Note that although the example shown in FIG. 6B shows three collimator lenses, the number of collimator lenses may be a number according to the number of optical fibers that guide the measurement light contained in the optical fiber cable 40.
 このように、これらの光ファイバケーブル40、及びコリメートレンズ22a~22cは、対物レンズ21とともに、レンズホルダ23によって保持されて、センサヘッド20を構成している。 In this way, these optical fiber cables 40 and collimator lenses 22a to 22c, together with the objective lens 21, are held by the lens holder 23 to form the sensor head 20.
 また、センサヘッド20を構成するレンズホルダ23は、高強度で、また高精度に加工できる金属(例えば、A2017)で作製されていてもよい。 The lens holder 23 that constitutes the sensor head 20 may also be made of a metal (e.g., A2017) that is strong and can be machined with high precision.
 図7は、コントローラ30における信号処理について説明するためのブロック図である。図7に示されるように、コントローラ30は、複数の受光素子71a~71eと、複数の増幅回路72a~72cと、複数のAD変換部74a~74cと、処理部75と、差動増幅回路76と、補正信号生成部77とを備える。 FIG. 7 is a block diagram for explaining signal processing in the controller 30. As shown in FIG. 7, the controller 30 includes a plurality of light receiving elements 71a-71e, a plurality of amplifier circuits 72a-72c, a plurality of AD conversion units 74a-74c, a processing unit 75, a differential amplifier circuit 76, and a correction signal generation unit 77.
 コントローラ30では、図5Aで示されたように、波長掃引光源51から投光された光を光カプラ54によって主干渉計と副干渉計とに分岐し、それぞれより得られる主干渉信号及び副干渉信号を処理することによって、計測対象物Tまでの距離値を算出している。 As shown in FIG. 5A, the controller 30 splits the light emitted from the wavelength swept light source 51 into a main interferometer and a sub-interferometer by the optical coupler 54, and calculates the distance to the measurement object T by processing the main interference signal and the sub-interference signal obtained from each.
 複数の受光素子71a~71cは、図5Aに示された受光素子56a~56cに相当し、主干渉計からの主干渉信号をそれぞれ受光して、電流信号としてそれぞれ増幅回路72a~72cに出力する。 The multiple light receiving elements 71a to 71c correspond to the light receiving elements 56a to 56c shown in FIG. 5A, and each receive the main interference signal from the main interferometer and output it as a current signal to the amplifier circuits 72a to 72c, respectively.
 複数の増幅回路72a~72cは、電流信号を電圧信号に変換(I-V変換)して増幅する。 The multiple amplifier circuits 72a to 72c convert the current signal into a voltage signal (IV conversion) and amplify it.
 複数のAD変換部74a~74cは、図5Aに示されたAD変換部58a~58cに相当し、後述する補正信号生成部77からのKクロックに基づいて、電圧信号をデジタル信号に変換する(AD変換)。 The multiple AD conversion units 74a to 74c correspond to the AD conversion units 58a to 58c shown in FIG. 5A, and convert the voltage signal into a digital signal (AD conversion) based on the K clock from the correction signal generation unit 77, which will be described later.
 処理部75は、図5Aに示された処理部59に相当し、AD変換部74a~74cからのデジタル信号をFFTを用いて周波数に変換し、それらを解析して、計測対象物Tまでの距離値を算出する。 The processing unit 75 corresponds to the processing unit 59 shown in FIG. 5A, and converts the digital signals from the AD conversion units 74a to 74c into frequencies using FFT, analyzes them, and calculates the distance value to the measurement target T.
 複数の受光素子71d~71e及び差動増幅回路76は、図5Aに示されたバランスディテクタ60に相当し、副干渉計における干渉光をそれぞれ受光して、一方は位相の反転した干渉信号を出力し、2つの信号の差分を取ることによってノイズを除去しつつ、干渉信号を増幅して電圧信号に変換する。 The multiple light receiving elements 71d-71e and the differential amplifier circuit 76 correspond to the balanced detector 60 shown in FIG. 5A, and each receives the interference light from the sub-interferometer, one of which outputs an interference signal with an inverted phase, and the interference signal is amplified and converted into a voltage signal while noise is removed by taking the difference between the two signals.
 補正信号生成部77は、図5Aに示された補正信号生成部61に相当し、電圧信号をコンパレータで2値化し、Kクロックを生成し、AD変換部74a~74cに出力する。Kクロックは、主干渉計のアナログ信号よりも高周波に生成される必要があるため、補正信号生成部77で周波数を逓倍(例えば、8倍等)して高周波化してもよい。 The correction signal generating unit 77 corresponds to the correction signal generating unit 61 shown in FIG. 5A, and binarizes the voltage signal using a comparator, generates a K clock, and outputs it to the AD conversion units 74a to 74c. Since the K clock needs to be generated at a higher frequency than the analog signal of the main interferometer, the correction signal generating unit 77 may multiply the frequency (e.g., 8 times) to increase the frequency.
 図8は、コントローラ30における処理部59によって実行される、計測対象物Tまでの距離を算出する方法を示すフローチャートである。図8に示されるように、当該方法は、ステップS31~S34を含む。 FIG. 8 is a flowchart showing a method for calculating the distance to the measurement target T, which is executed by the processing unit 59 in the controller 30. As shown in FIG. 8, the method includes steps S31 to S34.
 ステップS31では、処理部59は、下記FFTを用いて、波形信号(電圧vs時間)をスペクトル(電圧vs周波数)に周波数変換する。図9Aは、波形信号(電圧vs時間)がスペクトル(電圧vs周波数)に周波数変換される様子を示す図である。
Figure JPOXMLDOC01-appb-M000001
In step S31, the processing unit 59 performs frequency conversion of the waveform signal (voltage vs. time) into a spectrum (voltage vs. frequency) using the following FFT: Fig. 9A is a diagram showing how the waveform signal (voltage vs. time) is frequency converted into a spectrum (voltage vs. frequency).
Figure JPOXMLDOC01-appb-M000001
 ステップS32では、処理部59は、スペクトル(電圧vs周波数)をスペクトル(電圧vs距離)に距離変換する。図9Bは、スペクトル(電圧vs周波数)がスペクトル(電圧vs距離)に距離変換される様子を示す図である。 In step S32, the processing unit 59 performs distance conversion from the spectrum (voltage vs. frequency) to a spectrum (voltage vs. distance). FIG. 9B is a diagram showing how the spectrum (voltage vs. frequency) is distance converted to a spectrum (voltage vs. distance).
 ステップS33では、処理部59は、スペクトル(電圧vs距離)に基づいてピークに対応する距離値を算出する。図9Cは、スペクトル(電圧vs距離)に基づいてピークを検出し、それに対応する距離値が算出される様子を示す図である。図9Cに示されるように、ここでは、3チャネルにおいて、それぞれスペクトル(電圧vs距離)に基づいてピークが検出され、それぞれピークに対応する距離値が算出される。 In step S33, the processing unit 59 calculates a distance value corresponding to the peak based on the spectrum (voltage vs. distance). FIG. 9C is a diagram showing how peaks are detected based on the spectrum (voltage vs. distance) and the corresponding distance values are calculated. As shown in FIG. 9C, peaks are detected in each of the three channels based on the spectrum (voltage vs. distance), and distance values corresponding to each peak are calculated.
 ステップS34では、処理部59は、ステップS33で算出された距離値を平均化する。具体的には、処理部59は、ステップS33で3チャネルにおいてそれぞれスペクトル(電圧vs距離)に基づいてピークが検出され、それに対応する距離値が算出されているため、それらを平均化して、当該平均化した算出結果を計測対象物Tまでの距離として出力する。 In step S34, the processing unit 59 averages the distance values calculated in step S33. Specifically, since peaks have been detected in each of the three channels based on the spectrum (voltage vs. distance) in step S33 and the corresponding distance values have been calculated, the processing unit 59 averages these values and outputs the averaged calculation result as the distance to the measurement object T.
 なお、ステップS34では、処理部59は、ステップS33で算出された距離値を平均化する際に、SNRが閾値以上である距離値平均化することが好ましい。例えば、3チャンネルのうち、いずれかのチャンネルにおいて、そのスペクトル(電圧vs距離)に基づいてピークが検出されたものの、SNRが閾値未満の場合には、当該スペクトルに基づいて算出される距離値は、信頼性が低いと判断し、採用しない。 In step S34, when averaging the distance values calculated in step S33, the processing unit 59 preferably averages distance values whose SNR is equal to or greater than a threshold value. For example, if a peak is detected based on the spectrum (voltage vs. distance) in any of the three channels but the SNR is less than the threshold value, the distance value calculated based on that spectrum is determined to be unreliable and is not adopted.
 次に、本開示に関して、より特徴的な構成、機能及び性質を中心に、具体的な実施形態として詳細に説明する。なお、以下に示される光干渉測距センサは、図1~図9を用いて説明した変位センサ10に相当し、当該光干渉測距センサに含まれる基本的な構成、機能及び性質の全部又は一部は、図1~図9を用いて説明した変位センサ10に含まれる構成、機能及び性質と共通している。 Next, the present disclosure will be described in detail as a specific embodiment, focusing on the more characteristic configurations, functions, and properties. Note that the optical interferometric distance measuring sensor shown below corresponds to the displacement sensor 10 described using Figures 1 to 9, and all or part of the basic configuration, functions, and properties included in the optical interferometric distance measuring sensor are common to the configuration, functions, and properties included in the displacement sensor 10 described using Figures 1 to 9.
 <実施形態>
[光ファイバケーブルの構成]
 図10~12に示す光ファイバケーブルは、例えば図5Aに示す変位センサ10に適用可能である。
<Embodiment>
[Configuration of optical fiber cable]
The optical fiber cables shown in FIGS. 10 to 12 are applicable to the displacement sensor 10 shown in FIG. 5A, for example.
 図10は、光ファイバケーブルの構成の一例を示す模式図である。光ファイバケーブル110は、3本の測定光用の光ファイバ110Fsと、3本の参照光用の光ファイバ110Frと、光ファイバ110Fs、110Frに接続されたコネクタ部110Cとを有する。コネクタ部110Cの内部には、3本の光導波路111pと、3本の光導波路112pとが形成されている。光導波路111p及び112pは、クラッドとなる周囲よりも屈折率の大きいコアとして、光を導光することが可能に構成される。 FIG. 10 is a schematic diagram showing an example of the configuration of an optical fiber cable. The optical fiber cable 110 has three optical fibers 110Fs for measurement light, three optical fibers 110Fr for reference light, and a connector section 110C connected to the optical fibers 110Fs and 110Fr. Three optical waveguides 111p and three optical waveguides 112p are formed inside the connector section 110C. The optical waveguides 111p and 112p are configured to be able to guide light as a core with a higher refractive index than the surrounding cladding.
 光導波路111pは、光ファイバ110Frと光学的に接続されており、光ファイバ110Fr内を伝搬してきた参照光を端部111rに向けて導光する。端部111rは、アルミニウム等の金属によるコートが施されており、参照面となっている。このため、光導波路111p内を導光され端部111rに到達した参照光は、端部111rによって反射され、光導波路111p内を光ファイバ110Frに向かって導光される。 The optical waveguide 111p is optically connected to the optical fiber 110Fr, and guides the reference light propagating through the optical fiber 110Fr toward the end 111r. The end 111r is coated with a metal such as aluminum, and serves as a reference surface. Therefore, the reference light that is guided through the optical waveguide 111p and reaches the end 111r is reflected by the end 111r, and is guided through the optical waveguide 111p toward the optical fiber 110Fr.
 光導波路112pは、光ファイバ110Fsと光学的に接続されており、光ファイバ110Fs内を伝搬してきた測定光を端部112oに向けて導光する。端部112oに到達した測定光は、センサヘッド20内に供給され、光導波路や光ファイバ等の内部を導光され、計測対象物Tに照射される。計測対象物Tによって反射された測定光は再びセンサヘッド20内に入射され、当該測定光は112oを介して光導波路112p内に導光された上で、光ファイバ120Fs内を伝搬していく。 The optical waveguide 112p is optically connected to the optical fiber 110Fs, and guides the measurement light propagating through the optical fiber 110Fs toward the end 112o. The measurement light that reaches the end 112o is supplied to the sensor head 20, guided inside the optical waveguide and optical fiber, etc., and irradiated onto the measurement object T. The measurement light reflected by the measurement object T is again incident on the sensor head 20, and the measurement light is guided into the optical waveguide 112p via 112o, and then propagates through the optical fiber 120Fs.
 コネクタ部110C及び光導波路111p、112pの作成方法は特に限定されないが、例えば、ガラスを用いた火炎堆積法によって作成されてもよい。或いは、光導波路111p、112pは、光ファイバとして形成され、コネクタ部110Cの基部を形成するガラスによって当該光ファイバが挟持されて構成されてもよい。 The method of producing the connector portion 110C and the optical waveguides 111p and 112p is not particularly limited, but may be produced, for example, by a flame deposition method using glass. Alternatively, the optical waveguides 111p and 112p may be formed as optical fibers, and the optical fibers may be sandwiched between the glass that forms the base of the connector portion 110C.
 図11Aは、光ファイバケーブルの構成の一例を示す模式図である。光ファイバケーブル120は、3本の測定光用の光ファイバ120Fsと、3本の参照光用の光ファイバ120Frと、光ファイバ120Fs、120Frに接続されたコネクタ部120Cと、ミラー123とを有する。コネクタ部120Cの内部には、3本の光導波路121pと、3本の光導波路122pとが形成されている。光導波路121p及び122pは、クラッドとなる周囲よりも屈折率の大きいコアとして、光を導光することが可能に構成される。 FIG. 11A is a schematic diagram showing an example of the configuration of an optical fiber cable. The optical fiber cable 120 has three optical fibers 120Fs for measurement light, three optical fibers 120Fr for reference light, a connector section 120C connected to the optical fibers 120Fs and 120Fr, and a mirror 123. Three optical waveguides 121p and three optical waveguides 122p are formed inside the connector section 120C. The optical waveguides 121p and 122p are configured to be able to guide light as a core with a higher refractive index than the surrounding cladding.
 光導波路121pは、光ファイバ120Frと光学的に接続されており、光ファイバ120Fr内を伝搬してきた参照光を端部121oに向けて導光する。端部121oに到達した参照光は、端部121oから出射され、端部121oの前方に設けられたミラー123によって反射される。ミラー123によって反射された参照光は、端部121oに入射し、光導波路121p内を光ファイバ120Frに向かって導光される。 The optical waveguide 121p is optically connected to the optical fiber 120Fr, and guides the reference light propagating through the optical fiber 120Fr toward the end 121o. The reference light that reaches the end 121o is emitted from the end 121o and reflected by the mirror 123 provided in front of the end 121o. The reference light reflected by the mirror 123 is incident on the end 121o and guided through the optical waveguide 121p toward the optical fiber 120Fr.
 ここで、図11Bは、光ファイバケーブルの構成の一例を示す模式図である。図11Bに示す様に、コネクタ部120Cの端部121oから出射された参照光は、レトロリフレクタ125とミラー124とに順次に反射され、更に再びレトロリフレクタ125に反射された上で、端部121oに入射し、光導波路121p内を光ファイバ120Frに向かって導光されてもよい。 Here, FIG. 11B is a schematic diagram showing an example of the configuration of an optical fiber cable. As shown in FIG. 11B, the reference light emitted from the end 121o of the connector portion 120C may be reflected sequentially by the retroreflector 125 and the mirror 124, and then reflected again by the retroreflector 125 before entering the end 121o and being guided through the optical waveguide 121p toward the optical fiber 120Fr.
 図11Aに戻り、光導波路122pは、光ファイバ120Fsと光学的に接続されており、光ファイバ120Fs内を伝搬してきた測定光を端部122oに向けて導光する。端部122oに到達した測定光は、センサヘッド20内に供給され、光導波路や光ファイバ等の内部を導光され、計測対象物Tに照射される。計測対象物Tによって反射された測定光は再びセンサヘッド20内に入射され、当該測定光は122oを介して光導波路122p内に導光された上で、光ファイバ120Fs内を伝搬していく。 Returning to FIG. 11A, the optical waveguide 122p is optically connected to the optical fiber 120Fs, and guides the measurement light propagating through the optical fiber 120Fs toward the end 122o. The measurement light that reaches the end 122o is supplied to the sensor head 20, guided inside the optical waveguide and optical fiber, etc., and irradiated onto the measurement object T. The measurement light reflected by the measurement object T is again incident on the sensor head 20, and the measurement light is guided into the optical waveguide 122p via 122o, and then propagates through the optical fiber 120Fs.
 コネクタ部120C及び光導波路121p、122pの作成方法は特に限定されないが、例えば、ガラスを用いた火炎堆積法によって作成されてもよい。或いは、光導波路121p、122pは、光ファイバとして形成され、コネクタ部120Cの基部を形成するガラスによって当該光ファイバが挟持されて構成されてもよい。 The method of making the connector portion 120C and the optical waveguides 121p and 122p is not particularly limited, but may be made by flame deposition deposition using glass, for example. Alternatively, the optical waveguides 121p and 122p may be formed as optical fibers, and the optical fibers may be sandwiched between the glass that forms the base of the connector portion 120C.
 図12は、光ファイバケーブルの構成の一例を示す模式図である。光ファイバケーブル130は、3本の測定光用の光ファイバ130Fsと、3本の参照光用の光ファイバ130Frとを有する。3本の測定光用の光ファイバ130Fsと、3本の参照光用の光ファイバ130Frとは、不図示の樹脂等により互いに固定されている。光ファイバ130Fs及び光ファイバ130Frはそれぞれ、光ファイバの先端がフェルールに固定してハウジングに装着されている。 FIG. 12 is a schematic diagram showing an example of the configuration of an optical fiber cable. The optical fiber cable 130 has three optical fibers 130Fs for measurement light and three optical fibers 130Fr for reference light. The three optical fibers 130Fs for measurement light and the three optical fibers 130Fr for reference light are fixed to each other with a resin (not shown) or the like. The optical fibers 130Fs and the optical fibers 130Fr are each attached to a housing with the tip of the optical fiber fixed to a ferrule.
 光ファイバ130Frの端部131rは、アルミニウム等の金属によるコートが施されており、参照面となっている。このため、光ファイバ130Fr内を導光され端部131rに到達した参照光は、端部131rによって反射され、光ファイバ130Fr内を反対方向に向かって導光される。 The end 131r of the optical fiber 130Fr is coated with a metal such as aluminum and serves as a reference surface. Therefore, the reference light that is guided through the optical fiber 130Fr and reaches the end 131r is reflected by the end 131r and is guided in the opposite direction through the optical fiber 130Fr.
 光ファイバ130Fsの端部132oに到達した測定光は、センサヘッド20内に供給され、光導波路や光ファイバ等の内部を導光され、計測対象物Tに照射される。計測対象物Tによって反射された測定光は再びセンサヘッド20内に入射され、当該測定光は132oを介して光ファイバ130Fs内に導光された上で、光ファイバ130Fs内を伝搬していく。 The measurement light that reaches the end 132o of the optical fiber 130Fs is supplied into the sensor head 20, guided through the optical waveguide, optical fiber, etc., and irradiated onto the measurement object T. The measurement light reflected by the measurement object T is again incident on the sensor head 20, and the measurement light is guided into the optical fiber 130Fs via 132o, and then propagates through the optical fiber 130Fs.
 図13A~図15に示す光ファイバケーブルは、例えば図5Bに示す変位センサ10に適用可能である。 The optical fiber cables shown in Figures 13A to 15 can be applied to the displacement sensor 10 shown in Figure 5B, for example.
 図13Aは、光ファイバケーブルの構成の一例を示す模式図である。光ファイバケーブル210は、3本の測定光用の光ファイバ210Fsと、3本の参照光用の光ファイバ210Frと、光ファイバ210Fs、210Frに接続されたコネクタ部210Cとを有する。コネクタ部210Cの内部には、3本の光導波路211pと、3本の光導波路212pとが形成されている。光導波路211p及び212pは、クラッドとなる周囲よりも屈折率の大きいコアとして、光を導光することが可能に構成される。 FIG. 13A is a schematic diagram showing an example of the configuration of an optical fiber cable. The optical fiber cable 210 has three optical fibers 210Fs for measurement light, three optical fibers 210Fr for reference light, and a connector section 210C connected to the optical fibers 210Fs and 210Fr. Three optical waveguides 211p and three optical waveguides 212p are formed inside the connector section 210C. The optical waveguides 211p and 212p are configured to be able to guide light as a core with a higher refractive index than the surrounding cladding.
 光導波路211pは、光ファイバ210Frと光学的に接続されており、光ファイバ210Frの一端から光ファイバ210Fr内を伝搬してきた参照光を導光し、略U字状に形成された折り返し部211mを介して、光ファイバ210Frの他端へと導光する。折り返し部211mの形状は特に限定されず、測定光と参照光との光路長差の設定値に基づいて任意に構成可能であってよい。 The optical waveguide 211p is optically connected to the optical fiber 210Fr, and guides the reference light propagating through the optical fiber 210Fr from one end of the optical fiber 210Fr, and guides the light to the other end of the optical fiber 210Fr via the folded portion 211m formed in a substantially U-shape. The shape of the folded portion 211m is not particularly limited, and may be arbitrarily configured based on the set value of the optical path length difference between the measurement light and the reference light.
 光導波路212pは、光ファイバ210Fsと光学的に接続されており、光ファイバ210Fs内を伝搬してきた測定光を端部212oに向けて導光する。端部212oに到達した測定光は、センサヘッド20内に供給され、光導波路や光ファイバ等の内部を導光され、計測対象物Tに照射される。計測対象物Tによって反射された測定光は再びセンサヘッド20内に入射され、当該測定光は212oを介して光導波路212p内に導光された上で、光ファイバ210Fs内を伝搬していく。 The optical waveguide 212p is optically connected to the optical fiber 210Fs, and guides the measurement light propagating through the optical fiber 210Fs toward the end 212o. The measurement light that reaches the end 212o is supplied to the sensor head 20, guided inside the optical waveguide and optical fiber, etc., and irradiated onto the measurement object T. The measurement light reflected by the measurement object T is again incident on the sensor head 20, and the measurement light is guided into the optical waveguide 212p via 212o, and then propagates through the optical fiber 210Fs.
 コネクタ部210C及び光導波路211p、212pの作成方法は特に限定されないが、例えば、ガラスを用いた火炎堆積法によって作成されてもよい。或いは、光導波路211p、212pは、光ファイバとして形成され、コネクタ部210Cの基部を形成するガラスによって当該光ファイバが挟持されて構成されてもよい。 The method of creating the connector portion 210C and the optical waveguides 211p and 212p is not particularly limited, but may be created, for example, by a flame deposition method using glass. Alternatively, the optical waveguides 211p and 212p may be formed as optical fibers, and the optical fibers may be sandwiched between the glass that forms the base of the connector portion 210C.
 図13Bは、光ファイバケーブルの構成の一例を示す模式図である。光ファイバケーブル220は、3本の測定光用の光ファイバ220Fsと、6本の参照光用の光ファイバ220Frと、光ファイバ220Fs、220Frに接続されたコネクタ部220Cとを有する。コネクタ部220Cの内部には、6本の光導波路221pと、3本の光導波路222pとが形成されている。光導波路221p及び222pは、クラッドとなる周囲よりも屈折率の大きいコアとして、光を導光することが可能に構成される。 FIG. 13B is a schematic diagram showing an example of the configuration of an optical fiber cable. The optical fiber cable 220 has three optical fibers 220Fs for measurement light, six optical fibers 220Fr for reference light, and a connector section 220C connected to the optical fibers 220Fs and 220Fr. Six optical waveguides 221p and three optical waveguides 222p are formed inside the connector section 220C. The optical waveguides 221p and 222p are configured to be able to guide light as a core with a higher refractive index than the surrounding cladding.
 光導波路221pは、光導波路221p1及び光導波路221p2を含む。光導波路221p1は、光ファイバ220Frと光学的に接続されており、光ファイバ220Frの一端から光ファイバ220Fr内を伝搬してきた参照光を導光し、光導波路221p1の端部221sから出射する。端部221sから出射された参照光は、レトロリフレクタ224に反射された上で、端部221tに入射し、光導波路221p2内を光ファイバ120Frに向かって導光される。 The optical waveguide 221p includes an optical waveguide 221p1 and an optical waveguide 221p2. The optical waveguide 221p1 is optically connected to the optical fiber 220Fr, guides the reference light propagating through the optical fiber 220Fr from one end of the optical fiber 220Fr, and emits it from the end 221s of the optical waveguide 221p1. The reference light emitted from the end 221s is reflected by the retroreflector 224, enters the end 221t, and is guided through the optical waveguide 221p2 toward the optical fiber 120Fr.
 光導波路222pは、光ファイバ220Fsと光学的に接続されており、光ファイバ220Fs内を伝搬してきた測定光を端部222oに向けて導光する。端部222oに到達した測定光は、センサヘッド20内に供給され、光導波路や光ファイバ等の内部を導光され、計測対象物Tに照射される。計測対象物Tによって反射された測定光は再びセンサヘッド20内に入射され、当該測定光は222oを介して光導波路222p内に導光された上で、光ファイバ220Fs内を伝搬していく。 The optical waveguide 222p is optically connected to the optical fiber 220Fs, and guides the measurement light propagating through the optical fiber 220Fs toward the end 222o. The measurement light that reaches the end 222o is supplied to the sensor head 20, guided inside the optical waveguide and optical fiber, etc., and irradiated onto the measurement object T. The measurement light reflected by the measurement object T is again incident on the sensor head 20, and the measurement light is guided into the optical waveguide 222p via 222o, and then propagates through the optical fiber 220Fs.
 コネクタ部220C及び光導波路221p、222pの作成方法は特に限定されないが、例えば、ガラスを用いた火炎堆積法によって作成されてもよい。或いは、光導波路221p、222pは、光ファイバとして形成され、コネクタ部220Cの基部を形成するガラスによって当該光ファイバが挟持されて構成されてもよい。 The method of creating the connector portion 220C and the optical waveguides 221p, 222p is not particularly limited, but may be created, for example, by a flame deposition method using glass. Alternatively, the optical waveguides 221p, 222p may be formed as optical fibers, and the optical fibers may be sandwiched between the glass that forms the base of the connector portion 220C.
 図14は、光ファイバケーブルの構成の一例を示す模式図である。光ファイバケーブル230は、3本の測定光用の光ファイバ230Fsと、3本の参照光用の光ファイバ230Fr1と、3本の参照光用の光ファイバ230Fr2とを有する。3本の測定光用の光ファイバ230Fsと、3本の参照光用の光ファイバ230Fr1と、3本の参照光用の光ファイバ230Fr2とは、樹脂等で形成された固定部234により互いに固定されている。 FIG. 14 is a schematic diagram showing an example of the configuration of an optical fiber cable. The optical fiber cable 230 has three optical fibers 230Fs for measurement light, three optical fibers 230Fr1 for reference light, and three optical fibers 230Fr2 for reference light. The three optical fibers 230Fs for measurement light, the three optical fibers 230Fr1 for reference light, and the three optical fibers 230Fr2 for reference light are fixed to each other by a fixing portion 234 formed of resin or the like.
 光ファイバ230Fsの端部232oに到達した測定光は、センサヘッド20内に供給され、光導波路や光ファイバ等の内部を導光され、計測対象物Tに照射される。計測対象物Tによって反射された測定光は再びセンサヘッド20内に入射され、当該測定光は232oを介して光ファイバ230Fs内に導光された上で、光ファイバ230Fs内を伝搬していく。 The measurement light that reaches the end 232o of the optical fiber 230Fs is supplied into the sensor head 20, guided through the optical waveguide, optical fiber, etc., and irradiated onto the measurement object T. The measurement light reflected by the measurement object T is again incident on the sensor head 20, and the measurement light is guided into the optical fiber 230Fs via 232o, and then propagates through the optical fiber 230Fs.
 光ファイバ230Fr1は、光ファイバ230Fr1内を伝搬してきた参照光を導光し、光ファイバ230Fr1の端部231sから出射する。端部231sから出射された参照光は、レトロリフレクタ233に反射された上で、端部231tに入射し、光ファイバ230Fr2内を導光される。 Optical fiber 230Fr1 guides the reference light propagating through optical fiber 230Fr1 and emits it from end 231s of optical fiber 230Fr1. The reference light emitted from end 231s is reflected by retroreflector 233, enters end 231t, and is guided through optical fiber 230Fr2.
 図15は、光ファイバケーブルの構成の一例を示す模式図である。光ファイバケーブル240は、3本の測定光用の光ファイバ240Fsと、3本の参照光用の光ファイバ240Frとを有する。3本の測定光用の光ファイバ240Fsと、3本の参照光用の光ファイバ240Frとは、樹脂等で形成された固定部243により互いに固定されている。 FIG. 15 is a schematic diagram showing an example of the configuration of an optical fiber cable. The optical fiber cable 240 has three optical fibers 240Fs for measurement light and three optical fibers 240Fr for reference light. The three optical fibers 240Fs for measurement light and the three optical fibers 240Fr for reference light are fixed to each other by a fixing portion 243 formed of resin or the like.
 光ファイバ240Frは、光ファイバ240Frの一端から光ファイバ240Fr内を伝搬してきた参照光を導光し、略U字状に形成された折り返し部241mを介して、光ファイバ240Frの他端へと導光する。折り返し部241mの形状は特に限定されず、測定光と参照光との光路長差の設定値に基づいて任意に構成可能であってよい。 The optical fiber 240Fr guides the reference light that has propagated through the optical fiber 240Fr from one end of the optical fiber 240Fr, and guides it to the other end of the optical fiber 240Fr via a folding section 241m formed in a substantially U-shape. The shape of the folding section 241m is not particularly limited, and may be arbitrarily configured based on the set value of the optical path length difference between the measurement light and the reference light.
 光ファイバ240Fsは、光ファイバ240Fs内を伝搬してきた測定光を端部242oに向けて導光する。端部242oに到達した測定光は、センサヘッド20内に供給され、光導波路や光ファイバ等の内部を導光され、計測対象物Tに照射される。計測対象物Tによって反射された測定光は再びセンサヘッド20内に入射され、当該測定光は242oを介して光ファイバ240Fs内に導光された上で、光ファイバ240Fs内を伝搬していく。 The optical fiber 240Fs guides the measurement light propagating through the optical fiber 240Fs toward the end 242o. The measurement light that reaches the end 242o is supplied into the sensor head 20, guided inside the optical waveguide and optical fiber, etc., and irradiated onto the measurement object T. The measurement light reflected by the measurement object T is again incident on the sensor head 20, and the measurement light is guided into the optical fiber 240Fs via 242o, and then propagates through the optical fiber 240Fs.
[変形例]
 図16は、光ファイバケーブルの変形例について説明するための図である。
[Modification]
FIG. 16 is a diagram for explaining a modified example of the optical fiber cable.
 光ファイバケーブル41は、光ファイバ44Pa~44Pc、45Pa~45Pc、46Pa~46Pc、47Pa~47Pc、及び光カプラ63a~63cを有する。波長掃引光源51から投光された光は、光カプラ54a~54cのそれぞれから、端部44Ia~44Icを介して光ファイバ44Pa~44Pcの各々に供給される。光ファイバ44Pa~44Pcは、当該光を光カプラ63a~63cまで導光させ、光カプラ63a~63cは、当該光を、光ファイバ45Pa~45Pcを経由する参照光と、光ファイバ47Pa~47Pcを経由する測定光とに分岐させる。 The optical fiber cable 41 has optical fibers 44Pa-44Pc, 45Pa-45Pc, 46Pa-46Pc, 47Pa-47Pc, and optical couplers 63a-63c. Light emitted from the wavelength sweep light source 51 is supplied from each of the optical couplers 54a-54c to each of the optical fibers 44Pa-44Pc via the ends 44Ia-44Ic. The optical fibers 44Pa-44Pc guide the light to the optical couplers 63a-63c, which then split the light into reference light passing through the optical fibers 45Pa-45Pc and measurement light passing through the optical fibers 47Pa-47Pc.
 光ファイバ45Pa~45Pc内を導光された参照光は、光ファイバ45Pa~45Pcの端部に設けられた参照面45Ra~45Rcによって反射されると、光ファイバ45Pa~45Pc内を導光されて再び光カプラ63a~63cへと供給される。光ファイバ47Pa~47Pc内を導光された測定光は、光ファイバ47Pa~47Pcの端部47Oa~47Ocからセンサヘッド20内に供給され、光導波路や光ファイバ等の内部を導光され、計測対象物Tに照射される。計測対象物Tによって反射された測定光は再びセンサヘッド20内に入射され、当該測定光は端部47Oa~47Ocを介して光ファイバ47Pa~47Pc内に導光された上で、光カプラ63a~63cに供給される。 The reference light guided through the optical fibers 45Pa to 45Pc is reflected by the reference surfaces 45Ra to 45Rc provided at the ends of the optical fibers 45Pa to 45Pc, and is guided through the optical fibers 45Pa to 45Pc and supplied again to the optical couplers 63a to 63c. The measurement light guided through the optical fibers 47Pa to 47Pc is supplied from the ends 47Oa to 47Oc of the optical fibers 47Pa to 47Pc into the sensor head 20, guided through the optical waveguide, optical fiber, etc., and irradiated onto the measurement object T. The measurement light reflected by the measurement object T is again incident on the sensor head 20, and the measurement light is guided through the ends 47Oa to 47Oc into the optical fibers 47Pa to 47Pc and supplied to the optical couplers 63a to 63c.
 光ファイバ45Pa~45Pcから供給された参照光と、光ファイバ47Pa~47Pcから供給された測定光とは、光カプラ62a~62cにおいて干渉し、干渉光が生成されて、当該干渉光の少なくとも一部が光ファイバ46Pa~46Pcを介して受光素子56a~56cに供給される。受光素子56a~56cで受光された干渉光は、電気信号に変換される。 The reference light supplied from the optical fibers 45Pa-45Pc and the measurement light supplied from the optical fibers 47Pa-47Pc interfere with each other in the optical couplers 62a-62c to generate interference light, and at least a portion of the interference light is supplied to the light-receiving elements 56a-56c via the optical fibers 46Pa-46Pc. The interference light received by the light-receiving elements 56a-56c is converted into an electrical signal.
 図17は、光ファイバケーブルの変形例について説明するための図である。 Figure 17 is a diagram to explain modified examples of optical fiber cables.
 光ファイバケーブル42は、光ファイバ48Pa~48Pc、及び49Pa~49Pcを有する。波長掃引光源51から投光された光は、光カプラ54a~54cのそれぞれから、端部48Ia~48Icを介して光ファイバ48Pa~48Pcの各々に供給される。光ファイバ48Pa~48Pcは、当該光を端部48Oa~48Ocまで導光させる。端部48Oa~48Ocからセンサヘッド20に供給された光は、センサヘッド20の光ファイバ24Pa~24Pcを介して光カプラ23a~23cに供給される。光カプラ23a~23cは、供給された光を、光ファイバ25Pa~25Pcを経由する参照光と、光ファイバ27Pa~27Pcを経由する測定光とに分岐させる。 The optical fiber cable 42 has optical fibers 48Pa to 48Pc and 49Pa to 49Pc. The light emitted from the wavelength sweep light source 51 is supplied from the optical couplers 54a to 54c to the optical fibers 48Pa to 48Pc via the ends 48Ia to 48Ic. The optical fibers 48Pa to 48Pc guide the light to the ends 48Oa to 48Oc. The light supplied from the ends 48Oa to 48Oc to the sensor head 20 is supplied to the optical couplers 23a to 23c via the optical fibers 24Pa to 24Pc of the sensor head 20. The optical couplers 23a to 23c split the supplied light into reference light that passes through the optical fibers 25Pa to 25Pc and measurement light that passes through the optical fibers 27Pa to 27Pc.
 光ファイバ25Pa~25Pc内を導光された参照光は、光ファイバ25Pa~25Pcの端部に設けられた参照面25Ra~25Rcによって反射されると、光ファイバ25Pa~25Pc内を導光されて再び光カプラ23a~23cへと供給される。光ファイバ27Pa~27Pc内を導光された測定光は、コリメートレンズ22a~22c、及び対物レンズ21を介して計測対象物Tに照射される。計測対象物Tによって反射された測定光は光ファイバ27Pa~27Pc内に導光された上で、光カプラ23a~23cに供給される。 The reference light guided through the optical fibers 25Pa-25Pc is reflected by the reference surfaces 25Ra-25Rc provided at the ends of the optical fibers 25Pa-25Pc, and is guided through the optical fibers 25Pa-25Pc and supplied again to the optical couplers 23a-23c. The measurement light guided through the optical fibers 27Pa-27Pc is irradiated onto the measurement object T via the collimator lenses 22a-22c and the objective lens 21. The measurement light reflected by the measurement object T is guided through the optical fibers 27Pa-27Pc and supplied to the optical couplers 23a-23c.
 光ファイバ25Pa~25Pcから供給された参照光と、光ファイバ27Pa~27Pcから供給された測定光とは、光カプラ23a~23cにおいて干渉し、干渉光が生成されて、当該干渉光の少なくとも一部が光ファイバ26Pa~26Pc、及び光ファイバケーブル42の光ファイバ49Pa~49cを介して受光素子56a~56cに供給される。受光素子56a~56cで受光された干渉光は、電気信号に変換される。 The reference light supplied from the optical fibers 25Pa-25Pc and the measurement light supplied from the optical fibers 27Pa-27Pc interfere with each other in the optical couplers 23a-23c to generate interference light, and at least a portion of the interference light is supplied to the light receiving elements 56a-56c via the optical fibers 26Pa-26Pc and the optical fibers 49Pa-49c of the optical fiber cable 42. The interference light received by the light receiving elements 56a-56c is converted into an electrical signal.
 以上説明した実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。実施形態が備える各要素並びにその配置、材料、条件、形状及びサイズ等は、例示したものに限定されるわけではなく適宜変更することができる。また、異なる実施形態で示した構成同士を部分的に置換し又は組み合わせることが可能である。 The above-described embodiments are intended to facilitate understanding of the present invention, and are not intended to limit the present invention. The elements of the embodiments, as well as their arrangement, materials, conditions, shapes, sizes, etc., are not limited to those exemplified, and may be modified as appropriate. Furthermore, configurations shown in different embodiments may be partially substituted or combined.
1…センサシステム、10…変位センサ、11…制御機器、12…制御信号入力用センサ、13…外部接続機器、20…センサヘッド、21…対物レンズ、22a~22c…コリメートレンズ、23…レンズホルダ、30…コントローラ、31…表示部、32…設定部、33…外部インタフェース(I/F)部、34…光ファイバ接続部、35…外部記憶部、36…計測処理部、40、41、42…光ファイバケーブル、51…波長掃引光源、52…光増幅器、53,53a~53b…アイソレータ、54,54a~54e…光カプラ、55…減衰器、56a~56c…受光素子、58…AD変換部、59…処理部、60…バランスディテクタ、61…補正信号生成部、62a~62c…光カプラ、63a~63c…光カプラ、71a~71e…受光素子、72a~72c…増幅回路、74a~74c…AD変換部、75…処理部、76…差動増幅回路、77…補正信号生成部、100~105…光干渉測距センサ、110…コントローラ、111…波長掃引光源、112…主干渉計、112a~112c…光カプラ、113,113a~113c…第1フォトディテクタ(受光部)、114…副干渉計、114a,114b,114d…光カプラ、114c…サーキュレータ、115…第2フォトディテクタ(受光部)、116…処理部、T…計測対象物
 
1...sensor system, 10...displacement sensor, 11...control device, 12...sensor for inputting control signal, 13...external connection device, 20...sensor head, 21...objective lens, 22a to 22c...collimator lens, 23...lens holder, 30...controller, 31...display unit, 32...setting unit, 33...external interface (I/F) unit, 34...optical fiber connection unit, 35...external memory unit, 36...measurement processing unit, 40, 41, 42...optical fiber cable, 51...wavelength sweep light source, 52...optical amplifier, 53, 53a to 53b...isolator, 54, 54a to 54e...optical coupler, 55...attenuator, 56a to 56c...light receiving element, 58...AD conversion unit, 59...processing unit, 60...variable 1. A distance detector, 61...correction signal generating section, 62a to 62c...optical couplers, 63a to 63c...optical couplers, 71a to 71e...light receiving elements, 72a to 72c...amplifier circuits, 74a to 74c...AD conversion section, 75...processing section, 76...differential amplifier circuit, 77...correction signal generating section, 100 to 105...optical interference distance measuring sensor, 110...controller, 111...wavelength sweep light source, 112...main interferometer, 112a to 112c...optical couplers, 113, 113a to 113c...first photodetector (light receiving section), 114...second interferometer, 114a, 114b, 114d...optical couplers, 114c...circulator, 115...second photodetector (light receiving section), 116...processing section, T...measurement object

Claims (8)

  1.  波長を一定の周期で掃引させながら光を供給する光源ユニットと、
     該光源ユニットから供給された前記光を測定光と参照光とに分割する光分割手段と、
     前記光分割手段により分割された前記測定光が測定対象に照射されたときの該測定対象からの反射光と前記参照光とを合波する合波手段と、
     該合波手段により合波された前記反射光と前記参照光との干渉光を検出する干渉光検出手段と、
     該干渉光検出手段により検出された前記干渉光を周波数解析することにより前記測定対象までの距離を算出する距離算出手段と、を有する光干渉測距センサに用いられる光ファイバケーブルであって、
     前記光源ユニットから供給された前記光と前記分割手段により分割された前記測定光とのうち少なくとも一部を導光する第1光ファイバと、
     前記光源ユニットから供給された前記光と前記分割手段により分割された前記参照光とのうち少なくとも一部が導光する第2光ファイバと、
     を有する光ファイバケーブル。
    a light source unit that supplies light while sweeping the wavelength at a constant period;
    a light splitting means for splitting the light supplied from the light source unit into a measurement light and a reference light;
    a combining means for combining the reference light and a reflected light from a measurement object when the measurement light split by the light splitting means is irradiated onto the measurement object;
    an interference light detection means for detecting interference light between the reflected light and the reference light combined by the combining means;
    a distance calculation means for calculating a distance to the measurement object by performing frequency analysis on the interference light detected by the interference light detection means,
    a first optical fiber that guides at least a part of the light supplied from the light source unit and the measurement light split by the splitting means;
    a second optical fiber through which at least a part of the light supplied from the light source unit and the reference light split by the splitting means is guided;
    1. A fiber optic cable comprising:
  2.  前記第1光ファイバは、前記測定光の光路を含み、
     前記第2光ファイバは、前記参照光の光路を含む、
     請求項1に記載の光ファイバケーブル。
    the first optical fiber includes an optical path of the measurement light,
    The second optical fiber includes an optical path of the reference light.
    2. The optical fiber cable according to claim 1.
  3.  前記第2光ファイバは、前記第1光ファイバである、請求項1に記載の光ファイバケーブル。 The optical fiber cable of claim 1, wherein the second optical fiber is the first optical fiber.
  4.  前記光分割手段を更に含む、請求項1に記載の光ファイバケーブル。 The optical fiber cable of claim 1, further comprising the optical splitting means.
  5.  前記参照光を反射させる参照面を更に含む、請求項1に記載の光ファイバケーブル。 The optical fiber cable of claim 1, further comprising a reference surface that reflects the reference light.
  6.  波長を一定の周期で掃引させながら光を供給する光源ユニットと、
     該光源ユニットから供給された前記光を測定光と参照光とに分割する光分割手段と、
     前記光分割手段により分割された前記測定光が測定対象に照射されたときの該測定対象からの反射光と前記参照光とを合波する合波手段と、
     該合波手段により合波された前記反射光と前記参照光との干渉光を検出する干渉光検出手段と、
     該干渉光検出手段により検出された前記干渉光を周波数解析することにより前記測定対象までの距離を算出する距離算出手段と、を有するコントローラであって、
     前記光源ユニットから供給された前記光と前記分割手段により分割された前記測定光とのうち少なくとも一部を導光する第1光ファイバに接続される第1接続部と、
     前記光源ユニットから供給された前記光と前記分割手段により分割された前記参照光とのうち少なくとも一部が導光する第2光ファイバに接続される第2接続部と、
     を有するコントローラ。
    a light source unit that supplies light while sweeping the wavelength at a constant period;
    a light splitting means for splitting the light supplied from the light source unit into a measurement light and a reference light;
    a combining means for combining the reference light and a reflected light from a measurement object when the measurement light split by the light splitting means is irradiated onto the measurement object;
    an interference light detection means for detecting interference light between the reflected light and the reference light combined by the combining means;
    a distance calculation means for calculating a distance to the measurement object by performing frequency analysis on the interference light detected by the interference light detection means,
    a first connection portion connected to a first optical fiber that guides at least a part of the light supplied from the light source unit and the measurement light split by the splitting means;
    a second connection portion connected to a second optical fiber through which at least a part of the light supplied from the light source unit and the reference light split by the splitting means is guided;
    A controller having
  7.  光ファイバケーブルと、コントローラと、を有する光干渉測距センサであって、
     前記コントローラは、
      波長を一定の周期で掃引させながら光を供給する光源ユニットと、
      該光源ユニットから供給された前記光を測定光と参照光とに分割する光分割手段と、
      前記光分割手段により分割された前記測定光が測定対象に照射されたときの該測定対象からの反射光と前記参照光とを合波する合波手段と、
      該合波手段により合波された前記反射光と前記参照光との干渉光を検出する干渉光検出手段と、
      該干渉光検出手段により検出された前記干渉光を周波数解析することにより前記測定対象までの距離を算出する距離算出手段と、を有し、
     前記光ファイバケーブルは、
      前記光源ユニットから供給された前記光と前記分割手段により分割された前記測定光とのうち少なくとも一部を導光する第1光ファイバと、
      前記光源ユニットから供給された前記光と前記分割手段により分割された前記参照光とのうち少なくとも一部が導光する第2光ファイバと、を有する、
     光干渉測距センサ。
    An optical interferometric distance measuring sensor having a fiber optic cable and a controller,
    The controller:
    a light source unit that supplies light while sweeping the wavelength at a constant period;
    a light splitting means for splitting the light supplied from the light source unit into a measurement light and a reference light;
    a combining means for combining the reference light and a reflected light from a measurement object when the measurement light split by the light splitting means is irradiated onto the measurement object;
    an interference light detection means for detecting interference light between the reflected light and the reference light combined by the combining means;
    a distance calculation means for calculating a distance to the measurement object by performing frequency analysis on the interference light detected by the interference light detection means,
    The optical fiber cable includes:
    a first optical fiber that guides at least a part of the light supplied from the light source unit and the measurement light split by the splitting means;
    a second optical fiber through which at least a part of the light supplied from the light source unit and the reference light split by the splitting means is guided;
    Optical interferometric distance sensor.
  8.  前記光ファイバケーブルは、前記参照光を反射させる参照面を更に含む、請求項7に記載の光干渉測距センサ。 The optical interferometric distance measuring sensor of claim 7, wherein the optical fiber cable further includes a reference surface that reflects the reference light.
PCT/JP2023/030496 2022-09-28 2023-08-24 Optical fiber cable, controller connected thereto, and optical interference ranging sensor using same WO2024070358A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-154669 2022-09-28
JP2022154669A JP2024048644A (en) 2022-09-28 2022-09-28 Optical fiber cable, controller connected thereto, and optical interference distance measuring sensor using the same

Publications (1)

Publication Number Publication Date
WO2024070358A1 true WO2024070358A1 (en) 2024-04-04

Family

ID=90477328

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/030496 WO2024070358A1 (en) 2022-09-28 2023-08-24 Optical fiber cable, controller connected thereto, and optical interference ranging sensor using same

Country Status (2)

Country Link
JP (1) JP2024048644A (en)
WO (1) WO2024070358A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010210326A (en) * 2009-03-09 2010-09-24 Mitsutoyo Corp Interferometer
US20170299697A1 (en) * 2013-06-23 2017-10-19 Eric Swanson Light Detection and Ranging System with Photonic Integrated Circuit
JP2019049481A (en) * 2017-09-11 2019-03-28 株式会社東京精密 Calibration device and calibration method
JP2019109074A (en) * 2017-12-15 2019-07-04 株式会社東京精密 Measuring apparatus and measuring method
US20210396854A1 (en) * 2020-06-02 2021-12-23 DSCG Solutions, Inc. Lidar using a multicore fiber

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010210326A (en) * 2009-03-09 2010-09-24 Mitsutoyo Corp Interferometer
US20170299697A1 (en) * 2013-06-23 2017-10-19 Eric Swanson Light Detection and Ranging System with Photonic Integrated Circuit
JP2019049481A (en) * 2017-09-11 2019-03-28 株式会社東京精密 Calibration device and calibration method
JP2019109074A (en) * 2017-12-15 2019-07-04 株式会社東京精密 Measuring apparatus and measuring method
US20210396854A1 (en) * 2020-06-02 2021-12-23 DSCG Solutions, Inc. Lidar using a multicore fiber

Also Published As

Publication number Publication date
JP2024048644A (en) 2024-04-09

Similar Documents

Publication Publication Date Title
US7400408B2 (en) Interferometric measuring device
US7339679B2 (en) Interferometric measuring device utilizing a slanted probe filter
EP4242579B1 (en) Optical interferometric range sensor
WO2024070358A1 (en) Optical fiber cable, controller connected thereto, and optical interference ranging sensor using same
WO2024070336A1 (en) Optical fiber cable, controller connected to same, and optical interferometric range sensor in which optical fiber cable and controller are used
WO2024070430A1 (en) Controller and optical interferometric ranging sensor
WO2024070443A1 (en) Controller and optical interferometric range sensor
WO2024048103A1 (en) Optical interferometric ranging sensor
US20230288561A1 (en) Optical interferometric range sensor
US20230084871A1 (en) Optical interference range sensor
EP4246083A1 (en) Optical interference range sensor
US20230079837A1 (en) Optical interference range sensor
US20230090501A1 (en) Optical interference range sensor
JP2024033725A (en) Light interference ranging sensor
EP4242577A1 (en) Optical interference range sensor
US20230084723A1 (en) Optical interference range sensor
US20230288562A1 (en) Optical interferometric range sensor
JP5542255B2 (en) Optical fiber length expansion / contraction measurement and correction method and apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23871599

Country of ref document: EP

Kind code of ref document: A1