WO2024070170A1 - 試作条件提案システム、試作条件提案方法 - Google Patents
試作条件提案システム、試作条件提案方法 Download PDFInfo
- Publication number
- WO2024070170A1 WO2024070170A1 PCT/JP2023/027146 JP2023027146W WO2024070170A1 WO 2024070170 A1 WO2024070170 A1 WO 2024070170A1 JP 2023027146 W JP2023027146 W JP 2023027146W WO 2024070170 A1 WO2024070170 A1 WO 2024070170A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- prototype
- condition
- conditions
- level
- regression model
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 253
- 238000004519 manufacturing process Methods 0.000 title abstract description 11
- 230000008569 process Effects 0.000 claims abstract description 223
- 238000012545 processing Methods 0.000 claims abstract description 113
- 238000005259 measurement Methods 0.000 claims abstract description 104
- 239000000463 material Substances 0.000 claims abstract description 92
- 238000010276 construction Methods 0.000 claims abstract description 45
- 238000005457 optimization Methods 0.000 claims abstract description 44
- 238000003860 storage Methods 0.000 claims description 11
- 238000004364 calculation method Methods 0.000 claims description 5
- 238000000605 extraction Methods 0.000 claims description 5
- 238000005516 engineering process Methods 0.000 abstract description 6
- 230000002349 favourable effect Effects 0.000 abstract description 6
- 230000006870 function Effects 0.000 description 34
- 238000007781 pre-processing Methods 0.000 description 31
- 238000004891 communication Methods 0.000 description 14
- 238000011156 evaluation Methods 0.000 description 12
- 230000002159 abnormal effect Effects 0.000 description 10
- 238000005070 sampling Methods 0.000 description 7
- 238000002790 cross-validation Methods 0.000 description 6
- 238000009826 distribution Methods 0.000 description 6
- 238000010801 machine learning Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 238000012854 evaluation process Methods 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- 230000000704 physical effect Effects 0.000 description 4
- 239000000284 extract Substances 0.000 description 3
- 238000010304 firing Methods 0.000 description 3
- 238000013528 artificial neural network Methods 0.000 description 2
- 238000004422 calculation algorithm Methods 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 238000012417 linear regression Methods 0.000 description 2
- 238000007477 logistic regression Methods 0.000 description 2
- 238000012827 research and development Methods 0.000 description 2
- 238000010206 sensitivity analysis Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000005452 bending Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N99/00—Subject matter not provided for in other groups of this subclass
Definitions
- the present invention relates to a system and method for proposing material prototyping conditions to material developers.
- Patent Document 1 discloses a system that estimates the production conditions for a material with optimal physical properties and structure from a data set that includes the production conditions for each of multiple substances used as samples, and material information that represents the physical properties and structure of each substance.
- the characteristics of the material to be developed are first measured through various evaluation tests, and data representing the results of the measurements (hereinafter referred to as "measured characteristic data") is obtained.
- this measured characteristic data is input into a computer to build various trained machine learning models. These trained machine learning models are then used to estimate the conditions for prototyping the material (hereinafter referred to as “prototyping conditions").
- the above-mentioned actual characteristic measurement data usually contains an extremely large number of explanatory variables.
- the number of explanatory variables is extremely large, the number of combinations between the explanatory variables also becomes enormous. Therefore, when attempting to estimate good prototyping conditions for a material based on materials informatics, in most cases it is necessary to search a very wide parameter space.
- the number of the above-mentioned actual characteristic data (hereinafter also referred to as the "number of samples”) is often small, and the distribution of explanatory variables contained in each actual characteristic data is often biased. Therefore, in the parameter space to be searched to estimate good prototype conditions for a material, when searching an area far from the distribution area of explanatory variables contained in the actual characteristic data (hereinafter also referred to as the "learning data") input to a computer to build a machine learning model, the estimation accuracy is lower than when searching near the distribution area of the explanatory variables. For this reason, the area of the parameter space to be searched that can be searched with high accuracy is limited to the vicinity of the distribution area of the explanatory variables contained in the learning data. Therefore, even if the entire parameter space to be searched is searched thoroughly, it may not be possible to search the entire parameter space with uniform accuracy, and good prototype conditions for the material may not be estimated.
- the present invention aims to provide a technology that can accurately suggest favorable prototyping conditions for materials, even if the parameter space to be searched is broad compared to the computational resources used.
- the prototype conditions proposal system proposes prototype conditions for a material to a material developer, and includes a regression model construction processing unit and a prototype conditions proposal processing unit.
- the regression model construction processing unit executes a regression model construction process for characteristic measurement data representing actual measurement results of the material's characteristics.
- the prototype conditions proposal processing unit executes an optimization process for searching for optimal prototype conditions for the material using the constructed regression model, and executes a prototype conditions proposal process based on the results of the optimization process.
- a prototype condition proposing method according to the present invention is a method for proposing prototype conditions for a material to a material developer using a computer. This prototype condition proposing method causes a computer to execute a regression model construction process and a prototype condition proposing process.
- the regression model construction process represents a process of constructing a regression model for characteristic measurement data representing actual measurement results of the material's characteristics.
- the prototype condition proposing process represents a process of performing an optimization process to search for optimal prototype conditions for the material using the constructed regression model, and proposing prototype conditions for the material based on the results of the optimization process.
- FIG. 1 is a schematic diagram showing an overview of a prototype condition proposal system according to an embodiment of the present invention
- FIG. 1 is a diagram showing functional blocks of a prototype conditions proposal system according to an embodiment of the present invention.
- 1 is a flowchart showing the overall processing flow of a prototype conditions proposal system according to an embodiment of the present invention.
- 11 is a flowchart showing details of characteristic measurement data pre-processing.
- 11 is a flowchart showing details of a regression model construction process.
- 11 is a flowchart showing details of a prototype condition proposal process.
- FIG. 1 is a schematic diagram showing an overview of a prototype condition proposal system according to one embodiment of the present invention.
- the prototype condition proposal system 1 shown in FIG. 1 optimizes various prototype conditions to be considered when prototyping a material, such as the composition of the material and the firing conditions, and proposes the results to a material developer, who is the user of this system.
- the optimization of the prototype conditions is performed using various machine learning algorithms based on actual characteristic measurement data representing the actual measurement results of the characteristics of the material.
- GPR Gaussian Process Regression
- SVR Support Vector Regression
- Logistic Regression Logistic Regression
- LASSO Regression Least Absolute Shrinkage and Selection Operator Regression
- the prototype condition proposal system 1 when a user of the prototype condition proposal system 1 prototypes a material under the prototype conditions proposed by the prototype condition proposal system 1 and actually measures the properties of the resulting material, new property measurement data is generated that represents the evaluation value of the properties of the resulting product.
- the prototype condition proposal system 1 learns this property measurement data as new learning data, the prototype condition proposal system 1 proposes more optimized prototype conditions to the user. Each time the user repeats this cycle, the prototype condition proposal system 1 of this embodiment can propose prototype conditions with more favorable predicted property values.
- the prototype condition proposal system 1 may include a function for prototyping a material and a function for actually measuring the properties of the material to be prototyped, or may be configured integrally with these functions.
- the prototype conditions proposal system 1 of this embodiment is realized by a single general-purpose computer device, as shown in FIG. 1.
- the prototype conditions proposal system 1 is assumed to be realized by a single general-purpose computer device that includes one or more processor devices, one or more storage devices, one or more input/output devices, and wired or wireless communication lines (none of which are shown) connecting them.
- This computer device is installed as a terminal inside a laboratory, for example, and is connected to various other terminals installed inside and outside the laboratory, various terminals owned by each user such as laptop PCs, tablets, smartphones, etc. (hereinafter referred to as "user terminals"), and other devices such as server devices, via a communication network such as the Internet 400 or a dedicated line.
- the computer device and the Internet 400 are connected by wire via well-known communication equipment (not shown), but may also be connected wirelessly.
- FIG. 2 is a diagram showing the functional blocks of the prototype conditions proposal system 1 according to one embodiment of the present invention. Note that each block described below shows a functional block, not a hardware-based configuration.
- the prototype conditions proposal system 1 of this embodiment is configured to include a control unit 11, a memory unit 12, a user interface unit 13, and a communication unit 14.
- the control unit 11 executes various data processing operations based on user operation input detected by the user interface unit 13, data acquired by the communication unit 14, and programs and data stored in the memory unit 12.
- the control unit 11 also functions as an interface between the user interface unit 13, the communication unit 14, and the memory unit 12.
- the control unit 11 has the functional blocks of a characteristic measurement data preprocessing unit 111, a regression model construction processing unit 112, and a prototype condition proposal processing unit 113.
- the control unit 11 is configured using processor devices (hereinafter simply referred to as "processors") such as a CPU (Central Processing Unit) and various co-processors, and can realize these functional blocks by executing a predetermined program.
- processors such as a CPU (Central Processing Unit) and various co-processors
- the control unit 11 may also be configured using a logic circuit such as an FPGA (Field Programmable Gate Array).
- the control unit 11 may also be configured by combining a processor and a logic circuit.
- the program executed by the control unit 11 may be installed from a program source.
- the program source may be, for example, a program distribution computer or a computer-readable recording medium.
- the program executed by the control unit 11 may also be composed of device drivers, an operating system, various application programs located at higher layers, and libraries that provide common functions to these programs. Furthermore, two or more programs may be realized as one program, and one program may be realized as two or more programs.
- the characteristic measurement data preprocessing unit 111 performs preprocessing on the characteristic measurement data in the so-called raw data state immediately after recording. This processing performed by the characteristic measurement data preprocessing unit 111 is called characteristic measurement data preprocessing.
- the regression model construction processing unit 112 executes a process of constructing a regression model for the preprocessed characteristic measurement data. This process executed by the regression model construction processing unit 112 is referred to as the regression model construction process.
- the prototype condition proposal processing unit 113 performs optimization processing on the preprocessed characteristic measurement data to search for optimal prototype conditions for the material using the regression model constructed by the regression model construction processing unit 112, and executes processing to propose prototype conditions for the material to the user based on the results of the optimization processing. This processing executed by the prototype condition proposal processing unit 113 is referred to as the prototype condition proposal processing.
- the storage unit 12 is configured using a storage device such as a RAM or flash memory, and stores programs that supply various processing commands to the control unit 11, and data representing various information used in the processing executed by the control unit 11. For example, characteristic measurement data that has been preprocessed by the characteristic measurement data preprocessing unit 11 (hereinafter referred to as "preprocessed data") and data representing the regression model constructed by the regression model construction processing unit 112 are stored in the storage unit 12.
- preprocessed data characteristic measurement data that has been preprocessed by the characteristic measurement data preprocessing unit 11
- data representing the regression model constructed by the regression model construction processing unit 112 are stored in the storage unit 12.
- the control unit 11 can realize the functional blocks of the characteristic measurement data preprocessing unit 111, the regression model construction processing unit 112, and the prototype condition proposal processing unit 113 described above by reading and writing this information in the storage unit 12.
- the user interface unit 13 accepts input operations from the user, and is responsible for processing related to the user interface, such as image display and audio output.
- the user interface unit 13 has the functional blocks of an input unit 131 and an output unit 132.
- the input unit 131 detects various operations from the user.
- the input unit 131 is configured using, for example, a keyboard, a pointing device, a touch panel, etc.
- the output unit 132 executes screen display, audio output, etc. for the user.
- the output unit 132 is configured using, for example, an LCD display, a touch screen, etc.
- the communication unit 14 is responsible for processing communications with user terminals owned by each user and other devices such as server devices via the Internet 400.
- the communication unit 14 is configured using, for example, a NIC (Network Interface Card) or an HBA (Host Bus Adapter).
- the functions of the prototype conditions proposal system 1 have been described as being realized integrally by a single computer device. However, these functions may also be realized by multiple computers or server devices connected to each other. Furthermore, the prototype conditions proposal system 1 may be configured to include a general-purpose computer device such as a laptop PC and a web browser installed thereon, or may be configured to include a web server and various portable devices.
- each function is just an example, and multiple functions may be combined into one function, or one function may be divided into multiple functions.
- FIG. 3 is a flowchart showing the overall processing flow of the prototype conditions proposal system 1 according to one embodiment of the present invention. Note that in the following description, the processing may be described with the aforementioned functions or programs as the subject, but the processing described with the function or program as the subject may also be processing performed by a processor or a device having that processor.
- step S310 the control unit 11 executes characteristic measurement data preprocessing using the characteristic measurement data preprocessing unit 111.
- the characteristic measurement data is preprocessed and becomes preprocessed data, making it possible to execute each subsequent process normally. Details of the characteristic measurement data preprocessing performed in step S310 will be explained later with reference to the flowchart in FIG. 4.
- the control unit 11 proceeds to step S320.
- step S320 the control unit 11 executes a regression model construction process using the regression model construction processing unit 112. As a result, a regression model is constructed for the preprocessed data. Details of the regression model construction process performed in step S320 will be described later with reference to the flowchart in FIG. 5. When the regression model construction process is completed, the control unit 11 proceeds to step S330.
- step S330 the control unit 11 executes a regression model evaluation process.
- the generalization performance which is an index representing the predictive accuracy of a regression model, is evaluated for each of the multiple regression models constructed as a result of each process up to step S320.
- This evaluation is performed, for example, by performing cross validation with other regression models.
- the evaluation results are visualized by graphs such as scatter plots and box plots. This allows the user to receive suggestions for prototyping conditions based on a regression model with good generalization performance.
- the control unit 11 proceeds to step S340.
- step S340 the control unit 11 executes a prototype condition proposal process by the prototype condition proposal processing unit 113.
- the user of the prototype condition proposal system 1 can appropriately modify the prototype conditions of the material proposed by the prototype condition proposal system 1 to make them more preferable.
- the control unit 11 obtains a predicted value of the material characteristics when prototyped under the prototype conditions modified by the user by applying it to the selected regression model, and presents it to the user. In other words, the user can interactively modify the prototype conditions while checking the predicted value.
- the prototype condition proposal system 1 is a system that can incorporate the knowledge of the user, who is the developer of the material, into the prototype conditions of the material proposed to the user. Details of the prototype condition proposal process performed in step S340 will be described later with reference to the flowchart in FIG. 6.
- the control unit 11 temporarily ends the process shown in the flowchart in FIG. 3.
- the prototype condition proposal system 1 of this embodiment executes each process of steps S310 to S340 in FIG. 3 to propose favorable prototype conditions to the user. That is, in step S310, the prototype condition proposal system 1 of this embodiment automatically performs the necessary preprocessing on the characteristic measurement data in the raw data state. Therefore, each process of steps S320 to S340 can be executed without manually performing complicated preprocessing on the characteristic measurement data. Furthermore, in the prototype condition proposal system 1 of this embodiment, the user can select a regression model with good generalization performance. Therefore, the prototype condition proposal system 1 can propose prototype conditions with favorable predicted characteristic values to the user.
- a user of the prototype conditions proposal system 1 can prototype a material under the prototype conditions proposed by the prototype conditions proposal system 1, measure the properties of the resulting product, and have the prototype conditions proposal system 1 learn the data representing the actual measurement results as new property measurement data, and then have the prototype conditions proposal system 1 execute the processes of steps S310 to S340 in FIG. 3 again.
- the prototype conditions proposal system 1 can propose more optimized prototype conditions to the user.
- the prototype conditions proposal system 1 of this embodiment can propose prototype conditions with better predicted property values each time it repeats the processes of steps S310 to S340 in FIG. 3 for the same prototype object.
- Figure 4 is a flowchart showing the details of preprocessing of characteristic measurement data.
- step S410 the control unit 11 causes the characteristic measurement data preprocessing unit 111 to accept input of characteristic measurement data from the user via the input unit 131 or the communication unit 14.
- the characteristic measurement data input to the prototype condition proposal system 1 may be, for example, categorical data, continuous data, or discrete data.
- the specific data format of the characteristic measurement data input to the prototype condition proposal system 1 may be appropriately determined.
- step S420 the control unit 11 sets the type of variables for the characteristic measurement data input from the user in step S410 through the characteristic measurement data preprocessing unit 111.
- an explanatory variable is a variable that is the basis for determining a predicted value of a characteristic.
- the explanatory variables are the composition of the materials that make up the prototype conditions and the firing conditions.
- the target variable is a variable that represents the characteristic value of the prototype material that is the subject of prediction.
- the explanatory variables may be set as defaults, and a setting operation may be received from the user who wishes to change the target variable.
- step S430 the control unit 11 determines whether or not there is an abnormal value in the characteristic measurement data for which one of the explanatory variables and the objective variable was set in step S420, by using the characteristic measurement data preprocessing unit 111.
- the process of determining whether or not there is an abnormal value is performed, for example, by first displaying the characteristic measurement data in a histogram and determining whether or not there is an outlier that falls outside the range of the average value ⁇ 2 ⁇ , and then determining whether or not there was a data input error or a malfunction of the evaluation test machine when generating the characteristic measurement data for which it is determined that there is an outlier.
- the control unit 11 deletes the abnormal value and sets it as a missing value, and proceeds to step S440. Furthermore, if the type of abnormal value contained in the characteristic measurement data is one of the objective variables when the explanatory variables are completely overlapping and the characteristics have different levels, the control unit 11 deletes the sample related to the abnormal value and proceeds to step S440. This is because, when all explanatory variables are duplicated and levels with different characteristics are treated as abnormal values, the level itself must be deleted, unlike when one explanatory variable is an abnormal value due to an input error, etc. On the other hand, if it is determined that the characteristic measurement data does not contain any abnormal values, the control unit 11 proceeds directly to step S440.
- the prototype condition proposal system 1 of this embodiment can omit the process in step S430.
- step S440 the control unit 11 determines whether or not there is a missing value in the characteristic measurement data by the characteristic measurement data preprocessing unit 111. This is because the characteristic measurement data may already contain missing values. If it is determined that the preprocessed data contains missing values, the control unit 11 complements the missing values and proceeds to step S450.
- the missing value complementation process is performed, for example, by using the average value, median value, minimum value, maximum value, etc. of the characteristic measurement data excluding abnormal values as a value to complement the missing value.
- the missing value may also be complemented by linear interpolation. Note that, for example, when the characteristic measurement data preprocessing unit 111 complements the missing value in step S440, it may display the complemented value in red to make it easier to identify.
- the characteristic measurement data preprocessing unit 111 may delete the level itself without complementing the missing value. Furthermore, in the prototype condition proposal system 1 of this embodiment, the characteristic measurement data preprocessing unit 111 can delete the explanatory variables themselves when the explanatory variables have a large missing ratio, for example, when more than 50% of the data is missing. On the other hand, if it is determined that the characteristic measurement data does not contain missing values, the control unit 11 proceeds directly to step S450.
- step S450 if the explanatory variables are categorical values rather than continuous values, the control unit 11 causes the characteristic measurement data preprocessing unit 111 to perform encoding processing on the explanatory variables and convert them into numerical data.
- the characteristic measurement data preprocessing unit 111 executes this encoding processing by, for example, referring to records in a table that represents the correspondence between categorical data and numerical data, which is stored in the memory unit 12.
- the control unit 11 completes the processing in step S450, it proceeds to step S460.
- step S460 the control unit 11 determines whether the characteristic measurement data includes redundant explanatory variables through the characteristic measurement data preprocessing unit 111. This determination is based on whether a combination of explanatory variables with a correlation coefficient of a predetermined number or more, for example, 0.8 or more, can be extracted. If it is determined that the characteristic measurement data includes redundant explanatory variables, the control unit 11 deletes one of the redundant explanatory variables and proceeds to step S470. In the prototype condition proposal system 1 of this embodiment, combinations of explanatory variables with a correlation coefficient of 0.8 or more are visualized to the user through the output unit 132, and the user can select the explanatory variable to be deleted through the input unit 131. On the other hand, if it is determined that the characteristic measurement data does not include redundant explanatory variables, the control unit 11 proceeds directly to step S470.
- step S470 the control unit 11 uses the characteristic measurement data preprocessing unit 111 to perform standardization processing on the characteristic measurement data as necessary.
- the control unit 11 completes the processing in step S470, it stores the preprocessed data, which is the characteristic measurement data that has been preprocessed in steps S410 to S470 in FIG. 4, in the storage unit 12, and ends the characteristic measurement data preprocessing shown in the flowchart in FIG. 4.
- the control unit 11 may use the characteristic measurement data preprocessing unit 111 to perform normalization processing on the characteristic measurement data as necessary. In such a case, the control unit 11 may execute each subsequent process without performing the standardization processing in S470.
- Figure 5 is a flowchart showing the details of the regression model construction process.
- step S510 the control unit 11 selects the implementation conditions of cross-validation for evaluating the regression model to be constructed for the preprocessed data by the regression model construction processing unit 112.
- the prototyping condition proposal system 1 of this embodiment evaluates each regression model by K-fold cross validation.
- the prototyping condition proposal system 1 evaluates the regression model by 10-fold cross validation.
- the user can also select the implementation conditions of cross validation.
- the regression model construction processing unit 112 can accept the implementation conditions of cross validation from the user via the input unit 131 or the communication unit 14.
- step S520 the control unit 11 selects, by the regression model construction processing unit 112, a candidate regression model to be used as a predictive model in searching for prototype conditions.
- the regression model construction processing unit 112 selects as a candidate a regression model for which a selection process has been accepted from the user via the input unit 131 or the communication unit 14.
- the user can select as candidates a plurality of regression models from various regression models such as Gaussian process regression and the aforementioned linear regression, regression tree (including the case of the ensemble method), regression by neural network, support vector regression, logistic regression, and LASSO regression.
- the control unit 11 proceeds to step S530.
- step S530 the control unit 11 executes a process of calculating a weighting criterion, which is a criterion for weighting the actual property measurement data, by the regression model construction processing unit 112.
- the weighting criterion is calculated based on the difference between the objective variable included in the actual property measurement data and the target characteristic that represents the target value of the material characteristic, or a statistic that represents the rarity of the explanatory variable included in the actual property measurement data. Note that a specific example of a statistic that represents the rarity of an explanatory variable is the occurrence probability of an explanatory variable that satisfies a predetermined condition.
- step S540 the control unit 11 executes a process of weighting the actual characteristic measurement data based on the weighting criterion calculated in step S530 by the regression model construction processing unit 112.
- the regression model construction processing unit 112 can also directly weight the regression model based on the weighting criterion calculated in step S530.
- the process executed by the regression model construction processing unit 112 in step S540 based on the result of step S530 is specifically one of the following processes: a process of setting a loss function, which is a function that serves as an index of learning; an oversampling process of amplifying rare or important actual characteristic measurement data and adding it as learning data; and an undersampling process of deleting redundant or unimportant actual characteristic measurement data from the learning data.
- a process of setting a loss function which is a function that serves as an index of learning
- an oversampling process of amplifying rare or important actual characteristic measurement data and adding it as learning data and an undersampling process of deleting redundant or unimportant actual characteristic measurement data from the learning data.
- step S550 the control unit 11 causes the regression model construction processing unit 112 to search for and set optimal hyperparameters for each regression model of each method selected as a candidate in step S520.
- the regression model construction processing unit 112 automatically searches for all parameters for each regression model, and automatically sets those that will best improve the generalization performance of the regression model when set as hyperparameters during construction of the regression model.
- the control unit 11 completes the processing in step S550, it proceeds to step S560.
- step S560 the control unit 11 performs a process of creating a regression model for each method, with the optimal hyperparameters set, using the regression model construction processing unit 112.
- the regression model construction processing unit 112 selects the regression model with the highest generalization performance from all the created regression models, and performs a process of determining the final regression model.
- the control unit 11 ends the regression model construction process shown in the flowchart of FIG. 5.
- Figure 6 is a flowchart showing the details of the prototype condition proposal process.
- step S610 the control unit 11 causes the prototyping condition proposal processing unit 113 to perform a prototyping condition search process based on the regression model constructed in step S560 of FIG. 5.
- the prototyping condition proposal processing unit 113 executes this process by an optimization process (described in detail later).
- the prototyping condition proposal system 1 of this embodiment is configured to be able to use various optimization process methods such as mathematical optimization (MO), Bayesian optimization (BO), genetic algorithm (GA), Newton's method (NM), and simplex method (SM).
- MO mathematical optimization
- BO Bayesian optimization
- GA genetic algorithm
- NM Newton's method
- SM simplex method
- the prototyping condition proposal processing unit 113 performs a sensitivity analysis on the tentative prototyping condition to evaluate the importance of each explanatory variable constituting the tentative prototyping condition, and presents the evaluation result together.
- the regression model used is Gaussian process regression, it is also possible to select the prototype condition that maximizes the acquisition function.
- step S620 the control unit 11 accepts from the user a modification to the provisional prototyping conditions proposed to the user in step S610 by the prototyping condition proposal processing unit 113.
- the prototyping condition proposal processing unit 113 accepts an input operation related to the modification of the values of the explanatory variables constituting the provisional prototyping conditions from the user via the input unit 131 or the communication unit 14, it modifies the provisional prototyping conditions according to the modification content.
- the control unit 11 uses the prototyping condition proposal processing unit 113 to use a regression model to obtain a predicted value of the material characteristics when a prototype is produced under the modified provisional prototyping conditions, and presents the calculation result to the user.
- the prototyping condition proposal processing unit 113 also performs a sensitivity analysis on the modified provisional prototyping conditions, as in step S610, to evaluate the importance of the explanatory variables constituting the modified provisional prototyping conditions, and presents the evaluation result together.
- the evaluation result is updated every time the user modifies the provisional prototyping conditions, so that the latest evaluation result is always presented to the user.
- step S630 the control unit 11, through the prototyping condition proposal processing unit 113, determines whether or not the predicted value of the characteristic obtained in step S620 for the modified tentative prototyping conditions is insufficient as the characteristic value of the material to be prototyped.
- the regression model used is Gaussian process regression
- this determination is made by obtaining, for each prototyping condition, an acquisition function (Acquisition Function) that represents the expected value of improvement in the material characteristic when prototyped under that prototyping condition, and determining whether or not the difference between the value of that acquisition function and the maximum value of the acquisition function is within a specified range.
- an acquisition function Acquisition Function
- the acquisition function is calculated based on the predicted value ⁇ of the material characteristic when prototyped under any prototyping condition, and the standard deviation ⁇ that represents the variance of that predicted value. If it is determined that the predicted characteristic values are insufficient, the process returns to step S620 to again accept instructions from the user to modify the prototyping conditions. If it is determined that the predicted characteristic values are not insufficient, the process confirms the provisional prototyping conditions and proposes them to the user as confirmed prototyping conditions, since the predicted values of the material characteristics when prototyping under the revised provisional prototyping conditions are sufficient. In other words, this determination process is repeated until it is determined that the predicted values of the material characteristics related to the provisional prototyping conditions are not insufficient. When the process in step S630 is completed, the control unit 11 ends the prototyping condition proposal process shown in the flowchart of FIG. 6.
- the prototype conditions proposal processing unit 113 may perform optimization processing using the sampling method, or may perform optimization processing continuously.
- the sampling method is a method in which multiple prototype level candidates are generated and the prototype level candidate with the best characteristics is selected.
- the user can select between these two execution methods when executing the optimization processing in step S610.
- the specific contents of the processing executed in step S610 when the prototype conditions proposal processing unit 113 performs optimization processing using the sampling method are as shown below as steps S611 to S616.
- step S611 when the control unit 11 receives an input operation from the user via the input unit 131 specifying the number of prototype level candidates to be created, the control unit 11 performs a process of creating the specified number of prototype level candidates using the prototype condition proposal processing unit 113.
- This process is called the prototype level candidate creation process.
- the prototype level candidate creation process includes a process of causing the computer to repeatedly execute each process of steps S614 to S616, which will be described later, a specified number of times.
- the prototype level candidate creation process the number of prototype level candidates specified by the user is created.
- 10,000 prototype level candidates are created based on the user's specifications.
- step S612 the control unit 11 performs a process in which the prototyping condition proposal processing unit 113 calculates a predicted value or an acquisition function for all the prototyping level candidates created in step S611. This process is referred to as a calculation process. As a result of the calculation process, a predicted value or an acquisition function is calculated for all the prototyping level candidates created in step S611.
- the control unit 11 completes the process in step S612, it proceeds to step S613.
- step S613 the control unit 11 performs a process in which the prototyping condition proposal processing unit 113 extracts the prototyping condition with the best predicted value or acquisition function from all the prototyping level candidates created in step S611 based on the predicted value or acquisition function calculated in step S612. This process is called the extraction process.
- the prototyping condition proposal processing unit 113 executes the extraction process in step S613 using the various optimization process methods described above in relation to step S610.
- the prototyping level candidate with the best predicted value or acquisition function is extracted as the prototyping condition from all the prototyping level candidates created in step S611.
- the control unit 11 ends the optimization process executed in step S610.
- the prototype level candidate creation process executed in step S611 includes a process of causing the computer to repeatedly execute each process of steps S614 to S616 described below a specified number of times.
- step S614 the control unit 11 performs a process of selecting a reference prototype level from prototype level candidates whose characteristics have been measured, using the prototype condition proposal processing unit 113.
- This process is referred to as a selection process.
- characteristic measurement data is used as prototype level candidates whose characteristics have been measured. That is, in the selection process, first, characteristic measurement data with good characteristics is extracted from a plurality of characteristic measurement data. Next, a selection probability is calculated so that the extracted characteristic measurement data with good characteristics is selected as a prototype condition with a focus. Furthermore, characteristic measurement data is randomly selected according to the calculated selection probability. The combination of raw materials in this selected characteristic measurement data is set as a prototype level candidate.
- the reference prototype level is randomly selected according to the selection probability calculated so that, among the characteristic measurement data that are prototype level candidates, those with good characteristics are selected as a prototype condition with a focus. This makes it easier to select a prototype level candidate with good characteristics as a prototype condition.
- the selection process may also include a process of weighting the selection probability of the reference prototype level. In this case, weighting in this manner makes it easier to select a prototype level that is preferable as the reference.
- a combination of ingredients for the reference prototype level candidates is determined.
- step S615 the control unit 11 performs a process in which the prototype condition proposal processing unit 113 varies the prototype level selected in step S614 with random numbers within the range in which the material can be prototyped.
- This process is called variation processing.
- this variation processing first, the composition ratio of the raw materials in the prototype level candidate is set randomly while observing the constraint of the total value.
- the average particle size and maximum firing temperature in the prototype level candidate are calculated based on the combination of raw materials determined in step S614 and the composition ratio of the raw materials determined in step S615.
- other explanatory variables are set according to the distribution of the explanatory variables contained in each characteristic measurement data.
- the values of various explanatory variables, including the composition ratio of materials, in the prototype level candidate that is used as a reference are determined.
- the control unit 11 proceeds to step S616.
- step S616 the control unit 11 performs a process of storing the prototype level candidates that have been subjected to the variation process in step S615 by the prototype condition proposal processing unit 113.
- This process is referred to as the storage process.
- the prototype level candidates are stored by being written to the memory unit 12.
- the control unit 11 completes the process in step S616, it returns to step S614 and executes each of the processes in steps S614 to S616 described above again.
- Each of the processes in steps S614 to S616 is repeatedly executed a specified number of times. In the prototype condition proposal system 1 of this embodiment, 10,000 times is specified as the number of times that each of the processes in steps S614 to S616 is repeatedly executed.
- each of the processes in steps S614 to S616 is repeatedly executed 10,000 times.
- prototype level candidate creation process performed in step S611 prototype level candidates that are necessary and sufficient for accurately extracting prototype conditions with good characteristics are created.
- the control unit 11 has repeatedly executed each process of steps S614 to S616 10,000 times, it ends the prototype level candidate creation process in step S611 and proceeds to step S612.
- the prototype level candidate creation process executed in step S611 may further include a determination process for determining whether or not there is a prototype level to be used as a reference, and a reference generation process for generating a reference using random numbers if it is determined in the determination process that there is no reference. In this case, even if there is no reference, it is possible to create a prototype level candidate in the same way as if there is a reference, by generating the reference using random numbers.
- step S610 the specific content of the processing executed in step S610 is as shown below as steps S617 to S619.
- step S617 the control unit 11 performs a process of selecting a prototype level to be the initial value from among prototype level candidates whose characteristics have been actually measured, by the prototype condition proposal processing unit 113.
- This process is called a selection process.
- characteristic measurement data is used as a prototype level candidate whose characteristics have been actually measured. That is, in the selection process, characteristic measurement data to be used as the initial value of the prototype level is selected from a plurality of characteristic measurement data.
- the prototype level to be the initial value is selected randomly. This makes it difficult for the area in the parameter space to be searched when searching for prototype conditions in step S610 to be biased.
- the selection process may include a process of weighting the selection probability of the prototype level to be the initial value. In this case, weighting in this manner makes it easier to select a prototype level that is preferable as the initial value.
- step S618 the control unit 11 performs processing to set a penalty for the selected prototype level in the case where the prototype level deviates from the specified constraint conditions through the prototype condition proposal processing unit 113.
- This processing is referred to as a penalty setting processing.
- a penalty setting processing As a method of setting a penalty, when a penalty is added in step S619, a very large negative number is assigned as an evaluation value related to the penalty. Also, when a penalty is multiplied in step S619, 0 is assigned as an evaluation value related to the penalty.
- 0 is assigned as an evaluation value related to the penalty in step S618 in the initial setting.
- the prototype level is ignored.
- a constraint condition is set in advance that "the material can be prototyped," in other words, "only the range and combination of parameters that allow the material to be prototyped are allowed.”
- material science constraints are imposed, so that the prototype condition proposal system 1 can propose only prototype conditions that can actually prototype the material.
- Other specific examples of constraints include "focusing on searching near existing measured property data close to the target physical properties" and "focusing on searching near prototype conditions that are considered effective in material science.”
- the number of constraints set in advance may be one or more. That is, one constraint may be set alone, or a combination of multiple constraints may be set.
- the prototype condition proposal processing unit 113 may automatically adjust the constraints set in advance and their internal parameters (for example, weights for performing focused search) so that the obtained predicted value and acquisition function are the best.
- the control unit 11 proceeds to step S619.
- step S619 the control unit 11 causes the prototype conditions proposal processing unit 113 to perform a process of optimizing the prototype conditions so that the predicted value or acquisition function to which the penalty set in step S618 is added or multiplied becomes the best.
- the prototype conditions proposal processing unit 113 performs this process in step S619 using the various optimization process methods described above in relation to step S610.
- the prototype conditions proposal processing unit 113 also repeatedly performs this process in step S619 the number of times specified by the user. In the prototype conditions proposal system 1 of this embodiment, 10,000 times is specified as the number of times to repeatedly perform the process of step S619. Therefore, in step S619, the optimization process is repeated 10,000 times.
- the control unit 11 ends the optimization process performed in step S610.
- the optimization process executed in step S610 may further include a determination process for determining whether or not there is a reference prototype level, and a reference generation process for generating a reference using random numbers if it is determined in the determination process that there is no reference. In this case, even if there is no reference, it is possible to create prototype level candidates in the same way as when there is a reference, by generating the reference using random numbers.
- the optimization process executed in step S610 is performed by the sampling method or continuously.
- the prototype level candidate with the best characteristics is selected from multiple prototype level candidates, so the prototype condition proposal system 1 can estimate the best prototype condition for the material and propose it as a provisional prototype condition.
- the prototype level is more refined than when the optimization process is performed one-off, so the prototype condition proposal system 1 can estimate the best prototype condition for the material and propose it as a provisional prototype condition.
- FIG. 7 shows how the prototype condition proposal processing unit 113 searches for provisional prototype conditions to be proposed by performing the optimization process in step S610 in this way. Note that FIG.
- FIG. 7 also shows, as a comparative example, how the provisional prototype conditions to be proposed are searched for using conventional technology.
- FIG. 7 shows a scatter plot of predicted data on the coefficient of thermal expansion (CTE) and bending strength, which are properties related to a ceramic composite material made from a number of raw materials.
- CTE coefficient of thermal expansion
- bending strength which are properties related to a ceramic composite material made from a number of raw materials.
- the prototype condition proposal system 1 of this embodiment can perform a focused search near the targeted region in the parameter space by performing an optimization process using a sampling method as shown in steps S611 to S616, or by performing continuous optimization processes as shown in steps S617 to S619.
- the prototype condition proposal system 1 of this embodiment can increase the influence of actual characteristic measurement data with good characteristics as a prototype level candidate, and can efficiently find many prototype conditions that can satisfy the desired characteristics by focusing on the search for prototype conditions close to the characteristics of the actual characteristic measurement data, as shown in FIG. 7.
- the prototype condition proposal system 1 of this embodiment proposes more optimized prototype conditions to the user based on the newly input characteristic measurement data.
- the control unit 11 of the prototype condition proposal system 1 determines whether the newly input characteristic measurement data contains missing values. If it is determined that a missing value is included, in order to complement the missing value, characteristic measurement data preprocessing is performed on the newly input characteristic measurement data by starting processing from step S440 of FIG. 4. On the other hand, if it is determined that a missing value is not included, it is not necessary to perform characteristic measurement data preprocessing on the newly input characteristic measurement data.
- the control unit 11 determines whether or not the regression model needs to be updated. If it is determined that the regression model needs to be updated, the control unit 11 executes a regression model construction process for the newly input characteristic measurement data, starting from step S510 in FIG. 5, in order to construct a new regression model. On the other hand, if it is determined that the regression model does not need to be updated, the control unit 11 omits the regression model construction process and the regression model evaluation process, and performs a prototype condition proposal process for the newly input characteristic measurement data, starting from step S610 in FIG. 6, using the previously constructed regression model. Note that even if the newly input characteristic measurement data contains missing values, if the regression model does not need to be updated, the control unit 11 similarly omits the regression model construction process and the regression model evaluation process.
- the prototype condition proposal system 1 is a system that proposes prototype conditions for a material to a material developer, and includes a regression model construction processing unit 112 and a prototype condition proposal processing unit 113.
- the regression model construction processing unit 112 executes a regression model construction process (FIG. 5) for actual property measurement data that represents the actual measurement results of the material's properties (step S320).
- the prototype condition proposal processing unit 113 executes an optimization process (step S610) that searches for optimal prototype conditions for the material using the constructed regression model, and executes a prototype condition proposal process (FIG. 6) based on the results of the optimization process (step S610) (step S340).
- step S610 an optimization process that searches for optimal prototype conditions for the material using the constructed regression model
- a prototype condition proposal process (FIG. 6) based on the results of the optimization process (step S610) (step S340).
- the optimization process includes a prototype level candidate creation process (step S611) that creates a specified number of prototype level candidates, a calculation process (step S612) that calculates predicted values or acquisition functions for all the created prototype level candidates, and an extraction process (step S613) that extracts the prototype conditions with the best predicted values or acquisition functions.
- the prototype level candidate with the best predicted value or acquisition function is extracted as the prototype condition from all the created prototype level candidates.
- the prototype condition proposal system 1 can estimate the best prototype conditions for the material.
- the prototype level candidate creation process includes a selection process (step S614) for selecting a reference prototype level from prototype level candidates whose characteristics have been measured, a variation process (step S615) for varying the selected prototype level using random numbers within the range in which the material can be prototyped, and a storage process (step S616) for storing the prototype level candidate that has been subjected to the variation process (step S615) a designated number of times.
- the prototype level candidate creation process step S611) creates prototype level candidates that are necessary and sufficient to accurately extract prototype conditions with good characteristics.
- the reference prototype level is randomly selected in the selection process (step S614). This makes it easier for prototype level candidates with good characteristics to be selected as prototype conditions.
- the selection process may include a process (not shown) for weighting the selection probability of the reference prototype level. In this case, weighting in this manner makes it easier to select a prototype level that is preferable as the reference.
- the prototype level candidate creation process may further include a determination process (not shown) for determining whether or not there is a prototype level to be used as a reference, and a reference generation process (not shown) for generating a reference using random numbers if it is determined in the determination process (not shown) that there is no reference. In this case, even if there is no reference, it is possible to create a prototype level candidate in the same way as when there is a reference by generating the reference using random numbers.
- the optimization process includes a selection process (step S617) for selecting an initial prototype level from prototype level candidates whose characteristics have already been measured, a penalty setting process (step S618) for setting a penalty for deviation from a specified constraint condition for the selected prototype level, and a process (step S619) for optimizing the prototype conditions so that the predicted value or acquisition function to which the set penalty is added or multiplied is the best.
- the prototype level is more refined than when the optimization process is performed one-off.
- the prototype condition proposal system 1 can estimate the best prototype conditions for a material.
- the initial prototype level is randomly selected in the selection process (step S617). This makes it less likely that the area in the parameter space to be searched will be biased when searching for prototype conditions (step S610).
- the selection process (step S617) may include a process (not shown) for weighting the selection probability of the prototype level that will be the initial value. In this case, weighting in this manner makes it easier to select a prototype level that is preferable as the initial value.
- the optimization process (step S610) may further include a determination process (not shown) for determining whether or not there is a reference prototype level, and a reference generation process (not shown) for generating a reference using random numbers if it is determined in the determination process (not shown) that there is no reference. In this case, even if there is no reference, it is possible to create prototype level candidates in the same way as when there is a reference by generating the reference using random numbers.
- the constraint is that the material in question can be prototyped. Since the constraint is imposed in this way based on material science, the prototype condition suggestion system 1 can suggest only those prototype conditions that can actually be used to prototype the material.
- Prototype condition proposal system 11 Control unit 12: Storage unit 13: User interface unit 14: Communication unit 111: Characteristics measurement data preprocessing unit 112: Regression model construction processing unit 113: Prototype condition proposal processing unit 131: Input unit 132: Output unit 400: Internet
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
探索するパラメータ空間が使用する計算資源に対して広範であっても、材料の良好な試作条件を精度よく提案可能な技術を提供する。試作条件提案システム1は、材料開発者に材料の試作条件を提案するシステムであって、回帰モデル構築処理部112と、試作条件提案処理部113とを備える。回帰モデル構築処理部112は、材料の特性の実測結果を表す特性実測データについて回帰モデル構築処理を実行する。試作条件提案処理部113は、構築された回帰モデルを用いて材料の最適な試作条件を探索する最適化処理を行い、最適化処理の結果に基づいて試作条件提案処理を実行する。
Description
本発明は、材料開発者に材料の試作条件を提案するシステムおよび方法に関する。
材料(Materials)の研究開発を行う材料科学の分野では、今日、統計解析や機械学習等の情報技術(Informatics)を利用して材料の物性や構造等を効率よく予測する、マテリアルズ・インフォマティクス(Materials Informatics; MI)と呼ばれる手法が広く用いられている。このマテリアルズ・インフォマティクスを用いた材料の研究開発に関して、例えば特許文献1の技術が知られている。特許文献1には、試料とされる複数の物質それぞれの作製条件と、各物質の物性や構造を表す物質情報とを含むデータセットから、最適な物性や構造を有する物質の作製条件を推定するシステムが開示されている。
マテリアルズ・インフォマティクスを用いた材料開発の現場では、通例、まず、開発対象の材料の特性を各種の評価試験によって実測し、実測結果を表すデータ(以下、「特性実測データ」と称する)を取得する。次いで、この特性実測データをコンピュータに入力して、学習済みの各種機械学習モデルを構築する。そして、この学習済みの機械学習モデルを使用して、当該材料を試作する際の条件(以下、「試作条件」と称する)を推定する。
ところで、上述した特性実測データには、通常、きわめて多くの数の説明変数が含まれている。説明変数の数がきわめて多いと、説明変数同士の組合せの数も膨大になる。そのため、マテリアルズ・インフォマティクスに基づいて材料の良好な試作条件を推定しようとすると、大抵の場合、非常に広範なパラメータ空間を探索する必要がある。これに対して、一般に、然様な処理をコンピュータに実行させる場合に費やすことができる計算資源には限度がある。この故に、現実的な計算資源により、現実的な計算時間で材料の良好な試作条件を推定する場合、投入可能な計算資源に対して探索すべきパラメータ空間が広すぎることになり、現実的な計算時間で良好な試作条件を推定できないおそれがある。
また、上述した特性実測データは、その数(以下、「サンプル数」とも称する)が少数であることが多く、各特性実測データに含まれる説明変数の分布に偏りがあることも少なくない。そのため、材料の良好な試作条件を推定するために探索するパラメータ空間において、機械学習モデルの構築のためにコンピュータに入力した特性実測データ(以下、「学習データ」とも称する)に含まれる説明変数の分布領域から遠い領域を探索する場合には、当該説明変数の分布領域の近傍を探索する場合と比べて推定精度が低下する。この故に、探索すべきパラメータ空間のうち、精度よく探索可能な領域は、学習データに含まれる説明変数の分布領域の近傍に限定される。したがって、探索すべきパラメータ空間の全域をくまなく探索したとしても、当該パラメータ空間の全域について均一に精度よく探索できずに、材料の良好な試作条件を推定できないおそれがある。
本発明は、上記の課題に鑑みて、探索するパラメータ空間が使用する計算資源に対して広範であっても、材料の良好な試作条件を精度よく提案可能な技術を提供することを目的とする。
本発明による試作条件提案システムは、材料開発者に材料の試作条件を提案するものであって、回帰モデル構築処理部と、試作条件提案処理部とを備える。回帰モデル構築処理部は、材料の特性の実測結果を表す特性実測データについて回帰モデル構築処理を実行する。試作条件提案処理部は、構築された回帰モデルを用いて材料の最適な試作条件を探索する最適化処理を行い、最適化処理の結果に基づいて試作条件提案処理を実行する。
また、本発明による試作条件提案方法は、コンピュータを用いて材料開発者に材料の試作条件を提案する方法である。この試作条件提案方法は、回帰モデル構築処理と、試作条件提案処理とをコンピュータに実行させる。回帰モデル構築処理は、材料の特性の実測結果を表す特性実測データについて回帰モデルを構築する処理を表す。試作条件提案処理は、構築された回帰モデルを用いて材料の最適な試作条件を探索する最適化処理を行い、最適化処理の結果に基づいて当該材料の試作条件を提案する処理を表す。
また、本発明による試作条件提案方法は、コンピュータを用いて材料開発者に材料の試作条件を提案する方法である。この試作条件提案方法は、回帰モデル構築処理と、試作条件提案処理とをコンピュータに実行させる。回帰モデル構築処理は、材料の特性の実測結果を表す特性実測データについて回帰モデルを構築する処理を表す。試作条件提案処理は、構築された回帰モデルを用いて材料の最適な試作条件を探索する最適化処理を行い、最適化処理の結果に基づいて当該材料の試作条件を提案する処理を表す。
その他、本願が開示する課題とその解決方法は、発明を実施するための形態の欄、および図面の記載によって明らかにされる。
本発明によれば、探索するパラメータ空間が使用する計算資源に対して広範であっても、材料の良好な試作条件を精度よく提案することができる。
以下、本実施形態を詳細に説明する。図1は、本発明の一実施形態に係る試作条件提案システムの概要を示す模式図である。図1に示す試作条件提案システム1は、材料の組成や焼成条件等といった、材料を試作する際に考慮するべき種々の試作条件をそれぞれ最適化し、その結果を本システムのユーザーである材料開発者に提案するものである。この試作条件の最適化は、当該材料の特性の実測結果を表す特性実測データを基に、各種の機械学習アルゴリズムを用いて行われる。また、このとき、予測モデルには、例えば、ガウス過程回帰(Gaussian Process Regression; GPR)や線形回帰(Linear Regression)、回帰木(Regression Tree; アンサンブル法による場合を含む)、ニューラルネットワークによる回帰(Neural Network Regression)、サポートベクター回帰(Support Vector Regression; SVR)、ロジスティック回帰(Logistic Regression)、LASSO回帰(Least Absolute Shrinkage and Selection Operator Regression)等の各種の回帰モデルが使用される。
図1に示したように、試作条件提案システム1のユーザーが、試作条件提案システム1から提案された試作条件で材料の試作を行い、その成果物である材料の特性を実測すると、この成果物の特性の評価値を表す特性実測データが新たに生成される。この特性実測データを新たな学習データとして試作条件提案システム1に学習させると、試作条件提案システム1は、より最適化された試作条件をユーザーに提案する。本実施形態の試作条件提案システム1は、ユーザーがこのサイクルを繰り返す度に、特性の予測値がより好ましい試作条件を提案することができる。なお、試作条件提案システム1が、材料を試作する機能や、試作対象の材料の特性を実測する機能を含んでいたり、これらの機能と一体的に構成されていたりしてもよい。
本実施形態の試作条件提案システム1は、図1に示したように、一台の汎用コンピュータ装置によって実現される。以下の説明は、試作条件提案システム1が、一つ以上のプロセッサデバイス、一つ以上の記憶装置、一つ以上の入出力装置、およびそれらを連結する有線または無線の通信線(いずれも不図示)を備える一台の汎用コンピュータ装置により実現されているものとして行う。
このコンピュータ装置は、例えば実験室の内部に端末として設置され、当該実験室の内外に設置されている他の各種端末や、各ユーザーが保有するラップトップPCやタブレット、スマートフォン等の各種端末(以下、「ユーザー端末」と称する)、サーバ装置等の他の機器と、インターネット400や専用線等の通信ネットワークを介して接続される。なお、当該コンピュータ装置とインターネット400とは、周知の通信用機器(不図示)を介して有線で接続されるが、無線で接続されてもよい。
次に、試作条件提案システム1が備える各種機能について、図2を参照して説明する。図2は、本発明の一実施形態に係る試作条件提案システム1の機能ブロックを示す図である。なお、以下に説明する各ブロックは、ハードウェア単位の構成ではなく、機能単位のブロックを示している。本実施形態の試作条件提案システム1は、図2に示すように、制御部11、記憶部12、ユーザーインターフェース部13、および通信部14を備えて構成される。
制御部11は、ユーザーインターフェース部13が検出したユーザーの操作入力、通信部14により取得されたデータ、および記憶部12が記憶しているプログラムやデータに基づいて各種データ処理を実行する。制御部11は、ユーザーインターフェース部13、通信部14および記憶部12のインターフェースとしても機能する。
制御部11は、特性実測データ前処理部111、回帰モデル構築処理部112および試作条件提案処理部113の各機能ブロックを有する。制御部11は、例えばCPU(Central Processing Unit)および各種コプロセッサ(Co-processor)等のプロセッサデバイス(以下、単に「プロセッサ」とも称する)を用いて構成され、所定のプログラムを実行することによって、これらの機能ブロックを実現することができる。なお、プロセッサの代わりに、例えばFPGA(Field Programmable Gate Array)等の論理回路を用いて制御部11を構成してもよい。また、プロセッサと論理回路との組合せによって制御部11を構成してもよい。
制御部11が実行するプログラムは、プログラムソースからインストールされてもよい。プログラムソースは、例えばプログラム配布計算機や計算機が読み取り可能な記録媒体等であってもよい。また、制御部11が実行するプログラムは、デバイスドライバ、オペレーティングシステム、それらの上位層に位置する各種アプリケーションプログラム、また、これらのプログラムに共通機能を提供するライブラリによって構成されてもよい。さらに、二つ以上のプログラムが一つのプログラムとして実現されてもよいし、一つのプログラムが二つ以上のプログラムとして実現されてもよい。
特性実測データ前処理部111は、記録直後のいわゆる生データの状態の特性実測データに対して前処理を施す。特性実測データ前処理部111が行うこの処理を、特性実測データ前処理と称する。
回帰モデル構築処理部112は、前処理が施された特性実測データについて回帰モデルを構築する処理を実行する。回帰モデル構築処理部112が実行するこの処理を、回帰モデル構築処理と称する。
試作条件提案処理部113は、前処理が施された特性実測データについて、回帰モデル構築処理部112が構築した回帰モデルを用いて材料の最適な試作条件を探索する最適化処理を行い、最適化処理の結果に基づいて材料の試作条件をユーザーに提案する処理を実行する。試作条件提案処理部113が実行するこの処理を、試作条件提案処理と称する。
なお、これらの処理の具体的な内容については後述する。
記憶部12は、例えばRAMやフラッシュメモリ等の記憶装置を用いて構成されており、制御部11に各種処理命令を供給するプログラム、および制御部11が実行する処理において用いられる各種情報を表すデータを記憶する。例えば、特性実測データ前処理部111により前処理が施された特性実測データ(以下、「前処理実施済データ」と称する)や、回帰モデル構築処理部112により構築された回帰モデルを表すデータ等が記憶部12に記憶される。制御部11は、これらの情報を記憶部12に読み書きすることで、前述の特性実測データ前処理部111、回帰モデル構築処理部112および試作条件提案処理部113の各機能ブロックを実現することができる。
ユーザーインターフェース部13は、ユーザーからの入力操作を受け付けるほか、画像表示や音声出力等、ユーザーインターフェースに関する処理を担当する。ユーザーインターフェース部13は、入力部131および出力部132の各機能ブロックを有する。入力部131は、ユーザーからの各種操作を検出する。入力部131は、例えばキーボードやポインティングデバイス、タッチパネル等を用いて構成される。出力部132は、ユーザーに対して画面表示や音声出力等を実行する。出力部132は、例えば液晶ディスプレイやタッチスクリーン等を用いて構成される。
通信部14は、インターネット400を介して行われる、各ユーザーが保有するユーザー端末や、サーバ装置等の他の機器との通信処理を担当する。通信部14は、例えばNIC(Network Interface Card)やHBA(Host Bus Adapter)等を用いて構成される。
本実施形態では、試作条件提案システム1の各機能が一台のコンピュータ装置により一体的に実現されているものとして説明した。しかしながら、これらの各機能は相互に接続された複数台のコンピュータ装置またはサーバ装置によって実現されてもよい。また、試作条件提案システム1は、ラップトップPC等の汎用コンピュータ装置と、これにインストールされたウェブブラウザとを含む構成であってもよいし、ウェブサーバや各種携帯機器を含む構成であってもよい。
また、各機能の説明は一例であり、複数の機能が一つの機能にまとめられたり、一つの機能が複数の機能に分割されたりしてもよい。
次に、試作条件提案システム1の処理全体の流れについて、図3を参照して説明する。図3は、本発明の一実施形態に係る試作条件提案システム1の処理全体の流れを示すフローチャートである。なお、以下の説明では、前述の各機能またはプログラムを主語として処理を説明する場合があるが、機能またはプログラムを主語として説明した処理は、プロセッサ、あるいはそのプロセッサを有する装置が行う処理としてもよい。
ステップS310において、制御部11は、特性実測データ前処理部111により、特性実測データ前処理を実行する。これにより、特性実測データに前処理が施されて前処理実施済データとなり、以後の各処理を正常に実行することが可能になる。なお、ステップS310で行われる特性実測データ前処理の詳細は、後で図4のフローチャートを参照して説明する。制御部11は、特性実測データ前処理が完了すると、ステップS320に進む。
ステップS320において、制御部11は、回帰モデル構築処理部112により、回帰モデル構築処理を実行する。これにより、前処理実施済データについて、回帰モデルが構築される。なお、ステップS320で行われる回帰モデル構築処理の詳細は、後で図5のフローチャートを参照して説明する。制御部11は、回帰モデル構築処理が完了すると、ステップS330に進む。
ステップS330において、制御部11は、回帰モデル評価処理を実行する。この回帰モデル評価処理では、ステップS320までの各処理の結果構築された複数の回帰モデルの各々について、回帰モデルの予測精度を表す指標である汎化性能を評価する。この評価は、例えば、他の回帰モデルとの間で交差検証(Cross Validation)を行うことで行う。評価の結果は、例えば散布図や箱ひげ図等のグラフによって可視化される。これにより、ユーザーは、汎化性能が良好な回帰モデルに基づく試作条件の提案を受けることができる。制御部11は、回帰モデル評価処理が完了すると、ステップS340に進む。
ステップS340において、制御部11は、試作条件提案処理部113により、試作条件提案処理を実行する。この試作条件提案処理では、試作条件提案システム1のユーザーが、試作条件提案システム1が提案した材料の試作条件を、さらに好ましいものとするために、適宜に修正することができる。制御部11は、ユーザーにより修正された試作条件で試作した場合の材料の特性の予測値を、選択した回帰モデルに当てはめることによって求め、ユーザーに提示する。すなわち、ユーザーは、この試作条件の修正作業を、当該予測値を確認しながら対話的に行うことができる。このように、試作条件提案システム1は、ユーザーに提案する材料の試作条件に、当該材料の開発者であるユーザーの知見を盛り込むことが可能なシステムとなっている。なお、ステップS340で行われる試作条件提案処理の詳細については、後で図6のフローチャートを参照して説明する。制御部11は、試作条件提案処理が完了すると、図3のフローチャートに示す処理を一旦終了する。
本実施形態の試作条件提案システム1は、図3のステップS310~S340の各処理を実行して、良好な試作条件をユーザーに提案する。すなわち、本実施形態の試作条件提案システム1では、ステップS310において、生データの状態の特性実測データに対して必要な前処理が自動的に施される。そのため、特性実測データに対して繁雑な前処理を人手により行うことなく、ステップS320~S340の各処理を実行することができる。また、本実施形態の試作条件提案システム1では、ユーザーは、汎化性能が良好な回帰モデルを選択することができる。そのため、試作条件提案システム1は、ユーザーに対して、予測される特性値が良好な試作条件を提案することができる。
なお、図1に関連して前述したように、試作条件提案システム1のユーザーは、試作条件提案システム1が提案した試作条件で材料の試作を行ってその成果物の特性を実測し、実測結果を表すデータを新たな特性実測データとして試作条件提案システム1に学習させたうえで、再度、試作条件提案システム1に図3のステップS310~S340の各処理を実行させることができる。この場合、試作条件提案システム1は、より最適化された試作条件をユーザーに提案することができる。すなわち、本実施形態の試作条件提案システム1は、同一の試作対象について図3のステップS310~S340の各処理を繰り返す度に、特性の予測値がより良好な試作条件を提案することができる。
図4は、特性実測データ前処理の詳細を示すフローチャートである。
ステップS410において、制御部11は、特性実測データ前処理部111により、ユーザーからの特性実測データの入力を、入力部131または通信部14を介して受け付ける。試作条件提案システム1に入力する特性実測データは、例えばカテゴリデータであってもよいし、連続データであってもよいし、離散データであってもよい。また、試作条件提案システム1に入力する特性実測データの具体的なデータ形式は、適宜に決定することができる。制御部11は、ステップS410における処理が完了すると、ステップS420に進む。
ステップS420において、制御部11は、特性実測データ前処理部111により、ステップS410でユーザーから入力を受け付けた特性実測データについて、変数の種類を設定する。ここでは、説明変数および目的変数のいずれか一つが設定される。説明変数とは、特性の予測値を求める基となる変数のことである。本実施形態においては、試作条件を構成する材料の組成や焼成条件等が説明変数に該当する。また、目的変数とは、予測の対象となる、試作する材料の特性値を表す変数のことである。ステップS420における具体的な処理の例としては、説明変数がデフォルトで設定されており、目的変数に変更したいユーザーから設定操作を受け付けるとしてもよい。制御部11は、ステップS420における処理が完了すると、ステップS430に進む。
ステップS430において、制御部11は、特性実測データ前処理部111により、ステップS420で説明変数および目的変数のいずれか一つが設定された特性実測データについて、異常値があるか否かを判定する。この異常値の有無の判定処理は、例えば、特性実測データをヒストグラムに表して平均値±2σの範囲外となる外れ値の有無をまず判定し、外れ値があると判定された特性実測データの生成時における、データ入力ミスの有無や、評価試験機の故障の有無等を判定することにより行う。当該特性実測データに異常値が含まれていると判定した場合、制御部11は、当該異常値を削除して欠損値とし、ステップS440に進む。また、制御部11は、当該特性実測データに含まれている異常値の類型が、説明変数が完全に重複していて特性が異なる水準がある場合における、一方の目的変数である場合には、この異常値に係るサンプルを削除して、ステップS440に進む。然様な、説明変数の全てが重複していて特性の異なる水準を異常値として扱う場合、入力ミス等に起因する説明変数の1か所が異常値である場合と異なり、当該水準自体を削除する必要があるためである。他方、当該特性実測データに異常値が含まれていないと判定した場合、制御部11は、そのままステップS440に進む。
なお、上述した、説明変数の全てが重複していて特性の異なる水準があるような場合に、重複に意味があるとして、どちらの説明変数も残したいことがある。然様な場合、本実施形態の試作条件提案システム1では、ステップS430における処理を省略することができる。
ステップS440において、制御部11は、特性実測データ前処理部111により、特性実測データについて、欠損値があるか否かを判定する。特性実測データが予め欠損値を含む場合があるためである。当該前処理実施済データに欠損値が含まれていると判定した場合、制御部11は、当該欠損値を補完してステップS450に進む。欠損値の補完処理は、例えば、異常値を除いた特性実測データの平均値や中央値、最小値、最大値等を、欠損値を補完する値として用いることにより行う。また、線形補間(Linear Interpolation)により欠損値の補完を行ってもよい。なお、特性実測データ前処理部111は、例えば、ステップS440において欠損値を補完した場合に、補完した値を識別しやすくするために、赤字で表示してもよい。また、特性実測データ前処理部111は、例えば、ステップS440において、当該欠損値を補完せずに水準自体を削除してもよい。さらに、本実施形態の試作条件提案システム1では、特性実測データ前処理部111は、説明変数の欠損割合が多い場合、例えばデータ数の5割以上が欠損している場合には、当該説明変数自体を削除することもできる。他方、当該特性実測データに欠損値が含まれていないと判定した場合、制御部11は、そのままステップS450に進む。
ステップS450において、制御部11は、特性実測データ前処理部111により、説明変数が連続値でなくカテゴリ値である場合、当該説明変数についてエンコーディング処理を行い、数値データへと変換する。特性実測データ前処理部111は、このエンコーディング処理を、例えば記憶部12に記憶されている、カテゴリデータと数値データとの対応関係を表すテーブルのレコードを参照することによって実行する。制御部11は、ステップS450における処理が完了すると、ステップS460に進む。
ステップS460において、制御部11は、特性実測データ前処理部111により、特性実測データに冗長な説明変数が含まれているか否かを判定する。この判定は、相関係数が所定の数以上、例えば0.8以上となる説明変数の組合せを抽出できるか否かを基準に行う。当該特性実測データに冗長な説明変数が含まれていると判定した場合、制御部11は、冗長な説明変数の一方を削除してステップS470に進む。なお、本実施形態の試作条件提案システム1では、相関係数が0.8以上となる説明変数の組合せが出力部132を通じてユーザーに可視化され、ユーザーは、削除する説明変数を、入力部131を通じて選択することができる。他方、当該特性実測データに冗長な説明変数が含まれていないと判定した場合、制御部11は、そのままステップS470に進む。
ステップS470において、制御部11は、特性実測データ前処理部111により、必要に応じて特性実測データに対して標準化処理を施す。この標準化処理は、特性実測データのスケールを、平均=0、標準偏差(分散)=1となるように変換するものである。制御部11は、ステップS470における処理が完了すると、図4のステップS410~S470により前処理が施された特性実測データである前処理実施済データを記憶部12に格納して、図4のフローチャートに示す特性実測データ前処理を終了する。なお、制御部11は、特性実測データ前処理部111により、必要に応じて特性実測データに対して正規化処理を施してもよい。然様な場合、S470において標準化処理を施さずに、その後の各処理を実行してもよい。
図5は、回帰モデル構築処理の詳細を示すフローチャートである。
ステップS510において、制御部11は、回帰モデル構築処理部112により、前処理実施済データについて構築する回帰モデルの評価のための交差検証の実施条件を選択する。なお、本実施形態の試作条件提案システム1は、K‐分割交差検証(K-fold Cross Validation)によって回帰モデル毎の評価を行う。また、その実施条件として、K=10がデフォルト値に設定されている。この場合、試作条件提案システム1は、10分割交差検証によって回帰モデルの評価を行う。なお、本実施形態の試作条件提案システム1では、ユーザーが交差検証の実施条件を選択することもできる。すなわち、回帰モデル構築処理部112は、入力部131または通信部14を介してユーザーから交差検証の実施条件を受け付けることができる。制御部11は、ステップS510における処理が完了すると、ステップS520に進む。
ステップS520において、制御部11は、回帰モデル構築処理部112により、試作条件の探索に予測モデルとして用いる回帰モデルの候補を選択する。このとき、回帰モデル構築処理部112は、入力部131または通信部14を介してユーザーから選択処理を受け付けた回帰モデルを候補として選択する。本実施形態の試作条件提案システム1では、ユーザーは、ガウス過程回帰と、前述した線形回帰、回帰木(アンサンブル法による場合を含む)、ニューラルネットワークによる回帰、サポートベクター回帰、ロジスティック回帰およびLASSO回帰等の各種の回帰モデルとから複数の回帰モデルを候補として選択することができる。制御部11は、ステップS520における処理が完了すると、ステップS530に進む。
ステップS530において、制御部11は、回帰モデル構築処理部112により、特性実測データへの重みづけの基準である重み基準を算出する処理を実行する。重み基準は、特性実測データに含まれる目的変数と材料の特性の目標値を表す目標特性との差、あるいは、特性実測データに含まれる説明変数の希少性をあらわす統計量に基づいて算出される。なお、説明変数の希少性をあらわす統計量の具体例としては、所定の条件を満たす説明変数の出現確率が挙げられる。制御部11は、ステップS530における処理が完了すると、ステップS540に進む。
ステップS540において、制御部11は、回帰モデル構築処理部112により、ステップS530で算出された重み基準に基づいて、特性実測データに重みづけを行う処理を実行する。また、本実施形態の試作条件提案システム1では、回帰モデル構築処理部112は、ステップS530で算出された重み基準に基づいて、回帰モデルに対して直接重みづけをすることもできる。なお、回帰モデル構築処理部112がステップS530の結果を基にステップS540で実行する処理は、具体的には、学習の指標となる関数である損失関数を設定する処理と、希少または重要性の高い特性実測データを増幅して学習データとして追加するオーバーサンプリング処理と、冗長または重要性の低い特性実測データを学習データから削除するアンダーサンプリング処理とのいずれか一つの処理である。これらの処理が実行されることにより、機械学習モデルの構築に使用される学習データの数が少ない場合や、学習データの分布に偏りがある場合にも、然様な学習データの重みが適宜に調整される。その結果、推定精度が向上し、良好な材料の試作条件を精度よく提案することができる。制御部11は、ステップS540における処理が完了すると、ステップS550に進む。
ステップS550において、制御部11は、回帰モデル構築処理部112により、ステップS520で候補として選択された各手法の回帰モデルのそれぞれについて、最適なハイパーパラメータ(Hyperparameter)を探索して設定する。本実施形態の試作条件提案システム1では、回帰モデル毎に、回帰モデル構築処理部112が全てのパラメータを自動的に探索し、回帰モデルの構築時にハイパーパラメータとして設定したときにその回帰モデルの汎化性能を最も良くするものを自動的に設定する。制御部11は、ステップS550における処理が完了すると、ステップS560に進む。
ステップS560において、制御部11は、回帰モデル構築処理部112により、それぞれ最適なハイパーパラメータが設定された各手法の回帰モデルを作成する処理を行う。回帰モデル構築処理部112は、各手法の回帰モデルを作成すると、作成した全ての回帰モデルから最も汎化性能が高い回帰モデルを選定して、最終的な回帰モデルを決定する処理を行う。制御部11は、ステップS560における処理が完了すると、図5のフローチャートに示す回帰モデル構築処理を終了する。
図6は、試作条件提案処理の詳細を示すフローチャートである。
ステップS610において、制御部11は、試作条件提案処理部113により、図5のステップS560で構築した回帰モデルに基づいて試作条件の探索処理を行う。試作条件提案処理部113は、この処理を最適化処理により実行する(詳細後述)。なお、本実施形態の試作条件提案システム1は、数理最適化(Mathematical Optimization; MO)、ベイズ最適化(Bayesian Optimization; BO)、遺伝的アルゴリズム(Genetic Algorithm; GA)、ニュートン法(Newton’s Method; NM)および単体法(Simplex Method; SM)といった各種の最適化処理の手法を使用可能に構成されている。その結果、目的変数である特性の予測値が最良となるときの各説明変数が、当該探索処理の結果を表す仮試作条件としてユーザーに提案される。また、このとき、試作条件提案処理部113は、当該仮試作条件について感度解析を行って、当該仮試作条件を構成している各説明変数の重要度を評価し、評価結果を合わせて提示する。なお、本実施形態の試作条件提案システム1では、使用した回帰モデルがガウス過程回帰の場合には、獲得関数が最大になる試作条件を選択することもできる。制御部11は、ステップS610における処理が完了すると、ステップS620に進む。
ステップS620において、制御部11は、試作条件提案処理部113により、ステップS610でユーザーに提案した仮試作条件に対する修正を、ユーザーから受け付ける。試作条件提案処理部113は、仮試作条件を構成している各説明変数の値の修正に係る入力操作を入力部131または通信部14を介してユーザーから受け付けると、修正内容に応じて仮試作条件を修正する。なお、このとき、制御部11は、試作条件提案処理部113により、回帰モデルを使用して、修正後の仮試作条件で試作した場合の材料の特性の予測値を求め、計算結果をユーザーに提示する。また、このとき、試作条件提案処理部113は、ステップS610と同様に、修正後の仮試作条件についても感度解析を行って、当該修正後の仮試作条件を構成している説明変数の重要度を評価し、評価結果を合わせて提示する。なお、この評価結果は、ユーザーが仮試作条件を修正する度に更新されて、常に最新の評価結果がユーザーに提示される。制御部11は、ステップS620における処理が完了すると、ステップS630に進む。
ステップS630において、制御部11は、試作条件提案処理部113により、修正後の仮試作条件について、ステップS620で求めた特性の予測値が、試作対象の材料の特性値として不十分か否かを判定する。この判定は、例えば、使用する回帰モデルがガウス過程回帰の場合には、試作条件毎の、当該試作条件で試作した場合に材料の特性が改善される期待値を表す獲得関数(Acquisition Function)を修正後の仮試作条件について求め、当該獲得関数の値と、獲得関数の最大値との差が所定の範囲内にあるか否かを判定することによって行う。なお、獲得関数は、任意の試作条件で試作した場合の材料の特性の予測値μと、当該予測値のばらつきを表す標準偏差σとを基に計算される。予測される特性値が不十分であると判定した場合は、ステップS620に戻って再びユーザーから試作条件に対する修正指示を受け付け、予測される特性値が不十分でないと判定した場合は、当該修正後の仮試作条件で試作する場合の材料の特性の予測値は十分であるため、当該仮試作条件を確定させ、試作条件が確定したものとしてユーザーに提案する。すなわち、この判定処理は、仮試作条件に係る材料の特性の予測値が不十分でないと判定されるまで繰り返し行われる。制御部11は、ステップS630における処理が完了すると、図6のフローチャートに示す試作条件提案処理を終了する。
なお、試作条件提案処理部113は、ステップS610において、サンプリング法によって最適化処理を行う場合と、連続して最適化処理を行う場合とがある。サンプリング法とは、複数の試作水準候補を生成して、特性が最も良好な試作水準候補を選択する方法のことである。本実施形態の試作条件提案システム1においては、ユーザーは、ステップS610における最適化処理の実行時に、この二通りの実行方法を選択することができる。このうち、試作条件提案処理部113がサンプリング法によって最適化処理を行う場合にステップS610で実行される処理の具体的な内容は、以下にステップS611~S616として示す通りである。
ステップS611において、制御部11は、入力部131を介して、試作水準候補の作成数を指定する入力操作をユーザーから受け付けると、試作条件提案処理部113により、指定された数の試作水準候補を作成する処理を行う。この処理を、試作水準候補作成処理と称する。試作水準候補作成処理は、後述するステップS614~S616の各処理をコンピュータに指定回数繰返し実行させる処理を含むものである。試作水準候補作成処理の結果、ユーザーが指定した数の試作水準候補が作成される。本実施形態の試作条件提案システム1においては、10000件の試作水準候補がユーザーの指定によって作成されている。制御部11は、ステップS611における処理が完了すると、ステップS612に進む。
ステップS612において、制御部11は、試作条件提案処理部113により、ステップS611で作成した全ての試作水準候補に対して予測値または獲得関数を算出する処理を行う。この処理を、算出処理と称する。算出処理の結果、ステップS611で作成された全ての試作水準候補に対して予測値または獲得関数が算出される。制御部11は、ステップS612における処理が完了すると、ステップS613に進む。
ステップS613において、制御部11は、試作条件提案処理部113により、ステップS612で算出した予測値または獲得関数に基づいて、ステップS611で作成した全ての試作水準候補から、予測値または獲得関数が最も良好な試作条件を抽出する処理を行う。この処理を、抽出処理と称する。試作条件提案処理部113は、ステップS613で行う抽出処理を、ステップS610に関連して前述した各種の最適化処理の手法を用いて実行する。抽出処理の結果、ステップS611で作成された全ての試作水準候補から、予測値または獲得関数が最も良好な試作水準候補が試作条件として抽出される。制御部11は、ステップS613における処理が完了すると、ステップS610において実行する最適化処理を終了する。
なお、ステップS611で実行される試作水準候補作成処理は、上述したように、後述するステップS614~S616の各処理をコンピュータに指定回数繰返し実行させる処理を含む。
ステップS614において、制御部11は、試作条件提案処理部113により、基準とする試作水準を、特性を実測済みの試作水準候補から選定する処理を行う。この処理を、選定処理と称する。選定処理においては、特性を実測済みの試作水準候補として、特性実測データが使用される。すなわち、選定処理においては、まず、特性が良好な特性実測データが複数の特性実測データから抽出される。次に、抽出された特性が良好な特性実測データが試作条件として重点的に選択されるように、選定確率が算出される。さらに、算出された選定確率に応じて特性実測データがランダムに選定される。この選定された特性実測データにおける原料の組合せが、試作水準候補として設定される。このように、選定処理において、基準とする試作水準は、試作水準候補とされる特性実測データのうち、特性が良好なものが試作条件として重点的に選択されるように算出された選定確率に応じて、ランダムに選定される。これにより、特性が良好な試作水準候補が試作条件として選定されやすくなる。また、選定処理は、基準とする試作水準の選定確率に重みづけを行う処理を含んでいてもよい。このようにした場合、然様に重みづけを行うことにより、基準として好ましい試作水準がより選定されやすくなる。選定処理の結果、基準とする試作水準候補における原料の組合せが決定する。制御部11は、ステップS614における処理が完了すると、ステップS615に進む。
ステップS615において、制御部11は、試作条件提案処理部113により、ステップS614で選定した試作水準に対して、当該材料を試作可能な範囲内で、乱数で変動を与える処理を行う。この処理を、変動処理と称する。この変動処理では、まず、当該試作水準候補における原料の組成比が、合計値の制約を守りつつランダムに設定される。次に、当該試作水準候補における平均粒径および最高焼成温度が、ステップS614で決定した原料の組合せおよびステップS615で決定した原料の組成比を基に算出される。その後、その他の説明変数が、各特性実測データに含まれる当該説明変数の分布に応じて設定される。変動処理の結果、基準とする試作水準候補における、材料の組成比をはじめとする各種説明変数の値が決定する。制御部11は、ステップS615における処理が完了すると、ステップS616に進む。
ステップS616において、制御部11は、試作条件提案処理部113により、ステップS615で変動処理が施された試作水準候補を保存する処理を行う。この処理を、保存処理と称する。保存処理の結果、試作水準候補が記憶部12に書き込まれることによって保存される。制御部11は、ステップS616における処理が完了すると、ステップS614に戻って上述したステップS614~S616の各処理を再び実行する。ステップS614~S616の各処理は、指定回数繰り返し実行される。本実施形態の試作条件提案システム1においては、ステップS614~S616の各処理を繰り返し実行する回数として、10000回が指定されている。そのため、ステップS614~S616の各処理は、10000回繰り返し実行される。これにより、ステップS611で行われる試作水準候補作成処理において、特性が良好な試作条件を精度よく抽出するために必要かつ十分な試作水準候補が作成される。制御部11は、ステップS614~S616の各処理を10000回繰り返し実行すると、ステップS611における試作水準候補作成処理を終了して、ステップS612に進む。
なお、ステップS611で実行される試作水準候補作成処理は、基準とする試作水準の有無を判定する判定処理と、判定処理において基準が無いと判定された場合に基準を乱数で生成する基準生成処理とをさらに含んでいてもよい。このようにした場合、基準が存在しない場合にも、基準を乱数で生成することにより、基準が存在する場合と同様に試作水準候補を作成することができる。
他方、試作条件提案処理部113が連続して最適化処理を行う場合にステップS610で実行される処理の具体的な内容は、以下にステップS617~S619として示す通りである。
ステップS617において、制御部11は、試作条件提案処理部113により、特性を実測済みの試作水準候補から初期値となる試作水準を選定する処理を行う。この処理を、選定処理と称する。選定処理においては、特性を実測済みの試作水準候補として、特性実測データが使用される。すなわち、選定処理においては、試作水準の初期値として用いる特性実測データが複数の特性実測データから選定される。選定処理において、初期値となる試作水準はランダムに選定される。これにより、ステップS610において試作条件を探索する際に、探索するパラメータ空間内の領域が偏りにくくなる。また、選定処理が、初期値となる試作水準の選定確率に重みづけを行う処理を含んでいてもよい。このようにした場合、然様に重みづけを行うことにより、初期値として好ましい試作水準が選定されやすくなる。制御部11は、ステップS617における処理が完了すると、ステップS618に進む。
ステップS618において、制御部11は、試作条件提案処理部113により、選定された試作水準について、所定の制約条件から逸脱した場合のペナルティを設定する処理を行う。この処理を、ペナルティ設定処理と称する。ペナルティを設定する方法として、ステップS619においてペナルティが加算される場合には、当該ペナルティに係る評価値として非常に大きな負数が付与される。また、ステップS619においてペナルティが乗算される場合には、当該ペナルティに係る評価値として0が付与される。本実施形態の試作条件提案システム1においては、選定された試作水準が所定の制約条件から逸脱した場合、初期設定では、ステップS618でペナルティに係る評価値として0が付与される。そして、ステップS619において0が乗算されることにより、当該試作水準は無視されることになる。また、本実施形態の試作条件提案システム1においては、「当該材料を試作できる」こと、換言すると、「当該材料を試作可能なパラメータの範囲および組合せのみ許容する」こと、という制約条件があらかじめ設けられている。これにより、材料科学上の制約条件が課されるため、試作条件提案システム1は、実際に材料を試作可能な試作条件のみを提案することができる。また、制約条件の他の具体例として、「目標とする物性に近い既存の特性実測データ付近を重点的に探索する」ことや、「材料科学上、有効であると考えられる試作条件付近を重点的に探索する」ことなどが挙げられる。なお、あらかじめ設定される制約条件の数は、一つ以上であればよい。すなわち、一つの制約条件が単独で設定されていてもよいし、複数の制約条件の組合せが設定されていてもよい。また、試作条件提案処理部113は、得られる予測値や獲得関数が最も良好になるように、あらかじめ設定される制約条件やその内部のパラメータ(例えば、重点探索を行うための重みなど)を自動的に調整してもよい。制御部11は、ステップS618における処理が完了すると、ステップS619に進む。
ステップS619において、制御部11は、試作条件提案処理部113により、ステップS618で設定されたペナルティを加算または乗算した予測値または獲得関数が最も良好となるように、試作条件を最適化する処理を行う。試作条件提案処理部113は、ステップS619で行うこの処理を、ステップS610に関連して前述した各種の最適化処理の手法を用いて実行する。また、試作条件提案処理部113は、ステップS619で行うこの処理を、ユーザーから指定された回数分、繰り返し実行する。本実施形態の試作条件提案システム1においては、ステップS619の処理を繰り返し実行する回数として、10000回が指定されている。そのため、ステップS619において、最適化処理が10000回繰り返し実行される。制御部11は、ステップS619における処理が完了すると、ステップS610において実行する最適化処理を終了する。
なお、サンプリング法の場合と同様に、ステップS610で実行される最適化処理は、基準とする試作水準の有無を判定する判定処理と、判定処理において基準が無いと判定された場合に基準を乱数で生成する基準生成処理とをさらに含んでいてもよい。このようにした場合、基準が存在しない場合にも、基準を乱数で生成することにより、基準が存在する場合と同様に試作水準候補を作成することができる。
このように、ステップS610で実行される最適化処理は、サンプリング法によって行行われるか、あるいは、連続して行われる。このうち、最適化処理がサンプリング法によって行われる場合、複数の試作水準候補から特性が最も良好な試作水準候補が選択されるため、試作条件提案システム1は、材料の最も良好な試作条件を推定して、仮試作条件として提案することができる。また、最適化処理が連続して行われる場合、最適化処理が単発で行われる場合と比べて試作水準が精緻化されるため、試作条件提案システム1は、材料の最も良好な試作条件を推定して、仮試作条件として提案することができる。試作条件提案処理部113が、ステップS610における最適化処理をこのようにして行うことによって、提案対象の仮試作条件を探索する様子を図7に示す。なお、図7には、従来技術を使用して提案対象の仮試作条件を探索する様子も比較例として示している。図7は、ある複数の原料により作成されるセラミックス複合材料に係る特性である、熱膨張率(Coefficient of Thermal Expansion; CTE)および曲げ強度についての予測データを散布図上に表したものである。前述したように、従来技術の場合は、専ら広範なパラメータ空間の全体を満遍なく探索するだけであるために、当該パラメータ空間内において、狙った領域付近の探索が疎になる。これに対して、本実施形態の試作条件提案システム1は、ステップS611~S616に示すようにサンプリング法によって最適化処理を行うことにより、あるいは、ステップS617~S619に示すように連続して最適化処理を行うことにより、当該パラメータ空間内において、狙った領域付近の重点探索が可能である。すなわち、本実施形態の試作条件提案システム1は、特性が良好な特性実測データの試作水準候補としての影響度を上げることにより、当該特性実測データが備える特性に近い試作条件を図7に示したように重点的に探索して、所望の特性を満たしうる多くの試作条件を、効率よく見つけることができる。
なお、前述したように、本実施形態の試作条件提案システム1は、図6のステップS630で提案した試作条件に基づいてユーザーが材料の試作を行い、その成果物の特性の実測結果を表すデータが新たな特性実測データとして入力されると、当該新たに入力された特性実測データを基に、より最適化された試作条件をユーザーに提案する。この場合に、試作条件提案システム1の制御部11は、新たに入力された特性実測データに欠損値が含まれているか否かを判定する。欠損値が含まれていると判定した場合は、この欠損値を補完するため、図4のステップS440から処理を開始させる形で、当該新たに入力された特性実測データに対して特性実測データ前処理を施す。他方、欠損値が含まれていないと判定した場合は、当該新たに入力された特性実測データに対する特性実測データ前処理の実施は不要である。そのため、斯様な場合には、制御部11は、回帰モデルの更新の要否を判定する。回帰モデルの更新が必要と判定された場合、制御部11は、改めて回帰モデルを構築するため、図5のステップS510から処理を開始させる形で、当該新たに入力された特性実測データについて回帰モデル構築処理を実行する。他方、回帰モデルの更新が不要と判定された場合、制御部11は、回帰モデル構築処理および回帰モデル評価処理を省略し、前回構築した回帰モデルを使用して、図6のステップS610から処理を開始させる形で、当該新たに入力された特性実測データについて試作条件提案処理を行う。なお、新たに入力された特性実測データに欠損値が含まれている場合にも、回帰モデルの更新が不要な場合には、制御部11は、同様に、回帰モデル構築処理および回帰モデル評価処理を省略する。
以上説明した本発明の実施形態によれば、以下のような作用効果を奏する。
(1)試作条件提案システム1は、材料開発者に材料の試作条件を提案するシステムであって、回帰モデル構築処理部112と、試作条件提案処理部113とを備える。回帰モデル構築処理部112は、材料の特性の実測結果を表す特性実測データについて回帰モデル構築処理(図5)を実行する(ステップS320)。試作条件提案処理部113は、構築された回帰モデルを用いて材料の最適な試作条件を探索する最適化処理(ステップS610)を行い、最適化処理(ステップS610)の結果に基づいて試作条件提案処理(図6)を実行する(ステップS340)。このようにしたので、探索するパラメータ空間が使用する計算資源に対して広範であっても、材料の良好な試作条件を精度よく提案することができる。
(2)最適化処理(ステップS610)が、指定された数の試作水準候補を作成する試作水準候補作成処理(ステップS611)と、作成された全ての試作水準候補に対して予測値または獲得関数を算出する算出処理(ステップS612)と、予測値または獲得関数が最も良好な試作条件を抽出する抽出処理(ステップS613)とを含む。このようにしたので、作成された全ての試作水準候補から、予測値または獲得関数が最も良好な試作水準候補が試作条件として抽出される。その結果、試作条件提案システム1は、材料の最も良好な試作条件を推定することができる。
(3)試作水準候補作成処理(ステップS611)は、基準とする試作水準を、特性を実測済みの試作水準候補から選定する選定処理(ステップS614)と、当該材料を試作可能な範囲内で、選定された試作水準に対して乱数で変動を与える変動処理(ステップS615)と、変動処理(ステップS615)が施された試作水準候補を保存する保存処理(ステップS616)とをコンピュータに指定回数繰返し実行させる処理を含む。このようにしたので、試作水準候補作成処理(ステップS611)において、特性が良好な試作条件を精度よく抽出するために必要かつ十分な試作水準候補が作成される。
(4)基準とする試作水準は、選定処理(ステップS614)においてランダムに選定される。このようにしたので、特性が良好な試作水準候補が試作条件として選定されやすくなる。
(5)選定処理(ステップS614)が、基準とする試作水準の選定確率に重みづけを行う処理(不図示)を含んでいてもよい。このようにした場合、然様に重みづけを行うことにより、基準として好ましい試作水準がより選定されやすくなる。
(6)試作水準候補作成処理(ステップS611)は、基準とする試作水準の有無を判定する判定処理(不図示)と、判定処理(不図示)において基準が無いと判定された場合、基準を乱数で生成する基準生成処理(不図示)とをさらに含んでいてもよい。このようにした場合、基準が存在しない場合にも、基準を乱数で生成することにより、基準が存在する場合と同様に試作水準候補を作成することができる。
(7)最適化処理(ステップS610)が、特性を実測済みの試作水準候補から初期値となる試作水準を選定する選定処理(ステップS617)と、選定された試作水準について、所定の制約条件から逸脱した場合のペナルティを設定するペナルティ設定処理(ステップS618)と、設定されたペナルティを加算または乗算した予測値または獲得関数が最も良好となるように試作条件を最適化する処理(ステップS619)とを含む。このようにしたので、最適化処理が単発で行われる場合と比べて試作水準が精緻化される。その結果、試作条件提案システム1は、材料の最も良好な試作条件を推定することができる。
(8)初期値となる試作水準は、選定処理(ステップS617)においてランダムに選定される。このようにしたので、試作条件を探索する際(ステップS610)に、探索するパラメータ空間内の領域が偏りにくくなる。
(9)選定処理(ステップS617)が、初期値となる試作水準の選定確率に重みづけを行う処理(不図示)を含んでいてもよい。このようにした場合、然様に重みづけを行うことにより、初期値として好ましい試作水準が選定されやすくなる。
(10)最適化処理(ステップS610)は、基準とする試作水準の有無を判定する判定処理(不図示)と、判定処理(不図示)において基準が無いと判定された場合、基準を乱数で生成する基準生成処理(不図示)とをさらに含んでいてもよい。このようにした場合、基準が存在しない場合にも、基準を乱数で生成することにより、基準が存在する場合と同様に試作水準候補を作成することができる。
(11)制約条件は、当該材料を試作できることである。このようにしたので、材料科学上の制約条件が課されるため、試作条件提案システム1は、実際に材料を試作可能な試作条件のみを提案することができる。
なお、本発明は上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲内で、任意の構成要素を用いて実施可能である。
上記の実施形態や変形例はあくまで一例であり、発明の特徴が損なわれない限り、本発明はこれらの内容に限定されるものではない。また、上記では種々の実施形態や変形例を説明したが、本発明はこれらの内容に限定されるものではない。本発明の技術的思想の範囲内で考えられるその他の態様も本発明の範囲内に含まれる。
1:試作条件提案システム
11:制御部
12:記憶部
13:ユーザーインターフェース部
14:通信部
111:特性実測データ前処理部
112:回帰モデル構築処理部
113:試作条件提案処理部
131:入力部
132:出力部
400:インターネット
11:制御部
12:記憶部
13:ユーザーインターフェース部
14:通信部
111:特性実測データ前処理部
112:回帰モデル構築処理部
113:試作条件提案処理部
131:入力部
132:出力部
400:インターネット
Claims (12)
- 材料開発者に材料の試作条件を提案する試作条件提案システムであって、
前記材料の特性の実測結果を表す特性実測データについて回帰モデル構築処理を実行する回帰モデル構築処理部と、
前記構築された回帰モデルを用いて前記材料の最適な試作条件を探索する最適化処理を行い、前記最適化処理の結果に基づいて試作条件提案処理を実行する試作条件提案処理部と
を備える、試作条件提案システム。 - 請求項1に記載の試作条件提案システムにおいて、
前記最適化処理が、
指定された数の試作水準候補を作成する試作水準候補作成処理と、
前記作成された全ての試作水準候補に対して予測値または獲得関数を算出する算出処理と、
予測値または獲得関数が最も良好な試作条件を抽出する抽出処理と
を含む、試作条件提案システム。 - 請求項2に記載の試作条件提案システムにおいて、
前記試作水準候補作成処理は、
基準とする試作水準を、特性を実測済みの試作水準候補から選定する選定処理と、
当該材料を試作可能な範囲内で、前記選定された試作水準に対して乱数で変動を与える変動処理と、
前記変動処理が施された試作水準候補を保存する保存処理と
を前記コンピュータに指定回数繰返し実行させる処理を含む、試作条件提案システム。 - 請求項3に記載の試作条件提案システムにおいて、
前記基準とする試作水準は、前記選定処理においてランダムに選定される、試作条件提案システム。 - 請求項4に記載の試作条件提案システムにおいて、
前記選定処理が、前記基準とする試作水準の選定確率に重みづけを行う処理を含む、試作条件提案システム。 - 請求項3に記載の試作条件提案システムにおいて、
前記試作水準候補作成処理は、
基準とする試作水準の有無を判定する判定処理と、
前記判定処理において基準が無いと判定された場合、基準を乱数で生成する基準生成処理と
をさらに含む、試作条件提案システム。 - 請求項1に記載の試作条件提案システムにおいて、
前記最適化処理が、
特性を実測済みの試作水準候補から初期値となる試作水準を選定する選定処理と、
前記選定された試作水準について、所定の制約条件から逸脱した場合のペナルティを設定するペナルティ設定処理と、
前記設定されたペナルティを加算または乗算した予測値または獲得関数が最も良好となるように試作条件を最適化する処理と
を含む、試作条件提案システム。 - 請求項7に記載の試作条件提案システムにおいて、前記初期値となる試作水準は、前記選定処理においてランダムに選定される、試作条件提案システム。
- 請求項8に記載の試作条件提案システムにおいて、
前記選定処理が、前記初期値となる試作水準の選定確率に重みづけを行う処理を含む、試作条件提案システム。 - 請求項7に記載の試作条件提案システムにおいて、
前記最適化処理は、
基準とする試作水準の有無を判定する判定処理と、
前記判定処理において基準が無いと判定された場合、基準を乱数で生成する基準生成処理と
をさらに含む、試作条件提案システム。 - 請求項7に記載の試作条件提案システムにおいて、前記制約条件は、当該材料を試作できることである、試作条件提案システム。
- コンピュータを用いて材料開発者に材料の試作条件を提案する試作条件提案方法であって、
前記材料の特性の実測結果を表す特性実測データについて回帰モデルを構築する回帰モデル構築処理と、
前記構築された回帰モデルを用いて前記材料の最適な試作条件を探索する最適化処理を行い、前記最適化処理の結果に基づいて当該材料の試作条件を提案する試作条件提案処理と
をコンピュータに実行させる、試作条件提案方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022157147 | 2022-09-29 | ||
JP2022-157147 | 2022-09-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024070170A1 true WO2024070170A1 (ja) | 2024-04-04 |
Family
ID=90477066
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/027146 WO2024070170A1 (ja) | 2022-09-29 | 2023-07-25 | 試作条件提案システム、試作条件提案方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024070170A1 (ja) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022092297A (ja) * | 2020-12-10 | 2022-06-22 | 昭和電工マテリアルズ株式会社 | 設計支援装置、設計支援方法及び設計支援プログラム |
-
2023
- 2023-07-25 WO PCT/JP2023/027146 patent/WO2024070170A1/ja unknown
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022092297A (ja) * | 2020-12-10 | 2022-06-22 | 昭和電工マテリアルズ株式会社 | 設計支援装置、設計支援方法及び設計支援プログラム |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11650968B2 (en) | Systems and methods for predictive early stopping in neural network training | |
JP2018195308A (ja) | プロセス及び製造業における業績評価指標のデータに基づく最適化のための方法及びシステム | |
JP4627674B2 (ja) | データ処理方法及びプログラム | |
Finnegan et al. | Maximum entropy methods for extracting the learned features of deep neural networks | |
JP2024516656A (ja) | 産業特定機械学習アプリケーション | |
CN111080117A (zh) | 设备风险标签的构建方法、装置、电子设备及存储介质 | |
US20220101198A1 (en) | Automated generation of a machine learning model from computational simulation data | |
US20220067541A1 (en) | Hybrid machine learning | |
KR20210157303A (ko) | 이종 언어로 구현된 워크플로우 기반의 자동 예측 모델링 방법 및 그를 위한 장치 | |
KR102054500B1 (ko) | 설계 도면 제공 방법 | |
JPWO2016111240A1 (ja) | 情報処理システム、変化点検出方法、およびプログラム | |
Yerlikaya-Özkurt et al. | A review and new contribution on conic multivariate adaptive regression splines (CMARS): a powerful tool for predictive data mining | |
Khakifirooz et al. | Neural ordinary differential equation for sequential optimal design of fatigue test under accelerated life test analysis | |
Chamlal et al. | Elastic net-based high dimensional data selection for regression | |
Pevec et al. | Prediction intervals in supervised learning for model evaluation and discrimination | |
JP6648828B2 (ja) | 情報処理システム、情報処理方法、及び、プログラム | |
CN116862078A (zh) | 一种换电套餐用户逾期的预测方法、系统、装置及介质 | |
WO2024070170A1 (ja) | 試作条件提案システム、試作条件提案方法 | |
JP2021022051A (ja) | 機械学習プログラム、機械学習方法および機械学習装置 | |
WO2024070169A1 (ja) | 試作条件提案システム、試作条件提案方法 | |
JPH06332506A (ja) | 非線形制御装置 | |
Bourdache et al. | Active preference elicitation by bayesian updating on optimality polyhedra | |
WO2023238525A1 (ja) | 試作条件提案システム、試作条件提案方法 | |
US20210319259A1 (en) | Method and apparatus for extracting a pattern of time series data | |
JP2005157788A (ja) | モデル同定装置,モデル同定プログラム及びモデル同定方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23871413 Country of ref document: EP Kind code of ref document: A1 |