WO2024070130A1 - Concrete structure and method for producing concrete structure - Google Patents

Concrete structure and method for producing concrete structure Download PDF

Info

Publication number
WO2024070130A1
WO2024070130A1 PCT/JP2023/025477 JP2023025477W WO2024070130A1 WO 2024070130 A1 WO2024070130 A1 WO 2024070130A1 JP 2023025477 W JP2023025477 W JP 2023025477W WO 2024070130 A1 WO2024070130 A1 WO 2024070130A1
Authority
WO
WIPO (PCT)
Prior art keywords
concrete structure
concrete
mass
concrete composition
water
Prior art date
Application number
PCT/JP2023/025477
Other languages
French (fr)
Japanese (ja)
Inventor
広之 鍵本
学 石川
陽介 野中
Original Assignee
電源開発株式会社
株式会社セイア
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 電源開発株式会社, 株式会社セイア filed Critical 電源開発株式会社
Publication of WO2024070130A1 publication Critical patent/WO2024070130A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/14Producing shaped prefabricated articles from the material by simple casting, the material being neither forcibly fed nor positively compacted
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B7/00Moulds; Cores; Mandrels
    • B28B7/16Moulds for making shaped articles with cavities or holes open to the surface, e.g. with blind holes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/06Combustion residues, e.g. purification products of smoke, fumes or exhaust gases
    • C04B18/08Flue dust, i.e. fly ash
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/14Waste materials; Refuse from metallurgical processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates

Definitions

  • the present invention relates to a concrete structure and a method for manufacturing a concrete structure.
  • Wave-dissipating blocks are placed around coasts and marine structures to reduce wave pressure, overtopping, and reflected waves.
  • the required size (or type) and installation slope of wave-dissipating blocks are determined using the Hudson formula, which takes into account the design wave, type of block, and damage rate.
  • Ready-mixed concrete is mainly used to manufacture wave-dissipating blocks.
  • the use of fine aggregate with a large unit mass, such as copper slag is being considered (see, for example, Patent Document 1).
  • the present invention was made in consideration of the above circumstances, and aims to provide a concrete structure and a method for manufacturing a concrete structure that increases the unit volume weight of the concrete composition (increasing gray infrastructure function) and is effective in creating seaweed beds (increasing green infrastructure function).
  • a concrete structure comprising a hardened concrete composition containing a paste consisting of a hardener, an admixture, and water, and a fine aggregate,
  • the content of the admixture in the binder containing the hardener and the admixture is 65% by mass or more;
  • the water-binder ratio in the concrete composition is 25.0% by mass or more and 40.5% by mass or less;
  • the water hardening agent ratio in the concrete composition is 110% by mass or more and 127% by mass or less;
  • the concrete structure according to [1] having a density of 1.8 x 10 3 kg/m 3 or more.
  • [3] A method for producing a concrete structure according to [1] or [2], preparing the concrete composition; and pouring the concrete composition into a formwork and compacting it.
  • [4] The method for manufacturing a concrete structure described in [3], in the compacting step, a foaming material is attached to the inner surface of the formwork before the concrete composition is poured into the formwork.
  • [5] The method for manufacturing a concrete structure described in [3] or [4], in the compacting step, a formwork having an inner surface with projections and recesses is used.
  • the present invention can provide a concrete structure and a method for manufacturing a concrete structure that increases the unit volume weight of the concrete composition (increasing gray infrastructure functionality) and is effective in creating seaweed beds (increasing green infrastructure functionality).
  • 1 is a photograph showing projections and recesses formed on the inner surface of a form used in a method for manufacturing a concrete structure according to one embodiment of the present invention.
  • 1 is a photograph showing a state in which a foam material is spread on the inner surface of a form used in a method for manufacturing a concrete structure according to one embodiment of the present invention.
  • 4 is a photograph showing a large number of irregularities formed on the surface of a concrete structure by a manufacturing method for a concrete structure according to one embodiment of the present invention.
  • 4 is a photograph showing a large number of pores formed in a surface layer of a concrete structure by a manufacturing method for a concrete structure according to an embodiment of the present invention.
  • the concrete structure according to one embodiment of the present invention is made of a hardened concrete composition containing a paste made of a hardener, an admixture, and water, and fine aggregate.
  • the form of the concrete structure according to this embodiment is not particularly limited, but examples of the concrete structure for coastal and marine structures include wave dissipating blocks, foot protection blocks, caissons, breakwaters, etc.
  • Examples of the hardening agent include ordinary Portland cement, blast furnace cement, and other cements.
  • Examples of admixtures include fly ash (raw fly ash, type II fly ash, type I fly ash), ground granulated blast furnace slag, ground lime, shirasu, volcanic ash, calcium carbonate, and the like.
  • the content of the admixture in the binder containing the hardener and the admixture i.e., the content of the admixture relative to the total mass of the binder, is 65% by mass or more, and may be 30% by mass or more.
  • the content of the admixture increases from the lower limit, it becomes unnecessary to use chemical admixtures to suppress deterioration of the performance of the concrete structure (such as an increase in the amount of bleeding). As a result, the manufacturing cost of the concrete structure can be reduced.
  • the amount of carbon dioxide generated from the materials of the concrete structure can be reduced. Specifically, the amount of carbon dioxide generated from the production of concrete structures can be reduced to 60% or less compared to ordinary concrete. Furthermore, the addition of coarse aggregate reduces the amount of mortar (i.e., paste), which further reduces the amount of carbon dioxide generated from the materials.
  • the water is not particularly limited as long as it is water that has been conventionally used in the production of concrete, and for example, tap water, groundwater, river water, seawater, or sludge water can be used.
  • the water may be used alone or in combination of two or more kinds.
  • reinforcing bars such as wave-dissipating blocks and foot protection blocks, it is desirable to use seawater to promote the development of early strength.
  • the fine aggregate for example, copper slag, nickel slag, steel slag, etc. are used when the weight of the concrete structure made of the hardened concrete composition is to be increased. Also, as the fine aggregate, when it is not necessary to increase the weight of the concrete structure, granulated blast furnace slag, molten coal ash slag (IGCC slag), natural sand, etc. are used. When the weight of a concrete structure is to be increased, it is preferable to use, for example, copper slag.
  • the copper slag is not particularly limited, but examples thereof include those specified in JIS A5011-3:2016 "Slag aggregate for concrete - Part 3: Copper slag aggregate". In addition, those not specified by the JIS standard may be used.
  • the content of fine aggregate in the concrete composition is preferably 51% by volume or more and 58% by volume or less, and more preferably 53% by volume or more and 56% by volume or less. If the content of fine aggregate is within the above range, the concrete composition can maintain a specified slump value even if the content of fine aggregate deviates from the target value during production of the concrete composition.
  • the concrete composition may contain chemical admixtures such as a water reducing agent, an air entraining agent, etc., as necessary.
  • chemical admixture a general chemical admixture used in the production of concrete structures can be used.
  • the chemical admixtures may be used alone or in combination of two or more.
  • the water-binder ratio in the concrete composition is preferably 25.0% by mass or more and 40.5% by mass or less.
  • the water-binder ratio in the concrete composition can be appropriately selected depending on the type of admixture. The preferred range of the water-binder ratio is shown below for the case where fly ash raw powder, fly ash type II, fly ash type I, blast furnace slag ground powder, and calcium carbonate are used as the admixture.
  • fly ash raw powder is used as an admixture
  • the water-binder ratio in the concrete composition can be 25.0 mass % or more and 38.0 mass % or less.
  • the water-binder ratio in the concrete composition can be 25.0% by mass or more and 33.5% by mass or less.
  • the water-binder ratio in the concrete composition can be 25.0% by mass or more and 40.5% by mass or less.
  • the water-binder ratio in the concrete composition can be 25.0 mass % or more and 38.5 mass % or less.
  • the water-binder ratio in the concrete composition can be 25.0% by mass or more and 30.5% by mass or less.
  • the water-binder ratio in the concrete composition of this embodiment is 25.0 mass % or more, depending on the type and quality of the admixture, the paste may be too hard or may become lumpy and earthy rather than paste-like, which may make it impossible to discharge the mixture from the mixing device or agitator vehicle, or make it impossible to produce the concrete composition.
  • the quality of fly ash raw powder varies greatly, the water binding ratio when using fly ash raw powder may vary from the above-mentioned range.
  • the water-setting agent ratio in the concrete composition of this embodiment is preferably 110% by mass or more and 127% by mass or less. If the water-setting agent ratio is less than the lower limit, the compressive strength increases, but the amount of carbon dioxide generated from the materials of the concrete composition increases. If the water-setting agent ratio exceeds the upper limit, the amount of carbon dioxide generated from the materials of the concrete composition decreases, but the compressive strength decreases, so it is necessary to consider the balance with the manufacturing cycle of the concrete structure, etc.
  • the concrete structure of the present embodiment is a hardened product of a concrete composition including a paste made of a hardening material, an admixture, and water, and fine aggregate, and has at least one of a large number of irregularities and pores on the surface layer of the hardened product. That is, the concrete structure of the present embodiment may have only a large number of irregularities on the surface layer of the hardened product, may have only a large number of pores on the surface layer of the hardened product, or may have a large number of irregularities and pores on the surface layer of the hardened product.
  • the irregularities refer to relatively large holes formed on the surface layer of the hardened material
  • the pores refer to very small holes formed on the surface layer of the hardened material.
  • the thickness of the surface layer of the hardened concrete composition having pores is preferably, for example, about 2 mm.
  • the thickness of the surface layer of the hardened concrete composition having irregularities is preferably, for example, about 20 mm.
  • the surface layer refers to, for example, a region from the outermost surface of the concrete structure (hardened concrete composition) whose thickness in the depth direction of the concrete structure is a predetermined value or less.
  • the porosity of the surface layer of the hardened concrete composition in which at least one of irregularities and pores is present, is, for example, preferably 50 area % or more, and more preferably 80 area % or more.
  • the concrete structure of this embodiment preferably has a density of 1.8 ⁇ 10 3 kg/m 3 or more, more preferably 2.2 ⁇ 10 3 kg/m 3 or more, and particularly preferably 2.6 ⁇ 10 3 kg/m 3 or more. If the density is close to the lower limit, the unit mass of the concrete structure becomes small, and if the density is close to the upper limit, the unit mass of the concrete structure becomes large, and the concrete structure can be given a gray infrastructure function according to the purpose.
  • the concrete composition may contain chemical admixtures such as a water reducing agent, an air entraining agent, etc., as necessary.
  • chemical admixture a general chemical admixture used in the production of concrete structures can be used.
  • the chemical admixtures may be used alone or in combination of two or more.
  • the concrete structure of this embodiment is made of a hardened concrete composition containing a paste made of a hardening agent, an admixture, and water, and fine aggregate, and the content of the admixture in the binder containing the hardening agent and the admixture is 65% by mass or more, the water-binder ratio in the concrete composition is 25.0% by mass or more and 40.5% by mass or less, and the water-hardening agent ratio in the concrete composition is 110% by mass or more and 127% by mass or less, and the surface layer of the hardened material has at least one of numerous irregularities and pores, which increases the gray infrastructure function and is effective in creating seaweed beds.
  • a method for manufacturing a concrete structure includes a step of preparing a concrete composition (hereinafter referred to as a "first step"), and a step of pouring the concrete composition into a formwork and compacting it (hereinafter referred to as a "second step").
  • First step In the first step, fine aggregate, a binder, and water are mixed to prepare a concrete composition in which the admixture content in the binder is 65% by mass or more, the water-binder ratio in the concrete composition is 25.0% by mass or more and 40.5% by mass or less, the water-hardening agent ratio in the concrete composition is 110% by mass or more and 127% by mass or less, and the fine aggregate content in the concrete composition is 51% by volume or more and 58% by volume or less. Other ingredients may be mixed together with the fine aggregate, binder and water.
  • fine aggregate, binder, and water are put into a mixer and stirred and mixed so that the content of admixture in the binder is 65% by mass or more, the water-binder ratio in the concrete composition is 25.0% by mass or more and 40.5% by mass or less, the water-hardening agent ratio in the concrete composition is 110% by mass or more and 127% by mass or less, and the content of fine aggregate in the concrete composition is 51% by volume or more and 58% by volume or less.
  • Chemical admixtures may be mixed in as necessary.
  • “Second step” the concrete composition obtained in the first step is poured into a formwork and compacted.
  • the second step it is preferable to perform the operation of compacting the concrete composition with a formwork two or more times for 10 to 15 seconds, which is longer than the compaction time of conventional concrete.
  • the air contained in the concrete composition can be pushed out of the concrete composition.
  • the above-mentioned concrete composition having a high viscosity is used, separation of the fine aggregate and the binder in the concrete composition can be suppressed even if the compaction time is extended. In general, when the compaction time is extended, the fine aggregate and the binder may separate due to the difference in specific gravity of the materials.
  • a formwork with an uneven inner surface there are no particular limitations on the method for forming the unevenness, but examples include a method of directly spraying urethane foam or the like onto the formwork and hardening the urethane foam to obtain a simple formwork with an uneven surface, a method of attaching an adhesive sheet that has been processed to have an uneven surface with urethane foam or the like to the surface of a standard formwork with a smooth surface, and a method of using a special formwork with an uneven surface.
  • a foaming agent to the inner surface of the form before pouring the concrete composition into the form. This allows air bubbles to be generated on the surface of the concrete composition that comes into contact with the inner surface of the form. By compacting the concrete composition with such a foaming agent attached, the foaming agent foams and a large number of pores can be formed on the surface of the concrete structure.
  • foaming materials include particles of amphoteric metals such as aluminum, zinc, tin, and lead. Amphoteric metals foam in an alkaline environment.
  • the concrete composition hardens to form a concrete structure, and also forms numerous irregularities on the surface of the concrete structure resulting from the unevenness of the inner surface of the form and numerous pores due to the foaming of the foaming material (see Figures 3 and 4).
  • a formwork with irregularities formed on the inner surface as shown in Fig. 1 a concrete structure with numerous irregularities formed on the surface layer as shown in Fig. 3 can be obtained.
  • a formwork with foam material scattered thereon as shown in Fig. 2 a concrete structure with numerous pores formed on the surface layer as shown in Fig. 4 can be obtained.
  • the second step it is preferable to insert a rod-shaped vibrator into the concrete composition poured into the formwork at a position away from the formwork and vibrate the concrete composition with the rod-shaped vibrator.
  • a rod-shaped vibrator into the concrete composition poured into the formwork at a position away from the formwork and vibrate the concrete composition with the rod-shaped vibrator.
  • a method of vibrating a concrete composition using a vibrator will be specifically described.
  • a vibrator is inserted into a portion of the concrete composition that is located in the center of the formwork. In this state, the vibrator is vibrated for 10 to 15 seconds.
  • the vibrator is moved in a direction perpendicular to the center line along the longitudinal direction of the formwork. The amount of movement of the vibrator is set so that the area to which the previous vibration of the vibrator was transmitted (the area perpendicular to the center line) overlaps with the area to which the current vibration of the vibrator is transmitted (the area perpendicular to the center line).
  • the vibrator is vibrated for 10 to 15 seconds. These operations are repeated in sequence, and the movement and vibration of the vibrator are repeated until the area to which the vibration of the vibrator is transmitted comes into contact with the inner surface of the formwork. Note that the vibrator is not directly contacted with the inner surface of the formwork.
  • the method for manufacturing a concrete structure according to this embodiment includes the above-mentioned first and second steps, and therefore produces a concrete structure having a large number of irregularities and/or pores on the surface, and excellent seaweed adhesion properties.
  • Example 1 A concrete composition (copper slag mortar) containing copper slag as fine aggregate, raw fly ash powder, cement, and water was prepared under the condition that the content of raw fly ash powder relative to the binder was 66 mass %.
  • a concrete composition (copper slag mortar) was prepared with a standard blend amount of copper slag of 1650 kg/ m3 .
  • the obtained concrete composition was poured into a formwork, compacted and hardened to obtain a concrete structure.
  • the mold used had an inner surface with projections and recesses as shown in FIG. As a result, a concrete structure having numerous projections and recesses on the surface as shown in FIG. 3 was obtained.
  • Example 2 A concrete composition (copper slag mortar) containing copper slag as fine aggregate, raw fly ash powder, cement, and water was prepared under the condition that the content of raw fly ash powder relative to the binder was 66 mass %.
  • a concrete composition (copper slag mortar) was prepared with a standard blend amount of copper slag of 1650 kg/ m3 .
  • the obtained concrete composition was poured into a formwork, compacted and hardened to obtain a concrete structure.
  • the formwork used had a foaming material spread on its inner surface as shown in FIG. As a result, a concrete structure having a large number of pores formed in the surface layer as shown in FIG. 4 was obtained.

Abstract

A concrete structure made of a cured object formed from a concrete composition which comprises a fine aggregate and a paste comprising a curing material, an admixture, and water, wherein the content of the admixture in a binder material comprising the curing material and the admixture is 65 mass% or higher, the water/binder material ratio in the concrete composition is 25.0-40.5 mass%, and the water/curing material ratio in the concrete composition is 110-127 mass%. The cured object has a large number of recesses and protrusions and/or fine pores in a surface layer thereof.

Description

コンクリート構造物、コンクリート構造物の製造方法Concrete structure and manufacturing method of concrete structure
 本発明は、コンクリート構造物、コンクリート構造物の製造方法に関する。
 本願は、2022年9月30日に日本に出願された特願2022-158032号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a concrete structure and a method for manufacturing a concrete structure.
This application claims priority based on Japanese Patent Application No. 2022-158032, filed in Japan on September 30, 2022, the contents of which are incorporated herein by reference.
 海岸、海洋構造物の外周には、波圧、越波量、反射波等を低減させるために、消波ブロックが配置される。消波ブロックは、設計波、ブロックの種類、被害率を条件としたハドソン式を用いて、その所要規模(または形式)や設置勾配が決定される。消波ブロックの製造には、主にレディーミクストコンクリートが用いられる。容積を変えずに、消波ブロックの安定性を高めるために、銅スラグ等の単位質量が大きい細骨材を用いることが検討されている(例えば、特許文献1参照)。 Wave-dissipating blocks are placed around coasts and marine structures to reduce wave pressure, overtopping, and reflected waves. The required size (or type) and installation slope of wave-dissipating blocks are determined using the Hudson formula, which takes into account the design wave, type of block, and damage rate. Ready-mixed concrete is mainly used to manufacture wave-dissipating blocks. In order to increase the stability of wave-dissipating blocks without changing their volume, the use of fine aggregate with a large unit mass, such as copper slag, is being considered (see, for example, Patent Document 1).
 また、従来の土木構造物は構造機能の実現に重きを置いて構築されてきたが、近年、構造機能(グレーインフラ機能)の実現のみならず、藻場造成効果に優れた構築物(グリーンインフラ機能)とすることもできる、いわゆるグリーン・グレーハイブリッドインフラを実現することが望まれている。 In addition, while traditional civil engineering structures have been constructed with an emphasis on achieving structural functionality, in recent years there has been a desire to realize so-called green-gray hybrid infrastructure that not only achieves structural functionality (gray infrastructure functionality), but can also be used as structures with excellent effects in creating seaweed beds (green infrastructure functionality).
特開2010-70439号公報JP 2010-70439 A
 しかしながら、従来のコンクリート組成物は、「構造機能の実現」に重きを置くのみで「藻場造成」等、自然由来の力の利用、環境の観点に配慮が足りなかった。 However, conventional concrete compositions only place emphasis on "realizing structural functions" and do not give sufficient consideration to the environmental aspects, such as utilizing natural forces such as "creating seaweed beds."
 本発明は、上記事情に鑑みてなされたものであって、コンクリート組成物の単位容積重量の増加(グレーインフラ機能の増加)および藻場造成効果に優れる(グリーンインフラ機能の増加)コンクリート構造物、コンクリート構造物の製造方法を提供することを目的とする。 The present invention was made in consideration of the above circumstances, and aims to provide a concrete structure and a method for manufacturing a concrete structure that increases the unit volume weight of the concrete composition (increasing gray infrastructure function) and is effective in creating seaweed beds (increasing green infrastructure function).
 本発明は、以下の態様を有する。
[1]硬化材と混和材と水とからなるペーストと、細骨材と、を含むコンクリート組成物の硬化物からなるコンクリート構造物であって、
 前記硬化材と前記混和材とを含む結合材における前記混和材の含有量が65質量%以上、
 前記コンクリート組成物における水結合材比が25.0質量%以上40.5質量%以下、
 前記コンクリート組成物における水硬化材比が110質量%以上127質量%以下、であり、
 前記硬化物の表層に多数の凹凸および細孔の少なくとも一方を有する、コンクリート構造物。
[2]密度が1.8×10kg/m以上である、[1]に記載のコンクリート構造物。
[3][1]または[2]に記載のコンクリート構造物の製造方法であって、
 前記コンクリート組成物を調製する工程と、
 前記コンクリート組成物を型枠内に流し込んで締固める工程と、を有する、コンクリート構造物の製造方法。
[4]前記締固める工程において、前記型枠内に前記コンクリート組成物を流し込む前に、前記型枠の内表面に発泡材を付着させる、[3]に記載のコンクリート構造物の製造方法。
[5]前記締固める工程において、前記型枠として、内表面に凹凸を形成したものを用いる、[3]または[4]に記載のコンクリート構造物の製造方法。
The present invention has the following aspects.
[1] A concrete structure comprising a hardened concrete composition containing a paste consisting of a hardener, an admixture, and water, and a fine aggregate,
The content of the admixture in the binder containing the hardener and the admixture is 65% by mass or more;
The water-binder ratio in the concrete composition is 25.0% by mass or more and 40.5% by mass or less;
The water hardening agent ratio in the concrete composition is 110% by mass or more and 127% by mass or less;
A concrete structure having at least one of a large number of irregularities and pores on the surface layer of the hardened product.
[2] The concrete structure according to [1], having a density of 1.8 x 10 3 kg/m 3 or more.
[3] A method for producing a concrete structure according to [1] or [2],
preparing the concrete composition;
and pouring the concrete composition into a formwork and compacting it.
[4] The method for manufacturing a concrete structure described in [3], in the compacting step, a foaming material is attached to the inner surface of the formwork before the concrete composition is poured into the formwork.
[5] The method for manufacturing a concrete structure described in [3] or [4], in the compacting step, a formwork having an inner surface with projections and recesses is used.
 本発明によれば、コンクリート組成物の単位容積重量の増加(グレーインフラ機能の増加)および藻場造成効果に優れる(グリーンインフラ機能の増加)コンクリート構造物、コンクリート構造物の製造方法を提供することができる。 The present invention can provide a concrete structure and a method for manufacturing a concrete structure that increases the unit volume weight of the concrete composition (increasing gray infrastructure functionality) and is effective in creating seaweed beds (increasing green infrastructure functionality).
本発明の一実施形態に係るコンクリート構造物の製造方法で用いられる型枠の内表面に形成した凹凸を示す写真である。1 is a photograph showing projections and recesses formed on the inner surface of a form used in a method for manufacturing a concrete structure according to one embodiment of the present invention. 本発明の一実施形態に係るコンクリート構造物の製造方法で用いられる型枠の内表面に発泡材を散布した状態を示す写真である。1 is a photograph showing a state in which a foam material is spread on the inner surface of a form used in a method for manufacturing a concrete structure according to one embodiment of the present invention. 本発明の一実施形態に係るコンクリート構造物の製造方法によりコンクリート構造物の表層に形成した多数の凹凸を示す写真である。4 is a photograph showing a large number of irregularities formed on the surface of a concrete structure by a manufacturing method for a concrete structure according to one embodiment of the present invention. 本発明の一実施形態に係るコンクリート構造物の製造方法によりコンクリート構造物の表層に形成した多数の細孔を示す写真である。4 is a photograph showing a large number of pores formed in a surface layer of a concrete structure by a manufacturing method for a concrete structure according to an embodiment of the present invention.
 本発明のコンクリート構造物、コンクリート構造物の製造方法の実施の形態について説明する。
 なお、本実施の形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。
An embodiment of the concrete structure and the method for manufacturing a concrete structure according to the present invention will be described.
It should be noted that the present embodiment is specifically described to allow a better understanding of the gist of the invention, and does not limit the present invention unless otherwise specified.
[コンクリート構造物]
 本発明の一実施形態に係るコンクリート構造物は、硬化材と混和材と水とからなるペーストと、細骨材と、を含むコンクリート組成物の硬化物からなる。本実施形態のコンクリート構造物の形態は、特に限定されないが、例えば、海岸、海洋構造物であれば、消波ブロック、根固めブロック、ケーソン、防波堤等が挙げられる。
[Concrete Structure]
The concrete structure according to one embodiment of the present invention is made of a hardened concrete composition containing a paste made of a hardener, an admixture, and water, and fine aggregate. The form of the concrete structure according to this embodiment is not particularly limited, but examples of the concrete structure for coastal and marine structures include wave dissipating blocks, foot protection blocks, caissons, breakwaters, etc.
 硬化材としては、例えば、普通ポルトランドセメント、高炉セメント等のセメントが挙げられる。
 混和材としては、例えば、フライアッシュ(フライアッシュ原粉、フライアッシュII種、フライアッシュI種)、高炉スラグ微粉末、石灰微粉末、シラス、火山灰、炭酸カルシウム等の混和材料が挙げられる。
Examples of the hardening agent include ordinary Portland cement, blast furnace cement, and other cements.
Examples of admixtures include fly ash (raw fly ash, type II fly ash, type I fly ash), ground granulated blast furnace slag, ground lime, shirasu, volcanic ash, calcium carbonate, and the like.
 硬化材と混和材とを含む結合材における混和材の含有量、すなわち、結合材の総質量に対する混和材の含有量は、65質量%以上であり、30質量%以上であってもよい。混和材の含有量が前記下限値から増加するにつれて、コンクリート構造物の性能の悪化(ブリーディング量の増加等)を抑制するために化学混和剤を用いる必要がない。その結果、コンクリート構造物の製造コストを低減することができる。 The content of the admixture in the binder containing the hardener and the admixture, i.e., the content of the admixture relative to the total mass of the binder, is 65% by mass or more, and may be 30% by mass or more. As the content of the admixture increases from the lower limit, it becomes unnecessary to use chemical admixtures to suppress deterioration of the performance of the concrete structure (such as an increase in the amount of bleeding). As a result, the manufacturing cost of the concrete structure can be reduced.
 硬化材の含有量等を削減することができるため、コンクリート構造物の材料由来の二酸化炭素の発生量を削減することができる。具体的には、一般のコンクリートと比較して、コンクリート構造物の製造に伴う二酸化炭素の発生量を60%以下に低減することができる。
 また、粗骨材を添加することでモルタル(すなわちペースト)の低減が図れることから、材料由来の二酸化炭素の発生量を更に低減することができる。
Since the content of hardeners can be reduced, the amount of carbon dioxide generated from the materials of the concrete structure can be reduced. Specifically, the amount of carbon dioxide generated from the production of concrete structures can be reduced to 60% or less compared to ordinary concrete.
Furthermore, the addition of coarse aggregate reduces the amount of mortar (i.e., paste), which further reduces the amount of carbon dioxide generated from the materials.
 水は、従来コンクリートの製造に用いられている水であれば特に限定されず、例えば、水道水、地下水、河川水、海水またはスラッジ水が用いられる。
 水は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 なお、消波ブロックや根固めブロックのような鉄筋を用いない構造物に対しては、初期強度の発現促進のため海水を用いるのが望ましい。
The water is not particularly limited as long as it is water that has been conventionally used in the production of concrete, and for example, tap water, groundwater, river water, seawater, or sludge water can be used.
The water may be used alone or in combination of two or more kinds.
For structures that do not use reinforcing bars, such as wave-dissipating blocks and foot protection blocks, it is desirable to use seawater to promote the development of early strength.
 細骨材としては、コンクリート組成物の硬化物からなるコンクリート構造物の重量を重くする場合には、例えば、銅スラグ、ニッケルスラグ、製鋼スラグ等が用いられる。また、細骨材としては、コンクリート構造物の重量を重くする必要がない場合には、高炉水砕スラグ、石炭灰溶融スラグ(IGCCスラグ)、天然砂等が用いられる。
 コンクリート構造物の重量を重くする場合には、例えば、銅スラグを用いることが好ましい。銅スラグとしては、特に限定されないが、例えば、JIS A5011-3:2016「コンクリート用スラグ骨材-第3部:銅スラグ骨材」に規定されるものが挙げられる。また、JIS規格を外れるものを用いてもよい。
As the fine aggregate, for example, copper slag, nickel slag, steel slag, etc. are used when the weight of the concrete structure made of the hardened concrete composition is to be increased. Also, as the fine aggregate, when it is not necessary to increase the weight of the concrete structure, granulated blast furnace slag, molten coal ash slag (IGCC slag), natural sand, etc. are used.
When the weight of a concrete structure is to be increased, it is preferable to use, for example, copper slag. The copper slag is not particularly limited, but examples thereof include those specified in JIS A5011-3:2016 "Slag aggregate for concrete - Part 3: Copper slag aggregate". In addition, those not specified by the JIS standard may be used.
 コンクリート組成物における細骨材の含有量は、51体積%以上58体積%以下であることが好ましく、53体積%以上56体積%以下であることがより好ましい。細骨材の含有量が前記範囲内であれば、コンクリート組成物の製造時に細骨材の含有量が目標値からずれても、コンクリート組成物は所定のスランプ値を保持することができる。 The content of fine aggregate in the concrete composition is preferably 51% by volume or more and 58% by volume or less, and more preferably 53% by volume or more and 56% by volume or less. If the content of fine aggregate is within the above range, the concrete composition can maintain a specified slump value even if the content of fine aggregate deviates from the target value during production of the concrete composition.
 コンクリート組成物は、必要に応じて、減水剤、AE剤等の化学混和剤を含んでもよい。化学混和剤としては、コンクリート構造物の製造において使用されている、一般的な化学混和剤を使用することができる。
 化学混和剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
The concrete composition may contain chemical admixtures such as a water reducing agent, an air entraining agent, etc., as necessary. As the chemical admixture, a general chemical admixture used in the production of concrete structures can be used.
The chemical admixtures may be used alone or in combination of two or more.
 コンクリート組成物における水結合材比は、25.0質量%以上40.5質量%以下であることが好ましい。
 コンクリート組成物における水結合材比は、混和材の種類に応じて適宜選択することができる。混和材として、例えば、フライアッシュ原粉、フライアッシュII種、フライアッシュI種、高炉スラグ微粉末、炭酸カルシウムを用いる場合について、以下に前記水結合材比の好ましい範囲を示す。
 混和材としてフライアッシュ原粉を用いる場合、コンクリート組成物における水結合材比は、25.0質量%以上38.0質量%以下とすることができる。
 混和材としてフライアッシュII種を用いる場合、コンクリート組成物における水結合材比は、25.0質量%以上33.5質量%以下とすることができる。
 混和材としてフライアッシュI種を用いる場合、コンクリート組成物における水結合材比は、25.0質量%以上40.5質量%以下とすることができる。
 混和材として高炉スラグ微粉末を用いる場合、コンクリート組成物における水結合材比は、25.0質量%以上38.5質量%以下とすることができる。
 混和材として炭酸カルシウムを用いる場合、コンクリート組成物における水結合材比は、25.0質量%以上30.5質量%以下とすることができる。
 また、本実施形態のコンクリート組成物における水結合材比は、25.0質量%以上であるが、混和材の種類やその品質によってはペーストが固すぎたり、ペースト状にならずバサバサの土状になる場合があるため、混練り装置やアジテータ車から排出できなくなったり、コンクリート組成物が製造できなくなる場合がある。
 また、特にフライアッシュ原粉は品質変動が大きいため、フライアッシュ原粉を用いる場合の水結合比は上記数値範囲から前後することがある。
The water-binder ratio in the concrete composition is preferably 25.0% by mass or more and 40.5% by mass or less.
The water-binder ratio in the concrete composition can be appropriately selected depending on the type of admixture. The preferred range of the water-binder ratio is shown below for the case where fly ash raw powder, fly ash type II, fly ash type I, blast furnace slag ground powder, and calcium carbonate are used as the admixture.
When fly ash raw powder is used as an admixture, the water-binder ratio in the concrete composition can be 25.0 mass % or more and 38.0 mass % or less.
When type II fly ash is used as the admixture, the water-binder ratio in the concrete composition can be 25.0% by mass or more and 33.5% by mass or less.
When type I fly ash is used as the admixture, the water-binder ratio in the concrete composition can be 25.0% by mass or more and 40.5% by mass or less.
When ground granulated blast furnace slag is used as the admixture, the water-binder ratio in the concrete composition can be 25.0 mass % or more and 38.5 mass % or less.
When calcium carbonate is used as the admixture, the water-binder ratio in the concrete composition can be 25.0% by mass or more and 30.5% by mass or less.
In addition, although the water-binder ratio in the concrete composition of this embodiment is 25.0 mass % or more, depending on the type and quality of the admixture, the paste may be too hard or may become lumpy and earthy rather than paste-like, which may make it impossible to discharge the mixture from the mixing device or agitator vehicle, or make it impossible to produce the concrete composition.
In particular, since the quality of fly ash raw powder varies greatly, the water binding ratio when using fly ash raw powder may vary from the above-mentioned range.
 本実施形態のコンクリート組成物における水硬化材比は、110質量%以上127質量%以下であることが好ましい。水硬化材比が前記下限値未満では、圧縮強度は増加するものの、コンクリート組成物の材料由来の二酸化炭素発生量が多くなる。水硬化材比が前記上限値を超えると、コンクリート組成物の材料由来の二酸化炭素発生量は少なくなるが、圧縮強度が小さくなるため、コンクリート構造物の製造サイクルとのバランス等を考慮する必要がある。 The water-setting agent ratio in the concrete composition of this embodiment is preferably 110% by mass or more and 127% by mass or less. If the water-setting agent ratio is less than the lower limit, the compressive strength increases, but the amount of carbon dioxide generated from the materials of the concrete composition increases. If the water-setting agent ratio exceeds the upper limit, the amount of carbon dioxide generated from the materials of the concrete composition decreases, but the compressive strength decreases, so it is necessary to consider the balance with the manufacturing cycle of the concrete structure, etc.
 本実施形態のコンクリート構造物は、硬化材と混和材と水とからなるペーストと、細骨材と、を含むコンクリート組成物の硬化物であり、前記硬化物の表層に多数の凹凸および細孔の少なくとも一方を有する。すなわち、本実施形態のコンクリート構造物は、前記硬化物の表層に多数の凹凸のみを有していてもよく、前記硬化物の表層に多数の細孔のみを有していてもよく、前記硬化物の表層に多数の凹凸および細孔を有していてもよい。
 本実施形態のコンクリート構造物において、凹凸とは、前記硬化物の表層に形成されたある程度大きな穴のことであり、細孔とは、前記硬化物の表層に形成された微細な穴のことである。
The concrete structure of the present embodiment is a hardened product of a concrete composition including a paste made of a hardening material, an admixture, and water, and fine aggregate, and has at least one of a large number of irregularities and pores on the surface layer of the hardened product. That is, the concrete structure of the present embodiment may have only a large number of irregularities on the surface layer of the hardened product, may have only a large number of pores on the surface layer of the hardened product, or may have a large number of irregularities and pores on the surface layer of the hardened product.
In the concrete structure of this embodiment, the irregularities refer to relatively large holes formed on the surface layer of the hardened material, and the pores refer to very small holes formed on the surface layer of the hardened material.
 本実施形態のコンクリート構造物において、細孔が存在するコンクリート組成物の硬化物の表層の厚さは、例えば、2mm程度であることが好ましい。また、本実施形態のコンクリート構造物において、凹凸が存在するコンクリート組成物の硬化物の表層の厚さは、例えば、20mm程度であることが好ましい。本実施形態のコンクリート構造物において、表層とは、例えば、コンクリート構造物(コンクリート組成物の硬化物)の最表面から、コンクリート構造物の深さ方向の厚さが所定値以下の範囲の領域のことである。 In the concrete structure of this embodiment, the thickness of the surface layer of the hardened concrete composition having pores is preferably, for example, about 2 mm. In the concrete structure of this embodiment, the thickness of the surface layer of the hardened concrete composition having irregularities is preferably, for example, about 20 mm. In the concrete structure of this embodiment, the surface layer refers to, for example, a region from the outermost surface of the concrete structure (hardened concrete composition) whose thickness in the depth direction of the concrete structure is a predetermined value or less.
 本実施形態のコンクリート構造物は、凹凸および細孔の少なくとも一方が存在するコンクリート組成物の硬化物の表層の空隙率が、例えば、50面積%以上であることが好ましく、80面積%以上であることがより好ましい。 In the concrete structure of this embodiment, the porosity of the surface layer of the hardened concrete composition, in which at least one of irregularities and pores is present, is, for example, preferably 50 area % or more, and more preferably 80 area % or more.
 本実施形態のコンクリート構造物は、密度が1.8×10kg/m以上であることが好ましく、2.2×10kg/m以上であることがより好ましく、2.6×10kg/m以上であることが特に好ましい。密度が前記下限値に近いと、コンクリート構造物の単位質量が小さくなり、また、密度が前記上限値に近いと、コンクリート構造物の単位質量が大きくなり、目的に応じたコンクリート構造物のグレーインフラ機能を付与することができる。 The concrete structure of this embodiment preferably has a density of 1.8×10 3 kg/m 3 or more, more preferably 2.2×10 3 kg/m 3 or more, and particularly preferably 2.6×10 3 kg/m 3 or more. If the density is close to the lower limit, the unit mass of the concrete structure becomes small, and if the density is close to the upper limit, the unit mass of the concrete structure becomes large, and the concrete structure can be given a gray infrastructure function according to the purpose.
 コンクリート組成物は、必要に応じて、減水剤、AE剤等の化学混和剤を含んでもよい。化学混和剤としては、コンクリート構造物の製造において使用されている、一般的な化学混和剤を使用することができる。
 化学混和剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
The concrete composition may contain chemical admixtures such as a water reducing agent, an air entraining agent, etc., as necessary. As the chemical admixture, a general chemical admixture used in the production of concrete structures can be used.
The chemical admixtures may be used alone or in combination of two or more.
 本実施形態のコンクリート構造物によれば、硬化材と混和材と水とからなるペーストと、細骨材と、を含むコンクリート組成物の硬化物からなり、硬化材と混和材とを含む結合材における混和材の含有量が65質量%以上、コンクリート組成物における水結合材比が25.0質量%以上40.5質量%以下、コンクリート組成物における水硬化材比が110質量%以上127質量%以下であり、硬化物の表層に多数の凹凸および細孔の少なくとも一方を有するため、グレーインフラ機能の増加および藻場造成効果に優れる。 The concrete structure of this embodiment is made of a hardened concrete composition containing a paste made of a hardening agent, an admixture, and water, and fine aggregate, and the content of the admixture in the binder containing the hardening agent and the admixture is 65% by mass or more, the water-binder ratio in the concrete composition is 25.0% by mass or more and 40.5% by mass or less, and the water-hardening agent ratio in the concrete composition is 110% by mass or more and 127% by mass or less, and the surface layer of the hardened material has at least one of numerous irregularities and pores, which increases the gray infrastructure function and is effective in creating seaweed beds.
[コンクリート構造物の製造方法]
 本発明の一実施形態に係るコンクリート構造物の製造方法は、コンクリート組成物を調製する工程(以下、「第1の工程」と言う。)と、コンクリート組成物を型枠内に流し込んで締固める工程(以下、「第2の工程」と言う。)と、を有する。
[Method of manufacturing concrete structure]
A method for manufacturing a concrete structure according to one embodiment of the present invention includes a step of preparing a concrete composition (hereinafter referred to as a "first step"), and a step of pouring the concrete composition into a formwork and compacting it (hereinafter referred to as a "second step").
「第1の工程」
 第1の工程では、細骨材と結合材と水とを配合し、結合材における混和材の含有量が65質量%以上、コンクリート組成物における水結合材比が25.0質量%以上40.5質量%以下、コンクリート組成物における水硬化材比が110質量%以上127質量%以下、コンクリート組成物における細骨材の含有量が51体積%以上58体積%以下であるコンクリート組成物を調製する。
 細骨材、結合材、水とともに他の成分を配合してもよい。
"First step"
In the first step, fine aggregate, a binder, and water are mixed to prepare a concrete composition in which the admixture content in the binder is 65% by mass or more, the water-binder ratio in the concrete composition is 25.0% by mass or more and 40.5% by mass or less, the water-hardening agent ratio in the concrete composition is 110% by mass or more and 127% by mass or less, and the fine aggregate content in the concrete composition is 51% by volume or more and 58% by volume or less.
Other ingredients may be mixed together with the fine aggregate, binder and water.
 第1の工程では、結合材における混和材の含有量が65質量%以上、コンクリート組成物における水結合材比が25.0質量%以上40.5質量%以下、コンクリート組成物における水硬化材比が110質量%以上127質量%以下、コンクリート組成物における細骨材の含有量が51体積%以上58体積%以下となるように、細骨材と結合材と水とをミキサーに投入し、これらを撹拌、混合する。必要に応じて、化学混和剤を混合してもよい。 In the first step, fine aggregate, binder, and water are put into a mixer and stirred and mixed so that the content of admixture in the binder is 65% by mass or more, the water-binder ratio in the concrete composition is 25.0% by mass or more and 40.5% by mass or less, the water-hardening agent ratio in the concrete composition is 110% by mass or more and 127% by mass or less, and the content of fine aggregate in the concrete composition is 51% by volume or more and 58% by volume or less. Chemical admixtures may be mixed in as necessary.
「第2の工程」
 第2の工程では、第1の工程で得られたコンクリート組成物を型枠内に流し込んで締固める。
 第2の工程では、従来のコンクリートの締固め時間より長めの10秒以上15秒以下にて型枠によりコンクリート組成物を締固める操作を2回以上行うことが好ましい。締固める操作を2回以上行うことにより、コンクリート組成物に含まれる空気を、コンクリート組成物の外部に押し出すことができる。また、上記の粘度が高いコンクリート組成物を用いるため、締固める時間を長くしても、コンクリート組成物において、細骨材と結合材が分離することを抑制できる。なお、一般的に、締固める時間を長くすると、材料の比重の差により、細骨材と結合材が分離することがある。
"Second step"
In the second step, the concrete composition obtained in the first step is poured into a formwork and compacted.
In the second step, it is preferable to perform the operation of compacting the concrete composition with a formwork two or more times for 10 to 15 seconds, which is longer than the compaction time of conventional concrete. By performing the compaction operation two or more times, the air contained in the concrete composition can be pushed out of the concrete composition. In addition, since the above-mentioned concrete composition having a high viscosity is used, separation of the fine aggregate and the binder in the concrete composition can be suppressed even if the compaction time is extended. In general, when the compaction time is extended, the fine aggregate and the binder may separate due to the difference in specific gravity of the materials.
 第2の工程では、型枠として、内表面に凹凸を形成したものを用いることが好ましい(図1参照)。凹凸を形成する方法は、特に限定されないが、例えば、発泡ウレタン等を型枠に直接吹き付け、その発泡ウレタン等を硬化させて、表面に凹凸を形成した簡易型枠を得る方法、発泡ウレタン等で凹凸に加工した接着剤付きシートを表面が平滑な標準型枠の表面に貼付ける方法、若しくは表面に凹凸処理を施した特殊型枠を用いる方法等が挙げられる。 In the second step, it is preferable to use a formwork with an uneven inner surface (see Figure 1). There are no particular limitations on the method for forming the unevenness, but examples include a method of directly spraying urethane foam or the like onto the formwork and hardening the urethane foam to obtain a simple formwork with an uneven surface, a method of attaching an adhesive sheet that has been processed to have an uneven surface with urethane foam or the like to the surface of a standard formwork with a smooth surface, and a method of using a special formwork with an uneven surface.
 第2の工程では、型枠内にコンクリート組成物を流し込む前に、型枠の内表面に発泡材を付着させることが好ましい。これにより、コンクリート組成物における型枠の内表面と接する面に気泡を生成させることができる。このような発泡材が付着したコンクリート組成物を締固めることにより、発泡材が発泡して、コンクリート構造物の表層に多数の細孔を形成することができる。 In the second step, it is preferable to attach a foaming agent to the inner surface of the form before pouring the concrete composition into the form. This allows air bubbles to be generated on the surface of the concrete composition that comes into contact with the inner surface of the form. By compacting the concrete composition with such a foaming agent attached, the foaming agent foams and a large number of pores can be formed on the surface of the concrete structure.
 発泡材としては、例えば、アルミニウム、亜鉛、スズ、鉛等の両性金属の粒子が挙げられる。両性金属は、アルカリ環境下で発泡する。 Examples of foaming materials include particles of amphoteric metals such as aluminum, zinc, tin, and lead. Amphoteric metals foam in an alkaline environment.
 内表面に凹凸を形成した型枠内にコンクリート組成物を流し込み、コンクリート組成物を締固めることにより、コンクリート組成物が硬化してコンクリート構造物を成形することができるとともに、コンクリート構造物の表層に、型枠の内表面の凹凸に由来する多数の凹凸や、発泡材の発泡による多数の細孔を形成することができる(図3、図4参照)。
 なお、図1に示す内表面に凹凸を形成した型枠を用いることにより、図3に示す表層に多数の凹凸が形成されたコンクリート構造物が得られる。図2に示す発泡材を散布した型枠を用いることにより、図4に示す表層に多数の細孔が形成されたコンクリート構造物が得られる。
By pouring a concrete composition into a form with an uneven surface formed on its inner surface and compacting the concrete composition, the concrete composition hardens to form a concrete structure, and also forms numerous irregularities on the surface of the concrete structure resulting from the unevenness of the inner surface of the form and numerous pores due to the foaming of the foaming material (see Figures 3 and 4).
By using a formwork with irregularities formed on the inner surface as shown in Fig. 1, a concrete structure with numerous irregularities formed on the surface layer as shown in Fig. 3 can be obtained. By using a formwork with foam material scattered thereon as shown in Fig. 2, a concrete structure with numerous pores formed on the surface layer as shown in Fig. 4 can be obtained.
 第2の工程では、型枠内に流し込んだコンクリート組成物における、型枠から離間した位置に棒状のバイブレータを挿入し、その棒状のバイブレータによりコンクリート組成物を振動させることが好ましい。これにより、コンクリート組成物の内部(コンクリート構造物の表層となる部分以外の部分)に含まれる空気を、型枠側に移動させ、コンクリート組成物におけるコンクリート構造物の表層となる部分にのみ空気を残留させることができる。コンクリート組成物におけるコンクリート構造物の表層となる部分に残留した空気により、コンクリート構造物の表層に多数の細孔が形成される。 In the second step, it is preferable to insert a rod-shaped vibrator into the concrete composition poured into the formwork at a position away from the formwork and vibrate the concrete composition with the rod-shaped vibrator. This allows the air contained inside the concrete composition (parts other than the part that will become the surface layer of the concrete structure) to move toward the formwork, leaving air only in the part of the concrete composition that will become the surface layer of the concrete structure. The air remaining in the part of the concrete composition that will become the surface layer of the concrete structure forms numerous pores in the surface layer of the concrete structure.
 バイブレータによりコンクリート組成物を振動させる方法を具体的に説明する。まず、コンクリート組成物における型枠の中央部に位置する部分にバイブレータを挿入する。その状態でバイブレータを10秒以上15秒以下振動させる。次いで、型枠の長手方向に沿う中心線に対して垂直方向に、バイブレータを移動させる。バイブレータを移動させる量は、前回のバイブレータの振動が伝わった領域(前記中心線に対して垂直方向の領域)と、今回のバイブレータの振動が伝わる領域(前記中心線に対して垂直方向の領域)とが重なる程度とする。次いで、バイブレータを10秒以上15秒以下振動させる。このような操作を順次繰り返して、バイブレータの振動が伝わる領域が型枠の内表面に接するまで、バイブレータの移動と振動を繰り返す。なお、バイブレータが型枠の内表面に直接、接しないようにする。 A method of vibrating a concrete composition using a vibrator will be specifically described. First, a vibrator is inserted into a portion of the concrete composition that is located in the center of the formwork. In this state, the vibrator is vibrated for 10 to 15 seconds. Next, the vibrator is moved in a direction perpendicular to the center line along the longitudinal direction of the formwork. The amount of movement of the vibrator is set so that the area to which the previous vibration of the vibrator was transmitted (the area perpendicular to the center line) overlaps with the area to which the current vibration of the vibrator is transmitted (the area perpendicular to the center line). Next, the vibrator is vibrated for 10 to 15 seconds. These operations are repeated in sequence, and the movement and vibration of the vibrator are repeated until the area to which the vibration of the vibrator is transmitted comes into contact with the inner surface of the formwork. Note that the vibrator is not directly contacted with the inner surface of the formwork.
 本実施形態のコンクリート構造物の製造方法によれば、上記の第1の工程と、第2の工程とを有するため、表層に多数の凹凸および細孔の少なくとも一方を有し、海藻付着効果に優れるコンクリート構造物が得られる。 The method for manufacturing a concrete structure according to this embodiment includes the above-mentioned first and second steps, and therefore produces a concrete structure having a large number of irregularities and/or pores on the surface, and excellent seaweed adhesion properties.
 以下、実施例により本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。 The present invention will be explained in more detail below with reference to examples, but the present invention is not limited to the following examples.
[実施例1]
 細骨材としての銅スラグと、フライアッシュ原粉灰と、セメントと、水とを含むコンクリート組成物(銅スラグモルタル)を、結合材に対するフライアッシュ原粉灰の含有量が66質量%の条件で調製した。
 銅スラグの標準の配合量を1650kg/mとして、コンクリート組成物(銅スラグモルタル)を調製した。
 得られたコンクリート組成物を型枠内に流し込んで締固めて硬化させて、コンクリート構造物を得た。
 型枠として、図1に示すように内表面に凹凸を形成したものを用いた。
 その結果、図3に示すような表層に多数の凹凸が形成されたコンクリート構造物が得られた。
[Example 1]
A concrete composition (copper slag mortar) containing copper slag as fine aggregate, raw fly ash powder, cement, and water was prepared under the condition that the content of raw fly ash powder relative to the binder was 66 mass %.
A concrete composition (copper slag mortar) was prepared with a standard blend amount of copper slag of 1650 kg/ m3 .
The obtained concrete composition was poured into a formwork, compacted and hardened to obtain a concrete structure.
The mold used had an inner surface with projections and recesses as shown in FIG.
As a result, a concrete structure having numerous projections and recesses on the surface as shown in FIG. 3 was obtained.
[実施例2]
 細骨材としての銅スラグと、フライアッシュ原粉灰と、セメントと、水とを含むコンクリート組成物(銅スラグモルタル)を、結合材に対するフライアッシュ原粉灰の含有量が66質量%の条件で調製した。
 銅スラグの標準の配合量を1650kg/mとして、コンクリート組成物(銅スラグモルタル)を調製した。
 得られたコンクリート組成物を型枠内に流し込んで締固めて硬化させて、コンクリート構造物を得た。
 型枠として、図2に示すように内表面に発泡材を散布したものを用いた。
 その結果、図4に示すような表層に多数の細孔が形成されたコンクリート構造物が得られた。
[Example 2]
A concrete composition (copper slag mortar) containing copper slag as fine aggregate, raw fly ash powder, cement, and water was prepared under the condition that the content of raw fly ash powder relative to the binder was 66 mass %.
A concrete composition (copper slag mortar) was prepared with a standard blend amount of copper slag of 1650 kg/ m3 .
The obtained concrete composition was poured into a formwork, compacted and hardened to obtain a concrete structure.
The formwork used had a foaming material spread on its inner surface as shown in FIG.
As a result, a concrete structure having a large number of pores formed in the surface layer as shown in FIG. 4 was obtained.

Claims (5)

  1.  硬化材と混和材と水とからなるペーストと、細骨材と、を含むコンクリート組成物の硬化物からなるコンクリート構造物であって、
     前記硬化材と前記混和材とを含む結合材における前記混和材の含有量が65質量%以上、
     前記コンクリート組成物における水結合材比が25.0質量%以上40.5質量%以下、
     前記コンクリート組成物における水硬化材比が110質量%以上127質量%以下、であり、
     前記硬化物の表層に多数の凹凸および細孔の少なくとも一方を有する、コンクリート構造物。
    A concrete structure comprising a hardened concrete composition including a paste comprising a hardener, an admixture, and water, and fine aggregate,
    The content of the admixture in the binder containing the hardener and the admixture is 65% by mass or more;
    The water-binder ratio in the concrete composition is 25.0% by mass or more and 40.5% by mass or less;
    The water hardening agent ratio in the concrete composition is 110% by mass or more and 127% by mass or less;
    A concrete structure having at least one of a large number of irregularities and pores on the surface layer of the hardened product.
  2.  密度が1.8×10kg/m以上である、請求項1に記載のコンクリート構造物。 2. The concrete structure according to claim 1, having a density of 1.8 x 10 3 kg/m 3 or more.
  3.  請求項1または2に記載のコンクリート構造物の製造方法であって、
     前記コンクリート組成物を調製する工程と、
     前記コンクリート組成物を型枠内に流し込んで締固める工程と、を有する、コンクリート構造物の製造方法。
    A method for producing a concrete structure according to claim 1 or 2,
    preparing the concrete composition;
    and pouring the concrete composition into a formwork and compacting it.
  4.  前記締固める工程において、前記型枠内に前記コンクリート組成物を流し込む前に、前記型枠の内表面に発泡材を付着させる、請求項3に記載のコンクリート構造物の製造方法。 The method for manufacturing a concrete structure according to claim 3, wherein in the compacting step, a foaming material is attached to the inner surface of the form before the concrete composition is poured into the form.
  5.  前記締固める工程において、前記型枠として、内表面に凹凸を形成したものを用いる、請求項3に記載のコンクリート構造物の製造方法。 The method for manufacturing a concrete structure according to claim 3, wherein the formwork has an inner surface with irregularities formed thereon during the compacting process.
PCT/JP2023/025477 2022-09-30 2023-07-10 Concrete structure and method for producing concrete structure WO2024070130A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-158032 2022-09-30
JP2022158032A JP2024051724A (en) 2022-09-30 2022-09-30 Concrete structure and manufacturing method of concrete structure

Publications (1)

Publication Number Publication Date
WO2024070130A1 true WO2024070130A1 (en) 2024-04-04

Family

ID=90476982

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/025477 WO2024070130A1 (en) 2022-09-30 2023-07-10 Concrete structure and method for producing concrete structure

Country Status (2)

Country Link
JP (1) JP2024051724A (en)
WO (1) WO2024070130A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1190910A (en) * 1997-09-25 1999-04-06 Sekisui Plastics Co Ltd Form for execution of concrete work, method for execution of concrete work using the form, and structure such as retaining wall constructed by concrete work
JP2000000810A (en) * 1998-06-17 2000-01-07 Toyo Tire & Rubber Co Ltd Urethane formwork and its production
JP2002037651A (en) * 2000-07-28 2002-02-06 Denki Kagaku Kogyo Kk Admixture and cement composition for heavy weight grout mortar and heavy weight grout mortar
JP2010254496A (en) * 2009-04-22 2010-11-11 Chugoku Electric Power Co Inc:The Concrete
WO2022137320A1 (en) * 2020-12-22 2022-06-30 中国電力株式会社 Mortar composition and cured product

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1190910A (en) * 1997-09-25 1999-04-06 Sekisui Plastics Co Ltd Form for execution of concrete work, method for execution of concrete work using the form, and structure such as retaining wall constructed by concrete work
JP2000000810A (en) * 1998-06-17 2000-01-07 Toyo Tire & Rubber Co Ltd Urethane formwork and its production
JP2002037651A (en) * 2000-07-28 2002-02-06 Denki Kagaku Kogyo Kk Admixture and cement composition for heavy weight grout mortar and heavy weight grout mortar
JP2010254496A (en) * 2009-04-22 2010-11-11 Chugoku Electric Power Co Inc:The Concrete
WO2022137320A1 (en) * 2020-12-22 2022-06-30 中国電力株式会社 Mortar composition and cured product

Also Published As

Publication number Publication date
JP2024051724A (en) 2024-04-11

Similar Documents

Publication Publication Date Title
JP5237634B2 (en) Improvement of freeze-thaw resistance of dry cast cementitious mixture.
CN101417475B (en) No-burned brick manufacture method
JP4560887B2 (en) Underwater hardened body made from steelmaking slag
JPH08325049A (en) High fluidity concrete composition
CN107382215A (en) A kind of preparation method of high dense concrete road
JP2000119074A (en) Production of porous concrete and porous concrete
JP2011136864A (en) Admixture for porous concrete and porous concrete
WO2024070130A1 (en) Concrete structure and method for producing concrete structure
JP6682920B2 (en) Manufacturing method of artificial stone
JP2019026540A (en) Cement composition for instant demolding type, and production method of precast concrete molding article using the same
JPS63303839A (en) Production of concrete or the like
JPS5827833B2 (en) Nanjiyakujibannoanteikashiyorikohou
JPH07291760A (en) Lightweight concrete for filling and lightweight hardened material thereof
JP3215733B2 (en) Method for producing concrete or mortar molding
JP2001323436A (en) Wave-dissipating block
JP3863750B2 (en) Porous concrete and its manufacturing method
JPH0912348A (en) Production of cured body of fine powder
JPH0692709A (en) Grout material for fixing underwater structure and installation method therefor
JPS6361355B2 (en)
JP2008024573A (en) Method of producing concrete product, and concrete product
JP2514576B2 (en) A method of filling and solidifying the target site with air-mortar using rock powder MP grout containing calcium carbonate as the main component
JP4306109B2 (en) Underwater block
JP2007269591A (en) Method of producing concrete product, and concrete product
JPH09301784A (en) Production of porous sound-absorbing material
JP4809516B2 (en) Manufacturing method of immediate demolding concrete products