JPS6361355B2 - - Google Patents

Info

Publication number
JPS6361355B2
JPS6361355B2 JP57059067A JP5906782A JPS6361355B2 JP S6361355 B2 JPS6361355 B2 JP S6361355B2 JP 57059067 A JP57059067 A JP 57059067A JP 5906782 A JP5906782 A JP 5906782A JP S6361355 B2 JPS6361355 B2 JP S6361355B2
Authority
JP
Japan
Prior art keywords
weight
parts
cement
amount
sieve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57059067A
Other languages
Japanese (ja)
Other versions
JPS58176155A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP5906782A priority Critical patent/JPS58176155A/en
Publication of JPS58176155A publication Critical patent/JPS58176155A/en
Publication of JPS6361355B2 publication Critical patent/JPS6361355B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Sealing Material Composition (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、軟質の粒度調整水砕スラグを主成分
とした、充填性がよく、軽量で、材料分離の少な
い軽量気泡充填材の調製方法に関する。 例えば炭鉱の廃坑道、廃埋設管、廃防空濠等の
地下空洞、または地盤沈下により生じた構造物と
地盤との間の空洞あるいは空隙を充填する空洞充
填材は、次のような特性をもつことが望まれてい
る。 (1) 注入時の流動性が良好であること。 (2) 可使用時間(硬化までの時間)が現場条件に
即して自由に調整できること。 (3) ブリージング(分離現象)が少ないこと。 (4) 地盤沈下に対する充填材では在来地盤より軽
いこと。 (5) 一軸圧縮強度は在来地盤より多少大きいこ
と。 (6) 沈下により生じた空洞部に支持杭が存在する
ときは充填材の付着強度が小さく支持杭に付着
することによるその後の沈下を妨げないこと。 従来の水砕スラグを使用した空洞充填材の調製
方法は、起泡剤を泡製造装置に投入して気泡を形
成し、あらかじめ練り混ぜた他の混合材中にこの
形成気泡を添加し、それらが均一になるまで練り
混ぜて気泡を充填材中に導入するプレフオーム法
であつた。プレフオーム法は前述の望ましい特性
を有する充填材の調製に適した方法である反面、
装置が複雑で独得の技術を要し、製造管理がきわ
めて困難であり、さらに経済性の点でも問題があ
つた。 他の充填材としては、例えば、セメント、ベン
トナイト、砂、および水からなるベントナイトモ
ルタルやアルミナ、石灰、石こう、砂、および水
からなるバチルスモルタル等が知られているが、
これらはいずれも前記の望ましい充填材としての
特性が十分でなく、また空洞充填材としては比較
的高価であり、廉価な充填材が望まれている。 本発明は従来のこれらの欠点を解決した空洞充
填材の調製方法を提供することを目的とする。本
発明は、基本的には、材料練り混ぜ時に起泡剤を
同時に添加して激しく撹拌し、調製スラリー中に
気泡を含ませる、いわゆるミクストフオーム法に
属し、軟質の粒度調整した水砕スラグを主成分と
して用いることによつて、簡易な作業により、流
動性のよい、軽量な、ブリージングの少ない、安
価な軽量気泡充填材を調製する方法を提供しよう
とするものである。 本発明者らは、粉砕して粒度調整した水砕スラ
グを細骨材とするセメントモルタルについて、水
砕スラグの微粉末の量を変化させてその特性につ
き種々研究の結果、次の諸点を確認した。 (1) 水砕スラグ中の0.149mmふるい下の量が増加
するとポルトランドセメントのアルカリ刺戟を
受けてセメントモルタルの硬化後の強度が増大
する。 (2) その微粉末水砕スラグの強度発現性が、ポル
トランドセメントの2分の1ないし4分の3程
度であり、単位セメント量を減ずることができ
る。 (3) 水砕スラグ中の0.149mmふるい下の量を増加
するにつれ、モルタルの粘性もほぼ比例的に増
大する。 本発明は、上記知見に基づいて完成されたもの
であつて、0.149mmふるい下が15%以上の粒度調
整された軟質の水砕スラグ360〜410、単位セメ
ント量95〜125Kg、水/セメント比250〜350重量
%からなるスラリーに、起泡剤、減水剤および粘
性剤をそれぞれセメント100重量部に対し0.4〜
0.7重量部、0.2〜0.3重量部、および0.4〜0.6重量
部添加して撹拌し、空気を容積比25〜30%含有す
る軽量気泡グラウト材を調製することを特徴とす
る空洞充填材の調製方法である。 本発明は、0.149mmふるい下が15%以上の粒度
調整した軟質の水砕スラグを主成分として使用す
る。水砕スラグは高炉から排出した溶融スラグを
圧力水によつて吹製したものである。本発明に使
用する水砕スラグは、普通の軟質水砕スラグのう
ち、単位容積重量が0.85Kg/以下のものを選別
し、それを粉砕して粒度調整したものであり、特
に0.149mmふるい下が15%以上になるように粒度
調整することを基本とする。第1図に破砕機の条
件を同一にして軟質水砕スラグを破砕した場合の
軟質水砕スラグの単位容積重量と破砕粒度との関
係の一例を示す。破砕粒度は、ふるい目0.149mm
の通過量で表現してある。第1図から、単位容積
重量の小さい水砕スラグ(すなわち軽量の水砕ス
ラグ)ほど破砕性が大きく、破砕粒度が細かくな
ることが認められ、単位容積重量が0.85Kg/以
下の軟質水砕スラグを選別して使用すれば、
0.149mmふるい下が15%以上の粒度の水砕スラグ
を確保することができる。 水砕スラグは、0.149mmふるい下が15%以上で
は、調製された充填材の強度を増大し、粘性を高
め、セメントの使用量を減ずることができ、15%
未満ではこれらの効果が少なく、またブリージン
グが増大するので、充填材の適性を損ずる。さら
に、本発明に使用する水砕スラグとしては、 最大粒径:2.380mm ふるい目1.190mm通過量 95%以上 〃 0.590mm 〃 70% 〃 〃 0.279mm 〃 40% 〃 〃 0.149mm 〃 15% 〃 の粒度分布をもつスラグが最適である。 上記の粒度調整された水砕スラグを用いた場
合、単位セメント量は、95〜125Kgで空洞充填材
として十分な強度を得ることができる。単位セメ
ント量95Kg未満では、強度発現性が不足し、125
Kg超では、不必要に強度が高くなり経済性の観点
から制限される。 水/セメント比は、250重量%未満では、調製
グラウト材の強度面、軽量性、経済性の点で問題
があり、350重量%を越えるとブリージングが大
きくなるので好ましくない。 本発明に用いる起泡剤は、界面活性剤からなる
市販品、例えば芳香族炭化水素、スルフオン酸塩
系等の公知の起泡剤を使用することができ、充填
材中に均質に分散した気泡を生成する。適正な気
泡を生成させるため、セメント100重量部に対し
て0.4〜0.7重量部を使用する。 次に減水剤として、アニオン系、ノニオン系等
のAE減水剤を使用する。AE減水剤は起泡性に優
れ、充填材の流動性を増加させ、減水効果により
充填部の強度に寄与するものである。セメント
100重量部に対して0.2重量部未満では減水効果が
少なく、0.3重量部を越えると却つて充填部の強
度を低下させるので、0.2〜0.3重量部が適切であ
る。 次に充填材の材料分離抵抗を増大させるために
粘性剤を添加する。粘性剤としては、精製繊維素
すなわちパルプからつくられる白色無味無臭の安
定した、かつ生理的にも無害な粉末で、冷水可溶
の高分子系混和剤(メチルセルロース)が適切
で、その分子中にメトキシ基(−OCH3)を27〜
32重量%含有するものが好適である。メトキシ基
含有量がこの範囲にあるものが最もよく水に溶解
する。 上記粘性剤を充填材に添加すると、これがセメ
ントペースト中の水分と結合し、セメントペース
ト自体の粘性を増大させるばかりでなく、セメン
トペースト中の遊離水の上昇分離すなわちブリー
ジングを防止することができる。 粘性剤の添加量は、水/セメント比が250〜350
重量%となるような割合の水を加えることによる
粘性低下による材料分離抵抗の低下を補なうた
め、セメント量100重量部に対して0.4〜0.6重量
部とする。0.4重量部未満では粘性向上効果が少
なくなる。0.6重量部超では粘性が高くなりすぎ
るので不可である。 本発明の空洞充填材の調製方法は、粒度調整水
砕スラグと普通ポルトランドセメントと、起泡
剤、減水剤、粘性剤等の添加剤とを所定量の水と
混合してスラリーとし、このスラリーを十分混練
することによつてなされる。練りまぜ設備として
強制練りミキサーを使用すれば、簡易に所定の空
洞充填材を調製することができる。 本発明の空洞充填材調製方法により、次の効果
が得られる。 (1) 従来の空洞充填材に比し、セメント量が1/3
〜1/5の少量でよく、安価に充填材の施工がで
きる。 (2) 充填材調製作業が簡易で、品質管理が容易で
ある。 (3) 調製された充填材は、施工性がよく、軽量
で、ブリージングが少く、かつ適切な流動性を
有し、材料分離を起さず、信頼性に富む。また
従来の空洞充填材に比し著しく安価であり、護
岸背面等の土圧低減裏込用人工軽量土砂等にも
利用できる。 実施例 1 第1表に示す基本配合によりモルタルを調製し
た。 起泡剤、減水剤、粘性剤としてはそれぞれ芳香
族炭化水素系起泡剤、アニオン系AE減水剤、高
分子系粘性剤(メチルセルローズ)を用いた。
The present invention relates to a method for preparing a lightweight cellular filler that has good filling properties, is lightweight, and has little material separation, which is mainly composed of soft granulated granulated slag with controlled particle size. For example, cavity filling materials used to fill underground cavities such as abandoned coal mine tunnels, abandoned buried pipes, and abandoned air defense moats, or cavities or voids between structures and the ground caused by ground subsidence, have the following characteristics. It is hoped that (1) Good fluidity during injection. (2) Pot life (time until curing) can be freely adjusted according to site conditions. (3) Less breathing (separation phenomenon). (4) Filling material for ground subsidence should be lighter than conventional ground. (5) The unconfined compressive strength should be slightly higher than that of the conventional ground. (6) When support piles exist in a cavity created by subsidence, the adhesion strength of the filler material is small and should not prevent subsequent subsidence due to adhesion to the support piles. The conventional method for preparing a cavity filler using granulated slag is to introduce a foaming agent into a foam manufacturing device to form air bubbles, add the formed air bubbles to other mixed materials that have been mixed in advance, and then This was a preform method in which air bubbles were introduced into the filler by kneading it until it became homogeneous. While the preform method is a suitable method for preparing fillers with the aforementioned desirable properties,
The equipment was complex and required unique technology, production management was extremely difficult, and there were also problems in terms of economy. Other fillers are known, such as bentonite mortar made of cement, bentonite, sand, and water, and bacillus mortar made of alumina, lime, gypsum, sand, and water.
None of these have sufficient properties as the desired filler described above, and are relatively expensive as a cavity filler, so an inexpensive filler is desired. The object of the present invention is to provide a method for preparing a cavity filler that overcomes these conventional drawbacks. The present invention basically belongs to the so-called mixed foam method, in which a foaming agent is added at the same time as materials are kneaded and mixed, and air bubbles are included in the prepared slurry. By using it as a main component, we aim to provide a method for preparing a lightweight foam filler with good fluidity, light weight, little breathing, and low cost through simple operations. The present inventors have confirmed the following points as a result of various studies on the characteristics of cement mortar using fine aggregate as granulated slag, which has been crushed and adjusted in particle size, by varying the amount of fine powder of granulated slag. did. (1) When the amount of 0.149 mm sieve in the granulated slag increases, the strength of cement mortar after hardening increases due to the alkali stimulation of Portland cement. (2) The strength development property of the finely powdered granulated slag is about one-half to three-fourths that of Portland cement, and the amount of cement per unit can be reduced. (3) As the amount under the 0.149 mm sieve in the granulated slag increases, the viscosity of the mortar also increases almost proportionally. The present invention was completed based on the above findings, and consists of a soft granulated slag with particle size adjustment of 360 to 410 with a particle size of 15% or more under a 0.149 mm sieve, a unit cement amount of 95 to 125 kg, and a water/cement ratio. A foaming agent, a water reducing agent, and a viscosity agent are added to a slurry consisting of 250 to 350% by weight of 0.4 to 0.4 parts by weight of each 100 parts by weight of cement.
A method for preparing a cavity filling material, which comprises adding 0.7 parts by weight, 0.2 to 0.3 parts by weight, and 0.4 to 0.6 parts by weight and stirring to prepare a lightweight cellular grout material containing 25 to 30% air by volume. It is. The present invention uses as a main component soft granulated slag whose particle size has been adjusted to be 15% or more under a 0.149 mm sieve. Granulated slag is made by blowing molten slag discharged from a blast furnace using pressurized water. The granulated slag used in the present invention is selected from ordinary soft granulated slag with a unit volume weight of 0.85 kg/or less, and crushed to adjust the particle size. The basic principle is to adjust the particle size so that it is 15% or more. FIG. 1 shows an example of the relationship between the unit volume weight of soft granulated slag and the crushed particle size when the soft granulated slag is crushed under the same crusher conditions. The crushed particle size is sieve mesh 0.149mm
It is expressed as the amount of passage. From Figure 1, it is recognized that the smaller the unit volume weight of granulated slag (i.e., lighter granulated slag), the greater the crushability and the finer the crushed particle size. If you select and use
It is possible to secure granulated slag with a particle size of 15% or more under the 0.149mm sieve. Granulated slag can increase the strength of the prepared filler, increase the viscosity, and reduce the amount of cement used, when the 0.149mm sieve is more than 15%
If it is less than this, these effects will be small and breathing will increase, impairing the suitability of the filler. Furthermore, the granulated slag used in the present invention has the following properties: Maximum particle size: 2.380mm Amount passing through 1.190mm sieve 95% or more 〃 0.590mm 〃 70% 〃 〃 0.279mm 〃 40% 〃 〃 0.149mm 〃 15% A slag with a particle size distribution is optimal. When using the above-mentioned granulated slag whose particle size has been adjusted, a unit cement amount of 95 to 125 kg can provide sufficient strength as a cavity filling material. If the unit cement amount is less than 95 kg, strength development is insufficient and 125
If the weight exceeds Kg, the strength becomes unnecessarily high and is limited from an economical point of view. If the water/cement ratio is less than 250% by weight, there will be problems in terms of strength, light weight, and economical efficiency of the prepared grout, and if it exceeds 350% by weight, breathing will increase, which is not preferable. The foaming agent used in the present invention can be a commercially available surfactant, for example, a known foaming agent such as an aromatic hydrocarbon or a sulfonate-based foaming agent, with air bubbles homogeneously dispersed in the filler. generate. To generate proper air bubbles, use 0.4 to 0.7 parts by weight per 100 parts by weight of cement. Next, as a water reducing agent, an AE water reducing agent such as an anionic type or a nonionic type is used. The AE water reducing agent has excellent foaming properties, increases the fluidity of the filler, and contributes to the strength of the filled part through its water reducing effect. cement
If it is less than 0.2 parts by weight per 100 parts by weight, the water-reducing effect will be small, and if it exceeds 0.3 parts by weight, the strength of the filled part will be reduced, so 0.2 to 0.3 parts by weight is appropriate. A viscosity agent is then added to increase the material separation resistance of the filler. As the viscous agent, a cold water-soluble polymeric admixture (methyl cellulose) is suitable, which is a white, tasteless, odorless, stable, and physiologically harmless powder made from purified cellulose, or pulp, and contains methylcellulose in its molecule. Methoxy group (-OCH 3 ) from 27 to
One containing 32% by weight is suitable. Those with a methoxy group content within this range are most soluble in water. When the above-mentioned viscosity agent is added to the filler, it binds to the water in the cement paste and not only increases the viscosity of the cement paste itself, but also prevents upward separation of free water in the cement paste, that is, breathing. The amount of viscosity agent added is such that the water/cement ratio is 250 to 350.
In order to compensate for the decrease in material separation resistance due to the decrease in viscosity due to the addition of water in a proportion such as % by weight, the amount is set at 0.4 to 0.6 parts by weight per 100 parts by weight of cement. If it is less than 0.4 parts by weight, the viscosity improving effect will be reduced. If it exceeds 0.6 parts by weight, the viscosity will become too high, so it is not possible. The method for preparing the cavity filler of the present invention is to prepare a slurry by mixing particle size-adjusted granulated slag, ordinary Portland cement, and additives such as a foaming agent, water reducing agent, and viscosity agent with a predetermined amount of water. This is done by thoroughly kneading the ingredients. If a forced kneading mixer is used as the kneading equipment, a predetermined cavity filling material can be easily prepared. The cavity filling material preparation method of the present invention provides the following effects. (1) Compared to conventional cavity filling materials, the amount of cement is 1/3
Only a small amount of ~1/5 is required, and the filling material can be applied at low cost. (2) Filler preparation work is simple and quality control is easy. (3) The prepared filler has good workability, is lightweight, has little breathing, has appropriate fluidity, does not cause material separation, and is highly reliable. It is also significantly cheaper than conventional cavity fillers, and can be used as artificial lightweight earth and sand for backfilling back of seawalls to reduce earth pressure. Example 1 Mortar was prepared according to the basic formulation shown in Table 1. As the foaming agent, water reducing agent, and viscosity agent, an aromatic hydrocarbon foaming agent, an anionic AE water reducing agent, and a polymeric viscosity agent (methyl cellulose) were used, respectively.

【表】 第1表の配合により製造したモルタルをJISに
準じて試験した結果次の通り好成績であつた。 フロー値:210〜260mm 1週圧縮強度:3〜7Kg/cm2 気乾単位容積重量:1100〜1250Kg/m3 凝固時間:始発15.00〜18.00 終結20.00〜24.00 実施例 2 第2表に示す軟質の粒度調整スラグおよび実施
例1と同じ起泡剤、減水剤、粘性剤を用い、フロ
ー値を200〜220mmを目標に、50練り強制練りミ
キサーで第3表の配合により本発明の空洞充填材
の調製を実施した。結果を第4表に示す。 第2表表中に示した粗粒率とは、80、40、20、
5、2.5、1.2、0.6、0.3、0.15mm網ふるいの1組を
用いて、ふるいわけ試験(JISA1102)を行つた
場合、各ふるいを通らない全部の試料の質量百分
率の和を100で除した値である。
[Table] The mortar produced according to the formulation shown in Table 1 was tested in accordance with JIS, and the results were as follows. Flow value: 210-260 mm 1 week compressive strength: 3-7 Kg/cm 2 Air-dried unit volume weight: 1100-1250 Kg/m 3 Solidification time: Starting 15.00-18.00 Ending 20.00-24.00 Example 2 Using the particle-size-adjusted slag and the same foaming agent, water-reducing agent, and viscosity agent as in Example 1, the cavity filler of the present invention was prepared using the formulation shown in Table 3 in a 50-kneading forced mixer, aiming at a flow value of 200 to 220 mm. Preparation was carried out. The results are shown in Table 4. The coarse grain ratios shown in Table 2 are 80, 40, 20,
When a sieving test (JISA1102) was performed using a set of 5, 2.5, 1.2, 0.6, 0.3, and 0.15 mm mesh sieves, the sum of the mass percentages of all samples that did not pass through each sieve was divided by 100. It is a value.

【表】【table】

【表】【table】

【表】 第3表、第4表より、水/セメント比を低減し
スラグ量を増加することにより、フロー値(流動
性)が低下し、また粘性が増すことにより空気の
連行能が増し、圧縮強度が低下することがわか
る。 実施例 3 同一の軟質水砕スラグを原料とし、破砕機の破
砕条件を変えて製造した第5表のスラグおよび実
施例1と同じ起泡剤、減水剤、粘性剤を用い、第
6表の配合条件で本発明の空洞充填材を実施例2
と同一ミキサーで調製した。結果を第7表に示
す。 第5表中、実績率とは容器に満たした骨材の絶
対容積のその容器の容積に対する百分率を言い、
その試験方法はJISA1104(骨材の単位容積重量及
び実績率試験方法)に規定されている。また粗粒
率は第2表で説明したものと同様である。
[Table] Tables 3 and 4 show that by reducing the water/cement ratio and increasing the amount of slag, the flow value (fluidity) decreases, and the viscosity increases, which increases the air entrainment ability. It can be seen that the compressive strength decreases. Example 3 Using the same soft granulated slag as raw material and changing the crushing conditions of the crusher, the slag in Table 5 and the same foaming agent, water reducing agent, and viscosity agent as in Example 1 were used to produce the slag in Table 6. Example 2 of the cavity filler of the present invention under compounding conditions
Prepared in the same mixer. The results are shown in Table 7. In Table 5, the actual rate refers to the percentage of the absolute volume of aggregate filled in a container to the volume of that container,
The test method is specified in JISA1104 (Test method for aggregate unit volume weight and performance rate). Moreover, the coarse particle ratio is the same as that explained in Table 2.

【表】【table】

【表】【table】

【表】 第7表を第4表と比較すると、第4表より水/
セメント比が大であるにも拘らず圧縮強度が増し
ているのは、水砕スラグの粒度が小さく、0.149
mm以下の微粉末量が増加しているためである。 また、水砕スラグの粒度が小さく、微粉末量が
増加するとフロー値が下がり空気量が増す。No.3
よりもNo.4の方が空気量が多いにも拘らず圧縮強
度が高くなつているのは、空気量の増加による強
度低下よりも水砕スラグの微粉末量の増加による
強度増加の影響が上廻つた結果と考えられる。
[Table] Comparing Table 7 with Table 4, it is clear that water/
The reason why the compressive strength is increased despite the high cement ratio is because the particle size of the granulated slag is small, 0.149
This is because the amount of fine powder of mm or less is increasing. Furthermore, when the particle size of the granulated slag is small and the amount of fine powder increases, the flow value decreases and the amount of air increases. No.3
The reason why the compressive strength is higher in No. 4 despite having a larger amount of air is due to the increase in strength due to the increase in the amount of fine powder in the granulated slag rather than the decrease in strength due to the increase in the amount of air. This is thought to be the result of overshooting.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は破砕機の条件を同一にして単位容積重
量の異なる軟質水砕スラグを破砕したときの破砕
度を示すグラフである。
FIG. 1 is a graph showing the degree of crushing when soft granulated slags having different unit volume weights are crushed under the same crusher conditions.

Claims (1)

【特許請求の範囲】 1 最大粒径:2.380mm ふるい目1.190mm通過量95%以上 ふるい目0.590mm通過量70%以上 ふるい目0.279mm通過量40%以上 ふるい目0.149mm通過量15%以上 に粒度調整された軟質の水砕スラグ360〜410、
単位セメント量95〜125Kg、水/セメント比250〜
350重量%からなるスラリーに、起泡剤、減水剤、
および粘性剤をそれぞれセメント100重量部に対
し0.4〜0.7重量部、0.2〜0.3重量部、および0.4〜
0.6重量部添加して撹拌し、空気を容積比25〜30
%含有する軽量気泡充填材を調製することを特徴
とする空洞充填材の調製方法。
[Claims] 1. Maximum particle size: 2.380 mm Amount passing through a 1.190 mm sieve is 95% or more Amount passing through a 0.590 mm sieve 70% or more Amount passing through a 0.279 mm sieve 40% or more Amount passing through a 0.149 mm sieve 15% or more Soft granulated slag with particle size adjustment 360~410,
Unit cement amount: 95~125Kg, water/cement ratio: 250~
A foaming agent, water reducing agent,
and viscosity agent, 0.4 to 0.7 parts by weight, 0.2 to 0.3 parts by weight, and 0.4 to 0.4 parts by weight, respectively, per 100 parts by weight of cement.
Add 0.6 parts by weight and stir to adjust the volume ratio of air to 25-30.
A method for preparing a cavity filling material, comprising preparing a lightweight foam filling material containing %.
JP5906782A 1982-04-09 1982-04-09 Preparation of grout material for cavity filling Granted JPS58176155A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5906782A JPS58176155A (en) 1982-04-09 1982-04-09 Preparation of grout material for cavity filling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5906782A JPS58176155A (en) 1982-04-09 1982-04-09 Preparation of grout material for cavity filling

Publications (2)

Publication Number Publication Date
JPS58176155A JPS58176155A (en) 1983-10-15
JPS6361355B2 true JPS6361355B2 (en) 1988-11-29

Family

ID=13102630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5906782A Granted JPS58176155A (en) 1982-04-09 1982-04-09 Preparation of grout material for cavity filling

Country Status (1)

Country Link
JP (1) JPS58176155A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6121955A (en) * 1984-07-05 1986-01-30 セメンタ エイビー Stuffing material mixed with binder
JPH0759701B2 (en) * 1987-04-24 1995-06-28 日東化学工業株式会社 Ground remodeling filler
JP2511569B2 (en) * 1990-10-30 1996-06-26 日本国土開発株式会社 Lightweight highly fluid reinforced soil and method for producing the same
JPH0498270U (en) * 1991-01-18 1992-08-25
KR20140097293A (en) * 2011-11-04 2014-08-06 제이에프이 스틸 가부시키가이샤 Filling material and ground-repairing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4829209A (en) * 1971-08-21 1973-04-18
JPS501515A (en) * 1973-05-10 1975-01-09
JPS5475109A (en) * 1977-11-28 1979-06-15 Onoda Cement Co Ltd Grout material filling hollow
JPS54135408A (en) * 1978-04-11 1979-10-20 Nippon Steel Corp Method of improving organic soft earth that use iron manufacturing slag

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4829209A (en) * 1971-08-21 1973-04-18
JPS501515A (en) * 1973-05-10 1975-01-09
JPS5475109A (en) * 1977-11-28 1979-06-15 Onoda Cement Co Ltd Grout material filling hollow
JPS54135408A (en) * 1978-04-11 1979-10-20 Nippon Steel Corp Method of improving organic soft earth that use iron manufacturing slag

Also Published As

Publication number Publication date
JPS58176155A (en) 1983-10-15

Similar Documents

Publication Publication Date Title
CN109053099A (en) C100 high mountain flour Machine-made Sand concrete filled steel tube and preparation process
CN101921089A (en) Mortar powder, mortar slurry and preparation method thereof
JP3566359B2 (en) Backfill injection material
JPS6361355B2 (en)
JP3739823B2 (en) Cellular foam mortar filling material
JPH10168451A (en) Suspension grout and method for grouting and solidifying ground by using it
JPH08109053A (en) Cement additive for slip foam method of construction
JPS63303839A (en) Production of concrete or the like
JPH08100177A (en) Construction and building composition for backfilling, etc.
JP5690134B2 (en) Grout composition for concrete joints
JP7315496B2 (en) Method for producing blast furnace cement
JPH0687635A (en) Hydraulic cement
JP2514576B2 (en) A method of filling and solidifying the target site with air-mortar using rock powder MP grout containing calcium carbonate as the main component
JPH06219809A (en) Production of self-packing concrete
JPH02102162A (en) Grouting material
CN106032314B (en) A kind of concrete and preparation method thereof
JPH0559060B2 (en)
JPH0692709A (en) Grout material for fixing underwater structure and installation method therefor
JP7304024B1 (en) SOIL IMPROVEMENT METHOD AND SOIL IMPROVEMENT MATERIAL
JP4953007B2 (en) Method for producing plastic grout material
JPH03115146A (en) Aerated mortar for filling void under foundation
JP2003013062A (en) Slope surface anchor-setting material and method for producing the same
JPH1087360A (en) Spray concrete
JP2024051724A (en) Concrete structure and manufacturing method of concrete structure
JP2021167530A (en) Method for producing fluidized soil