WO2024070003A1 - Antenna device, power reception device, reception device, terminal device, wireless power transmission system, and communication system - Google Patents

Antenna device, power reception device, reception device, terminal device, wireless power transmission system, and communication system Download PDF

Info

Publication number
WO2024070003A1
WO2024070003A1 PCT/JP2023/005378 JP2023005378W WO2024070003A1 WO 2024070003 A1 WO2024070003 A1 WO 2024070003A1 JP 2023005378 W JP2023005378 W JP 2023005378W WO 2024070003 A1 WO2024070003 A1 WO 2024070003A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
receiving device
units
antenna units
connection
Prior art date
Application number
PCT/JP2023/005378
Other languages
French (fr)
Japanese (ja)
Inventor
喜元 太田
直輝 長谷川
悠太 中本
昂 平川
Original Assignee
ソフトバンク株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソフトバンク株式会社 filed Critical ソフトバンク株式会社
Publication of WO2024070003A1 publication Critical patent/WO2024070003A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/08Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a rectilinear path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/20Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves
    • H02J50/27Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves characterised by the type of receiving antennas, e.g. rectennas

Definitions

  • the present invention relates to an antenna device that can be used to receive radio waves in wireless power transmission, communications, etc., as well as a power receiving device, a receiving device, a terminal device, a wireless power transmission system, and a communications system that are equipped with the antenna device.
  • Patent Document 1 discloses an array antenna for wireless power transmission and reception in which multiple antenna elements such as patch antennas are arranged.
  • An antenna device comprises a plurality of antenna units, each of which has a plurality of antenna elements arranged at intervals of at least 0.5 times the wavelength of the radio waves to be received, and a connection circuit having a plurality of connection paths connected to each of the plurality of antenna units with different path lengths such that the angular directions of the directional beams of the plurality of antenna units are different from one another.
  • the antenna elements may be arranged at intervals of at least one wavelength of the radio waves to be received so that the antenna unit has multiple directional beams, and the path lengths of the multiple connection paths may be set so that the angular directions of the multiple directional beams differ from one another between the multiple antenna units.
  • the multiple antenna units may be arranged such that antenna elements of an antenna unit other than the antenna unit are positioned between the multiple antenna elements of the antenna unit.
  • the antenna elements in the antenna units may be arranged one-dimensionally or two-dimensionally.
  • the radio waves to be received may be millimeter waves.
  • a power receiving device used for wireless power transmission includes any one of the antenna devices, a plurality of rectifier circuits connected to each of the plurality of antenna units via a connection circuit consisting of the plurality of connection paths, and a DC combining circuit that combines and outputs the plurality of DC powers output from the plurality of rectifier circuits.
  • a wireless power transmission system includes the power receiving device and a power transmitting device that transmits radio waves for wireless power transmission to the power receiving device.
  • a receiving device used for communication includes any one of the antenna devices, a plurality of phase adjustment circuits connected to each of the plurality of antenna units via a connection circuit consisting of the plurality of connection paths, and a combining circuit that combines in phase the plurality of received signals output from the plurality of phase adjustment circuits and outputs the combined signal.
  • a receiving device used for communication includes any one of the antenna devices, a plurality of A/D converters connected to each of the plurality of antenna units via a connection circuit consisting of the plurality of connection paths, and a combining circuit that performs in-phase combining of the plurality of received signals output from the plurality of A/D converters by digital processing and outputs the combined signals.
  • a receiving device used for communication according to yet another aspect of the present invention includes a receiving device having any of the antenna devices described above, and a transmitting device that performs wireless communication with the receiving device.
  • a terminal device includes a power receiving device or a receiving device having any of the antenna devices described above.
  • the terminal device may be an IoT device that can be connected to the Internet.
  • the present invention makes it possible to achieve both high antenna gain and a wide directional angle range.
  • FIG. 1 is an explanatory diagram illustrating an example of a wireless power transmission system to which an antenna device according to an embodiment can be applied.
  • FIG. 2 is an explanatory diagram showing an example of a directivity pattern of a single antenna element according to a reference example.
  • FIG. 3 is a perspective view of an array antenna having a plurality of antenna elements according to an embodiment of the present invention.
  • FIG. 4A is an explanatory diagram showing an example of a directivity pattern when the element spacing in the array antenna of FIG. 3 is 0.5 ⁇ .
  • FIG. 4B is an explanatory diagram showing an example of a directivity pattern when the element spacing in the array antenna of FIG. 3 is 2 ⁇ .
  • FIG. 4A is an explanatory diagram showing an example of a directivity pattern when the element spacing in the array antenna of FIG. 3 is 0.5 ⁇ .
  • FIG. 4B is an explanatory diagram showing an example of a directivity pattern when the element spacing in the array antenna of FIG. 3 is 2 ⁇ .
  • FIG. 4C is an explanatory diagram showing an example of a directivity pattern when the element spacing in the array antenna of FIG. 3 is 4 ⁇ .
  • FIG. 4D is an explanatory diagram showing an example of a directivity pattern when the element spacing in the array antenna of FIG. 3 is 8 ⁇ .
  • FIG. 5 is an explanatory diagram illustrating an example of a one-dimensional array antenna including a plurality of antenna units of the antenna device according to the embodiment.
  • FIG. 6A is an explanatory diagram of the element arrangement of each of a plurality of antenna units.
  • FIG. 6B is an explanatory diagram of the element arrangement of each of the multiple antenna units.
  • FIG. 6C is an explanatory diagram of the element arrangement of each of the multiple antenna units.
  • FIG. 6D is an explanatory diagram of the element arrangement of each of the multiple antenna units.
  • FIG. 7A is an explanatory diagram showing an example of a directivity pattern of the multiple antenna units of FIG.
  • FIG. 7B is an explanatory diagram showing an example of a directivity pattern of the multiple antenna units of FIG.
  • FIG. 7C is an explanatory diagram showing an example of a directivity pattern of the multiple antenna units of FIG.
  • FIG. 7D is an explanatory diagram showing an example of a directivity pattern of the multiple antenna units of FIG.
  • FIG. 8 is an explanatory diagram showing the directivity patterns of FIGS. 7A to 7D superimposed on each other.
  • FIG. 9 is an explanatory diagram of the effect of the directivity pattern of FIG. FIG.
  • FIG. 10 is an explanatory diagram showing an example of a two-dimensional array antenna constituting a plurality of antenna units of the antenna device according to the embodiment.
  • FIG. 11 is an explanatory diagram of a part of the two-dimensional array antenna of FIG.
  • FIG. 12 is an explanatory diagram of an arrangement of a plurality of antenna elements constituting the first antenna unit in the two-dimensional array antenna of FIG. 13A is an explanatory diagram showing an example of a three-dimensional directivity pattern of a first antenna unit in the two-dimensional array antenna of FIG. 10.
  • FIG. 13B is an explanatory diagram showing an example of a three-dimensional directivity pattern of the second antenna unit in the two-dimensional array antenna of FIG. 10.
  • FIG. 11 is an explanatory diagram of a part of the two-dimensional array antenna of FIG.
  • FIG. 13C is an explanatory diagram showing an example of a three-dimensional directivity pattern of the third antenna unit in the two-dimensional array antenna of FIG. 10.
  • FIG. 13D is an explanatory diagram showing an example of a three-dimensional directivity pattern of the fourth antenna unit in the two-dimensional array antenna of FIG. 10.
  • FIG. 13E is an explanatory diagram showing an example of a three-dimensional directivity pattern of the fifth antenna unit in the two-dimensional array antenna of FIG. 10.
  • FIG. 13F is an explanatory diagram showing an example of a three-dimensional directivity pattern of the sixth antenna unit in the two-dimensional array antenna of FIG. 10.
  • FIG. 13G is an explanatory diagram showing an example of a three-dimensional directivity pattern of the seventh antenna unit in the two-dimensional array antenna of FIG. 10.
  • 13H is an explanatory diagram showing an example of a three-dimensional directivity pattern of the eighth antenna unit in the two-dimensional array antenna of FIG. 10.
  • 13I is an explanatory diagram showing an example of a three-dimensional directivity pattern of the ninth antenna unit in the two-dimensional array antenna of FIG. 10.
  • 13J is an explanatory diagram showing an example of a three-dimensional directivity pattern of the tenth antenna unit in the two-dimensional array antenna of FIG. 10.
  • 13K is an explanatory diagram showing an example of a three-dimensional directivity pattern of the 11th antenna unit in the two-dimensional array antenna of FIG. 10.
  • 13L is an explanatory diagram showing an example of a three-dimensional directivity pattern of the twelfth antenna unit in the two-dimensional array antenna of FIG. 10.
  • 13M is an explanatory diagram showing an example of a three-dimensional directivity pattern of the 13th antenna unit in the two-dimensional array antenna of FIG. 10.
  • 13N is an explanatory diagram showing an example of a three-dimensional directivity pattern of the fourteenth antenna unit in the two-dimensional array antenna of FIG. 10.
  • 13O is an explanatory diagram showing an example of a three-dimensional directivity pattern of the fifteenth antenna unit in the two-dimensional array antenna of FIG. 10.
  • 13P is an explanatory diagram showing an example of a three-dimensional directivity pattern of the sixteenth antenna unit in the two-dimensional array antenna of FIG. 10.
  • FIG. 14 is an explanatory diagram showing the three-dimensional directivity patterns of FIGS. 13A to 13P superimposed on each other.
  • FIG. 14 is an explanatory diagram showing the three-dimensional directivity patterns of FIGS. 13A to 13P superimposed on each other.
  • FIG. 15 is an explanatory diagram showing an example of a connection circuit for an antenna unit consisting of the array antenna of FIG.
  • FIG. 16 is an explanatory diagram showing an example of the configuration of a power receiving device for wireless power transmission having the array antenna of FIG. 5.
  • FIG. 17 is an explanatory diagram showing an example of the configuration of a power receiving device for wireless power transmission having the array antenna of FIG.
  • FIG. 18 is an explanatory diagram illustrating an example of the configuration of a communication receiving device having an antenna device according to the embodiment.
  • FIG. 19 is an explanatory diagram showing another example of the configuration of a receiving device for communication having the antenna device according to the embodiment.
  • FIG. 20 is an explanatory diagram showing yet another example of the configuration of a receiving device for communication having an antenna device according to the embodiment.
  • FIG. 21 is an explanatory diagram illustrating another example of a system to which the antenna device according to the embodiment can be applied.
  • FIG. 22 is a block diagram showing an example of the configuration of a base station and a terminal device constituting the system of FIG. 21.
  • FIG. 23 is an explanatory diagram illustrating yet another example of a system to which the antenna device according to the embodiment can be applied.
  • the antenna device is an antenna device with a simple configuration that includes a plurality of antenna units, each of which has a plurality of antenna elements arranged at a predetermined interval (e.g., an interval of 0.5 or more times the wavelength of the radio wave to be received), and that can achieve both a high antenna gain and a wide directional angle range (wide-angle directivity) by setting the path lengths of a plurality of connection paths connected to the plurality of antenna units so that the angular directions of the directional beams of the plurality of antenna units are different from each other.
  • the antenna device according to the embodiment is suitable for an antenna device of a power receiving device (also called a "power receiving rectenna device") of a wireless power transmission (WPT) system that uses millimeter-wave radio waves.
  • a power receiving device also called a "power receiving rectenna device”
  • WPT wireless power transmission
  • FIG. 1 is an explanatory diagram showing an example of a wireless power transmission system to which the antenna device according to this embodiment can be applied.
  • the wireless power transmission system 10 of this embodiment includes a power transmission device 20 that transmits radio waves of a power transmission signal, and a power receiving device (DC power) 30 that receives the radio waves transmitted from the power transmission device 20 and outputs DC power.
  • the radio waves for wireless power transmission are, for example, microwaves or millimeter waves.
  • the power transmission device 20 has an antenna device 21 consisting of an array antenna in which multiple antenna elements are arranged two-dimensionally.
  • the array antenna of the power transmission device 20 may be an array in which multiple antennas are arranged one-dimensionally or three-dimensionally.
  • the power receiving device 30 has an antenna device 31 consisting of an array antenna in which multiple antenna elements 311 are arranged two-dimensionally.
  • the antenna element 311 is, for example, a patch antenna.
  • the array antenna of the power receiving device 30 may be one in which multiple antennas are arranged one-dimensionally or three-dimensionally.
  • the power receiving device 30 also has a rectifier circuit group 32 consisting of multiple rectifier circuits (rectifiers) arranged to correspond to the multiple antenna elements 311 of the antenna device 31, and a DC combining circuit 33 that combines the outputs of the multiple rectifier circuits of the rectifier circuit group 32 to output DC power.
  • the power transmitting device 20 may be used as a base station of a mobile communication system, for example, and the terminal device on which the power receiving device 30 that receives power is mounted may be an IoT device such as various sensor devices that can be connected to a communication network such as the Internet.
  • IoT wireless power transmission
  • millimeter waves radio waves in the 30 GHz to 300 GHz bands
  • a thin beam also called a "pencil beam”
  • multiple antenna units are provided, each with multiple antenna elements arranged at a predetermined interval (for example, at intervals of 0.5 or more times the wavelength of the radio waves to be received), as shown below, and the path lengths of multiple connection paths connected to the multiple antenna units are set so that the angular directions of the directional beams of the multiple antenna units are different from each other, thereby achieving both high antenna gain and a wide directional angle range with a simple configuration.
  • FIG. 2 is an explanatory diagram showing an example of a directivity pattern 310D of a single antenna element according to a reference example.
  • the horizontal beam width ( ⁇ ) which is the full width at half the horizontal peak power (-3 dB) point of the directivity pattern 310D
  • the vertical beam width ( ⁇ ) which is the full width at half the vertical peak power (-3 dB) point
  • the peak gain G (8.6 dBi) of the directivity pattern 310D is low.
  • FIG. 3 is a perspective view of an array antenna 310 having multiple antenna elements 311(1)-311(4) according to an embodiment.
  • the example in FIG. 3 is an example of a four-element linear array antenna in which four antenna elements 311(1)-311(4) are arranged one-dimensionally at a predetermined interval d.
  • FIGS. 4A to 4D are explanatory diagrams showing examples of directivity patterns when the element spacing of the array antenna 310 in FIG. 3 is 0.5 ⁇ , 2 ⁇ , 4 ⁇ , and 8 ⁇ , respectively.
  • is the wavelength of the radio waves to be received.
  • the element spacing in FIG. 4A is 0.5 ⁇
  • the number of directional beams (hereinafter also referred to as "beams") of the directivity pattern 310D is one, and the beam width is narrower than that of a single element, but the gain G is 12.9 dBi, which is higher than that of a single element.
  • the beam of the directivity pattern 310D splits into 3, 7, and 15 beams as shown in FIG. 4B to 4D, and the peak gain G is high at 14.6 dbi to 14.7 dBi.
  • the antenna device 31 of this embodiment is configured to have multiple antenna units, each of which is an array antenna 310 having four antenna elements 311(1) to 311(4) as shown in FIG. 3.
  • a connection circuit having multiple connection paths connected to the multiple antenna units is configured to be connected to each of the multiple antenna units with different path lengths so that the angular directions of the directional beams are different from one another.
  • connection circuit is configured to have multiple connection paths that connect to the multiple antenna units so that the beam direction of the directional pattern 310D of each antenna unit is shifted by a predetermined angle (e.g., 30°), and the connection circuit is configured so that the multiple antenna units are connected to each other with different path lengths so that the angular directions of the directional beams are different from each other.
  • a predetermined angle e.g. 30°
  • connection circuit is configured to connect each of the multiple antenna units with connection paths of different path lengths so that the angular directions of the multiple beams differ among the four antenna units.
  • the connection circuit may be configured so that the null portion of the beam of an antenna unit is filled by the beam of an antenna unit other than the antenna unit in question.
  • FIG. 5 is an explanatory diagram showing an example of a one-dimensional array antenna 310 including a plurality of antenna units of an antenna device according to an embodiment.
  • FIGS. 6A to 6D are explanatory diagrams of a plurality of antenna units 310(1) to 310(4) constituting the one-dimensional array antenna of FIG. 5, respectively.
  • the one-dimensional array antenna 310 is a linear array antenna in which 16 antennas (e.g., patch antennas) are arranged in the y direction in the figure, and the element spacing d0 between adjacent antennas is 0.5 ⁇ , and four antenna units are configured.
  • the first antenna unit 310(1) in FIG. 6A has four antenna elements 311(1) with an element spacing of d1.
  • the sixth antenna unit 310(2) in FIG. 6C has four antenna elements 311(3) with an element spacing of d3.
  • the fourth antenna unit 310(4) in FIG. 6D has four antenna elements 311(4) with an element spacing of d4.
  • the element spacing d1, d2, d3, and d4 in each of the antenna units 310(1) to 310(4) is 2 ⁇ .
  • multiple antenna units are arranged so that antenna elements of antenna units other than the antenna unit are located between the multiple antennas of the antenna unit.
  • antenna elements 311(2), 311(3), and 311(4) of the other second, third, and fourth antenna units are located one each between the two antenna elements 311(1) of the first antenna unit.
  • FIGS 7A to 7D are explanatory diagrams showing examples of directional patterns 310D(1) to 310D(4) of the multiple antenna units 310(1) to 310(4) of Figure 5.
  • Each of the directional patterns 310D(1) to 310D(4) of the antenna units has four beams 310B(1) to 310B(4), with the angle between the beams being approximately 30°.
  • a connection circuit is formed having multiple connection paths (connection lines) connected to the antenna units 310(1) to 310(4) so that the null portion of the beam of one antenna unit is filled by the beam of another antenna unit.
  • the path lengths of the connection paths (connection lines) to each antenna unit in the connection circuit are set to be different so that the angle range of the null portion of the directivity pattern 310D(1) of the first antenna unit 310(1) shown in FIG. 7A is filled with the beams of the directivity patterns 310D(2) to 310D(4) of the other second, third, and fourth antenna units 310(2) to 310(4) shown in FIG. 7B to FIG. 7D.
  • This adjusts the phase of the received signal of the power received by each antenna unit.
  • FIG. 8 is an explanatory diagram showing the directivity patterns of FIGS. 7A to 7D superimposed on each other.
  • the directivity pattern 310D of the entire array antenna 310 of the antenna device 31 shown in FIG. 8 is a pattern in which the directivity patterns 310D(1) to 310D(4) of FIGS. 7A to 7D are superimposed on each other. Therefore, even if radio waves 900 from the power transmission device arrive with a certain degree of spread as shown in FIG. 9, the radio waves can be received efficiently. Also, even if radio waves 901 from the power transmission device arrive via multiple paths, the multiple radio waves 901 arriving via the multiple paths can be received efficiently.
  • FIG. 10 is an explanatory diagram showing an example of a two-dimensional array antenna 310' constituting multiple antenna units of an antenna device according to an embodiment.
  • FIG. 11 is an explanatory diagram of a portion of the two-dimensional array antenna 310' in FIG. 10.
  • FIG. 12 is an explanatory diagram of the arrangement of multiple antenna elements 311(1) constituting a first antenna unit in the two-dimensional array antenna 310' in FIG. 10.
  • the two-dimensional array antenna 310' is an array antenna in which a total of 256 antennas (e.g. patch antennas) are arranged, 16 antennas in the y direction and 16 antennas in the z direction in the figure, and as shown in FIG. 11, the element spacing dy0, dz0 between adjacent antennas in the y direction and z direction is 0.5 ⁇ , and 16 antenna units are configured.
  • the first, second, ..., 16th antenna units each have 16 antenna elements 311(1), 311(2), ..., 311(16) with element spacings d1, d2, ..., d16, respectively.
  • the first antenna unit has 16 antenna elements 311(1) with element spacing dy1 in the y direction and element spacing dz1 in the z direction.
  • the first, second, ..., sixteenth antenna units are arranged so that the antenna elements of the other antenna units are positioned between the multiple antennas of the antenna unit.
  • sixteen antenna units are arranged so that the antenna elements 311(2), 311(3), ..., 311(16) of the other second, third, ..., sixteenth antenna units are positioned between the multiple antenna elements 311(1) of the first antenna unit.
  • Figures 13A to 13P are explanatory diagrams showing examples of directional patterns 310D(1) to 310D(16) of the multiple antenna units in Figure 10.
  • Each of the three-dimensional directional patterns 310D(1) to 310D(16) formed by each antenna unit has multiple beams.
  • the connection circuit is configured so that the null part of the beam of the antenna unit is filled with the beam of the other antenna units.
  • the path length to each antenna unit in the connection circuit is made different so that the range of the null part of the directional pattern 310D(1) of the first antenna unit shown in Figure 13A is filled with the beams of the directional patterns 310D(2) to 310D(16) of the other second, third, ..., sixteenth antenna units shown in Figures 13B to 13P, thereby adjusting the phase of the power signal received by each antenna unit.
  • the directional patterns 310D(2) to 310D(16) of antenna units 310(2) to 310(16) in FIGS. 13B to 13P are tilted at a predetermined angle in the x-y plane and the angle ⁇ in the x-z plane, based on the directional pattern 310D(1) of antenna unit 310(1) in FIG. 13A.
  • FIG. 14 is an explanatory diagram showing the directivity patterns 310D(1) to 310D(16) of FIGS. 13A to 13P superimposed in three-dimensional space.
  • the three-dimensional directivity pattern 310D of the entire two-dimensional array antenna 310' of the antenna device 31 is a pattern in which the directivity patterns 310D(1) to 310D(16) of FIGS. 13A to 13P, which are offset from each other in angle, are superimposed. Therefore, even if the radio waves from the power transmission device arrive with a certain degree of spread in three-dimensional space, the radio waves can be efficiently received. Also, even if the radio waves from the power transmission device arrive via multiple paths in three-dimensional space, the multiple radio waves arriving via the multiple paths can be efficiently received.
  • FIG. 15 is an explanatory diagram showing an example of a connection circuit 312 for an antenna unit consisting of the array antenna 310 of FIG. 3.
  • the antenna device 31 includes an array antenna 310 having four antenna elements 311(1)-311(4) that constitute the antenna unit, and a connection circuit 312 that connects the array antenna 310 to a rectifier circuit 321.
  • the connection circuit 312 is configured using connection lines 313(1)-313(4) that are part of the connection path connected to the antenna elements 311(1)-311(4), respectively, and a composite connection circuit 314(1) that connects the connection lines 313(1)-313(4) to a single rectifier circuit 321 via a two-stage parallel circuit.
  • connection circuit 312 the path length L1 of the connection lines between each of the four antenna elements 311(1)-311(4) and the rectifier circuit 321 is the same when the beam direction is 0°, but when the beam direction is changed, the path length of the connection circuit 312 connected to each antenna element 311(1)-311(4) changes.
  • the power receiving device 30 includes an antenna device 31 consisting of the one-dimensional array antenna of FIG. 5 consisting of four antenna units, a rectifier circuit group 32 consisting of four rectifier circuits 321(1) to 321(4) connected to each of the four antenna units via a connection circuit 312 (see FIG. 15) consisting of multiple connection paths (connection lines), and a direct current (DC) combining circuit 33 that combines and outputs multiple DC powers output from the four rectifier circuits 321(1) to 321(4).
  • a connection circuit 312 consisting of multiple connection paths (connection lines) consisting of multiple connection paths (connection lines) consisting of multiple connection paths (connection lines)
  • DC direct current
  • connection circuit 312 has the path lengths of multiple connection paths (connection lines) connected to the antenna units 310(1) to 310(4) set so that the null part of the beam of the antenna unit is filled by the beam of another antenna unit.
  • antenna units 310(1) to 310(4) with different connection path (connection line) lengths are bundled and connected with connection lines of the same line length to form a broad beam overall.
  • the power receiving device 30 of FIG. 17 is an explanatory diagram showing an example of the configuration of a power receiving device 30 for wireless power transmission having the array antenna of FIG. 10.
  • the power receiving device 30 of FIG. 17 includes an antenna device 31 consisting of a two-dimensional array antenna (see FIG. 10) consisting of 16 antenna units, a rectifier circuit group 32 consisting of 16 rectifier circuits 321(1) to 321(16) connected to each of the 16 antenna units via a connection circuit 312 consisting of multiple connection paths (connection lines), and a direct current (DC) combining circuit 33 that combines and outputs the multiple DC powers output from the 16 rectifier circuits 321(1) to 321(16).
  • connection circuit 312 has the path lengths of the multiple connection paths (connection lines) connected to the antenna units 310(1) to 310(16) set so that the null portion of the beam of the antenna unit is filled by the beam of another antenna unit.
  • antenna units 310(1) to 310(16) with different connection path (connection line) lengths are bundled and connected with connection lines of the same line length to form a broad beam overall.
  • FIG. 18 is an explanatory diagram showing an example of the configuration of a receiving device 45 for communication having an antenna device 31 according to an embodiment.
  • FIG. 18 shows an example of the configuration of a receiving device 45 that performs analog signal processing. Note that the antenna device 31 of the receiving device 45 in FIG. 18 has the same configuration as the antenna device 31 in the power receiving device 30 in FIG. 16 described above, so a description thereof will be omitted.
  • the receiving device 45 includes an antenna device 31 consisting of a one-dimensional array antenna (see FIG. 5) made up of four antenna units, a phase adjustment circuit group 34 consisting of a plurality of phase adjustment circuits 341(1) to 341(4) connected to each of the four antenna units via a connection circuit 312 consisting of a plurality of connection paths (connection lines), and a combining circuit 35 that combines the multiple received signals output from the four phase adjustment circuits 341(1) to 341(4) in phase and outputs the combined signal.
  • an antenna device 31 consisting of a one-dimensional array antenna (see FIG. 5) made up of four antenna units
  • a phase adjustment circuit group 34 consisting of a plurality of phase adjustment circuits 341(1) to 341(4) connected to each of the four antenna units via a connection circuit 312 consisting of a plurality of connection paths (connection lines)
  • a combining circuit 35 that combines the multiple received signals output from the four phase adjustment circuits 341(1) to 341(4) in phase and outputs the combined signal.
  • FIG. 19 is an explanatory diagram showing another example of the configuration of a receiving device 46 for communication having an antenna device 31 according to an embodiment.
  • FIG. 19 shows an example of the configuration of a receiving device 46 that performs digital signal processing. Note that the antenna device 31 of the receiving device 46 in FIG. 19 has the same configuration as the antenna device 31 in the power receiving device 30 in FIG. 16 described above, so a description thereof will be omitted.
  • the receiving device 46 includes an antenna device 31 consisting of a one-dimensional array antenna (see FIG. 5) made up of four antenna units, an A/D converter group 37 consisting of a plurality of A/D converters 371(1) to 371(4) connected to each of the four antenna units via a connection circuit 312 consisting of a plurality of connection paths, and a digital synthesis circuit 38 that performs in-phase synthesis of the multiple received signals output from the four A/D converters 371(1) to 371(4) by digital processing and outputs the result.
  • an antenna device 31 consisting of a one-dimensional array antenna (see FIG. 5) made up of four antenna units
  • an A/D converter group 37 consisting of a plurality of A/D converters 371(1) to 371(4) connected to each of the four antenna units via a connection circuit 312 consisting of a plurality of connection paths
  • a digital synthesis circuit 38 that performs in-phase synthesis of the multiple received signals output from the four A/D converters 371(1) to 371(4) by digital processing
  • FIG. 20 is an explanatory diagram showing yet another example of the configuration of a receiving device 47 for communication having an antenna device 31 according to an embodiment.
  • FIG. 20 shows an example of the configuration of a receiving device 47 that performs MIMO signal processing.
  • the antenna device 31 of the receiving device 47 in FIG. 20 has the same configuration as the antenna device 31 in the power receiving device 30 in FIG. 16 described above, so a description thereof will be omitted.
  • the receiving device 47 includes an antenna device 31 consisting of a one-dimensional array antenna (see FIG. 5) made up of four antenna units, a receiver group 390 consisting of multiple receivers 391(1)-391(4) connected to each of the four antenna units via a connection circuit 312 consisting of multiple connection paths, and a MIMO signal processing unit 39 that performs MIMO signal processing on the multiple received signals output from the four receivers 391(1)-391(4).
  • an antenna device 31 consisting of a one-dimensional array antenna (see FIG. 5) made up of four antenna units, a receiver group 390 consisting of multiple receivers 391(1)-391(4) connected to each of the four antenna units via a connection circuit 312 consisting of multiple connection paths, and a MIMO signal processing unit 39 that performs MIMO signal processing on the multiple received signals output from the four receivers 391(1)-391(4).
  • the receiving devices 45, 46, and 47 shown in Figures 18, 19, and 20 are configuration examples in which the antenna device 31 is a one-dimensional array antenna made up of four antenna units, but instead of a one-dimensional array antenna, the antenna device 31 may be configured to include a two-dimensional array antenna (see Figure 10) made up of 16 antenna units, similar to the receiving device in Figure 17 described above.
  • FIG. 21 is an explanatory diagram showing another example of a system to which the antenna device 31 according to the embodiment can be applied.
  • the system in FIG. 21 has a cellular base station 25 that forms a communication area (cell) 25A, and a terminal device (hereinafter also referred to as "UE" (user equipment)) 40 to be powered that is connected to the base station 25 when present in the communication area 25A and can wirelessly communicate with the base station 25.
  • the base station 25 also functions as a transmitting device capable of wireless communication with the UE 40.
  • UE40 may be a mobile station of a mobile communication system, or may be a combination of a communication device (e.g., a mobile communication module) and various devices. UE40 is equipped with an antenna device having an array antenna similar to antenna device 31 having the above-mentioned configuration with multiple antenna elements. UE40 may be an IoT device (also called "IoT equipment").
  • the base station 25 is equipped with an antenna 251 having multiple array antennas with many antenna elements, and can communicate with multiple UEs 40 using a massive MIMO (hereinafter also referred to as "mMIMO") transmission method.
  • mMIMO is a wireless transmission technology that achieves large-capacity, high-speed communication by transmitting and receiving data using the antenna 251.
  • communication can be performed using a multi-user (MU)-MIMO transmission method that performs beamforming to form beams 25B for each of the multiple UEs 40 in a time-division or simultaneous manner.
  • MU multi-user
  • communication can be performed by directing an appropriate beam to each UE 20 according to the communication environment of each UE 40, thereby improving the communication quality of the entire cell.
  • communication with multiple UEs 40 can be performed using the same wireless resources (time and frequency resources), thereby expanding the system capacity.
  • a part of the communication area 25A is a wireless power transmission area (hereinafter referred to as a "WPT area") 25A' in which wireless power transmission is performed from the base station 25 to the terminal device 40.
  • the WPT area 25A' may be an area narrower than the communication area 25A as shown in the figure, or may be an area of the same or approximately the same size and location as the communication area 25A.
  • unused radio resources are used as wireless power transmission blocks.
  • the base station 25 generates a transmission signal in which a dummy signal for wireless power transmission (hereinafter also referred to as a "dummy signal for WPT") is assigned to the wireless power transmission block (WPT block), which is an unused radio resource, in the downlink radio frame to the UE 40, and transmits the signal to the UE 40.
  • a dummy signal for WPT a dummy signal for wireless power transmission
  • a technology called lean carrier has been proposed in which the minimum necessary reference signals (RS) and control signals are placed on only some of the subcarriers of a radio frame, and it is expected that the unused radio resources in the radio frame can be effectively utilized to transmit wireless power to UE 40.
  • RS minimum necessary reference signals
  • control signals are placed on only some of the subcarriers of a radio frame, and it is expected that the unused radio resources in the radio frame can be effectively utilized to transmit wireless power to UE 40.
  • the radio waves of the communication signals transmitted and received between the base station 25 and the UE 40 and the radio waves of the transmission signals assigned with the dummy signal for WPT transmitted from the base station 25 to the UE 40 are, for example, millimeter waves or microwaves.
  • FIG. 22 is a block diagram showing an example of the main configuration of a base station 25 and a terminal device (UE) 40 constituting the system of FIG. 21.
  • the base station 25 includes a base station device 250 and an antenna 251.
  • the antenna 251 is, for example, an array antenna having a large number of antenna elements as shown in FIG. 21. There may be a single antenna 251 or multiple antennas. For example, multiple antennas 251 may be arranged corresponding to multiple sector cells.
  • the base station device 250 includes a communication signal processing unit 260 and a radio processing unit 270.
  • the communication signal processing unit 260 processes signals such as various user data and control information transmitted and received between the UE 40.
  • the communication signal processing unit 260 generates a downlink transmission signal including a dummy signal for WPT using an unused radio resource that is not being used for communication among the multiple radio resources during downlink communication with the UE 40.
  • the wireless processing unit 270 transmits the transmission signal generated by the communication signal processing unit 260 from the antenna 251 to the UE 40, and outputs the received signal received from the UE 40 via the antenna 251 to the communication signal processing unit 260.
  • the radio processing unit 270 also controls one or more beams formed by the antenna 251 based on the BF control signal.
  • the radio processing unit 270 also transmits a downlink transmission signal including a dummy signal for WPT generated by the communication signal processing unit 260 to the UE 40 via the antenna 251.
  • UE 40 includes an antenna device 410, a radio processing unit 420, a communication signal processing unit 430, a power output unit 440, and a battery 450, which are configured similarly to the antenna device according to the embodiment described above.
  • Antenna device 410 has, for example, a small array antenna having multiple antenna elements.
  • Radio processing unit 420 transmits transmission signals such as feedback information and user data generated by communication signal processing unit 430 from antenna device 410 to base station 25, and outputs received signals received from base station 25 via antenna device 410 to communication signal processing unit 430.
  • the wireless processing unit 420 receives a transmission signal including a dummy signal for WPT transmitted from the base station 25.
  • the power output unit 440 has, for example, a rectifier circuit, and outputs the power of the received signal that receives the transmission signal including the dummy signal for WPT from the base station 25 as received power for charging the battery.
  • the battery 450 can be charged by the received power output from the power output unit 440.
  • FIG. 23 is an explanatory diagram showing yet another example of a system to which the antenna device 31 according to the embodiment can be applied.
  • the system of FIG. 23 can supply power to each of multiple UEs 40 from a base station 25 by beamforming.
  • Multiple UEs 40(1)-40(3) are present in a WPT area 25A' (see FIG. 21 above) within a communication area 25A, and power may be supplied to each of the UEs 40(1)-40(3) via beams 25B(1)-25B(3) formed for each UE.
  • the beams 25B(1)-25B(3) may be formed by switching between them in a time-division manner, for example.
  • the phase between the multiple antenna units constituting the antenna device is adjusted using multiple connection path lengths of the connection circuit that connects the multiple antenna units, so there is no need for a phase control device that controls the phase between the antenna units, and the configuration of the antenna device can be simplified.
  • the multiple connection path lengths (phase adjustment amounts) set for each of the multiple antenna units may be determined using machine learning.
  • the programs used in the antenna device, power receiving device, and receiving device of this embodiment may include a machine-learned model.
  • the present invention can improve the efficiency of wireless power transmission (WPT) to power receiving devices such as IoT devices, thereby contributing to the achievement of Goal 9 of the Sustainable Development Goals (SDGs), which is to "build resilient infrastructure, promote inclusive and sustainable industrialization and promote innovation.”
  • WPT wireless power transmission
  • IoT devices such as IoT devices
  • SDGs Sustainable Development Goals
  • processing steps described in this specification and the components of the antenna device, power receiving device, receiver device, terminal device, wireless power transmission system, and communication system can be implemented by various means.
  • these steps and components may be implemented by hardware, firmware, software, or a combination thereof.
  • the processing units and other means used to realize the above steps and components in an entity may be implemented in one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processors (DSPDs), programmable logic devices (PLDs), field programmable gate arrays (FPGAs), processors, controllers, microcontrollers, microprocessors, electronic devices, other electronic units designed to perform the functions described herein, computers, or combinations thereof.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processors
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • processors controllers, microcontrollers, microprocessors, electronic devices, other electronic units designed to perform the functions described herein, computers, or combinations thereof.
  • the means such as processing units used to realize the above components may be implemented with programs (e.g., code such as procedures, functions, modules, instructions, etc.) that perform the functions described herein.
  • programs e.g., code such as procedures, functions, modules, instructions, etc.
  • any computer/processor readable medium tangibly embodying firmware and/or software code may be used to implement the means such as processing units used to realize the above steps and components described herein.
  • the firmware and/or software code may be stored in a memory and executed by a computer or processor, for example in a control device.
  • the memory may be implemented inside the computer or processor or external to the processor.
  • the firmware and/or software code may also be stored in a computer or processor readable medium, such as, for example, random access memory (RAM), read only memory (ROM), non-volatile random access memory (NVRAM), programmable read only memory (PROM), electrically erasable programmable read only memory (EEPROM), flash memory, floppy disk, compact disk (CD), digital versatile disk (DVD), magnetic or optical data storage device, etc.
  • RAM random access memory
  • ROM read only memory
  • NVRAM non-volatile random access memory
  • PROM programmable read only memory
  • EEPROM electrically erasable programmable read only memory
  • flash memory floppy disk, compact disk (CD), digital versatile disk (DVD), magnetic or optical data storage device, etc.
  • CD compact disk
  • DVD digital versatile disk
  • magnetic or optical data storage device etc.
  • the code may be executed by one or more computers or processors and may cause the computers or processors to perform certain aspects of the functionality described herein.
  • the medium may also be a non-transitory recording medium.
  • the program code may be in any format as long as it can be read and executed by a computer, processor, or other device or machine, and the format is not limited to a specific format.
  • the program code may be any of source code, object code, and binary code, or may be a mixture of two or more of these codes.
  • Wireless power transmission system 20 Power transmitting device 21: Antenna device 30: Power receiving device 31: Antenna device 32: Rectifier circuit group 33: DC combining circuit 34: Phase adjustment circuit group 35: Combiner circuit 37: A/D converter group 38: Digital combining circuit 39: MIMO signal processing unit 40: Terminal device 45: Receiving device 46: Receiving device 47: Receiving device 310: Array antenna (one-dimensional array antenna) 310(1) to 310(16): Antenna unit 310': Two-dimensional array antenna 310B: Beam 310D: Directivity pattern 311: Antenna element 312: Connection circuit 313: Connection line 314: Combiner connection circuit 321: Rectifier circuit 341: Phase adjustment circuit 371: A/D converter 390: Receiver group 391: Receiver

Abstract

Provided is an antenna device with which a high antenna gain and a broad directional angle range can be realized. The antenna device comprises: a plurality of antenna units, each having disposed therein a plurality of antenna elements at intervals of at least 0.5 times the wavelength of a radio wave to be received; and a connection circuit having a plurality of connection paths that are connected at different path lengths to the plurality of antenna units so that the angular directions of directional beams of the plurality of antenna units are different from each other. The plurality of antenna elements may be disposed at intervals of at least one time the wavelength of the radio wave to be received so that the antenna units have a plurality of directional beams. The path lengths of the plurality of connection paths may be set so that the angular directions of the plurality of directional beams are different between the plurality of antenna units.

Description

アンテナ装置、受電装置、受信装置、端末装置、無線電力伝送システム及び通信システムAntenna device, power receiving device, receiving device, terminal device, wireless power transmission system, and communication system
 本発明は、無線電力伝送、通信等における電波の受信に用いることができるアンテナ装置、並びに、アンテナ装置を備えた受電装置、受信装置、端末装置、無線電力伝送システム及び通信システムに関するものである。 The present invention relates to an antenna device that can be used to receive radio waves in wireless power transmission, communications, etc., as well as a power receiving device, a receiving device, a terminal device, a wireless power transmission system, and a communications system that are equipped with the antenna device.
 従来、この種のアンテナ装置として、複数のアンテナ素子で構成されたアレイアンテナを備えたアンテナ装置が知られている。例えば、特許文献1には、パッチアンテナなどのアンテナ素子が複数個並んだ無線電力送受信用アレイアンテナが開示されている。 Conventionally, as this type of antenna device, an antenna device equipped with an array antenna composed of multiple antenna elements is known. For example, Patent Document 1 discloses an array antenna for wireless power transmission and reception in which multiple antenna elements such as patch antennas are arranged.
特開2016-213927号公報JP 2016-213927 A
 上記無線電力伝送や通信において電波を受信可能なアンテナ装置において、高いアンテナゲインと広い指向性角度範囲を両立したい、という課題がある。 In antenna devices capable of receiving radio waves in the above-mentioned wireless power transmission and communications, there is a need to achieve both high antenna gain and a wide directivity angle range.
 本発明の一態様に係るアンテナ装置は、受信対象の電波の波長の0.5倍以上の間隔で複数のアンテナ素子がそれぞれ配置された複数のアンテナユニットと、前記複数のアンテナユニットの指向性ビームの角度方向が互いに異なるように、前記複数のアンテナユニットのそれぞれに互いに異なる経路長で接続された複数の接続経路を有する接続回路と、を備える。 An antenna device according to one aspect of the present invention comprises a plurality of antenna units, each of which has a plurality of antenna elements arranged at intervals of at least 0.5 times the wavelength of the radio waves to be received, and a connection circuit having a plurality of connection paths connected to each of the plurality of antenna units with different path lengths such that the angular directions of the directional beams of the plurality of antenna units are different from one another.
 前記アンテナ装置において、前記アンテナユニットが複数の指向性ビームを有するように前記複数のアンテナ素子は受信対象の電波の波長の1倍以上の間隔で配置され、前記複数の接続経路の経路長は、前記複数のアンテナユニットの間で前記複数の指向性ビームの角度方向が互いに異なるように設定されていてもよい。 In the antenna device, the antenna elements may be arranged at intervals of at least one wavelength of the radio waves to be received so that the antenna unit has multiple directional beams, and the path lengths of the multiple connection paths may be set so that the angular directions of the multiple directional beams differ from one another between the multiple antenna units.
 前記アンテナ装置において、前記アンテナユニットの複数のアンテナ素子の間に当該アンテナユニット以外の他のアンテナユニットのアンテナ素子が位置するように、前記複数のアンテナユニットが配置されていてもよい。 In the antenna device, the multiple antenna units may be arranged such that antenna elements of an antenna unit other than the antenna unit are positioned between the multiple antenna elements of the antenna unit.
 前記アンテナ装置において、前記複数のアンテナユニットにおける前記複数のアンテナ素子は1次元配置又は2次元配置されていてもよい。 In the antenna device, the antenna elements in the antenna units may be arranged one-dimensionally or two-dimensionally.
 前記アンテナ装置において、前記受信対象の電波はミリ波であってもよい。 In the antenna device, the radio waves to be received may be millimeter waves.
 本発明の他の態様に係る無線電力伝送に用いられる受電装置は、前記いずれかのアンテナ装置と、前記複数のアンテナユニットのそれぞれに前記複数の接続経路からなる接続回路を介して接続された複数の整流回路と、前記複数の整流回路から出力された複数の直流電力を合成して出力する直流合成回路と、を備える。  A power receiving device used for wireless power transmission according to another aspect of the present invention includes any one of the antenna devices, a plurality of rectifier circuits connected to each of the plurality of antenna units via a connection circuit consisting of the plurality of connection paths, and a DC combining circuit that combines and outputs the plurality of DC powers output from the plurality of rectifier circuits.
 本発明の更に他の態様に係る無線電力伝送システムは、前記受電装置と、前記受電装置に向けて無線電力伝送の電波を送信する送電装置と、を備える。 A wireless power transmission system according to yet another aspect of the present invention includes the power receiving device and a power transmitting device that transmits radio waves for wireless power transmission to the power receiving device.
 本発明の更に他の態様に係る通信に用いられる受信装置は、前記いずれかのアンテナ装置と、前記複数のアンテナユニットのそれぞれに前記複数の接続経路からなる接続回路を介して接続された複数の位相調整回路と、前記複数の位相調整回路から出力された複数の受信信号を同相で合成して出力する合成回路と、を備える。  A receiving device used for communication according to yet another aspect of the present invention includes any one of the antenna devices, a plurality of phase adjustment circuits connected to each of the plurality of antenna units via a connection circuit consisting of the plurality of connection paths, and a combining circuit that combines in phase the plurality of received signals output from the plurality of phase adjustment circuits and outputs the combined signal.
 本発明の更に他の態様に係る通信に用いられる受信装置は、前記いずれかのアンテナ装置と、前記複数のアンテナユニットのそれぞれに前記複数の接続経路からなる接続回路を介して接続された複数のA/D変換器と、前記複数のA/D変換器から出力された複数の受信信号をデジタル処理で同相合成して出力する合成回路と、を備える。  A receiving device used for communication according to yet another aspect of the present invention includes any one of the antenna devices, a plurality of A/D converters connected to each of the plurality of antenna units via a connection circuit consisting of the plurality of connection paths, and a combining circuit that performs in-phase combining of the plurality of received signals output from the plurality of A/D converters by digital processing and outputs the combined signals.
 本発明の更に他の態様に係る通信に用いられる受信装置は、前記いずれかのアンテナ装置と、前記複数のアンテナユニットのそれぞれに前記複数の接続経路からなる接続回路を介して接続された複数の受信機と、前記複数の受信機から出力された複数の受信信号に対してMIMO信号処理を行う信号処理部と、を備える。  A receiving device used for communication according to yet another aspect of the present invention includes any one of the antenna devices, a plurality of receivers connected to each of the plurality of antenna units via a connection circuit consisting of the plurality of connection paths, and a signal processing unit that performs MIMO signal processing on the plurality of received signals output from the plurality of receivers.
 本発明の更に他の態様に係る通信に用いられる受信装置は、前記いずれかのアンテナ装置を有する受信装置と、前記受信装置との間で無線通信を行う送信装置と、を備える。  A receiving device used for communication according to yet another aspect of the present invention includes a receiving device having any of the antenna devices described above, and a transmitting device that performs wireless communication with the receiving device.
 本発明の更に他の態様に係る端末装置は、前記いずれかのアンテナ装置を有する受電装置又は受信装置を備える。  A terminal device according to yet another aspect of the present invention includes a power receiving device or a receiving device having any of the antenna devices described above.
 前記端末装置は、インターネットに接続可能なIoTであってもよい。 The terminal device may be an IoT device that can be connected to the Internet.
 本発明によれば、高いアンテナゲインと広い指向性角度範囲の両立を図ることができる。 The present invention makes it possible to achieve both high antenna gain and a wide directional angle range.
図1は、実施形態に係るアンテナ装置を適用可能な無線電力伝送システムの一例を示す説明図である。FIG. 1 is an explanatory diagram illustrating an example of a wireless power transmission system to which an antenna device according to an embodiment can be applied. 図2は、参考例に係るアンテナ素子単体の指向性パターンの一例を示す説明図である。FIG. 2 is an explanatory diagram showing an example of a directivity pattern of a single antenna element according to a reference example. 図3は、実施形態に係る複数のアンテナ素子を有するアレイアンテナの斜視図である。FIG. 3 is a perspective view of an array antenna having a plurality of antenna elements according to an embodiment of the present invention. 図4Aは、図3のアレイアンテナにおいて素子間隔が0.5λの場合の指向性パターンの一例を示す説明図である。FIG. 4A is an explanatory diagram showing an example of a directivity pattern when the element spacing in the array antenna of FIG. 3 is 0.5λ. 図4Bは、図3のアレイアンテナにおいて素子間隔が2λの場合の指向性パターンの一例を示す説明図である。FIG. 4B is an explanatory diagram showing an example of a directivity pattern when the element spacing in the array antenna of FIG. 3 is 2λ. 図4Cは、図3のアレイアンテナにおいて素子間隔が4λの場合の指向性パターンの一例を示す説明図である。FIG. 4C is an explanatory diagram showing an example of a directivity pattern when the element spacing in the array antenna of FIG. 3 is 4λ. 図4Dは、図3のアレイアンテナにおいて素子間隔が8λの場合の指向性パターンの一例を示す説明図である。FIG. 4D is an explanatory diagram showing an example of a directivity pattern when the element spacing in the array antenna of FIG. 3 is 8λ. 図5は、実施形態に係るアンテナ装置の複数のアンテナユニットを含む1次元アレイアンテナの一例を示す説明図である。FIG. 5 is an explanatory diagram illustrating an example of a one-dimensional array antenna including a plurality of antenna units of the antenna device according to the embodiment. 図6Aは、複数のアンテナユニットそれぞれの素子配列の説明図である。FIG. 6A is an explanatory diagram of the element arrangement of each of a plurality of antenna units. 図6Bは、複数のアンテナユニットそれぞれの素子配列の説明図である。FIG. 6B is an explanatory diagram of the element arrangement of each of the multiple antenna units. 図6Cは、複数のアンテナユニットそれぞれの素子配列の説明図である。FIG. 6C is an explanatory diagram of the element arrangement of each of the multiple antenna units. 図6Dは、複数のアンテナユニットそれぞれの素子配列の説明図である。FIG. 6D is an explanatory diagram of the element arrangement of each of the multiple antenna units. 図7Aは、図5の複数のアンテナユニットの指向性パターンの一例を示す説明図である。FIG. 7A is an explanatory diagram showing an example of a directivity pattern of the multiple antenna units of FIG. 図7Bは、図5の複数のアンテナユニットの指向性パターンの一例を示す説明図である。FIG. 7B is an explanatory diagram showing an example of a directivity pattern of the multiple antenna units of FIG. 図7Cは、図5の複数のアンテナユニットの指向性パターンの一例を示す説明図である。FIG. 7C is an explanatory diagram showing an example of a directivity pattern of the multiple antenna units of FIG. 図7Dは、図5の複数のアンテナユニットの指向性パターンの一例を示す説明図である。FIG. 7D is an explanatory diagram showing an example of a directivity pattern of the multiple antenna units of FIG. 図8は、図7A~図7Dの指向性パターンを重ね合わせて表示した説明図である。FIG. 8 is an explanatory diagram showing the directivity patterns of FIGS. 7A to 7D superimposed on each other. 図9は、図8の指向性パターンの効果の説明図である。FIG. 9 is an explanatory diagram of the effect of the directivity pattern of FIG. 図10は、実施形態に係るアンテナ装置の複数のアンテナユニットを構成する2次元アレイアンテナの一例を示す説明図である。FIG. 10 is an explanatory diagram showing an example of a two-dimensional array antenna constituting a plurality of antenna units of the antenna device according to the embodiment. 図11は、図10の2次元アレイアンテナの一部の説明図である。FIG. 11 is an explanatory diagram of a part of the two-dimensional array antenna of FIG. 図12は、図10の2次元アレイアンテナにおける第1アンテナユニットを構成する複数のアンテナ素子の配列の説明図である。FIG. 12 is an explanatory diagram of an arrangement of a plurality of antenna elements constituting the first antenna unit in the two-dimensional array antenna of FIG. 図13Aは、図10の2次元アレイアンテナにおける第1アンテナユニットの3次元指向性パターンの一例を示す説明図である。13A is an explanatory diagram showing an example of a three-dimensional directivity pattern of a first antenna unit in the two-dimensional array antenna of FIG. 10. FIG. 図13Bは、図10の2次元アレイアンテナにおける第2アンテナユニットの3次元指向性パターンの一例を示す説明図である。13B is an explanatory diagram showing an example of a three-dimensional directivity pattern of the second antenna unit in the two-dimensional array antenna of FIG. 10. FIG. 図13Cは、図10の2次元アレイアンテナにおける第3アンテナユニットの3次元指向性パターンの一例を示す説明図である。13C is an explanatory diagram showing an example of a three-dimensional directivity pattern of the third antenna unit in the two-dimensional array antenna of FIG. 10. FIG. 図13Dは、図10の2次元アレイアンテナにおける第4アンテナユニットの3次元指向性パターンの一例を示す説明図である。13D is an explanatory diagram showing an example of a three-dimensional directivity pattern of the fourth antenna unit in the two-dimensional array antenna of FIG. 10. FIG. 図13Eは、図10の2次元アレイアンテナにおける第5アンテナユニットの3次元指向性パターンの一例を示す説明図である。13E is an explanatory diagram showing an example of a three-dimensional directivity pattern of the fifth antenna unit in the two-dimensional array antenna of FIG. 10. FIG. 図13Fは、図10の2次元アレイアンテナにおける第6アンテナユニットの3次元指向性パターンの一例を示す説明図である。13F is an explanatory diagram showing an example of a three-dimensional directivity pattern of the sixth antenna unit in the two-dimensional array antenna of FIG. 10. FIG. 図13Gは、図10の2次元アレイアンテナにおける第7アンテナユニットの3次元指向性パターンの一例を示す説明図である。13G is an explanatory diagram showing an example of a three-dimensional directivity pattern of the seventh antenna unit in the two-dimensional array antenna of FIG. 10. FIG. 図13Hは、図10の2次元アレイアンテナにおける第8アンテナユニットの3次元指向性パターンの一例を示す説明図である。13H is an explanatory diagram showing an example of a three-dimensional directivity pattern of the eighth antenna unit in the two-dimensional array antenna of FIG. 10. 図13Iは、図10の2次元アレイアンテナにおける第9アンテナユニットの3次元指向性パターンの一例を示す説明図である。13I is an explanatory diagram showing an example of a three-dimensional directivity pattern of the ninth antenna unit in the two-dimensional array antenna of FIG. 10. 図13Jは、図10の2次元アレイアンテナにおける第10アンテナユニットの3次元指向性パターンの一例を示す説明図である。13J is an explanatory diagram showing an example of a three-dimensional directivity pattern of the tenth antenna unit in the two-dimensional array antenna of FIG. 10. 図13Kは、図10の2次元アレイアンテナにおける第11アンテナユニットの3次元指向性パターンの一例を示す説明図である。13K is an explanatory diagram showing an example of a three-dimensional directivity pattern of the 11th antenna unit in the two-dimensional array antenna of FIG. 10. 図13Lは、図10の2次元アレイアンテナにおける第12アンテナユニットの3次元指向性パターンの一例を示す説明図である。13L is an explanatory diagram showing an example of a three-dimensional directivity pattern of the twelfth antenna unit in the two-dimensional array antenna of FIG. 10. FIG. 図13Mは、図10の2次元アレイアンテナにおける第13アンテナユニットの3次元指向性パターンの一例を示す説明図である。13M is an explanatory diagram showing an example of a three-dimensional directivity pattern of the 13th antenna unit in the two-dimensional array antenna of FIG. 10. 図13Nは、図10の2次元アレイアンテナにおける第14アンテナユニットの3次元指向性パターンの一例を示す説明図である。13N is an explanatory diagram showing an example of a three-dimensional directivity pattern of the fourteenth antenna unit in the two-dimensional array antenna of FIG. 10. 図13Oは、図10の2次元アレイアンテナにおける第15アンテナユニットの3次元指向性パターンの一例を示す説明図である。13O is an explanatory diagram showing an example of a three-dimensional directivity pattern of the fifteenth antenna unit in the two-dimensional array antenna of FIG. 10. 図13Pは、図10の2次元アレイアンテナにおける第16アンテナユニットの3次元指向性パターンの一例を示す説明図である。13P is an explanatory diagram showing an example of a three-dimensional directivity pattern of the sixteenth antenna unit in the two-dimensional array antenna of FIG. 10. 図14は、図13A~図13Pの3次元指向性パターンを重ね合わせて表示した説明図である。FIG. 14 is an explanatory diagram showing the three-dimensional directivity patterns of FIGS. 13A to 13P superimposed on each other. 図15は、図3のアレイアンテナからなるアンテナユニットに対する接続回路の一例を示す説明図である。FIG. 15 is an explanatory diagram showing an example of a connection circuit for an antenna unit consisting of the array antenna of FIG. 図16は、図5のアレイアンテナを有する無線電力伝送用の受電装置の構成の一例を示す説明図である。FIG. 16 is an explanatory diagram showing an example of the configuration of a power receiving device for wireless power transmission having the array antenna of FIG. 5. 図17は、図10のアレイアンテナを有する無線電力伝送用の受電装置の構成の一例を示す説明図である。FIG. 17 is an explanatory diagram showing an example of the configuration of a power receiving device for wireless power transmission having the array antenna of FIG. 図18は、実施形態に係るアンテナ装置を有する通信用の受信装置の構成の一例を示す説明図である。FIG. 18 is an explanatory diagram illustrating an example of the configuration of a communication receiving device having an antenna device according to the embodiment. 図19は、実施形態に係るアンテナ装置を有する通信用の受信装置の構成の他の例を示す説明図である。FIG. 19 is an explanatory diagram showing another example of the configuration of a receiving device for communication having the antenna device according to the embodiment. 図20は、実施形態に係るアンテナ装置を有する通信用の受信装置の構成の更に他の例を示す説明図である。FIG. 20 is an explanatory diagram showing yet another example of the configuration of a receiving device for communication having an antenna device according to the embodiment. 図21は、実施形態に係るアンテナ装置を適用可能なシステムの他の例を示す説明図である。FIG. 21 is an explanatory diagram illustrating another example of a system to which the antenna device according to the embodiment can be applied. 図22は、図21のシステムを構成する基地局及び端末装置の構成の一例を示すブロック図である。FIG. 22 is a block diagram showing an example of the configuration of a base station and a terminal device constituting the system of FIG. 21. In FIG. 図23は、実施形態に係るアンテナ装置を適用可能なシステムの更に他の例を示す説明図である。FIG. 23 is an explanatory diagram illustrating yet another example of a system to which the antenna device according to the embodiment can be applied.
 以下、図面を参照して本発明の実施形態について説明する。
 本書に記載された実施形態に係るアンテナ装置は、所定間隔(例えば、受信対象の電波の波長の0.5倍以上又は1倍以上の間隔)で複数のアンテナ素子がそれぞれ配置されたアンテナユニットを複数備え、その複数のアンテナユニットの指向性ビームの角度方向が互いに異なるように複数のアンテナユニットに接続される複数の接続経路の経路長を設定することにより、高いアンテナゲインと広い指向性角度範囲(広角の指向性)の両立を図ることができる簡易な構成のアンテナ装置である。特に、実施形態に係るアンテナ装置は、ミリ波の電波を用いる無線電力伝送(WPT)システムの受電装置(「受電レクテナ装置」ともいう。)のアンテナ装置に適する。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
The antenna device according to the embodiment described in this specification is an antenna device with a simple configuration that includes a plurality of antenna units, each of which has a plurality of antenna elements arranged at a predetermined interval (e.g., an interval of 0.5 or more times the wavelength of the radio wave to be received), and that can achieve both a high antenna gain and a wide directional angle range (wide-angle directivity) by setting the path lengths of a plurality of connection paths connected to the plurality of antenna units so that the angular directions of the directional beams of the plurality of antenna units are different from each other. In particular, the antenna device according to the embodiment is suitable for an antenna device of a power receiving device (also called a "power receiving rectenna device") of a wireless power transmission (WPT) system that uses millimeter-wave radio waves.
 図1は、本実施形態に係るアンテナ装置を適用可能な無線電力伝送システムの一例を示す説明図である。本実施形態の無線電力伝送システム10は、送電信号の電波を送信する送電装置20と、送電装置20から送信された電波を受信して直流の電力を出力する受電装置(直流電力)30とを備える。無線電力伝送の電波は例えばマイクロ波又はミリ波である。 FIG. 1 is an explanatory diagram showing an example of a wireless power transmission system to which the antenna device according to this embodiment can be applied. The wireless power transmission system 10 of this embodiment includes a power transmission device 20 that transmits radio waves of a power transmission signal, and a power receiving device (DC power) 30 that receives the radio waves transmitted from the power transmission device 20 and outputs DC power. The radio waves for wireless power transmission are, for example, microwaves or millimeter waves.
 送電装置20は、複数のアンテナ素子が2次元配列したアレイアンテナからなるアンテナ装置21を有する。送電装置20のアレイアンテナは複数のアンテナが1次元又は3次元に配置されたものであってもよい。 The power transmission device 20 has an antenna device 21 consisting of an array antenna in which multiple antenna elements are arranged two-dimensionally. The array antenna of the power transmission device 20 may be an array in which multiple antennas are arranged one-dimensionally or three-dimensionally.
 受電装置30は、複数のアンテナ素子311が2次元配列したアレイアンテナからなるアンテナ装置31を有する。アンテナ素子311は例えばパッチアンテナである。受電装置30のアレイアンテナは複数のアンテナが1次元又は3次元配置されたものであってもよい。また、受電装置30は、アンテナ装置31の複数のアンテナ素子311に対応するように設けられた複数の整流回路(整流器)からなる整流回路群32と、整流回路群32の複数の整流回路の出力を合成して直流電力を出力する直流合成回路33とを備える。 The power receiving device 30 has an antenna device 31 consisting of an array antenna in which multiple antenna elements 311 are arranged two-dimensionally. The antenna element 311 is, for example, a patch antenna. The array antenna of the power receiving device 30 may be one in which multiple antennas are arranged one-dimensionally or three-dimensionally. The power receiving device 30 also has a rectifier circuit group 32 consisting of multiple rectifier circuits (rectifiers) arranged to correspond to the multiple antenna elements 311 of the antenna device 31, and a DC combining circuit 33 that combines the outputs of the multiple rectifier circuits of the rectifier circuit group 32 to output DC power.
 上記構成の無線電力伝送システム10において、送電装置20は例えば移動通信システムの基地局が兼用され、電力を受ける受電装置30が搭載される端末装置はインターネットなどの通信網に接続可能な各種センサデバイス等のIoTデバイスであってもよい。このようなIoTデバイス向けの無線電力伝送(WPT)に用いる電波として、干渉回避のための細いビーム(「ペンシルビーム」とも呼ばれる。)の形成が容易なミリ波(30GHz帯から300GHz帯の電波)が検討されている。このミリ波を用いた無線電力伝送(WPT)では、送電距離の延伸と整流回路で高いRF-DC変換効率を得るために整流回路への入力電力を高くする必要がある。そのため、受電装置のアンテナ装置として高い利得のアンテナ装置が必要である。アンテナ装置の高利得化として、アンテナ装置で形成される指向性のメインビームのビーム幅を狭くする狭ビーム化及び大開口化が考えられる。しかし、狭ビームを用いる場合、受電装置側のアンテナ装置のビームを送電装置に向けるビーム制御を行う必要があるが、端末装置側で電力を要するビーム制御を行うのは非現実的である。無指向性のアンテナを用いればビーム制御を行うことなく送電装置からの電波を受けることができるが、無指向性のアンテナでは高利得化が難しい。また、大開口のアンテナを用いるとIoTデバイス等の端末装置のサイズが大きくなってしまう。 In the wireless power transmission system 10 having the above configuration, the power transmitting device 20 may be used as a base station of a mobile communication system, for example, and the terminal device on which the power receiving device 30 that receives power is mounted may be an IoT device such as various sensor devices that can be connected to a communication network such as the Internet. As a radio wave used for wireless power transmission (WPT) for such IoT devices, millimeter waves (radio waves in the 30 GHz to 300 GHz bands) that can easily form a thin beam (also called a "pencil beam") to avoid interference are being considered. In wireless power transmission (WPT) using this millimeter wave, it is necessary to increase the input power to the rectifier circuit in order to extend the transmission distance and obtain high RF-DC conversion efficiency in the rectifier circuit. For this reason, an antenna device with high gain is required as the antenna device for the power receiving device. To increase the gain of the antenna device, it is possible to narrow the beam width of the directional main beam formed by the antenna device and to make the aperture large. However, when a narrow beam is used, it is necessary to perform beam control to direct the beam of the antenna device on the power receiving device side toward the power transmitting device, but it is unrealistic to perform beam control that requires power on the terminal device side. If an omnidirectional antenna is used, radio waves from a power transmission device can be received without beam control, but it is difficult to achieve high gain with an omnidirectional antenna. Also, using an antenna with a large aperture increases the size of terminal equipment such as IoT devices.
 そこで、本実施形態では、以下に示すように所定間隔(例えば、受信対象の電波の波長の0.5倍以上又は1倍以上の間隔)で複数のアンテナ素子がそれぞれ配置されたアンテナユニットを複数備え、その複数のアンテナユニットの指向性ビームの角度方向が互いに異なるように複数のアンテナユニットに接続される複数の接続経路の経路長を設定することにより、簡易な構成で高いアンテナゲインと広い指向性角度範囲の両立を図っている。 In this embodiment, multiple antenna units are provided, each with multiple antenna elements arranged at a predetermined interval (for example, at intervals of 0.5 or more times the wavelength of the radio waves to be received), as shown below, and the path lengths of multiple connection paths connected to the multiple antenna units are set so that the angular directions of the directional beams of the multiple antenna units are different from each other, thereby achieving both high antenna gain and a wide directional angle range with a simple configuration.
 図2は、参考例に係るアンテナ素子単体の指向性パターン310Dの一例を示す説明図である。パッチアンテナなどのアンテナ素子の単体では、図2に例示するように、指向性パターン310Dの水平方向のピーク電力の半値(-3dB)の点の全幅である水平ビーム幅(θ)及び垂直方向のピーク電力の半値(-3dB)の点の全幅である垂直ビーム幅(φ)はいずれも65°と広くなっているが、指向性パターン310Dのピークの利得G(8.6dBi)が低い。 Figure 2 is an explanatory diagram showing an example of a directivity pattern 310D of a single antenna element according to a reference example. As shown in Figure 2, for a single antenna element such as a patch antenna, the horizontal beam width (θ), which is the full width at half the horizontal peak power (-3 dB) point of the directivity pattern 310D, and the vertical beam width (φ), which is the full width at half the vertical peak power (-3 dB) point, are both wide at 65°, but the peak gain G (8.6 dBi) of the directivity pattern 310D is low.
 図3は、実施形態に係る複数のアンテナ素子311(1)~311(4)を有するアレイアンテナ310の斜視図である。図3の例は、4つのアンテナ素子311(1)~311(4)が所定の間隔dで1次元配列された4素子のリニアアレイアンテナの例である。 FIG. 3 is a perspective view of an array antenna 310 having multiple antenna elements 311(1)-311(4) according to an embodiment. The example in FIG. 3 is an example of a four-element linear array antenna in which four antenna elements 311(1)-311(4) are arranged one-dimensionally at a predetermined interval d.
 図4A~図4Dはそれぞれ、図3のアレイアンテナ310において素子間隔が0.5λ、2λ、4λ及び8λの場合の指向性パターンの一例を示す説明図である。ここで、「λ」は受信対象電波の波長である。図4Aの素子間隔が0.5λの場合、指向性パターン310Dの指向性ビーム(以下「ビーム」ともいう。)の数は一つであり、そのビーム幅が単一素子の場合よりも狭いが、利得Gは単一素子の場合よりも高い12.9dBiである。素子間隔が2λ、4λ、8λと広くなってくると、図4B~図4Dに示すように、指向性パターン310Dのビームが分かれて3個、7個、15個のビームが形成され、しかもピークの利得Gは14.6dbi~14.7dBiと高い。 FIGS. 4A to 4D are explanatory diagrams showing examples of directivity patterns when the element spacing of the array antenna 310 in FIG. 3 is 0.5λ, 2λ, 4λ, and 8λ, respectively. Here, "λ" is the wavelength of the radio waves to be received. When the element spacing in FIG. 4A is 0.5λ, the number of directional beams (hereinafter also referred to as "beams") of the directivity pattern 310D is one, and the beam width is narrower than that of a single element, but the gain G is 12.9 dBi, which is higher than that of a single element. When the element spacing becomes wider to 2λ, 4λ, and 8λ, the beam of the directivity pattern 310D splits into 3, 7, and 15 beams as shown in FIG. 4B to 4D, and the peak gain G is high at 14.6 dbi to 14.7 dBi.
 本実施形態のアンテナ装置31の一構成例では、例えば、図3の4つのアンテナ素子311(1)~311(4)を有するアレイアンテナ310を1単位としたアンテナユニットを複数備えるように構成する。そして、その複数のアンテナユニットに接続する複数の接続経路を有する接続回路を、指向性ビームの角度方向が互いに異なるように、複数のアンテナユニットのそれぞれに互いに異なる経路長で接続されるように構成する。 In one example configuration of the antenna device 31 of this embodiment, for example, the antenna device is configured to have multiple antenna units, each of which is an array antenna 310 having four antenna elements 311(1) to 311(4) as shown in FIG. 3. A connection circuit having multiple connection paths connected to the multiple antenna units is configured to be connected to each of the multiple antenna units with different path lengths so that the angular directions of the directional beams are different from one another.
 例えば、図4Aの素子間隔が0.5λの4素子のアレイアンテナからなるアンテナユニットを4ユニット備える場合、各アンテナユニットの指向性パターン310Dのビームの方向が所定角度(例えば30°)ずつずれるように、複数のアンテナユニットに接続する複数の接続経路を有する接続回路を、指向性ビームの角度方向が互いに異なるよう、複数のアンテナユニットのそれぞれに互いに異なる経路長で接続されるように接続回路を構成する。 For example, in the case of four antenna units each consisting of a four-element array antenna with an element spacing of 0.5λ as shown in FIG. 4A, the connection circuit is configured to have multiple connection paths that connect to the multiple antenna units so that the beam direction of the directional pattern 310D of each antenna unit is shifted by a predetermined angle (e.g., 30°), and the connection circuit is configured so that the multiple antenna units are connected to each other with different path lengths so that the angular directions of the directional beams are different from each other.
 また、例えば、図4B、図4C又は図4Dの素子間隔が波長λの1倍以上である2λ、4λ又は8λの4素子のアレイアンテナからなるアンテナユニットを4ユニット備える場合、その4つのアンテナユニットの間で複数のビームの角度方向が互いに異なるよう、複数のアンテナユニットのそれぞれに互いに異なる経路長の接続経路で接続されるように接続回路を構成する。この場合、アンテナユニットのビームのヌル部分を当該アンテナユニット以外の他のアンテナユニットのビームが埋めるように接続回路を構成してもよい。 Also, for example, when four antenna units are provided, each consisting of a four-element array antenna with an element spacing of 2λ, 4λ, or 8λ, which is equal to or greater than one time the wavelength λ, as shown in FIG. 4B, FIG. 4C, or FIG. 4D, the connection circuit is configured to connect each of the multiple antenna units with connection paths of different path lengths so that the angular directions of the multiple beams differ among the four antenna units. In this case, the connection circuit may be configured so that the null portion of the beam of an antenna unit is filled by the beam of an antenna unit other than the antenna unit in question.
 図5は、実施形態に係るアンテナ装置の複数のアンテナユニットを含む1次元アレイアンテナ310の一例を示す説明図である。図6A~図6Dはそれぞれ、図5の1次元アレイアンテナを構成する複数のアンテナユニット310(1)~310(4)の説明図である。図5において、1次元アレイアンテナ310は図中のy方向に16個のアンテナ(例えばパッチアンテナ)が配列したリニアアレイアンテナであり、互いに隣合うアンテナの素子間隔d0は0.5λであり、4つのアンテナユニットが構成されている。図6Aの第1アンテナユニット310(1)は素子間隔がd1である4つのアンテナ素子311(1)を有する。図6Bの第2アンテナユニット310(2)は素子間隔がd2である4つのアンテナ素子311(2)を有する。図6Cの第3アンテナユニット310(3)は素子間隔がd3である4つのアンテナ素子311(3)を有する。図6Dの第4アンテナユニット310(4)は素子間隔がd4である4つのアンテナ素子311(4)を有する。各アンテナユニット310(1)~310(4)における素子間隔d1,d2,d3,d4はそれぞれ2λである。 5 is an explanatory diagram showing an example of a one-dimensional array antenna 310 including a plurality of antenna units of an antenna device according to an embodiment. FIGS. 6A to 6D are explanatory diagrams of a plurality of antenna units 310(1) to 310(4) constituting the one-dimensional array antenna of FIG. 5, respectively. In FIG. 5, the one-dimensional array antenna 310 is a linear array antenna in which 16 antennas (e.g., patch antennas) are arranged in the y direction in the figure, and the element spacing d0 between adjacent antennas is 0.5λ, and four antenna units are configured. The first antenna unit 310(1) in FIG. 6A has four antenna elements 311(1) with an element spacing of d1. The second antenna unit 310(2) in FIG. 6B has four antenna elements 311(2) with an element spacing of d2. The third antenna unit 310(3) in FIG. 6C has four antenna elements 311(3) with an element spacing of d3. The fourth antenna unit 310(4) in FIG. 6D has four antenna elements 311(4) with an element spacing of d4. The element spacing d1, d2, d3, and d4 in each of the antenna units 310(1) to 310(4) is 2λ.
 また、図5の1次元アレイアンテナ310において、アンテナユニットの複数のアンテナの間に当該アンテナユニット以外の他のアンテナユニットのアンテナ素子が位置するように、複数のアンテナユニットが配置されている。例えば、第1アンテナユニットの2つのアンテナ素子311(1)の間に他の第2、第3及び第4アンテナユニットのアンテナ素子311(2)、311(3)、311(4)が一つずつ位置するように、4つのアンテナユニットが配置されている。 Furthermore, in the one-dimensional array antenna 310 of FIG. 5, multiple antenna units are arranged so that antenna elements of antenna units other than the antenna unit are located between the multiple antennas of the antenna unit. For example, four antenna units are arranged so that antenna elements 311(2), 311(3), and 311(4) of the other second, third, and fourth antenna units are located one each between the two antenna elements 311(1) of the first antenna unit.
 図7A~図7Dはそれぞれ、図5の複数のアンテナユニット310(1)~310(4)の指向性パターン310D(1)~310D(4)の一例を示す説明図である。各アンテナユニットの指向性パターン310D(1)~310D(4)はそれぞれ4つのビーム310B(1)~310B(4)を有し、ビーム間の角度は約30°である。そして、アンテナユニットのビームのヌル部分を他のアンテナユニットのビームが埋めるように、アンテナユニット310(1)~310(4)に接続される複数の接続経路(接続線)を有する接続回路を構成している。例えば、図7Aに示す第1アンテナユニット310(1)の指向性パターン310D(1)のヌル部分の角度範囲を、図7B~図7Dに示す他の第2、第3、第4アンテナユニット310(2)~310(4)の指向性パターン310D(2)~310D(4)のビームで埋めるように、接続回路における各アンテナユニットへの接続経路(接続線)の経路長を異ならせて設定している。これにより、各アンテナユニットで受信される電力の受信信号の位相調整を行っている。この位相調整により、図7Aのアンテナユニット310(1)の指向性パターン310D(1)基準にして、図7B~図7Dのアンテナユニット310(2)~310(4)の指向性パターン310D(2)~310D(4)はそれぞれ、x-y面においてθ=+7.5°、+15°及び-7.5°だけ傾いた指向性パターンになっている。 Figures 7A to 7D are explanatory diagrams showing examples of directional patterns 310D(1) to 310D(4) of the multiple antenna units 310(1) to 310(4) of Figure 5. Each of the directional patterns 310D(1) to 310D(4) of the antenna units has four beams 310B(1) to 310B(4), with the angle between the beams being approximately 30°. A connection circuit is formed having multiple connection paths (connection lines) connected to the antenna units 310(1) to 310(4) so that the null portion of the beam of one antenna unit is filled by the beam of another antenna unit. For example, the path lengths of the connection paths (connection lines) to each antenna unit in the connection circuit are set to be different so that the angle range of the null portion of the directivity pattern 310D(1) of the first antenna unit 310(1) shown in FIG. 7A is filled with the beams of the directivity patterns 310D(2) to 310D(4) of the other second, third, and fourth antenna units 310(2) to 310(4) shown in FIG. 7B to FIG. 7D. This adjusts the phase of the received signal of the power received by each antenna unit. With this phase adjustment, the directivity patterns 310D(2) to 310D(4) of the antenna units 310(2) to 310(4) in FIG. 7B to FIG. 7D are inclined by θ=+7.5°, +15°, and -7.5° on the x-y plane, respectively, based on the directivity pattern 310D(1) of the antenna unit 310(1) in FIG. 7A.
 図8は、図7A~図7Dの指向性パターンを重ね合わせて表示した説明図である。図8に示すアンテナ装置31のアレイアンテナ310全体の指向性パターン310Dは、図7A~図7Dの指向性パターン310D(1)~310D(4)を重ね合わせたパターンになる。従って、図9に示すように送電装置からの電波900がある程度広がりをもって到来しても、その電波を効率よく受信することができる。また、送電装置からの電波901がマルチパスで到来しても、その複数のパスを介して到来した複数の電波901を効率よく受信することができる。 FIG. 8 is an explanatory diagram showing the directivity patterns of FIGS. 7A to 7D superimposed on each other. The directivity pattern 310D of the entire array antenna 310 of the antenna device 31 shown in FIG. 8 is a pattern in which the directivity patterns 310D(1) to 310D(4) of FIGS. 7A to 7D are superimposed on each other. Therefore, even if radio waves 900 from the power transmission device arrive with a certain degree of spread as shown in FIG. 9, the radio waves can be received efficiently. Also, even if radio waves 901 from the power transmission device arrive via multiple paths, the multiple radio waves 901 arriving via the multiple paths can be received efficiently.
 図10は、実施形態に係るアンテナ装置の複数のアンテナユニットを構成する2次元アレイアンテナ310'の一例を示す説明図である。図11は、図10の2次元アレイアンテナ310'の一部の説明図である。図12は、図10の2次元アレイアンテナ310'における第1アンテナユニットを構成する複数のアンテナ素子311(1)の配列の説明図である。 FIG. 10 is an explanatory diagram showing an example of a two-dimensional array antenna 310' constituting multiple antenna units of an antenna device according to an embodiment. FIG. 11 is an explanatory diagram of a portion of the two-dimensional array antenna 310' in FIG. 10. FIG. 12 is an explanatory diagram of the arrangement of multiple antenna elements 311(1) constituting a first antenna unit in the two-dimensional array antenna 310' in FIG. 10.
 図10において、2次元アレイアンテナ310'は図中のy方向に16個のアンテナ及びz方向に16のアンテナの合計256個のアンテナ(例えばパッチアンテナ)が配列したアレイアンテナであり、図11に示すようにy方向及びz方向で互いに隣合うアンテナの素子間隔dy0、dz0は0.5λであり、16つのアンテナユニットが構成されている。また、第1、第2、・・・、第16アンテナユニットはそれぞれ、素子間隔がd1,d2,・・・d16である16個のアンテナ素子311(1)、311(2),・・・311(16)を有する。例えば、図12に示すように、第1アンテナユニットは、y方向の素子間隔がdy1、z方向の素子間隔がdz1である16個のアンテナ素子311(1)を有する。 In FIG. 10, the two-dimensional array antenna 310' is an array antenna in which a total of 256 antennas (e.g. patch antennas) are arranged, 16 antennas in the y direction and 16 antennas in the z direction in the figure, and as shown in FIG. 11, the element spacing dy0, dz0 between adjacent antennas in the y direction and z direction is 0.5λ, and 16 antenna units are configured. The first, second, ..., 16th antenna units each have 16 antenna elements 311(1), 311(2), ..., 311(16) with element spacings d1, d2, ..., d16, respectively. For example, as shown in FIG. 12, the first antenna unit has 16 antenna elements 311(1) with element spacing dy1 in the y direction and element spacing dz1 in the z direction.
 また、図10に示すように、アンテナユニットの複数のアンテナの間に当該アンテナユニット以外の他のアンテナユニットのアンテナ素子が位置するように、複数の第1、第2、・・・、第16アンテナユニットが配置されている。例えば、第1アンテナユニットの複数のアンテナ素子311(1)の間に他の第2、第3、・・・第16アンテナユニットのアンテナ素子311(2)、311(3)、・・・311(16)が位置するように、16個のアンテナユニットが配置されている。 Also, as shown in FIG. 10, the first, second, ..., sixteenth antenna units are arranged so that the antenna elements of the other antenna units are positioned between the multiple antennas of the antenna unit. For example, sixteen antenna units are arranged so that the antenna elements 311(2), 311(3), ..., 311(16) of the other second, third, ..., sixteenth antenna units are positioned between the multiple antenna elements 311(1) of the first antenna unit.
 図13A~図13Pはそれぞれ、図10の複数のアンテナユニットの指向性パターン310D(1)~310D(16)の一例を示す説明図である。各アンテナユニットで形成される3次元の指向性パターン310D(1)~310D(16)はそれぞれ複数のビームを有る。そして、アンテナユニットのビームのヌル部分を他のアンテナユニットのビームが埋めるように接続回路を構成している。例えば、図13Aに示す第1アンテナユニットの指向性パターン310D(1)のヌル部分の範囲を、図13B~図13Pに示す他の第2、第3、・・・第16アンテナユニットの指向性パターン310D(2)~310D(16)のビームで埋めるように、接続回路における各アンテナユニットへの経路長を異ならせることにより、各アンテナユニットで受信される電力信号の位相調整を行っている。この位相調整により、図13Aのアンテナユニット310(1)の指向性パターン310D(1)基準にして、図13B~図13Pのアンテナユニット310(2)~310(16)の指向性パターン310D(2)~310D(16)はそれぞれ、x-y面における角度θ及びx-z平面における角度φが所定の角度だけ傾いた指向性パターンになっている。 Figures 13A to 13P are explanatory diagrams showing examples of directional patterns 310D(1) to 310D(16) of the multiple antenna units in Figure 10. Each of the three-dimensional directional patterns 310D(1) to 310D(16) formed by each antenna unit has multiple beams. The connection circuit is configured so that the null part of the beam of the antenna unit is filled with the beam of the other antenna units. For example, the path length to each antenna unit in the connection circuit is made different so that the range of the null part of the directional pattern 310D(1) of the first antenna unit shown in Figure 13A is filled with the beams of the directional patterns 310D(2) to 310D(16) of the other second, third, ..., sixteenth antenna units shown in Figures 13B to 13P, thereby adjusting the phase of the power signal received by each antenna unit. With this phase adjustment, the directional patterns 310D(2) to 310D(16) of antenna units 310(2) to 310(16) in FIGS. 13B to 13P are tilted at a predetermined angle in the x-y plane and the angle φ in the x-z plane, based on the directional pattern 310D(1) of antenna unit 310(1) in FIG. 13A.
 図14は、図13A~図13Pの指向性パターン310D(1)~310D(16)を3次元空間で重ね合わせて表示した説明図である。図14に示すように、アンテナ装置31の2次元アレイアンテナ310'全体の3次元の指向性パターン310Dは、互いに角度がずれた図13A~図13Pの指向性パターン310D(1)~310D(16)を重ね合わせたパターンになる。従って、送電装置からの電波が3次元空間である程度広がりをもって到来しても、その電波を効率よく受信することができる。また、送電装置からの電波が3次元空間のマルチパスで到来しても、その複数のパスを介して到来した複数の電波を効率よく受信することができる。 FIG. 14 is an explanatory diagram showing the directivity patterns 310D(1) to 310D(16) of FIGS. 13A to 13P superimposed in three-dimensional space. As shown in FIG. 14, the three-dimensional directivity pattern 310D of the entire two-dimensional array antenna 310' of the antenna device 31 is a pattern in which the directivity patterns 310D(1) to 310D(16) of FIGS. 13A to 13P, which are offset from each other in angle, are superimposed. Therefore, even if the radio waves from the power transmission device arrive with a certain degree of spread in three-dimensional space, the radio waves can be efficiently received. Also, even if the radio waves from the power transmission device arrive via multiple paths in three-dimensional space, the multiple radio waves arriving via the multiple paths can be efficiently received.
 図15は、図3のアレイアンテナ310からなるアンテナユニットに対する接続回路312の一例を示す説明図である。図15において、アンテナ装置31は、アンテナユニットを構成する4素子のアンテナ素子311(1)~311(4)を有するアレイアンテナ310と、そのアレイアンテナ310と整流回路321とを接続する接続回路312とを備える。接続回路312は、アンテナ素子311(1)~311(4)それぞれに接続された接続経路の一部の接続線313(1)~313(4)と、接続線313(1)~313(4)を2段の並列回路を介して単一の整流回路321に接続する合成接続回路314(1)とを用いて構成されている。 FIG. 15 is an explanatory diagram showing an example of a connection circuit 312 for an antenna unit consisting of the array antenna 310 of FIG. 3. In FIG. 15, the antenna device 31 includes an array antenna 310 having four antenna elements 311(1)-311(4) that constitute the antenna unit, and a connection circuit 312 that connects the array antenna 310 to a rectifier circuit 321. The connection circuit 312 is configured using connection lines 313(1)-313(4) that are part of the connection path connected to the antenna elements 311(1)-311(4), respectively, and a composite connection circuit 314(1) that connects the connection lines 313(1)-313(4) to a single rectifier circuit 321 via a two-stage parallel circuit.
 接続回路312において、4つのアンテナ素子311(1)~311(4)のぞれぞれと整流回路321との間の接続線の経路長L1は、ビーム方向が0°の場合は同一長であるが、ビーム方向を変える場合、各アンテナ素子311(1)~311(4)に接続される接続回路312の経路長は変わる。各アンテナ素子311(1)~311(4)に接続される接続回路312の経路長が異なるアンテナユニット310を複数接続して全体としてブロードなビームを形成することになる。 In the connection circuit 312, the path length L1 of the connection lines between each of the four antenna elements 311(1)-311(4) and the rectifier circuit 321 is the same when the beam direction is 0°, but when the beam direction is changed, the path length of the connection circuit 312 connected to each antenna element 311(1)-311(4) changes. By connecting multiple antenna units 310 with different path lengths of the connection circuit 312 connected to each antenna element 311(1)-311(4), a broad beam is formed overall.
 図16は、図5のアレイアンテナ310を有する無線電力伝送用の受電装置30の構成の一例を示す説明図である。図16において、受電装置30は、4つのアンテナユニットで構成された図5の1次元アレイアンテナからなるアンテナ装置31と、4つのアンテナユニットのそれぞれに複数の接続経路(接続線)からなる接続回路312(図15参照)を介して接続された4個の整流回路321(1)~321(4)からなる整流回路群32と、4個の整流回路321(1)~321(4)から出力された複数の直流電力を合成して出力する直流(DC)合成回路33と、を備える。接続回路312は、前述の図7A~図7D及び図8に例示したように、アンテナユニットのビームのヌル部分を他のアンテナユニットのビームが埋めるよう、アンテナユニット310(1)~310(4)に接続される複数の接続経路(接続線)の経路長が設定されている。すなわち、接続経路(接続線)の経路長が異なるアンテナユニット310(1)~310(4)を同一線路長の接続線で束ねて接続し、全体としてブロードなビームを形成する。 16 is an explanatory diagram showing an example of the configuration of a power receiving device 30 for wireless power transmission having the array antenna 310 of FIG. 5. In FIG. 16, the power receiving device 30 includes an antenna device 31 consisting of the one-dimensional array antenna of FIG. 5 consisting of four antenna units, a rectifier circuit group 32 consisting of four rectifier circuits 321(1) to 321(4) connected to each of the four antenna units via a connection circuit 312 (see FIG. 15) consisting of multiple connection paths (connection lines), and a direct current (DC) combining circuit 33 that combines and outputs multiple DC powers output from the four rectifier circuits 321(1) to 321(4). As illustrated in the above-mentioned FIGS. 7A to 7D and 8, the connection circuit 312 has the path lengths of multiple connection paths (connection lines) connected to the antenna units 310(1) to 310(4) set so that the null part of the beam of the antenna unit is filled by the beam of another antenna unit. In other words, antenna units 310(1) to 310(4) with different connection path (connection line) lengths are bundled and connected with connection lines of the same line length to form a broad beam overall.
 図17は、図10のアレイアンテナを有する無線電力伝送用の受電装置30の構成の一例を示す説明図である。図17の受電装置30は、16個のアンテナユニットで構成された2次元アレイアンテナ(図10参照)からなるアンテナ装置31と、16個のアンテナユニットのそれぞれに複数の接続経路(接続線)からなる接続回路312を介して接続された16個の整流回路321(1)~321(16)からなる整流回路群32と、16個の整流回路321(1)~321(16)から出力された複数の直流電力を合成して出力する直流(DC)合成回路33と、を備える。接続回路312は、前述の図13A~図13P及び図14に例示したように、アンテナユニットのビームのヌル部分を他のアンテナユニットのビームが埋めるよう、アンテナユニット310(1)~310(16)に接続される複数の接続経路(接続線)の経路長が設定されている。すなわち、接続経路(接続線)の経路長が異なるアンテナユニット310(1)~310(16)を同一線路長の接続線で束ねて接続し、全体としてブロードなビームを形成する。 17 is an explanatory diagram showing an example of the configuration of a power receiving device 30 for wireless power transmission having the array antenna of FIG. 10. The power receiving device 30 of FIG. 17 includes an antenna device 31 consisting of a two-dimensional array antenna (see FIG. 10) consisting of 16 antenna units, a rectifier circuit group 32 consisting of 16 rectifier circuits 321(1) to 321(16) connected to each of the 16 antenna units via a connection circuit 312 consisting of multiple connection paths (connection lines), and a direct current (DC) combining circuit 33 that combines and outputs the multiple DC powers output from the 16 rectifier circuits 321(1) to 321(16). As illustrated in the above-mentioned FIGS. 13A to 13P and 14, the connection circuit 312 has the path lengths of the multiple connection paths (connection lines) connected to the antenna units 310(1) to 310(16) set so that the null portion of the beam of the antenna unit is filled by the beam of another antenna unit. In other words, antenna units 310(1) to 310(16) with different connection path (connection line) lengths are bundled and connected with connection lines of the same line length to form a broad beam overall.
 図18は、実施形態に係るアンテナ装置31を有する通信用の受信装置45の構成の一例を示す説明図である。図18はアナログ信号処理を行う受信装置45の構成例を示している。なお、図18の受信装置45のアンテナ装置31については、前述の図16の受電装置30におけるアンテナ装置31と同じ構成を有するため、説明を省略する。 FIG. 18 is an explanatory diagram showing an example of the configuration of a receiving device 45 for communication having an antenna device 31 according to an embodiment. FIG. 18 shows an example of the configuration of a receiving device 45 that performs analog signal processing. Note that the antenna device 31 of the receiving device 45 in FIG. 18 has the same configuration as the antenna device 31 in the power receiving device 30 in FIG. 16 described above, so a description thereof will be omitted.
 図18において、受信装置45は、4個のアンテナユニットで構成された1次元アレイアンテナ(図5参照)からなるアンテナ装置31と、4個の複数のアンテナユニットのそれぞれに複数の接続経路(接続線)からなる接続回路312を介して接続された複数の位相調整回路341(1)~341(4)からなる位相調整回路群34と、4個の位相調整回路341(1)~341(4)から出力された複数の受信信号を同相で合成して出力する合成回路35と、を備える。 In FIG. 18, the receiving device 45 includes an antenna device 31 consisting of a one-dimensional array antenna (see FIG. 5) made up of four antenna units, a phase adjustment circuit group 34 consisting of a plurality of phase adjustment circuits 341(1) to 341(4) connected to each of the four antenna units via a connection circuit 312 consisting of a plurality of connection paths (connection lines), and a combining circuit 35 that combines the multiple received signals output from the four phase adjustment circuits 341(1) to 341(4) in phase and outputs the combined signal.
 図19は、実施形態に係るアンテナ装置を31有する通信用の受信装置46の構成の他の例を示す説明図である。図19はデジタル信号処理を行う受信装置46の構成例を示している。なお、図19の受信装置46のアンテナ装置31については、前述の図16の受電装置30におけるアンテナ装置31と同じ構成を有するため、説明を省略する。 FIG. 19 is an explanatory diagram showing another example of the configuration of a receiving device 46 for communication having an antenna device 31 according to an embodiment. FIG. 19 shows an example of the configuration of a receiving device 46 that performs digital signal processing. Note that the antenna device 31 of the receiving device 46 in FIG. 19 has the same configuration as the antenna device 31 in the power receiving device 30 in FIG. 16 described above, so a description thereof will be omitted.
 図19において、受信装置46は、4個のアンテナユニットで構成された1次元アレイアンテナ(図5参照)からなるアンテナ装置31と、4個の複数のアンテナユニットのそれぞれに複数の接続経路からなる接続回路312を介して接続された複数のA/D変換器371(1)~371(4)からなるA/D変換器群37と、4個のA/D変換器371(1)~371(4)から出力された複数の受信信号をデジタル処理で同相合成して出力するデジタル合成回路38と、を備える。 In FIG. 19, the receiving device 46 includes an antenna device 31 consisting of a one-dimensional array antenna (see FIG. 5) made up of four antenna units, an A/D converter group 37 consisting of a plurality of A/D converters 371(1) to 371(4) connected to each of the four antenna units via a connection circuit 312 consisting of a plurality of connection paths, and a digital synthesis circuit 38 that performs in-phase synthesis of the multiple received signals output from the four A/D converters 371(1) to 371(4) by digital processing and outputs the result.
 図20は、実施形態に係るアンテナ装置31を有する通信用の受信装置47の構成の更に他の例を示す説明図である。図20はMIMO信号処理を行う受信装置47の構成例を示している。図20の受信装置47のアンテナ装置31については、前述の図16の受電装置30におけるアンテナ装置31と同じ構成を有するため、説明を省略する。 FIG. 20 is an explanatory diagram showing yet another example of the configuration of a receiving device 47 for communication having an antenna device 31 according to an embodiment. FIG. 20 shows an example of the configuration of a receiving device 47 that performs MIMO signal processing. The antenna device 31 of the receiving device 47 in FIG. 20 has the same configuration as the antenna device 31 in the power receiving device 30 in FIG. 16 described above, so a description thereof will be omitted.
 図20において、受信装置47は、4個のアンテナユニットで構成された1次元アレイアンテナ(図5参照)からなるアンテナ装置31と、4個の複数のアンテナユニットのそれぞれに複数の接続経路からなる接続回路312を介して接続された複数の受信機391(1)~391(4)からなる受信機群390と、4個の受信機391(1)~391(4)から出力された複数の受信信号に対してMIMO信号処理を行うMIMO信号処理部39と、を備える。 In FIG. 20, the receiving device 47 includes an antenna device 31 consisting of a one-dimensional array antenna (see FIG. 5) made up of four antenna units, a receiver group 390 consisting of multiple receivers 391(1)-391(4) connected to each of the four antenna units via a connection circuit 312 consisting of multiple connection paths, and a MIMO signal processing unit 39 that performs MIMO signal processing on the multiple received signals output from the four receivers 391(1)-391(4).
 なお、図18、図19及び図20に示した受信装置45、46、47はそれぞれ、アンテナ装置31が4個のアンテナユニットで構成された1次元アレイアンテナである場合の構成例であるが、アンテナ装置31は、1次元アレイアンテナに代えて、前述の図17の受電装置と同様に16個のアンテナユニットで構成された2次元アレイアンテナ(図10参照)を備えるように構成してもよい。 Note that the receiving devices 45, 46, and 47 shown in Figures 18, 19, and 20 are configuration examples in which the antenna device 31 is a one-dimensional array antenna made up of four antenna units, but instead of a one-dimensional array antenna, the antenna device 31 may be configured to include a two-dimensional array antenna (see Figure 10) made up of 16 antenna units, similar to the receiving device in Figure 17 described above.
 図21は、実施形態に係るアンテナ装置31を適用可能なシステムの他の例を示す説明図である。図21のシステムは、通信エリア(セル)25Aを形成するセルラー方式の基地局25と、通信エリア25Aに在圏しているときに基地局25に接続して基地局25と無線通信可能な給電対象の端末装置(以下「UE」(ユーザ装置)ともいう。)40と、を有する。基地局25は、UE40との間で無線通信可能な送信装置としても機能する。 FIG. 21 is an explanatory diagram showing another example of a system to which the antenna device 31 according to the embodiment can be applied. The system in FIG. 21 has a cellular base station 25 that forms a communication area (cell) 25A, and a terminal device (hereinafter also referred to as "UE" (user equipment)) 40 to be powered that is connected to the base station 25 when present in the communication area 25A and can wirelessly communicate with the base station 25. The base station 25 also functions as a transmitting device capable of wireless communication with the UE 40.
 UE40は、移動通信システムの移動局でもよいし、通信装置(例えば移動通信モジュール)と各種デバイスとを組み合わせたものであってもよい。UE40は、複数のアンテナ素子を有する上記構成のアンテナ装置31と同様なアレイアンテナを有するアンテナ装置を備える。UE40はIoTデバイス(「IoT機器」ともいう。)であってもよい。 UE40 may be a mobile station of a mobile communication system, or may be a combination of a communication device (e.g., a mobile communication module) and various devices. UE40 is equipped with an antenna device having an array antenna similar to antenna device 31 having the above-mentioned configuration with multiple antenna elements. UE40 may be an IoT device (also called "IoT equipment").
 図21において、基地局25は、多数のアンテナ素子を有する複数のアレイアンテナを有するアンテナ251を備え、複数のUE40との間でmassive MIMO(以下「mMIMO」ともいう。)伝送方式の通信を行うことができる。mMIMOは、アンテナ251を用いてデータ送受信を行うことにより大容量・高速通信を実現する無線伝送技術である。また、複数のUE40のそれぞれに対して時分割で又は同時にビーム25Bを形成するビームフォーミングを行うMU(Multi User)-MIMO伝送方式で通信を行うことができる。多素子のアレーアンテナを用いてMU-MIMO伝送を行うことにより、各UE40の通信環境に応じてUE20ごとに適切なビームを向けて通信できるため、セル全体の通信品質を改善できる。また、同一の無線リソース(時間・周波数リソース)を用いて複数のUE40との通信ができるため、システム容量を拡大することができる。 In FIG. 21, the base station 25 is equipped with an antenna 251 having multiple array antennas with many antenna elements, and can communicate with multiple UEs 40 using a massive MIMO (hereinafter also referred to as "mMIMO") transmission method. mMIMO is a wireless transmission technology that achieves large-capacity, high-speed communication by transmitting and receiving data using the antenna 251. In addition, communication can be performed using a multi-user (MU)-MIMO transmission method that performs beamforming to form beams 25B for each of the multiple UEs 40 in a time-division or simultaneous manner. By performing MU-MIMO transmission using a multi-element array antenna, communication can be performed by directing an appropriate beam to each UE 20 according to the communication environment of each UE 40, thereby improving the communication quality of the entire cell. In addition, communication with multiple UEs 40 can be performed using the same wireless resources (time and frequency resources), thereby expanding the system capacity.
 また、図21において、通信エリア25A内の一部は、基地局25から端末装置40に向けて無線電力伝送を行う無線電力伝送エリア(以下「WPTエリア」という。)25A'になっている。WPTエリア25A'は図示のように通信エリア25Aよりも狭いエリアでもよいし、通信エリア25Aと同じ又はほぼ同じサイズ及び位置のエリアであってもよい。 In addition, in FIG. 21, a part of the communication area 25A is a wireless power transmission area (hereinafter referred to as a "WPT area") 25A' in which wireless power transmission is performed from the base station 25 to the terminal device 40. The WPT area 25A' may be an area narrower than the communication area 25A as shown in the figure, or may be an area of the same or approximately the same size and location as the communication area 25A.
 WPTエリア25A'では、基地局25からの下りリンクの無線フレームを構成する複数の無線リソース(時間・周波数リソース)であるリソースブロックのうち通信に用いられていない通信未使用の無線リソース(リソースブロック)を無線電力伝送ブロックとして活用している。基地局25は、UE40への下りリンクの無線フレームにおいて、通信未使用の無線リソースである無線電力伝送ブロック(WPTブロック)に無線電力伝送用のダミー信号(以下「WPT用ダミー信号」ともいう。)を割り当てた送信信号を生成してUE40に送信する。 In the WPT area 25A', among the resource blocks, which are multiple radio resources (time and frequency resources) constituting the downlink radio frame from the base station 25, unused radio resources (resource blocks) are used as wireless power transmission blocks. The base station 25 generates a transmission signal in which a dummy signal for wireless power transmission (hereinafter also referred to as a "dummy signal for WPT") is assigned to the wireless power transmission block (WPT block), which is an unused radio resource, in the downlink radio frame to the UE 40, and transmits the signal to the UE 40.
 特に、第5世代又はそれ以降の世代の移動通信システムにおいては、無線フレームの一部のサブキャリアのみに必要最小限の参照信号(RS)や制御信号を配置するリーンキャリアという技術が提案されており、無線フレームにおける通信未使用の無線リソースの部分を有効活用してUE40への無線電力伝送を行うことが期待される。 In particular, for fifth-generation or later-generation mobile communication systems, a technology called lean carrier has been proposed in which the minimum necessary reference signals (RS) and control signals are placed on only some of the subcarriers of a radio frame, and it is expected that the unused radio resources in the radio frame can be effectively utilized to transmit wireless power to UE 40.
 基地局25とUE40との間で送受信される通信の信号の電波及び基地局25からUE40に送信されるWPT用ダミー信号を割り当てた送信信号の電波は、例えば、ミリ波又はマイクロ波である。 The radio waves of the communication signals transmitted and received between the base station 25 and the UE 40 and the radio waves of the transmission signals assigned with the dummy signal for WPT transmitted from the base station 25 to the UE 40 are, for example, millimeter waves or microwaves.
 図22は、図21のシステムを構成する基地局25及び端末装置(UE)40の主要構成の一例を示すブロック図である。基地局25は、基地局装置250とアンテナ251とを備える。アンテナ251は、例えば、図21に示すように多数のアンテナ素子を有するアレーアンテナである。アンテナ251は単数でもよいし複数であってもよい。例えば、アンテナ251は複数のセクタセルに対応させて複数配置してもよい。 FIG. 22 is a block diagram showing an example of the main configuration of a base station 25 and a terminal device (UE) 40 constituting the system of FIG. 21. The base station 25 includes a base station device 250 and an antenna 251. The antenna 251 is, for example, an array antenna having a large number of antenna elements as shown in FIG. 21. There may be a single antenna 251 or multiple antennas. For example, multiple antennas 251 may be arranged corresponding to multiple sector cells.
 基地局装置250は、通信信号処理部260と無線処理部270とを備える。通信信号処理部260は、UE40との間で送受信される各種のユーザデータや制御情報等の信号を処理する。 The base station device 250 includes a communication signal processing unit 260 and a radio processing unit 270. The communication signal processing unit 260 processes signals such as various user data and control information transmitted and received between the UE 40.
 通信信号処理部260は、UE40に対する下りリンクの通信の際に、複数の無線リソースのうち通信に使用されていない通信未使用の無線リソースを用いたWPT用ダミー信号を含む下りリンクの送信信号を生成する。 The communication signal processing unit 260 generates a downlink transmission signal including a dummy signal for WPT using an unused radio resource that is not being used for communication among the multiple radio resources during downlink communication with the UE 40.
 無線処理部270は、通信信号処理部260で生成した送信信号をアンテナ251からUE40に送信したり、UE40からアンテナ251を介して受信した受信信号を通信信号処理部260に出力したりする。 The wireless processing unit 270 transmits the transmission signal generated by the communication signal processing unit 260 from the antenna 251 to the UE 40, and outputs the received signal received from the UE 40 via the antenna 251 to the communication signal processing unit 260.
 また、無線処理部270は、BF制御信号に基づいてアンテナ251で形成される一又は複数のビームを制御する。また、無線処理部270は、通信信号処理部260で生成されたWPT用ダミー信号を含む下りリンクの送信信号を、アンテナ251を介してUE40に送信する。 The radio processing unit 270 also controls one or more beams formed by the antenna 251 based on the BF control signal. The radio processing unit 270 also transmits a downlink transmission signal including a dummy signal for WPT generated by the communication signal processing unit 260 to the UE 40 via the antenna 251.
 図22において、UE40は、前述の本実施形態に係るアンテナ装置と同様な構成のアンテナ装置410と無線処理部420と通信信号処理部430と電力出力部440と電池450とを備える。アンテナ装置410は、例えば複数のアンテナ素子を有する小型のアレーアンテナを有する。無線処理部420は、通信信号処理部430で生成したフィードバック情報やユーザデータ等の送信信号をアンテナ装置410から基地局25に送信したり、基地局25からアンテナ装置410を介して受信した受信信号を通信信号処理部430に出力したりする。 In FIG. 22, UE 40 includes an antenna device 410, a radio processing unit 420, a communication signal processing unit 430, a power output unit 440, and a battery 450, which are configured similarly to the antenna device according to the embodiment described above. Antenna device 410 has, for example, a small array antenna having multiple antenna elements. Radio processing unit 420 transmits transmission signals such as feedback information and user data generated by communication signal processing unit 430 from antenna device 410 to base station 25, and outputs received signals received from base station 25 via antenna device 410 to communication signal processing unit 430.
 無線処理部420は、基地局25から送信されたWPT用ダミー信号を含む送信信号を受信する。電力出力部440は、例えば整流回路を有し、基地局25からのWPT用ダミー信号を含む送信信号を受信した受信信号の電力を、電池充電用の受電電力として出力する。電力出力部440から出力された受電電力により、電池450を充電することができる。 The wireless processing unit 420 receives a transmission signal including a dummy signal for WPT transmitted from the base station 25. The power output unit 440 has, for example, a rectifier circuit, and outputs the power of the received signal that receives the transmission signal including the dummy signal for WPT from the base station 25 as received power for charging the battery. The battery 450 can be charged by the received power output from the power output unit 440.
 図23は、実施形態に係るアンテナ装置31を適用可能なシステムの更に他の例を示す説明図である。図23のシステムは、基地局25から複数のUE40へのビームフォーミングによるUE毎の給電を行うことができる。通信エリア25A内のWPTエリア25A'(前述の図21参照)に複数のUE40(1)~40(3)が在圏し、UE毎に形成したビーム25B(1)~25B(3)を介して各UE40(1)~40(3)に給電してもよい。ビーム25B(1)~25B(3)は、例えば時分割で切り替えて形成してもよい。 FIG. 23 is an explanatory diagram showing yet another example of a system to which the antenna device 31 according to the embodiment can be applied. The system of FIG. 23 can supply power to each of multiple UEs 40 from a base station 25 by beamforming. Multiple UEs 40(1)-40(3) are present in a WPT area 25A' (see FIG. 21 above) within a communication area 25A, and power may be supplied to each of the UEs 40(1)-40(3) via beams 25B(1)-25B(3) formed for each UE. The beams 25B(1)-25B(3) may be formed by switching between them in a time-division manner, for example.
 以上、本実施形態によれば、無線電力伝送システムの受電装置及び通信システムの受信装置に用いることができるアンテナ装置において、高いアンテナゲインと広い指向性角度範囲の両立を図ることができる。 As described above, according to this embodiment, it is possible to achieve both high antenna gain and a wide directivity angle range in an antenna device that can be used in a power receiving device of a wireless power transmission system and a receiving device of a communication system.
 特に、本実施形態によれば、アンテナ装置を構成する複数のアンテナユニット間の位相の調整を、複数のアンテナユニットに接続する接続回路の複数の接続経路長で行っているため、アンテナユニット間の位相を制御する位相制御装置が不要であり、アンテナ装置の構成を簡易にすることができる。 In particular, according to this embodiment, the phase between the multiple antenna units constituting the antenna device is adjusted using multiple connection path lengths of the connection circuit that connects the multiple antenna units, so there is no need for a phase control device that controls the phase between the antenna units, and the configuration of the antenna device can be simplified.
 なお、複数のアンテナユニットのそれぞれに設定する複数の接続経路長(位相調整量)は機械学習を用いて決定してもよい。また、本実施形態のアンテナ装置、受電装置及び受信装置で用いられるプログラムは機械学習済みモデルを含んでもよい。 The multiple connection path lengths (phase adjustment amounts) set for each of the multiple antenna units may be determined using machine learning. Furthermore, the programs used in the antenna device, power receiving device, and receiving device of this embodiment may include a machine-learned model.
 また、本発明は、IoTデバイス等の受電装置への無線電力伝送(WPT)の効率化を図ることが可能になるため、持続可能な開発目標(SDGs)の目標9「産業と技術革新の基盤をつくろう」の達成に貢献できる。 In addition, the present invention can improve the efficiency of wireless power transmission (WPT) to power receiving devices such as IoT devices, thereby contributing to the achievement of Goal 9 of the Sustainable Development Goals (SDGs), which is to "build resilient infrastructure, promote inclusive and sustainable industrialization and promote innovation."
 なお、本明細書で説明された処理工程並びにアンテナ装置、受電装置、受信装置、端末装置、無線電力伝送システム及び通信システムの構成要素は、様々な手段によって実装することができる。例えば、これらの工程及び構成要素は、ハードウェア、ファームウェア、ソフトウェア、又は、それらの組み合わせで実装されてもよい。 The processing steps described in this specification and the components of the antenna device, power receiving device, receiver device, terminal device, wireless power transmission system, and communication system can be implemented by various means. For example, these steps and components may be implemented by hardware, firmware, software, or a combination thereof.
 ハードウェア実装については、実体(例えば、各種無線通信装置、Node B、端末、ハードディスクドライブ装置、又は、光ディスクドライブ装置)において上記工程及び構成要素を実現するために用いられる処理ユニット等の手段は、1つ又は複数の、特定用途向けIC(ASIC)、デジタルシグナルプロセッサ(DSP)、デジタル信号処理装置(DSPD)、プログラマブル・ロジック・デバイス(PLD)、フィールド・プログラマブル・ゲート・アレイ(FPGA)、プロセッサ、コントローラ、マイクロコントローラ、マイクロプロセッサ、電子デバイス、本明細書で説明された機能を実行するようにデザインされた他の電子ユニット、コンピュータ、又は、それらの組み合わせの中に実装されてもよい。 With regard to hardware implementation, the processing units and other means used to realize the above steps and components in an entity (e.g., various wireless communication devices, Node B, terminals, hard disk drive devices, or optical disk drive devices) may be implemented in one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processors (DSPDs), programmable logic devices (PLDs), field programmable gate arrays (FPGAs), processors, controllers, microcontrollers, microprocessors, electronic devices, other electronic units designed to perform the functions described herein, computers, or combinations thereof.
 また、ファームウェア及び/又はソフトウェア実装については、上記構成要素を実現するために用いられる処理ユニット等の手段は、本明細書で説明された機能を実行するプログラム(例えば、プロシージャ、関数、モジュール、インストラクション、などのコード)で実装されてもよい。一般に、ファームウェア及び/又はソフトウェアのコードを明確に具体化する任意のコンピュータ/プロセッサ読み取り可能な媒体が、本明細書で説明された上記工程及び構成要素を実現するために用いられる処理ユニット等の手段の実装に利用されてもよい。例えば、ファームウェア及び/又はソフトウェアコードは、例えば制御装置において、メモリに記憶され、コンピュータやプロセッサにより実行されてもよい。そのメモリは、コンピュータやプロセッサの内部に実装されてもよいし、又は、プロセッサの外部に実装されてもよい。また、ファームウェア及び/又はソフトウェアコードは、例えば、ランダムアクセスメモリ(RAM)、リードオンリーメモリ(ROM)、不揮発性ランダムアクセスメモリ(NVRAM)、プログラマブルリードオンリーメモリ(PROM)、電気的消去可能PROM(EEPROM)、フラッシュメモリ、フロッピー(登録商標)ディスク、コンパクトディスク(CD)、デジタルバーサタイルディスク(DVD)、磁気又は光データ記憶装置、などのような、コンピュータやプロセッサで読み取り可能な媒体に記憶されてもよい。そのコードは、1又は複数のコンピュータやプロセッサにより実行されてもよく、また、コンピュータやプロセッサに、本明細書で説明された機能性のある態様を実行させてもよい。 Additionally, for firmware and/or software implementations, the means such as processing units used to realize the above components may be implemented with programs (e.g., code such as procedures, functions, modules, instructions, etc.) that perform the functions described herein. In general, any computer/processor readable medium tangibly embodying firmware and/or software code may be used to implement the means such as processing units used to realize the above steps and components described herein. For example, the firmware and/or software code may be stored in a memory and executed by a computer or processor, for example in a control device. The memory may be implemented inside the computer or processor or external to the processor. The firmware and/or software code may also be stored in a computer or processor readable medium, such as, for example, random access memory (RAM), read only memory (ROM), non-volatile random access memory (NVRAM), programmable read only memory (PROM), electrically erasable programmable read only memory (EEPROM), flash memory, floppy disk, compact disk (CD), digital versatile disk (DVD), magnetic or optical data storage device, etc. The code may be executed by one or more computers or processors and may cause the computers or processors to perform certain aspects of the functionality described herein.
 また、前記媒体は非一時的な記録媒体であってもよい。また、前記プログラムのコードは、コンピュータ、プロセッサ、又は他のデバイス若しくは装置機械で読み込んで実行可能であればよく、その形式は特定の形式に限定されない。例えば、前記プログラムのコードは、ソースコード、オブジェクトコード及びバイナリコードのいずれでもよく、また、それらのコードの2以上が混在したものであってもよい。 The medium may also be a non-transitory recording medium. The program code may be in any format as long as it can be read and executed by a computer, processor, or other device or machine, and the format is not limited to a specific format. For example, the program code may be any of source code, object code, and binary code, or may be a mixture of two or more of these codes.
 また、本明細書で開示された実施形態の説明は、当業者が本開示を製造又は使用するのを可能にするために提供される。本開示に対するさまざまな修正は当業者には容易に明白になり、本明細書で定義される一般的原理は、本開示の趣旨又は範囲から逸脱することなく、他のバリエーションに適用可能である。それゆえ、本開示は、本明細書で説明される例及びデザインに限定されるものではなく、本明細書で開示された原理及び新規な特徴に合致する最も広い範囲に認められるべきである。 Furthermore, the description of the embodiments disclosed herein is provided to enable any person skilled in the art to make or use the present disclosure. Various modifications to the present disclosure will be readily apparent to those skilled in the art, and the general principles defined herein may be applied to other variations without departing from the spirit or scope of the present disclosure. Thus, the present disclosure is not intended to be limited to the examples and designs described herein, but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.
10   :無線電力伝送システム
20   :送電装置
21   :アンテナ装置
30   :受電装置
31   :アンテナ装置
32   :整流回路群
33   :直流合成回路
34   :位相調整回路群
35   :合成回路
37   :A/D変換器群
38   :デジタル合成回路
39   :MIMO信号処理部
40   :端末装置
45   :受信装置
46   :受信装置
47   :受信装置
310  :アレイアンテナ(1次元アレイアンテナ)
310(1)~310(16)  :アンテナユニット
310' :2次元アレイアンテナ
310B :ビーム
310D :指向性パターン
311  :アンテナ素子
312  :接続回路
313  :接続線
314  :合成接続回路
321  :整流回路
341  :位相調整回路
371  :A/D変換器
390  :受信機群
391  :受信機
10: Wireless power transmission system 20: Power transmitting device 21: Antenna device 30: Power receiving device 31: Antenna device 32: Rectifier circuit group 33: DC combining circuit 34: Phase adjustment circuit group 35: Combiner circuit 37: A/D converter group 38: Digital combining circuit 39: MIMO signal processing unit 40: Terminal device 45: Receiving device 46: Receiving device 47: Receiving device 310: Array antenna (one-dimensional array antenna)
310(1) to 310(16): Antenna unit 310': Two-dimensional array antenna 310B: Beam 310D: Directivity pattern 311: Antenna element 312: Connection circuit 313: Connection line 314: Combiner connection circuit 321: Rectifier circuit 341: Phase adjustment circuit 371: A/D converter 390: Receiver group 391: Receiver

Claims (14)

  1.  アンテナ装置であって、
     受信対象の電波の波長の0.5倍以上の間隔で複数のアンテナ素子がそれぞれ配置された複数のアンテナユニットと、
     前記複数のアンテナユニットの指向性ビームの角度方向が互いに異なるように、前記複数のアンテナユニットのそれぞれに互いに異なる経路長で接続された複数の接続経路を有する接続回路と、
    を備える、ことを特徴とするアンテナ装置。
    1. An antenna device, comprising:
    A plurality of antenna units each having a plurality of antenna elements arranged at intervals of 0.5 or more times the wavelength of radio waves to be received;
    a connection circuit having a plurality of connection paths connected to each of the plurality of antenna units with different path lengths such that the angular directions of the directional beams of the plurality of antenna units are different from each other;
    An antenna device comprising:
  2.  請求項1のアンテナ装置において、
     前記アンテナユニットが複数の指向性ビームを有するように前記複数のアンテナ素子は受信対象の電波の波長の1倍以上の間隔で配置され、
     前記複数の接続経路の経路長は、前記複数のアンテナユニットの間で前記複数の指向性ビームの角度方向が互いに異なるように設定されている、
    ことを特徴とするアンテナ装置。
    2. The antenna device according to claim 1,
    the plurality of antenna elements are arranged at intervals equal to or greater than one wavelength of radio waves to be received so that the antenna unit has a plurality of directional beams;
    the path lengths of the plurality of connection paths are set such that the angular directions of the plurality of directional beams are different from each other among the plurality of antenna units;
    1. An antenna device comprising:
  3.  請求項2のアンテナ装置において、
     前記アンテナユニットの複数のアンテナ素子の間に当該アンテナユニット以外の他のアンテナユニットのアンテナ素子が位置するように、前記複数のアンテナユニットが配置されている、
    ことを特徴とするアンテナ装置。
    In the antenna device of claim 2,
    The plurality of antenna units are arranged such that antenna elements of the antenna unit are located between the plurality of antenna elements of the antenna unit.
    1. An antenna device comprising:
  4.  請求項3のアンテナ装置において、
     前記複数のアンテナユニットにおける前記複数のアンテナ素子は1次元配置されている、
    ことを特徴とするアンテナ装置。
    In the antenna device of claim 3,
    The antenna elements in the antenna units are arranged one-dimensionally.
    1. An antenna device comprising:
  5.  請求項3のアンテナ装置において、
     前記複数のアンテナユニットにおける前記複数のアンテナ素子は2次元配置されている、
    ことを特徴とするアンテナ装置。
    In the antenna device of claim 3,
    The antenna elements in the antenna units are arranged two-dimensionally.
    1. An antenna device comprising:
  6.  請求項1のアンテナ装置において、
     前記受信対象の電波はミリ波である、ことを特徴とするアンテナ装置。
    2. The antenna device according to claim 1,
    4. The antenna device according to claim 1, wherein the radio waves to be received are millimeter waves.
  7.  無線電力伝送に用いられる受電装置であって、
     請求項1乃至6のいずれかのアンテナ装置と、
     前記複数のアンテナユニットのそれぞれに前記複数の接続経路からなる接続回路を介して接続された複数の整流回路と、
     前記複数の整流回路から出力された複数の直流電力を合成して出力する直流合成回路と、
    を備える、ことを特徴とする受電装置。
    A power receiving device used for wireless power transmission,
    An antenna device according to any one of claims 1 to 6,
    a plurality of rectifier circuits connected to the plurality of antenna units via connection circuits each including the plurality of connection paths;
    a DC combining circuit that combines and outputs the multiple DC powers output from the multiple rectifier circuits;
    A power receiving device comprising:
  8.  無線電力伝送システムであって、
     請求項7の受電装置と、
     前記受電装置に向けて無線電力伝送の電波を送信する送電装置と、
    を備える、ことを特徴とする無線電力伝送システム。
    A wireless power transmission system,
    The power receiving device according to claim 7 ;
    a power transmitting device that transmits radio waves for wireless power transmission to the power receiving device;
    A wireless power transmission system comprising:
  9.  通信に用いられる受信装置であって、
     請求項1乃至6のいずれかのアンテナ装置と、
     前記複数のアンテナユニットのそれぞれに前記複数の接続経路からなる接続回路を介して接続された複数の位相調整回路と、
     前記複数の位相調整回路から出力された複数の受信信号を同相で合成して出力する合成回路と、
    を備える、ことを特徴とする受信装置。
    A receiving device for use in communication, comprising:
    An antenna device according to any one of claims 1 to 6,
    a plurality of phase adjustment circuits connected to the plurality of antenna units via a connection circuit including the plurality of connection paths;
    a combining circuit that combines the plurality of received signals output from the plurality of phase adjustment circuits in phase and outputs the combined signal;
    A receiving device comprising:
  10.  通信に用いられる受信装置であって、
     請求項1乃至6のいずれかのアンテナ装置と、
     前記複数のアンテナユニットのそれぞれに前記複数の接続経路からなる接続回路を介して接続された複数のA/D変換器と、
     前記複数のA/D変換器から出力された複数の受信信号をデジタル処理で同相合成して出力する合成回路と、
    を備える、ことを特徴とする受信装置。
    A receiving device for use in communication, comprising:
    An antenna device according to any one of claims 1 to 6,
    a plurality of A/D converters connected to the plurality of antenna units via a connection circuit including the plurality of connection paths;
    a combining circuit that combines the plurality of received signals output from the plurality of A/D converters in phase by digital processing and outputs the combined signals;
    A receiving device comprising:
  11.  通信に用いられる受信装置であって、
     請求項1乃至6のいずれかのアンテナ装置と、
     前記複数のアンテナユニットのそれぞれに前記複数の接続経路からなる接続回路を介して接続された複数の受信機と、
     前記複数の受信機から出力された複数の受信信号に対してMIMO信号処理を行う信号処理部と、
    を備える、ことを特徴とする受信装置。
    A receiving device for use in communication, comprising:
    An antenna device according to any one of claims 1 to 6,
    a plurality of receivers connected to the plurality of antenna units via connection circuits each including the plurality of connection paths;
    A signal processing unit that performs MIMO signal processing on a plurality of received signals output from the plurality of receivers;
    A receiving device comprising:
  12.  請求項1乃至6のいずれかのアンテナ装置を有する受信装置と、
     前記受信装置との間で無線通信を行う送信装置と、
    を備える、ことを特徴とする通信システム。
    A receiving device having the antenna device according to any one of claims 1 to 6;
    A transmitting device that wirelessly communicates with the receiving device;
    A communication system comprising:
  13.  端末装置であって、
     請求項1乃至6のいずれかのアンテナ装置を有する受電装置又は受信装置を備える、
    ことを特徴とする端末装置。
    A terminal device,
    A power receiving device or a receiving device having the antenna device according to any one of claims 1 to 6.
    A terminal device comprising:
  14.  請求項13の端末装置において、
     当該端末装置は、IoTデバイスである、ことを特徴とする端末装置。
    The terminal device according to claim 13,
    The terminal device is an IoT device.
PCT/JP2023/005378 2022-09-30 2023-02-16 Antenna device, power reception device, reception device, terminal device, wireless power transmission system, and communication system WO2024070003A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-158740 2022-09-30
JP2022158740A JP7350961B1 (en) 2022-09-30 2022-09-30 Power receiving device, receiving device, terminal device, wireless power transmission system and communication system

Publications (1)

Publication Number Publication Date
WO2024070003A1 true WO2024070003A1 (en) 2024-04-04

Family

ID=88099158

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/005378 WO2024070003A1 (en) 2022-09-30 2023-02-16 Antenna device, power reception device, reception device, terminal device, wireless power transmission system, and communication system

Country Status (2)

Country Link
JP (1) JP7350961B1 (en)
WO (1) WO2024070003A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11234035A (en) * 1998-02-17 1999-08-27 Atr Kankyo Tekio Tsushin Kenkyusho:Kk Array antenna system for spectrum spread communication
WO2018168139A1 (en) * 2017-03-15 2018-09-20 ソニーモバイルコミュニケーションズ株式会社 Communication device
US20220059950A1 (en) * 2020-08-21 2022-02-24 The Charles Stark Draper Laboratory, Inc. Two-Dimensional Planar and Crossover-Free Beamforming Network Architecture

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11234035A (en) * 1998-02-17 1999-08-27 Atr Kankyo Tekio Tsushin Kenkyusho:Kk Array antenna system for spectrum spread communication
WO2018168139A1 (en) * 2017-03-15 2018-09-20 ソニーモバイルコミュニケーションズ株式会社 Communication device
US20220059950A1 (en) * 2020-08-21 2022-02-24 The Charles Stark Draper Laboratory, Inc. Two-Dimensional Planar and Crossover-Free Beamforming Network Architecture

Also Published As

Publication number Publication date
JP7350961B1 (en) 2023-09-26
JP2024052187A (en) 2024-04-11

Similar Documents

Publication Publication Date Title
US10804985B2 (en) Electronic device and communication method
CN110391506B (en) Antenna system, feed network reconstruction method and device
CA2978489C (en) Beam forming using an antenna arrangement
EP2816664B1 (en) Antenna system
EP3255730B1 (en) Array antenna arrangement
US20040077379A1 (en) Wireless transmitter, transceiver and method
Black Holographic beam forming and MIMO
EP3227965B1 (en) Cellular array with steerable spotlight beams
EP3469727B1 (en) Flexible reconfiguration of an antenna arrangement
US10944173B2 (en) Antenna array and arrangement comprising an antenna array and a network node
US11329399B2 (en) Antenna arrangement for dual-polarization beamforming
CN113036456A (en) Antenna device and related equipment
US20190020123A1 (en) An antenna arrangement and method for beamforming
Siachalou et al. On the design of switched-beam wideband base stations
CN107667480B (en) Transmission apparatus, method thereof, and computer-readable medium
US10644396B2 (en) Antenna structure for beamforming
CN113906686A (en) Adjacent beam determination
Aslan et al. Active multiport subarrays for 5G communications
CN213184604U (en) Antenna system
KR20220115431A (en) Antenna structure and electronic device including the same
WO2024070003A1 (en) Antenna device, power reception device, reception device, terminal device, wireless power transmission system, and communication system
WO2018061903A1 (en) Communication apparatus, communication terminal, communication method, and recording medium having communication program recorded thereon
CN116315601A (en) Antenna and communication system
JP2001313525A (en) Base station antenna for mobile communication
GB2382229A (en) Adaptive antenna array with improved spatial diversity