US10644396B2 - Antenna structure for beamforming - Google Patents

Antenna structure for beamforming Download PDF

Info

Publication number
US10644396B2
US10644396B2 US15/515,327 US201715515327A US10644396B2 US 10644396 B2 US10644396 B2 US 10644396B2 US 201715515327 A US201715515327 A US 201715515327A US 10644396 B2 US10644396 B2 US 10644396B2
Authority
US
United States
Prior art keywords
antenna
antenna elements
elements
antenna structure
beamforming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US15/515,327
Other versions
US20180248263A1 (en
Inventor
Sven Petersson
Fredrik Athley
Martin Johansson
Andreas Nilsson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Telefonaktiebolaget LM Ericsson AB
Original Assignee
Telefonaktiebolaget LM Ericsson AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Telefonaktiebolaget LM Ericsson AB filed Critical Telefonaktiebolaget LM Ericsson AB
Assigned to TELEFONAKTIEBOLAGET LM ERICSSON (PUBL) reassignment TELEFONAKTIEBOLAGET LM ERICSSON (PUBL) ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ATHLEY, FREDRIK, JOHANSSON, MARTIN, NILSSON, ANDREAS, PETERSSON, SVEN
Publication of US20180248263A1 publication Critical patent/US20180248263A1/en
Application granted granted Critical
Publication of US10644396B2 publication Critical patent/US10644396B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/2682Time delay steered arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • H01Q21/245Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction provided with means for varying the polarisation 
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/40Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements
    • H01Q5/42Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements using two or more imbricated arrays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/0478Special codebook structures directed to feedback optimisation
    • H04B7/0479Special codebook structures directed to feedback optimisation for multi-dimensional arrays, e.g. horizontal or vertical pre-distortion matrix index [PMI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0426Power distribution
    • H04B7/043Power distribution using best eigenmode, e.g. beam forming or beam steering

Definitions

  • the technology disclosed herein relates generally to the field of wireless communication, and in particular to an antenna structure for use in wireless communication.
  • a large variety of requirements for the next generation of mobile communications system implies that frequency bands at many different carrier frequencies will be needed. For example, low bands will be needed for achieving sufficient coverage and higher bands (e.g. mmW, i.e. near and above 30 GHz) will be needed for reaching to the required capacity.
  • mmW transmission/reception point
  • UE user equipment
  • 5G faces many challenges and research is made within various areas.
  • One overall goal is, as indicated above, to increase capacity, e.g. since the number of users and also types of services increase, wherein some services require much of the system capacity.
  • An objective of the present disclosure is to address the above-mentioned increases in user and service types in wireless communication systems.
  • a particular objective is to provide an antenna architecture for use in meeting the need for increased capacity. This objective and others are achieved by antenna structure and use thereof according to the appended independent claims, and by the embodiments according to the dependent claims.
  • the objective is according to an aspect achieved by an antenna structure for beamforming.
  • the antenna structure comprises a first set of antenna elements connected by a first analog distribution network to a first baseband chain and a second set of antenna elements connected by a second analog distribution network to a second baseband chain.
  • the first set of antenna elements are arranged interleaved with the second set of antenna elements and the antenna elements of the first and second sets are designed for use on same carrier frequency.
  • the antenna structure provides several advantages. For instance, by this design of the antenna structure, the element separation can be increased without increasing the antenna aperture, i.e. without increasing the size of the antenna structure, and an increase in capacity for a given antenna size is enabled. Further, the design enables improvement for user-specific beamforming.
  • FIG. 1 illustrates different antenna array panels.
  • FIG. 2 illustrates a scenario wherein different antenna array panels serve different users.
  • FIG. 3 illustrates graph over capacity versus element separation.
  • FIG. 4 illustrates how SINR depends on beamforming.
  • FIGS. 5 a and 5 b illustrate a prior art solution and an embodiment of an antenna structure in accordance with the present teachings, respectively.
  • FIGS. 6 a and 6 b illustrate a prior art solution and an embodiment of an antenna structure in accordance with the present teachings, respectively.
  • analog beamforming is the most flexible solution but also the most expensive since a large number of radios and baseband chains is required.
  • Analog beamforming is the least flexible but cheaper than the digital beamforming, e.g. in view of manufacturing costs owing to a reduced number of required radio and baseband chains.
  • Hybrid beamforming is a compromise between the analog and digital beamforming.
  • 3GPP 3 rd Generation Partnership Project
  • NR New Radio
  • FIG. 1 illustrates two exemplary antenna structures with two antenna panels 1 a , 1 b ; 2 a , 2 b each.
  • the left-most antenna panels 1 a , 1 b are two-dimensional panels, while the right-most antenna panels 2 a , 2 b are one-dimensional panels.
  • An antenna panel is a rectangular antenna array of dual-polarized elements with typically one transmit/receive unit (TXRU) per polarization, that is, each antenna panel 1 a , 1 b ; 2 a , 2 b is connected to one TXRU per polarization.
  • TXRU transmit/receive unit
  • An analog distribution network with phase shifters is used to steer the beam of each panel 1 a , 1 b ; 2 a , 2 b .
  • Multiple antenna panels can be stacked next to each other and digital beamforming can be performed across the panels.
  • FIG. 2 illustrates a scenario wherein different antenna array panels serve different users.
  • One expected feature for NR is Multi-User Multiple-Input and Multiple-Output (MU-MIMO).
  • MU-MIMO Multi-User Multiple-Input and Multiple-Output
  • a radio access point such as a base station, eNB or gNB.
  • hybrid beamforming is used for a multi-panel antenna architecture (e.g. as shown in FIGS. 1 and 2 )
  • each antenna panel will typically be used to generate a narrow beam B 1 , B 2 for a respective UE 3 a , 3 b .
  • precoding can be applied over multiple panels.
  • each panel 1 a , 1 b ; 2 a , 2 b is typically located close to each other, in particular a half wavelength, ⁇ /2, apart, in order to reduce grating lobes.
  • Simulation results performed by the inventors of the present invention showed that UE-specific beamforming performance is worse for elements closely spaced in the vertical dimension compared to elements widely spaced in the vertical dimension in some important scenarios.
  • an antenna structure wherein elements that belong to different panels are interleaved in the vertical dimension and connected to different baseband chains.
  • This design is made in order to increase the element separation without increasing the antenna aperture.
  • the inventive antenna structure comprises interleaving a first set of elements connected by an analog distribution network to a baseband chain with a second set of elements connected by another analog distribution network to another baseband chain.
  • FIG. 3 illustrates graph over capacity versus element separation for three different sizes of one-dimensional vertical antenna panels 2 c , 2 d , 2 e .
  • the graph illustrates how the downlink capacity depends on the element separation for the vertical column arrays 2 c , 2 d , 2 e of sizes 2 ⁇ 1, 4 ⁇ 1 and 8 ⁇ 1, respectively.
  • CRSs cell reference signals
  • every second element in the eight element array 2 e could be removed without any significant loss in performance.
  • every second element in e.g. the eight element array 2 e is connected to a different baseband chain and via a different analog distribution networks than the remaining four elements.
  • FIG. 4 describes the above mentioned phenomena.
  • a first scenario is shown at left-hand side and a second scenario is shown at the right-hand side.
  • a narrow (0.5 ⁇ ) element separation in the vertical dimension is used
  • a large (1 ⁇ ) element separation in the vertical dimension is used.
  • the received power of the served UE 3 will be similar in both cases, however, as can be seen by the respective beams B 3 and B 4 a , B 4 b , the interference generated towards other users is much less in the second scenario.
  • the reason for this is that half of the energy (beam B 4 a ) is transmitted in to the sky, i.e. in a direction where there are no users.
  • the study performed by the inventors showed that the best element separation is 0.5 ⁇ .
  • the reason for this is that the grating lobes for this case, i.e. horizontal UE-specific beamforming with large horizontal element separation, will end up in neighboring cells and hence generates interference anyway. So, as a conclusion drawn based on the study, it is beneficial to use an element separation of about 0.5 ⁇ in the horizontal dimension but a large element separation (e.g. at least 0.8 ⁇ ) in the vertical dimension in order to maximize the performance for some specific cases, e.g. UE-specific beamforming.
  • FIG. 5 b illustrates an embodiment according to the present teachings
  • FIG. 5 a shows a prior art solution for comparison.
  • FIG. 5 b An embodiment of an antenna structure 10 according to the present teachings is illustrated in FIG. 5 b for a one-dimensional panel with four dual-polarized elements, but it is noted that the teachings may be applied for panels with any number of elements, and also for two dimensional panels. If digital precoding is applied over the respective baseband chains (BB) 11 a , 11 b ; 5 a , 5 b the performance will be the same for the two cases (prior art case of FIG. 5 a and the embodiment of FIG. 5 b according to the present teachings). However, as often will be the case, when no precoding is applied over the different baseband chains 11 a , 11 b ; 5 a , 5 b the embodiments according to the present teachings will give better performance.
  • BB baseband chains
  • the antenna structure 10 has a vertical element separation d v that is larger than what is conventionally used.
  • a first baseband chain 11 a is connected to a first and a second antenna element 12 a , 12 b for transmission of a first signal S 1 .
  • a second baseband chain 11 b is connected to a third and a fourth antenna element 13 a , 13 b for transmission of a second signal S 2 .
  • the four antenna elements 12 a , 12 b , 13 a , 13 b are arranged in an interleaved manner in the antenna structure 10 .
  • every second antenna element is connected to the first baseband chain 11 a
  • the remaining antenna elements are connected to the second baseband chain 11 b .
  • the first and second signals use the same carrier signal (same frequency).
  • the two baseband chains 5 a ; 5 b use antenna elements 6 a , 6 b ; 7 a , 7 b separated in the vertical direction by a distance of ⁇ /2, and they are not interleaved with each other, but instead gathered in respective groups.
  • FIG. 6 b illustrates an embodiment according to the present teachings
  • FIG. 6 a shows a prior art solution for comparison.
  • FIG. 6 b illustrates another embodiment of an antenna structure in accordance with the present teachings.
  • the antenna structure 20 comprises a two-dimensional antenna panel wherein the antenna elements 21 a , 21 b , 21 c , 21 d , 21 e , 21 f of a first set are interleaved with antenna elements 22 a , 22 b , 22 c , 22 d , 22 e , 22 f of a second set in the vertical dimension in order to increase the vertical element separation d v .
  • the antenna elements are not interleaved in the horizontal dimension in order to keep an optimal horizontal antenna element separation d h , preferably of about 0.5 ⁇ , or at least less than 0.7 ⁇ .
  • the antenna elements 21 a , 21 b , 21 c , 21 d , 21 e , 21 f of the first set are connected to a first baseband chain 23 a via a first analog distribution network 24 a .
  • the antenna elements 22 a , 22 b , 22 c , 22 d , 22 e , 22 f of the second set are connected to a second baseband chain 23 b via a second analog distribution network 24 b .
  • This new antenna design may be compared to the current antenna design shown in FIG. 6 a comprising two different antenna panels 5 a , 5 b stacked next to each other and fed by a respective baseband chain.
  • the antenna structure 10 , 20 according to the present teachings allow an increased antenna element separation in the vertical dimension without an increase of antenna aperture, and with an increase in the capacity in a communication system for a given antenna size.
  • the antenna structure 10 , 20 for beamforming comprises a first set of antenna elements 12 a , 12 b ; 21 a , 21 b , 21 c , 21 d , 21 e , 21 f connected by a first analog distribution network 14 a ; 24 a to a first baseband chain 11 a ; 23 a.
  • the antenna structure 10 , 20 comprises a second set of antenna elements 13 a , 13 b ; 22 a , 22 b , 22 c , 22 d , 22 e , 22 f connected by a second analog distribution network 14 b ; 24 b to a second baseband chain 11 b ; 23 b.
  • the first set of antenna elements 12 a , 12 b ; 21 a , 21 b , 21 c , 21 d , 21 e , 21 f are arranged interleaved with the second set of antenna elements 13 a , 13 b ; 22 a , 22 b , 22 c , 22 d , 22 e , 22 f and all antenna elements (i.e. the antenna elements of the first and second sets) are designed for use on same carrier frequency.
  • the antenna structure 10 , 20 may be a one-dimensional or two-dimensional antenna panel (i.e. a rectangular antenna array) and the antenna elements may, for instance, comprise dual-polarized elements.
  • the analog distribution network 14 a , 24 a , 14 b , 24 b may, for instance, comprise phase shifters for beam steering and amplifiers (as illustrated in FIG. 5 b ).
  • the vertical distance, d v , between two consecutive antenna elements 12 a , 12 b ; 21 a , 21 b , 21 c , 21 d , 21 e , 21 f of the first set is larger than 0.5 ⁇ and/or the vertical distance, d v , between two consecutive antenna elements 13 a , 13 b ; 22 a , 22 b , 22 c , 22 d , 22 e , 22 f of the second set is larger than 0.5 ⁇ .
  • the vertical distance, d v , between two consecutive antenna elements 12 a , 12 b ; 21 a , 21 b , 21 c , 21 d , 21 e , 21 f of the first set and between two consecutive antenna elements 13 a , 13 b ; 22 a , 22 b , 22 c , 22 d , 22 e , 22 f of the second set is at least 0.8 ⁇ .
  • the horizontal distance, d h , between two consecutive antenna elements 12 a , 12 b ; 21 a , 21 b , 21 C, 21 d , 21 e , 21 f of the first set and also between two consecutive antenna elements 13 a , 13 b ; 22 a , 22 b , 22 c , 22 d , 22 e , 22 f of the second set is less than 0.7 ⁇ .
  • all antenna elements are designed for use on same carrier frequency. In some embodiments, this is achieved by all the antenna elements 12 a , 12 b ; 21 a , 21 b , 21 c , 21 d , 21 e , 21 f of the first set and the antenna elements 13 a , 13 b ; 22 a , 22 b , 22 c , 22 d , 22 e , 22 f of the second set being dual-polarized elements.
  • the antenna elements 12 a , 12 b ; 21 a , 21 b , 21 c , 21 d , 21 e , 21 f of the first set and the antenna elements 13 a , 13 b ; 22 a , 22 b , 22 c , 22 d , 22 e , 22 f of the second set are arranged in a two dimensional antenna panel.
  • the antenna elements 12 a , 12 b ; 21 a , 21 b , 21 c , 21 d , 21 e , 21 f of the first set and the antenna elements 13 a , 13 b ; 22 a , 22 b , 22 c , 22 d , 22 e , 22 f of the second set are arranged in a one dimensional antenna panel.
  • the antenna structure 10 , 20 as has been described may be used for communication device 3 specific beamforming.
  • no precoding is applied simultaneously over the first and second baseband chains 11 a , 11 b ; 23 a , 23 b for a (same) layer.
  • different signals are sent on the first and second sets of antenna elements. In other embodiments, the same signal may be sent on all antenna elements.

Abstract

An antenna structure (10, 20) for beamforming is disclosed. The antenna structure (10, 20) comprises: a first set of antenna elements (12 a, 12 b; 21 a, 21 b, 21 c, 21 d, 21 e, 21 f) connected by a first analog distribution network (14 a; 24 a) to a first baseband chain (11 a; 23 a), and a second set of antenna elements (13 a, 13 b; 22 a, 22 b, 22 c, 22 d, 22 e, 22 f) connected by a second analog distribution network (14 b; 24 b) to a second baseband chain (11 b; 23 b), wherein the first set of antenna elements (12 a, 12 b; 21 a, 21 b, 21 c, 21 d, 21 e, 21 f) are arranged interleaved with the second set of antenna elements (13 a, 13 b; 22 a, 22 b, 22 c, 22 d, 22 e, 22 f) and wherein the antenna elements of the first and second sets are designed for use on same carrier frequency.

Description

CROSS-REFERENCE TO RELATED APPLICATION(S)
This application is a 35 U.S.C. § 371 National Stage of International Patent Application No. PCT/EP2017/054462, filed Feb. 27, 2017, designating the United States.
TECHNICAL FIELD
The technology disclosed herein relates generally to the field of wireless communication, and in particular to an antenna structure for use in wireless communication.
BACKGROUND
A large variety of requirements for the next generation of mobile communications system (5G) implies that frequency bands at many different carrier frequencies will be needed. For example, low bands will be needed for achieving sufficient coverage and higher bands (e.g. mmW, i.e. near and above 30 GHz) will be needed for reaching to the required capacity. At high frequencies the propagation properties are more challenging and beamforming both at the transmission/reception point (TRP) and at a communication device (exemplified by user equipment, UE, in the following) might be required to reach sufficient link budget.
5G faces many challenges and research is made within various areas. One overall goal is, as indicated above, to increase capacity, e.g. since the number of users and also types of services increase, wherein some services require much of the system capacity.
SUMMARY
An objective of the present disclosure is to address the above-mentioned increases in user and service types in wireless communication systems. A particular objective is to provide an antenna architecture for use in meeting the need for increased capacity. This objective and others are achieved by antenna structure and use thereof according to the appended independent claims, and by the embodiments according to the dependent claims.
The objective is according to an aspect achieved by an antenna structure for beamforming. The antenna structure comprises a first set of antenna elements connected by a first analog distribution network to a first baseband chain and a second set of antenna elements connected by a second analog distribution network to a second baseband chain. The first set of antenna elements are arranged interleaved with the second set of antenna elements and the antenna elements of the first and second sets are designed for use on same carrier frequency.
The antenna structure provides several advantages. For instance, by this design of the antenna structure, the element separation can be increased without increasing the antenna aperture, i.e. without increasing the size of the antenna structure, and an increase in capacity for a given antenna size is enabled. Further, the design enables improvement for user-specific beamforming.
Further features and advantages of the embodiments of the present teachings will become clear upon reading the following description and the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 illustrates different antenna array panels.
FIG. 2 illustrates a scenario wherein different antenna array panels serve different users.
FIG. 3 illustrates graph over capacity versus element separation.
FIG. 4 illustrates how SINR depends on beamforming.
FIGS. 5a and 5b illustrate a prior art solution and an embodiment of an antenna structure in accordance with the present teachings, respectively.
FIGS. 6a and 6b illustrate a prior art solution and an embodiment of an antenna structure in accordance with the present teachings, respectively.
DETAILED DESCRIPTION
In the following description, for purposes of explanation and not limitation, specific details are set forth such as particular architectures, interfaces, techniques, etc. in order to provide a thorough understanding. In other instances, detailed descriptions of well-known devices, circuits, and methods are omitted so as not to obscure the description with unnecessary detail. Same reference numerals refer to same or similar elements throughout the description.
With a goal of finding ways to meet the capacity demand, some research has been made by the present inventors. In particular, beamforming and related issues such as antenna panels, in particular design and performance thereof, were studied.
There are basically three different implementations of beamforming, both at a transmission/reception point (TRP) and at the UE: analog beamforming, digital beamforming and hybrid beamforming. Each implementation has its advantages and disadvantages. Digital beamforming is the most flexible solution but also the most expensive since a large number of radios and baseband chains is required. Analog beamforming is the least flexible but cheaper than the digital beamforming, e.g. in view of manufacturing costs owing to a reduced number of required radio and baseband chains. Hybrid beamforming is a compromise between the analog and digital beamforming. One type of hybrid beamforming antenna architecture that has been agreed to be studied in 3rd Generation Partnership Project (3GPP) for the New Radio (NR) access technology in 5G, is the concept of antenna panels.
FIG. 1 illustrates two exemplary antenna structures with two antenna panels 1 a, 1 b; 2 a, 2 b each. The left-most antenna panels 1 a, 1 b are two-dimensional panels, while the right-most antenna panels 2 a, 2 b are one-dimensional panels. An antenna panel is a rectangular antenna array of dual-polarized elements with typically one transmit/receive unit (TXRU) per polarization, that is, each antenna panel 1 a, 1 b; 2 a, 2 b is connected to one TXRU per polarization. An analog distribution network with phase shifters is used to steer the beam of each panel 1 a, 1 b; 2 a, 2 b. Multiple antenna panels can be stacked next to each other and digital beamforming can be performed across the panels.
FIG. 2 illustrates a scenario wherein different antenna array panels serve different users. One expected feature for NR is Multi-User Multiple-Input and Multiple-Output (MU-MIMO). This means that multiple UEs 3 a, 3 b can be served simultaneously from one TRP 4, e.g. a radio access point such as a base station, eNB or gNB. In case of, for instance, hybrid beamforming is used for a multi-panel antenna architecture (e.g. as shown in FIGS. 1 and 2), each antenna panel will typically be used to generate a narrow beam B1, B2 for a respective UE 3 a, 3 b. In this case there will be no digital precoding over the multiple antenna panels 1 a, 1 b. However, if only one UE is served at a time, then precoding can be applied over multiple panels.
For antenna array structures having multiple panels 1 a, 1 b; 2 a, 2 b with analog beamforming within the panels, the elements within each panel 1 a, 1 b; 2 a, 2 b is typically located close to each other, in particular a half wavelength, λ/2, apart, in order to reduce grating lobes. Simulation results performed by the inventors of the present invention showed that UE-specific beamforming performance is worse for elements closely spaced in the vertical dimension compared to elements widely spaced in the vertical dimension in some important scenarios.
Briefly, based on the above findings, an antenna structure is provided, wherein elements that belong to different panels are interleaved in the vertical dimension and connected to different baseband chains. This design is made in order to increase the element separation without increasing the antenna aperture. The inventive antenna structure comprises interleaving a first set of elements connected by an analog distribution network to a baseband chain with a second set of elements connected by another analog distribution network to another baseband chain. By this design, an increase in the element separation for the signal transmitted from each baseband chain is obtained, thereby improving the UE-specific beamforming performance for some important scenarios.
The earlier mentioned simulations were performed by the inventors in order to investigate gains with UE-specific beamforming. The simulation results showed that the element separation has a large impact on the system performance.
FIG. 3 illustrates graph over capacity versus element separation for three different sizes of one-dimensional vertical antenna panels 2 c, 2 d, 2 e. The graph illustrates how the downlink capacity depends on the element separation for the vertical column arrays 2 c, 2 d, 2 e of sizes 2×1, 4×1 and 8×1, respectively. The simulations were performed for an urban flat scenario, and in the simulations cell reference signals (CRSs) were transmitted on the element patterns, which are used to define the cell coverage. As can be seen in the FIG. 3, relatively large element separations (1-2λ) give much better performance than an element separation of around 0.5, which is conventionally used in an array intended for UE-specific beamforming. For example, when going from an eight element array 2 e with 0.5 element separation to a four element array 2 d with 1λ separation (black arrow in the figure) the system capacity only reduces from about 505 bps/m2 to about 480 bps/m2. This corresponds to a capacity loss of about 5%. This means that every second element in the eight element array 2 e could be removed without any significant loss in performance. According to an embodiment of the present teachings, every second element in e.g. the eight element array 2 e is connected to a different baseband chain and via a different analog distribution networks than the remaining four elements.
A reason that larger element separations give better performance than smaller element separations for elevation UE-specific beamforming is that the larger element separation is, the narrower the UE-specific beam is obtained. The narrower the UE-specific beam is, the less power will interfere with other UEs. Of course for the large element separations a grating lobe will also occur which will generate interference, however, for elevation beamforming this grating lobe typically ends up towards the sky and hence does not generate any interference towards other users. Similar results were obtained regardless of the number of elements in the arrays.
FIG. 4 describes the above mentioned phenomena. In the FIG. 4, a first scenario is shown at left-hand side and a second scenario is shown at the right-hand side. In the first scenario a narrow (0.5λ) element separation in the vertical dimension is used, and in the second scenario, a large (1λ) element separation in the vertical dimension is used. The received power of the served UE 3 will be similar in both cases, however, as can be seen by the respective beams B3 and B4 a, B4 b, the interference generated towards other users is much less in the second scenario. The reason for this is that half of the energy (beam B4 a) is transmitted in to the sky, i.e. in a direction where there are no users.
For the horizontal dimension, the study performed by the inventors showed that the best element separation is 0.5λ. The reason for this is that the grating lobes for this case, i.e. horizontal UE-specific beamforming with large horizontal element separation, will end up in neighboring cells and hence generates interference anyway. So, as a conclusion drawn based on the study, it is beneficial to use an element separation of about 0.5λ in the horizontal dimension but a large element separation (e.g. at least 0.8λ) in the vertical dimension in order to maximize the performance for some specific cases, e.g. UE-specific beamforming.
FIG. 5b illustrates an embodiment according to the present teachings, and FIG. 5a shows a prior art solution for comparison.
An embodiment of an antenna structure 10 according to the present teachings is illustrated in FIG. 5b for a one-dimensional panel with four dual-polarized elements, but it is noted that the teachings may be applied for panels with any number of elements, and also for two dimensional panels. If digital precoding is applied over the respective baseband chains (BB) 11 a, 11 b; 5 a, 5 b the performance will be the same for the two cases (prior art case of FIG. 5a and the embodiment of FIG. 5b according to the present teachings). However, as often will be the case, when no precoding is applied over the different baseband chains 11 a, 11 b; 5 a, 5 b the embodiments according to the present teachings will give better performance. There are many different scenarios where there will be no precoding over the different baseband chains. One example is when one panel is used for beam searching, and one panel is used for serving a certain UE. Another example is when each panel is used to serve a different UE simultaneously, i.e. MU-MIMO.
The antenna structure 10 has a vertical element separation dv that is larger than what is conventionally used. A first baseband chain 11 a is connected to a first and a second antenna element 12 a, 12 b for transmission of a first signal S1. A second baseband chain 11 b is connected to a third and a fourth antenna element 13 a, 13 b for transmission of a second signal S2. The four antenna elements 12 a, 12 b, 13 a, 13 b are arranged in an interleaved manner in the antenna structure 10. In particular, every second antenna element is connected to the first baseband chain 11 a, and the remaining antenna elements are connected to the second baseband chain 11 b. The first and second signals use the same carrier signal (same frequency).
In the prior art solution, the two baseband chains 5 a; 5 b use antenna elements 6 a, 6 b; 7 a, 7 b separated in the vertical direction by a distance of λ/2, and they are not interleaved with each other, but instead gathered in respective groups.
FIG. 6b illustrates an embodiment according to the present teachings, and FIG. 6a shows a prior art solution for comparison.
FIG. 6b illustrates another embodiment of an antenna structure in accordance with the present teachings. The antenna structure 20 comprises a two-dimensional antenna panel wherein the antenna elements 21 a, 21 b, 21 c, 21 d, 21 e, 21 f of a first set are interleaved with antenna elements 22 a, 22 b, 22 c, 22 d, 22 e, 22 f of a second set in the vertical dimension in order to increase the vertical element separation dv. However, the antenna elements are not interleaved in the horizontal dimension in order to keep an optimal horizontal antenna element separation dh, preferably of about 0.5λ, or at least less than 0.7λ. The antenna elements 21 a, 21 b, 21 c, 21 d, 21 e, 21 f of the first set are connected to a first baseband chain 23 a via a first analog distribution network 24 a. Correspondingly, the antenna elements 22 a, 22 b, 22 c, 22 d, 22 e, 22 f of the second set are connected to a second baseband chain 23 b via a second analog distribution network 24 b. This new antenna design may be compared to the current antenna design shown in FIG. 6a comprising two different antenna panels 5 a, 5 b stacked next to each other and fed by a respective baseband chain. As has been described, the antenna structure 10, 20 according to the present teachings allow an increased antenna element separation in the vertical dimension without an increase of antenna aperture, and with an increase in the capacity in a communication system for a given antenna size.
The various features and embodiments that have been described may be combined in different ways, examples of which are given in the following.
An antenna structure 10, 20 for beamforming is provided. The antenna structure 10, 20 comprises a first set of antenna elements 12 a, 12 b; 21 a, 21 b, 21 c, 21 d, 21 e, 21 f connected by a first analog distribution network 14 a; 24 a to a first baseband chain 11 a; 23 a.
The antenna structure 10, 20 comprises a second set of antenna elements 13 a, 13 b; 22 a, 22 b, 22 c, 22 d, 22 e, 22 f connected by a second analog distribution network 14 b; 24 b to a second baseband chain 11 b; 23 b.
In the antenna structure 10, 20, the first set of antenna elements 12 a, 12 b; 21 a, 21 b, 21 c, 21 d, 21 e, 21 f are arranged interleaved with the second set of antenna elements 13 a, 13 b; 22 a, 22 b, 22 c, 22 d, 22 e, 22 f and all antenna elements (i.e. the antenna elements of the first and second sets) are designed for use on same carrier frequency.
The antenna structure 10, 20 may be a one-dimensional or two-dimensional antenna panel (i.e. a rectangular antenna array) and the antenna elements may, for instance, comprise dual-polarized elements.
The analog distribution network 14 a, 24 a, 14 b, 24 b may, for instance, comprise phase shifters for beam steering and amplifiers (as illustrated in FIG. 5b ).
In various embodiments, the vertical distance, dv, between two consecutive antenna elements 12 a, 12 b; 21 a, 21 b, 21 c, 21 d, 21 e, 21 f of the first set is larger than 0.5λ and/or the vertical distance, dv, between two consecutive antenna elements 13 a, 13 b; 22 a, 22 b, 22 c, 22 d, 22 e, 22 f of the second set is larger than 0.5λ.
In various embodiments, the vertical distance, dv, between two consecutive antenna elements 12 a, 12 b; 21 a, 21 b, 21 c, 21 d, 21 e, 21 f of the first set and between two consecutive antenna elements 13 a, 13 b; 22 a, 22 b, 22 c, 22 d, 22 e, 22 f of the second set is at least 0.8λ.
In various embodiments, the horizontal distance, dh, between two consecutive antenna elements 12 a, 12 b; 21 a, 21 b, 21C, 21 d, 21 e, 21 f of the first set and also between two consecutive antenna elements 13 a, 13 b; 22 a, 22 b, 22 c, 22 d, 22 e, 22 f of the second set is less than 0.7λ.
In the antenna structure 10, 20 all antenna elements (i.e. the antenna elements of the first and second sets) are designed for use on same carrier frequency. In some embodiments, this is achieved by all the antenna elements 12 a, 12 b; 21 a, 21 b, 21 c, 21 d, 21 e, 21 f of the first set and the antenna elements 13 a, 13 b; 22 a, 22 b, 22 c, 22 d, 22 e, 22 f of the second set being dual-polarized elements.
In some embodiments, the antenna elements 12 a, 12 b; 21 a, 21 b, 21 c, 21 d, 21 e, 21 f of the first set and the antenna elements 13 a, 13 b; 22 a, 22 b, 22 c, 22 d, 22 e, 22 f of the second set are arranged in a two dimensional antenna panel. In other embodiments, the antenna elements 12 a, 12 b; 21 a, 21 b, 21 c, 21 d, 21 e, 21 f of the first set and the antenna elements 13 a, 13 b; 22 a, 22 b, 22 c, 22 d, 22 e, 22 f of the second set are arranged in a one dimensional antenna panel.
The antenna structure 10, 20 as has been described may be used for communication device 3 specific beamforming.
In an embodiment of such use, no precoding is applied simultaneously over the first and second baseband chains 11 a, 11 b; 23 a, 23 b for a (same) layer.
In an embodiment of such use, different signals are sent on the first and second sets of antenna elements. In other embodiments, the same signal may be sent on all antenna elements.
The invention has mainly been described herein with reference to a few embodiments. However, as is appreciated by a person skilled in the art, other embodiments than the particular ones disclosed herein are equally possible within the scope of the invention, as defined by the appended patent claims.

Claims (11)

The invention claimed is:
1. An antenna structure for beamforming, the antenna structure comprising:
at least two separate baseband chains, including a first baseband chain and a second baseband chain;
a first set of antenna elements connected by a first analog distribution network to the first baseband chain; and
a second set of antenna elements connected by a second analog distribution network to the second baseband chain that is separate from the first baseband chain, wherein
the first set of antenna elements are arranged interleaved with the second set of antenna elements, and
the antenna elements of the first and second sets are designed for use on same carrier frequency.
2. The antenna structure of claim 1, wherein the vertical distance, dv, between two consecutive antenna elements of the first set is larger than 0.5λ.
3. The antenna structure of claim 1, wherein the vertical distance, dv, between two consecutive antenna elements of the second set is larger than 0.5λ.
4. The antenna structure of claim 1, wherein the vertical distance, dv, between two consecutive antenna elements of the first set and between two consecutive antenna elements of the second set is at least 0.8λ.
5. The antenna structure as claimed in claim 4, wherein the horizontal distance, dh, between two consecutive antenna elements of the first set and between two consecutive antenna elements of the second set is less than 0.7λ.
6. The antenna structure of claim 1, wherein the antenna elements of the first set and the antenna elements of the second set comprises dual-polarized elements.
7. The antenna structure of claim 1, wherein the antenna elements of the first set and the antenna elements of the second set are arranged in a two dimensional antenna panel.
8. The antenna structure of claim 1, wherein the antenna elements of the first set and the antenna elements of the second set are arranged in a one dimensional antenna panel.
9. A method comprising:
using the antenna structure of claim 1, for communication device specific beamforming.
10. The method of claim 9, wherein no precoding is applied simultaneously over the first and second baseband chains for a layer.
11. The method of claim 9, wherein different signals are sent on the first and second sets of antenna elements.
US15/515,327 2017-02-27 2017-02-27 Antenna structure for beamforming Active 2037-09-19 US10644396B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2017/054462 WO2018153492A1 (en) 2017-02-27 2017-02-27 Antenna structure for beamforming

Publications (2)

Publication Number Publication Date
US20180248263A1 US20180248263A1 (en) 2018-08-30
US10644396B2 true US10644396B2 (en) 2020-05-05

Family

ID=58191430

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/515,327 Active 2037-09-19 US10644396B2 (en) 2017-02-27 2017-02-27 Antenna structure for beamforming

Country Status (4)

Country Link
US (1) US10644396B2 (en)
EP (1) EP3560107A1 (en)
CN (1) CN110326224A (en)
WO (1) WO2018153492A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11217897B1 (en) * 2018-09-06 2022-01-04 Rockwell Collins, Inc. Antenna system and method with a hybrid beamformer architecture
WO2021121567A1 (en) * 2019-12-17 2021-06-24 Telefonaktiebolaget Lm Ericsson (Publ) Control of transmission from an antenna panel
GB2602120A (en) * 2020-12-18 2022-06-22 British Telecomm Method of controlling a radio access point
GB2602117B (en) * 2020-12-18 2023-08-23 British Telecomm Method of controlling a radio access point

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3358287A (en) * 1965-01-06 1967-12-12 Brueckmann Helmut Broadband dual-polarized antenna
US20100227646A1 (en) 2009-03-03 2010-09-09 Hitachi Cable, Ltd. Mobile communication base station antenna
US20120319900A1 (en) 2010-02-08 2012-12-20 Telefonaktiebolaget Lm Ericsson(Publ) Antenna with adjustable beam characteristics
US20140050280A1 (en) 2012-08-14 2014-02-20 Samsung Electronics Co., Ltd Multi-user and single user mimo for communication systems using hybrid beam forming
US20150318622A1 (en) * 2014-05-01 2015-11-05 Raytheon Company Interleaved electronically scanned arrays
US20160219567A1 (en) 2015-01-22 2016-07-28 Korea Advanced Institute Of Science And Technology Joint pattern beam sectorization method and apparatuses performing the same
WO2016173633A1 (en) 2015-04-28 2016-11-03 Huawei Technologies Co., Ltd. Method and node in a wireless communication network
US20160365900A1 (en) 2015-06-15 2016-12-15 Samsung Electronics Co., Ltd. Apparatus and method for performing beamforming by using antenna array in wireless communication system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE364238T1 (en) * 2001-04-16 2007-06-15 Fractus Sa DOUBLE BAND DUAL POLARIZED GROUP ANTENNA
WO2013056393A1 (en) * 2011-10-19 2013-04-25 Telefonaktiebolaget L M Ericsson (Publ) Radio receiver for polarized antenna system
CN102751592B (en) * 2012-06-21 2015-03-11 华为技术有限公司 Multi-beam antenna array and multi-beam antenna

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3358287A (en) * 1965-01-06 1967-12-12 Brueckmann Helmut Broadband dual-polarized antenna
US20100227646A1 (en) 2009-03-03 2010-09-09 Hitachi Cable, Ltd. Mobile communication base station antenna
US20120319900A1 (en) 2010-02-08 2012-12-20 Telefonaktiebolaget Lm Ericsson(Publ) Antenna with adjustable beam characteristics
US20140050280A1 (en) 2012-08-14 2014-02-20 Samsung Electronics Co., Ltd Multi-user and single user mimo for communication systems using hybrid beam forming
US20150318622A1 (en) * 2014-05-01 2015-11-05 Raytheon Company Interleaved electronically scanned arrays
US20160219567A1 (en) 2015-01-22 2016-07-28 Korea Advanced Institute Of Science And Technology Joint pattern beam sectorization method and apparatuses performing the same
WO2016173633A1 (en) 2015-04-28 2016-11-03 Huawei Technologies Co., Ltd. Method and node in a wireless communication network
US20160365900A1 (en) 2015-06-15 2016-12-15 Samsung Electronics Co., Ltd. Apparatus and method for performing beamforming by using antenna array in wireless communication system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Arrays: Linear, Planar and Circular," Antenna Theory Analysis and Design, 3rd Edition, Constantine Balanis 2005, pp. 283 to 371. *
International Search Report and Written Opinion issued in International Application No. PCT/EP2017/054462, dated Nov. 10, 2017, 17 pages.

Also Published As

Publication number Publication date
CN110326224A (en) 2019-10-11
EP3560107A1 (en) 2019-10-30
WO2018153492A1 (en) 2018-08-30
US20180248263A1 (en) 2018-08-30

Similar Documents

Publication Publication Date Title
EP3488489B1 (en) Base station antenna system with enhanced array spacing
EP2332212B1 (en) Antenna arrangement for interference reduction and mimo communication
Rajagopal et al. Antenna array design for multi-gbps mmwave mobile broadband communication
EP0818059B1 (en) Wide antenna lobe
US20160261326A1 (en) Method and apparatus for providing elevation plane spatial beamforming
AU712400B2 (en) Method and apparatus for cellular radiotelephone base stations using selected multiple diversity reception
EP3035556B1 (en) Method and apparatus for transmitting common signal in hybrid beamforming
Black Holographic beam forming and MIMO
US10644396B2 (en) Antenna structure for beamforming
US20160149634A1 (en) Quad-polarized sector and dimensional antenna for high throughput
US10944173B2 (en) Antenna array and arrangement comprising an antenna array and a network node
WO2007091024A2 (en) Phased array antenna system with multiple beams
US10020866B2 (en) Wireless communication node with adaptive communication
EP3227965B1 (en) Cellular array with steerable spotlight beams
EP3469727B1 (en) Flexible reconfiguration of an antenna arrangement
WO2000064206A1 (en) Adaptive sectorization
CN111656611A (en) High gain and large bandwidth antenna including built-in differential feed scheme
EP2388926B1 (en) Device and method for transmission with multiple antennas
US10581501B2 (en) Flexible analog architecture for sectorization
Zetik et al. Antenna array configurations for terrestrial backhaul links at Ka-band frequencies
Sadri MAA evolution: Common access/backhaul reference platform

Legal Events

Date Code Title Description
AS Assignment

Owner name: TELEFONAKTIEBOLAGET LM ERICSSON (PUBL), SWEDEN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PETERSSON, SVEN;JOHANSSON, MARTIN;NILSSON, ANDREAS;AND OTHERS;SIGNING DATES FROM 20170302 TO 20170308;REEL/FRAME:042703/0528

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: ADVISORY ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4