WO2024069965A1 - Propagation environment fabricating device, propagation environment fabricating method, and propagation environment estimation system - Google Patents

Propagation environment fabricating device, propagation environment fabricating method, and propagation environment estimation system Download PDF

Info

Publication number
WO2024069965A1
WO2024069965A1 PCT/JP2022/036789 JP2022036789W WO2024069965A1 WO 2024069965 A1 WO2024069965 A1 WO 2024069965A1 JP 2022036789 W JP2022036789 W JP 2022036789W WO 2024069965 A1 WO2024069965 A1 WO 2024069965A1
Authority
WO
WIPO (PCT)
Prior art keywords
propagation environment
model
blocks
block
electromagnetic wave
Prior art date
Application number
PCT/JP2022/036789
Other languages
French (fr)
Japanese (ja)
Inventor
諒太郎 谷口
友規 村上
智明 小川
泰司 鷹取
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2022/036789 priority Critical patent/WO2024069965A1/en
Publication of WO2024069965A1 publication Critical patent/WO2024069965A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics

Definitions

  • This disclosure relates to a propagation environment creation device, a propagation environment creation method, and a propagation environment estimation system, and in particular to a propagation environment creation device, a propagation environment creation method, and a propagation environment estimation system that are suitable for estimating the environment of a wireless signal using a scale model.
  • ITU-R International Telecommunication Union's Radiocommunication Sector
  • Non-Patent Document 1 discloses a method of reproducing the propagation loss characteristics in a mobile communication environment using a scale model.
  • Scale models created for such a method may have a reflective surface treatment.
  • the scale model is subjected to a surface treatment that reflects visible light with a given reflectance.
  • the visible light emitted from a light-emitting element regarded as the transmitter is regarded as radio waves. Then, by observing the propagation of the visible light, it is possible to estimate the propagation of the radio waves.
  • the primary objective of this disclosure is to provide a propagation environment creation device that uses a scale model, which can reduce the creation time and easily perform surface reflection processing in order to solve the above-mentioned problems.
  • a second objective of this disclosure is to provide a method for creating a propagation environment using a scale model that can shorten the creation time and easily perform surface reflection processing.
  • a third objective of this disclosure is to provide a propagation environment estimation system that uses a scale model that can shorten the production time and easily perform surface reflection processing.
  • the first aspect is preferably a propagation environment creation device comprising a block group, a computer, and a lifting mechanism, the block group being formed of a plurality of blocks having an arbitrary reflection coefficient for electromagnetic waves, the computer being configured to perform a 3D model creation process for creating a 3D model of the target environment to be reproduced and a setting process for setting the height of each block based on the 3D model, and the lifting mechanism being configured to perform a change process for changing the height of each block based on the setting process.
  • the second aspect is a method for creating a propagation environment using a group of blocks formed of blocks having an arbitrary reflection coefficient for electromagnetic waves, and the method preferably includes a 3D model creation step for creating a 3D model of the target environment to be reproduced, a setting step for setting the height of each block based on the 3D model, and a modification step for modifying the height of each block based on the setting step.
  • the third aspect is a propagation environment estimation system including a scale model unit, a calculation unit, an elevation mechanism unit, an element mounter unit, a control unit, and a storage unit, in which the scale model unit includes a block group formed of a plurality of blocks having an arbitrary reflection coefficient for electromagnetic waves, the calculation unit is configured to perform a 3D model creation process for creating a 3D model based on a target environment and a setting process for setting the height of each block based on the 3D model, the elevation mechanism unit is configured to perform a modification process for changing the height of each block based on the setting process, the element mounter unit is configured to perform an installation process for installing an electromagnetic wave transmitter likened to a radio wave transmitting station and an electromagnetic wave receiver likened to a receiver in the block group, and the control unit is configured to perform an irradiation process for irradiating a measurement range set in the block group with the electromagnetic wave transmitter, a measurement process for measuring the electromagnetic wave intensity with the electromagnetic wave receiver, and a calibration process for
  • the first to third aspects of the present invention reduce the time required to create a scale model used to estimate the propagation environment, and facilitate surface reflection processing.
  • FIG. 1 is a perspective view of a scale model used in a conventional propagation environment estimation method.
  • 1 is a flowchart showing an estimation procedure in a conventional propagation environment estimation method.
  • 1A to 1C are diagrams illustrating a scale model before and after deformation in accordance with a first embodiment of the present disclosure.
  • 4 is a flowchart showing an estimation procedure in a propagation environment estimation method according to the first embodiment of the present disclosure.
  • 1 is a diagram illustrating an entire first lifting mechanism according to a first embodiment of the present disclosure.
  • FIG. FIG. 2 illustrates a portion of a first lifting mechanism according to the first embodiment of the present disclosure.
  • 1 is a flowchart showing a transformation procedure of the first scale model in accordance with the first embodiment of the present disclosure.
  • FIG. 1 is a perspective view of a scale model used in a conventional propagation environment estimation method.
  • 1A to 1C are diagrams illustrating a scale model before and after deformation in accordance with a first embodiment of the present
  • FIG. 1 is a first diagram illustrating a second scale model in accordance with the first embodiment of the present disclosure.
  • FIG. 13 is a second diagram showing the second scale model in accordance with the first embodiment of the present disclosure.
  • 13 is a flowchart showing a transformation procedure of the second scale model in accordance with the first embodiment of the present disclosure.
  • FIG. 11 is a first diagram illustrating a modified example of a block according to the first embodiment of the present disclosure.
  • FIG. 13 is a second diagram illustrating a modified example of a block according to the first embodiment of the present disclosure.
  • 4 is a flowchart showing the entire procedure of a propagation environment estimation method according to the first embodiment.
  • FIG. 14 is a block diagram for explaining the configuration of a propagation environment estimation system capable of continuously and fully automatically carrying out the series of processes shown in FIG. 13.
  • Fig. 1 is a perspective view of a scale model used in a conventional propagation environment estimation method.
  • Fig. 2 is a flowchart showing an estimation procedure in the conventional propagation environment estimation method. As shown in Fig. 2, in the propagation environment estimation method of this embodiment, the estimation of the propagation environment proceeds in the following procedure.
  • a scale model is a reproduction of an actual urban space, for example, at a scale of about 1/100.
  • Figure 2 shows an example in which an outdoor space is used as the target area, but the interior of a specific building may also be used as the target area.
  • a light source that acts as a radio wave transmission source.
  • a light-emitting diode or an incandescent light bulb can be used as the light source.
  • a light receiving element that acts as a radio wave receiver.
  • a photoresistor, photodiode, or phototransistor can be used as the light receiving element.
  • the light source is turned on and the light receiving level is measured by the light receiving element.
  • the white parts are the illuminated areas and the black parts are the non-illuminated areas. Also, the higher the brightness, the higher the light receiving level.
  • the light reception level data acquired in the previous step is calibrated to match the actual communication environment and the distance characteristics of the simulation results, and the light reception level is converted to radio wave reception level.
  • 3D printers or blocks are used.
  • these have the problem that it takes a lot of time just to create the shape. For example, it takes several tens of hours to create a city that spreads over an area of 100m x 100m at a scale ratio of about 1/20.
  • Fig. 3 is a diagram showing a scale model before and after deformation according to the first embodiment of the present disclosure.
  • the diagram on the left in Fig. 3 shows the scale model before deformation.
  • the diagram on the right in Fig. 3 shows the scale model before deformation. Numbers enclosed in boxes shown in Fig. 3 correspond to numbers shown in the flowchart in Fig. 4 described later.
  • the scale model 10 is a block group that includes a plurality of blocks 2.
  • the blocks 2 are rectangular parallelepiped blocks.
  • the surfaces of the blocks 2 are treated to have a reflective appearance. Examples of reflective treatments include plating, polishing, or applying a mirror film.
  • the reflection process is expected to involve processing that results in different reflectivities depending on the frequency band of the object being measured.
  • a scale model 10 is used to reproduce the target environment. That is, the target environment is reproduced by changing the relative height of each of the multiple blocks 2. The specific estimation procedure will be described later.
  • FIG. 4 is a flowchart showing the estimation procedure in the propagation environment estimation method according to the first embodiment of the present disclosure. As shown in FIG. 4, in the propagation environment estimation method of this embodiment, the estimation of the propagation environment proceeds in the following procedure.
  • step 100 a group of blocks is created. Specifically, a number of blocks 2 are created and laid out to create the group of blocks that make up the scale model 10.
  • the blocks 2 are rectangular parallelepipeds.
  • block 2 has an arbitrary reflection coefficient for visible light. Therefore, block 2 has a surface that is subjected to a reflection treatment. Examples of reflection treatments include plating, polishing, or attaching a mirror film.
  • step 102 a 3D model of the target environment to be reproduced is created.
  • This 3D model is created, for example, by a computer.
  • step 104 the height of each block is calculated.
  • the 3D model created in step 102 is mapped onto the scale model 10 created in step 100.
  • the height of each block 2 is set based on the mapping results.
  • step 106 the lifting mechanism is used to push up each block. This changes the height of each block 2 to the height set in step 104.
  • step 108 a propagation environment measurement is performed using visible light.
  • step 110 it is confirmed whether there are any other differences in the target environment that should be measured. Differences in the target environment are assumed to be, for example, the construction of a new building or cars parked on the road. If there are other differences that should be measured, the process returns to step 102 and the process is repeated for the relevant target environment. If there are no other differences that should be measured, the process proceeds to step 112.
  • step 112 all blocks are returned to their initial height. This resets the scale model 10 to its initial state.
  • the scale model of the present disclosure is formed by creating and combining multiple blocks of the same shape, and then changing the height of each block. In other words, the time required to create the entire scale model can be significantly reduced compared to the conventional method.
  • the scale model of the present disclosure is created by combining blocks that have been treated with a reflective surface. In other words, the reflective surface treatment is easier than in the conventional method.
  • [Modification of the first embodiment of the present disclosure] 5 is a diagram showing an entirety of the first lifting mechanism according to the first embodiment of the present disclosure.
  • the scale model 10a is a block group including a plurality of blocks 2a.
  • a lifting mechanism 9 is installed under the scale model 10a.
  • the lifting mechanism 9 is connected to the computer 4. Then, in steps 106 and 112, the computer 4 controls the height of each block 2a.
  • FIG. 6 is a diagram showing a part of the first lifting mechanism according to the first embodiment of the present disclosure.
  • the block 2a is connected to a gear 6 and a motor 8, and a bundle of multiple gears 6 and motors 8 constitutes the lifting mechanism 9.
  • the gear 6 is, for example, a rack gear.
  • the calculator 4 operates the corresponding gear 6 and motor 8 to lift and lower the corresponding block 2a.
  • FIG. 7 is a flowchart showing the deformation procedure of the first scale model according to the first embodiment of the present disclosure.
  • step 114 blocks with reflective surfaces are laid out.
  • block 2a is a rectangular parallelepiped.
  • block 2a has an arbitrary reflection coefficient for visible light. Therefore, block 2a has a reflective surface. Examples of reflective treatments include plating, polishing, or attaching a mirror film.
  • step 116 lifting mechanisms are attached to all blocks.
  • all blocks 2a are able to perform lifting and lowering operations.
  • step 118 the number of rotations of the motors attached to each block is determined by a computer, and a scale model is formed.
  • the height of each block 2a is determined according to the 3D model of the scale model to be formed.
  • the number of rotations of the motor required to change the height of each block 2a is calculated by a computer. Then, based on the calculation results, each motor is rotated to form the scale model.
  • the above-described deformation procedure requires only a few minutes to create a scale model.
  • conventional 3D printers require tens of hours to create a scale model.
  • the desired scale model can be created very quickly.
  • FIG. 8 is a first diagram showing a second scale model according to the first embodiment of the present disclosure.
  • the scale model 10b is a block group including a plurality of blocks 2b.
  • the scale model 10b is deformed by a block pushing-up device 12.
  • the block pushing-up device 12 is placed directly below the block 2 to be pushed up by an XY table 14. That is, in step 106, the height of the block 2 is controlled by the block pushing-up device 12.
  • FIG. 9 is a second diagram showing a second scale model according to the first embodiment of the present disclosure.
  • the diagram on the left of FIG. 9 is a diagram showing an operation for returning the formed scale model to its initial state.
  • the diagram on the right of FIG. 9 is a diagram showing the scale model returned to its initial state.
  • the scale model 10b has a top plate 16 on top.
  • the top plate 16 presses down evenly on the scale model 10b, returning the scale model 10b to its initial state. Note that the thing used here is not limited to a top plate, but anything that can uniformly press down the height of all the blocks that make up the scale model 10b will suffice.
  • FIG. 10 is a flowchart showing the deformation procedure of the second scale model according to the first embodiment of the present disclosure.
  • step 120 blocks with reflective surfaces are laid out.
  • block 2b is a rectangular parallelepiped with an arbitrary reflection coefficient for visible light. Therefore, block 2b has a reflective surface. Examples of reflective treatments include plating, polishing, or applying a mirror film.
  • step 122 a block lifting device is installed under the blocks. Then, in step 124, each block is lifted up by the block lifting device to form the desired scale model.
  • a top plate or the like is used to push down all the blocks to make the height of all the blocks uniform.
  • the scale model 10b is returned to its initial state.
  • the thing used here is not limited to a top plate, but anything that can push down the height of all the blocks that make up the scale model 10b uniformly will suffice.
  • the above-mentioned transformation procedure does not require the use of gears 6 and motors 8. In other words, the size of the entire device can be reduced. As a result, the second scale model can be formed as a high-resolution scale model at a lower cost than the first scale model.
  • FIG. 11 is a first diagram showing a modified example of a block according to the first embodiment of the present disclosure.
  • Block 2c is a triangular prism block whose base is a right-angled isosceles triangle.
  • Block 2c has an arbitrary reflection coefficient for visible light.
  • FIG. 12 is a second diagram showing a modified example of a block according to the first embodiment of the present disclosure.
  • Block 2d is a hexagonal prism block whose base is a regular hexagon.
  • Block 2d also has an arbitrary reflection coefficient for visible light.
  • the blocks according to this embodiment are not limited to rectangular parallelepipeds.
  • the bottom surface is not limited to a specific shape.
  • Fig. 13 is a flowchart showing all the steps of the propagation environment estimation method according to embodiment 1. The steps shown in Fig. 13 are started at the stage where information collection is completed for the actual target environment, such as the dimensions and locations of buildings and roads, the radio wave reflectance at main points, and the frequency of the radio waves to be used.
  • step 128 the target environment of the scale model to be created is set.
  • step 130 a 3D model of the target environment is created.
  • the 3D model is created based on information regarding the dimensions and placement of various structures and other objects that exist in the target environment.
  • This 3D model is created, for example, by a computer.
  • a scale model is formed.
  • a scale model is created by laying out blocks of the same shape, and the height of each block is changed to form the desired scale model. Details of the formation method are as described above.
  • a light source which is likened to a radio wave transmitting station
  • a light receiving element which is likened to a receiver
  • the light source is installed at a proposed installation location for the transmitting station on the scale model
  • the light receiving element is installed at a proposed installation location for the receiver on the scale model.
  • the light source and light receiving element may be installed manually or by a fully automated element mounter.
  • step 136 illumination of the scale model by the light source begins. If the light source is a light-emitting diode or an incandescent light bulb, this step involves turning on the light source.
  • the light reception level in the measurement range is measured in step 138.
  • a calibration process is performed. The values for each reception point determined by the calibration process are stored as information that represents the radio wave reception level in a planar manner.
  • Fig. 14 is a block diagram for explaining the configuration of a propagation environment estimation system capable of continuously and fully automatically carrying out the series of processes shown in Fig. 13.
  • the system shown in Fig. 14 includes a control device 20 and a storage device 22.
  • the control device 20 includes an arithmetic processing unit.
  • the storage device 22 stores a program executed by the arithmetic processing unit.
  • the control device 20 controls each part of the system shown in Fig. 14 by the arithmetic processing unit carrying out processes according to the above programs.
  • the storage device 22 stores various information about the target environment. This information includes the dimensions, locations, and radio wave reflectivity of buildings and roads. The storage device 22 also stores dimensional data for various elements that can be used in the scale model. Furthermore, the storage device 22 also stores the results of measurements performed using the scale model, that is, the surface reception level information obtained in the processing of step 138 above.
  • the system shown in FIG. 14 includes a computer 24.
  • the control device 20 reads various information from the storage device 22 and performs the process of step 128 above, that is, the process of setting the target environment.
  • the computer 24 reads information about the target environment from the storage device 22 and creates a 3D model. Then, based on the created 3D model, the computer 24 calculates the height of each block and sends it to the control device 20.
  • the control device 20 changes the height of each block so that it matches the received height.
  • the system shown in FIG. 14 includes a scale model 26.
  • the scale model 26 is formed from blocks that provide a reflection coefficient according to the frequency band for the light source used in the measurement. If a scale model for a different frequency band is required, the scale model included in the system is replaced with a block group that includes the corresponding blocks.
  • the system shown in FIG. 14 also has a lifting mechanism 27 that raises and lowers each block.
  • the lifting mechanism 27 changes the height of each block based on commands from the control device 20.
  • the system shown in FIG. 14 includes an element mounter 28.
  • the element mounter 28 has the function of installing elements that are planned to be used in the scale model at any position on the scale model.
  • an element that functions as a light source and an element that functions as a receiver are installed by the element mounter 28 according to instructions from the control device 20.
  • the element functioning as a receiver installed above receives light emitted from the element functioning as a light source.
  • the received light data is stored in the memory device 22.
  • the control device 20 can estimate the surface reception level of the radio waves generated in the measurement range by performing a calibration process on the received light data stored in the memory device 22.
  • the estimated reception level is stored in the memory device 22 as described above.
  • the propagation environment estimation method of this embodiment makes it possible to shorten the time required to create a scale model and easily perform surface reflection processing. Furthermore, the estimation method of this embodiment can significantly reduce the cost required for propagation estimation of the target environment.
  • the propagation environment estimation method of this embodiment can be carried out as a fully automatic procedure in a continuous manner. Therefore, according to this system, the work efficiency related to the propagation estimation of the target environment can be significantly improved.
  • the configuration shown in FIG. 14 is described as a system consisting of multiple devices, but the present disclosure is not limited to this.
  • the configuration shown in FIG. 14 may be a single device in which the illustrated elements are housed in a single housing.
  • the block group of the present disclosure is described as reflecting visible light, but the present disclosure is not limited to this.
  • what the block group reflects may be any electromagnetic wave that can be used to estimate the radio wave propagation environment.
  • the light source corresponds to an electromagnetic wave transmitter
  • the light receiving element corresponds to an electromagnetic wave receiver
  • the light receiving level corresponds to the electromagnetic wave intensity.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

The present disclosure relates to a propagation environment fabricating device, a propagation environment fabricating method, and a propagation environment estimation system suitable for utilizing a scale model to estimate an environment of a radio signal. The propagation environment fabricating device of the present disclosure comprises a block group, a computer, and a raising and lowering mechanism. The block group is formed from a plurality of blocks having an arbitrarily defined reflection coefficient with respect to electromagnetic waves. The computer is configured to implement 3D model creation processing for creating a 3D model of a target environment to be reproduced, and setting processing for setting a height of each block on the basis of the 3D model. The raising and lowering mechanism is configured to implement modification processing for modifying the height of each block on the basis of the setting processing.

Description

伝搬環境作製装置、伝搬環境作製方法および伝搬環境推定システムPropagation environment creation device, propagation environment creation method, and propagation environment estimation system
 この開示は、伝搬環境作製装置、伝搬環境作製方法および伝搬環境推定システムに係り、特に、スケールモデルを利用した無線信号の環境推定に適した伝搬環境作製装置、伝搬環境作製方法および伝搬環境推定システムに関する。 This disclosure relates to a propagation environment creation device, a propagation environment creation method, and a propagation environment estimation system, and in particular to a propagation environment creation device, a propagation environment creation method, and a propagation environment estimation system that are suitable for estimating the environment of a wireless signal using a scale model.
 近年では、無線通信デバイスの爆発的な普及に伴って、無線通信に関する需要が高まっている。一方で、無線通信に用い得る周波数資源は限られている。このため、既存の周波数に加えて、これまでは利用されていなかった周波数を利用することが必要となっている。新たな周波数帯を利用するにあたっては、サービスエリアにおける無線信号の伝搬特性や、新たな周波数帯の信号が他のシステムに与える干渉の影響などを事前に調査する必要が生ずる。 In recent years, the demand for wireless communication has increased with the explosive spread of wireless communication devices. At the same time, the frequency resources available for wireless communication are limited. For this reason, it has become necessary to utilize frequencies that have not been used before, in addition to existing frequencies. When using a new frequency band, it becomes necessary to investigate in advance the propagation characteristics of wireless signals in the service area and the impact of interference that signals in the new frequency band may have on other systems.
 このような要求の下、例えば、国際電気通信連合(ITU: International Telecommunication Union)の無線通信部門(ITU-R: ITU Radiocommunication Sector)では、実在のエリアで無線信号の伝搬特性を実測し、様々な測定結果から、伝搬モデルを策定する試みがなされている。しかし、この種の試みにおいては、未開拓の周波数についての測定結果が十分でないことや、伝搬モデルが十分に策定されていないことなどが課題となる。 In response to these demands, for example, the International Telecommunication Union's (ITU) Radiocommunication Sector (ITU-R) is attempting to measure the propagation characteristics of wireless signals in real areas and develop propagation models from various measurement results. However, these types of attempts face challenges such as insufficient measurement results for unexplored frequencies and insufficient development of propagation models.
 非特許文献1には、スケールモデルを利用して、移動通信環境における伝搬損失の特性を再現する手法が開示されている。このような手法のために作製されるスケールモデルは、表面に反射処理を施される場合がある。例えば、スケールモデルに、可視光を任意の反射率で反射するような表面処理を行う。次に、送信元と見立てた発光素子から放射される可視光を、電波と見立てる。そして、可視光の伝搬を観察することにより、電波の伝搬を推定することができる。 Non-Patent Document 1 discloses a method of reproducing the propagation loss characteristics in a mobile communication environment using a scale model. Scale models created for such a method may have a reflective surface treatment. For example, the scale model is subjected to a surface treatment that reflects visible light with a given reflectance. Next, the visible light emitted from a light-emitting element regarded as the transmitter is regarded as radio waves. Then, by observing the propagation of the visible light, it is possible to estimate the propagation of the radio waves.
 上述のスケールモデルを作製する際、3Dプリンタまたはブロック等が用いられる。しかし、これらは、形状を作製するだけで多くの時間が必要となる課題があった。また、上述のスケールモデルは、作製した後で、表面の反射処理を行う必要がある。しかし、都市の環境は複雑であり、細かい加工が必要なため、技術的に困難である課題があった。 When creating the above-mentioned scale models, 3D printers or blocks are used. However, these methods have the problem that a lot of time is required just to create the shape. In addition, after the above-mentioned scale models are created, it is necessary to perform a reflective treatment on the surface. However, urban environments are complex and require detailed processing, which poses technical challenges.
 本開示は、上述の課題を解決するため、作製時間を短縮でき、表面の反射処理を容易に行えるスケールモデルを利用した伝搬環境作製装置を提供することを第一の目的とする。 The primary objective of this disclosure is to provide a propagation environment creation device that uses a scale model, which can reduce the creation time and easily perform surface reflection processing in order to solve the above-mentioned problems.
 また、本開示は、作製時間を短縮でき、表面の反射処理を容易に行えるスケールモデルを利用した伝搬環境作製方法を提供することを第二の目的とする。 A second objective of this disclosure is to provide a method for creating a propagation environment using a scale model that can shorten the creation time and easily perform surface reflection processing.
 更に、本開示は、作製時間を短縮でき、表面の反射処理を容易に行えるスケールモデルを利用した伝搬環境推定システムを提供することを第三の目的とする。 Furthermore, a third objective of this disclosure is to provide a propagation environment estimation system that uses a scale model that can shorten the production time and easily perform surface reflection processing.
 第一の態様は、ブロック群と、計算機と、昇降機構を備え、ブロック群が、電磁波に対して任意の反射係数を有する複数のブロックで形成され、計算機が、再現する対象環境の3Dモデルを作成する3Dモデル作成処理と、3Dモデルに基づき、ブロックそれぞれの高さを設定する設定処理とを実施するよう構成され、昇降機構が、設定処理に基づき、ブロックそれぞれの高さを変更する変更処理を実施するよう構成されている伝搬環境作製装置であることが望ましい。 The first aspect is preferably a propagation environment creation device comprising a block group, a computer, and a lifting mechanism, the block group being formed of a plurality of blocks having an arbitrary reflection coefficient for electromagnetic waves, the computer being configured to perform a 3D model creation process for creating a 3D model of the target environment to be reproduced and a setting process for setting the height of each block based on the 3D model, and the lifting mechanism being configured to perform a change process for changing the height of each block based on the setting process.
 第二の態様は、電磁波に対して任意の反射係数を有するブロックで形成されたブロック群を用いる伝搬環境作製方法であって、再現する対象環境の3Dモデルを作成する3Dモデル作成ステップと、3Dモデルに基づき、ブロックそれぞれの高さを設定する設定ステップと、設定ステップに基づき、ブロックそれぞれの高さを変更する変更ステップと、を備える伝搬環境作製方法であることが望ましい。 The second aspect is a method for creating a propagation environment using a group of blocks formed of blocks having an arbitrary reflection coefficient for electromagnetic waves, and the method preferably includes a 3D model creation step for creating a 3D model of the target environment to be reproduced, a setting step for setting the height of each block based on the 3D model, and a modification step for modifying the height of each block based on the setting step.
 第三の態様は、スケールモデル部と、計算部と、昇降機構部と、素子マウンタ部と、制御部と、記憶部を備える伝搬環境推定システムであって、スケールモデル部が、電磁波に対して任意の反射係数を有する複数のブロックで形成されたブロック群を備え、計算部が、対象環境に基づいて3Dモデルを作成する3Dモデル作成工程と、3Dモデルに基づいて、ブロックそれぞれの高さを設定する設定工程と、を実施するよう構成され、昇降機構部が、設定工程に基づき、ブロックそれぞれの高さを変更する変更工程を実施するよう構成され、素子マウンタ部が、ブロック群に、電波の送信局に見立てた電磁波送信機及び受信器に見立てた電磁波受信機を設置する設置工程を実施するよう構成され、制御部が、ブロック群に設定される測定範囲を電磁波送信機で照射させる照射工程と、電磁波受信機で電磁波強度を測定させる測定工程と、測定により得られた電磁波強度のデータを、電波の受信レベルに変換する較正工程を実施するように構成されている伝搬環境推定システムであることが望ましい。 The third aspect is a propagation environment estimation system including a scale model unit, a calculation unit, an elevation mechanism unit, an element mounter unit, a control unit, and a storage unit, in which the scale model unit includes a block group formed of a plurality of blocks having an arbitrary reflection coefficient for electromagnetic waves, the calculation unit is configured to perform a 3D model creation process for creating a 3D model based on a target environment and a setting process for setting the height of each block based on the 3D model, the elevation mechanism unit is configured to perform a modification process for changing the height of each block based on the setting process, the element mounter unit is configured to perform an installation process for installing an electromagnetic wave transmitter likened to a radio wave transmitting station and an electromagnetic wave receiver likened to a receiver in the block group, and the control unit is configured to perform an irradiation process for irradiating a measurement range set in the block group with the electromagnetic wave transmitter, a measurement process for measuring the electromagnetic wave intensity with the electromagnetic wave receiver, and a calibration process for converting the electromagnetic wave intensity data obtained by the measurement into a radio wave reception level.
 第一から第三の態様によれば、伝搬環境推定に用いるスケールモデルの作製時間を短縮し、表面の反射処理を容易に行うことができる。 The first to third aspects of the present invention reduce the time required to create a scale model used to estimate the propagation environment, and facilitate surface reflection processing.
従来の伝搬環境推定方法において用いられるスケールモデルの斜視図である。FIG. 1 is a perspective view of a scale model used in a conventional propagation environment estimation method. 従来の伝搬環境推定方法における推定手順を示すフローチャートである。1 is a flowchart showing an estimation procedure in a conventional propagation environment estimation method. 本開示の実施の形態1に係る、変形前後のスケールモデルを示す図である。1A to 1C are diagrams illustrating a scale model before and after deformation in accordance with a first embodiment of the present disclosure. 本開示の実施の形態1に係る、伝搬環境推定方法における推定手順を示すフローチャートである。4 is a flowchart showing an estimation procedure in a propagation environment estimation method according to the first embodiment of the present disclosure. 本開示の実施の形態1に係る、第一の昇降機構の全体を示す図である。1 is a diagram illustrating an entire first lifting mechanism according to a first embodiment of the present disclosure. FIG. 本開示の実施の形態1に係る、第一の昇降機構の一部を示す図である。FIG. 2 illustrates a portion of a first lifting mechanism according to the first embodiment of the present disclosure. 本開示の実施の形態1に係る、第一のスケールモデルの変形手順を示すフローチャートである。1 is a flowchart showing a transformation procedure of the first scale model in accordance with the first embodiment of the present disclosure. 本開示の実施の形態1に係る、第二のスケールモデルを示す第一の図である。FIG. 1 is a first diagram illustrating a second scale model in accordance with the first embodiment of the present disclosure. 本開示の実施の形態1に係る、第二のスケールモデルを示す第二の図である。FIG. 13 is a second diagram showing the second scale model in accordance with the first embodiment of the present disclosure. 本開示の実施の形態1に係る、第二のスケールモデルの変形手順を示すフローチャートである。13 is a flowchart showing a transformation procedure of the second scale model in accordance with the first embodiment of the present disclosure. 本開示の実施の形態1に係る、ブロックの変形例を示す第一の図である。FIG. 11 is a first diagram illustrating a modified example of a block according to the first embodiment of the present disclosure. 本開示の実施の形態1に係る、ブロックの変形例を示す第二の図である。FIG. 13 is a second diagram illustrating a modified example of a block according to the first embodiment of the present disclosure. 実施の形態1の伝搬環境推定方法の全手順を示すフローチャートである。4 is a flowchart showing the entire procedure of a propagation environment estimation method according to the first embodiment. 図13に示す一連の処理を連続的に全自動で進めることのできる伝搬環境推定システムの構成を説明するためのブロック図である。FIG. 14 is a block diagram for explaining the configuration of a propagation environment estimation system capable of continuously and fully automatically carrying out the series of processes shown in FIG. 13.
実施の形態1
[従来の伝搬環境推定方法の概要]
 図1は、従来の伝搬環境推定方法において用いられるスケールモデルの斜視図である。また、図2は、従来の伝搬環境推定方法における推定手順を示すフローチャートである。図2に示すように、本実施形態の伝搬環境推定方法では、以下の手順で伝搬環境の推定が進められる。
First embodiment
[Outline of conventional propagation environment estimation methods]
Fig. 1 is a perspective view of a scale model used in a conventional propagation environment estimation method. Fig. 2 is a flowchart showing an estimation procedure in the conventional propagation environment estimation method. As shown in Fig. 2, in the propagation environment estimation method of this embodiment, the estimation of the propagation environment proceeds in the following procedure.
 1.ターゲットエリアの模型を作製する。以下、この模型を「スケールモデル」と称する。スケールモデルは、例えば1/100程度の縮尺で、実在の都市空間等を再現したものである。図2は、屋外空間をターゲットエリアとした例を示しているが、特定の建物の室内をターゲットエリアとしてもよい。 1. Create a model of the target area. Hereinafter, this model will be referred to as a "scale model." A scale model is a reproduction of an actual urban space, for example, at a scale of about 1/100. Figure 2 shows an example in which an outdoor space is used as the target area, but the interior of a specific building may also be used as the target area.
 2.電波の送信源に見立てた光源を設置する。光源としては、例えば、発光ダイオードや白熱電球等を用いることができる。 2. Install a light source that acts as a radio wave transmission source. For example, a light-emitting diode or an incandescent light bulb can be used as the light source.
 3.電波の受信器に見立てた受光素子を設置する。受光素子は例えば、フォトレジスタ、フォトダイオード、フォトトランジスタが使用できる。 3. Install a light receiving element that acts as a radio wave receiver. For example, a photoresistor, photodiode, or phototransistor can be used as the light receiving element.
 4.光源を発光させ、受光素子で受光レベルを測定する。図2のスケールモデルの地面を模した領域は、白い部分が照射範囲であり、黒い部分が非照射範囲である。また明度が高いほど受光レベルが高いことを示す。 4. The light source is turned on and the light receiving level is measured by the light receiving element. In the area that mimics the ground of the scale model in Figure 2, the white parts are the illuminated areas and the black parts are the non-illuminated areas. Also, the higher the brightness, the higher the light receiving level.
 5.前ステップで取得した受光レベルのデータについて、実際の通信環境やシミュレーション結果の距離特性に合わせた較正を行い、受光レベルを電波の受信レベルに変換する。 5. The light reception level data acquired in the previous step is calibrated to match the actual communication environment and the distance characteristics of the simulation results, and the light reception level is converted to radio wave reception level.
 上述のスケールモデルを作製する際、3Dプリンタまたはブロック等が用いられる。しかし、これらは、形状を作製するだけで多くの時間が必要となる課題があった。例えば、100m×100mの範囲に広がる都市を、1/20程度のスケール率で作製するのに必要な時間は、数十時間となる。 When creating the scale models mentioned above, 3D printers or blocks are used. However, these have the problem that it takes a lot of time just to create the shape. For example, it takes several tens of hours to create a city that spreads over an area of 100m x 100m at a scale ratio of about 1/20.
 また、上述のスケールモデルは、作製した後で、表面の反射処理を行う必要がある。しかし、都市の環境は複雑であり、細かい加工が必要なため、技術的に困難である課題があった。本開示は、これらの課題を解決する。 In addition, after the scale models are created, they need to have their surfaces processed for reflection. However, urban environments are complex and require detailed processing, which poses technical challenges. This disclosure solves these problems.
[本開示の実施の形態1の概要]
 図3は、本開示の実施の形態1に係る、変形前後のスケールモデルを示す図である。図3左の図は、変形前のスケールモデルを示す。図3右の図は、変形前のスケールモデルを示す。また、図3の図中に示した、四角で囲われた数字は、後述する図4のフローチャート中に示した数字と対応している。
[Outline of First Embodiment of the Present Disclosure]
Fig. 3 is a diagram showing a scale model before and after deformation according to the first embodiment of the present disclosure. The diagram on the left in Fig. 3 shows the scale model before deformation. The diagram on the right in Fig. 3 shows the scale model before deformation. Numbers enclosed in boxes shown in Fig. 3 correspond to numbers shown in the flowchart in Fig. 4 described later.
 スケールモデル10は、ブロック2を複数備えるブロック群である。ブロック2は、ここでは、直方体のブロックである。ブロック2は、表面に反射処理を施されている。反射処理としては、めっき加工、研磨あるいはミラーフィルムの貼付が例示できる。 The scale model 10 is a block group that includes a plurality of blocks 2. Here, the blocks 2 are rectangular parallelepiped blocks. The surfaces of the blocks 2 are treated to have a reflective appearance. Examples of reflective treatments include plating, polishing, or applying a mirror film.
 反射処理は、測定対象の周波数帯に応じて、反射率の異なる加工を実施することが想定されている。電波は、周波数が高いほど、壁面の反射波の電力が小さくなる。そのため、対象の周波数が高いほど、光の反射率が低くなるような反射処理を実施する。 The reflection process is expected to involve processing that results in different reflectivities depending on the frequency band of the object being measured. The higher the frequency of the radio waves, the lower the power of the waves reflected from the wall. Therefore, the higher the frequency of the object, the lower the reflection process will be.
 本開示の伝搬環境推定では、スケールモデル10を用いて、対象環境を再現する。すなわち、複数のブロック2のそれぞれについて、相対的な高さを変更することで、対象環境を再現する。具体的な推定手順は後述する。 In the propagation environment estimation of the present disclosure, a scale model 10 is used to reproduce the target environment. That is, the target environment is reproduced by changing the relative height of each of the multiple blocks 2. The specific estimation procedure will be described later.
 図4は、本開示の実施の形態1に係る、伝搬環境推定方法における推定手順を示すフローチャートである。図4に示すように、本実施形態の伝搬環境推定方法では、以下の手順で伝搬環境の推定が進められる。 FIG. 4 is a flowchart showing the estimation procedure in the propagation environment estimation method according to the first embodiment of the present disclosure. As shown in FIG. 4, in the propagation environment estimation method of this embodiment, the estimation of the propagation environment proceeds in the following procedure.
 まず、ステップ100で、ブロック群を作製する。具体的には、ブロック2を複数作製し、敷き詰めることで、スケールモデル10を構成するブロック群を作製する。ここでは、ブロック2は直方体とする。 First, in step 100, a group of blocks is created. Specifically, a number of blocks 2 are created and laid out to create the group of blocks that make up the scale model 10. Here, the blocks 2 are rectangular parallelepipeds.
 また、ブロック2は、可視光に対して任意の反射係数を有する。そのため、ブロック2は、表面に反射処理を施されている。反射処理としては、めっき加工、研磨あるいはミラーフィルムの貼付が例示できる。 In addition, block 2 has an arbitrary reflection coefficient for visible light. Therefore, block 2 has a surface that is subjected to a reflection treatment. Examples of reflection treatments include plating, polishing, or attaching a mirror film.
 次に、ステップ102で、再現する対象環境の3Dモデルを作成する。この3Dモデルは、例えば、計算機で作成する。 Next, in step 102, a 3D model of the target environment to be reproduced is created. This 3D model is created, for example, by a computer.
 次に、ステップ104で、各ブロックの高さを算出する。まず、ステップ102で作成した3Dモデルを、ステップ100で作製したスケールモデル10にマッピングする。そして、マッピング結果に基づき、各ブロック2の高さを設定する。 Next, in step 104, the height of each block is calculated. First, the 3D model created in step 102 is mapped onto the scale model 10 created in step 100. Then, the height of each block 2 is set based on the mapping results.
 次に、ステップ106で、昇降機構を用いて各ブロックを押し上げる。これにより、各ブロック2の高さを、ステップ104で設定した高さに変更する。 Next, in step 106, the lifting mechanism is used to push up each block. This changes the height of each block 2 to the height set in step 104.
 次に、ステップ108で、可視光による伝搬環境測定を行う。次に、ステップ110で、対象環境に他にも測定すべき差分が存在するかを確認する。対象環境の差分とは、例えば、新しい建物が建ったり、道路上に車が停車していたりする場合を想定している。他にも測定すべき差分がある場合、ステップ102に戻り、該当する対象環境について処理を繰り返す。他に測定すべき差分がない場合、ステップ112に進む。 Next, in step 108, a propagation environment measurement is performed using visible light. Next, in step 110, it is confirmed whether there are any other differences in the target environment that should be measured. Differences in the target environment are assumed to be, for example, the construction of a new building or cars parked on the road. If there are other differences that should be measured, the process returns to step 102 and the process is repeated for the relevant target environment. If there are no other differences that should be measured, the process proceeds to step 112.
 次に、ステップ112で、全ブロックを初期の高さに戻す。これにより、スケールモデル10が、初期状態にリセットされる。 Next, in step 112, all blocks are returned to their initial height. This resets the scale model 10 to its initial state.
 上述の通り、本開示のスケールモデルは、同じ形状の複数のブロックを作製して組み合わせた上で、それぞれの高さを変更して形成する。すなわち、従来と比較して、スケールモデル全体の作製時間を大幅に短縮することができる。また、本開示のスケールモデルは、表面の反射処理を施されたブロックを組み合わせることで作製される。すなわち、従来と比較して、表面の反射処理が容易となる。 As described above, the scale model of the present disclosure is formed by creating and combining multiple blocks of the same shape, and then changing the height of each block. In other words, the time required to create the entire scale model can be significantly reduced compared to the conventional method. In addition, the scale model of the present disclosure is created by combining blocks that have been treated with a reflective surface. In other words, the reflective surface treatment is easier than in the conventional method.
[本開示の実施の形態1の変形例]
 図5は、本開示の実施の形態1に係る、第一の昇降機構の全体を示す図である。スケールモデル10aは、ブロック2aを複数備えるブロック群である。スケールモデル10aの下部には、昇降機構9が設置されている。昇降機構9は、計算機4と接続されている。そして、計算機4は、ステップ106及び112で、各ブロック2aの高さを制御する。
[Modification of the first embodiment of the present disclosure]
5 is a diagram showing an entirety of the first lifting mechanism according to the first embodiment of the present disclosure. The scale model 10a is a block group including a plurality of blocks 2a. A lifting mechanism 9 is installed under the scale model 10a. The lifting mechanism 9 is connected to the computer 4. Then, in steps 106 and 112, the computer 4 controls the height of each block 2a.
 図6は、本開示の実施の形態1に係る、第一の昇降機構の一部を示す図である。ブロック2aは、ギア6及びモーター8と接続されており、ギア6及びモーター8を複数束ねたものが昇降機構9となる。ギア6は、例えば、ラックギアである。計算機4は、該当するギア6及びモーター8を動作させることで、該当するブロック2aを昇降させる。 FIG. 6 is a diagram showing a part of the first lifting mechanism according to the first embodiment of the present disclosure. The block 2a is connected to a gear 6 and a motor 8, and a bundle of multiple gears 6 and motors 8 constitutes the lifting mechanism 9. The gear 6 is, for example, a rack gear. The calculator 4 operates the corresponding gear 6 and motor 8 to lift and lower the corresponding block 2a.
 図7は、本開示の実施の形態1に係る、第一のスケールモデルの変形手順を示すフローチャートである。まず、ステップ114で、表面に反射処理を施したブロックを敷き詰める。ここでは、ブロック2aは直方体とする。 FIG. 7 is a flowchart showing the deformation procedure of the first scale model according to the first embodiment of the present disclosure. First, in step 114, blocks with reflective surfaces are laid out. Here, block 2a is a rectangular parallelepiped.
 また、ブロック2aは、可視光に対して任意の反射係数を有する。そのため、ブロック2aは、表面に反射処理を施されている。反射処理としては、めっき加工、研磨あるいはミラーフィルムの貼付が例示できる。 In addition, block 2a has an arbitrary reflection coefficient for visible light. Therefore, block 2a has a reflective surface. Examples of reflective treatments include plating, polishing, or attaching a mirror film.
 次に、ステップ116で、全ブロックに昇降機構を取り付ける。すなわち、ギア6及びモーター8を取り付けることで、全てのブロック2aが昇降動作を行えるようにする。 Next, in step 116, lifting mechanisms are attached to all blocks. In other words, by attaching gears 6 and motors 8, all blocks 2a are able to perform lifting and lowering operations.
 次に、ステップ118で、各ブロックに取り付けたモーターの回転数を、計算機で決定し、スケールモデルを形成する。まず、各ブロック2aの高さを、形成するスケールモデルの3Dモデルに応じて決定する。次に、各ブロック2aの高さを変更するために必要となるモーターの回転数を、計算機で計算する。そして、計算結果に基づき、各モーターを回転させることで、スケールモデルを形成する。 Next, in step 118, the number of rotations of the motors attached to each block is determined by a computer, and a scale model is formed. First, the height of each block 2a is determined according to the 3D model of the scale model to be formed. Next, the number of rotations of the motor required to change the height of each block 2a is calculated by a computer. Then, based on the calculation results, each motor is rotated to form the scale model.
 対象環境のサイズ及び複雑さに依存するが、上述の変形手順では、スケールモデルの作製に数分しか要さない。一方、従来の3Dプリンタでは、スケールモデルの作製に数十時間を要していた。すなわち、上述の変形手順を用いることで、所望のスケールモデルを、非常に高速に形成することができる。 Depending on the size and complexity of the target environment, the above-described deformation procedure requires only a few minutes to create a scale model. In contrast, conventional 3D printers require tens of hours to create a scale model. In other words, by using the above-described deformation procedure, the desired scale model can be created very quickly.
 図8は、本開示の実施の形態1に係る、第二のスケールモデルを示す第一の図である。スケールモデル10bは、ブロック2bを複数備えるブロック群である。スケールモデル10bは、ブロック押し上げ装置12によって変形する。ブロック押し上げ装置12は、XYテーブル14により、押し上げるべきブロック2の直下に設置される。すなわち、ブロック押し上げ装置12により、ステップ106で、ブロック2の高さを制御する。 FIG. 8 is a first diagram showing a second scale model according to the first embodiment of the present disclosure. The scale model 10b is a block group including a plurality of blocks 2b. The scale model 10b is deformed by a block pushing-up device 12. The block pushing-up device 12 is placed directly below the block 2 to be pushed up by an XY table 14. That is, in step 106, the height of the block 2 is controlled by the block pushing-up device 12.
 また、図9は、本開示の実施の形態1に係る、第二のスケールモデルを示す第二の図である。図9左の図は、形成したスケールモデルを、初期状態に戻す操作を示す図である。図9右の図は、初期状態に戻ったスケールモデルを示す図である。 Furthermore, FIG. 9 is a second diagram showing a second scale model according to the first embodiment of the present disclosure. The diagram on the left of FIG. 9 is a diagram showing an operation for returning the formed scale model to its initial state. The diagram on the right of FIG. 9 is a diagram showing the scale model returned to its initial state.
 スケールモデル10bは、上方に、天板16を備える。天板16は、スケールモデル10bを一様に押し下げることで、スケールモデル10bを初期状態に戻す。なお、ここで使用するものは天板に限らず、スケールモデル10bを構成する全ブロックの高さを一様に押し下げることができれば良い。 The scale model 10b has a top plate 16 on top. The top plate 16 presses down evenly on the scale model 10b, returning the scale model 10b to its initial state. Note that the thing used here is not limited to a top plate, but anything that can uniformly press down the height of all the blocks that make up the scale model 10b will suffice.
 図10は、本開示の実施の形態1に係る、第二のスケールモデルの変形手順を示すフローチャートである。まず、ステップ120で、表面に反射処理を施したブロックを敷き詰める。ここでは、ブロック2bは、可視光に対して任意の反射係数を有する直方体とする。そのため、ブロック2bは、表面に反射処理を施されている。反射処理としては、めっき加工、研磨あるいはミラーフィルムの貼付が例示できる。 FIG. 10 is a flowchart showing the deformation procedure of the second scale model according to the first embodiment of the present disclosure. First, in step 120, blocks with reflective surfaces are laid out. Here, block 2b is a rectangular parallelepiped with an arbitrary reflection coefficient for visible light. Therefore, block 2b has a reflective surface. Examples of reflective treatments include plating, polishing, or applying a mirror film.
 次に、ステップ122で、ブロックの下に、ブロック押し上げ装置を設置する。そして、ステップ124で、各ブロックをブロック押し上げ装置で押し上げ、所望のスケールモデルを形成する。 Next, in step 122, a block lifting device is installed under the blocks. Then, in step 124, each block is lifted up by the block lifting device to form the desired scale model.
 次に、ステップ126で、天板等を用いて全ブロックを押し下げ、全ブロックの高さを合わせる。すなわち、スケールモデル10bを初期状態に戻す。前述の通り、ここで使用するものは天板に限らず、スケールモデル10bを構成する全ブロックの高さを一様に押し下げることができれば良い。 Next, in step 126, a top plate or the like is used to push down all the blocks to make the height of all the blocks uniform. In other words, the scale model 10b is returned to its initial state. As mentioned above, the thing used here is not limited to a top plate, but anything that can push down the height of all the blocks that make up the scale model 10b uniformly will suffice.
 上述の変形手順では、第一のスケールモデルと異なり、ギア6及びモーター8を用いる必要がない。すなわち、装置全体のサイズを小さくすることができる。これにより、第二のスケールモデルは、第一のスケールモデルと比較して低コストで、高分解能なスケールモデルを形成することができる。 Unlike the first scale model, the above-mentioned transformation procedure does not require the use of gears 6 and motors 8. In other words, the size of the entire device can be reduced. As a result, the second scale model can be formed as a high-resolution scale model at a lower cost than the first scale model.
 図11は、本開示の実施の形態1に係る、ブロックの変形例を示す第一の図である。ブロック2cは、底面が直角二等辺三角形である三角柱のブロックである。また、ブロック2cは、可視光に対して任意の反射係数を有する。 FIG. 11 is a first diagram showing a modified example of a block according to the first embodiment of the present disclosure. Block 2c is a triangular prism block whose base is a right-angled isosceles triangle. Block 2c has an arbitrary reflection coefficient for visible light.
 図12は、本開示の実施の形態1に係る、ブロックの変形例を示す第二の図である。ブロック2dは、底面が正六角形である六角柱のブロックである。また、ブロック2dは、可視光に対して任意の反射係数を有する。 FIG. 12 is a second diagram showing a modified example of a block according to the first embodiment of the present disclosure. Block 2d is a hexagonal prism block whose base is a regular hexagon. Block 2d also has an arbitrary reflection coefficient for visible light.
 上述の通り、本実施形態に係るブロックは、直方体に限らない。すなわち、可視光に対して任意の反射係数を有するブロックであれば、その底面は特定の形状に限定されない。 As mentioned above, the blocks according to this embodiment are not limited to rectangular parallelepipeds. In other words, as long as the blocks have any reflection coefficient for visible light, the bottom surface is not limited to a specific shape.
[実施の形態1における手順の詳細]
 図13は、実施の形態1の伝搬環境推定方法の全手順を示すフローチャートである。図13に示す手順は、実在の対象環境について、建造物や道路の寸法および所在地、主要箇所の電波の反射率、使用予定の電波の周波数などの情報収集が終了した段階で開始される。
[Details of the procedure in the first embodiment]
Fig. 13 is a flowchart showing all the steps of the propagation environment estimation method according to embodiment 1. The steps shown in Fig. 13 are started at the stage where information collection is completed for the actual target environment, such as the dimensions and locations of buildings and roads, the radio wave reflectance at main points, and the frequency of the radio waves to be used.
 まず、ステップ128で、作製するスケールモデルの対象環境が設定される。次に、ステップ130で、対象環境についての3Dモデルが作成される。ここでは、対象環境に存在する各種建造物等の寸法や配置に関する情報に基づき、3Dモデルが作成される。この3Dモデルは、例えば、計算機で作成される。 First, in step 128, the target environment of the scale model to be created is set. Next, in step 130, a 3D model of the target environment is created. Here, the 3D model is created based on information regarding the dimensions and placement of various structures and other objects that exist in the target environment. This 3D model is created, for example, by a computer.
 次に、ステップ132で、スケールモデルが形成される。ここでは、同じ形状のブロックを敷き詰めて作製したスケールモデルについて、各ブロックの高さを変更することで、所望のスケールモデルを形成する。形成方法の詳細は、前述した通りである。 Next, in step 132, a scale model is formed. Here, a scale model is created by laying out blocks of the same shape, and the height of each block is changed to form the desired scale model. Details of the formation method are as described above.
 次に、ステップ134で、電波の送信局に見立てた光源及び受信器に見立てた受光素子が設置される。光源はスケールモデルにおける送信局の設置候補地に、受光素子はスケールモデルにおける受信器の設置候補地に、それぞれ設置される。光源及び受光素子の設置は、手作業により行われても良いし、全自動の素子マウンタにより行われても良い。 Next, in step 134, a light source, which is likened to a radio wave transmitting station, and a light receiving element, which is likened to a receiver, are installed. The light source is installed at a proposed installation location for the transmitting station on the scale model, and the light receiving element is installed at a proposed installation location for the receiver on the scale model. The light source and light receiving element may be installed manually or by a fully automated element mounter.
 上述の準備が終わると、ステップ136で、光源によるスケールモデルの照射が開始される。発光ダイオードや白熱電球が光源である場合、本ステップでは、光源の点灯処理が行われる。 Once the above preparations are complete, in step 136, illumination of the scale model by the light source begins. If the light source is a light-emitting diode or an incandescent light bulb, this step involves turning on the light source.
 光源による照射が開始されると、ステップ138で、測定範囲の受光レベルの測定が行われる。測定範囲の測定が終わると、較正処理が実施される。較正処理により決定された受信点毎の値は、電波の受信レベルを面的に表す情報として格納される。 When irradiation by the light source begins, the light reception level in the measurement range is measured in step 138. When measurement of the measurement range is completed, a calibration process is performed. The values for each reception point determined by the calibration process are stored as information that represents the radio wave reception level in a planar manner.
[実施の形態1の伝搬環境推定システム]
 図14は、図13に示す一連の処理を連続的に全自動で進めることのできる伝搬環境推定システムの構成を説明するためのブロック図である。図14に示すシステムは、制御装置20と記憶装置22を備えている。制御装置20は、演算処理ユニットを備えている。記憶装置22には、演算処理ユニットで実行されるプログラムが格納されている。制御装置20は、演算処理ユニットが上記のプログラムに沿って処理を進めることにより、図14に示すシステムの各部を制御する。
[Propagation Environment Estimation System of the First Embodiment]
Fig. 14 is a block diagram for explaining the configuration of a propagation environment estimation system capable of continuously and fully automatically carrying out the series of processes shown in Fig. 13. The system shown in Fig. 14 includes a control device 20 and a storage device 22. The control device 20 includes an arithmetic processing unit. The storage device 22 stores a program executed by the arithmetic processing unit. The control device 20 controls each part of the system shown in Fig. 14 by the arithmetic processing unit carrying out processes according to the above programs.
 記憶装置22は、上記のプログラムに加えて、対象環境に関する各種の情報が格納されている。この情報には、建造物や道路等の寸法、所在地、電波反射率等が含まれている。記憶装置22には、また、スケールモデルで使用可能な各種の素子の寸法データも格納されている。更に、記憶装置22には、スケールモデルを利用して実施される測定の結果、つまり、上記ステップ138の処理で得られる面的な受信レベルの情報も格納される。 In addition to the above programs, the storage device 22 stores various information about the target environment. This information includes the dimensions, locations, and radio wave reflectivity of buildings and roads. The storage device 22 also stores dimensional data for various elements that can be used in the scale model. Furthermore, the storage device 22 also stores the results of measurements performed using the scale model, that is, the surface reception level information obtained in the processing of step 138 above.
 図14に示すシステムは、計算機24を備えている。制御装置20は、記憶装置22から各種の情報を読み出して、上記ステップ128の処理、つまり対象環境設定の処理を行う。計算機24は、対象環境に関する情報を記憶装置22から読み出し、3Dモデルを作成する。そして、作成した3Dモデルに基づき、各ブロックの高さを算出し、制御装置20に送信する。制御装置20は、各ブロックが受信した高さとなるように、各ブロックの高さを変更する。 The system shown in FIG. 14 includes a computer 24. The control device 20 reads various information from the storage device 22 and performs the process of step 128 above, that is, the process of setting the target environment. The computer 24 reads information about the target environment from the storage device 22 and creates a 3D model. Then, based on the created 3D model, the computer 24 calculates the height of each block and sends it to the control device 20. The control device 20 changes the height of each block so that it matches the received height.
 図14に示すシステムは、スケールモデル26を備えている。スケールモデル26は、測定で使用する光源に対して、周波数帯に応じた反射係数が得られるブロックで形成されている。なお、異なる周波数帯に応じたスケールモデルが必要となった場合は、システムが備えるスケールモデルを、該当するブロックを備えるブロック群と交換する。 The system shown in FIG. 14 includes a scale model 26. The scale model 26 is formed from blocks that provide a reflection coefficient according to the frequency band for the light source used in the measurement. If a scale model for a different frequency band is required, the scale model included in the system is replaced with a block group that includes the corresponding blocks.
 また図14に示すシステムは、各ブロックを昇降する昇降機構27を有する。昇降機構27は、制御装置20の指令に基づき、各ブロックの高さを変更する。 The system shown in FIG. 14 also has a lifting mechanism 27 that raises and lowers each block. The lifting mechanism 27 changes the height of each block based on commands from the control device 20.
 図14に示すシステムは、素子マウンタ28を備えている。素子マウンタ28は、スケールモデルにおいて使用が予定されている素子を、スケールモデルの任意の位置に設置する機能を有している。本実施形態では、光源として機能する素子及び受信器として機能する素子が、制御装置20の指令に従って、素子マウンタ28により設置される。 The system shown in FIG. 14 includes an element mounter 28. The element mounter 28 has the function of installing elements that are planned to be used in the scale model at any position on the scale model. In this embodiment, an element that functions as a light source and an element that functions as a receiver are installed by the element mounter 28 according to instructions from the control device 20.
 上記で設置した受信器として機能する素子は、光源として機能する素子からの発光を受信する。受光データは記憶装置22に格納される。制御装置20は、記憶装置22に格納された受光データに、較正処理を施すことにより、測定範囲で生ずる電波の受信レベルを面的に推定することができる。推定された受信レベルは、上記の通り記憶装置22に格納される。 The element functioning as a receiver installed above receives light emitted from the element functioning as a light source. The received light data is stored in the memory device 22. The control device 20 can estimate the surface reception level of the radio waves generated in the measurement range by performing a calibration process on the received light data stored in the memory device 22. The estimated reception level is stored in the memory device 22 as described above.
 以上説明した通り、本実施形態の伝搬環境推定方法によれば、スケールモデルの作製時間を短縮し、表面の反射処理を容易に行うことが可能となる。また、本実施形態の推定方法によれば、対象環境の伝搬推定に要するコストも大幅に下げることができる。 As described above, the propagation environment estimation method of this embodiment makes it possible to shorten the time required to create a scale model and easily perform surface reflection processing. Furthermore, the estimation method of this embodiment can significantly reduce the cost required for propagation estimation of the target environment.
 また、図14を参照して説明した伝搬環境推定システムによれば、本実施形態の伝搬環境推定方法を、一気通貫で全自動の手順として進行させることができる。このため、このシステムによれば、対象環境の伝搬推定に関わる作業効率を、著しく改善することができる。 Furthermore, according to the propagation environment estimation system described with reference to FIG. 14, the propagation environment estimation method of this embodiment can be carried out as a fully automatic procedure in a continuous manner. Therefore, according to this system, the work efficiency related to the propagation estimation of the target environment can be significantly improved.
 ところで、上述した本実施形態では、図14に示す構成を、複数の装置から成るシステムとして説明しているが、本開示はこれに限定されるものではない。すなわち、図14に示す構成は、図示の要素を一台の筐体に収めた一台の装置であってもよい。 In the above-described embodiment, the configuration shown in FIG. 14 is described as a system consisting of multiple devices, but the present disclosure is not limited to this. In other words, the configuration shown in FIG. 14 may be a single device in which the illustrated elements are housed in a single housing.
 また、上述した本実施形態では、本開示のブロック群が可視光を反射するとして説明しているが、本開示はこれに限定される物ではない。すなわち、ブロック群が反射するのは、電波の伝搬環境推定に用いることができる電磁波であれば良い。その場合、光源は電磁波送信機、受光素子は電磁波受信機、受光レベルは電磁波強度に対応する。 In addition, in the above-described embodiment, the block group of the present disclosure is described as reflecting visible light, but the present disclosure is not limited to this. In other words, what the block group reflects may be any electromagnetic wave that can be used to estimate the radio wave propagation environment. In this case, the light source corresponds to an electromagnetic wave transmitter, the light receiving element corresponds to an electromagnetic wave receiver, and the light receiving level corresponds to the electromagnetic wave intensity.
 2、2a、2b、2c、2d ブロック
 4 計算機
 6 ギア
 8 モーター
 9 昇降機構
 10、10a、10b スケールモデル
 12 装置
 24 計算機
 26 スケールモデル
 27 昇降機構
 28 素子マウンタ
2, 2a, 2b, 2c, 2d Block 4 Calculator 6 Gear 8 Motor 9 Lifting mechanism 10, 10a, 10b Scale model 12 Device 24 Calculator 26 Scale model 27 Lifting mechanism 28 Element mounter

Claims (8)

  1.  ブロック群と、計算機と、昇降機構を備え、
     前記ブロック群が、電磁波に対して任意の反射係数を有する複数のブロックで形成され、
     前記計算機が、
     再現する対象環境の3Dモデルを作成する3Dモデル作成処理と、
     前記3Dモデルに基づき、前記ブロックそれぞれの高さを設定する設定処理と
     を実施するよう構成され、
     前記昇降機構が、前記設定処理に基づき、前記ブロックそれぞれの高さを変更する変更処理を実施するよう構成されている
     伝搬環境作製装置。
    The device includes a group of blocks, a computer, and a lifting mechanism;
    the block group is formed of a plurality of blocks having any reflection coefficient for electromagnetic waves,
    The computer,
    a 3D model creation process for creating a 3D model of the target environment to be reproduced;
    A setting process for setting a height of each of the blocks based on the 3D model;
    the lifting mechanism is configured to perform a change process for changing a height of each of the blocks based on the setting process.
  2.  前記ブロックが、測定対象の周波数帯に応じた反射率を有するよう、表面に反射処理を施されている、請求項1に記載の伝搬環境作製装置。 The propagation environment creation device according to claim 1, wherein the block has a surface that is subjected to a reflective treatment so that the block has a reflectance according to the frequency band to be measured.
  3.  前記反射処理が、めっき加工、研磨あるいはミラーフィルム貼付のうち、少なくとも一つである、請求項2に記載の伝搬環境作製装置。 The propagation environment creating device according to claim 2, wherein the reflection treatment is at least one of plating, polishing, and attaching a mirror film.
  4.  前記昇降機構が、前記ブロックそれぞれの下部に取り付けられたギア及びモーターである、請求項1に記載の伝搬環境作製装置。 The propagation environment creating device according to claim 1, wherein the lifting mechanism is a gear and a motor attached to the bottom of each of the blocks.
  5.  前記昇降機構が、XYテーブルを有するブロック押し上げ装置である、請求項1に記載の伝搬環境作製装置。 The propagation environment creating device according to claim 1, wherein the lifting mechanism is a block pushing device having an XY table.
  6.  電磁波に対して任意の反射係数を有するブロックで形成されたブロック群を用いる伝搬環境作製方法であって、
     再現する対象環境の3Dモデルを作成する3Dモデル作成ステップと、
     前記3Dモデルに基づき、前記ブロックそれぞれの高さを設定する設定ステップと、
     前記設定ステップに基づき、前記ブロックそれぞれの高さを変更する変更ステップと、
     を備える伝搬環境作製方法。
    A method for creating a propagation environment using a block group formed of blocks having an arbitrary reflection coefficient for electromagnetic waves, comprising the steps of:
    a 3D model creation step of creating a 3D model of the target environment to be reproduced;
    a setting step of setting a height of each of the blocks based on the 3D model;
    a changing step of changing the height of each of the blocks based on the setting step;
    A method for creating a propagation environment comprising the steps of:
  7.  スケールモデル部と、計算部と、昇降機構部と、素子マウンタ部と、制御部と、記憶部を備える伝搬環境推定システムであって、
     前記スケールモデル部が、電磁波に対して任意の反射係数を有する複数のブロックで形成されたブロック群を備え、
     前記計算部が、
     対象環境に基づいて3Dモデルを作成する3Dモデル作成工程と、
     前記3Dモデルに基づいて、前記ブロックそれぞれの高さを設定する設定工程と、
     を実施するよう構成され、
     前記昇降機構部が、前記設定工程に基づき、前記ブロックそれぞれの高さを変更する変更工程を実施するよう構成され、
     前記素子マウンタ部が、前記ブロック群に、電波の送信局に見立てた電磁波送信機及び受信器に見立てた電磁波受信機を設置する設置工程を実施するよう構成され、
     前記制御部が、
     前記ブロック群に設定される測定範囲を前記電磁波送信機で照射させる照射工程と、
     前記電磁波受信機で電磁波強度を測定させる測定工程と、
     前記測定により得られた電磁波強度のデータを、電波の受信レベルに変換する較正工程を実施するように構成されている
     伝搬環境推定システム。
    A propagation environment estimation system including a scale model unit, a calculation unit, a lifting mechanism unit, an element mounter unit, a control unit, and a storage unit,
    the scale model portion includes a block group formed of a plurality of blocks having an arbitrary reflection coefficient for electromagnetic waves,
    The calculation unit:
    A 3D model creation process for creating a 3D model based on a target environment;
    a setting step of setting a height of each of the blocks based on the 3D model;
    configured to carry out
    the lifting mechanism is configured to carry out a changing step of changing the height of each of the blocks based on the setting step;
    the element mounter unit is configured to carry out an installation step of installing an electromagnetic wave transmitter, which is likened to a radio wave transmitting station, and an electromagnetic wave receiver, which is likened to a receiver, on the block group;
    The control unit:
    an irradiation step of irradiating a measurement range set in the block group with the electromagnetic wave transmitter;
    a measuring step of measuring electromagnetic wave intensity by the electromagnetic wave receiver;
    The propagation environment estimation system is configured to perform a calibration step of converting data on electromagnetic wave intensity obtained by the measurement into a radio wave reception level.
  8.  前記3Dモデル作成ステップで再現する対象環境を設定するステップと、
     前記ブロック群に、電波の送信局に見立てた電磁波送信機及び受信器に見立てた電磁波受信機を設置するステップと、
     前記ブロック群に設定される測定範囲を前記電磁波送信機で照射させるステップと、
     前記電磁波受信機で電磁波強度を測定するステップと、
     前記測定により得られた電磁波強度のデータを、電波の受信レベルに変換する較正工程 を備える請求項6に記載の伝搬環境作製方法。
    A step of setting a target environment to be reproduced in the 3D model creation step;
    a step of installing an electromagnetic wave transmitter, which is likened to a radio wave transmitting station, and an electromagnetic wave receiver, which is likened to a receiver, in the group of blocks;
    a step of irradiating a measurement range set in the block group with the electromagnetic wave transmitter;
    measuring electromagnetic wave intensity with the electromagnetic wave receiver;
    The propagation environment creating method according to claim 6 , further comprising a calibration step of converting data on electromagnetic wave intensity obtained by the measurement into a radio wave reception level.
PCT/JP2022/036789 2022-09-30 2022-09-30 Propagation environment fabricating device, propagation environment fabricating method, and propagation environment estimation system WO2024069965A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/036789 WO2024069965A1 (en) 2022-09-30 2022-09-30 Propagation environment fabricating device, propagation environment fabricating method, and propagation environment estimation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/036789 WO2024069965A1 (en) 2022-09-30 2022-09-30 Propagation environment fabricating device, propagation environment fabricating method, and propagation environment estimation system

Publications (1)

Publication Number Publication Date
WO2024069965A1 true WO2024069965A1 (en) 2024-04-04

Family

ID=90476724

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/036789 WO2024069965A1 (en) 2022-09-30 2022-09-30 Propagation environment fabricating device, propagation environment fabricating method, and propagation environment estimation system

Country Status (1)

Country Link
WO (1) WO2024069965A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09153867A (en) * 1995-11-30 1997-06-10 Fujitsu Ltd Radio wave transmission simulator
JP2008270875A (en) * 2007-04-16 2008-11-06 Ntt Docomo Inc Reception level estimation system
US20090319236A1 (en) * 2006-05-18 2009-12-24 Nathan Blaunshtein Method for analyzing wireless network located at a terrestrial environments
JP2019029915A (en) * 2017-08-01 2019-02-21 日本電信電話株式会社 Creation method, creation system, creation device and creation system of radio wave propagation simulation model
WO2019124879A1 (en) * 2017-12-18 2019-06-27 삼성전자 주식회사 Method and apparatus for communication environment analysis and network design considering movable object
JP2021150870A (en) * 2020-03-19 2021-09-27 国立大学法人東京工業大学 Electromagnetic wave detection device, electromagnetic wave detection method, and program

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09153867A (en) * 1995-11-30 1997-06-10 Fujitsu Ltd Radio wave transmission simulator
US20090319236A1 (en) * 2006-05-18 2009-12-24 Nathan Blaunshtein Method for analyzing wireless network located at a terrestrial environments
JP2008270875A (en) * 2007-04-16 2008-11-06 Ntt Docomo Inc Reception level estimation system
JP2019029915A (en) * 2017-08-01 2019-02-21 日本電信電話株式会社 Creation method, creation system, creation device and creation system of radio wave propagation simulation model
WO2019124879A1 (en) * 2017-12-18 2019-06-27 삼성전자 주식회사 Method and apparatus for communication environment analysis and network design considering movable object
JP2021150870A (en) * 2020-03-19 2021-09-27 国立大学法人東京工業大学 Electromagnetic wave detection device, electromagnetic wave detection method, and program

Similar Documents

Publication Publication Date Title
US10176765B2 (en) Enhancements of a transparent display to form a software configurable luminaire
KR20030036667A (en) System and method for efficiently visualizing and comparing communication network system performance
AU2017361585A1 (en) Method and apparatus for analysing communication channel in consideration of material and contours of objects
CN111371513A (en) Method and test system for testing antenna array of device under test
KR20060047566A (en) Method and apparatus for generating a signal strength model for an access point at an arbitrary location
KR20120013805A (en) A simulation system and method for instrumentation radar tracking an antenna signal from the target
CN106597399A (en) Evaluation system and performance testing method for phased array system
CN113746520B (en) Intelligent reflector communication beam selection method based on beam index map
CN111665527A (en) Satellite navigation terminal anti-interference test system and method for starry darkroom
WO2024069965A1 (en) Propagation environment fabricating device, propagation environment fabricating method, and propagation environment estimation system
CN113242100B (en) C-V2X wireless performance test method and system for wireless module in vehicle
US7035643B2 (en) Method for planning mobile radio coverage inside buildings
CN110489886B (en) Darkroom design method based on software simulation compact range
WO2021145353A1 (en) Base station, information processing device, wireless communication method, and program
CN110139287A (en) A kind of millimeter wave indoor passive covering method
AU732097B2 (en) Method and apparatus for determining radio wave propagation attenuation
KR102373673B1 (en) Method and apparatus for analyzing communication environment and network design considering leading in part of a structure
WO2019181357A1 (en) Radio wave environment analyzer and radio wave environment analysis method
JPH08322079A (en) Decision method for installation position or the like of extended base station in phs
WO2023119660A1 (en) Propagation environment estimation method, propagation environment estimation system, and propagation environment estimation device
WO2012159330A1 (en) Analysis method and device for propagation characteristics of electromagnetic wave
WO2024069818A1 (en) Propagation environment estimating method, propagation environment estimating system, and propagation environment estimating device
JP4091190B2 (en) Radio environment parameter determination method for wireless terminal test, wireless terminal test apparatus
Wolfle et al. Radio network planning with ray optical propagation models for urban, indoor, and hybrid scenarios
KR101069402B1 (en) Method for analyzing in-building radio wave environment and apparatus thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22961024

Country of ref document: EP

Kind code of ref document: A1