WO2024069758A1 - Laser machining device and laser machining method - Google Patents

Laser machining device and laser machining method Download PDF

Info

Publication number
WO2024069758A1
WO2024069758A1 PCT/JP2022/035960 JP2022035960W WO2024069758A1 WO 2024069758 A1 WO2024069758 A1 WO 2024069758A1 JP 2022035960 W JP2022035960 W JP 2022035960W WO 2024069758 A1 WO2024069758 A1 WO 2024069758A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
laser beam
workpiece
groove
intensity distribution
Prior art date
Application number
PCT/JP2022/035960
Other languages
French (fr)
Japanese (ja)
Inventor
磊 郭
Original Assignee
ファナック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ファナック株式会社 filed Critical ファナック株式会社
Priority to PCT/JP2022/035960 priority Critical patent/WO2024069758A1/en
Publication of WO2024069758A1 publication Critical patent/WO2024069758A1/en

Links

Images

Definitions

  • the present invention relates to a laser processing device and a laser processing method, and in particular to a laser processing device and a laser processing method for processing grooves for welding on plate-shaped workpieces.
  • a groove may be formed in advance at the butt joint.
  • this groove can be formed by finishing the machined cross section, such as by shear cutting, but when forming a groove on the end face of a thick plate, it is generally processed using thermal cutting techniques such as gas cutting, electron beam cutting, and laser cutting.
  • Patent Document 1 discloses a method of forming a groove by irradiating a laser beam perpendicularly onto the surface of a plate-shaped workpiece to form a continuous groove of a predetermined width on the workpiece surface, and then irradiating the inside of the groove with a further laser beam to cut the workpiece.
  • a laser processing method for processing a welding groove in a plate-shaped workpiece by irradiating the workpiece with a laser beam includes a cutting kerf processing step for forming a cutting kerf in the workpiece using compressed air as an assist gas, and a groove processing step for forming a groove by irradiating the workpiece surface with a laser beam perpendicularly after the cutting kerf processing step, and in the groove processing step, the intensity distribution of the laser beam is changed according to the shape of the groove.
  • FIG. 1 is a schematic diagram showing a configuration of a laser processing apparatus according to a first embodiment.
  • 2 is a partial cross-sectional view showing an example of a specific configuration of the processing head shown in FIG. 1 .
  • 2B is a partial cross-sectional view showing an example of the configuration of an advancing and retreating mechanism in the processing head shown in FIG. 2A.
  • 2 is a block diagram showing an example of a specific configuration of the control device shown in FIG. 1 and a relationship between the control device and each component of the laser processing device.
  • FIG. 3A to 3C are schematic diagrams showing a typical example of intensity distribution of a laser beam in the laser processing method according to the first embodiment.
  • 3A to 3C are schematic diagrams showing a typical example of intensity distribution of a laser beam in the laser processing method according to the first embodiment.
  • 5A to 5C are partial cross-sectional views showing an example of a processing procedure in the laser processing method according to the first embodiment.
  • 5A to 5C are partial cross-sectional views showing an example of a processing procedure in the laser processing method according to the first embodiment.
  • 5A to 5C are partial cross-sectional views showing an example of a processing procedure in the laser processing method according to the first embodiment.
  • 5A to 5C are partial cross-sectional views showing an example of a processing procedure in the laser processing method according to the first embodiment.
  • FIG. 11 is a block diagram showing an example of a specific configuration of a laser oscillator included in a laser processing apparatus according to a second embodiment.
  • 13 is a block diagram showing an example of a specific configuration of a control device included in a laser processing apparatus according to a second embodiment, and a relationship between the control device and each component of the laser processing apparatus.
  • FIG. 13 is a schematic diagram showing an example of intensity distribution of a laser beam in the laser processing method according to the second embodiment.
  • FIG. FIG. 11 is a partial cross-sectional view showing a specific example of a transmission path from a laser oscillator according to a modified example of the second embodiment.
  • 13 is a schematic diagram showing an example of intensity distribution of a laser beam in the laser processing method according to the modified example of the second embodiment.
  • Fig. 1 is a schematic diagram showing the configuration of a laser processing apparatus according to a first embodiment, which is a representative example of the present invention.
  • Fig. 2A is a partial cross-sectional view showing an example of a specific configuration of a processing head shown in Fig. 1.
  • Fig. 2B is a partial cross-sectional view showing an example of a configuration of an advance/retract mechanism in the processing head shown in Fig. 2A.
  • Fig. 3 is a block diagram showing an example of a specific configuration of a control device shown in Fig. 1 and the relationship between the control device and each component of the laser processing apparatus.
  • the laser processing device 100 includes, as an example, a laser oscillator 110 that oscillates a laser beam LB for processing, a processing head 120 that irradiates the laser beam LB onto a workpiece W, a workpiece holding mechanism 130 that holds the workpiece W, a head transport mechanism 140 that moves the processing head 120 relative to the workpiece holding mechanism 130, a gas supply mechanism 150 that supplies assist gas to the processing head 120, and a control device 160 that controls the laser processing operation on the workpiece W based on a processing program.
  • a laser oscillator 110 that oscillates a laser beam LB for processing
  • a processing head 120 that irradiates the laser beam LB onto a workpiece W
  • a workpiece holding mechanism 130 that holds the workpiece W
  • a head transport mechanism 140 that moves the processing head 120 relative to the workpiece holding mechanism 130
  • a gas supply mechanism 150 that supplies assist gas to the processing head 120
  • a control device 160 that controls the laser processing operation on the workpiece W based on a processing program
  • the laser oscillator 110 is applied with an oscillation source of a wavelength with high absorption rate according to the material of the workpiece W to be processed.
  • a laser oscillator 110 include a gas laser oscillator using a laser gas such as CO2 gas as a laser medium, a solid-state laser oscillator using a solid medium such as a YAG rod, a fiber laser oscillator, or a laser diode (LD).
  • the laser beam LB emitted from the laser oscillator 110 is transmitted to the processing head 120 via an arbitrary transmission path 112.
  • the machining head 120 introduces a laser beam LB from an introduction section 114 on one end (upper end) side and emits it from a nozzle 122 on the other end (lower end) side toward the workpiece W.
  • the machining head 120 includes a lens holder 124 that holds a first condenser lens CL1, a lens holder 126 that holds a second condenser lens CL2, a mode changing element holder 128 that holds a mode changing element AL that changes the intensity distribution (beam mode) of the laser beam LB, and an advance/retract mechanism 129 that advances and retracts the mode changing element holder 128 relative to the optical axis of the laser beam LB.
  • the advance/retract mechanism 129 includes a drive unit (not shown) that drives the mode change element AL and the mode change element holding unit 128 to advance and retract between an insertion position P1 and a retraction position P2 relative to the laser beam LB in a manner that crosses the optical axis of the laser beam LB, and a slider 129a that guides the mode change element holding unit 128 along a line connecting the insertion position P1 and the retraction position P2, and an enclosed space S is formed inside.
  • the advance/retract mechanism 129 is controlled to change the position of the mode change element holding unit 128 based on a beam mode change command signal from an intensity distribution control unit 164 of the control device 160, which will be described later.
  • a structure for inserting or retracting one mode-changing element AL is illustrated, but a structure in which two retraction positions P2 are provided on either side of the optical axis of the laser beam LB to drive two mode-changing element holders 128 forward and backward, or a structure in which a disk-shaped rotating mechanism is used instead of the slider 129a, and multiple mode-changing element holders 128 can be inserted or removed from the optical axis of the laser beam LB, etc. may also be used.
  • the mode-changing element AL is, for example, composed of an aspheric lens or a diffractive optical element (DOE).
  • DOE diffractive optical element
  • the lens holder 126 that holds the second focusing lens CL2 has the function of moving the second focusing lens CL2 in a direction along the optical axis of the laser beam LB. This makes it possible to change the focal length of the laser beam LB without changing the distance of the machining head 120 from the workpiece W.
  • a gas supply pipe 152 from a gas supply mechanism 150 described later is connected to the nozzle 122, and an assist gas that assists the laser processing by the laser beam LB is supplied at a predetermined pressure and flow rate through the gas supply pipe 152.
  • the assist gas supplied to the processing head 120 is then sprayed from the nozzle 122 as a gas flow GF coaxially with the laser beam LB.
  • the machining head 120 constructed in this way, it is possible to change the intensity distribution of the laser beam LB by moving the mode change element AL in and out of the laser beam LB based on commands from the control device 160, thereby controlling the focal point FP, i.e., the focal position, of the laser beam LB.
  • the workpiece holding mechanism 130 includes a chuck mechanism (not shown) for mounting the workpiece W, and is configured to grip and fix the workpiece W.
  • the workpiece holding mechanism 130 may also include a rotation mechanism, in addition to a mechanism for moving the workpiece W in three axial directions of X, Y, and Z.
  • the head transport mechanism 140 includes a linear actuator 142 that moves relatively in three mutually orthogonal axial directions, XYZ, and the processing head 120 is attached to one end of the linear actuator 142.
  • the head transport mechanism 140 may also be configured as a 6-axis or 7-axis industrial robot equipped with a robot arm having the processing head 120 attached to one end.
  • the gas supply mechanism 150 may be a gas supply source (not shown) that temporarily stores air as an assist gas.
  • the gas supply mechanism 150 may be an air compressor that takes in air, compresses it, and supplies it. This eliminates the need to replace the gas supply source.
  • control device 160 includes a main control unit 161 that receives detection data from various sensors etc. provided in the laser processing apparatus 100 and controls the operation of each unit described later, a program analysis unit 162 that reads a processing program stored in a database etc.
  • an irradiation position control unit 163 that outputs an irradiation position command signal to the work holding mechanism 130 and the head transport mechanism 140 to command the irradiation position of the laser beam LB on the work W based on the analysis result of the processing program
  • an intensity distribution control unit 164 that determines the intensity distribution (beam profile) in the beam spot of the laser beam LB based on the analysis result of the processing program and outputs a beam mode change command signal to the processing head 120
  • an output control unit 165 that outputs an output command signal such as the emission timing and output value of the laser beam LB to the laser oscillator 110 based on the analysis result of the processing program
  • a display unit 166 that displays operation information of the laser processing apparatus 100 such as the above-mentioned detection data, and an interface 167 for the operator to input various information.
  • FIG. 3 illustrates an example in which the display unit 166 and the interface 167 are configured separately, the display unit 166 may be configured to be a panel display means capable of
  • the main control unit 161 sends the control commands analyzed by the program analysis unit 162 (described later) to the irradiation position control unit 163, the intensity distribution control unit 164, the output control unit 165, or the display unit 166 according to their contents, and is also connected to various sensors (not shown) of the laser processing device 100 and receives their detection signals.
  • the main control unit 161 may be configured to receive position information of the workpiece W and the processing head 120 from position sensors provided in the workpiece holding mechanism 130 and the head transport mechanism 140, or to receive the output value of the laser beam LB from an output detector (not shown), and perform feedback control based on these detection data.
  • the program analysis unit 162 reads and analyzes blocks of a machining program from an external storage device (not shown) such as a database, thereby determining control commands such as the machining path and the output or beam profile of the laser beam LB contained in the machining program, and temporarily stores and saves the read machining program blocks.
  • the program analysis unit 162 then sends the determined control commands of the machining program to the main control unit 161.
  • the irradiation position control unit 163 receives control commands including the optical axis and focal position of the laser beam LB and the movement position of the workpiece W based on the machining program from the main control unit 161, and outputs irradiation position command signals individually to the workpiece holding mechanism 130 and the head transport mechanism 140.
  • the irradiation position control unit 163 may also be configured to have the function of calculating the irradiation coordinate values (x, y, z) of the focal point FP when the laser beam LB is irradiated onto the workpiece W based on the command position for the workpiece holding mechanism 130 and the movement position for the head transport mechanism 140, and sending them back to the main control unit 161.
  • the intensity distribution control unit 164 determines the intensity distribution of the beam spot of the laser beam LB on a specified machining path based on the machining program from the main control unit 161, and outputs a beam mode change command signal to the machining head 120.
  • the intensity distribution control unit 164 also has a function of determining the height of the focal point FP of the laser beam LB with respect to the workpiece W, i.e., the focal position, and outputting a focal position control signal that controls the position of the second focusing lens CL2 to the lens holding unit 126.
  • the output control unit 165 receives a control command from the main control unit 161, which includes an output value of the laser beam LB corresponding to the irradiation coordinate values (x, y, z) on the machining path based on the machining program, and outputs an output command signal to the laser oscillator 110.
  • FIGS. 4A and 4B are schematic diagrams showing a representative example of the intensity distribution of a laser beam in the laser processing method according to the first embodiment. Also, FIGS. 5A to 5D are partial cross-sectional views showing an example of the processing procedure in the laser processing method according to the first embodiment.
  • air is used as an assist gas, and a laser beam LB with appropriately controlled diameter and intensity distribution (beam profile) at the beam spot is formed on the surface of the workpiece W.
  • the air used as an assist gas contains oxygen, which accounts for approximately 20% of the gas, and promotes the oxidation reaction between the metal of the workpiece W and the laser beam LB, while the majority of the gas, nitrogen, accounts for approximately 80%, acts to blow away the molten molten pool MP.
  • combustion-supporting gas such as oxygen gas or a gas containing oxygen as the main component
  • an assist gas it is possible to process grooves of any shape at a lower cost.
  • no combustion-supporting gas since no combustion-supporting gas is used, there is no need to control the surrounding atmosphere against fire.
  • a gas flow GF from the assist gas blows away the molten pool MP generated by the irradiated laser beam LB.
  • a continuous groove (a so-called "V-shaped groove") including a groove surface GS with a cross-sectional shape approximating a shape obtained by inverting the intensity distribution upside down is formed in the workpiece W in one pass.
  • the intensity distribution control unit 164 of the control device 160 when the intensity distribution control unit 164 of the control device 160 outputs a beam mode change command signal, the advance/retract mechanism 129 of the machining head 120 is driven to insert the mode change element AL into the optical path of the laser beam LB, thereby changing the intensity distribution (beam profile) at the beam spot of the laser beam LB. Then, by performing groove machining using the laser beam LB with the changed intensity distribution, a groove having a shape different from the V-groove described above can be formed in the workpiece W.
  • FIG. 4B when a laser beam LB showing an intensity distribution with a cross-sectional shape simulating a so-called top hat shape, in which the peak intensity is low but the peak range is wide relative to the beam spot radius r, is irradiated onto a workpiece W on which a cutting kerf has been formed in advance, the gas flow GF of the assist gas blows away the molten pool MP created by the irradiated laser beam LB, as in the case of FIG. 4A.
  • a continuous groove (a so-called "J-shaped groove") including a groove surface GS with a cross-sectional shape approximating the shape obtained by upside down the intensity distribution is formed in the workpiece W in one pass.
  • a typical procedure for the laser processing method according to the first embodiment is to first perform a cutting kerf processing step in which a cutting kerf that will become the butt end surface of the groove to be formed is formed. That is, as an example, as shown in FIG. 5A, a laser beam LB irradiated with the surface of the workpiece W as the focal position forms a molten pool MP, and an assist gas (air) injected coaxially with the laser beam LB blows away the molten pool MP.
  • a continuous groove (cutting kerf K) is formed on the processing path of the workpiece W, as shown in FIG. 5B.
  • the molten pool MP is blown to the back side by the assist gas.
  • the cutting kerf processing step is exemplified as a case in which the operation of blowing away the molten pool MP formed by the laser beam LB along the processing path and processing a groove is repeated multiple times, but the output and focal position of the laser beam LB may be appropriately adjusted to form a molten pool MP that is narrow in the thickness direction of the workpiece W and spans the entire thickness (i.e., a so-called "piercing process" is performed), and the cutting kerf K may be formed by moving the molten pool along the processing path while blowing it away.
  • a groove processing step is performed on the workpiece W on which the cutting kerf K has been formed, to process a predetermined groove surface GS. That is, as an example, as shown in FIG. 5C, a laser beam LB adjusted to a predetermined intensity distribution (beam profile) is irradiated along the formed cutting kerf K to form a beam spot of radius r.
  • the molten pool MP formed by the irradiated laser beam LB is blown away by the gas flow GF of the assist gas sprayed from the nozzle 122 of the processing head 120.
  • a V-shaped groove having a continuous groove surface GS is formed in the workpiece W, as shown in FIG. 5D.
  • the laser processing device and laser processing method according to the first embodiment use a processing head including a beam mode changing element that changes the intensity distribution in the beam spot of the laser beam, and perform groove processing using air as an assist gas while irradiating a laser beam that has been adjusted to an intensity distribution according to the groove shape to be processed, thereby reducing the cost of the assist gas and the number of passes for groove processing.
  • Fig. 6 is a block diagram showing an example of a specific configuration of a laser oscillator included in a laser processing apparatus according to a second embodiment of the present invention.
  • Fig. 7 is a block diagram showing an example of a specific configuration of a control device included in the laser processing apparatus according to the second embodiment, and a relationship between the control device and each component of the laser processing apparatus.
  • Fig. 8 is a schematic diagram showing an example of an intensity distribution of a laser beam in a laser processing method according to the second embodiment.
  • the laser processing device differs in configuration from the laser processing device according to the first embodiment in that, instead of inserting a mode changing element AL in the optical path of the laser beam LB as a means for changing the intensity distribution in the beam spot of the laser beam LB, a laser oscillator 210 including multiple laser oscillation sources 214a, 214b is used to change the intensity distribution by superimposing multiple laser beams LBa, LBb.
  • the laser oscillator 210 in the laser processing device includes, as an example shown in FIG. 6, a first laser oscillation source 214a that emits a first laser beam LBa, a first driving power supply 215a that supplies driving power to the first laser oscillation source 214a, a first transmission path 216a that transmits the first laser beam LBa emitted from the first laser oscillation source 214a, a second laser oscillation source 214b that emits a second laser beam LBb, a second driving power supply 215b that supplies driving power to the second laser oscillation source 214b, a second transmission path 216b that transmits the second laser beam LBb emitted from the second laser oscillation source 214b, and a coupling optical system 218 that coaxially superimposes the transmitted first laser beam LBa and second laser beam LBb.
  • the laser beam LB combined by the coupling optical system 218 is transmitted to the processing head 120 via the transmission path 212.
  • the oscillation control unit 213 receives an output command signal from the control device 260, which will be described later, and performs oscillation control to continuously output a drive command signal to the first drive power supply 215a or the second drive power supply 215b in accordance with the emission timing contained in the output command signal.
  • the oscillation control unit 213 can output drive command signals to the first drive power supply 215a and the second drive power supply 215b separately and independently. This makes it possible to control both to oscillate simultaneously, or to oscillate only one of them.
  • the control device 260 includes a main control unit 261, a program analysis unit 262, an irradiation position control unit 263, an output control unit 265, a display unit 266, and an interface 267. Note that the control device 260 may also be configured to integrate the display unit 266 and the interface 267.
  • the output control unit 265 in the second embodiment receives a control command from the main control unit 261, which includes a power distribution in the beam spot of the laser beam LB corresponding to the irradiation coordinate values (x, y, z) on the machining path based on the machining program, determines which of the multiple laser oscillation sources is to be driven to obtain the power distribution, and outputs an output command signal to the laser oscillator 210, which includes the timing and output value of the laser oscillation source to be driven.
  • air is used as the assist gas as in the first embodiment, and when performing the groove processing step, a designated laser oscillation source is selectively driven based on an output command signal from the output control unit 265.
  • a first laser beam LBa having an intensity distribution with a cross-sectional shape that imitates a normal distribution (Gaussian distribution) is emitted.
  • a second laser beam LBb having an intensity distribution with a cross-sectional shape that imitates a so-called top hat shape is emitted.
  • a laser beam LB having an intensity distribution obtained by superimposing the two is emitted.
  • the intensity distribution in the beam spot of the laser beam LB can be arbitrarily selected according to the groove shape to be processed.
  • FIG. 9 is a partial cross-sectional view showing a specific example of a transmission path from a laser oscillator according to a modified example of the second embodiment.
  • FIG. 10 is a schematic diagram showing an example of the intensity distribution of a laser beam in a laser processing method according to a modified example of the second embodiment.
  • the transmission path 212 which is the exit of the laser beam LB from the laser oscillator 210, is configured as an optical fiber having multiple light guide paths.
  • the transmission path 212 includes a first core layer 212a that transmits the first laser beam LBa at the center, a second core layer 212b that is arranged to surround the first core layer 212a and transmits the second laser beam LBb, a cladding layer 212c that is arranged to further surround the second core layer 212b, and a coating layer 212d that protects the surface of the cladding layer 212c.
  • the first laser beam LBa transmitted through the first core layer 212a has an intensity distribution concentrated near the center of the beam spot
  • the second laser beam LBb transmitted through the second core layer 212b has an intensity distribution in a substantially ring shape outside the first laser beam LBa.
  • a beam spot is obtained in which the beams are combined to have an intensity distribution in a substantially top hat state. In this way, by overlapping the regions rather than overlapping the intensities of multiple laser beams LB, it is possible to obtain a beam spot with an arbitrary intensity distribution.
  • the laser processing device and laser processing method according to the second embodiment uses air as an assist gas, and a laser oscillator equipped with multiple laser oscillation sources is used, and the output control unit of the control device selects which of the multiple laser oscillation sources to drive and overlaps the laser beams. This makes it possible to reduce the cost of assist gas and reduce the number of passes for groove processing.

Abstract

This laser machining device and laser machine method irradiate a plate-shaped workpiece with a laser beam to machine a welding groove in the workpiece. The laser processing device includes: a laser oscillator for emitting a laser beam; a machining head for guiding the laser beam such that the laser beam irradiates the workpiece perpendicular to the surface thereof; an air supply mechanism for supplying compressed air to the machining head as an assist gas; a workpiece holding mechanism for holding and moving the workpiece relative to the machining head; and a control device for controlling the operation of the components of the laser machining device. When a groove is machined, the control device outputs a beam-mode change command signal for changing the intensity distribution of the laser beam in accordance with the shape of the groove.

Description

レーザ加工装置及びレーザ加工方法Laser processing device and laser processing method
 本発明は、レーザ加工装置及びレーザ加工方法に関し、特に、板状のワークに溶接用の開先を加工するレーザ加工装置及びレーザ加工方法に関する。 The present invention relates to a laser processing device and a laser processing method, and in particular to a laser processing device and a laser processing method for processing grooves for welding on plate-shaped workpieces.
 金属板(特に厚板)を突合せ溶接する際に、その突合せ部に予め開先を形成することがある。この開先は、ある程度の薄板の場合は、シャー切断等の機械加工した断面を仕上げる手法等で形成することが可能であるが、厚板の端面に開先を形成する場合には、ガス切断、電子ビーム切断、レーザ切断等の熱切断技術により加工されるのが一般的である。 When metal plates (especially thick plates) are butt-welded, a groove may be formed in advance at the butt joint. In the case of relatively thin plates, this groove can be formed by finishing the machined cross section, such as by shear cutting, but when forming a groove on the end face of a thick plate, it is generally processed using thermal cutting techniques such as gas cutting, electron beam cutting, and laser cutting.
 このような厚板の突合せ端面に対する開先加工において、板厚に応じてY形やV形、U形あるいはJ形等の様々な形状が採用されることが知られている。このとき、Y型やV型等の元の表面に対して斜めの構成面が必要な開先を加工する場合、当該斜めの構成面を切断するために切断トーチ(加工ヘッド)が所定の傾斜角度で傾斜する必要があるため、開先加工装置には切断トーチの傾斜角度を設定するための追加的な構成が不可欠であった。 In processing the grooves on the butt end faces of such thick plates, it is known that various shapes such as Y-shape, V-shape, U-shape, or J-shape are used depending on the plate thickness. In this case, when processing a groove that requires a constituent surface that is oblique to the original surface such as a Y-shape or V-shape, the cutting torch (processing head) needs to be inclined at a specified inclination angle in order to cut the inclined constituent surface, so an additional component for setting the inclination angle of the cutting torch is essential for the groove processing device.
 こうした問題を解決することを意図して、例えば特許文献1には、板状のワークの表面に対して垂直にレーザビームを照射して、ワーク表面に所定幅の連続的な溝を形成し、その後に形成された溝の内部にさらにレーザビームを照射してワークを切断することにより、開先を形成する方法が開示されている。 In an attempt to solve these problems, for example, Patent Document 1 discloses a method of forming a groove by irradiating a laser beam perpendicularly onto the surface of a plate-shaped workpiece to form a continuous groove of a predetermined width on the workpiece surface, and then irradiating the inside of the groove with a further laser beam to cut the workpiece.
国際公開第2022/037797号International Publication No. 2022/037797
 上記のように、厚板のワークに対して加工ヘッドを傾斜することなく開先加工を行う従来技術は存在するものの、開先に求められる深い溝を形成しようとすると、レーザビームの照射点に形成される溶融池を深くするために、アシストガスとして支燃性の酸素ガスあるいは酸素を主成分とする混合ガスを用いる必要がある。このため、アシストガスが高価になるとともに、火気に対する周辺雰囲気の管理が必要となる。 As mentioned above, there is conventional technology for processing grooves on thick plate workpieces without tilting the processing head, but when trying to form the deep grooves required for the groove, it is necessary to use combustion-supporting oxygen gas or a mixed gas whose main component is oxygen as an assist gas in order to deepen the molten pool formed at the irradiation point of the laser beam. This makes the assist gas expensive and requires management of the surrounding atmosphere against fire.
 一方、さらに深い溝あるいは特殊な断面形状の溝を形成しようとする場合、当該溝形状を形成するために複数パスでの溝加工を行う必要があり、開先加工のための総加工時間が増大するという問題がある。 On the other hand, when trying to form a deeper groove or a groove with a special cross-sectional shape, multiple passes of groove processing are required to form the groove shape, which creates the problem of an increase in the total processing time for groove processing.
 このような経緯から、アシストガスのコストを下げるとともに、開先加工のためのパス数を低減できるレーザ加工装置及びレーザ加工方法が求められている。 In light of these circumstances, there is a demand for a laser processing device and a laser processing method that can reduce the cost of assist gas and the number of passes required for groove preparation.
 本発明の一態様による、板状のワークにレーザビームを照射して、ワークに溶接用の開先を加工するレーザ加工装置は、レーザビームを出射するレーザ発振器と、レーザビームをワークの表面に対して垂直に照射させるよう導く加工ヘッドと、加工ヘッドにアシストガスとして圧縮空気を供給する空気供給機構と、ワークを保持して加工ヘッドと相対移動させるワーク保持機構と、レーザ加工装置の各構成要素の動作を制御する制御装置と、を含み、制御装置は、開先を加工する際に、当該開先の形状に応じてレーザビームの強度分布を変更するビームモード変更指令信号を出力する。 In one aspect of the present invention, a laser processing device that irradiates a laser beam onto a plate-shaped workpiece to process a groove for welding in the workpiece includes a laser oscillator that emits a laser beam, a processing head that guides the laser beam so that it is irradiated perpendicularly to the surface of the workpiece, an air supply mechanism that supplies compressed air as an assist gas to the processing head, a workpiece holding mechanism that holds the workpiece and moves it relative to the processing head, and a control device that controls the operation of each component of the laser processing device, and the control device outputs a beam mode change command signal that changes the intensity distribution of the laser beam depending on the shape of the groove when processing the groove.
 また、本発明の一態様による、板状のワークにレーザビームを照射して、ワークに溶接用の開先を加工するレーザ加工方法は、アシストガスとして圧縮空気を用い、ワークに対して切断カーフを形成する切断カーフ加工ステップと、切断カーフ加工ステップの後に、レーザビームをワークの表面に対して垂直に照射させて開先を形成する開先加工ステップと、を含み、開先加工ステップにおいて、当該開先の形状に応じてレーザビームの強度分布を変更する。 In accordance with one aspect of the present invention, a laser processing method for processing a welding groove in a plate-shaped workpiece by irradiating the workpiece with a laser beam includes a cutting kerf processing step for forming a cutting kerf in the workpiece using compressed air as an assist gas, and a groove processing step for forming a groove by irradiating the workpiece surface with a laser beam perpendicularly after the cutting kerf processing step, and in the groove processing step, the intensity distribution of the laser beam is changed according to the shape of the groove.
第1の実施形態によるレーザ加工装置の構成を示す概略図である。1 is a schematic diagram showing a configuration of a laser processing apparatus according to a first embodiment. 図1で示した加工ヘッドの具体的な構成の一例を示す部分断面図である。2 is a partial cross-sectional view showing an example of a specific configuration of the processing head shown in FIG. 1 . 図2Aで示した加工ヘッドにおける進退機構の構成の一例を示す部分断面図である。2B is a partial cross-sectional view showing an example of the configuration of an advancing and retreating mechanism in the processing head shown in FIG. 2A. 図1で示した制御装置の具体的な構成の一例、及び当該制御装置とレーザ加工装置の各構成要素との関係を示すブロック図である。2 is a block diagram showing an example of a specific configuration of the control device shown in FIG. 1 and a relationship between the control device and each component of the laser processing device. FIG. 第1の実施形態によるレーザ加工方法におけるレーザビームの強度分布の代表的な例を示す模式図である。3A to 3C are schematic diagrams showing a typical example of intensity distribution of a laser beam in the laser processing method according to the first embodiment. 第1の実施形態によるレーザ加工方法におけるレーザビームの強度分布の代表的な例を示す模式図である。3A to 3C are schematic diagrams showing a typical example of intensity distribution of a laser beam in the laser processing method according to the first embodiment. 第1の実施形態によるレーザ加工方法における加工手順の一例を示す部分断面図である。5A to 5C are partial cross-sectional views showing an example of a processing procedure in the laser processing method according to the first embodiment. 第1の実施形態によるレーザ加工方法における加工手順の一例を示す部分断面図である。5A to 5C are partial cross-sectional views showing an example of a processing procedure in the laser processing method according to the first embodiment. 第1の実施形態によるレーザ加工方法における加工手順の一例を示す部分断面図である。5A to 5C are partial cross-sectional views showing an example of a processing procedure in the laser processing method according to the first embodiment. 第1の実施形態によるレーザ加工方法における加工手順の一例を示す部分断面図である。5A to 5C are partial cross-sectional views showing an example of a processing procedure in the laser processing method according to the first embodiment. 第2の実施形態によるレーザ加工装置に含まれるレーザ発振器の具体的な構成の一例を示すブロック図である。FIG. 11 is a block diagram showing an example of a specific configuration of a laser oscillator included in a laser processing apparatus according to a second embodiment. 第2の実施形態によるレーザ加工装置に含まれる制御装置の具体的な構成の一例、及び当該制御装置とレーザ加工装置の各構成要素との関係を示すブロック図である。13 is a block diagram showing an example of a specific configuration of a control device included in a laser processing apparatus according to a second embodiment, and a relationship between the control device and each component of the laser processing apparatus. FIG. 第2の実施形態によるレーザ加工方法におけるレーザビームの強度分布の一例を示す模式図である。13 is a schematic diagram showing an example of intensity distribution of a laser beam in the laser processing method according to the second embodiment. FIG. 第2の実施形態の変形例によるレーザ発振器からの伝送路の具体例を示す部分断面図である。FIG. 11 is a partial cross-sectional view showing a specific example of a transmission path from a laser oscillator according to a modified example of the second embodiment. 第2の実施形態の変形例によるレーザ加工方法におけるレーザビームの強度分布の一例を示す模式図である。13 is a schematic diagram showing an example of intensity distribution of a laser beam in the laser processing method according to the modified example of the second embodiment. FIG.
 以下、本発明の代表的な一例によるレーザ加工装置及びレーザ加工方法の実施形態を図面と共に説明する。 Below, an embodiment of a laser processing device and a laser processing method according to a representative example of the present invention will be described with reference to the drawings.
<第1の実施形態>
 図1は、本発明の代表的な一例である第1の実施形態によるレーザ加工装置の構成を示す概略図である。また、図2Aは、図1で示した加工ヘッドの具体的な構成の一例を示す部分断面図である。また、図2Bは、図2Aで示した加工ヘッドにおける進退機構の構成の一例を示す部分断面図である。さらに、図3は、図1で示した制御装置の具体的な構成の一例、及び当該制御装置とレーザ加工装置の各構成要素との関係を示すブロック図である。
First Embodiment
Fig. 1 is a schematic diagram showing the configuration of a laser processing apparatus according to a first embodiment, which is a representative example of the present invention. Fig. 2A is a partial cross-sectional view showing an example of a specific configuration of a processing head shown in Fig. 1. Fig. 2B is a partial cross-sectional view showing an example of a configuration of an advance/retract mechanism in the processing head shown in Fig. 2A. Fig. 3 is a block diagram showing an example of a specific configuration of a control device shown in Fig. 1 and the relationship between the control device and each component of the laser processing apparatus.
 図1に示すように、レーザ加工装置100は、その一例として、加工用のレーザビームLBを発振するレーザ発振器110と、ワークWにレーザビームLBを照射する加工ヘッド120と、ワークWを保持するワーク保持機構130と、加工ヘッド120をワーク保持機構130に対して相対移動させるヘッド搬送機構140と、加工ヘッド120にアシストガスを供給するガス供給機構150と、加工プログラムに基づいてワークWに対するレーザ加工動作を制御する制御装置160と、を含む。 As shown in FIG. 1, the laser processing device 100 includes, as an example, a laser oscillator 110 that oscillates a laser beam LB for processing, a processing head 120 that irradiates the laser beam LB onto a workpiece W, a workpiece holding mechanism 130 that holds the workpiece W, a head transport mechanism 140 that moves the processing head 120 relative to the workpiece holding mechanism 130, a gas supply mechanism 150 that supplies assist gas to the processing head 120, and a control device 160 that controls the laser processing operation on the workpiece W based on a processing program.
 レーザ発振器110は、加工されるワークWの材質に応じて吸収率が高い波長の発振源が適用される。このようなレーザ発振器110としては、その一例として、COガス等のレーザガスをレーザ媒質とするガスレーザ発振器や、YAGロッド等の固体媒質による固体レーザ発振器、ファイバレーザ発振器あるいはレーザダイオード(LD)等が例示できる。また、レーザ発振器110から出射されたレーザビームLBは、任意の伝送路112を介して加工ヘッド120に伝送される。 The laser oscillator 110 is applied with an oscillation source of a wavelength with high absorption rate according to the material of the workpiece W to be processed. Examples of such a laser oscillator 110 include a gas laser oscillator using a laser gas such as CO2 gas as a laser medium, a solid-state laser oscillator using a solid medium such as a YAG rod, a fiber laser oscillator, or a laser diode (LD). The laser beam LB emitted from the laser oscillator 110 is transmitted to the processing head 120 via an arbitrary transmission path 112.
 加工ヘッド120は、その一例として図2Aに示すように、一端(上端)側の導入部114からレーザビームLBが導入され、他端(下端)側のノズル122からワークWに向けて出射される。そして、加工ヘッド120は、上記した導入部114とノズル122との間に、第1集光レンズCL1を保持するレンズ保持部124と、第2集光レンズCL2を保持するレンズ保持部126と、レーザビームLBの強度分布(ビームモード)を変更するモード変更素子ALを保持するモード変更素子保持部128と、当該モード変更素子保持部128をレーザビームLBの光軸に対して進退させる進退機構129と、を含む。 2A, the machining head 120 introduces a laser beam LB from an introduction section 114 on one end (upper end) side and emits it from a nozzle 122 on the other end (lower end) side toward the workpiece W. Between the introduction section 114 and the nozzle 122, the machining head 120 includes a lens holder 124 that holds a first condenser lens CL1, a lens holder 126 that holds a second condenser lens CL2, a mode changing element holder 128 that holds a mode changing element AL that changes the intensity distribution (beam mode) of the laser beam LB, and an advance/retract mechanism 129 that advances and retracts the mode changing element holder 128 relative to the optical axis of the laser beam LB.
 進退機構129は、その一例として図2Bに示すように、レーザビームLBの光軸を横切る態様で、当該レーザビームLBに対してモード変更素子AL及びモード変更素子保持部128を挿入位置P1と退避位置P2との間で進退駆動させる駆動部(図示せず)と、挿入位置P1及び退避位置P2を結ぶ線に沿ってモード変更素子保持部128を案内するスライダ129aと、を含み、内部に密閉空間Sが形成されている。そして、進退機構129は、後述する制御装置160の強度分布制御部164からのビームモード変更指令信号に基づいて、モード変更素子保持部128の位置を変更するように制御される。 2B, the advance/retract mechanism 129 includes a drive unit (not shown) that drives the mode change element AL and the mode change element holding unit 128 to advance and retract between an insertion position P1 and a retraction position P2 relative to the laser beam LB in a manner that crosses the optical axis of the laser beam LB, and a slider 129a that guides the mode change element holding unit 128 along a line connecting the insertion position P1 and the retraction position P2, and an enclosed space S is formed inside. The advance/retract mechanism 129 is controlled to change the position of the mode change element holding unit 128 based on a beam mode change command signal from an intensity distribution control unit 164 of the control device 160, which will be described later.
 なお、図2Bに示す例では、1つのモード変更素子ALを挿入あるいは退避させる構造のものを例示しているが、レーザビームLBの光軸を挟んで退避位置P2を2箇所設けて2つのモード変更素子保持部128を進退駆動する構造のものや、スライダ129aに代えて円盤状の回転機構を用いて、さらに複数のモード変更素子保持部128をレーザビームLBの光軸に対して出し入れ可能な構造のもの等も採用し得る。 In the example shown in FIG. 2B, a structure for inserting or retracting one mode-changing element AL is illustrated, but a structure in which two retraction positions P2 are provided on either side of the optical axis of the laser beam LB to drive two mode-changing element holders 128 forward and backward, or a structure in which a disk-shaped rotating mechanism is used instead of the slider 129a, and multiple mode-changing element holders 128 can be inserted or removed from the optical axis of the laser beam LB, etc. may also be used.
 モード変更素子ALは、その一例として、非球面レンズ又は回折光学素子(DOE)で構成される。そして、モード変更素子ALは、レーザビームLBの光路上に挿入された際に、当該レーザビームLBのビームスポットにおける強度分布を、レーザ発振器110から出射された当初の分布から変更する性質を有する。 The mode-changing element AL is, for example, composed of an aspheric lens or a diffractive optical element (DOE). When the mode-changing element AL is inserted into the optical path of the laser beam LB, it has the property of changing the intensity distribution in the beam spot of the laser beam LB from the initial distribution emitted from the laser oscillator 110.
 また、第2集光レンズCL2を保持するレンズ保持部126は、レーザビームLBの光軸に沿う方向に第2集光レンズCL2を移動させる機能を有している。これにより、加工ヘッド120のワークWからの距離を変更することなくレーザビームLBの焦点距離を変更することができる。 In addition, the lens holder 126 that holds the second focusing lens CL2 has the function of moving the second focusing lens CL2 in a direction along the optical axis of the laser beam LB. This makes it possible to change the focal length of the laser beam LB without changing the distance of the machining head 120 from the workpiece W.
 さらに、ノズル122には、後述するガス供給機構150からのガス供給管152が接続されており、レーザビームLBによるレーザ加工を補助するアシストガスが、当該ガス供給管152を介して所定の圧力及び流速で供給される。そして、加工ヘッド120に供給されたアシストガスは、ノズル122からレーザビームLBと同軸にガス流GFとして噴射される。 Furthermore, a gas supply pipe 152 from a gas supply mechanism 150 described later is connected to the nozzle 122, and an assist gas that assists the laser processing by the laser beam LB is supplied at a predetermined pressure and flow rate through the gas supply pipe 152. The assist gas supplied to the processing head 120 is then sprayed from the nozzle 122 as a gas flow GF coaxially with the laser beam LB.
 このような構造の加工ヘッド120によれば、制御装置160からの指令に基づいて、モード変更素子ALをレーザビームLBに対して出し入れすることによりレーザビームLBの強度分布を変更し、レーザビームLBの集光点FPすなわち焦点位置を制御することが可能となる。 With the machining head 120 constructed in this way, it is possible to change the intensity distribution of the laser beam LB by moving the mode change element AL in and out of the laser beam LB based on commands from the control device 160, thereby controlling the focal point FP, i.e., the focal position, of the laser beam LB.
 ワーク保持機構130は、その一例として、ワークWを取り付けるチャック機構(図示せず)を備え、ワークWを把持固定するように構成されている。また、ワーク保持機構130は、例えばワークWをXYZの3軸方向に移動させる機構だけでなく、回転機構を備えてもよい。 As an example, the workpiece holding mechanism 130 includes a chuck mechanism (not shown) for mounting the workpiece W, and is configured to grip and fix the workpiece W. The workpiece holding mechanism 130 may also include a rotation mechanism, in addition to a mechanism for moving the workpiece W in three axial directions of X, Y, and Z.
 ヘッド搬送機構140は、その一例として、互いに直交するXYZの3軸方向に相対移動するリニア駆動体142を含み、当該リニア駆動体142の一端に加工ヘッド120が取り付けられる。また、ヘッド搬送機構140は、一端に加工ヘッド120を取り付けたロボットアームを備えた6軸又は7軸タイプの産業用ロボットとして構成されてもよい。 As an example, the head transport mechanism 140 includes a linear actuator 142 that moves relatively in three mutually orthogonal axial directions, XYZ, and the processing head 120 is attached to one end of the linear actuator 142. The head transport mechanism 140 may also be configured as a 6-axis or 7-axis industrial robot equipped with a robot arm having the processing head 120 attached to one end.
 ガス供給機構150は、その一例として、アシストガスとしての空気を一時的に貯蔵するガス供給源(図示せず)が適用される。また、ガス供給機構150として、空気を取り込んでそのまま圧縮して供給するエアコンプレッサを適用してもよい。これにより、ガス供給源の交換が不要となる。 As an example, the gas supply mechanism 150 may be a gas supply source (not shown) that temporarily stores air as an assist gas. Alternatively, the gas supply mechanism 150 may be an air compressor that takes in air, compresses it, and supplies it. This eliminates the need to replace the gas supply source.
 制御装置160は、その一例として図3に示すように、レーザ加工装置100に設けられた各種センサ等からの検出データを受信するとともに、後述する各部の動作を制御する主制御部161と、データベース等に格納された加工プログラムを読み込んで当該加工プログラムを解析するプログラム解析部162と、加工プログラムの解析結果に基づいて、レーザビームLBのワークWへの照射位置を指令する照射位置指令信号を、ワーク保持機構130及びヘッド搬送機構140に出力する照射位置制御部163と、加工プログラムの解析結果に基づいて、レーザビームLBのビームスポットにおける強度分布(ビームプロファイル)を決定して加工ヘッド120にビームモード変更指令信号を出力する強度分布制御部164と、加工プログラムの解析結果に基づいて、レーザビームLBの出射タイミングや出力値等の出力指令信号をレーザ発振器110に出力する出力制御部165と、上記した検出データ等のレーザ加工装置100の動作情報を表示する表示部166と、作業者が各種情報を入力するためのインターフェース167と、を含む。なお、図3では、表示部166とインターフェース167とが別体に構成されている場合を例示しているが、表示部166としてタッチ入力が可能なパネル表示手段を採用して、両者を統合するように構成してもよい。 As shown in FIG. 3 as an example, the control device 160 includes a main control unit 161 that receives detection data from various sensors etc. provided in the laser processing apparatus 100 and controls the operation of each unit described later, a program analysis unit 162 that reads a processing program stored in a database etc. and analyzes the processing program, an irradiation position control unit 163 that outputs an irradiation position command signal to the work holding mechanism 130 and the head transport mechanism 140 to command the irradiation position of the laser beam LB on the work W based on the analysis result of the processing program, an intensity distribution control unit 164 that determines the intensity distribution (beam profile) in the beam spot of the laser beam LB based on the analysis result of the processing program and outputs a beam mode change command signal to the processing head 120, an output control unit 165 that outputs an output command signal such as the emission timing and output value of the laser beam LB to the laser oscillator 110 based on the analysis result of the processing program, a display unit 166 that displays operation information of the laser processing apparatus 100 such as the above-mentioned detection data, and an interface 167 for the operator to input various information. Note that while FIG. 3 illustrates an example in which the display unit 166 and the interface 167 are configured separately, the display unit 166 may be configured to be a panel display means capable of receiving touch input, and the two may be integrated.
 主制御部161は、後述するプログラム解析部162で解析された制御指令を、その内容毎に照射位置制御部163、強度分布制御部164、出力制御部165あるいは表示部166に送るとともに、レーザ加工装置100の各種センサ等(図示せず)と接続され、これらの検出信号を受信する。その一例として、主制御部161は、ワーク保持機構130やヘッド搬送機構140に設けられた位置センサからワークWや加工ヘッド120の位置情報を受信し、あるいは出力検出器(図示せず)からレーザビームLBの出力値を受信して、これらの検出データに基づいてフィードバック制御するように構成してもよい。 The main control unit 161 sends the control commands analyzed by the program analysis unit 162 (described later) to the irradiation position control unit 163, the intensity distribution control unit 164, the output control unit 165, or the display unit 166 according to their contents, and is also connected to various sensors (not shown) of the laser processing device 100 and receives their detection signals. As an example, the main control unit 161 may be configured to receive position information of the workpiece W and the processing head 120 from position sensors provided in the workpiece holding mechanism 130 and the head transport mechanism 140, or to receive the output value of the laser beam LB from an output detector (not shown), and perform feedback control based on these detection data.
 プログラム解析部162は、その一例として、データベース等の外部記憶装置(図示せず)から加工プログラムのブロックを読み込んで解析することにより、加工プログラムに含まれる加工経路やレーザビームLBの出力あるいはビームプロファイル等の制御指令を判別し、読み込んだ加工プログラムのブロックを一時的に記憶・保存する。そして、プログラム解析部162は、判別した加工プログラムの制御指令を主制御部161に送る。 As an example, the program analysis unit 162 reads and analyzes blocks of a machining program from an external storage device (not shown) such as a database, thereby determining control commands such as the machining path and the output or beam profile of the laser beam LB contained in the machining program, and temporarily stores and saves the read machining program blocks. The program analysis unit 162 then sends the determined control commands of the machining program to the main control unit 161.
 照射位置制御部163は、その一例として、主制御部161から加工プログラムに基づくレーザビームLBの光軸や焦点位置及びワークWの移動位置を含む制御指令を受信し、ワーク保持機構130及びヘッド搬送機構140に対して個別に照射位置指令信号を出力する。また、照射位置制御部163は、ワーク保持機構130に対する指令位置とヘッド搬送機構140に対する移動位置とに基づいて、レーザビームLBがワークW上に照射された際の集光点FPの照射座標値(x,y,z)を算出して主制御部161に返送する機能を有するように構成してもよい。 As an example, the irradiation position control unit 163 receives control commands including the optical axis and focal position of the laser beam LB and the movement position of the workpiece W based on the machining program from the main control unit 161, and outputs irradiation position command signals individually to the workpiece holding mechanism 130 and the head transport mechanism 140. The irradiation position control unit 163 may also be configured to have the function of calculating the irradiation coordinate values (x, y, z) of the focal point FP when the laser beam LB is irradiated onto the workpiece W based on the command position for the workpiece holding mechanism 130 and the movement position for the head transport mechanism 140, and sending them back to the main control unit 161.
 強度分布制御部164は、その一例として、主制御部161から加工プログラムに基づいて、所定の加工経路上におけるレーザビームLBのビームスポットの強度分布を決定するとともに、加工ヘッド120にビームモード変更指令信号を出力する。また、強度分布制御部164は、ワークWに対するレーザビームLBの集光点FPすなわち焦点位置の高さを決定し、レンズ保持部126に対して第2集光レンズCL2の位置を制御する焦点位置制御信号を出力する機能も有する。 As an example, the intensity distribution control unit 164 determines the intensity distribution of the beam spot of the laser beam LB on a specified machining path based on the machining program from the main control unit 161, and outputs a beam mode change command signal to the machining head 120. The intensity distribution control unit 164 also has a function of determining the height of the focal point FP of the laser beam LB with respect to the workpiece W, i.e., the focal position, and outputting a focal position control signal that controls the position of the second focusing lens CL2 to the lens holding unit 126.
 出力制御部165は、その一例として、主制御部161から加工プログラムに基づく加工経路上の照射座標値(x,y,z)に対応するレーザビームLBの出力値を含む制御指令を受信し、レーザ発振器110に対して出力指令信号を出力する。 As an example, the output control unit 165 receives a control command from the main control unit 161, which includes an output value of the laser beam LB corresponding to the irradiation coordinate values (x, y, z) on the machining path based on the machining program, and outputs an output command signal to the laser oscillator 110.
 次に、図4A~図5Dを用いて、第1の実施形態によるレーザ加工方法の具体的な動作事例を説明する。 Next, a specific example of the operation of the laser processing method according to the first embodiment will be described with reference to Figures 4A to 5D.
 図4A及び図4Bは、第1の実施形態によるレーザ加工方法におけるレーザビームの強度分布の代表的な例を示す模式図である。また、図5A~図5Dは、第1の実施形態によるレーザ加工方法における加工手順の一例を示す部分断面図である。 FIGS. 4A and 4B are schematic diagrams showing a representative example of the intensity distribution of a laser beam in the laser processing method according to the first embodiment. Also, FIGS. 5A to 5D are partial cross-sectional views showing an example of the processing procedure in the laser processing method according to the first embodiment.
 第1の実施形態によるレーザ加工方法では、アシストガスとして空気を用いて、さらにビームスポットにおける径及び強度分布(ビームプロファイル)を適宜制御したレーザビームLBをワークWの表面に形成する。このとき、アシストガスとしての空気は、その成分の約20%に相当する酸素がワークWの金属とレーザビームLBとの酸化反応を促進するとともに、大部分の成分である約80%に相当する窒素が溶融した溶融池MPを吹き飛ばすように作用する。 In the laser processing method according to the first embodiment, air is used as an assist gas, and a laser beam LB with appropriately controlled diameter and intensity distribution (beam profile) at the beam spot is formed on the surface of the workpiece W. At this time, the air used as an assist gas contains oxygen, which accounts for approximately 20% of the gas, and promotes the oxidation reaction between the metal of the workpiece W and the laser beam LB, while the majority of the gas, nitrogen, accounts for approximately 80%, acts to blow away the molten molten pool MP.
 これにより、一般的にアシストガスとして支燃性ガス(例えば酸素ガスや酸素を主成分とするガス)を用いた場合に比べて安価にかつ任意の形状の開先を加工できる。また、支燃性ガスを用いないため、火気に対する周辺雰囲気の管理は不要となる。 As a result, compared to when a combustion-supporting gas (such as oxygen gas or a gas containing oxygen as the main component) is generally used as an assist gas, it is possible to process grooves of any shape at a lower cost. In addition, since no combustion-supporting gas is used, there is no need to control the surrounding atmosphere against fire.
 上記した第1の実施形態によるレーザ加工方法の特徴的な加工の一例として、例えば図4Aに示すように、ビームスポット半径rに対していわゆる正規分布(ガウス分布)を模した断面形状の強度分布を示すレーザビームLBを、予め切断カーフが形成されたワークWに照射した場合、照射されたレーザビームLBにより生じた溶融池MPをアシストガスによるガス流GFが吹き飛ばす。これを加工経路に沿って連続的に実行することにより、ワークWに当該強度分布を上下反転した形状に近似した断面形状の開先面GSを含む連続的な溝(いわゆる「V形開先」)が1パスで形成される。 As an example of a characteristic process of the laser processing method according to the first embodiment described above, for example, as shown in FIG. 4A, when a laser beam LB showing a cross-sectional intensity distribution simulating a so-called normal distribution (Gaussian distribution) with respect to the beam spot radius r is irradiated onto a workpiece W on which a cutting kerf has been formed in advance, a gas flow GF from the assist gas blows away the molten pool MP generated by the irradiated laser beam LB. By performing this continuously along the processing path, a continuous groove (a so-called "V-shaped groove") including a groove surface GS with a cross-sectional shape approximating a shape obtained by inverting the intensity distribution upside down is formed in the workpiece W in one pass.
 一方、上記のとおり、制御装置160の強度分布制御部164がビームモード変更指令信号を出力した場合、加工ヘッド120の進退機構129が駆動してモード変更素子ALをレーザビームLBの光路上に挿入することにより、レーザビームLBのビームスポットにおける強度分布(ビームプロファイル)が変更される。そして、強度分布が変更されたレーザビームLBを用いて開先加工を行うことにより、上記したV開先とは異なる形状の開先をワークWに形成することができる。 On the other hand, as described above, when the intensity distribution control unit 164 of the control device 160 outputs a beam mode change command signal, the advance/retract mechanism 129 of the machining head 120 is driven to insert the mode change element AL into the optical path of the laser beam LB, thereby changing the intensity distribution (beam profile) at the beam spot of the laser beam LB. Then, by performing groove machining using the laser beam LB with the changed intensity distribution, a groove having a shape different from the V-groove described above can be formed in the workpiece W.
 すなわち、その一例として、例えば図4Bに示すように、ビームスポット半径rに対してピーク強度は低いもののピーク範囲が広い、いわゆるトップハット形状を模した断面形状の強度分布を示すレーザビームLBを、予め切断カーフが形成されたワークWに照射した場合、図4Aの場合と同様に、照射されたレーザビームLBにより生じた溶融池MPをアシストガスによるガス流GFが吹き飛ばす。これを加工経路に沿って連続的に実行することにより、ワークWに当該強度分布を上下反転した形状に近似した断面形状の開先面GSを含む連続的な溝(いわゆる「J形開先」)が1パスで形成される。 In other words, as an example, as shown in FIG. 4B, when a laser beam LB showing an intensity distribution with a cross-sectional shape simulating a so-called top hat shape, in which the peak intensity is low but the peak range is wide relative to the beam spot radius r, is irradiated onto a workpiece W on which a cutting kerf has been formed in advance, the gas flow GF of the assist gas blows away the molten pool MP created by the irradiated laser beam LB, as in the case of FIG. 4A. By performing this continuously along the machining path, a continuous groove (a so-called "J-shaped groove") including a groove surface GS with a cross-sectional shape approximating the shape obtained by upside down the intensity distribution is formed in the workpiece W in one pass.
 上記の点を受けて、第1の実施形態によるレーザ加工方法の代表的な手順としては、まず、形成される開先の突合せ端面となる切断カーフを形成する切断カーフ加工ステップが実行される。すなわち、その一例として図5Aに示すように、ワークWの表面を焦点位置として照射されたレーザビームLBが溶融池MPを形成するとともに、レーザビームLBと同軸に噴射されるアシストガス(空気)が溶融池MPを吹き飛ばす。 In light of the above, a typical procedure for the laser processing method according to the first embodiment is to first perform a cutting kerf processing step in which a cutting kerf that will become the butt end surface of the groove to be formed is formed. That is, as an example, as shown in FIG. 5A, a laser beam LB irradiated with the surface of the workpiece W as the focal position forms a molten pool MP, and an assist gas (air) injected coaxially with the laser beam LB blows away the molten pool MP.
 そして、このような加工を所定の開先形成方向(図示せず)に向けて移動させつつ連続的に実行することにより、図5Bに示すように、ワークWの加工経路上に連続的な溝(切断カーフK)が形成される。このとき、ワークWの裏面側に位置するワーク保持機構130に加工経路に沿った凹部132を予め設けておくことにより、溶融池MPがアシストガスで裏面側に吹き飛ばされる。 Then, by continuously performing this type of processing while moving in a specified groove forming direction (not shown), a continuous groove (cutting kerf K) is formed on the processing path of the workpiece W, as shown in FIG. 5B. At this time, by providing a recess 132 along the processing path in advance in the workpiece holding mechanism 130 located on the back side of the workpiece W, the molten pool MP is blown to the back side by the assist gas.
 なお、図5Aにおいては、切断カーフ加工ステップとして、レーザビームLBが形成した溶融池MPを加工経路に沿って吹き飛ばして溝を加工する動作を複数回繰り返す場合を例示したが、レーザビームLBの出力及び焦点位置を適宜調節して、ワークWの板厚方向に狭幅でかつ全厚にわたる溶融池MPを形成し(すなわち、いわゆる「ピアッシング加工」を行い)、これを吹き飛ばしつつ加工経路に沿って移動させることにより、切断カーフKを形成するようにしてもよい。 In FIG. 5A, the cutting kerf processing step is exemplified as a case in which the operation of blowing away the molten pool MP formed by the laser beam LB along the processing path and processing a groove is repeated multiple times, but the output and focal position of the laser beam LB may be appropriately adjusted to form a molten pool MP that is narrow in the thickness direction of the workpiece W and spans the entire thickness (i.e., a so-called "piercing process" is performed), and the cutting kerf K may be formed by moving the molten pool along the processing path while blowing it away.
 続いて、切断カーフKが形成されたワークWに対して、所定の開先面GSを加工する開先加工ステップが実行される。すなわち、その一例として図5Cに示すように、形成された切断カーフKに沿って、所定の強度分布(ビームプロファイル)に調整されたレーザビームLBが、半径rのビームスポットとなるように照射される。 Next, a groove processing step is performed on the workpiece W on which the cutting kerf K has been formed, to process a predetermined groove surface GS. That is, as an example, as shown in FIG. 5C, a laser beam LB adjusted to a predetermined intensity distribution (beam profile) is irradiated along the formed cutting kerf K to form a beam spot of radius r.
 そして、照射されたレーザビームLBによって形成された溶融池MPは、加工ヘッド120のノズル122から噴射されるアシストガスのガス流GFにより吹き飛ばされる。このような動作を加工経路上の切断カーフKに沿って連続的に実行することにより、図5Dに示すように、ワークWに連続的な開先面GSを有するV形開先が形成される。 Then, the molten pool MP formed by the irradiated laser beam LB is blown away by the gas flow GF of the assist gas sprayed from the nozzle 122 of the processing head 120. By continuously performing such an operation along the cutting kerf K on the processing path, a V-shaped groove having a continuous groove surface GS is formed in the workpiece W, as shown in FIG. 5D.
 上記のような構成を備えることにより、第1の実施形態によるレーザ加工装置及びレーザ加工方法は、レーザビームのビームスポットにおける強度分布を変更するビームモード変更素子を含む加工ヘッドを用いるとともに、加工したい開先形状に応じた強度分布に調整されたレーザビームを照射しつつアシストガスとして空気を用いた開先加工を実行することにより、アシストガスのコストを下げるとともに、開先加工のためのパス数を低減することが可能となる。 By being provided with the above-described configuration, the laser processing device and laser processing method according to the first embodiment use a processing head including a beam mode changing element that changes the intensity distribution in the beam spot of the laser beam, and perform groove processing using air as an assist gas while irradiating a laser beam that has been adjusted to an intensity distribution according to the groove shape to be processed, thereby reducing the cost of the assist gas and the number of passes for groove processing.
<第2の実施形態>
 図6は、本発明の第2の実施形態によるレーザ加工装置に含まれるレーザ発振器の具体的な構成の一例を示すブロック図である。また、図7は、第2の実施形態によるレーザ加工装置に含まれる制御装置の具体的な構成の一例、及び当該制御装置とレーザ加工装置の各構成要素との関係を示すブロック図である。さらに、図8は、第2の実施形態によるレーザ加工方法におけるレーザビームの強度分布の一例を示す模式図である。
Second Embodiment
Fig. 6 is a block diagram showing an example of a specific configuration of a laser oscillator included in a laser processing apparatus according to a second embodiment of the present invention. Fig. 7 is a block diagram showing an example of a specific configuration of a control device included in the laser processing apparatus according to the second embodiment, and a relationship between the control device and each component of the laser processing apparatus. Fig. 8 is a schematic diagram showing an example of an intensity distribution of a laser beam in a laser processing method according to the second embodiment.
 なお、第2の実施形態においては、図1~図5Dに示した概略図等において、第1の実施形態と同一あるいは共通の構成を採用し得るものについては、同一の符号を付してこれらの繰り返しの説明は省略する。 In the second embodiment, in the schematic diagrams shown in Figures 1 to 5D, components that may be the same as or in common with the first embodiment are given the same reference numerals and repeated explanations of these components are omitted.
 図6に示すように、第2の実施形態によるレーザ加工装置は、レーザビームLBのビームスポットにおける強度分布を変更する手段として、レーザビームLBの光路上にモード変更素子ALを挿入する構成に代えて、複数のレーザ発振源214a、214bを含むレーザ発振器210を用いて、複数のレーザビームLBa、LBbを重畳することにより強度分布を変更する点で、第1の実施形態によるレーザ加工装置と構成が異なる。 As shown in FIG. 6, the laser processing device according to the second embodiment differs in configuration from the laser processing device according to the first embodiment in that, instead of inserting a mode changing element AL in the optical path of the laser beam LB as a means for changing the intensity distribution in the beam spot of the laser beam LB, a laser oscillator 210 including multiple laser oscillation sources 214a, 214b is used to change the intensity distribution by superimposing multiple laser beams LBa, LBb.
 すなわち、上記したとおり、第2の実施形態によるレーザ加工装置におけるレーザ発振器210は、その一例として図6に示すように、第1レーザビームLBaを出射する第1レーザ発振源214aと、第1レーザ発振源214aに駆動電力を供給する第1駆動電源215aと、第1レーザ発振源214aから出射された第1レーザビームLBaを伝送する第1伝送路216aと、第2レーザビームLBbを出射する第2レーザ発振源214bと、第2レーザ発振源214bに駆動電力を供給する第2駆動電源215bと、第2レーザ発振源214bから出射された第2レーザビームLBbを伝送する第2伝送路216bと、伝送されてきた第1レーザビームLBa及び第2レーザビームLBbを同軸に重ね合わせる結合光学系218と、を含む。そして、結合光学系218で結合されたレーザビームLBは、伝送路212を介して加工ヘッド120に伝送される。 That is, as described above, the laser oscillator 210 in the laser processing device according to the second embodiment includes, as an example shown in FIG. 6, a first laser oscillation source 214a that emits a first laser beam LBa, a first driving power supply 215a that supplies driving power to the first laser oscillation source 214a, a first transmission path 216a that transmits the first laser beam LBa emitted from the first laser oscillation source 214a, a second laser oscillation source 214b that emits a second laser beam LBb, a second driving power supply 215b that supplies driving power to the second laser oscillation source 214b, a second transmission path 216b that transmits the second laser beam LBb emitted from the second laser oscillation source 214b, and a coupling optical system 218 that coaxially superimposes the transmitted first laser beam LBa and second laser beam LBb. The laser beam LB combined by the coupling optical system 218 is transmitted to the processing head 120 via the transmission path 212.
 発振制御部213は、後述する制御装置260からの出力指令信号を受信し、当該出力指令信号に含まれる出射タイミングに合わせて、第1駆動電源215aあるいは第2駆動電源215bへ駆動指令信号を継続的に出力する発振制御を行う。また、発振制御部213は、第1駆動電源215aと第2駆動電源215bへの駆動指令信号の出力をそれぞれ独立して個別に出力することができる。これにより、両者を同時に発振させたり、あるいはいずれか一方のみを発振させる制御も可能となる。 The oscillation control unit 213 receives an output command signal from the control device 260, which will be described later, and performs oscillation control to continuously output a drive command signal to the first drive power supply 215a or the second drive power supply 215b in accordance with the emission timing contained in the output command signal. In addition, the oscillation control unit 213 can output drive command signals to the first drive power supply 215a and the second drive power supply 215b separately and independently. This makes it possible to control both to oscillate simultaneously, or to oscillate only one of them.
 制御装置260は、その一例として図7に示すように、主制御部261と、プログラム解析部262と、照射位置制御部263と、出力制御部265と、表示部266と、インターフェース267と、を含む。なお、制御装置260においても、表示部266とインターフェース267とを統合したものとして構成してもよい。 As an example, as shown in FIG. 7, the control device 260 includes a main control unit 261, a program analysis unit 262, an irradiation position control unit 263, an output control unit 265, a display unit 266, and an interface 267. Note that the control device 260 may also be configured to integrate the display unit 266 and the interface 267.
 第2の実施形態における出力制御部265は、その一例として、主制御部261から加工プログラムに基づく加工経路上の照射座標値(x,y,z)に対応するレーザビームLBのビームスポットにおける出力分布を含む制御指令を受信し、当該出力分布を得るために複数のレーザ発振源のうちのいずれを駆動させるかを決定して、レーザ発振器210に対して駆動させるレーザ発振源のタイミング及び出力値を含む出力指令信号を出力する。 As an example, the output control unit 265 in the second embodiment receives a control command from the main control unit 261, which includes a power distribution in the beam spot of the laser beam LB corresponding to the irradiation coordinate values (x, y, z) on the machining path based on the machining program, determines which of the multiple laser oscillation sources is to be driven to obtain the power distribution, and outputs an output command signal to the laser oscillator 210, which includes the timing and output value of the laser oscillation source to be driven.
 第2の実施形態によるレーザ加工方法では、第1の実施形態の場合と同様にアシストガスとして空気を用いて、開先加工ステップを実行する際に、出力制御部265からの出力指令信号に基づいて指定されたレーザ発振源を選択的に駆動させる。 In the laser processing method according to the second embodiment, air is used as the assist gas as in the first embodiment, and when performing the groove processing step, a designated laser oscillation source is selectively driven based on an output command signal from the output control unit 265.
 具体的には、その一例として図8に示すように、第1レーザ発振源214aに対してのみ駆動指令信号が出力されると、正規分布(ガウス分布)を模した断面形状の強度分布を有する第1レーザビームLBaが出射される。一方、第2レーザ発振源214bに対してのみ駆動指令信号が出力されると、いわゆるトップハット形状を模した断面形状の強度分布を有する第2レーザビームLBbが出射される。 Specifically, as an example, as shown in FIG. 8, when a drive command signal is output only to the first laser oscillation source 214a, a first laser beam LBa having an intensity distribution with a cross-sectional shape that imitates a normal distribution (Gaussian distribution) is emitted. On the other hand, when a drive command signal is output only to the second laser oscillation source 214b, a second laser beam LBb having an intensity distribution with a cross-sectional shape that imitates a so-called top hat shape is emitted.
 さらに、第1レーザ発振源214a及び第2レーザ発振源214bの両方に駆動指令信号が出力されると、両者を重ね合わせた強度分布を有するレーザビームLBが出射される。このように、加工したい開先形状に合わせてレーザビームLBのビームスポットにおける強度分布を任意に選択することができる。 Furthermore, when a drive command signal is output to both the first laser oscillation source 214a and the second laser oscillation source 214b, a laser beam LB having an intensity distribution obtained by superimposing the two is emitted. In this way, the intensity distribution in the beam spot of the laser beam LB can be arbitrarily selected according to the groove shape to be processed.
 次に、図9及び図10を用いて、第2の実施形態の変形例によるレーザ加工装置及びレーザ加工方法の実施態様を説明する。 Next, an embodiment of a laser processing device and a laser processing method according to a modified example of the second embodiment will be described with reference to Figures 9 and 10.
 図9は、第2の実施形態の変形例によるレーザ発振器からの伝送路の具体例を示す部分断面図である。また、図10は、第2の実施形態の変形例によるレーザ加工方法におけるレーザビームの強度分布の一例を示す模式図である。 FIG. 9 is a partial cross-sectional view showing a specific example of a transmission path from a laser oscillator according to a modified example of the second embodiment. Also, FIG. 10 is a schematic diagram showing an example of the intensity distribution of a laser beam in a laser processing method according to a modified example of the second embodiment.
 第2の実施形態の変形例によるレーザ加工装置は、レーザ発振器210からのレーザビームLBの出射口である伝送路212を、複数の導光路を有する光ファイバとして構成されている。具体的には、その一例として図9に示すように、伝送路212は、中心に第1レーザビームLBaを伝送する第1コア層212aと、当該第1コア層212aを取り囲むように配置されて第2レーザビームLBbを伝送する第2コア層212bと、第2コア層212bをさらに取り囲むように配置されたクラッド層212cと、クラッド層212cの表面を保護する被覆層212dと、を含む。 In the laser processing device according to the modified example of the second embodiment, the transmission path 212, which is the exit of the laser beam LB from the laser oscillator 210, is configured as an optical fiber having multiple light guide paths. Specifically, as an example, as shown in FIG. 9, the transmission path 212 includes a first core layer 212a that transmits the first laser beam LBa at the center, a second core layer 212b that is arranged to surround the first core layer 212a and transmits the second laser beam LBb, a cladding layer 212c that is arranged to further surround the second core layer 212b, and a coating layer 212d that protects the surface of the cladding layer 212c.
 第2の実施形態の変形例によるレーザ加工方法では、その一例として図10に示すように、第1コア層212aを伝送される第1レーザビームLBaがビームスポットの中心近傍に集中した強度分布となるのに対して、第2コア層212bを伝送される第2レーザビームLBbは第1レーザビームLBaの外側に略リング状の強度分布となる。そして、これらの第1レーザビームLBaと第2レーザビームLBbとを同時に出射すると、合成されて略トップハット状態の強度分布となるビームスポットは得られる。このように、複数のレーザビームLBの強度を重ね合わせるのではなく、領域を重ね合わせることにより、任意の強度分布を有するビームスポットを得ることが可能となる。 As an example of the laser processing method according to a modified example of the second embodiment, as shown in FIG. 10, the first laser beam LBa transmitted through the first core layer 212a has an intensity distribution concentrated near the center of the beam spot, while the second laser beam LBb transmitted through the second core layer 212b has an intensity distribution in a substantially ring shape outside the first laser beam LBa. When the first laser beam LBa and the second laser beam LBb are emitted simultaneously, a beam spot is obtained in which the beams are combined to have an intensity distribution in a substantially top hat state. In this way, by overlapping the regions rather than overlapping the intensities of multiple laser beams LB, it is possible to obtain a beam spot with an arbitrary intensity distribution.
 上記のような構成を備えることにより、第2の実施形態によるレーザ加工装置及びレーザ加工方法は、アシストガスとして空気を用いるとともに、複数のレーザ発振源を備えたレーザ発振器を用いて、制御装置の出力制御部が当該複数のレーザ発振源におけるどのレーザ発振源を駆動させるかを選択してレーザビームを重ね合わせるように構成したことにより、アシストガスのコストを下げるとともに、開先加工のためのパス数を低減することが可能となる。 By being configured as described above, the laser processing device and laser processing method according to the second embodiment uses air as an assist gas, and a laser oscillator equipped with multiple laser oscillation sources is used, and the output control unit of the control device selects which of the multiple laser oscillation sources to drive and overlaps the laser beams. This makes it possible to reduce the cost of assist gas and reduce the number of passes for groove processing.
 なお、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。本発明はその発明の範囲内において、実施の形態の任意の構成要素の変形、もしくは実施の形態の任意の構成要素の省略が可能である。 The present invention is not limited to the above-described embodiment, and can be modified as appropriate without departing from the spirit of the invention. Any of the components of the embodiment can be modified or omitted within the scope of the invention.
 100 レーザ加工装置
 110 レーザ発振器
 112 伝送路
 114 導入部
 120 加工ヘッド
 122 ノズル
 124 レンズ保持部
 126 レンズ保持部
 128 モード変更素子保持部
 129 進退機構
 129a スライダ
 130 ワーク保持機構
 132 凹部
 140 ヘッド搬送機構
 142 リニア駆動体
 150 ガス供給機構
 152 ガス供給管
 160 制御装置
 161 主制御部
 162 プログラム解析部
 163 照射位置制御部
 164 強度分布制御部
 165 出力制御部
 166 表示部
 167 インターフェース
 210 レーザ発振器
 212 伝送路
 212a 第1コア層
 212b 第2コア層
 212c クラッド層
 212d 被覆層
 213 発振制御部
 214a 第1レーザ発振源
 214b 第2レーザ発振源
 215a 第1駆動電源
 215b 第2駆動電源
 216a 第1伝送路
 216b 第2伝送路
 218 結合光学系
 260 制御装置
 261 主制御部
 262 プログラム解析部
 263 照射位置制御部
 265 出力制御部
 266 表示部
 267 インターフェース
 AL モード変更素子
 CL1 第1集光レンズ
 CL2 第2集光レンズ
 FP 集光点
 GF ガス流
 GS 開先面
 K 切断カーフ
 LB レーザビーム
 LBa 第1レーザビーム
 LBb 第2レーザビーム
 MP 溶融池
 P1 挿入位置
 P2 退避位置
 W ワーク
REFERENCE SIGNS LIST 100 Laser processing device 110 Laser oscillator 112 Transmission path 114 Introduction section 120 Processing head 122 Nozzle 124 Lens holding section 126 Lens holding section 128 Mode change element holding section 129 Advance/retract mechanism 129a Slider 130 Work holding mechanism 132 Recess 140 Head transport mechanism 142 Linear drive body 150 Gas supply mechanism 152 Gas supply pipe 160 Control device 161 Main control section 162 Program analysis section 163 Irradiation position control section 164 Intensity distribution control section 165 Output control section 166 Display section 167 Interface 210 Laser oscillator 212 Transmission path 212a First core layer 212b Second core layer 212c Cladding layer 212d Covering layer 213 Oscillation control section 214a First laser oscillation source 214b Second laser oscillation source 215a First driving power supply 215b Second driving power supply 216a First transmission path 216b Second transmission path 218 Coupling optical system 260 Control device 261 Main control unit 262 Program analysis unit 263 Irradiation position control unit 265 Output control unit 266 Display unit 267 Interface AL Mode change element CL1 First condenser lens CL2 Second condenser lens FP Focus point GF Gas flow GS Groove surface K Cut kerf LB Laser beam LBa First laser beam LBb Second laser beam MP Molten pool P1 Insertion position P2 Evacuation position W Workpiece

Claims (14)

  1.  板状のワークにレーザビームを照射して、前記ワークに溶接用の開先を加工するレーザ加工装置であって、
     前記レーザビームを出射するレーザ発振器と、
     前記レーザビームを前記ワークの表面に対して垂直に照射させるよう導く加工ヘッドと、
     前記加工ヘッドにアシストガスとして圧縮空気を供給する空気供給機構と、
     前記ワークを保持して前記加工ヘッドと相対移動させるワーク保持機構と、
     前記レーザ加工装置の各構成要素の動作を制御する制御装置と、
    を含み、
     前記制御装置は、前記開先を加工する際に、前記開先の形状に応じて前記レーザビームの強度分布を変更するビームモード変更指令信号を出力する
    レーザ加工装置。
    A laser processing apparatus that irradiates a plate-shaped workpiece with a laser beam to process a welding groove in the workpiece,
    a laser oscillator that emits the laser beam;
    A processing head that guides the laser beam so as to irradiate the surface of the workpiece perpendicularly;
    an air supply mechanism for supplying compressed air as an assist gas to the processing head;
    a workpiece holding mechanism that holds the workpiece and moves it relative to the machining head;
    A control device for controlling the operation of each component of the laser processing device;
    Including,
    The control device is a laser processing device that outputs a beam mode change command signal that changes the intensity distribution of the laser beam in accordance with the shape of the groove when processing the groove.
  2.  前記空気供給機構は、コンプレッサを含む
    請求項1に記載のレーザ加工装置。
    The laser processing apparatus according to claim 1 , wherein the air supply mechanism includes a compressor.
  3.  前記加工ヘッドは、前記ビームモード変更指令信号に基づいて、前記レーザビームの光路上に、前記レーザビームの強度分布を変更するモード変更素子を挿入する機能を有する
    請求項1又は2に記載のレーザ加工装置。
    3. The laser processing apparatus according to claim 1, wherein the processing head has a function of inserting a mode changing element for changing an intensity distribution of the laser beam into an optical path of the laser beam based on the beam mode change command signal.
  4.  前記モード変更素子は、非球面レンズである
    請求項3に記載のレーザ加工装置。
    4. The laser processing apparatus according to claim 3, wherein the mode-changing element is an aspheric lens.
  5.  前記モード変更素子は、回折光学素子である
    請求項3に記載のレーザ加工装置。
    4. The laser processing apparatus according to claim 3, wherein the mode changing element is a diffractive optical element.
  6.  前記レーザ発振器は、複数のレーザ発振源を備えるとともに、前記ビームモード変更指令信号に基づいて、前記複数のレーザ発振源から出射される複数のレーザビームを同軸に重ね合わせることにより、前記レーザビームの強度分布を変更する機能を有する
    請求項1又は2に記載のレーザ加工装置。
    3. The laser processing apparatus according to claim 1 or 2, wherein the laser oscillator includes a plurality of laser oscillation sources and has a function of changing the intensity distribution of the laser beam by coaxially overlapping the plurality of laser beams emitted from the plurality of laser oscillation sources based on the beam mode change command signal.
  7.  前記複数のレーザビームは、複数の導光路を有する光ファイバで伝送される
    請求項6に記載のレーザ加工装置。
    7. The laser processing apparatus according to claim 6, wherein the plurality of laser beams are transmitted through an optical fiber having a plurality of light guide paths.
  8.  板状のワークにレーザビームを照射して、前記ワークに溶接用の開先を加工するレーザ加工方法であって、
     アシストガスとして圧縮空気を用い、
     前記ワークに対して切断カーフを形成する切断カーフ加工ステップと、
     前記切断カーフ加工ステップの後に、前記レーザビームを前記ワークの表面に対して垂直に照射させて前記開先を形成する開先加工ステップと、
    を含み、
     前記開先加工ステップにおいて、前記開先の形状に応じて前記レーザビームの強度分布を変更する
    レーザ加工方法。
    A laser processing method for irradiating a plate-shaped workpiece with a laser beam to process a welding groove in the workpiece,
    Compressed air is used as the assist gas.
    A cutting kerf processing step of forming a cutting kerf on the workpiece;
    After the cutting kerf processing step, a groove processing step of irradiating the laser beam perpendicularly to the surface of the workpiece to form the groove;
    Including,
    A laser processing method in which, in the groove processing step, an intensity distribution of the laser beam is changed according to a shape of the groove.
  9.  前記圧縮空気は、コンプレッサにより供給される
    請求項8に記載のレーザ加工方法。
    The laser processing method according to claim 8 , wherein the compressed air is supplied by a compressor.
  10.  前記レーザビームの強度分布の変更は、前記レーザビームの光路上にモード変更素子を挿入することにより実行される
    請求項8又は9に記載のレーザ加工方法。
    10. The laser processing method according to claim 8, wherein the intensity distribution of the laser beam is changed by inserting a mode changing element in an optical path of the laser beam.
  11.  前記モード変更素子は、非球面レンズである
    請求項10に記載のレーザ加工方法。
    The method of claim 10 , wherein the mode-changing element is an aspheric lens.
  12.  前記モード変更素子は、回折光学素子である
    請求項10に記載のレーザ加工方法。
    The laser processing method according to claim 10 , wherein the mode-changing element is a diffractive optical element.
  13.  前記レーザビームの強度分布の変更は、複数のレーザビームを同軸に重ね合わせることにより実行される
    請求項8又は9に記載のレーザ加工方法。
    10. The laser processing method according to claim 8, wherein the change in intensity distribution of the laser beam is performed by coaxially overlapping a plurality of laser beams.
  14.  前記複数のレーザビームは、複数の導光路を有する光ファイバで伝送される
    請求項13に記載のレーザ加工方法。
    The laser processing method according to claim 13, wherein the plurality of laser beams are transmitted through an optical fiber having a plurality of light guide paths.
PCT/JP2022/035960 2022-09-27 2022-09-27 Laser machining device and laser machining method WO2024069758A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/035960 WO2024069758A1 (en) 2022-09-27 2022-09-27 Laser machining device and laser machining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/035960 WO2024069758A1 (en) 2022-09-27 2022-09-27 Laser machining device and laser machining method

Publications (1)

Publication Number Publication Date
WO2024069758A1 true WO2024069758A1 (en) 2024-04-04

Family

ID=90476659

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/035960 WO2024069758A1 (en) 2022-09-27 2022-09-27 Laser machining device and laser machining method

Country Status (1)

Country Link
WO (1) WO2024069758A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005046849A (en) * 2003-07-29 2005-02-24 Shin Nippon Koki Co Ltd Laser beam machining method and laser beam machining apparatus
US20150293306A1 (en) * 2010-04-08 2015-10-15 Trumpf Laser- Und Systemtechnik Gmbh Method and Arrangement for the Generation of a Laser Beam With Different Beam Profile Characteristics by Means of a Multi-Clad Fibre
JP2020116603A (en) * 2019-01-23 2020-08-06 株式会社アマダ Laser processing device and laser processing head
WO2022037797A1 (en) * 2020-08-21 2022-02-24 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Method for producing at least one workpiece part and a residual workpiece from a workpiece

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005046849A (en) * 2003-07-29 2005-02-24 Shin Nippon Koki Co Ltd Laser beam machining method and laser beam machining apparatus
US20150293306A1 (en) * 2010-04-08 2015-10-15 Trumpf Laser- Und Systemtechnik Gmbh Method and Arrangement for the Generation of a Laser Beam With Different Beam Profile Characteristics by Means of a Multi-Clad Fibre
JP2020116603A (en) * 2019-01-23 2020-08-06 株式会社アマダ Laser processing device and laser processing head
WO2022037797A1 (en) * 2020-08-21 2022-02-24 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Method for producing at least one workpiece part and a residual workpiece from a workpiece

Similar Documents

Publication Publication Date Title
RU2750313C2 (en) Method for laser processing of metal material with a high level of dynamic control of the axes of movement of the laser beam along a pre-selected processing path, as well as a machine and a computer program for implementing this method
KR101733334B1 (en) Method for controlling output of fiber laser processing machine, and fiber laser processing machine
US8168918B2 (en) Laser welding system and laser welding control method
TWI714791B (en) A method of laser processing of a metallic material, and a machine and computer program for the implementation of said method
WO2001072465A1 (en) Laser machining apparatus
JP5705503B2 (en) Laser processing apparatus and laser beam adjustment method
US10576584B2 (en) Laser processing machine and laser processing method
JPH10314973A (en) Device and method for laser beam machining by composite laser beam
EP3871827A1 (en) Laser machining device and laser machining method
JP5249638B2 (en) Laser arc welding method and laser arc combined welding apparatus
WO2024069758A1 (en) Laser machining device and laser machining method
US20200254563A1 (en) Laser cutting head with controllable collimator having movable lenses for controlling beam diameter and/or focal point location
JP7382554B2 (en) Laser processing equipment and laser processing method using the same
US11666991B2 (en) Laser machining apparatus and laser machining method
JP2019098364A (en) Cutting device, cutting program, automatic generation program, control system, cutting device and work-piece manufacturing method
JP2018034185A (en) Laser processing head and laser processing device
JP2001096384A (en) Laser beam machining apparatus and head
JP2006095559A (en) Laser irradiation arc welding method
JP6125197B2 (en) Laser fusing device and processing method
GB2582331A (en) Apparatus for laser processing a material
WO2024062542A1 (en) Laser processing apparatus and laser processing method
EP3819068B1 (en) Cutting machine and cutting method
JP6643442B1 (en) Laser processing machine and laser processing method
JP7194588B2 (en) Laser processing method
WO2023037915A1 (en) Laser processing method and laser processing device