WO2024069032A1 - Dispositivo para cimentación de una torre eólica en alta mar - Google Patents

Dispositivo para cimentación de una torre eólica en alta mar Download PDF

Info

Publication number
WO2024069032A1
WO2024069032A1 PCT/ES2023/070573 ES2023070573W WO2024069032A1 WO 2024069032 A1 WO2024069032 A1 WO 2024069032A1 ES 2023070573 W ES2023070573 W ES 2023070573W WO 2024069032 A1 WO2024069032 A1 WO 2024069032A1
Authority
WO
WIPO (PCT)
Prior art keywords
legs
hollow
reference plane
weight
central portion
Prior art date
Application number
PCT/ES2023/070573
Other languages
English (en)
French (fr)
Inventor
Bernardino COUÑAGO LORENZO
Óscar SAINZ ÁVILA
Ismael FERNÁNDEZ GIL
Sergio Hernández Blanco
Cecilio BARAHONA OVIEDO
Alfonso ARÉVALO PÉREZ
Original Assignee
Bluenewables Sl
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bluenewables Sl filed Critical Bluenewables Sl
Publication of WO2024069032A1 publication Critical patent/WO2024069032A1/es

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B77/00Transporting or installing offshore structures on site using buoyancy forces, e.g. using semi-submersible barges, ballasting the structure or transporting of oil-and-gas platforms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B43/00Improving safety of vessels, e.g. damage control, not otherwise provided for
    • B63B43/02Improving safety of vessels, e.g. damage control, not otherwise provided for reducing risk of capsizing or sinking
    • B63B43/04Improving safety of vessels, e.g. damage control, not otherwise provided for reducing risk of capsizing or sinking by improving stability
    • B63B43/06Improving safety of vessels, e.g. damage control, not otherwise provided for reducing risk of capsizing or sinking by improving stability using ballast tanks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/44Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
    • B63B2035/4433Floating structures carrying electric power plants
    • B63B2035/446Floating structures carrying electric power plants for converting wind energy into electric energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/20Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
    • F03D13/25Arrangements for mounting or supporting wind motors; Masts or towers for wind motors specially adapted for offshore installation
    • F03D13/256Arrangements for mounting or supporting wind motors; Masts or towers for wind motors specially adapted for offshore installation on a floating support, i.e. floating wind motors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • This invention belongs to the technical field of structures to support wind turbines in offshore installations.
  • Semi-submersible platforms are platforms whose stability is acquired thanks to their high buoyancy inertia that provides high metacentric radii, thus compensating for their high center of gravity. They are characterized by good behavior at sea, but depending on the evolution of the power of wind turbines (increasingly higher), they are acquiring large dimensions, which makes it difficult to find construction docks and ports with the required dimensions and drafts.
  • TLP Torsion-Leg Platform
  • SPAR platforms are stable platforms because their center of gravity is lower than the center of the hull. Due to their transparency to wave action as a result of their low surface area and high natural periods, they perform exceptionally well at sea.
  • Barges like semi-submersible platforms, acquire their stability due to their high buoyancy inertia with worse behavior at sea.
  • the invention described below is based on the concept of SPAR-type structures.
  • many of these platforms do not have the necessary stability for their transportation, and require additional means (barges or cranes) to carry out their transportation and installation, but this is not the case of the invention described.
  • the present invention provides an alternative solution to those already known.
  • the present invention provides an alternative solution to the foundation of offshore towers by means of a foundation device according to claim 1.
  • Preferred embodiments of the invention are defined in the dependent claims.
  • the invention relates to a device for the foundation of a wind tower, the device comprising a first body, a support body attached to the first body, a second body and a plurality of legs attached to the second body, wherein the support body has a cylindrical interior that defines a tower axis and is configured to provide support and connection of a wind tower;
  • the first body comprises a central portion connected to the supporting body and a plurality of hollow arms, connected to the central portion where each arm hollow extends radially from the central portion and comprises a first surface perpendicular to the tower axis and a second surface parallel to the first surface, where the first surfaces of the hollow arms are contained in a first reference plane and the second surfaces of the hollow arms are contained in a second reference plane, the first reference plane being further from the second body than the second reference plane; each hollow arm comprises a through hole extending from the first surface to the second surface, the through hole being configured to allow a leg to pass through the through hole; the first body has a volume and weight configured to
  • the first body is a hollow body that provides a high buoyancy to weight ratio. In fact, it contributes at least 20% of the buoyancy force of the total device, while the weight is less than 8% of the total device.
  • the second body is much heavier than the first body, and the fact that this second body is submerged several meters below the first body contributes to high stability of the device by providing a stable location of an offshore wind tower. without the need to add elements that provide buoyancy inertia on the surface.
  • the device according to the invention is designed to be completely submerged once it is put into operation, so that only the support body would protrude from the water.
  • ballast management elements in both the first and second bodies allow good customization of the final position and hydrostatic balance of the device. It also allows easy disassembly of the device in case of maintenance tasks or in the case of final dismantling.
  • the legs have a length equal to or greater than the sum of the distance between the first reference plane and the second reference plane plus 55% of the distance between the first reference plane and the second surface of the second body. . In this way, the distance between the first body and the second body can be large enough to positively contribute to increasing the stability of the assembly.
  • the through holes comprise a plurality of rollers to ensure smooth sliding of the legs within the through holes.
  • the legs move several meters to allow the second body to reach its final position below sea level. Therefore, these rollers prevent the legs from being damaged when performing this operation.
  • the central portion is hollow and has a main cross section with an area greater than the cross section of any of the hollow arms, where the main cross section contains the tower axis and the cross section of the hollow arms is measured according to a plane parallel to the tower axis and perpendicular to the first surface of said hollow arm.
  • This central portion receives the auxiliary elements and support mechanisms (cranes, maintenance accesses, lights, etc.).
  • the corresponding axis of extension refers, in the case of arms, to the axis that starts from the central section and extends along the arm. In the case of the central section, any plane that cuts the central section along the vertical central axis would be valid.
  • each leg comprises a stop configured to cooperate with each through hole to prevent the leg from coming off the first body.
  • the stops provide an advantageous way of defining the final position of the second body with respect to the first.
  • the legs and/or the first body have a locking system configured to lock the relative position between the legs and the first body.
  • the locking system is configured to prevent the relative position between the first body and the second body from being altered during the operation of the device.
  • the locking system comprises hydraulic cylinders.
  • the second body has a beveled hollow polygon shape, preferably a beveled hollow triangle.
  • This structure provides an optimal relationship between weight, volume and stability.
  • each beveled vertex of the triangle receives one of the legs.
  • the device behaves stably.
  • the support body comprises a plurality of radially arranged flat protrusions, in which the dimension in the direction of the axis of the support body is greater than the dimension in the radial direction.
  • the central element is usually cylindrical in shape.
  • the vertical axis is defined by the axis of the cylinder.
  • the protrusions extend radially from said axis so that they are taller than they are long, allowing stabilization of the system in yaw.
  • the first body comprises flat plates that extend from the base of the first body that is closest to the second body.
  • the device additionally comprises anchoring lines attached to the first body.
  • the legs have a cylindrical shape.
  • they may have a polygonal cross section such as triangular. This is advantageous when there are no means to curve the plates that make up said legs.
  • the legs comprise first guide elements and the through holes comprise second guide elements, configured to cooperate with the first guide elements to guide the movement of the legs through the through holes.
  • one of the guiding elements is a slot and the other guiding element is a protrusion configured to slide through the slot.
  • Figure 1 shows an operating diagram of a device for the foundation of a wind tower according to the invention.
  • Figure 2 shows details of the leg guidance system with respect to the holes of the first body in a device for the foundation of a wind tower according to the invention.
  • Figures 3 to 5 show different stages of assembly of a device according to the present invention.
  • Figure 6 shows the length of the device legs in relation to its size.
  • Figure 1 shows an operating diagram of a device for the foundation of a wind tower according to the invention.
  • This device comprises a first body 1 and a second body 2.
  • This support body 3 will be responsible for receiving the wind tower, which is why its interior is cylindrical.
  • This support body 3 defines a tower axis 30, which will serve as a reference to define the orientations of other elements.
  • the first body 1 comprises a central portion 5, which is connected to the support body 3. This central portion 5 is also cylindrical and is concentric with the support body 3. In this way, the wind tower is anchored. in the center of the foundation device.
  • the first body 1 comprises a plurality of arms 6 connected to the central portion 5.
  • Each hollow arm 6 extends radially from the central portion 5 and comprises an upper surface perpendicular to the tower axis and a lower surface parallel to the first surface.
  • the upper surfaces of the hollow arms are contained in a first reference plane 100 and the lower surfaces of the hollow arms are contained in a second reference plane 101.
  • the first reference plane 100 is further away from the second body 2 than the second reference plane 101.
  • These arms 6 are hollow, to allow the regulation of the flotation provided by this first body 1.
  • the device also comprises a second body 2.
  • This second body 2 is intended to be completely submerged at a depth of several meters with respect to the first body 1, which is intended to be close to the surface of the sea (although below it). ).
  • the second body 2 has a first surface 20 and a second surface 21, both parallel to the first and second reference planes, where the first surface 20 is closer to the first body 1 than the second surface 21.
  • the displacement of the second body 2 with respect to the first body 1 is carried out by means of a series of cylindrical legs 4.
  • These legs 4 are fixed integrally to the second body 2 and are inserted into through holes 7 present in the first body 1, which extend from the upper surface of each arm to the lower surface thereof.
  • the first body 1 and the second body 2 are very close, so the legs 4 protrude several meters above the first body 1.
  • the second body 2 descends, taking with it the legs 4, which were solidly attached to the second body 2, so these legs 4 slide through the through holes 7 present in the first body 1.
  • the device comprises a locking system that locks the relative position between the legs 4 and the first body 1 in its operating position, so that the waves and the forces to which the device is subjected do not cause the legs 4 to move with respect to to the first body 1. This would cause the distance between the first body 1 and the second body 2 to change, and the operation of the foundation device would be compromised.
  • Both the first body 1 and the second body 2 have a ballast management element to selectively allow the entry and exit of water inside the corresponding body. In this way, it is achieved that the flotation of both bodies can be controlled during the transportation, assembly, sinking and final anchoring processes of the device.
  • the first body 1 has a volume and weight configured to provide, when empty, a buoyancy of 25% of the weight of the entire device, the empty weight of the first body 1 being around 4% of the weight of the entire device. .
  • the second body 2 has an empty weight around 90% of the weight of the device. In this way, a very low center of gravity and a very high center of buoyancy are achieved, increasing the stability of the system.
  • the central portion 5 is hollow and has a main cross section (which is measured perpendicular to the cylindrical axis thereof) with an area greater than the cross section (measured transversely to the axis along which each extends). arm) of any of the hollow arms.
  • the second body 2 has the shape of a beveled hollow triangle, so that each beveled vertex of the triangle receives one of the legs 4. Thanks to this distribution with an interior hollow, better stability in relation to weight is achieved.
  • Each leg 4 comprises a stop configured to cooperate with each through hole 7 to prevent the leg 4 from coming out of the first body 1 as the second body 2 descends and the distance that each leg 4 protrudes decreases.
  • a plurality of flat protrusions 9 arranged radially emerging from the support body 3, in which the dimension in the direction of the axis of the support body is larger than the dimension in the radial direction.
  • the protrusions extend radially from the axis of the support body 3 so that they are taller than they are long, allowing stabilization of the system in yaw.
  • flat plates 11 that extend from the lower base of the first body 1. These flat plates allow the sway instability to be controlled, increasing the natural period of the device in the event of sway oscillations, by increasing mass and damping, thus increasing the overall stability of the device.
  • Figure 2 has been made from a section of some elements that make up a device according to the invention.
  • the legs 4 are inserted into the through holes 7 that are found in each of the arms 6.
  • rollers 12 inside the arms that ensure the correct sliding of the legs, no slack nor movements in a direction other than vertical. In this way, wear of the legs due to forces that come out of said axis is avoided.
  • This figure also shows a tongue-and-groove guidance of the legs 4.
  • This guidance is produced through the cooperation between vertical protrusions 13 included in the legs and slots 14 included in the through holes 7, suitable for receiving the protrusions 13 and thus carrying out the guidance of the legs 4.
  • hydraulic locking cylinders 15 which are intended to fix the position of the legs 4 once they reach their final position.
  • Figures 3 to 5 show different stages of assembly of a device according to the present invention.
  • Figure 3 shows the assembly formed by the foundation device and a wind tower 10, which has been mounted on the support body 3 on the ground.
  • a series of tugboats will then be able to transport the structure to the installation point.
  • the ballast means will be activated to fill the second body 2 with water. This will lead to the immersion of said second body 2 and the sliding of the legs 4 through the through holes of the first body 1, given that said legs 4 are integrally attached to the second body 2 and, therefore, descend with it. .
  • Figure 5 shows how, once the second body 2 has reached its operational position, the legs 4 are anchored with respect to the first body 1, so that the distance between the first body 1 and the second body 2 remains constant. Next, the first body 1 is partially ballasted, so that said first body remains submerged. Finally, anchor cables 8 are arranged that anchor the first body 1 in the bed. Marine.
  • Figure 6 shows how the legs have a length LL greater than the sum of the distance between the first reference plane and the second reference plane L1 plus 55% of the distance between the first reference plane and the second surface of the second L2 body:
  • the length that remains seen once the complete deployment of the structure occurs is equal to or greater than that 55% of the distance between the first reference plane and the second surface of the second body. In this way, it is ensured that the distance between the first body and the second body contributes positively to the stability of the device once deployed and installed on the high seas.

Abstract

La presente invención se refiere a un dispositivo para cimentación de una torre eólica en alta mar. El dispositivo comprende un primer cuerpo (1), un cuerpo de soporte (3) unido al primer cuerpo (1), un segundo cuerpo (2) y una pluralidad de patas (4) unidas al segundo cuerpo (2). El cuerpo de soporte (3) tiene un interior cilíndrico y está configurado para proporcionar soporte y conexión de una torre eólica (10). El primer cuerpo (1) comprende una porción central (5) conectada al cuerpo de soporte (3) y una pluralidad de brazos (6) huecos, conectados con la porción central (5). Cada brazo (6) hueco comprende un orificio pasante (7) configurado para permitir que una pata (4) pase por el orificio pasante. El primer cuerpo (1) tiene un volumen y un peso configurados para proporcionar, cuando está vacío, una flotabilidad de al menos el 20% del peso de todo el dispositivo, siendo el peso del primer cuerpo (1) inferior al 8% del peso de todo el dispositivo. Las patas (4) y/o el primer cuerpo (1) tienen un sistema de bloqueo configurado para bloquear la posición relativa entre las patas y el primer cuerpo.

Description

DISPOSITIVO PARA CIMENTACIÓN DE UNA TORRE EÓLICA EN ALTA MAR
CAMPO TÉCNICO
Esta invención pertenece al campo técnico de las estructuras para soportar turbinas eólicas en instalaciones en alta mar.
ESTADO DE LA TÉCNICA
Cuando se instala una torre eólica en alta mar, es necesario proporcionar un sistema adecuado de cimentación y estabilización.
Existen muchos métodos y dispositivos diferentes destinados a este fin. Todos ellos pueden clasificarse según cuatro tipos de clasificaciones en función del modo en que la estructura obtiene la estabilidad: plataformas semisumergibles, TLP, SPAR o barcazas.
Las plataformas semisumergibles son plataformas cuya estabilidad se adquiere gracias a su alta inercia de flotación que proporciona altos radios metacéntricos, compensando así su alto centro de gravedad. Se caracterizan por un buen comportamiento en el mar, pero en función de la evolución de la potencia de los aerogeneradores (cada vez más elevada), están adquiriendo grandes dimensiones, lo que dificulta encontrar muelles de construcción y puertos con las dimensiones y calados requeridos.
Las TLP (Tension-Leg Platform) son plataformas que adquieren estabilidad mediante su sistema de anclaje, que se tensa porque la estructura principal tiene un empuje hidrostático mayor que su peso. El comportamiento en el mar de este tipo de plataformas es excepcional, con el inconveniente de las dificultades que entraña su instalación debido a los grandes tendones que llevan.
Las plataformas SPAR son plataformas estables porque su centro de gravedad está más bajo que el centro del casco. Debido a su transparencia a la acción de las olas como resultado de su baja superficie y sus altos periodos naturales, se comportan excepcionalmente bien en el mar.
Las barcazas, al igual que las plataformas semisumergibles, adquieren su estabilidad debido a su elevada inercia de flotación con un peor comportamiento en el mar. La invención que se describe a continuación se basa en el concepto de estructuras de tipo SPAR. Además de los problemas de instalación implícitos en este tipo de plataformas, cabe destacar que muchas de estas plataformas no tienen la estabilidad necesaria para su transporte, y requieren de medios adicionales (barcazas o grúas) para realizar su transporte e instalación, pero este no es el caso de la invención descrita.
La presente invención aporta una solución alternativa a las ya conocidas.
DESCRIPCIÓN BREVE DE LA INVENCIÓN
Tal y como se ha indicado, la presente invención proporciona una solución alternativa a la cimentación de torres en alta mar mediante un dispositivo de cimentación según la reivindicación 1. Las realizaciones preferidas de la invención se definen en las reivindicaciones dependientes.
A menos que se defina lo contrario, todos los términos (incluidos los términos técnicos y científicos) utilizados en el presente documento deben interpretarse como es habitual en la técnica. Se entenderá además que los términos de uso común también deben interpretarse como es habitual en la técnica correspondiente y no en un sentido idealizado o excesivamente formal, a menos que se definan expresamente en el presente documento.
En este texto, el término "comprende" y sus derivaciones (como "comprendiendo", etc.) no deben entenderse en un sentido excluyente; es decir, estos términos no deben interpretarse como excluyentes de la posibilidad de que lo descrito y definido pueda incluir otros elementos, pasos, etc.
En un primer aspecto inventivo, la invención se refiere a un dispositivo para la cimentación de una torre eólica, comprendiendo el dispositivo un primer cuerpo, un cuerpo de soporte unido al primer cuerpo, un segundo cuerpo y una pluralidad de patas unidas al segundo cuerpo, en el que el cuerpo de soporte tiene un interior cilindrico que define un eje de torre y está configurado para proporcionar soporte y conexión de una torre eólica; el primer cuerpo comprende una porción central conectada al cuerpo de soporte y una pluralidad de brazos huecos, conectados con la porción central donde cada brazo hueco se extiende radialmente desde la porción central y comprende una primera superficie perpendicular al eje de torre y una segunda superficie paralela a la primera superficie, donde las primeras superficies de los brazos huecos están contenidas en un primer plano de referencia y las segundas superficies de los brazos huecos están contenidas en un segundo plano de referencia, estando el primer plano de referencia más alejado del segundo cuerpo que el segundo plano de referencia; cada brazo hueco comprende un orificio pasante que se extiende desde la primera superficie hasta la segunda superficie, estando el orificio pasante configurado para permitir que una pata pase a través del orificio pasante; el primer cuerpo tiene un volumen y un peso configurados para proporcionar, cuando está vacío, una flotabilidad de al menos el 20% del peso de todo el dispositivo, siendo el peso del primer cuerpo inferior al 8% del peso de todo el dispositivo; el primer cuerpo tiene un primer elemento de gestión del lastre para permitir selectivamente la entrada y la salida de agua en el interior del primer cuerpo; el segundo cuerpo tiene una primera superficie y una segunda superficie, ambas paralelas al primer y segundo plano de referencia, donde la primera superficie está más cercana al primer cuerpo que la segunda superficie; el segundo cuerpo tiene un elemento de gestión de lastre para permitir selectivamente la entrada y salida de agua en el interior del segundo cuerpo; y las patas y/o el primer cuerpo tienen un sistema de bloqueo configurado para bloquear la posición relativa entre las patas y el primer cuerpo.
El primer cuerpo es un cuerpo hueco que proporciona un alto índice entre la flotabilidad y el peso. De hecho, contribuye al menos al 20% de la fuerza de flotación del dispositivo total, mientras que el peso es inferior al 8% del dispositivo total.
Además, el segundo cuerpo es mucho más pesado que el primer cuerpo, y el hecho de que este segundo cuerpo esté sumergido varios metros por debajo del primer cuerpo contribuye a una alta estabilidad del dispositivo al proporcionar una ubicación estable de una torre eólica en alta mar sin necesidad de añadir elementos que proporcionen inercia de flotación en la superficie. El dispositivo de acuerdo con la invención está diseñado para quedar completamente sumergido una vez se pone en operación, de modo que sólo sobresaldría del agua el cuerpo de soporte.
Los elementos de gestión del lastre tanto en el primer cuerpo como en el segundo permiten una buena personalización de la posición final y del equilibrio hidrostático del dispositivo. También permite un fácil desmontaje del dispositivo en caso de tareas de mantenimiento o en el caso del desmantelamiento final.
En realizaciones particulares, las patas tienen una longitud igual o mayor que la suma de la distancia entre el primer plano de referencia y el segundo plano de referencia más el 55% de la distancia entre el primer plano de referencia y la segunda superficie del segundo cuerpo. De este modo, la distancia entre el primer cuerpo y el segundo cuerpo pueda ser suficientemente grande como para contribuir positivamente a incrementar la estabilidad del conjunto.
En realizaciones particulares, los orificios pasantes comprenden una pluralidad de rodillos para asegurar un suave deslizamiento de las patas dentro de los orificios pasantes.
Las patas se desplazan varios metros para permitir que el segundo cuerpo alcance su posición final bajo el nivel del mar. Por lo tanto, estos rodillos evitan que las patas se dañen al realizar esta operación.
En realizaciones particulares, la porción central es hueca y tiene una sección transversal principal con un área mayor que la sección transversal de cualquiera de los brazos huecos, donde la sección transversal principal contiene el eje de torre y la sección transversal de los brazos huecos se mide según un plano paralelo al eje de torre y perpendicular a la primera superficie de dicho brazo hueco.
Esto crea un patrón de flotación estable. Esta porción central recibe los elementos auxiliares y mecanismos de soporte (grúas, accesos de mantenimiento, luces, etc).
El eje correspondiente de extensión se refiere, en el caso de los brazos, al eje que parte de la sección central y se extiende a lo largo del brazo. En el caso de la sección central, valdría cualquier plano que corte a la sección central por el eje central vertical.
En realizaciones particulares, cada pata comprende un tope configurado para cooperar con cada orificio pasante para evitar que la pata se salga del primer cuerpo.
Los topes proporcionan una forma ventajosa de definir la posición final del segundo cuerpo con respecto al primero. En realizaciones particulares, las patas y/o el primer cuerpo tienen un sistema de bloqueo configurado para bloquear la posición relativa entre las patas y el primer cuerpo.
El sistema de bloqueo está configurado para evitar que la posición relativa entre el primer cuerpo y el segundo cuerpo pueda ser alterada durante el funcionamiento del dispositivo.
En realizaciones particulares, el sistema de bloqueo comprende cilindros hidráulicos.
Estos cilindros hidráulicos proporcionan una fuerza elevada que asegura el correcto bloqueo de estos dos elementos.
En realizaciones particulares, el segundo cuerpo tiene una forma de polígono hueco biselado, preferentemente un triángulo hueco biselado.
Esta estructura proporciona una relación óptima entre peso, volumen y estabilidad.
En realizaciones particulares, cada vértice biselado del triángulo recibe una de las patas.
Debido a que las patas están situadas a una distancia exterior del centro de la primera porción, el dispositivo se comporta de forma estable.
En realizaciones particulares, el cuerpo de soporte comprende una pluralidad de protrusiones planas dispuestas de manera radial, en las que la dimensión en dirección del eje del cuerpo de soporte es mayor que la dimensión en dirección radial.
El elemento central suele tener forma cilindrica. De este modo, el eje vertical queda definido por el eje del cilindro. Las protrusiones se extienden radialmente desde dicho eje de modo que son más altas que largas, permitiendo la estabilización del sistema en guiñada.
En realizaciones particulares, el primer cuerpo comprende placas planas que se prolongan desde la base del primer cuerpo que está más cerca del segundo cuerpo.
Estas placas planas permiten controlar la inestabilidad de vaivén, aumentando el periodo natural del dispositivo ante oscilaciones de vaivén, mediante el aumento de masa y amortiguación, de modo que se aumenta la estabilidad total del dispositivo. En realizaciones particulares, el dispositivo comprende adicionalmente unas líneas de fondeo unidas al primer cuerpo.
En realizaciones particulares, las patas tienen forma cilindrica. No obstante, en otras situaciones, pueden tener una sección transversal poligonal como, por ejemplo, triangular. Esto es ventajoso cuando no se disponga de medios para curvar las planchas que conforman dichas patas.
En realizaciones particulares, las patas comprenden unos primeros elementos de guiado y los orificios pasantes comprenden unos segundos elementos de guiado, configurados para cooperar con los primeros elementos de guiado para guiar el movimiento de las patas a través de los orificios pasantes.
De este modo, se asegura un deslizamiento óptimo, evitando las holguras y los movimientos en ejes distintos al del desplazamiento.
En realizaciones particulares, uno de los elementos de guiado es una ranura y el otro elemento de guiado es una protrusión configurada para deslizar a través de la ranura.
RESUMEN DE LAS FIGURAS
Para completar la descripción, y con el fin de proporcionar una mejor comprensión de la invención, se proporciona un conjunto de dibujos. Dichos dibujos forman parte integrante de la descripción e ¡lustran una realización de la invención, lo cual no debe interpretarse como una restricción del alcance de la invención, sino sólo como un ejemplo de cómo puede llevarse a cabo la invención. Los dibujos comprenden las siguientes figuras:
La figura 1 muestra un esquema de funcionamiento de un dispositivo para la cimentación de una torre eólica de acuerdo con la invención.
La figura 2 muestra detalles del sistema de guiado de las patas con respecto a los orificios del primer cuerpo en un dispositivo para la cimentación de una torre eólica de acuerdo con la invención.
Las figuras 3 a 5 muestran distintas etapas del montaje de un dispositivo según la presente invención.
La Figura 6 muestra la longitud de las patas del dispositivo en relación al tamaño del mismo.
En estas figuras se han utilizado las siguientes referencias numéricas:
1 Primer cuerpo
2 Segundo cuerpo
3 Cuerpo de soporte
4 Patas
5 Porción central del primer cuerpo
6 Brazos del primer cuerpo
7 Orificio pasante del primer cuerpo
8 Cable de fondeo
9 Protrusiones de estabilización en guiñada
10 Torre eólica
11 Placas de estabilización en vaivén
12 Rodillos de deslizamiento
13 Protrusiones de guiado
14 Ranuras de guiado
15 Cilindros hidráulicos
20 Primera superficie del segundo cuerpo
21 Segunda superficie del segundo cuerpo
30 Eje de torre
100 Primer plano de referencia del primer cuerpo
101 Segundo plano de referencia del primer cuerpo
DESCRIPCIÓN DETALLADA DE UN EJEMPLO PARTICULAR DE REALIZACIÓN
Las realizaciones de ejemplo se describen con suficiente detalle como para que el experto en la materia pueda incorporar y poner en práctica los sistemas y procesos aquí descritos. Es importante entender que las realizaciones pueden proporcionarse en muchas formas alternativas y no deben interpretarse como limitadas a los ejemplos aquí expuestos.
Por consiguiente, aunque las realizaciones pueden modificarse de diversas maneras y adoptar varias formas alternativas, en los dibujos se muestran realizaciones específicas y se describen en detalle a continuación como ejemplos. No hay intención de limitarse a las formas particulares divulgadas. Por el contrario, deben incluirse todas las modificaciones, equivalentes y alternativas que entren en el ámbito de las reivindicaciones adjuntas. Los elementos de las realizaciones de ejemplo se denotan sistemáticamente con los mismos números de referencia a lo largo de los dibujos y de la descripción detallada, cuando proceda.
La figura 1 muestra un esquema de funcionamiento de un dispositivo para la cimentación de una torre eólica de acuerdo con la invención.
En esta figura se puede observar el dispositivo sin la torre eólica, y sin la referencia de la línea del agua.
Este dispositivo comprende un primer cuerpo 1 y un segundo cuerpo 2.
Encima del primer cuerpo existe un cuerpo de soporte 3, unido al primer cuerpo 1 . Este cuerpo de soporte 3 será el encargado de recibir la torre eólica, por eso su interior es cilindrico. Este cuerpo de soporte 3 define un eje de torre 30, que servirá de referencia para definir las orientaciones de otros elementos.
El primer cuerpo 1 comprende una porción central 5, que es la que está conectada al cuerpo de soporte 3. Esta porción central 5 también es cilindrica y es concéntrica con el cuerpo de soporte 3. De este modo se consigue que la torre eólica quede anclada en el centro del dispositivo de cimentación.
Además de la porción central 5, el primer cuerpo 1 comprende una pluralidad de brazos 6 conectados con la porción central 5. Cada brazo hueco 6 se extiende radialmente desde la porción central 5 y comprende una superficie superior perpendicular al eje de torre y una superficie inferior paralela a la primera superficie. Las superficies superiores de los brazos huecos están contenidas en un primer plano de referencia 100 y las superficies inferiores de los brazos huecos están contenidas en un segundo plano de referencia 101. Como puede observarse, el primer plano de referencia 100 está más alejado del segundo cuerpo 2 que el segundo plano de referencia 101. Estos brazos 6 son huecos, para permitir la regulación de la flotación aportada por este primer cuerpo 1 . El dispositivo comprende además un segundo cuerpo 2. Este segundo cuerpo 2 está destinado a ser sumergido por completo a vahos metros de profundidad con respecto al primer cuerpo 1 , que está destinado a quedar cerca de la superficie del mar (aunque por debajo de la misma). El segundo cuerpo 2 tiene una primera superficie 20 y una segunda superficie 21 , ambas paralelas al primer y segundo plano de referencia, donde la primera superficie 20 está más cercana al primer cuerpo 1 que la segunda superficie 21.
El desplazamiento del segundo cuerpo 2 con respecto al primer cuerpo 1 se realiza por medio de una serie de patas 4 cilindricas. Estas patas 4 están fijadas solidariamente al segundo cuerpo 2 y se introducen en unos orificios pasantes 7 presentes en el primer cuerpo 1 , que se extienden desde la superficie superior de cada brazo hasta la superficie inferior del mismo. Durante el traslado del dispositivo, el primer cuerpo 1 y el segundo cuerpo 2 se encuentran muy cerca, por lo que las patas 4 sobresalen varios metros por encima del primer cuerpo 1. Una vez que el dispositivo llega al lugar de la cimentación, el segundo cuerpo 2 desciende, llevando consigo las patas 4, que estaban solidariamente unidas al segundo cuerpo 2, por lo que estas patas 4 deslizan a través de los orificios pasantes 7 presentes en el primer cuerpo 1. Una vez que se alcanza la posición final, el dispositivo comprende un sistema de bloqueo que bloquea la posición relativa entre las patas 4 y el primer cuerpo 1 en su posición de operación, para que el oleaje y las fuerzas a las que el dispositivo está sometido no provoquen que las patas 4 se desplacen con respecto al primer cuerpo 1. Esto provocaría que la distancia entre el primer cuerpo 1 y el segundo cuerpo 2 vahase, y la operación del dispositivo de cimentación se vería comprometida.
Tanto el primer cuerpo 1 como el segundo cuerpo 2 tienen un elemento de gestión del lastre para permitir selectivamente la entrada y la salida de agua en el interior del cuerpo correspondiente. De este modo se consigue que la flotación de ambos cuerpos pueda ser controlada durante los procesos de transporte, montaje, hundimiento y anclaje final del dispositivo.
El primer cuerpo 1 tiene un volumen y un peso configurados para proporcionar, cuando está vacío, una flotabilidad del 25% del peso de todo el dispositivo, siendo el peso en vacío del primer cuerpo 1 en torno al 4% del peso de todo el dispositivo. Por el contrario, el segundo cuerpo 2 tiene un peso en vacío en torno al 90% del peso del dispositivo. De este modo, se consigue un centro de gravedad muy bajo y un centro de flotabilidad muy alto, aumentando la estabilidad del sistema. Por otro lado, la porción central 5 es hueca y tiene una sección transversal principal (la que se mide perpendicularmente al eje cilindrico de la misma) con un área mayor que la sección transversal (medida transversalmente al eje a lo largo del cual se extiende cada brazo) de cualquiera de los brazos huecos.
El segundo cuerpo 2 tiene una forma de triángulo hueco biselado, de modo que cada vértice biselado del triángulo recibe una de las patas 4. Gracias a esta distribución con un hueco interior, se consigue una mejor estabilidad en relación al peso.
Cada pata 4 comprende un tope configurado para cooperar con cada orificio pasante 7 para evitar que la pata 4 se salga del primer cuerpo 1 a medida que el segundo cuerpo 2 desciende y la distancia que sobresale cada pata 4 disminuye.
En esta figura también se observan dos elementos de estabilidad.
En primer lugar, una pluralidad de protrusiones planas 9 dispuestas de manera radial saliendo del cuerpo de soporte 3, en las que la dimensión en dirección del eje del cuerpo de soporte es mayor que la dimensión en dirección radial. Las protrusiones se extienden radialmente desde el eje del cuerpo de soporte 3 de modo que son más altas que largas, permitiendo la estabilización del sistema en guiñada.
En segundo lugar, unas placas planas 11 que se prolongan desde la base inferior del primer cuerpo 1. Estas placas planas permiten controlar la inestabilidad de vaivén, aumentando el periodo natural del dispositivo ante oscilaciones de vaivén, mediante el aumento de masa y amortiguación, de modo que se aumenta la estabilidad total del dispositivo.
La Figura 2 se ha realizado a partir de un corte en algunos elementos que componen un dispositivo de acuerdo con la invención.
En esta imagen, los brazos huecos 6 han sido seccionados para una mejor comprensión de los elementos que se incluyen en esta figura.
Tal y como se muestra en la figura anterior, las patas 4 están introducidas en los orificios pasantes 7 que se encuentran en cada uno de los brazos 6. Existen en el interior de los brazos unos rodillos 12 que aseguran el correcto deslizamiento de las patas, sin holguras ni movimientos en una dirección distinta a la vertical. De este modo, se evita el desgaste de las patas debido a fuerzas que se salgan de dicho eje.
En esta figura también se observa un guiado machiembrado de las patas 4. Este guiado se produce por medio de la cooperación entre unas protrusiones verticales 13 comprendidas en las patas y una ranuras 14 comprendidas en los orificios pasantes 7, adecuadas para recibir las protrusiones 13 y llevar así a cabo el guiado de las patas 4.
Además de lo anterior, existen también unos cilindros hidráulicos de bloqueo 15, que están destinados a fijar la posición de las patas 4 una vez que estas alcancen su posición final.
Las figuras 3 a 5 muestran distintas etapas del montaje de un dispositivo según la presente invención.
En la figura 3 se muestra el conjunto formado por el dispositivo de cimentación y una torre eólica 10, que ha sido montada sobre el cuerpo de soporte 3 en tierra.
El hecho de poder instalar el equipo con medios terrestres y en un entorno portuario reduce el proceso logístico y elimina los riesgos inherentes a cualquier operación en mar abierto y entre dos cuerpos con movimientos relativos distintos debido a sus diferentes flotabilidades.
A continuación, una serie de remolcadores podrán transportar la estructura hasta el punto de instalación.
Allí, tal y como muestra la figura 4, se activarán los medios de lastrado para llenar el segundo cuerpo 2 de agua. Esto dará lugar a la inmersión de dicho segundo cuerpo 2 y al deslizamiento de las patas 4 a través de los orificios pasantes del primer cuerpo 1 , dado que dichas patas 4 están unidas solidariamente al segundo cuerpo 2 y, por lo tanto, descienden con él.
En la figura 5 se muestra cómo, una vez el segundo cuerpo 2 ha alcanzado su posición operativa, se anclan las patas 4 con respecto al primer cuerpo 1 , para que la distancia entre el primer cuerpo 1 y el segundo cuerpo 2 permanezca constante. A continuación se lastra parcialmente el primer cuerpo 1 , para que dicho primer cuerpo quede sumergido. Finalmente, se disponen unos cables de fondeo 8 que anclan el primer cuerpo 1 en el lecho marino.
La figura 6 muestra cómo las patas tienen una longitud LL mayor que la suma de la distancia entre el primer plano de referencia y el segundo plano de referencia L1 más el 55% de la distancia entre el primer plano de referencia y la segunda superficie del segundo cuerpo L2:
LL > £1 + 0. 55 £2 De este modo, la longitud que permanece vista una vez se produce el despliegue completo de la estructura es igual o mayor que ese 55% de la distancia entre el primer plano de referencia y la segunda superficie del segundo cuerpo. De este modo, se asegura que la distancia entre el primer cuerpo y el segundo cuerpo contribuye positivamente a la estabilidad del dispositivo una vez desplegado e instalado en alta mar.

Claims

REIVINDICACIONES
1.- Dispositivo para la cimentación de una torre eólica, comprendiendo el dispositivo un primer cuerpo (1), un cuerpo de soporte (3) unido al primer cuerpo (1), un segundo cuerpo (2) y una pluralidad de patas (4) unidas al segundo cuerpo (2), en el que el cuerpo de soporte (3) tiene un interior cilindrico que define un eje de torre (30) y está configurado para proporcionar soporte y conexión de una torre eólica (10); el primer cuerpo (1) comprende una porción central (5) conectada al cuerpo de soporte (3) y una pluralidad de brazos (6) huecos, conectados con la porción central (5), donde cada brazo hueco (6) se extiende radialmente desde la porción central (5) y comprende una primera superficie perpendicular al eje de torre y una segunda superficie paralela a la primera superficie, donde las primeras superficies de los brazos huecos están contenidas en un primer plano de referencia (100) y las segundas superficies de los brazos huecos están contenidas en un segundo plano de referencia (101), estando el primer plano de referencia (100) más alejado del segundo cuerpo (2) que el segundo plano de referencia (101); cada brazo (6) hueco comprende un orificio pasante (7) que se extiende desde la primera superficie hasta la segunda superficie, estando el orificio pasante (7) configurado para permitir que una pata (4) pase a través del orificio pasante; el primer cuerpo (1) tiene un volumen y un peso configurados para proporcionar, cuando está vacío, una flotabilidad de al menos el 20% del peso de todo el dispositivo, siendo el peso del primer cuerpo (1) inferior al 8% del peso de todo el dispositivo; el primer cuerpo (1) tiene un primer elemento de gestión del lastre para permitir selectivamente la entrada y la salida de agua en el interior del primer cuerpo; el segundo cuerpo (2) tiene una primera superficie (20) y una segunda superficie (21), ambas paralelas al primer y segundo plano de referencia, donde la primera superficie (20) está más cercana al primer cuerpo (1) que la segunda superficie (21); el segundo cuerpo (2) tiene un elemento de gestión de lastre para permitir selectivamente la entrada y salida de agua en el interior del segundo cuerpo; y las patas (4) y/o el primer cuerpo (1) tienen un sistema de bloqueo configurado para bloquear la posición relativa entre las patas y el primer cuerpo.
2.- Dispositivo según la reivindicación 1 , en el que las patas tienen una longitud igual o mayor que la suma de la distancia entre el primer plano de referencia y el segundo plano de referencia más el 55% de la distancia entre el primer plano de referencia y la segunda superficie del segundo cuerpo.
3.- Dispositivo según cualquiera de las reivindicaciones anteriores, en el que los orificios pasantes (7) comprenden una pluralidad de rodillos para asegurar un suave deslizamiento de las patas dentro de los orificios pasantes (7).
4.- Dispositivo según cualquiera de las reivindicaciones anteriores, en el que la porción central (5) es hueca y tiene una sección transversal principal con un área mayor que la sección transversal de cualquiera de los brazos huecos, donde la sección transversal principal contiene el eje de torre y la sección transversal de los brazos huecos se mide según un plano paralelo al eje de torre y perpendicular a la primera superficie de dicho brazo hueco.
5.- Dispositivo según cualquiera de las reivindicaciones anteriores, en el que cada pata (4) comprende un tope configurado para cooperar con cada orificio pasante (7) para evitar que la pata (4) se salga del primer cuerpo (1).
6.- Dispositivo según cualquiera de las reivindicaciones anteriores, en el que el sistema de bloqueo comprende cilindros hidráulicos (15).
7.- Dispositivo según cualquiera de las reivindicaciones anteriores, en el que el segundo cuerpo (2) tiene una forma de polígono hueco biselado, preferentemente un triángulo hueco biselado.
8.- Dispositivo según cualquiera de las reivindicaciones anteriores, en el que cada vértice biselado del triángulo recibe una de las patas (4).
9.- Dispositivo según cualquiera de las reivindicaciones anteriores, en el que el cuerpo de soporte (3) comprende una pluralidad de protrusiones planas (9) dispuestas de manera radial, en las que la dimensión en dirección del eje del cuerpo de soporte es mayor que la dimensión en dirección radial.
10.- Dispositivo según cualquiera de las reivindicaciones anteriores, en el que el primer cuerpo (1) comprende placas planas (11) que se prolongan desde la base del primer cuerpo que está más cerca del segundo cuerpo (2).
11.- Dispositivo según cualquiera de las reivindicaciones anteriores, que comprende adicionalmente unas líneas de fondeo (8) unidas al primer cuerpo.
12.- Dispositivo según cualquiera de las reivindicaciones anteriores, en el que las patas (4) tienen forma cilindrica.
13.- Dispositivo según cualquiera de las reivindicaciones anteriores, en el que las patas (4) comprenden unos primeros elementos de guiado (13) y los orificios pasantes (7) comprenden unos segundos elementos de guiado (14), configurados para cooperar con los primeros elementos de guiado (13) para guiar el movimiento de las patas (4) a través de los orificios pasantes (7).
14.- Dispositivo según la reivindicación 13, en el que uno de los elementos de guiado es una ranura y el otro elemento de guiado es una protrusión configurada para deslizar a través de la ranura.
PCT/ES2023/070573 2022-09-26 2023-09-26 Dispositivo para cimentación de una torre eólica en alta mar WO2024069032A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP202230821 2022-09-26
ES202230821A ES2966567A1 (es) 2022-09-26 2022-09-26 Dispositivo para cimentacion de una torre eolica en alta mar

Publications (1)

Publication Number Publication Date
WO2024069032A1 true WO2024069032A1 (es) 2024-04-04

Family

ID=88600268

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2023/070573 WO2024069032A1 (es) 2022-09-26 2023-09-26 Dispositivo para cimentación de una torre eólica en alta mar

Country Status (2)

Country Link
ES (1) ES2966567A1 (es)
WO (1) WO2024069032A1 (es)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050169714A1 (en) * 2003-10-07 2005-08-04 Keppel Fels Limited (Sg) Extended semi-submersible vessel (ESEMI)
WO2013083358A1 (en) * 2011-12-06 2013-06-13 Winddiver A floating wind turbine plant
WO2018150064A1 (es) * 2017-02-15 2018-08-23 Berenguer Ingenieros S.L. Estructura flotante autoinstalable de tipo spar para soporte de aerogeneradores de gran potencia
WO2018189084A1 (fr) * 2017-04-10 2018-10-18 Naval Energies Flotteur notamment d'eolienne offshore
US20190078556A1 (en) * 2016-03-15 2019-03-14 Stiesdal Offshore Technologies A/G A floating wind turbine and a method for the installation of such floating wind turbine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050169714A1 (en) * 2003-10-07 2005-08-04 Keppel Fels Limited (Sg) Extended semi-submersible vessel (ESEMI)
WO2013083358A1 (en) * 2011-12-06 2013-06-13 Winddiver A floating wind turbine plant
US20190078556A1 (en) * 2016-03-15 2019-03-14 Stiesdal Offshore Technologies A/G A floating wind turbine and a method for the installation of such floating wind turbine
WO2018150064A1 (es) * 2017-02-15 2018-08-23 Berenguer Ingenieros S.L. Estructura flotante autoinstalable de tipo spar para soporte de aerogeneradores de gran potencia
WO2018189084A1 (fr) * 2017-04-10 2018-10-18 Naval Energies Flotteur notamment d'eolienne offshore

Also Published As

Publication number Publication date
ES2966567A1 (es) 2024-04-22

Similar Documents

Publication Publication Date Title
US9592889B2 (en) Submersible active support structure for turbine towers and substations or similar elements, in offshore facilities
ES2718934T3 (es) Base de turbina eólica flotante con patas de tensión de tipo abocinado, turbina eólica marina y método de construcción
ES2962758T3 (es) Plataforma eólica flotante con dispositivo de patas tensoras
ES2643906T3 (es) Plataforma de alta mar estabilizada por columnas con planchas de atrapamiento de agua y sistema de amarre asimétrico para soporte de turbinas eólicas de alta mar
US7686543B2 (en) System for mounting equipment and structures offshore
ES2620107T3 (es) Aparato de generación de turbina eólica de tipo flotante y método de instalación del mismo
ES2642177B1 (es) Sistema flotante auxiliar para la instalación y/o el transporte de estructuras marinas y procedimiento que comprende dicho sistema.
ES2545553B1 (es) Plataforma flotante de aprovechamiento de energía eólica
ES2378960A1 (es) Procedimiento de instalación de torre para uso aguas adentro.
ES2617991A1 (es) Estructura marítima para la cimentación por gravedad de edificaciones, instalaciones y aerogeneradores en el medio marino
ES2754576T3 (es) Soporte flotante de sección horizontal variable con la profundidad
WO2024069032A1 (es) Dispositivo para cimentación de una torre eólica en alta mar
US20230113147A1 (en) Floating offshore wind turbine substructure
ES2644169A1 (es) Plataforma semisumergible para aerogeneradores marinos
WO2014188015A1 (es) Instalación dedicada a la generación de energía, formada por una turbina acuática de aprovechamiento de energía de las corrientes de agua en movimiento
ES2876053A1 (es) Plataforma flotante de hormigon armado de aplicacion a la industria del sector de la eolica marina
ES2785802A1 (es) Procedimiento de instalacion de un aerogenerador de torre mar adentro
KR20140120152A (ko) 부유식 해상 풍력 발전기용 부유식 플랫폼
KR20220135335A (ko) 해상 풍력발전 장치
WO2023144425A1 (es) Plataforma semisumergible
CN113027688A (zh) 一种浮式风机基座及风机
WO2022259042A2 (es) Sistema de fondeo y procedimiento de instalación de una plataforma flotante empleando dicho sistema de fondeo
WO2023057671A1 (es) Plataforma flotante semisumergible para aerogenerador marino
BR112017011070B1 (pt) Plataforma flutuante para aproveitamento de energia eólica