WO2024068931A1 - Composition cosmétique de soin capillaire comprenant au moins une silicone aminée particulaire et au moins une substance grasse non siliconée, et procédé de traitement capillaire cosmétique - Google Patents

Composition cosmétique de soin capillaire comprenant au moins une silicone aminée particulaire et au moins une substance grasse non siliconée, et procédé de traitement capillaire cosmétique Download PDF

Info

Publication number
WO2024068931A1
WO2024068931A1 PCT/EP2023/077059 EP2023077059W WO2024068931A1 WO 2024068931 A1 WO2024068931 A1 WO 2024068931A1 EP 2023077059 W EP2023077059 W EP 2023077059W WO 2024068931 A1 WO2024068931 A1 WO 2024068931A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
carbon atoms
better still
alkyl
formula
Prior art date
Application number
PCT/EP2023/077059
Other languages
English (en)
Inventor
Sophie Bourel
Adrien BENAZZOUZ
Anne Dussaud
Original Assignee
L'oreal
Momentive Performance Materials Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by L'oreal, Momentive Performance Materials Inc. filed Critical L'oreal
Publication of WO2024068931A1 publication Critical patent/WO2024068931A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/84Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions otherwise than those involving only carbon-carbon unsaturated bonds
    • A61K8/89Polysiloxanes
    • A61K8/896Polysiloxanes containing atoms other than silicon, carbon, oxygen and hydrogen, e.g. dimethicone copolyol phosphate
    • A61K8/898Polysiloxanes containing atoms other than silicon, carbon, oxygen and hydrogen, e.g. dimethicone copolyol phosphate containing nitrogen, e.g. amodimethicone, trimethyl silyl amodimethicone or dimethicone propyl PG-betaine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/34Alcohols
    • A61K8/342Alcohols having more than seven atoms in an unbroken chain
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/34Alcohols
    • A61K8/345Alcohols containing more than one hydroxy group
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/40Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing nitrogen
    • A61K8/41Amines
    • A61K8/416Quaternary ammonium compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/84Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions otherwise than those involving only carbon-carbon unsaturated bonds
    • A61K8/89Polysiloxanes
    • A61K8/891Polysiloxanes saturated, e.g. dimethicone, phenyl trimethicone, C24-C28 methicone or stearyl dimethicone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/12Preparations containing hair conditioners

Definitions

  • Cosmetic hair care composition comprising at least one particular amino silicone and at least one non-silicone fatty substance
  • cosmetic hair treatment process relates to a cosmetic hair care composition comprising at least one particular amino silicone and at least one non-silicone fatty substance.
  • the present invention also relates to a cosmetic hair treatment process, and more particularly a process for cleansing and/or conditioning the hair, comprising the application of a com- position according to the invention.
  • the hair is sensitive to many types of attack and can be embrittled and damaged to various extents by the external environment, in particular by the action of atmospheric agents such as light, atmospheric pollution and bad weather, and also by mechanical or chemical treatments, such as brushing, combing, dyeing, bleaching, permanent-wav- ing and/or relaxing, or even repeated washing.
  • the aim of the invention is therefore to propose a composition for cleansing and/or conditioning the hair which solves the above-mentioned problems, and in particular will provide a high level of care and conditioning to the hair, in particular to the most dam- aged hair, these effects being discernible even at low contents of amino silicone.
  • Another aim of the present invention is to propose compositions which are effective in terms of the cosmetic properties given to the hair, both at the time of application and also in a manner that lasts over time.
  • a subject of which is therefore a cosmetic hair care composition, comprising: - at least one amino silicone of formula (I) as defined below; and - at least one non-silicone fatty substance.
  • the composition according to the invention is easy to rinse off, making it possible to avoid using large quantities of water to eliminate it, where appropriate, for example when the composition is in the form of a shampoo or condi- tioner to be rinsed off. After application, it gives a good level of care, in particular a smooth nature to the touch and visually, softness, a uniform coating from the root to the end, and therefore repair of damaged ends, and also ultimately a clean and natural feel to the hair, without weighing it down.
  • cosmetic hair care composition means a cosmetic composition for washing (or cleansing) the hair and/or for conditioning the hair.
  • the cosmetic hair care composition is advanta- geously a pre-shampoo, a shampoo, a conditioner, a hair mask, a hair serum, it being possible for these compositions to be rinsed off or left on after application.
  • R which is identical or different, represents a methyl group and/or a hy- droxyl radical.
  • the two radicals R are identical and represent a methyl group or a hydroxyl radical, even better still a methyl radical.
  • R’ represents a methyl group.
  • A is a linear divalent alkylene group comprising 3 or 4 carbon atoms; better still, a linear group comprising 3 carbon atoms (-CH 2 CH 2 CH 2 -).
  • the values of n and m are chosen such that the amino silicone has an amine number ranging from 0.1 to 0.29 meq/g and a weight-average molecular mass (Mw) ranging from 10000 to 100000.
  • the amino silicone of formula (I) has an amine number ranging from 0.1 to 0.25 meq/g, better still ranging from 0.1 to 0.19 meq/g, and even better still ranging from 0.1 to 0.16 meq/g.
  • the amino silicone of formula (I) has a weight-average molecular mass (Mw) ranging from 20000 to 70000, better still from 25000 to 50000, even better still from 35000 to 45000.
  • Mw weight-average molecular mass
  • n is between 1.4 and 13, better still between 1.4 and 9, even better still between 1.5 and 5, and the n/m ratio is between 45 and 330, better still between 100 and 300.
  • the value of n can thus readily be determined on the basis of all this data; in particular, n can be between 400 and 600.
  • the composition according to the invention comprises one or more amino silicones of formula (I): in which: - R, which are identical, and R', represent a methyl group, - A is a linear or branched divalent alkylene group comprising 3 or 4 carbon atoms; preferably a linear divalent alkylene group comprising 3 carbon atoms (-CH 2 CH 2 CH 2 -), the amino silicone has an amine number ranging from 0.1 to 0.19 meq/g and a weight- average molecular weight (Mw) ranging from 25000 to 50000.
  • Mw weight- average molecular weight
  • m is between 1.4 and 13
  • the n/m ratio is between 45 and 300
  • n can be between 400 and 600.
  • the amino silicone of formula (I) preferably has a dynamic viscosity, measured at 25°C, 1 atm, ranging from 2 to 8 Pa.s (2000-8000 cps), better still from 3 to 6 Pa.s (3000-6000 cps), even better still from 3 to 5 Pa.s.
  • the composition according to the invention comprises the amino silicone(s) of formula (I) in a total content which can range from 0.001% to 10% by weight, in particular from 0.002% to 5% by weight, better still from 0.005% to 3% by weight, even better still from 0.01% to 2.5% by weight, preferentially from 0.02% to 2% by weight, better still from 0.05% to 1.5% by weight and even better still from 0.1% to 1.2% by weight, relative to the total weight of the composition.
  • the amino silicone of formula (I) can be prepared by any means conventionally em- ployed in the silicone industry.
  • Non-silicone fatty substances The composition according to the invention comprises at least one non-silicone fatty substance, which may be chosen from solid fatty substances, liquid fatty substances, and mixtures thereof.
  • non-silicone fatty substance means a fatty substance not containing any Si-O bonds.
  • solid fatty substance means a fatty substance having a melting point of greater than 25°C, preferably greater than or equal to 28°C, preferentially greater than or equal to 30°C, at atmospheric pressure (1.013 ⁇ 10 5 Pa).
  • the solid fatty substances that may be used in the present invention are neither (poly)oxyalkylenated nor (poly)glycerolated.
  • the solid fatty substances may be chosen from solid fatty acids, solid fatty alcohols, solid esters of fatty acids and/or of fatty alcohols, waxes and ceramides, and mixtures thereof.
  • “Fatty acid” means a long-chain carboxylic acid comprising from 6 to 40 carbon atoms, preferably from 8 to 30 carbon atoms.
  • the solid fatty acids according to the invention preferentially comprise from 10 to 30 carbon atoms and better still from 14 to 22 carbon atoms. These fatty acids are neither oxyalkylenated nor glycerolated.
  • the solid fatty acids that may be used in the present invention are particularly chosen from myristic acid, cetylic acid, stearylic acid, palmitic acid, stearic acid, lauric acid, behenic acid, and mixtures thereof. Said fatty acids are other than the (poly)hydroxylated carboxylic acids comprising from 2 to 8 carbon atoms described previously.
  • “Fatty alcohol” means a long-chain aliphatic alcohol comprising from 6 to 40 carbon atoms, preferably from 8 to 30 carbon atoms, and comprising at least one hydroxyl group OH. These fatty alcohols are neither oxyalkylenated nor glycerolated.
  • the solid fatty alcohols may be saturated or unsaturated, and linear or branched, and include from 8 to 40 carbon atoms, preferably from 10 to 30 carbon atoms, better still from 12 to 30 carbon atoms.
  • the solid fatty alcohols have the structure R-OH with R denoting a linear alkyl group, optionally substituted with one or more hydroxyl groups, comprising from 8 to 40, preferentially from 10 to 30 carbon atoms, better still from 12 to 30, or even from 12 to 24 atoms and even better still from 14 to 22 carbon atoms.
  • the solid fatty alcohols that may be used are preferably chosen from saturated, and linear or branched, preferably linear and saturated, (mono)alcohols including from 8 to 40 carbon atoms, better still from 10 to 30, or even from 12 to 24 atoms and even better still from 14 to 22 carbon atoms.
  • the solid fatty alcohols that can be used may be chosen, alone or as a mixture, from: - myristyl alcohol (or 1-tetradecanol); - cetyl alcohol (or 1-hexadecanol); - stearyl alcohol (or 1-octadecanol); - arachidyl alcohol (or 1-eicosanol); - behenyl alcohol (or 1-docosanol); - lignoceryl alcohol (or 1-tetracosanol); - ceryl alcohol (or 1-hexacosanol); - montanyl alcohol (or 1-octacosanol); - myricyl alcohol (or 1-triacontanol).
  • the solid fatty alcohol is chosen from cetyl alcohol, stearyl alcohol, be- henyl alcohol, myristyl alcohol, arachidyl alcohol, and mixtures thereof, such as cetyl- stearyl or cetearyl alcohol.
  • the solid fatty alcohol is chosen from cetyl alcohol, stearyl alcohol or mixtures thereof, such as cetylstearyl alcohol; better still, the solid fatty alcohol is cetylstearyl alcohol.
  • the solid esters of a fatty acid and/or of a fatty alcohol that may be used are preferably chosen from esters derived from a C 9 -C 26 carboxylic fatty acid and/or from a C 9 -C 26 fatty alcohol.
  • these solid fatty esters are esters of a linear or branched, saturated carbox- ylic acid including at least 10 carbon atoms, preferably from 10 to 30 carbon atoms and more particularly from 12 to 24 carbon atoms, and of a linear or branched, saturated monoalcohol including at least 10 carbon atoms, preferably from 10 to 30 carbon atoms and more particularly from 12 to 24 carbon atoms.
  • the saturated carboxylic acids may optionally be hydroxylated, and are preferably monocarboxylic acids.
  • Esters of C 4 -C 22 dicarboxylic or tricarboxylic acids and of C 1 -C 22 alcohols and esters of mono-, di- or tricarboxylic acids and of C 2 -C 26 di-, tri-, tetra- or pentahydroxy alcohols may also be used.
  • the solid esters of a fatty acid and/or of a fatty alcohol are chosen from C 9 - C 26 alkyl palmitates, particularly myristyl palmitate, cetyl palmitate and stearyl palmi- tate; C 9 -C 26 alkyl myristates, such as cetyl myristate, stearyl myristate and myristyl myristate; C 9 -C 26 alkyl stearates, particularly myristyl stearate, cetyl stearate and stearyl stearate; and mixtures thereof.
  • the solid esters of a fatty acid and/or of a fatty alcohol are cho- sen from myristyl stearate, myristyl palmitate and mixtures thereof.
  • a wax is a lipophilic compound, which is solid at 25°C and atmospheric pressure, with a reversible solid/liquid change of state, hav- ing a melting point of greater than approximately 40°C and which may be up to 200°C, and having anisotropic crystal organization in the solid state.
  • the size of the wax crystals is such that the crystals diffract and/or scatter light, giving the composi- tion that comprises them a relatively opaque cloudy appearance.
  • the waxes that are suitable for use in the invention may be chosen from waxes of animal, plant or mineral origin, non-silicone synthetic waxes, and mixtures thereof.
  • hydrocarbon-based waxes for instance beeswax or modified beeswaxes (cera bellina), lanolin wax and lanolin derivatives, spermaceti; cork fibre or sugarcane waxes, olive tree wax, rice bran wax, carnauba wax, candelilla wax, ouricury wax, esparto grass wax, berry wax, shellac wax, Japan wax and sumac wax, absolute waxes of flowers; montan wax, orange wax, lemon wax, microcrystalline waxes, paraffins, petroleum jelly, lignite and ozokerite; polyethylene waxes, the waxes obtained by Fischer-Tropsch synthesis and waxy copolymers, and also esters thereof.
  • Mention may also be made of C2 to C60 microcrystalline waxes, such as Microwax HW. Mention may also be made of the MW 500 polyethylene wax sold under the reference Permalen 50-L Polyethylene. Mention may also be made of waxes obtained by catalytic hydrogenation of animal or plant oils having linear or branched C 8 to C 32 fatty chains.
  • isomerized jojoba oil such as trans-isomerized partially hydrogenated jojoba oil, particularly the product manu- factured or sold by the company Desert Whale under the commercial reference Iso- Jojoba-50®, hydrogenated sunflower oil, hydrogenated castor oil, hydrogenated coco- nut kernel oil, hydrogenated lanolin oil and bis(1,1,1-trimethylolpropane) tetrastearate, particularly the product sold under the name Hest 2T-4S® by the company Heterene.
  • isomerized jojoba oil such as trans-isomerized partially hydrogenated jojoba oil, particularly the product manu- factured or sold by the company Desert Whale under the commercial reference Iso- Jojoba-50®, hydrogenated sunflower oil, hydrogenated castor oil, hydrogenated coco- nut kernel oil, hydrogenated lanolin oil and bis(1,1,1-trimethylolpropane) tetrastearate, particularly the product sold under the name Hest 2T-4S® by the company Heterene.
  • the waxes obtained by hydrogenation of castor oil esterified with cetyl alcohol may also be used.
  • a wax that may also be used is a C20 to C40 alkyl (hydroxystearyloxy)stearate (the alkyl group comprising from 20 to 40 carbon atoms), alone or as a mixture.
  • Such a wax is particularly sold under the names “Kester Wax K 82 P®”, “Hydroxypolyester K 82 P®” and “Kester Wax K 80 P®” by Koster Keunen.
  • microwaxes in the compositions of the invention; mention may particularly be made of carnauba microwaxes, such as the product sold under the name MicroCare 350® by the company Micro Powders, synthetic-wax microwaxes, such as the product sold under the name MicroEase 114S® by the company Micro Powders, microwaxes constituted of a mixture of carnauba wax and polyethylene wax, such as the products sold under the names Micro Care 300® and 310® by the company Micro Powders, microwaxes constituted of a mixture of carnauba wax and of synthetic wax, such as the product sold under the name Micro Care 325® by the company Micro Pow- ders, polyethylene microwaxes, such as the products sold under the names Micropoly 200®, 220®, 220L® and 250S® by the company Micro Powders, and polytetrafluoroeth- ylene microwaxes, such as the products sold under the names Microslip 519® and 519 L® by the
  • the waxes are preferably chosen from mineral waxes, for instance paraffin, petroleum jelly, lignite or ozokerite wax; plant waxes, for instance cocoa butter, shea butter or cork fibre or sugar cane waxes, olive tree wax, rice bran wax, hydrogenated jojoba wax, ouricury wax, carnauba wax, candelilla wax, esparto grass wax, or absolute waxes of flowers, such as the essential wax of blackcurrant blossom sold by the company Bertin (France); waxes of animal origin, for instance beeswaxes or modified beeswaxes (cera bellina), spermaceti, lanolin wax and lanolin derivatives; microcrystalline waxes; and mixtures thereof.
  • mineral waxes for instance paraffin, petroleum jelly, lignite or ozokerite wax
  • plant waxes for instance cocoa butter, shea butter or cork fibre or sugar cane waxes, olive tree wax, rice bran wax, hydrogenated jojoba wax
  • Ceramides, or ceramide analogues, such as glycoceramides, that may be used in the compositions according to the invention, are known; mention may in particular be made of ceramides of classes I, II, III and V according to the Dawning classification.
  • the ceramides or analogues thereof that may be used preferably correspond to the following formula:
  • - R 1 denotes a linear or branched, saturated or unsaturated alkyl group, derived from C 14 -C 30 fatty acids, it being possible for this group to be substituted with a hydroxyl group in the alpha position, or a hydroxyl group in the omega position esterified with a saturated or unsaturated C 16 -C 30 fatty acid;
  • - R 2 denotes a hydrogen atom, a (glycosyl) n group, a (galactosyl) m group or a sulfoga- lactosyl group, in which n is an integer ranging from 1 to 4 and
  • the ceramides that are more particularly preferred are the compounds for which R 1 denotes a saturated or unsaturated alkyl derived from C 16 -C 22 fatty acids; R 2 denotes a hydrogen atom and R 3 denotes a saturated or unsaturated linear C 15 group.
  • R 1 denotes a saturated or unsatu- rated alkyl radical derived from C 12 -C 22 fatty acids
  • R 2 denotes a galactosyl or sulfoga- lactosyl radical
  • 2-N- linoleoylaminooctadecane-1,3-diol 2-N-oleoylaminooctadecane-1,3-diol
  • 2-N-stearoylaminooctadecane-1,3-diol 2-N-be- henoylaminooctadecane-1,3-diol
  • 2-N-stearoylaminooctadecane-1,3,4-triol and in particular N-stearoylphytosphingo- sine, 2-N-palmitoylaminohexadecane-1,3-diol, N-linoleoyldi
  • the liquid fatty substances have a melting point of less than or equal to 25°C, prefer- ably of less than or equal to 20°C, at atmospheric pressure (1.013 ⁇ 10 5 Pa). Advan- tageously, the liquid fatty substances are not (poly)oxyalkylenated.
  • the fatty alcohols, esters and acids more particularly have at least one saturated or unsaturated, linear or branched hydrocarbon-based group comprising from 6 to 40 and better still from 8 to 30 carbon atoms, which is optionally substituted, in particular with one or more hydroxyl groups (in particular 1 to 4). If they are unsatu- rated, these compounds may comprise one to three conjugated or unconjugated car- bon-carbon double bonds.
  • the liquid hydrocarbons may be C 6 to C 18 liquid hydrocarbons and be linear, branched or optionally cyclic; they are preferably chosen from C 8 -C 16 , particularly C 10 -C 14 , alkanes.
  • liquid hydrocarbons may also be chosen from those comprising more than 16 car- bon atoms, which may be linear or branched, of mineral or synthetic origin; mention may be made of liquid paraffins or liquid petroleum jelly, polydecenes, hydrogenated polyisobutene, such as Parleam®, and mixtures thereof.
  • the triglyceride oils of plant or synthetic origin may be chosen from liquid fatty acid triglycerides including from 6 to 30 carbon atoms, for instance heptanoic or octanoic acid triglycerides, or alternatively, for example, sunflower oil, corn oil, soybean oil, mar- row oil, grapeseed oil, sesame seed oil, hazelnut oil, apricot oil, macadamia oil, arara oil, castor oil, avocado oil, caprylic/capric acid triglycerides, for instance those sold by the company Stéarinerie Dubois or those sold under the names Miglyol® 810, 812 and 818 by the company Dynamit Nobel, jojoba oil and shea butter oil, and mixtures thereof.
  • liquid fatty acid triglycerides including from 6 to 30 carbon atoms, for instance heptanoic or octanoic acid triglycerides, or alternatively, for example, sunflower oil, corn oil,
  • the liquid fatty alcohols may be chosen from linear or branched, saturated or unsatu- rated alcohols, preferably unsaturated or branched alcohols, including from 6 to 40 car- bon atoms and preferably from 8 to 30 carbon atoms. Examples that may be mentioned include octyldodecanol, 2-butyloctanol, 2-hexyldecanol, 2-undecylpentadecanol, isos- tearyl alcohol, oleyl alcohol, linolenyl alcohol, ricinoleyl alcohol, undecylenyl alcohol and linoleyl alcohol, and mixtures thereof.
  • liquid esters of fatty acids and/or fatty alcohols other than the triglyc- erides mentioned above mention may particularly be made of esters of saturated or unsaturated, linear C 1 to C 26 or branched C 3 to C 26 , aliphatic monoacids or polyacids and of saturated or unsaturated, linear C 1 to C 26 or branched C 3 to C 26 , aliphatic monoalco- hols or polyalcohols, the total carbon number of the esters being greater than or equal to 6, more advantageously greater than or equal to 10.
  • the esters of monoalcohols at least one of the alcohol or the acid, from which the esters of the invention are derived, is branched.
  • dihydroabietyl behenate octyldodecyl behenate; isocetyl behenate; isostearyl lactate; lauryl lactate; linoleyl lactate; oleyl lac- tate; isostearyl octanoate; isocetyl octanoate; octyl octanoate; decyl oleate; isocetyl isostearate; isocetyl laurate; isocetyl stearate; isodecyl octanoate; isodecyl oleate; isononyl isononanoate; isostearyl palmitate; methyl acetyl ricinoleate; octyl isononano- ate; 2-ethylhexyl isononate; octyldode
  • ethyl palmitate or isopropyl palmitate alkyl myristates, such as isopropyl or ethyl myristate, isocetyl stearate, 2-ethylhexyl isononanoate, isodecyl neopentanoate, isos- tearyl neopentanoate and mixtures thereof.
  • esters of C 4 to C 22 dicarboxylic or tricarboxylic acids and of C 1 to C 22 alcohols and esters of mono-, di- or tricarboxylic acids and of C 2 to C 26 di-, tri-, tetra- or pentahydroxy alcohols may also be used.
  • composition may also comprise, as fatty ester, sugar esters and diesters of C 6 to C 30 , preferably C 12 to C 22 , fatty acids.
  • sugar esters and diesters of C 6 to C 30 , preferably C 12 to C 22 , fatty acids.
  • sugar esters means oxygen-containing hydrocarbon-based compounds bearing several alcohol functions, with or without al- dehyde or ketone functions, and which comprise at least 4 carbon atoms.
  • sugars may be monosaccharides, oligosaccharides or polysaccharides.
  • sugars examples include sucrose (or saccharose), glucose, galactose, ribose, fucose, maltose, fructose, mannose, arabinose, xylose and lactose, and derivatives thereof, particularly alkyl derivatives, such as methyl deriva- tives, for instance methylglucose.
  • the sugar esters of fatty acids may be chosen particularly from the group comprising the esters or mixtures of esters of sugars described previously and of linear or branched, saturated or unsaturated C 6 to C 30 and preferably C 12 to C 22 fatty acids. If they are unsaturated, these compounds may comprise one to three conjugated or unconju- gated carbon-carbon double bonds.
  • esters according to this variant may also be chosen from mono-, di-, tri- and tet- raesters, polyesters, and mixtures thereof.
  • These esters may be, for example, oleates, laurates, palmitates, myristates, behenates, cocoates, stearates, linoleates, linolenates, caprates, arachidonates or mixtures thereof, particularly such as the mixed oleo-palmitate, oleo-stearate and palmito-stea- rate esters.
  • ком ⁇ онент is made of monoesters and diesters and particularly sucrose, glucose or methylglucose mono- or di-oleates, stearates, behenates, oleopalmitates, linoleates, linolenates and oleostearates, and mixtures thereof. Mention may be made, by way of example, of the product sold under the name Glucate® DO by the company Amerchol, which is a methylglucose dioleate. Preferably, use will be made of a liquid ester of a monoacid and of a monoalcohol.
  • the non-silicone fatty substances are chosen from triglyceride oils of plant or synthetic origin, liquid esters of a fatty acid and/or a fatty alcohol other than triglyc- erides, liquid C 6 -C 18 hydrocarbons, solid fatty alcohols, liquid fatty alcohols, solid esters of fatty acids and/or of fatty alcohols, and mixtures thereof.
  • the composition according to the invention may comprise the non-silicone fatty substance(s) in a total amount ranging from 0.1% to 20% by weight, better still from 1% to 18% by weight, preferentially from 2% to 15% by weight, even better still from 3% to 13% by weight, relative to the total weight of the composition.
  • composition according to the invention may be any form that can be envisaged by those skilled in the art, and may comprise the additional ingredients customarily em- ployed in this type of composition.
  • These hair care compositions may for example be shampoos, pre-shampoos (to be ap- plied before a shampoo wash), conditioners, masks or serums, it being possible for these compositions to be rinsed off or left on after application. In a known manner, they may be in the form of gels, hair lotions and relatively thick care creams.
  • compositions according to the invention may therefore comprise, in a known manner, one or more surfactants, one or more non-silicone fatty substances, one or more additional silicones, one or more polymers, one or more colouring agents, one or more thickeners, one or more polyols, and also a mixture of these various ingredients.
  • the composition according to the invention when it is a shampoo, it may advantageously comprise one or more anionic surfactants, and/or one or more ampho- teric surfactants, and/or one or more nonionic surfactants, and/or one or more poly- mers, particularly cationic polymers.
  • composition of the invention when the composition of the invention is a pre-shampoo, a conditioner or a mask, it may advantageously comprise one or more cationic surfactants and/or one or more non-silicone fatty substances.
  • the composition according to the invention may advan- tageously comprise one or more additional silicones, one or more thickeners, and/or one or more polyols.
  • Pigments The composition according to the invention may thus comprise at least one pigment.
  • the composition according to the invention comprises at least one pigment. “Pigment” means all pigments that give colour to keratin materials.
  • the pigments that may be used are particularly chosen from the organic and/or mineral pigments known in the art, particularly those described in Kirk-Othmer’s Encyclopedia of Chemical Technology and in Ullmann’s Encyclopedia of Industrial Chemistry. They may be natural, of natural origin, or non-natural. These pigments may be in pigment powder or paste form. They may be coated or un- coated.
  • the pigments may be chosen, for example, from mineral pigments, organic pigments, lakes, special effect pigments such as nacres or glitter flakes, lamellar pigments, and mixtures thereof.
  • the pigment may be a mineral pigment.
  • Mineral pigment means any pigment that satisfies the definition in Ullmann’s encyclopaedia in the chapter on inorganic pig- ments.
  • mineral pigments that are useful in the present invention, mention may be made of iron oxides, chromium oxides, manganese violet, ultramarine blue, chromium hydrate, ferric blue and titanium oxide.
  • the pigment may be an organic pigment.
  • Organic pigment means any pigment that satisfies the definition in Ullmann’s Encyclopedia in the chapter on organic pigments.
  • the organic pigment may particularly be chosen from nitroso, nitro, azo, xanthene, py- rene, quinoline, anthraquinone, triphenylmethane, fluorane, phthalocyanine, metal- complex, isoindolinone, isoindoline, quinacridone, perinone, perylene, diketo- pyrrolopyrrole, indigo, thioindigo, dioxazine, triphenylmethane and quinophthalone compounds.
  • the white or coloured organic pigments may be chosen from carmine, car- bon black, aniline black, azo yellow, quinacridone, phthalocyanine blue, the blue pig- ments codified in the Colour Index under the references CI 42090, 69800, 69825, 74100, 74160, the yellow pigments codified in the Colour Index under the references CI 11680, 11710, 19140, 20040, 21100, 21108, 47000, 47005, the green pigments codified in the Colour Index under the references CI 61565, 61570, 74260, the orange pigments codi- fied in the Colour Index under the references CI 11725, 45370, 71105, the red pigments codified in the Colour Index under the references CI 12085, 12120, 12370, 12420, 12490, 14700, 15525, 15580, 15620, 15630, 15800, 15850, 15865, 15880, 26100, 45380, 45410, 58000, 73
  • Examples that may also be mentioned include pigment pastes of organic pigments, such as the products sold by the company Hoechst under the names: - Cosmenyl Yellow I0G: Yellow 3 pigment (CI 11710); - Cosmenyl Yellow G: Yellow 1 pigment (CI 11680); - Cosmenyl Orange GR: Orange 43 pigment (CI 71105); - Cosmenyl Red R: Red 4 pigment (CI 12085); - Cosmenyl Carmine FB: Red 5 pigment (CI 12490); - Cosmenyl Violet RL: Violet 23 pigment (CI 51319); - Cosmenyl Blue A2R: Blue 15.1 pigment (CI 74160); - Cosmenyl Green GG: Green 7 pigment (CI 74260); - Cosmenyl Black R: Black 7 pigment (CI 77266).
  • the pigments in accordance with the invention may also be in the form of composite pigments, as described in patent EP 1184426.
  • These composite pigments may partic- ularly be composed of particles including an inorganic core, at least one binder for at- taching the organic pigments to the core, and at least one organic pigment which at least partially covers the core.
  • the organic pigment may also be a lake.
  • “Lake” means dyes adsorbed onto insoluble particles, the assembly thus obtained remaining insoluble during use.
  • the inorganic substrates onto which the dyes are adsorbed are, for example, alumina, silica, calcium sodium borosilicate or calcium aluminium borosilicate and aluminium.
  • D & C Red 21 (CI 45380), D & C Orange 5 (CI 45370), D & C Red 27 (CI 45410), D & C Orange 10 (CI 45425), D & C Red 3 (CI 45 430), D & C Red 4 (CI 15510), D & C Red 33 (CI 17200), D & C Yellow 5 (CI 19140), D & C Yellow 6 (CI 15985), D & C Green (CI 61570), D & C Yellow 1 O (CI 77002), D & C Green 3 (CI 42053), D & C Blue 1 (CI 42090).
  • D&C Red 7 (CI 15850:1).
  • the pigment may also be a special effect pigment.
  • “Special effect pigments” means pigments that generally create a coloured appearance (characterized by a certain shade, a certain intensity and a certain level of luminance) that is non-uniform and that changes based on the conditions of observation (light, temperature, angles of observa- tion, etc.). They are thus in contrast to coloured pigments, which afford a standard uniform opaque, semi-transparent or transparent hue.
  • special effect pigments those with a low refractive index, such as fluorescent or photochromic pigments, and those with a higher refractive index, such as nacres, interference pigments or glitter flakes.
  • special effect pigments include nacreous pigments such as mica covered with titanium or with bismuth oxychloride, coloured nacreous pigments such as mica covered with titanium and with iron oxides, mica covered with iron oxide, mica covered with titanium and particularly with ferric blue or with chromium oxide, mica covered with titanium and with an organic pigment as defined previously, and also nacreous pigments based on bismuth oxychloride.
  • Nacreous pigments that may be mentioned include the nacres Cellini sold by BASF (mica-TiO2-lake), Prestige sold by Eckart (mica-TiO2), Prestige Bronze sold by Eckart (mica-Fe2O3), and Colorona sold by Merck (mica-TiO2-Fe2O3).
  • nacres particles including a borosil- icate substrate coated with titanium oxide.
  • Particles comprising a glass substrate coated with titanium oxide are particularly sold under the name Metashine MC1080RY by the company Toyal.
  • examples of nacres that may also be mentioned include polyethylene tereph- thalate glitter flakes, particularly those sold by the company Meadowbrook Inventions under the name Silver 1P 0.004X0.004 (silver-coloured glitter flakes). It is also possible to envisage multilayer pigments based on synthetic substrates, such as alumina, silica, calcium sodium borosilicate, calcium aluminium borosilicate and aluminium.
  • the special effect pigments may also be chosen from reflective particles, i.e. particu- larly from particles whose size, structure, particularly the thickness of the layer(s) of which they are made and their physical and chemical nature, and surface state, allow them to reflect incident light.
  • This reflection may, where appropriate, have an intensity sufficient to create, at the surface of the composition or of the mixture, when it is ap- plied to the support to be made up, highlighted points that are visible to the naked eye, i.e. more luminous points that contrast with their environment, appearing to sparkle.
  • the reflective particles may be selected so as not to significantly alter the colouring effect generated by the colouring agents with which they are combined, and more par- ticularly so as to optimize this effect in terms of colour result.
  • the reflective particles may or may not have a multilayer structure and, in the case of a multilayer structure, may have, for example, at least one layer of uniform thickness, particularly of a reflective material.
  • the reflective particles may be composed, for example, of metal oxides, particularly titanium or iron oxides obtained synthetically.
  • the reflective particles may include, for example, a natural or synthetic substrate, particularly a synthetic substrate at least partially coated with at least one layer of a reflective material, particularly of at least one metal or metallic material.
  • the substrate may be made of one or more organic and/or inor- ganic materials. More particularly, it may be chosen from glasses, ceramics, graphite, metal oxides, alu- minas, silicas, silicates, particularly aluminosilicates and borosilicates, and synthetic mica, and mixtures thereof, this list not being limiting.
  • the reflective material may include a layer of metal or of a metallic material.
  • Reflective particles are particularly described in JP-A-09188830, JP-A-10158450, JP-A- 10158541, JP-A-07258460 and JP-A-05017710.
  • reflective particles including a mineral substrate coated with a layer of metal mention may also be made of particles including a silver-coated boro- silicate substrate.
  • Particles with a silver-coated glass substrate, in the form of platelets are sold under the name Microglass Metashine REFSX 2025 PS by the company Toyal.
  • Particles with a glass substrate coated with a nickel/chromium/molybdenum alloy are sold under the names Crystal Star GF 550 and GF 2525 by this same company.
  • Use may also be made of particles comprising a metal substrate, such as silver, alu- minium, iron, chromium, nickel, molybdenum, gold, copper, zinc, tin, magnesium, steel, bronze or titanium, said substrate being coated with at least one layer of at least one metal oxide, such as titanium oxide, aluminium oxide, iron oxide, cerium oxide, chro- mium oxide, silicon oxides and mixtures thereof.
  • a metal substrate such as silver, alu- minium, iron, chromium, nickel, molybdenum, gold, copper, zinc, tin, magnesium, steel, bronze or titanium
  • said substrate being coated with at least one layer of at least one metal oxide, such as titanium oxide, aluminium oxide, iron oxide, cerium oxide, chro- mium oxide, silicon oxides and mixtures thereof.
  • metal oxide such as titanium oxide, aluminium oxide, iron oxide, cerium oxide, chro- mium oxide, silicon oxides and mixtures thereof.
  • Examples that may be mentioned include aluminium powder, bronze powder or copper powder coated
  • interference pigments which are not attached to a sub- strate, such as liquid crystals (Helicones HC from Wacker) or interference holographic glitter flakes (Geometric Pigments or Spectra f/x from Spectratek).
  • Special effect pig- ments also comprise fluorescent pigments, whether these are substances that are flu- orescent in daylight or that produce an ultraviolet fluorescence, phosphorescent pig- ments, photochromic pigments, thermochromic pigments and quantum dots, sold, for example, by the company Quantum Dots Corporation.
  • the variety of pigments that may be used in the present invention makes it possible to obtain a wide range of colours, and also particular optical effects such as metallic ef- fects or interference effects.
  • the size of the pigment used in the composition according to the present invention is generally between 10 nm and 200 ⁇ m, preferably between 20 nm and 80 ⁇ m and more preferentially between 30 nm and 50 ⁇ m.
  • the pigments may be dispersed in the composition by means of a dispersant.
  • the dispersant serves to protect the dispersed particles against agglomeration or floc- culation thereof.
  • This dispersant may be a surfactant, an oligomer, a polymer or a mix- ture of several thereof, bearing one or more functionalities with strong affinity for the surface of the particles to be dispersed. In particular, they may become physically or chemically attached to the surface of the pigments.
  • esters of 12-hydroxystearic acid in particular and of C8 to C20 fatty acid and of polyols such as glycerol or diglycerol are used, such as poly(12-hydroxystearic acid) stearate with a molecular weight of approximately 750 g/mol, such as the product sold under the name Solsperse 21000 by the company Avecia, polyglyceryl-2 dipolyhy- droxystearate (CTFA name) sold under the reference Dehymyls PGPH by the company Henkel, or else polyhydroxystearic acid such as the product sold under the reference Arlacel P100 by the company Uniqema, and mixtures thereof.
  • CFA name polyglyceryl-2 dipolyhy- droxystearate
  • pigments used in the composition may be surface-treated with an organic agent.
  • the pigments surface-treated beforehand that are useful in the context of the invention are pigments which have been completely or partially subjected to a surface treatment of chemical, electronic, electrochemical, mechanochemical or mechanical nature with an organic agent, such as those described particularly in Cosmetics and Toiletries, February 1990, Vol.
  • organic agents may be chosen, for ex- ample, from waxes, for example carnauba wax and beeswax; fatty acids, fatty alcohols and derivatives thereof, such as stearic acid, hydroxystearic acid, stearyl alcohol, hy- droxystearyl alcohol and lauric acid and derivatives thereof; anionic surfactants; leci- thins; sodium, potassium, magnesium, iron, titanium, zinc or aluminium salts of fatty acids, for example aluminium stearate or laurate; metal alkoxides; polyethylene; (meth)acrylic polymers, for example polymethyl methacrylates; polymers and copoly- mers containing acrylate units; alkanolamines; silicone compounds, for example sili- cones, in particular polydimethylsiloxanes; organofluorine compounds, for example perfluoroalkyl ether
  • the surface-treated pigments that are useful in the composition may also have been treated with a mixture of these compounds and/or may have been subjected to several surface treatments.
  • the surface-treated pigments that are useful in the context of the present invention may be prepared according to surface-treatment techniques that are well known to those skilled in the art, or may be commercially available as is.
  • the surface-treated pigments are covered with an organic layer.
  • the organic agent with which the pigments are treated may be deposited on the pig- ments by evaporation of solvent, chemical reaction between the molecules of the sur- face agent or creation of a covalent bond between the surface agent and the pigments.
  • the surface treatment may thus be performed, for example, by chemical reaction of a surface agent with the surface of the pigments and creation of a covalent bond between the surface agent and the pigments or the fillers. This method is particularly described in patent US 4578266.
  • An organic agent covalently bonded to the pigments will preferably be used.
  • the agent for the surface treatment may represent from 0.1% to 50% by weight of the total weight of the surface-treated pigment, preferably from 0.5% to 30% by weight and even more preferentially from 1% to 20% by weight of the total weight of the surface- treated pigment.
  • the surface treatments of the pigments are chosen from the following treat- ments: - a PEG-silicone treatment, for instance the AQ surface treatment sold by LCW; - a methicone treatment, for instance the SI surface treatment sold by LCW; - a dimethicone treatment, for instance the Covasil 3.05 surface treatment sold by LCW; - a dimethicone/trimethylsiloxysilicate treatment, for instance the Covasil 4.05 surface treatment sold by LCW; - a magnesium myristate treatment, for instance the MM surface treatment sold by LCW; - an aluminium dimyristate treatment, for instance the MI surface treatment sold by Miyoshi; - a perfluoropolymethyl isopropyl ether treatment, for instance the FHC surface treat- ment sold by LCW; - an isostearyl sebacate treatment, for instance the HS surface treatment sold by Miyo- shi; - a perfluoroalkyl phosphate treatment,
  • the dispersant is present with organic or mineral pigments in submicron-sized particulate form in the dye composi- tion.
  • the term “submicron-sized” or “submicronic” means pigments having a particle size that has been micronized by a micronization method and having a mean particle size of less than a micrometre ( ⁇ m), in particular between 0.1 and 0.9 ⁇ m, and preferably be- tween 0.2 and 0.6 ⁇ m.
  • the dispersant and the pigment(s) are present in a (dis- persant:pigment) amount of between 1: 4 and 4: 1, particularly between 1.5: 3.5 and 3.5: 1 or better still between 1.75: 3 and 3: 1.
  • the dispersant is suitable for dispersing the pig- ments and is compatible with a condensation-curable formulation.
  • compatible means, for example, that said dispersant is miscible in the oily phase of the composition or of the dispersion containing the pigment(s), and it does not retard or reduce the curing.
  • the dispersant is preferably cationic.
  • the dispersant(s) may thus have a silicone backbone, such as silicone polyether and dispersants of aminosilicone type other than the alkoxysilanes described previously.
  • suitable dispersants that may be mentioned are: - aminosilicones, i.e.
  • silicones comprising one or more amino groups such as those sold under the names and references: BYK LPX 21879 by BYK, GP-4, GP-6, GP- 344, GP-851, GP-965, GP-967 and GP-988-1, sold by Genesee Polymers, - silicone acrylates such as Tego® RC 902, Tego® RC 922, Tego® RC 1041, and Tego® RC 1043, sold by Evonik, - polydimethylsiloxane (PDMS) silicones bearing carboxylic groups such as X- 22162 and X-22370 by Shin-Etsu, epoxy silicones such as GP-29, GP-32, GP-502, GP- 504, GP-514, GP-607, GP-682, and GP-695 by Genesee Polymers, or Tego® RC 1401, Tego® RC 1403, Tego® RC 1412 by Evonik.
  • PDMS polydimethylsiloxan
  • the dispersant(s) are of amino silicone type other than the alkoxysilanes described previously and are cationic.
  • the pigment(s) is (are) chosen from mineral, mixed mineral-organic, or or- ganic pigments.
  • the pigment(s) according to the invention are organic pigments, preferen- tially organic pigments surface-treated with an organic agent chosen from silicone compounds.
  • the pigment(s) according to the invention are mineral pigments.
  • the pigment(s) according to the invention are chosen from the group con- stituted by mixtures of mineral pigments.
  • the pigment(s) according to the invention are chosen from the group con- stituted by mixtures of organic pigments.
  • the pigment(s) according to the invention are chosen from the group con- stituted by mixtures of organic and mineral pigments.
  • the pigments are pigments chosen from organic pigments, more preferen- tially from anthraquinone compounds, in particular alizurol purple monosodium salt (ext. Violet 2, CI 60730).
  • the pigment(s) may be present in a total content ranging from 0.001% to 10% by weight, preferably from 0.005% to 5% by weight, preferentially from 0.007% to 2% by weight, relative to the total weight of the composition.
  • Anionic surfactants The composition according to the invention may further comprise at least one anionic surfactant.
  • the composition according to the invention comprises one or more anionic surfactants.
  • the anionic surfactants are non-silicone surfactants.
  • the term “anionic surfactant” means a surfactant including, as ionic or ionizable groups, only anionic groups. In the present description, a species is termed as being “anionic” when it bears at least one permanent negative charge or when it can be ionized to a negatively charged spe- cies, under the conditions of use of the composition of the invention (for example the medium or the pH) and not comprising any cationic charge.
  • the anionic surfactants may be sulfate, sulfonate and/or carboxylic (or carboxylate) surfactants.
  • the carboxylate anionic surfactants comprise at least one carboxylic or carboxylate function (-COOH or -COO-) and may optionally also comprise one or more sulfate and/or sulfonate functions;
  • the sulfonate anionic surfactants comprise at least one sulfonate function (-SO 3 H or -SO 3 – ) and may optionally also comprise one or more sulfate functions, but do not com- prise any carboxylate functions;
  • - the sulfate anionic surfactants comprise at least one sulfate function but do not com- prise any carboxylate or sulfonate functions.
  • the carboxylic anionic surfactants that may be used thus include at least one carboxylic or carboxylate function (-COOH or -COO-). They may be chosen from the following compounds: acylglycinates, acyllactylates, acylsarcosinates, acylglutamates; alkyl ether carboxylic acids, alkyl(C6-30 aryl)ether carboxylic acids, alkyl-D-galactosideuronic acids, alkylamido ether carboxylic acids; and also the salts of these compounds; the alkyl and/or acyl groups of these com- pounds including from 6 to 30 carbon atoms, in particular from 12 to 28, even better still from 14 to 24 or even from 16 to 22 carbon atoms; the aryl group preferably denot- ing a phenyl or benzyl group; it being possible for these compounds to be polyoxyalkyle- nated, in particular polyoxyethylenated, and then preferably including from 1 to
  • C 6 -C 24 alkyl monoesters of polyglycoside-polycarboxylic acids such as C 6 -C 24 alkyl polyglycoside-citrates, C 6 -C 24 alkyl polyglycoside-tartrates and C 6 -C 24 alkyl polyglycoside-sulfosuccinates, and salts thereof.
  • carboxylic surfactants mention may be made most particularly of polyoxyalkylenated alkyl(amido) ether carboxylic acids and salts thereof, in particular those including from 2 to 50 alkylene oxide groups, in particular ethylene oxide groups, such as the compounds sold by the company Kao under the Akypo names.
  • the polyoxyalkylenated alkyl(amido) ether carboxylic acids that may be used are pref- erably chosen from those of formula (1): R 1’ –(OC 2 H 4 ) n’ –OCH 2 COOA (1) in which: - R 1' represents a linear or branched C 6 -C 24 alkyl or alkenyl radical, a (C 8 -C 9 )alkylphenyl radical, a R 2’ CONH-CH 2 -CH 2 - radical with R 2’ denoting a linear or branched C 9 -C 21 alkyl or alkenyl radical; preferably R 1’ is a C 8 -C 20 , preferably C 8 -C 18 , alkyl radical; - n’ is an integer or decimal number (average value) ranging from 2 to 24 and preferably from 2 to 10, - A denotes H, ammonium, Na, K, Li, Mg or a monoethanolamine or triethanolamine residue.
  • polyoxyalkylenated alkyl(amido) ether carboxylic acids that are particularly pre- ferred are those of formula (1) in which: - R 1' denotes a linear or branched C 8 -C 22 , in particular C 10 -C 16 , or even C 12 -C 14 , alkyl radical, or else a (C 8 -C 9 )alkylphenyl radical; - A denotes a hydrogen or sodium atom, and - n’ ranges from 2 to 20, preferably from 2 to 10.
  • R 1' denotes a C 12 -C 14 alkyl radical or cocoyl, oleyl, nonylphenyl or octylphenyl radical
  • A denotes a hydrogen or sodium atom
  • n’ ranges from 2 to 10.
  • the carboxylic anionic surfactants are chosen, alone or as a mixture, from: - C 6 -C 24 or even C 12 -C 20 acylglutamates, such as stearoylglutamates, and in particular disodium stearoylglutamate; - C 6 -C 24 or even C 12 -C 20 acylsarcosinates, such as palmitoylsarcosinates, and in partic- ular sodium palmitoylsarcosinate; - C 12 -C 28 or even C 14 -C 24 acyllactylates, such as behenoyllactylates, and in particular sodium behenoyllactylate; - C 6 -C 24 and in particular C 12 -C 20 acylglycinates; - (C 6 -C 24 )alkyl ether carboxylates, and particularly (C 12 -C 20 )alkyl ether carboxylates; in particular those including from: - C
  • Polyoxyalkylenated (C 6 -C 24 )alkyl ether carboxylic acids and salts thereof are preferably used.
  • the sulfonate anionic surfactants that may be used include at least one sulfonate func- tion (-SO 3 H or -SO 3 – ).
  • alkyl- sulfonates alkyl- sulfonates, alkyl ether sulfonates, alkylamidesulfonates, alkylarylsulfonates, ⁇ -olefin sulfonates, paraffin sulfonates, alkyl sulfosuccinates, alkyl ether sulfosuccinates, alkyl- amidesulfosuccinates, alkylsulfoacetates, N-acyltaurates, acylisethionates; alkyl- sulfolaurates; and also the salts of these compounds; the alkyl groups of these compounds including from 6 to 30 carbon atoms, particularly from 12 to 28, even better still from 14 to 24 or even from 16 to 22 carbon atoms; the aryl group preferably denoting a phenyl or benzyl group; it being possible for these compounds to be polyoxyalkylenated, particularly polyoxy
  • the sulfonate anionic surfactants are chosen, alone or as a mixture, from: - C 6 -C 24 and in particular C 12 -C 20 olefin sulfonates; - C 6 -C 24 and in particular C 12 -C 20 alkylsulfosuccinates, in particular laurylsulfosuccin- ates; - C 6 -C 24 and in particular C 12 -C 20 alkyl ether sulfosuccinates; - (C 6 -C 24 )acylisethionates and preferably (C 12 -C 18 )acylisethionates; in particular in the form of alkali metal or alkaline-earth metal, ammonium or amino alcohol salts.
  • the sulfate anionic surfactants that may be used include at least one sulfate function (-OSO 3 H or -OSO 3 -). They may be chosen from the following compounds: alkyl sulfates, alkyl ether sulfates, alkylamido ether sulfates, alkylaryl polyether sulfates, monoglyceride sulfates; and the salts of these compounds; the alkyl groups of these compounds including from 6 to 30 carbon atoms, particularly from 12 to 28, even better still from 14 to 24 or even from 16 to 22 carbon atoms; the aryl group preferably denoting a phenyl or benzyl group; it being possible for these compounds to be polyoxyalkylenated, particularly polyoxy- ethylenated, and then preferably including from 1 to 50 ethylene oxide units and better still from 2 to 10 ethylene oxide units.
  • the sulfate anionic surfactants are chosen, alone or as a mixture, from: - in particular C 6 -C 24 or even C 12 -C 20 alkyl sulfates, and - in particular C 6 -C 24 or even C 12 -C 20 alkyl ether sulfates, preferably comprising from 1 to 20 ethylene oxide units; in particular in the form of alkali metal or alkaline-earth metal, ammonium or amino alcohol salts.
  • said salt may be chosen from alkali metal salts, such as the sodium or potassium salt, ammonium salts, amine salts and in par- ticular amino alcohol salts, and alkaline-earth metal salts, such as the magnesium salt.
  • alkali metal salts such as the sodium or potassium salt
  • ammonium salts such as the sodium or potassium salt
  • amine salts and in par- ticular amino alcohol salts such as the magnesium salt.
  • alkaline-earth metal salts such as the magnesium salt.
  • alkaline-earth metal salts such as the magnesium salt.
  • amino alcohol salts that may be mentioned include monoethanolamine, diethanolamine and triethanolamine salts, monoisopropanolamine, diisopropanolamine or triisopropanolamine salts, 2-amino-2-methyl-1-propanol salts, 2-amino-2-methyl- 1,3-propanediol salts and tris(hydroxymethyl)aminomethane salts.
  • Alkali metal or alkaline-earth metal salts and in particular sodium or magnesium salts are preferably used.
  • the anionic surfactants are chosen, alone or as a mixture, from: - C 6 -C 24 and in particular C 12 -C 20 alkyl sulfates; - C 6 -C 24 and in particular C 12 -C 20 alkyl ether sulfates; preferably comprising from 1 to 20 ethylene oxide units; - C 6 -C 24 and in particular C 12 -C 20 alkylsulfosuccinates; - C 6 -C 24 and in particular C 12 -C 20 olefin sulfonates; - C 6 -C 24 and in particular C 12 -C 20 alkyl ether sulfosuccinates; - (C 6 -C 24 )acylisethionates and preferably (C 12 -C 18 )acylisethionates; - C 6 -C 24
  • the composition according to the invention comprises one or more ani- onic surfactants chosen from C 6 -C 24 and in particular C 12 -C 20 alkyl sulfates, C 6 -C 24 and in particular C 12 -C 20 alkyl ether sulfates preferably comprising from 1 to 20 ethylene oxide units; these surfactants more particularly being in the form of alkali metal or al- kaline-earth metal, ammonium or amino alcohol salts; and mixtures thereof.
  • ani- onic surfactants chosen from C 6 -C 24 and in particular C 12 -C 20 alkyl sulfates, C 6 -C 24 and in particular C 12 -C 20 alkyl ether sulfates preferably comprising from 1 to 20 ethylene oxide units; these surfactants more particularly being in the form of alkali metal or al- kaline-earth metal, ammonium or amino alcohol salts; and mixtures thereof.
  • composition according to the invention may also be free (0%) of sulfate surfactants (sulfate-free); in that case, it advantageously comprises one or more anionic surfac- tants chosen, alone or as a mixture, from - C 6 -C 24 and in particular C 12 -C 20 alkylsulfosuccinates; - C 6 -C 24 and in particular C 12 -C 20 olefinsulfonates, - C 6 -C 24 and in particular C 12 -C 20 alkyl ether sulfosuccinates; - (C 6 -C 24 )acylisethionates, preferably (C 12 -C 18 )acylisethionates, - C 6 -C 24 and in particular C 12 -C 20 acylsarcosinates; - (C 6 -C 24 )alkyl ether carboxylates, preferably (C 12 -C 20 )alkyl ether carboxylates; in
  • the anionic surfactant(s) are preferably present in the compo- sition according to the invention in a total amount ranging from 0.01% to 30% by weight, which may particularly range from 1% to 28% by weight, in particular from 5 to 25% by weight, preferably from 7% to 23% by weight, better still from 8% to 20% by weight, relative to the total weight of the composition.
  • Amphoteric surfactants The composition according to the invention may further comprise at least one ampho- teric surfactant.
  • the composition according to the invention comprises one or more ampho- teric surfactant(s).
  • the amphoteric surfactant(s) that can be used in the context of the invention are non- silicone.
  • amphoteric surfactant means a surfactant including, as ionic or ionizable groups, one or more anionic groups and one or more cationic groups. Mention may in particular be made, alone or as a mixture, of (C 8 -C 20 )alkylbetaines, (C 8 - C 20 )alkylsulfobetaines, (C 8 -C 20 )alkylamido(C 3 -C 8 )alkylbetaines and (C 8 -C 20 )alkyl- amido(C 6 -C 8 )alkylsulfobetaines.
  • They may also be chosen from optionally quaternized secondary or tertiary aliphatic amine derivatives, in which the aliphatic group is a linear or branched chain including from 8 to 22 carbon atoms, said amine derivatives containing at least one anionic group, for instance a carboxylate, sulfonate, sulfate, phosphate or phosphonate group.
  • cocoamphodiacetate disodium lauroamphodiacetate, disodium caprylamphodiacetate, disodium capryloamphodiacetate, disodium cocoamphodipropi- onate, disodium lauroamphodipropionate, disodium caprylamphodipropionate, diso- dium capryloamphodipropionate, lauroamphodipropionic acid and cocoamphodipropi- onic acid.
  • cocoamphodiacetate sold by the com- pany Rhodia under the trade name Miranol® C2M Concentrate.
  • amphoteric surfactants use is preferably made of (C 8 -C 20 )alkylbetaines such as cocoylbetaine, (C 8 -C 20 )alkylamido(C 3 -C 8 )alkylbetaines such as cocami- dopropylbetaine, and mixtures thereof, and the compounds of formula (C) such the salts, particularly the sodium salt, of diethylaminopropyl laurylaminosuccinamate (INCI name: sodium diethylaminopropyl cocoaspartamide).
  • the amphoteric surfactants are chosen from (C 8 -C 20 )alkylbetaines such as cocoylbetaine, (C 8 -C 20 )alkylamido(C 3 -C 8 )alkylbetaines such as cocamidopropylbeta- ine, and mixtures thereof.
  • the amphoteric surfactant(s) are preferably present in the com- position according to the invention in a total amount which may range from 0.01% to 15% by weight, better still from 0.1 to 12% by weight, particularly from 0.5% to 8% by weight, better still from 1% to 5% by weight, relative to the total weight of the compo- sition.
  • composition according to the invention may further comprise at least one cationic surfactant.
  • the composition according to the invention comprises one or more cationic surfactants.
  • Said cationic surfactants are non-silicone surfactants, that is to say that they do not contain any Si-O groups. They are preferably chosen from quaternary ammonium salts, optionally polyoxyalkyle- nated primary, secondary or tertiary fatty amines, or salts thereof, and mixtures thereof.
  • composition according to the invention may comprise one or more cationic surfac- tants chosen, alone or as a mixture, from the following compounds, which are quater- nary ammonium salts: - the compounds corresponding to the general formula (II) below: + X (II) in which: X- is an anion, particularly chosen from the group of halides, phosphates, acetates, lactates, (C 1 -C 4 )alkyl sulfates, (C 1 -C 4 )alkylsulfonates or (C 1 -C 4 )alkylarylsulfonates; the groups R 1 to R 4 , which may be identical or different, represent a linear or branched aliphatic group including from 1 to 30 carbon atoms, or an aromatic group such as aryl or alkylaryl, at least one of the groups R 1 to R 4 denoting a linear or branched aliphatic group including from 8 to 30 carbon atoms, preferably from
  • the aliphatic groups may comprise heteroatoms, particularly such as oxygen, nitrogen, sulfur and halogens.
  • the aliphatic groups are chosen, for example, from C 1 -C 30 alkyl, C 1 -C 30 alkoxy, (C 2 -C 6 ) polyoxyalkylene, C 1 -C 30 alkylamide, (C 12 -C 22 )alkylamido(C 2 -C 6 )al- kyl, (C 12 -C 22 )alkyl acetate, and C 1 -C 30 hydroxyalkyl groups.
  • tetraalkylammonium salts for instance dialkyldimethylammonium or alkyltrime- thylammonium salts, in which the alkyl group includes from approximately 12 to 22 carbon atoms, in particular behenyltrimethylammonium, stearyltrimethylammonium, distearyldimethylammonium, cetyltrimethylammonium, dicetyldimethylammonium, or benzyldimethylstearylammonium salts, and also palmitylamidopropyltrimethylammo- nium salts, stearamidopropyltrimethylammonium salts, stearamidopropyldimethylce- tearylammonium salts, or stearamidopropyldimethyl(myristyl acetate)ammonium salts such as those sold under the name Ceraphyl® 70 by the company Van Dy
  • R + in R 5 represents an alkenyl or alkyl group including from 8 to 30 carbon atoms, for example derived from tallow fatty acids
  • R 6 represents a hydrogen atom, a C 1 -C 4 alkyl group or an alkenyl or alkyl group including from 8 to 30 carbon atoms
  • R 7 represents a C 1 -C 4 alkyl group
  • R 8 represents a hydrogen atom or a C 1 -C 4 alkyl group
  • X- is an anion chosen from the group of halides, phosphates, acetates, lactates, alkyl sulfates, alkyl- or alkylaryl-sulfonates in which the alkyl and aryl groups preferably comprise, respectively, from 1 to 20 carbon atoms and from 6
  • R 5 and R 6 denote a mixture of alkenyl or alkyl groups including from 12 to 21 carbon atoms, for example derived from tallow fatty acids, R 7 denotes a methyl group and R 8 denotes a hydrogen atom.
  • R 5 and R 6 denote a mixture of alkenyl or alkyl groups including from 12 to 21 carbon atoms, for example derived from tallow fatty acids
  • R 7 denotes a methyl group
  • R 8 denotes a hydrogen atom.
  • Such a product is sold, for example, under the name Rewoquat® W 75 by the company Rewo.
  • R 9 denotes an alkyl radical including from approximately 16 to 30 carbon atoms which is optionally hydroxylated and/or optionally interrupted with one or more oxygen atoms
  • R 10 is chosen from hydrogen or an alkyl radical including from 1 to 4 carbon atoms or a group (R 9a )(R 10a )(R 11a )N-(CH 2 ) 3 , with R 9a , R 10a , R 11a , R 11 , R 12 , R 13 and R 14 , which are iden- tical or different, being chosen from hydrogen or an alkyl radical including from 1 to 4 carbon atoms
  • X- is an anion chosen from the group of halides, acetates, phosphates, nitrates, (C 1 - C 4 )alkyl sulfates, (C 1 -C 4 )alkylsulfonates
  • Such compounds are, for example, Finquat CT-P, sold by the company Finetex (Qua- ternium 89), and Finquat CT, sold by the company Finetex (Quaternium 75).
  • - quaternary ammonium salts containing at least one ester function such as those of formula (V) below: H R in R 15 is chosen from C 1 -C 6 alkyl groups and C 1 -C 6 hydroxyalkyl or dihydroxyalkyl groups; R 16 is chosen from the group R 19 -C(O)-; groups R 20 which are linear or branched, satu- rated or unsaturated C 1 -C 22 hydrocarbon-based groups; a hydrogen atom; R 18 is chosen from the group R21-C(O)-; groups R 22 which are linear or branched, sat- urated or unsaturated C 1 -C 6 hydrocarbon-based groups; a hydrogen atom; R 17 , R 19 and R 21 , which are identical or different, are chosen from linear or
  • the alkyl groups R 15 may be linear or branched, and more particularly linear.
  • R 15 denotes a methyl, ethyl, hydroxyethyl or dihydroxypropyl group, and more particu- larly a methyl or ethyl group.
  • the sum x + y + z is from 1 to 10.
  • R 16 is a hydrocarbon-based group R 20 , it may be long and contain from 12 to 22 carbon atoms, or may be short and contain from 1 to 3 carbon atoms.
  • R 18 is a hydrocarbon-based group R 22 , it preferably contains 1 to 3 carbon atoms.
  • R 17 , R 19 and R 21 which are identical or different, are chosen from linear or branched, saturated or unsaturated C 11 -C 21 hydrocarbon-based groups, and more particularly from linear or branched, saturated or unsaturated C 11 -C 21 alkyl and alkenyl groups.
  • x and z which are identical or different, are equal to 0 or 1.
  • y is equal to 1.
  • r, s and t which are identical or different, are equal to 2 or 3, and even more particularly are equal to 2.
  • the anion X- is preferably a halide (chloride, bromide or iodide) or an alkyl sulfate, more particularly methyl sulfate.
  • anion X- is even more particularly chloride or methyl sulfate.
  • R 15 denotes a methyl or ethyl group, x and y are equal to 1; z is equal to 0 or 1; r, s and t are equal to 2;
  • R 16 is chosen from the group R 19 -C(O)-; methyl, ethyl or C 14 -C 22 hydrocarbon-based groups, and a hydrogen atom;
  • R 18 is chosen from the group R 21 -C(O)- and a hydrogen atom,
  • R 17 , R 19 and R 21 which are identical or different, are chosen from linear or branched, saturated or unsaturated C 13 -C 17 hydrocarbon-based groups, and preferably from linear or branched, saturated or unsaturated C 13 -C 17 alkyl and alkenyl groups.
  • the hydrocarbon-based groups are linear. Mention may be made, for example, of the compounds of formula (V) such as the di- acyloxyethyldimethylammonium, diacyloxyethylhydroxyethylmethylammonium, mono- acyloxyethyldihydroxyethylmethylammonium, triacyloxyethylmethylammonium and monoacyloxyethylhydroxyethyldimethylammonium salts (particularly chloride or methyl sulfate), and mixtures thereof.
  • the acyl groups preferably have 14 to 18 carbon atoms and originate more particularly from a plant oil such as palm oil or sunflower oil. When the compound contains several acyl groups, these groups may be identical or different.
  • This ester- ification is followed by a quaternization using an alkylating agent such as an alkyl halide (preferably a methyl or ethyl halide), a dialkyl sulfate (preferably a methyl or ethyl sul- fate), methyl methanesulfonate, methyl para-toluenesulfonate, glycol chlorohydrin or glycerol chlorohydrin.
  • alkylating agent such as an alkyl halide (preferably a methyl or ethyl halide), a dialkyl sulfate (preferably a methyl or ethyl sul- fate), methyl methanesulfonate, methyl para-toluenesulfonate, glycol chlorohydrin or glycerol chlorohydrin.
  • an alkylating agent such as an alkyl halide (preferably a methyl or ethyl halide),
  • composition according to the invention may contain, for example, a mixture of qua- ternary ammonium monoester, diester and triester salts with a weight majority of diester salts.
  • Use may also be made of the ammonium salts containing at least one ester function that are described in patents US-A-4874554 and US-A-4137180.
  • Use may be made of behenoylhydroxypropyltrimethylammonium chloride sold by Kao under the name Quatarmin BTC 131.
  • the ammonium salts containing at least one ester function contain two ester functions.
  • fatty amine means a compound comprising at least one optionally (poly)ox- yalkylenated primary, secondary or tertiary amine function, or salts thereof and com- prising at least one C 6 -C 30 and preferably C 8 -C 30 hydrocarbon-based chain.
  • the fatty amines which are useful according to the invention are not (poly)oxyalkylenated.
  • Fatty amines that may be mentioned include amidoamines.
  • the amidoamines accord- ing to the invention may be chosen from fatty amidoamines, it being possible for the fatty chain to be borne by the amine group or by the amido group.
  • the term “amidoamine” means a compound comprising at least one amide function and at least one primary, secondary or tertiary amine function.
  • the term “fatty amidoamine” means an amidoamine comprising, in general, at least one C 6 -C 30 hydrocarbon-based chain.
  • the fatty amidoamines which are use- ful according to the invention are not quaternized.
  • the fatty amidoamines which are useful according to the invention are not (poly)oxyalkylenated.
  • amidoamines which are useful according to the invention, mention may be made of the amidoamines of formula (VI) below: RCONHR’’N(R’) 2 (VI) in which: - R represents a substituted or unsubstituted, linear or branched, saturated or unsatu- rated monovalent hydrocarbon-based radical containing from 5 to 29 carbon atoms, preferably from 7 to 23 carbon atoms, and in particular a linear or branched C 5 -C 29 and preferably C 7 -C 23 alkyl radical, or a linear or branched C 5 -C 29 and preferably C 7 -C 23 alkenyl radical; - R’’ represents a divalent hydrocarbon-based radical containing less than 6 carbon atoms, preferably from 2 to 4 carbon atoms and better still 3 carbon atoms; and - R’, which are identical or different, represent a substituted or unsubstituted, saturated or unsaturated, linear or branched, monovalent hydrocarbon-
  • the fatty amidoamines of formula (VI) are chosen, for example, from oleamidopropyl- dimethylamine, stearamidopropyldimethylamine, particularly the product sold by the company Inolex Chemical Company under the name Lexamine S13, isostear- amidopropyldimethylamine, stearamidoethyldimethylamine, lauramidopropyldimethyl- amine, myristamidopropyldimethylamine, behenamidopropyldimethylamine, dilinole- amidopropyldimethylamine, palmitamidopropyldimethylamine, ricinoleamindopropyl- dimethylamine, soyamidopropyldimethylamine, avocadoamidopropyldimethylamine, cocamidopropyldimethylamine, minkamidopropyldimethylamine, oatamidopropyldime- thylamine, sesamidoprop
  • the fatty amidoamines are chosen from oleamidopropyldimethylamine, stearamidopropyldimethylamine, brassicamidopropyldimethylamine and mixtures thereof.
  • the cationic surfactant(s) are preferably chosen from those of formula (II) above, those of formula (V) above, those of formula (VI) above, and mixtures thereof; better still from those of formula (II) above, those of formula (VI) above, and mixtures thereof; even better still from those of formula (II) above.
  • the cationic surfactant(s) may be chosen from salts such as chlorides, bromides or methosulfates, of tetraalkylammonium, for instance dialkyldimethylammo- nium or alkyltrimethylammonium salts in which the alkyl group includes from approxi- mately 12 to 22 carbon atoms, in particular behenyltrimethylammonium, stearyltrime- thylammonium, distearyldimethylammonium, cetyltrimethylammonium, dicetyldime- thylammonium or benzyldimethylstearylammonium salts; dipalmitoylethylhydroxyeth- ylmethylammonium salts such as dipalmitoylethylhydroxyethylmethylammonium meth- osulfate; and mixtures thereof.
  • salts such as chlorides, bromides or methosulfates, of tetra
  • the composition according to the invention may further comprise at least one nonionic surfactant.
  • the composition according to the invention comprises one or more nonionic surfactants.
  • Said nonionic surfactants may be chosen from: - alcohols, ⁇ -diols and (C 1 -C 20 )alkylphenols, these compounds being polyethoxylated and/or polypropoxylated and/or polyglycerolated, it being possible for the number of ethylene oxide and/or propylene oxide groups to range from 1 to 100, and the number of glycerol groups to range from 2 to 30; or else these compounds comprising at least one fatty chain including from 8 to 40 carbon atoms and particularly from 16 to 30 car- bon atoms; in particular, oxyethylenated alcohols comprising at least one saturated or unsaturated, linear or branched C 8 to C 40 alkyl chain, comprising from 1 to 100 mol of ethylene oxide, preferably from 2 to 50 and more particularly from 2 to 40 mol of eth- ylene oxide and including one or two fatty chains; - condensates of ethylene oxide and propylene oxide with fatty alcohols; - poly
  • Nonionic surfactants of alkyl(poly)glycoside type may be represented by the following general formula: R 1 O-(R 2 O) t -(G) v in which: - R1 represents a linear or branched alkyl or alkenyl radical including 6 to 24 carbon atoms and particularly 8 to 18 carbon atoms, or an alkylphenyl radical of which the linear or branched alkyl radical includes 6 to 24 carbon atoms and particularly 8 to 18 carbon atoms, - R2 represents an alkylene radical including 2 to 4 carbon atoms; - G represents a sugar unit including 5 to 6 carbon atoms; - t denotes a value ranging from 0 to 10 and preferably from 0 to 4; - v denotes a value ranging from 1 to 15 and preferably from 1 to 4.
  • the alkyl(poly)glycoside surfactants are of the formula described above in which: - R1 denotes a linear or branched, saturated or unsaturated alkyl radical including from 8 to 18 carbon atoms, - R2 represents an alkylene radical including 2 to 4 carbon atoms; - t denotes a value ranging from 0 to 3 and preferably equal to 0, - G denotes glucose, fructose or galactose, preferably glucose, - it being possible for the degree of polymerization, i.e. the value of v, to range from 1 to 15 and preferably from 1 to 4; the mean degree of polymerization more particularly being between 1 and 2.
  • the glucoside bonds between the sugar units are generally of 1-6 or 1-4 type and pref- erably of 1-4 type.
  • the alkyl (poly)glycoside surfactant is an alkyl (poly)glu- coside surfactant.
  • 1,4 C 8 /C 16 alkyl(poly)glucosides, and particularly decyl glucosides and caprylyl/capryl glucosides, are most particularly preferred.
  • the oxyethylenated sorbitan esters that can be used in the context of the invention particularly comprise the oxyethylenated derivatives of C 8 -C 30 fatty acid monoesters and polyesters of sorbitan, having from 2 to 40 ethylene oxide units.
  • Use is preferably made of the oxyethylenated derivatives of C 12 -C 24 fatty acid monoesters and polyesters of sorbitan, having from 4 to 20 ethylene oxide units.
  • Such compounds also known under the name of polysorbates. They are, inter alia, sold under the name Tween by the company Uniqema.
  • a “compound with X EO” denotes an oxyethylenated compound comprising X oxyethylene units per molecule.
  • the fatty acid of the oxyethylenated sorbitan ester is a saturated fatty acid, in particular a C 12 -C 24 saturated fatty acid.
  • the preferred sorbitan esters are the oxyethylenated derivatives of C 12 -C 24 fatty acid monoesters of sorbitan, having from 4 to 20 ethylene oxide units, more preferentially oxyethylene sorbitan monolaurate with 4 EO, oxyethylene sorbitan monolaurate with 20 EO, oxyethylene sorbitan monostearate with 20 EO, and mixtures thereof.
  • the nonionic surfactants are chosen from, alone or as a mixture, (C 6 -C 24 alkyl)(poly)glycosides, and more particularly (C 8 -C 18 alkyl)(poly)glycosides; and oxyeth- ylenated sorbitan esters, in particular those derived from C 12 -C 24 saturated fatty acids and comprising 4 to 20 ethylene oxide units.
  • the nonionic surfactant(s) may be present in the composition according to the invention in a total content ranging from 0.01% to 10% by weight, preferentially ranging from 0.05% to 8% by weight, in particular ranging from 0.1% to 5% by weight, and even better still from 0.2% to 2% by weight, relative to the total weight of the com- position.
  • Cationic polymers The composition according to the invention may optionally comprise one or more non- silicone polymers which may be chosen from anionic polymers, nonionic polymers, am- photeric polymers and cationic polymers.
  • the composition according to the invention comprises one or more cationic polymers.
  • the polymer(s), particularly cationic polymer(s), are other than asso- ciative polymers (they are therefore non-associative).
  • the term “cationic polymer” denotes any non-silicone (not comprising any silicon at- oms) polymer containing cationic groups and/or groups that can be ionized into cationic groups and not containing any anionic groups and/or groups that can be ionized into anionic groups.
  • the cationic polymers that may be employed preferably have a cationic charge density of less than or equal to 5 milliequivalents/gram (meq/g), better still of less than or equal to 4 meq/g.
  • the cationic charge density of a polymer corresponds to the number of moles of cati- onic charges per unit mass of polymer under the conditions in which the latter is com- pletely ionized. It may be determined by calculation if the structure of the polymer is known, i.e. the structure of the monomers constituting the polymer and their molar proportion or weight proportion. It may also be determined experimentally by the Kjeldahl method.
  • the cationic polymers that may be used preferably have a weight-average molar mass (Mw) of between 500 and 5 ⁇ 10 6 approximately and preferably between 10 3 and 3 ⁇ 10 6 approximately.
  • cationic polymers that may be used, mention may be made of: (1) homopolymers or copolymers derived from acrylic or methacrylic esters or amides and including at least one of the units having the following formulae: in which: - R3, which are identical or different, denote a hydrogen atom or a CH 3 radical; - A, which are identical or different, represent a linear or branched divalent alkyl group of 1 to 6 carbon atoms, preferably 2 or 3 carbon atoms, or a hydroxyalkyl group of 1 to 4 carbon atoms; - R4, R5 and R6, which are identical or different, represent an alkyl group having from 1 to 18 carbon atoms or a benzyl radical, preferably an alkyl group having from 1 to 6 carbon atoms; - R1 and R2, which are identical or different, represent a hydrogen atom or an alkyl group having from 1 to 6 carbon atoms, preferably methyl or ethyl; - X denotes
  • the copolymers of family (1) may also contain one or more units deriving from comon- omers that may be chosen from the family of the acrylamides, methacrylamides, diac- etone acrylamides, acrylamides and methacrylamides substituted on the nitrogen with lower (C 1 -C 4 ) alkyls, acrylic or methacrylic acid esters, vinyllactams such as vinylpyr- rolidone or vinylcaprolactam, and vinyl esters.
  • comon- omers may be chosen from the family of the acrylamides, methacrylamides, diac- etone acrylamides, acrylamides and methacrylamides substituted on the nitrogen with lower (C 1 -C 4 ) alkyls, acrylic or methacrylic acid esters, vinyllactams such as vinylpyr- rolidone or vinylcaprolactam, and vinyl esters.
  • copolymers of family (1) mention may be made of: - copolymers of acrylamide and of dimethylaminoethyl methacrylate quaternized with dimethyl sulfate or with a dimethyl halide, such as the product sold under the name Hercofloc by the company Hercules, - copolymers of acrylamide and of methacryloyloxyethyltrimethylammonium chloride, such as the products sold under the name Bina Quat P 100 by the company Ciba Geigy, - the copolymer of acrylamide and of methacryloyloxyethyltrimethylammonium meth- osulfate, such as the product sold under the name Reten by the company Hercules, - quaternized or non-quaternized vinylpyrrolidone/dialkylaminoalkyl acrylate or meth- acrylate copolymers, such as the products sold under the name Gafquat by the com
  • Use may be made more particularly of a crosslinked acrylamide/methacryloyloxyethyltrimethylammonium chlo- ride copolymer (20/80 by weight) in the form of a dispersion comprising 50% by weight of said copolymer in mineral oil.
  • This dispersion is sold under the name Salcare® SC 92 by the company Ciba.
  • Use may also be made of a crosslinked methacryloyloxyethyltrimethylammonium chlo- ride homopolymer comprising approximately 50% by weight of the homopolymer in min- eral oil or in a liquid ester. These dispersions are sold under the names Salcare® SC 95 and Salcare® SC 96 by the company Ciba.
  • cationic polysaccharides particularly cationic celluloses and galactomannan gums.
  • cationic polysaccharides mention may be made more particularly of cellu- lose ether derivatives including quaternary ammonium groups, cationic cellulose copol- ymers or cellulose derivatives grafted with a water-soluble quaternary ammonium mon- omer and cationic galactomannan gums.
  • the cellulose ether derivatives including quaternary ammonium groups are particularly described in FR1492597; they are also defined in the CTFA dictionary as quaternary ammoniums of hydroxyethylcellulose that has reacted with an epoxide substituted with a trimethylammonium group.
  • Cationic cellulose copolymers and cellulose derivatives grafted with a water-soluble quaternary ammonium monomer are described particularly in patent US 4131576; mention may be made of hydroxyalkyl celluloses, for instance hydroxymethyl, hydroxy- ethyl or hydroxypropyl celluloses particularly grafted with a methacryloylethyltrime- thylammonium, methacrylamidopropyltrimethylammonium or dimethyldiallylammo- nium salt.
  • the commercial products corresponding to this definition mention may be made of the products sold under the names Celquat L 200 and Celquat H 100 by the company National Starch.
  • a particularly preferred cationic cellulose that may particularly be mentioned is the pol- ymer having the INCI name Polyquaternium-10.
  • the cationic galactomannan gums are particularly described in patents US 3589578 and US 4031307; mention may be made of cationic guar gums, particularly those com- prising cationic trialkylammonium groups, particularly trimethylammonium. Mention may thus be made of guar gums modified with a 2,3-epoxypropyltrimethylammonium salt (for example a chloride). Preferably, 2% to 30% by number of the hydroxyl functions of the guar gums bear cati- onic trialkylammonium groups. Even more preferentially, 5% to 20% by number of the hydroxyl functions of these guar gums are branched with cationic trialkylammonium groups.
  • trialkylammonium groups mention may most particularly be made of the trimethylammonium and triethylammonium groups. Even more preferen- tially, these groups represent from 5% to 20% by weight relative to the total weight of the modified guar gum.
  • guar gums modified with 2,3-epoxypropyltrimethylammonium chloride Mention may be made in particular of the products having the INCI names Hydroxypro- pyl guar hydroxypropyltrimonium chloride and Guar hydroxypropyltrimonium chloride. Such products are particularly sold under the names Jaguar C13S, Jaguar C15, Jaguar C17 and Jaguar C162 by the company Solvay.
  • cationic polysaccharides that may be used, mention may also be made of cationic derivatives of cassia gum, particularly those including quaternary ammonium groups; in particular, mention may be made of the product having the INCI name Cassia hydroxypropyltrimonium chloride.
  • water-soluble polyaminoamides prepared in particular by polycondensation of an acidic compound with a polyamine; these polyaminoamides can be crosslinked with an epihalohydrin, a diepoxide, a dianhydride, an unsaturated dianhydride, a bis-unsatu- rated derivative, a bis-halohydrin, a bis-azetidinium, a bis-haloacyldiamine, a bis-alkyl halide or alternatively with an oligomer resulting from the reaction of a difunctional compound which is reactive with a bis-halohydrin, a bis-azetidinium, a bis-haloacyldi- amine, a bis-alkyl halide, an epihalohydrin, a diepoxide or a bis-unsaturated derivative; the crosslinking agent being used in proportions ranging from 0.025 to 0.35 mol per amine group of the polyaminoamide; these poly
  • polyaminoamide derivatives resulting from the condensation of polyalkylene poly- amines with polycarboxylic acids followed by alkylation with difunctional agents Men- tion may be made, for example, of adipic acid/dialkylaminohydroxyalkyldialkylenetri- amine polymers in which the alkyl radical includes from 1 to 4 carbon atoms and pref- erably denotes methyl, ethyl or propyl.
  • the alkyl radical includes from 1 to 4 carbon atoms and pref- erably denotes methyl, ethyl or propyl.
  • Cartaretine F, F4 or F8 the company Sandoz.
  • Polymers of this type are sold in particular under the name Hercosett 57 by the company Hercules Inc.
  • cyclopolymers of alkyldiallylamine or of dialkyldiallylammonium such as the homo- polymers or copolymers including, as main constituent of the chain, units correspond- ing to formula (I) or (II): in which - k and t are equal to 0 or 1, the sum k + t being equal to 1;
  • - R 12 denotes a hydrogen atom or a methyl radical;
  • - R 10 and R 11 independently of one another, denote a C 1 -C 6 alkyl group, a C 1 -C 5 hydrox- yalkyl group, a C 1 -C 4 amidoalkyl group; or alternatively R 10 and R 11 may denote, together with the nitrogen atom to which they are attached, a heterocyclic group such as
  • X- is an anion such as chloride or bromide.
  • These polymers have a number-average molar mass (Mn) generally of between 1000 and 100000. Mention may be made more particularly of polymers which are constituted of repeating units corresponding to the formula: in are identical or different, denote an alkyl or hydroxy- alkyl radical having from 1 to 4 carbon atoms, n and p are integers ranging from 2 to 20, and X- is an anion derived from a mineral or organic acid.
  • polyquaternary ammonium polymers comprising units of formula: in which: - R 18 , R 19 , R 20 and R 21 , which are identical or different, represent a hydrogen atom or a methyl, ethyl, propyl, ⁇ -hydroxyethyl, ⁇ -hydroxypropyl or -CH 2 CH 2 (OCH 2 CH 2 )pOH rad- ical, where p is equal to 0 or to an integer of between 1 and 6, with the proviso that R 18 , R 19 , R 20 and R 21 do not simultaneously represent a hydrogen atom, - r and s, which are identical or different, are integers between 1 and 6, - q is equal to 0 or to an integer between 1 and 34, - X- denotes an anion, such as a halide, - A denotes a divalent dihalide radical or preferably represents -CH 2 -CH 2 -O-CH 2 -CH 2 -.
  • Examples that may be mentioned include the products Mirapol® A 15, Mirapol® AD1, Mirapol® AZ1 and Mirapol® 175 sold by the company Miranol. (10) quaternary polymers of vinylpyrrolidone and of vinylimidazole, for instance the products sold under the names Luviquat® FC 905, FC 550 and FC 370 by the company BASF. (11) polyamines such as Polyquart® H sold by Cognis, which is referenced under the name “Polyethylene Glycol (15) Tallow Polyamine” in the CTFA dictionary.
  • polymers including in their structure: (a) one or more units corresponding to formula (A) below: (b) optionally one or more units corresponding to formula (B) below: In may be particularly chosen from homopolymers or co- polymers including one or more units derived from vinylamine and optionally one or more units derived from vinylformamide.
  • these cationic polymers are chosen from polymers including, in their struc- ture, from 5 mol% to 100 mol% of units corresponding to formula (A) and from 0 to 95 mol% of units corresponding to formula (B), preferentially from 10 mol% to 100 mol% of units corresponding to formula (A) and from 0 to 90 mol% of units corresponding to formula (B).
  • polymers may be obtained, for example, by partial hydrolysis of polyvinylforma- mide. This hydrolysis may take place in acidic or basic medium.
  • the weight-average molecular mass of said polymer, measured by light scattering, may range from 1000 to 3000000 g/mol, preferably from 10000 to 1000000 and more par- ticularly from 100000 to 500000 g/mol.
  • the polymers including units of formula (A) and optionally units of formula (B) are par- ticularly sold under the name Lupamin by the company BASF; for instance, in a non- limiting manner, the products sold under the names Lupamin 9095, Lupamin 5095, Lu- pamin 1095, Lupamin 9030 (or Luviquat 9030) and Lupamin 9010.
  • the cationic polymers that may be employed in the context of the invention are chosen, alone or as a mixture, from the polymers of family (1) and in particular the polymers, preferably crosslinked, of methacryloyloxyalkyl (C 1 -C 4 )alkyltri(C 1 -C 4 )al- kylammonium salts, such as Polyquaternium-7, and cationic polysaccharides, particu- larly cationic celluloses, such as Polyquaternium-10; and cationic galactomannan gums, particularly cationic guar gums; and also mixtures thereof.
  • methacryloyloxyalkyl (C 1 -C 4 )alkyltri(C 1 -C 4 )al- kylammonium salts such as Polyquaternium-7
  • cationic polysaccharides particu- larly cationic celluloses, such as Polyquaternium-10
  • cationic galactomannan gums particularly cationic
  • the composition according to the invention may comprise the polymer(s) in a total amount ranging from 0.01% to 10% by weight, better still from 0.05% to 5% by weight, even better still from 0.1% to 2% by weight, relative to the total weight of the composition.
  • the composition according to the invention may comprise the cationic polymer(s) in a total amount ranging from 0.01% to 10% by weight, better still from 0.05% to 5% by weight, even better still from 0.1% to 2% by weight, relative to the total weight of the composition.
  • Additional silicones The composition according to the invention may also comprise at least one additional silicone.
  • the composition according to the invention comprises one or more addi- tional silicones.
  • the additional silicone(s) may in particular be chosen from amino silicones, non-amino silicones and mixtures thereof.
  • the additional silicone(s) are other than the amino silicones of formula (I) as defined above. This means that said additional silicones do not come under the definition of formula (I), for example because they do not have an amine number and/or molecular mass as defined for the silicones of formula (I) and/or because the definition of at least one of their radicals R, R’ and/or A is other than those indicated for the silicones of formula (I), or else because they have a different chemical structure to that of the silicones of formula (I).
  • the composition according to the invention may thus comprise one or more non-amino silicones, which may be solid or liquid (at 25°C, 1 atm), and volatile or nonvolatile.
  • the non-amino silicones are chosen from nonvolatile liquid silicones.
  • the non-amino silicones that may be used may be soluble or insoluble in the composi- tion according to the invention; they may be in oil, wax, resin or gum form; silicone oils and gums are preferred. Silicones are particularly described in detail in Walter Noll’s “Chemistry and Technology of Silicones” (1968), Academic Press.
  • the volatile silicones may be chosen from those with a boiling point of between 60°C and 260°C (at atmospheric pressure, 1 atm) and in particular from: i) cyclic polydialkylsiloxanes including from 3 to 7 and preferably 4 to 5 silicon atoms, such as - octamethylcyclotetrasiloxane (D4) and decamethylcyclopentasiloxane (D5).
  • cyclic polydialkylsiloxanes including from 3 to 7 and preferably 4 to 5 silicon atoms, such as - octamethylcyclotetrasiloxane (D4) and decamethylcyclopentasiloxane (D5).
  • Mention may be made of the products sold under the name Volatile Silicone 7207 by Union Carbide or Silbione 70045 V 2 by Rhodia, Volatile Silicone 7158 by Union Carbide or Silbione 70045 V 5 by Rhodia; - cyclocopolymers of the dimethylsiloxane/methylalkylsiloxane type having the chemi- cal structure: Mention may be made of Volatile Silicone FZ 3109 sold by Union Carbide.
  • cyclic silicones with silicon-derived organic compounds such as the mix- ture of octamethylcyclotetrasiloxane and of tetratrimethylsilylpentaerythritol (50/50) and the mixture of octamethylcyclotetrasiloxane and of 1,1’-oxy(2,2,2’,2’,3,3’-hexatri- methylsilyloxy)bisneopentane;
  • nonvolatile silicones mention may be made, alone or as a mixture, of polyd- ialkylsiloxanes and particularly polydimethylsiloxanes (PDMS or dimethicone), polydi- arylsiloxanes, polyalkylarylsiloxanes, silicone gums and resins, and also non-amino or- ganopolysiloxanes (or organomodified polysiloxanes, or alternatively organomodified silicones) which are polysiloxanes including in their structure one or more non-amino organofunctional groups, generally attached via a hydrocarbon-based group, and pref- erably chosen from aryl groups, alkoxy groups and polyoxyethylene and/or polyoxypro- pylene groups.
  • PDMS or dimethicone polydi- arylsiloxanes
  • polyalkylarylsiloxanes silicone gums and resins
  • the organomodified silicones may be polydiarylsiloxanes, particularly polydiphen- ylsiloxanes, and polyalkylarylsiloxanes functionalized with the organofunctional groups mentioned previously.
  • the polyalkylarylsiloxanes are particularly chosen from linear and/or branched polydimethyl/methylphenylsiloxanes and polydimethyl/diphenylsilox- anes.
  • organopolysiloxanes in- cluding include - polyoxyethylene and/or polyoxypropylene groups optionally including C 6 -C 24 alkyl groups, such as dimethicone copolyols, and particularly those sold by the company Dow Corning under the name DC 1248 or the oils Silwet ® L 722, L 7500, L 77 and L 711 from the company Union Carbide; or alternatively (C 12 )alkylmethicone copolyols, and partic- ularly those sold by the company Dow Corning under the name Q2-5200; - thiol groups, such as the products sold under the names GP 72 A and GP 71 from Genesee; - alkoxylated groups, such as the product sold under the name Silicone Copolymer F- 755 by SWS Silicones and Abil Wax ® 2428, 2434 and 2440 by the company Goldschmidt; - hydroxylated
  • CFA dimethylsilanol end groups
  • Products that may be used more particularly in accordance with the invention are mix- tures such as: - mixtures formed from a polydimethylsiloxane with a hydroxyl-terminated chain, or dimethiconol (CTFA), and from a cyclic polydimethylsiloxane, also known as cyclome- thicone (CTFA), such as the product Q2-1401 sold by the company Dow Corning.
  • CTFA dimethiconol
  • CTFA cyclic polydimethylsiloxane
  • the polyalkylarylsiloxanes are particularly chosen from linear and/or branched polydi- methyl/methylphenylsiloxanes and polydimethyl/diphenylsiloxanes with a viscosity ranging from 1 ⁇ 10 -5 to 5 ⁇ 10 -2 m 2 /s at 25°C.
  • the non-amino silicones that are more particularly preferred according to the invention are polydimethylsiloxanes containing trimethylsilyl end groups (CTFA: dimethicone).
  • CTFA trimethylsilyl end groups
  • the composition according to the invention may comprise one or more amino silicones other than the amino silicones of formula (I) as defined above,
  • amino silicone denotes any silicone including at least one primary, second- ary or tertiary amine or a quaternary ammonium group.
  • the amino silicones that may be used according to the present invention may be vola- tile or nonvolatile and cyclic, linear or branched, and preferably have a viscosity ranging from 5 ⁇ 10 -6 to 2.5 m 2 /s at 25°C, for example from 1 ⁇ 10 -5 to 1 m 2 /s.
  • the additional amino silicones are chosen from nonvolatile liquid silicones (25°C, 1 atm).
  • the amino silicone(s) are chosen, alone or as mixtures, from the following compounds: A) the polysiloxanes corresponding to formula (Ia): in which x’ and y’ are integers such that the weight-average molecular mass (Mw) is between 5000 and 500000 g/mol; B) the amino silicones corresponding to formula (IIa): R’ a G 3-a -Si(OSiG 2 ) n -(OSiG b R’ 2-b ) m -O-SiG 3-a’ -R’ a’ (IIa) in which: - G, which is identical or different, denotes a hydrogen atom or a phenyl, OH, C 1 -C 8 alkyl, for example methyl, or C 1 -C 8 alkoxy, for example methoxy, group; - a and a’, which are identical or different, denote 0 or an integer from 1 to 3, in partic- ular 0, with the
  • the amino silicones of formula (IIa) may be chosen from: (i) the “trimethylsilyl amodimethicone” silicones corresponding to formula (III): in which m and n are numbers such that the sum (n + m) ranges from 1 to 2000, pref- erably from 20 to 1000, in particular from 50 to 600, better still from 50 to 150; it being possible for n to denote a number from 0 to 1999 and particularly from 49 to 149 and it being possible for m to denote a number from 1 to 2000 and particularly from 1 to 10; (ii) the silicones of formula (IV) below: in which: - m and n are numbers such that the sum (n + m) ranges from 1 to 1000, in particular from 50 to 250 and more particularly from 100 to 200; n denoting a number from 0 to 999 and particularly from 49 to 249 and more particularly from 125 to 175, and m de- noting a number from 1 to 1000, particularly from 1 to 10 and
  • the alkoxy radical is a methoxy radical.
  • the hydroxyl/alkoxy mole ratio preferably ranges from 0.2:1 to 0.4:1 and preferably from 0.25:1 to 0.35:1 and more particularly is equal to 0.3:1.
  • the weight-average molecular mass (Mw) of these silicones preferably ranges from 2000 to 1000000 g/mol and more particularly from 3500 to 200000 g/mol; (iii) the silicones of formula (V) below: in which: - p and q are numbers such that the sum (p + q) ranges from 1 to 1000, in particular from 50 to 350 and more particularly from 150 to 250; p denoting a number from 0 to 999, particularly from 49 to 349 and more particularly from 159 to 239, and q denoting a number from 1 to 1000, particularly from 1 to 10 and more particularly from 1 to 5; and - R 1 and R 2 , which are different, represent a hydroxyl or C 1 -C 4 alkoxy radical, at least one of the radicals R 1 or R 2 denoting an alkoxy radical.
  • the alkoxy radical is a methoxy radical.
  • the hydroxyl/alkoxy mole ratio generally ranges from 1:0.8 to 1:1.1 and preferably from 1:0.9 to 1:1 and more particularly is equal to 1:0.95.
  • the weight-average molecular mass (Mw) of the silicone preferably ranges from 2000 to 200000 g/mol, more preferentially from 5000 to 100000 g/mol and in particular from 10000 to 50000 g/mol.
  • the commercial products comprising silicones of structure (IV) or (V) may include in their composition one or more other amino silicones, the structure of which is different from formula (IV) or (V).
  • a product containing amino silicones of structure (IV) is sold by the company Wacker under the name Belsil® ADM 652.
  • a product containing amino silicones of structure (V) is sold by Wacker under the name Fluid WR 1300®.
  • Another product containing amino silicones of structure (XIV) is sold by Wacker under the name Belsil ADM LOG 1®.
  • the oil-in-water emulsion may comprise one or more surfactants.
  • the surfactants may be of any nature but are preferably cationic and/or nonionic.
  • the number-average size of the silicone particles in the emulsion generally ranges from 3 nm to 500 nm.
  • the weight-average molecular mass (Mw) of these amino silicones preferably ranges from 2000 to 1000000 g/mol and more particularly from 3500 to 200000 g/mol.
  • a silicone corresponding to this formula is, for example, Xiameter MEM 8299 Emulsion from Dow Corning;
  • This radical is preferably branched.
  • the weight-average molecular mass (Mw) of these amino silicones preferably ranges from 500 to 1000000 g/mol and more particularly from 1000 to 200000 g/mol.
  • a silicone corresponding to this formula is, for example, DC2-8566 Amino Fluid from Dow Corning;
  • - R 6 represents a divalent hydrocarbon-based radical, particularly a C 1 -C 18 alkylene rad- ical or a divalent C 1 -C 18 , for example C 1 -C 8 , alkyleneoxy radical linked to the Si via an SiC bond;
  • - Q- is an anion such as a halide ion, particularly chloride, or
  • silicones are for example described in patent application EP-A-0530974; men- tion may in particular be made of the silicone having the INCI name: Quaternium 80. Silicones falling within this category are the silicones sold by the company Goldschmidt under the names Abil Quat 3270, Abil Quat 3272 and Abil Quat 3474; E) the amino silicones of formula (X): in - R 1 , R 2 , R 3 and R 4 , which are identical or different, denote a C 1 -C 4 alkyl radical or a phenyl group, - R 5 denotes a C 1 -C 4 alkyl radical or a hydroxyl group, - n is an integer ranging from 1 to 5, - m is an integer ranging from 1 to 5, and - x is chosen such that the amine number ranges from 0.01 to 1 meq/g.
  • the multiblock polyoxyalkylenated amino silicones of (AB) n type, A being a polysilox- ane block and B being a polyoxyalkylenated block including at least one amine group.
  • Said silicones are preferably constituted of repeating units having the following general formulae: [-(SiMe 2 O) x SiMe 2 -R-N(R’’)-R’-O(C 2 H 4 O) a (C 3 H 6 O) b -R’-N(H)-R-] or else [-(SiMe 2 O) x SiMe 2 -R-N(R’’)-R’-O(C 2 H 4 O) a (C 3 H 6 O) b -] in which: - a is an integer greater than or equal to 1, preferably ranging from 5 to 200 and more particularly ranging from 10 to 100; - b is an integer between 0 and 200, preferably ranging from 4 to 100 and more partic- ular
  • the siloxane blocks preferably represent between 50 mol% and 95 mol% of the total weight of the silicone, more particularly from 70 mol% to 85 mol%.
  • the amine content is preferably between 0.02 and 0.5 meq/g of copolymer in a 30% solution in dipropylene glycol, more particularly between 0.05 and 0.2.
  • the weight-average molecular mass (Mw) of the silicone is preferably between 5000 and 1000000 g/mol and more particularly between 10000 and 200000 g/mol. Mention may particularly be made of the silicones sold under the name Silsoft A-843 or Silsoft A+ by Momentive.
  • A comprises from 3 to 6 carbon atoms, more preferentially 4 carbon atoms; preferably, A is branched. Mention may be made in particular of the following divalent groups: -CH 2 CH 2 CH 2 - and -CH 2 CH(CH 3 )CH 2 -.
  • R 1 and R 2 are independent saturated linear alkyl groups comprising 6 to 30 carbon atoms, preferably 8 to 24 carbon atoms and in particular from 12 to 20 carbon atoms; mention may be made in particular of dodecyl, tetradecyl, pentadecyl, hexa- decyl, heptadecyl, octadecyl, nonadecyl and eicosyl groups; and preferentially, R 1 and R 2 , which are identical or different, are chosen from hexadecyl (cetyl) and octadecyl (stearyl) groups.
  • - x ranges from 10 to 2000 and in particular from 100 to 1000; - y ranges from 1 to 100; - A comprises from 3 to 6 carbon atoms and particularly 4 carbon atoms; preferably, A is branched; more particularly, A is chosen from the following divalent groups: - CH 2 CH 2 CH 2 and -CH 2 CH(CH 3 )CH 2 -; and - R 1 and R 2 independently are saturated linear alkyl groups comprising from 6 to 30 carbon atoms, preferably from 8 to 24 carbon atoms and in particular from 12 to 20 carbon atoms; particularly chosen from dodecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, octadecyl, nonadecyl and eicosyl groups; preferentially, R 1 and R 2 , which are identical or different, are chosen from hexadecyl (
  • a silicone of formula (XII) that is preferred is bis-cetearyl amodimethicone. Mention may be made in particular of the amino silicone sold under the name Silsoft AX by Momentive. H) polysiloxanes and particularly polydimethylsiloxanes, including primary amine as those of formula (XIV), (XV) or In , n m are that the weight-average molecular mass of the amino silicone is between 1000 and 55000. As examples of amino silicones of formula (XIV), mention may be made of the products sold under the names AMS-132, AMS-152, AMS-162, AMS-163, AMS-191 and AMS- 1203 by the company Gelest and KF-8015 by the company Shin-Etsu.
  • n is such that the weight-average molecular mass of the amino silicone is between 500 and 3000.
  • amino silicones of formula (XV) mention may be made of the products sold under the names MCR-A11 and MCR-A12 by the company Gelest.
  • the values of n and m are such that the weight-average molecular mass of the amino silicone is between 500 and 50000.
  • amino silicones of formula (XVI) mention may be made of the ami- nopropyl phenyl trimethicone sold under the name DC 2-2078 Fluid by the company Dow Corning.
  • composition according to the invention may also comprise, as silicone, an amino silicone to formula below: in which: - n is a number between 1 and 1000, preferably between 10 and 500, better still be- tween 25 and 100, even better still between 50 and 80; - m is a number between 1 and 200, preferably between 1 and 100, better still between 1 and 10 and even better still between 1 and 5; - R’’’, which are identical or different, preferably identical, are saturated or unsaturated, linear or branched, alkyl radicals comprising from 8 to 30 carbon atoms, preferably from 10 to 24 carbon atoms, particularly from 12 to 18 carbon atoms; it being possible for said radicals optionally to be substituted with one or more hydroxyl OH groups; - R’ is a linear or branched divalent alkylene radical having from 1 to 6 carbon atoms, particularly from 2 to 5 carbon atoms; - R’’ is a linear or branched divalent alkylene radical having from 1 to 6 carbon atoms
  • the R’’’ which are identical or different, are saturated linear alkyl radicals comprising from 8 to 30 carbon atoms, preferably from 10 to 24 carbon atoms, particu- larly from 12 to 18 carbon atoms; mention may be made in particular of dodecyl, C13, tetradecyl, pentadecyl, hexadecyl, heptadecyl and octadecyl radicals; preferentially, the R’’’, which are identical or different, are chosen from saturated linear alkyl radicals having from 12 to 16 carbon atoms, particularly C13, C14 or C15 radicals, alone or as a mixture, and better still represent a mixture of C13, C14 and C15.
  • R’’ are identical.
  • R' is a linear or branched, preferably branched, divalent alkylene radical comprising from 1 to 6 carbon atoms, particularly from 2 to 5 carbon atoms; particularly a -CH 2 -CH 2 -CH 2 -, -CH 2 -CH(CH 3 )-CH 2 - or –CH 2 -CH 2 -CH(CH 3 )- radical.
  • R’’ is a linear divalent alkylene radical comprising from 1 to 6 carbon atoms, particularly from 1 to 4 carbon atoms, in particular a -CH 2 -CH 2 - radical.
  • the composition may comprise one or more silicones of formula (XVIII) in which: - n is a number between 50 and 80; - m is a number between 1 and 5; - R’’’, which are identical, are saturated linear alkyl radicals comprising from 12 to 18 carbon atoms; - R’ is a divalent alkylene radical having from 2 to 5 carbon atoms; - R’’ is a linear divalent alkylene radical having from 1 to 4 carbon atoms.
  • formula (XVIII) in which: - n is a number between 50 and 80; - m is a number between 1 and 5; - R’’’, which are identical, are saturated linear alkyl radicals comprising from 12 to 18 carbon atoms; - R’ is a divalent alkylene radical having from 2 to 5 carbon atoms; - R’’ is a linear divalent alkylene radical having from 1 to 4 carbon atoms.
  • the composition may comprise one or more silicones of formula (XVIII) in which: - n is a number between 50 and 80; - m is a number between 1 and 5; - R’’’, which are identical, are saturated linear alkyl radicals comprising from 13 to 15 carbon atoms; - R’ is a –(CH 2 ) 3 -, -CH 2 -CH(CH 3 )-CH 2 - or –CH 2 -CH 2 -CH(CH 3 )- radical, and - R’’ is a -(CH 2 ) 2 - radical.
  • a most particularly preferred silicone of formula (XVIII) is Bis(C13-15 Alkoxy) PG- Amodimethicone (INCI name).
  • the additional silicone(s) may be chosen, alone or as a mixture, from non- volatile liquid non-amino silicones, and particularly polydialkysiloxanes and more par- ticularly polydimethylsiloxanes, in particular polydimethylsiloxanes having trimethylsilyl end groups; and/or nonvolatile liquid amino silicones, such as amodimethicones, ami- nopropyldimethicones and bis-aminopropyldimethicones, and also mixtures thereof.
  • the composition according to the invention does not com- prise any additional silicones (0%).
  • the composition according to the invention can comprise the additional silicone(s) in a total content preferably ranging from 0.01% to 2% by weight, better still ranging from 0.02% to 1% by weight and preferentially ranging from 0.05% to 0.5% by weight, relative to the total weight of the composition.
  • Associative polymers The composition according to the invention may further comprise at least one associ- ative polymer.
  • the composition according to the invention comprises one or more associ- ative polymers, preferably chosen from nonionic or cationic associative polymers.
  • the term “polymer” means any compound derived from the polymerization by polycondensation or from the radical polymerization of monomers, at least one of which is other than an alkylene oxide, and of a monofunc- tional compound of formula RX, R denoting an optionally hydroxylated C 10 -C 30 alkyl or alkenyl group, and X denoting a carboxylic acid, amine, amide, hydroxyl or ester group. All the compounds resulting solely from the simple condensation of an alkylene oxide with a fatty alcohol, a fatty ester, a fatty acid, a fatty amide or a fatty amine are in particular excluded.
  • the term “associative polymer” means an amphiphilic polymer that is capable, in an aqueous medium, of reversibly associating with itself or with other molecules. It generally includes, in its chemical structure, at least one hydrophilic region or group and at least one hydrophobic region or group.
  • the associative polymers according to the invention are polymers comprising at least one fatty chain including from 8 to 30 carbon atoms, the molecules of which are capa- ble, in the formulation medium, of associating with each other or with molecules of other compounds.
  • the fatty chain includes from 10 to 30 carbon atoms.
  • amphiphilic polymers that is to say poly- mers including one or more hydrophilic parts or groups which make them water-soluble and one or more hydrophobic regions or groups (including at least one fatty chain) via which the polymers interact and assemble with each other or with other molecules.
  • hydrophobic group means a group or a polymer containing a saturated or unsaturated, linear or branched hydrocarbon-based chain, which may contain one or more heteroatoms such as P, O, N or S, or a radical containing a perfluoro or silicone chain.
  • the hydrophobic group includes at least 10 carbon atoms, preferably from 10 to 30 carbon atoms, in particular from 12 to 30 carbon atoms and preferentially from 18 to 30 carbon atoms.
  • the hy- drocarbon-based hydrophobic group originates from a monofunctional compound.
  • the hydrophobic group may be derived from a fatty alcohol, such as stearyl alcohol, dodecyl alcohol or decyl alcohol, or else from a polyalkylenated fatty alcohol, such as Steareth-100. It may also denote a hydrocarbon-based polymer, for instance polybutadiene.
  • fatty chain means a linear or branched alkyl or alkenyl chain including at least 8 carbon atoms, preferably from 8 to 30 carbon atoms and better still from 10 to 22 carbon atoms.
  • fatty for instance a fatty alcohol, a fatty acid or a fatty amide, means a compound comprising, in its main chain, at least one saturated or unsaturated hydrocarbon-based chain, such as an alkyl or alkenyl chain, including at least 8 carbon atoms, preferably from 8 to 30 carbon atoms and better still from 10 to 22 carbon atoms.
  • anionic associative polymers preference is particularly given to polymers formed from 20% to 60% by weight of acrylic acid and/or of methacrylic acid, from 5% to 60% by weight of alkyl (meth)acrylates, from 2% to 50% by weight of fatty- chain allyl ether of formula (I’) and from 0% to 1% by weight of a crosslinking agent which is preferably a copolymerizable polyethylenic unsaturated monomer, such as di- allyl phthalate, allyl (meth)acrylate, divinylbenzene, (poly)ethylene glycol dimethacry- late or methylenebisacrylamide.
  • a crosslinking agent which is preferably a copolymerizable polyethylenic unsaturated monomer, such as di- allyl phthalate, allyl (meth)acrylate, divinylbenz
  • Salcare SC80 which is a 30% aqueous emulsion of a crosslinked terpolymer of methacrylic acid, of ethyl
  • These polymers are preferably chosen from those for which the hydrophilic unit of un- saturated olefinic carboxylic acid type corresponds to the monomer of formula (II) be- low: CH 2 C C OH (II) R 1 O in which R 1 denotes H or CH 3 or C 2 H 5 , and for which the hydrophobic unit of (C 10 -C 30 )al- kyl ester of unsaturated carboxylic acid type corresponds to the monomer of formula R 2 O in which R 2 denotes H, CH 3 or C 2 H 5 and R 3 denotes a C 10 -C 30 and preferably C 12 -C 22 alkyl radical.
  • Alkyl esters of unsaturated carboxylic acids in accordance with the invention comprise, for example, lauryl acrylate, stearyl acrylate, decyl acrylate, isodecyl acrylate and dodecyl acrylate, and the corresponding methacrylates, lauryl methacrylate, stearyl methacrylate, decyl methacrylate, isodecyl methacrylate and dodecyl methacrylate.
  • anionic associative polymers use will more particularly be made of poly- mers formed from a mixture of monomers comprising: (i) (meth)acrylic acid, (ii) an ester of formula (III) described above in which R 2 denotes H or CH 3 , R 3 denotes an alkyl radical having 12 to 22 carbon atoms, and optionally (iii) and a crosslinking agent, which is a well-known copolymerizable polyethylenic un- saturated monomer, for instance diallyl phthalate, allyl (meth)acrylate, divinylbenzene, (poly)ethylene glycol dimethacrylate or methylenebisacrylamide.
  • a crosslinking agent which is a well-known copolymerizable polyethylenic un- saturated monomer, for instance diallyl phthalate, allyl (meth)acrylate, divinylbenzene, (poly)ethylene glycol dimethacrylate or methylenebisacrylamide.
  • anionic associative polymers of this type preference is more particularly given to those constituted of from 95% to 60% by weight of (meth)acrylic acid, 4% to 40% by weight of C 10 -C 30 alkyl acrylate and 0% to 6% by weight of crosslinking polymerizable monomer, or else to those constituted of from 98% to 96% by weight of (meth)acrylic acid, 1% to 4% by weight of C 10 -C 30 alkyl acrylate and 0.1% to 0.6% by weight of cross- linking polymerizable monomer, such as those described previously.
  • ethoxylated (40 EO) behenyl alcohol ter- polymer particularly as a 25% aqueous dispersion, such as the product Viscophobe DB1000 sold by the company Amerchol (Dow Chemical), having the INCI name Poly- acrylate-3.
  • copolymers including, among their monomers (i) an ⁇ , ⁇ -monoethylenically unsaturated carboxylic acid, such as acrylic acid or meth- acrylic acid, and (ii) an ester of ⁇ , ⁇ -monoethylenically unsaturated carboxylic acid, particularly acrylic or methacrylic acid, and of fatty alcohol, particularly C8-C32 oxyalkylenated fatty alcohol, particularly comprising 2 to 100 mol of ethylene oxide, in particular 4 to 50, or even 10 to 40 EO. Mention may in particular made, as monomers, of behenyl or stearyl (meth)acrylate comprising 10 to 40 EO, in particular 18 to 30 EO.
  • these compounds also comprise, as monomer, an ester of an ⁇ , ⁇ -mo- noethylenically unsaturated carboxylic acid and of a C 1 -C 4 alcohol, particularly a C 1 -C 4 alkyl (meth)acrylate.
  • these copolymers comprise at least one (meth)acrylic acid monomer, at least one C 1 -C 4 alkyl (meth)acrylate monomer and at least one C 8 -C 32 alkyl (meth)acry- late monomer which is oxyethylenated, comprising from 2 to 100 mol EO, in particular from 4 to 50 EO, or even from 10 to 40 EO.
  • Aculyn 22 sold by the company Rohm and Haas, which is an methacrylic acid/ethyl acrylate/ oxyalkylenated stearyl methacrylate terpolymer (INCI name: Acrylates/Steareth-20 Methacrylate Copolymer), or also of Aculyn 28 sold by Rohm and Haas, which is an methacrylic acid/ethyl acrylate/ oxy- alkylenated behenyl methacrylate terpolymer (INCI name: Acrylates/Beheneth-25 Methacrylate Copolymer), and also of the Novethix L-10 Polymer sold by Lubrizol; - (F) associative polymers including at least one ethylenically unsaturated monomer bearing a sulfonic group, in free or partially or totally neutralized form and comprising at least one hydrophobic portion.
  • Rohm and Haas is an methacrylic acid/ethyl acrylate/ oxyal
  • polymers of this type mention may be made more especially of: - crosslinked or non-crosslinked, neutralized or non-neutralized copolymers including from 15% to 60% by weight of AMPS (2-acrylamido-2-methylpropanesulfonic acid or salt) units and from 40% to 85% by weight of (C 8 -C 16 )alkyl (meth)acrylate units relative to the polymer, such as those described in patent application EP-A-750899; - terpolymers comprising from 10 mol% to 90 mol% of acrylamide units, from 0.1 mol% to 10 mol% of AMPS units and from 5 mol% to 80 mol% of n-(C 6 -C 8 )alkylacrylamide units, such as those described in patent US5089578; - copolymers of totally neutralized AMPS and of dodecyl methacrylate, and also copol- ymers of AMPS and of n-dodecylmethacrylamide
  • G associative polymers including at least one vinyllactam monomer and at least one ⁇ , ⁇ -monoethylenically unsaturated carboxylic acid monomer, such as terpoly- mers of vinylpyrrolidone, of acrylic acid and of C 1 -C 20 alkyl methacrylate, for ex- ample lauryl methacrylate, such as the product sold by the company ISP under the name Acrylidone® LM (INCI name: VP/Acrylates/Lauryl Methacrylate Co- polymer).
  • cationic associative polyurethanes which may be represented by the general for- mula (Ia) below: R-X-(P) n -[L-(Y) m ] r -L’-(P’) p -X’-R’ in which: R and R’, which are identical or different, represent a hydrophobic group or a hydrogen atom; X and X’, which are identical or different, represent a group including an amine function optionally bearing a hydrophobic group, or alternatively a group L”; L, L’ and L”, which are identical or different, represent a group derived from a diisocy- anate; P and P’, which are identical or different, represent a group including an amine function optionally bearing a hydrophobic group; Y represents a hydrophilic group; r is an integer between 1 and 100 inclusive, preferably between 1 and 50 inclusive and in
  • the only hydrophobic groups are the groups R and R' at the chain ends.
  • One preferred family of cationic associative polyurethanes is the one corresponding to formula (Ia) described above, in which: R and R’ both independently represent a hydrophobic group, X and X’ each represent a group L”, n and p are integers that are between 1 and 1000 inclusive, and L, L’, L”, P, P’, Y and m have the meanings given above.
  • the number-average molecular mass (Mn) of the cationic associative polyurethanes is preferably between 400 and 500000 inclusive, in particular between 1000 and 400000 inclusive and ideally between 1000 and 300000 inclusive.
  • the hydrocarbon-based group originates from a monofunctional com- pound.
  • the hydrophobic group may be derived from a fatty alcohol such as stearyl alcohol, dodecyl alcohol or decyl alcohol. It may also denote a hydrocarbon- based polymer, for instance polybutadiene.
  • R 2 represents a linear or branched alkylene radical having from 1 to 20 carbon atoms, optionally including a saturated or unsaturated ring, or an arylene radical, it being pos- sible for one or more of the carbon atoms to be replaced with a heteroatom chosen from N, S, O and P;
  • R 1 and R 3 which are identical or different, denote a linear or branched C 1 -C 30 alkyl or alkenyl radical or an aryl radical, it being possible for at least one of the carbon atoms to be replaced with a heteroatom chosen from N, S, O and P;
  • A- is a physiologically acceptable anionic counterion, such as a halide, for instance a chloride or bromide, or a mesylate.
  • the groups L, L’ and L’’ represent a group of formula: in which: Z represents -O-, -S- or -NH-; and R 4 represents a linear or branched alkylene radical having from 1 to 20 carbon atoms, optionally including a saturated or unsaturated ring, or an arylene radical, it being pos- sible for one or more of the carbon atoms to be replaced with a heteroatom chosen from N, S, O and P.
  • the groups P and P’ comprising an amine function may represent at least one of the following formulae:
  • R 5 and R 7 have the same meanings as R 2 defined above; R 6 , R 8 and R 9 have the same meanings as R 1 and R 3 defined above; R 10 represents a linear or branched, optionally unsaturated alkylene group which may contain one or more heteroatoms chosen from N, O, S and P; and A- is a physiologically acceptable anionic counterion, such as a halide, for instance chloride or bromide, or mesylate.
  • Y the term “hydrophilic group” means a polymeric or non- polymeric water-soluble group. By way of example, when it is not a polymer, mention may be made of ethylene glycol, diethylene glycol and propylene glycol.
  • hydrophilic polymer When it is a hydrophilic polymer, mention may be made, for example, of polyethers, sulfonated polyesters and sulfonated polyamides, or a mixture of these polymers.
  • the hydrophilic compound is preferentially a polyether and particularly a poly(ethylene ox- ide) or poly(propylene oxide).
  • the cationic associative polyurethanes of formula (Ia) according to the invention are formed from diisocyanates and from various compounds bearing functions containing labile hydrogen.
  • the functions containing labile hydrogen may be alcohol, primary or secondary amine or thiol functions, giving, after reaction with the diisocyanate func- tions, polyurethanes, polyureas and polythioureas, respectively.
  • polyurethanes encompasses these three types of polymer, namely pol- yurethanes per se, polyureas and polythioureas, and also copolymers thereof.
  • a first type of compound involved in the preparation of the polyurethane of formula (Ia) is a compound including at least one unit bearing an amine function. This compound may be multifunctional, but the compound is preferentially difunctional, that is to say that, according to a preferential embodiment, this compound includes two labile hydro- gen atoms borne, for example, by a hydroxyl, primary amine, secondary amine or thiol function.
  • a mixture of multifunctional and difunctional compounds in which the per- centage of multifunctional compounds is low may also be used.
  • this compound may include more than one unit containing an amine function. In this case, it is a polymer bearing a repetition of the unit containing an amine function.
  • Compounds of this type may be represented by one of the following formulae: HZ-(P) n -ZH or HZ-(P’) p -ZH, in which Z, P, P’, n and p are as defined above. Examples that may be mentioned include N-methyldiethanolamine, N-tert-butyldieth- anolamine and N-sulfoethyldiethanolamine.
  • R 4 is as defined above.
  • a third compound involved in the preparation of the polyurethane of formula (Ia) is a hydrophobic compound intended to form the hydrophobic end groups of the polymer of formula (Ia).
  • This compound is constituted of a hydrophobic group and a function containing labile hydrogen, for example a hydroxyl, primary or secondary amine, or thiol function.
  • this compound may be a fatty alcohol such as stearyl alcohol, do- decyl alcohol or decyl alcohol.
  • this compound includes a polymeric chain, it may be, for example, ⁇ -hydroxylated hydrogenated polybutadiene.
  • the hydrophobic group of the polyurethane of formula (Ia) may also result from the quaternization reaction of the tertiary amine of the compound including at least one tertiary amine unit.
  • the hydrophobic group is introduced via the quaternizing agent.
  • This quaternizing agent is a compound of the type RQ or R'Q, in which R and R' are as defined above and Q denotes a leaving group such as a halide, a sulfate, etc.
  • the cationic associative polyurethane may also comprise a hydrophilic block. This block is provided by a fourth type of compound involved in the preparation of the polymer. This compound may be multifunctional. It is preferably difunctional.
  • the functions containing labile hydrogen are alcohol, primary or secondary amine or thiol functions.
  • This compound may be a polymer terminated at the chain ends with one of these functions containing labile hydrogen.
  • ethylene glycol diethylene glycol and propylene glycol.
  • hydrophilic polymer mention may be made, for example, of polyethers, sulfonated polyesters and sulfonated polyamides, or a mixture of these polymers.
  • the hydrophilic compound is preferentially a polyether and particularly a poly(ethylene ox- ide) or poly(propylene oxide).
  • the hydrophilic group termed Y in formula (Ia) is optional. Specifically, the units con- taining a quaternary or protonated amine function may be sufficient to provide the sol- ubility or water-dispersibility required for this type of polymer in an aqueous solution. Although the presence of a hydrophilic group Y is optional, cationic associative polyu- rethanes including such a group are, however, preferred.
  • quaternized cellulose derivatives and in particular: - i) quaternized celluloses modified with groups including at least one fatty chain, such as linear or branched alkyl, linear or branched arylalkyl or linear or branched alkylaryl groups including at least 8 carbon atoms, or mixtures thereof; - ii) quaternized hydroxyethylcelluloses modified with groups including at least one fatty chain, such as linear or branched alkyl, linear or branched arylalkyl or linear or branched alkylaryl groups including at least 8 carbon atoms, or mixtures thereof; - iii) the hydroxyethylcelluloses of formula (Ib): in which: - R and R’, which are identical or different, represent an ammonium group -R a R b R c N + Q- in which R a , R b and R c , which are identical or different, represent a hydrogen atom or
  • the alkyl radicals borne by the above quaternized celluloses i) or hydroxyethylcellu- loses ii) preferably include from 8 to 30 carbon atoms.
  • the aryl radicals preferably de- note phenyl, benzyl, naphthyl or anthryl groups.
  • Quatrisoft LM 200® sold by the company Amerchol/Dow Chemical
  • Crodacel QM® INCI name: PG-Hydroxyethylcellulose cocodimonium chloride
  • R represents a trimethylammonium halide and R’ represents a dimethyldodecylammo- nium halide; more preferentially, R represents trimethylammonium chloride - (CH 3 ) 3 N + Cl- and R’ represents dimethyldodecylammonium chloride -(CH 3 ) 2 (C 12 H 25 )N + Cl- .
  • This type of polymer is known under the trade name Softcat Polymer SL®, such as SL- 100, SL-60, SL-30 and SL-5, from the company Amerchol/Dow Chemical, having the INCI name Polyquaternium-67.
  • the polymers of formula (Ib) are those for which the viscosity is be- tween 2000 and 3000 cPs inclusive. Preferentially, the viscosity is between 2700 and 2800 cPs inclusive.
  • Softcat Polymer SL-5 has a viscosity of 2500 cPs
  • Softcat Polymer SL-30 has a viscosity of 2700 cPs
  • Softcat Polymer SL-60 has a viscosity of 2700 cPs
  • Softcat Polymer SL-100 has a viscosity of 2800 cPs.
  • - (C’) cationic polyvinyllactams particularly those comprising: - a) at least one monomer of vinyllactam or alkylvinyllactam type; - b) at least one monomer of structure (Ic) or (IIc) below: in which: X denotes an oxygen atom or an NR6 radical, R 1 and R 6 denote, independently of each other, a hydrogen atom or a linear or branched C 1 -C 5 alkyl radical, R 2 denotes a linear or branched C 1 -C 4 alkyl radical, - R 3 , R 4 and R 5 denote, independently of each other, a hydrogen atom, a linear or branched C 1 -C 30 alkyl radical or a radical of formula (IIIc): in which: Y, Y 1 and Y 2 denote, independently of each other, a linear or branched C 2 -C 16 alkylene R 7 denotes a hydrogen atom or a linear
  • the cationic poly(vinyllactam) polymers according to the invention may be crosslinked or non-crosslinked and may also be block polymers.
  • the counterion Z- of the monomers of formula (Ic) is chosen from halide ions, phosphate ions, the methosulfate ion and the tosylate ion.
  • R 3 , R 4 and R 5 denote, independently of each other, a hydrogen atom or a linear or branched C 1 -C 30 alkyl radical.
  • the monomer b) is a monomer of formula (Ic) for which, preferen- tially, m and n are equal to 0.
  • the vinyllactam or alkylvinyllactam monomer is preferably a compound of structure (IVc): in which s denotes an integer ranging from 3 to 6; R 9 denotes a hydrogen atom or a linear or branched C 1 -C 5 alkyl radical and R 10 denotes a hydrogen atom or a linear or branched C 1 -C 5 alkyl radical, with the proviso that one at least of the radicals R 9 and R 10 denotes a hydrogen atom. Even more preferentially, the monomer (IVc) is vinylpyrrolidone.
  • the cationic poly(vinyllactam) polymers according to the invention may also contain one or more additional monomers, preferably cationic or nonionic monomers.
  • terpolymers comprising, by weight: 40% to 95% of monomer (a), 0.1% to 55% of monomer (c), and 0.25% to 50% of monomer (b).
  • Such polymers are particularly described in patent application WO-00/68282.
  • cationic poly(vinyllactam) polymers use is in particular made of: - vinylpyrrolidone/dimethylaminopropylmethacrylamide/dodecyldimethylmethac- rylamidopropylammonium tosylate terpolymers, - vinylpyrrolidone/dimethylaminopropylmethacrylamide/cocoyldimethylmethacrylami- dopropylammonium tosylate terpolymers, - vinylpyrrolidone/dimethylaminopropylmethacrylamide/lauryldimethylmethacrylami- dopropylammonium tosylate or chloride terpolymers.
  • the vinylpyrrolidone/dimethylaminopropylmethacrylamide/lauryldimethylme- thylacrylamidopropylammonium chloride terpolymer is particularly sold by the company ISP under the names Styleze W10® and Styleze W20L® (INCI name: Polyquaternium- 55).
  • the weight-average molecular mass (Mw) of the cationic poly(vinyllactam) polymers is preferably between 500 and 20000000, more particularly between 200000 and 2000000 and preferentially between 400000 and 800000.
  • Such a polymer is, for example, the compound sold by the company Lubrizol under the name Carbopol Aqua CC ® and which corresponds to the INCI name Polyacrylate-1 Crosspolymer.
  • the nonionic associative polymers are preferably chosen, alone or as a mixture, from: (1) celluloses modified with groups including at least one fatty chain, particularly C 8 - C 32 and better still C 14 -C 28 alkyl; preferably from: - hydroxyethylcelluloses modified with groups including at least one fatty chain, partic- ularly C 8 -C 32 and better still C 14 -C 28 alkyl, such as alkyl, arylalkyl or alkylaryl groups, or mixtures thereof, and in which the alkyl groups are preferably C 8 -C 22 , for instance the cetylhydroxyethylcellulose sold particularly under the reference Natrosol Plus Grade 330 CS (C 16 alkyls) sold by the company Ashland, or the product Polysurf 67CS
  • Examples that may be mentioned include: - the vinylpyrrolidone/hexadecene copolymer and particularly the products Antaron V216 or Ganex V216 sold by the company ISP; - the vinylpyrrolidone/eicosene copolymer and particularly the products Antaron V220 or Ganex V220 sold by the company ISP.
  • polyurethane polyethers including in their chain both hydrophilic blocks usually of polyoxyethylenated nature and hydrophobic blocks, which may be aliphatic sequences alone and/or cycloaliphatic and/or aromatic sequences.
  • polymers comprising an aminoplast ether backbone having at least one fatty chain, particularly C 8 -C 32 and better still C 14 -C 28 alkyl, such as the Pure Thix compounds sold by the company Süd-Chemie.
  • the polyurethane polyethers include at least two hydrocarbon-based lipo- philic chains having from 8 to 30 carbon atoms, separated by a hydrophilic block, it being possible for the hydrocarbon-based chains to be pendent chains or chains at the end of the hydrophilic block. In particular, it is possible for one or more pendent chains to be envisaged.
  • the polymer may include a hydrocarbon-based chain at one end or at both ends of a hydrophilic block.
  • the polyurethane polyethers may be multiblock, in particular in triblock form.
  • the hy- drophobic blocks may be at each end of the chain (for example: triblock copolymer bearing a hydrophilic central block) or distributed both at the ends and in the chain (for example, multiblock copolymer). These same polymers may also be graft polymers or star polymers.
  • the fatty-chain nonionic polyurethane polyethers may be triblock copolymers, the hy- drophilic block of which is a polyoxyethylenated chain including from 50 to 1000 oxy- ethylene groups.
  • the nonionic polyurethane polyethers comprise a urethane bond be- tween the hydrophilic blocks, giving rise to their name.
  • fatty-chain nonionic polyurethane polyethers include those in which the hydrophilic blocks are linked to the lipophilic blocks via other chemical bonds.
  • fatty-chain nonionic polyurethane polyethers that may be used in the invention, use may also be made of Rheolate 205® containing a urea function, sold by the company Rheox, or Rheolate® 208, 204 or 212, and also Acrysol RM 184®. Mention may also be made of the product Elfacos T210® containing a C12-C14 alkyl chain, and the product Elfacos T212® containing a C18 alkyl chain, from Akzo.
  • Use may also be made of the product DW 1206B® from Rohm & Haas containing a C20 alkyl chain and containing a urethane bond, provided at a solids content of 20% in water. Use may also be made of solutions or dispersions of these polymers, particularly in water or in an aqueous/alcoholic medium. Mention may be made, as examples of such polymers, of Rheolate® 255, Rheolate® 278 and Rheolate® 244, sold by the company Rheox. Use may also be made of the products DW 1206F and DW 1206J sold by the company Rohm & Haas.
  • polyurethane polyethers that may be used according to the invention are in partic- ular those described in the article by G. Fonnum, J. Bakke and Fk. Hansen - Colloid Polym. Sci. 271, 380.389 (1993). Even more particularly, preference is given to using a polyurethane polyether that may be obtained by polycondensation of at least three compounds comprising (i) at least one polyethylene glycol comprising from 150 to 180 mol of ethylene oxide, (ii) stearyl alcohol or decyl alcohol and (iii) at least one diisocyanate.
  • Aculyn 46® is a polycondensate of polyeth- ylene glycol having 150 or 180 mol of ethylene oxide, of stearyl alcohol and of meth- ylenebis(4-cyclohexyl isocyanate) (SMDI), at 15% by weight in a matrix of maltodextrin (4%) and water (81%);
  • Aculyn 44® is a polycondensate of polyethylene glycol having 150 or 180 mol of ethylene oxide, of decyl alcohol and of methylenebis(4-cyclohexyl isocyanate) (SMDI), at 35% by weight in a mixture of propylene glycol (39%) and water (26%)].
  • the composition according to the invention comprises one or more nonionic associative polymers, preferentially chosen from polyurethane polyethers, and/or one or more cationic associative polymers, preferably chosen from quaternized cellulose derivatives, and in particular celluloses, including quaternized hydroxyethylcelluloses modified with groups including at least one fatty chain, such as linear or branched alkyl groups, linear or branched arylalkyl groups, linear or branched alkylaryl groups includ- ing at least 8 carbon atoms, or mixtures thereof, and/or quaternized celluloses corre- sponding to formula (Ib) above, particularly Polyquaternium-67; preferentially one or more cationic associative polymers chosen from quaternized cellulose derivatives.
  • nonionic associative polymers preferentially chosen from polyurethane polyethers
  • one or more cationic associative polymers preferably chosen from quaternized cellulose derivatives, and in particular
  • the associative polymer(s) may be present in the composition in a total content ranging from 0.01% to 10% by weight, preferentially from 0.05% to 5% by weight, more preferentially from 0.1% to 1.5% by weight, relative to the total weight of the com- position.
  • the cationic associative polymer(s), chosen from quaternized cellulose de- rivatives may be present in the composition in a total content ranging from 0.01% to 10% by weight, preferentially from 0.05% to 5% by weight, more preferentially from 0.1% to 1.5% by weight, relative to the total weight of the composition.
  • Polyols The composition according to the invention may also comprise at least one polyol.
  • the composition according to the invention comprises one or more polyols.
  • polyol means an organic com- pound constituted of a hydrocarbon-based chain optionally interrupted with one or more oxygen atoms and bearing at least two free hydroxyl groups (-OH), preferably borne by different carbon atoms, it being possible for this compound to be cyclic or acyclic, linear or branched, and saturated or unsaturated. More particularly, the polyol(s) comprise from 2 to 30 hydroxyl groups, better still from 2 to 10 hydroxyl groups, preferentially from 2 to 3 hydroxyl groups.
  • the polyol(s) are chosen from diglycerol, glycerol, propylene glycol, propane-1,3-diol, 1,3-butylene glycol, pentane-1,2-diol, octane-1,2-diol, dipropylene glycol, hexylene glycol, ethylene glycol, polyethylene glycols, sorbitol, sugars such as glucose and mixtures thereof; preferably from glycerol, propylene glycol, propane-1,3- diol, 1,3-butylene glycol, pentane-1,2-diol, octane-1,2-diol, dipropylene glycol, hexylene glycol, ethylene glycol, sorbitol and mixtures thereof; and even better still from glycerol, propylene glycol, propane-1,3-diol, 1,3-butylene glycol, pentane-1,2-diol, oc
  • the polyol(s) may be present in the composition in a total content ranging from 0.01% to 45% by weight, better still ranging from 0.1% to 12% by weight, even better still ranging from 0.2% to 6% by weight, and preferentially ranging from 0.3% to 3% by weight, relative to the total weight of the composition.
  • Thickeners The composition according to the invention may also comprise at least one thickener. Preferably, the composition according to the invention comprises one or more thicken- ers.
  • the thickener(s) may particularly be aqueous-phase thickeners (or hydrophilic thick- eners).
  • thickener or “aqueous-phase thickener” means a compound which in- creases the viscosity of the aqueous phase into which it is introduced at a concentra- tion of 0.05% by weight by at least 20 cPs (20 mPa.s), preferably by at least 50 cPs (50 mPa.s), the viscosity being measured at 25°C, 1 atm, at a shear rate of 1s -1 (the vis- cosity can be measured using a cone/plate viscometer, a Haake R600 rheometer or the like).
  • the thickener is other than the surfactants, polymers, silicones, fatty substances and polyols described above.
  • the thickener is other than the associative poly- mers above and than the cationic polymers above.
  • the thickener may advantageously be chosen from non-associative thickening poly- mers bearing sugar units, non-associative thickening polymers without sugar units, and mixtures thereof.
  • the thickener may advantageously be chosen from ani- onic, nonionic or amphoteric non-associative thickening polymers bearing sugar units, anionic, nonionic or amphoteric non-associative thickening polymers without sugar units, and mixtures thereof.
  • sugar unit means an oxygen- comprising hydrocarbon-based compound which has several alcohol functions, with or without aldehyde or ketone functions, and which includes at least 4 carbon atoms.
  • the sugar units can be optionally modified by substitution, and/or by oxidation and/or by dehydration.
  • the sugar units that may be included in the composition of the aqueous-phase thick- ening polymers of the invention are preferably derived from the following sugars: glu- cose, galactose, arabinose, rhamnose, mannose, xylose, fucose, anhydrogalactose, galacturonic acid, glucuronic acid, mannuronic acid, galactose sulfate, anhydrogalac- tose sulfate and fructose.
  • Non-associative thickening polymers bearing sugar units of native gums, such as: a) tree or shrub exudates, such as: - gum arabic (branched polymer of galactose, arabinose, rhamnose and glucuronic acid); - ghatti gum (polymer derived from arabinose, galactose, mannose, xylose and glucu- ronic acid); - karaya gum (polymer derived from galacturonic acid, galactose, rhamnose and glucu- ronic acid); - gum tragacanth (polymer of galacturonic acid, galactose, fucose, xylose and arabi- nose); b) gums derived from algae, such as: - agar (polymer derived from galactose and anhydrogalactose); - alginates (polymers of mannuronic acid and of
  • polymers may be physically or chemically modified.
  • physical treatment mention may be made of temperature.
  • chemical treatment mention may be made of esterification, etherification, ami- dation and oxidation reactions.
  • these treatments make it possible to produce polymers that may particularly be nonionic, anionic or amphoteric.
  • these chemical or physical treatments are applied to guar gums, locust bean gums, starches and celluloses.
  • the nonionic guar gums that may be used according to the invention may be modified with C 1 -C 6 (poly)hydroxyalkyl groups.
  • C 1 -C 6 (poly)hydroxyalkyl groups mention may be made, by way of example, of hydroxymethyl, hydroxyethyl, hydroxypropyl and hydroxybutyl groups.
  • These guar gums are well known from the prior art and may be prepared, for example, by reacting corresponding alkene oxides, for instance propylene oxides, with the guar gum so as to obtain a guar gum modified with hydroxypropyl groups.
  • the degree of hydroxyalkylation preferably ranges from 0.4 to 1.2 and corresponds to the number of alkylene oxide molecules consumed by the number of free hydroxyl func- tions present on the guar gum.
  • Such nonionic guar gums optionally modified with hydroxyalkyl groups are sold, for ex- ample, under the trade names Jaguar HP8, Jaguar HP60 and Jaguar HP120 by the com- pany Rhodia Chimie.
  • the botanical origin of the starch molecules that may be used in the present invention may be cereals or tubers.
  • the starches are chosen, for example, from corn starch, rice starch, cassava starch, barley starch, potato starch, wheat starch, sorghum starch and pea starch.
  • the starches may be chemically or physically modified, particularly by one or more of the following reactions: pregelatinization, oxidation, crosslinking, esterification, etheri- fication, amidation, heat treatments.
  • Distarch phosphates or compounds rich in distarch phosphate will preferentially be used, for instance the product sold under the references Prejel VA-70-T AGGL (gelati- nized hydroxypropyl cassava distarch phosphate), Prejel TK1 (gelatinized cassava dis- tarch phosphate) or Prejel 200 (gelatinized acetylated cassava distarch phosphate) by the company Avebe, or Structure Zea from National Starch (gelatinized maize distarch phosphate).
  • amphoteric starches may also be used, these amphoteric starches comprising one or more anionic groups and one or more cationic groups.
  • the anionic and cationic groups can be bonded to the same reactive site of the starch mol- ecule or to different reactive sites; they are preferably bonded to the same reactive site.
  • the anionic groups may be of carboxylic, phosphate or sulfate type, preferably carbox- ylic type.
  • the cationic groups may be of primary, secondary, tertiary or quaternary amine type.
  • the starch molecules may be derived from any plant source of starch, particularly such as corn, potato, oat, rice, tapioca, sorghum, barley or wheat. It is also possible to use hydrolyzates of the starches mentioned above.
  • the starch is preferably derived from potato.
  • the non-associative thickening polymers of the invention may be cellulose-based pol- ymers not comprising a C 10 -C 30 fatty chain in their structure.
  • the term "cellulose" polymer means any polysaccharide compound having, in its structure, sequences of glucose residues joined via ⁇ -1,4 bonds; in addition to unsubstituted celluloses, the cellulose derivatives other than the polymers described above can be anionic, amphoteric or nonionic.
  • the cellulose-based polymers that may be used according to the invention may be chosen from unsubstituted celluloses, including those in a microcrystalline form, and cellulose ethers.
  • cellulose ethers cellulose esters
  • cellulose esters are distinguished.
  • the cellulose esters are inorganic esters of cellulose (cellulose nitrates, sulfates, phosphates, etc.), organic esters of cellulose (cellulose monoacetates, triacetates, am- idopropionates, acetatebutyrates, acetatepropionates or acetatetrimellitates,for exam- ple), and mixed organic/inorganic esters of cellulose, such as cellulose acetatebutyrate sulfates and cellulose acetatepropionate sulfates.
  • cellulose ester ethers mention may be made of hydroxypropylmethylcellulose phthalates and ethylcellulose sulfates.
  • nonionic cellulose ethers not bearing a C 10 -C 30 fatty chain i.e.
  • non-associ- ative cellulose ethers mention may be made of (C 1 -C 4 )alkylcelluloses, such as methyl- celluloses and ethylcelluloses (for example, Ethocel standard 100 Premium from Dow Chemical); (poly)hydroxy(C 1 -C 4 )alkylcelluloses, such as hydroxymethylcelluloses, hy- droxyethylcelluloses (for example, Natrosol 250 HHR provided by Aqualon) and hydrox- ypropylcelluloses (for example, Klucel EF from Aqualon); mixed (poly)hydroxy(C 1 -C 4 )al- kyl(C 1 -C 4 )alkylcelluloses, such as hydroxypropylmethylcelluloses (for example, Metho- cel E4M from Dow Chemical), hydroxyethylmethylcelluloses, hydroxyethylethylcellu- loses (for example, Bermocoll E 481 FQ from Akzo Nobel
  • anionic cellulose ethers without a fatty chain mention may be made of (poly)carboxy(C 1 -C 4 )alkylcelluloses and salts thereof. Mention may be made, by way of example, of carboxymethylcelluloses, carboxymethylmethylcelluloses (for example Bla- nose 7M from the company Aqualon) and carboxymethylhydroxyethylcelluloses, and the sodium salts thereof.
  • non-associative thickening polymers not bearing sugar units that may be used according to the invention, mention may be made of acrylic acid or methacrylic acid homopolymers or copolymers, 2-acrylamido-2-methylpropanesulfonic acid homo- polymers and the acrylamide copolymers thereof, alone or as mixtures, it being possible for said polymers to be crosslinked or uncrosslinked.
  • a first family of non-associative thickening polymers that is suitable for use is repre- sented by acrylic acid homopolymers, preferably crosslinked.
  • homopolymers of this type mention may be made of those crosslinked with an allyl alcohol ether of the sugar series, for instance the products sold under the names Carbopol 980, 981, 954, 2984 and 5984 by Noveon or the products sold under the names Synthalen M and Synthalen K by 3 VSA. These polymers have the INCI name Carbomer.
  • the non-associative thickening polymers may also be crosslinked (meth)acrylic acid copolymers, such as the polymer sold under the name Aqua SF1 by the company Noveon.
  • the non-associative thickening polymers may also be chosen from crosslinked 2- acrylamido-2-methylpropanesulfonic acid homopolymers and the crosslinked acryla- mide copolymers thereof.
  • crosslinked copolymers of 2-acrylamido-2- methylpropanesulfonic acid and of acrylamide mention may be made in particular of the product described in Example 1 of document EP 503 853, and reference may be made to said document as regards these polymers.
  • the thickener(s) may be chosen from polymers not comprising sugar units, in particular from crosslinked or uncrosslinked non-associative thickening polymers bearing acrylic or methacrylic units; in particular from acrylic or methacrylic acid ho- mopolymers or copolymers, preferentially from crosslinked acrylic or methacrylic acid homopolymers or copolymers, alone or as mixtures; even better still from crosslinked acrylic acid homopolymers, particularly crosslinked by a pentaerythrityl allyl ether, a sucrose allyl ether or a propylene allyl ether.
  • the thickener(s) may be present in the composition in a total content ranging from 0.01% to 10% by weight, better still ranging from 0.02% to 4% by weight, even better still ranging from 0.05% to 2% by weight, and preferentially ranging from 0.1% to 1% by weight, relative to the total weight of the composition.
  • Other ingredients The composition according to the invention advantageously comprises water, which may be present in a proportion of from 65% to 98% by weight, better still from 70% to 97% by weight and preferably from 75% to 95% by weight, relative to the total weight of the composition.
  • composition according to the invention may also comprise, furthermore, one or more water-miscible organic solvents other than the polyols described previously, par- ticularly chosen from non-aromatic C1-C6 alcohols such as ethanol and/or isopropanol, aromatic alcohols such as benzyl alcohol and/or phenylethyl alcohol; and mixtures thereof.
  • organic solvent(s) generally represent from 0.1% to 15% by weight and preferably from 0.5% to 10% by weight and better still from 1% to 5% by weight, of the total weight of the composition.
  • composition according to the present invention may also optionally comprise one or more additives customarily used in the field, particularly chosen from antidandruff agents, anti-seborrhoea agents, vitamins and provitamins including panthenol, sun- screens, sequestrants, plasticizers, solubilizers, acidifying agents, opacifiers or pearlescent agents, antioxidants, hydroxy acids, fragrances, preserving agents, dyes and fillers. Needless to say, those skilled in the art will take care to choose this or these additives such that the advantageous properties intrinsically associated with the composition of the invention are not, or are not substantially, adversely affected by the envisaged ad- dition(s).
  • additives customarily used in the field particularly chosen from antidandruff agents, anti-seborrhoea agents, vitamins and provitamins including panthenol, sun- screens, sequestrants, plasticizers, solubilizers, acidifying agents, opacifiers or pearlescent agents, antioxidants, hydroxy
  • the composition further comprises: - at least one polyol, and/or - at least one associative polymer, preferably chosen from nonionic or cationic associ- ative polymers; and/or - at least one thickener.
  • a cosmetic hair treatment process comprising a step of applying the composition as defined previously to the hair.
  • the cosmetic hair treatment method according to the invention may more particularly be a method for washing and/or conditioning the hair. It is preferably a method for conditioning the hair. This method comprises a step of applying a composition according to the invention to the hair.
  • the composition according to the invention may be applied to wet hair or dry hair, pref- erably to wet hair.
  • the step of applying the composition according to the invention may be followed by a step of washing the hair, for example with a shampoo; this is particularly the case when the composition according to the invention is used as a pre-shampoo.
  • the step of applying the composition according to the invention may be preceded by a step of washing the hair, for example with a shampoo; this is particularly the case when the composition according to the invention is used as a conditioner or hair mask.
  • the step of applying the composition according to the invention may be followed by a leave-on time of the composition that may range from 1 to 15 minutes, preferably from 2 to 10 minutes.
  • the step of applying the composition according to the invention may be followed by a step of rinsing the composition, for example with water.
  • the step of applying the composition according to the invention may be followed, after a possible leave-on time and/or an optional rinsing step, with a step of drying, for ex- ample using a hairdryer.
  • the hair may also be left to dry, particularly left to dry naturally.
  • Methods for determining the amine number, the weight-average molecular mass and the viscosity A/ Amine number The amine number (or amine content) may be determined as described thereafter, based on a ASTM standard for example “Determination of Amine content (tertiary amine) of Amino alkyl silanes and siloxane fluids”.
  • the amine number may be determined by acid-base titration and defined as the amount (in milliequivalents or meq) of perchloric acid needed to neutralize 1 g of amine in the sample.
  • B/ Weight-average molecular mass The weight-average molecular mass may be determined by any known method, partic- ularly by dynamic light scattering,gel permeation chromatography or NMR. It is gener- ally expressed in daltons.
  • the weight-average molecular masses of the aminosilicones of formula I are measured by gel permeation chromatography (GPC) at room temperature, as polysty- rene equivalents.
  • the column used are ⁇ styragel columns.
  • the eluent is THF and the flow rate is 1 mL/minute. 200 ⁇ L of a solution containing 0,5% by weight of silicone in THF are injected. Detection is performed by refractometry and UV-metry.
  • An alternative method can be used to determine the weight-average molecular masses of these aminosilicones: 1. Using nuclear magnetic resonance (NMR) spectroscopy to determine an average general structure and ; 2.
  • NMR nuclear magnetic resonance
  • the average general structure can be obtained using nuclear magnetic resonance (NMR) spectroscopy on a Bruker AV III 600 Spectrometer operating at field strength of 14.1T; 1 H’s resonate at 600 MHz.
  • NMR nuclear magnetic resonance
  • a sample can be placed in a 5 mm or 10 mm NMR tube and diluted with CDCl 3 or 0.1M Cr(AcAc) 3 /CDCl 3 to a final concentration of 0.05M Cr(AcAc) 3 .
  • Inverse gated decoupling pulse sequence can be used with a pulse width of 45-degrees ( 13 C: delay of ⁇ 5 s, AQ of ⁇ 1.65 s; 29 Si: delay of ⁇ 10 s, AQ of ⁇ 1.42 s).
  • the 1 H NMR spectrum can be acquired using a standard pulse sequence with a 30-degrees pulse width and a delay of ⁇ 12 s.
  • C/ Dynamic viscosity The dynamic viscosity can be determined according to the following method. Measurement conditions: 25 ⁇ 2°C, 1 atm., relative humidity 50 ⁇ 5% Brookfield viscometer: this is a precise torque meter which is operated at a discrete rotational speed.
  • the torque measuring system which consists of a calibrated beryl- lium-copper spring that connects the drive mechanism to a rotating cone, detects the resistance to rotation caused by the presence of a fluid sample between the cone and a stationary flat plate. The resistance to rotation of the cone produces torque which is proportional to the shear stress in the fluid. Size of the sample: 500 ml in a beaker.
  • the amine number (AN) thereof is between 0.1 and 0.16 meq/g and the weight-average molecular mass (Mw) thereof is between 35000 and 45000.
  • Example 1 Composition A according to the invention and comparative composition A’ were pre- pared from the following ingredients (% AM): Table 1 I ) A A c P p Water qs ad 100 qs ad 100 Hair compositions are obtained which may be used as conditioners; the composition according to the invention is found to make it possible in particular to provide condi- tioning to the hair, especially a smooth feel, and coating. On wet hair and dry hair, the sensory performance provided by composition A according to the invention is evaluated by comparison with that provided by comparative compo- sition A‘. The evaluation is carried out on hair locks sensitized by a bleaching treatment.
  • the locks are cleaned beforehand with a standard shampoo (DOP CAMOMILE) at a pro- portion of 0.3 g/g of hair and are rinsed and dried.
  • Evaluation is car- ried out on wet hair.
  • the locks are then dried using a hairdryer, and the evaluation is carried out on dry hair.
  • the following criteria are evaluated: – on wet hair: smooth feel and coating – on dry hair: smooth feel
  • the evaluation is performed blind, by 6 evaluators, who award a score ranging from 0 (no performance) to 5 (very good performance), in steps of 0.5, for the criterion tested.
  • Evaluation of the smooth feel the evaluator takes a lock of hair at the root and slides it through the fingers over the entire length of the lock as far as the ends. The more the hair is uniform, homogeneous from the root to the end, the fewer bumps it exhibits and the less it catches on the fingers, the better the smooth feel.
  • the evaluator takes the lock of hair in the hand, starts from the root, and slides as far as the ends. The more a deposit is felt on the fibre, the better the coating.
  • the results obtained are as follows (average of the 6 scores): Table 2 A A’
  • the hair treated with the composition according to the invention is found to have sig- nificantly superior cosmetic performance by comparison with the hair treated with the comparative composition: in particular, with an improved smooth nature to the touch, both on wet hair and on dry hair, and with more present coating. The hair therefore appears to be more even, its bumps removed, and therefore repaired.
  • Example 2 Composition B according to the invention and comparative composition B‘ were pre- pared from the following ingredients (% AM): Table 3 I ) A A c P p W ater qs a qs a Hair compositions are obtained which may be used as conditioners; the composition according to the invention is found to make it possible in particular to provide the hair with conditioning, particularly a soft and smooth feel, and with regular coating, from the root to the ends. According to a protocol identical to that of Example 1, the sensory performance pro- vided by composition B by comparison with composition B‘ is evaluated on dry hair.
  • the following criterion is evaluated: – on dry hair: the smooth feel
  • the evaluation is performed blind, by 4 evaluators, who award a score ranging from 0 (no performance) to 5 (very good performance), in steps of 0.5, for the criterion tested.
  • the results obtained are as follows: Table 4 B B’ Th e ar treated wt t e composton accordng to t e nventon s ound to ex bit significantly superior cosmetic performance by comparison with the hair treated with the comparative composition, in particular with an improved smooth nature to the touch.
  • the hair appears to be more uniform from the root to the end, with a softer feel result.
  • Example 3 Composition C according to the invention and comparative composition C‘ were pre- pared from the following ingredients (% AM): Table 5 I ) A A c P W ater qs ad 100 qs ad 100 Hair compositions are obtained which may be used as conditioners, for providing the hair with conditioning. The compositions are tested on natural Caucasian hair locks, of 2.7 g and 27 cm in length. In a first phase, the locks are cleaned using a silicone-free standard shampoo (DOP Camomile) at a proportion of 0.4 g/g of hair.
  • DOP Camomile silicone-free standard shampoo
  • the shampoo is massaged into the lock, causing it to foam up, before a leave-in time of 15 seconds, followed by a step of rinsing with water for 10 seconds (flow rate: 300 l/h, temperature: 35°C).
  • the composition C or C‘ to be tested is applied to wet hair at a proportion of 0.4 g/g of hair, before a leave-in time of 2 minutes, followed by rinsing with water for 15 seconds (flow rate: 300 l/h, temperature: 35°C).
  • the locks are dried for 30 minutes in an oven at 60°C.
  • the cycle of application of standard shampoo + composition C or C’ + oven drying is repeated 4 more times.
  • the deposition of silicone on the hair is quantified by X-ray fluorescence spectrometry, via measurement of the mass concentration of elemental silicon on the hair fibre.
  • deposition of silicon amount measured on treated hair - amount measured on untreated hair.
  • Example 4 Composition D according to the invention and comparative composition D‘ were pre- pared from the following ingredients (% AM): Table 7 Ingredients ) A A c P Hair compositions are obtained which may be used as hair masks; the composition according to the invention is found to make it possible in particular to provide the hair with a smooth feel and with coating. On wet hair and dry hair, the sensory performance provided by composition D according to the invention is evaluated by comparison with that provided by comparative compo- sition D‘. The evaluation is carried out on hair locks sensitized by a bleaching treatment and cleaned beforehand with a standard shampoo (DOP CAMOMILE), and rinsed and dried, similarly to Example 1.
  • DOP CAMOMILE standard shampoo
  • Example 5 Composition E according to the invention and comparative composition E‘ were pre- pared from the following ingredients (% AM): Table 9 I ) P Y A A c P Water qs ad 100 qs ad 100 Hair compositions are obtained which may be used as hair masks; the composition according to the invention is found to make it possible in particular to provide the hair with a smooth feel and with coating. On wet hair and dry hair, the sensory performance provided by composition E according to the invention is evaluated by comparison with that provided by comparative compo- sition E‘.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Birds (AREA)
  • Epidemiology (AREA)
  • Emergency Medicine (AREA)
  • Dermatology (AREA)
  • Cosmetics (AREA)

Abstract

La présente invention concerne une composition cosmétique de soin capillaire comprenant au moins une silicone aminée particulaire et au moins une substance grasse non siliconée.
PCT/EP2023/077059 2022-09-30 2023-09-29 Composition cosmétique de soin capillaire comprenant au moins une silicone aminée particulaire et au moins une substance grasse non siliconée, et procédé de traitement capillaire cosmétique WO2024068931A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR2209999 2022-09-30
FR2209999A FR3140279A1 (fr) 2022-09-30 2022-09-30 Composition cosmétique de soin des cheveux comprenant au moins une silicone aminée particulière et au moins un corps gras non siliconé, et procédé de traitement cosmétique des cheveux

Publications (1)

Publication Number Publication Date
WO2024068931A1 true WO2024068931A1 (fr) 2024-04-04

Family

ID=84362784

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2023/077059 WO2024068931A1 (fr) 2022-09-30 2023-09-29 Composition cosmétique de soin capillaire comprenant au moins une silicone aminée particulaire et au moins une substance grasse non siliconée, et procédé de traitement capillaire cosmétique

Country Status (2)

Country Link
FR (1) FR3140279A1 (fr)
WO (1) WO2024068931A1 (fr)

Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1492597A (fr) 1965-09-14 1967-08-18 Union Carbide Corp Nouveaux éthers cellulosiques contenant de l'azote quaternaire
US3589578A (en) 1968-01-20 1971-06-29 Monforts Fa A Tension-relieving device for stretchable sheet material
JPS5017710A (fr) 1973-05-14 1975-02-25
US4031307A (en) 1976-05-03 1977-06-21 Celanese Corporation Cationic polygalactomannan compositions
US4131576A (en) 1977-12-15 1978-12-26 National Starch And Chemical Corporation Process for the preparation of graft copolymers of a water soluble monomer and polysaccharide employing a two-phase reaction system
US4137180A (en) 1976-07-02 1979-01-30 Lever Brothers Company Fabric treatment materials
US4578266A (en) 1983-07-29 1986-03-25 Revlon, Inc. Silicone-based cosmetic products containing pigment
EP0186507A2 (fr) 1984-12-22 1986-07-02 Chisso Corporation Composés siloxane contenant un groupe carboxyle
US4874554A (en) 1986-07-10 1989-10-17 Henkel Kommanditgesellschaft Auf Aktien Quaternary ammonium compounds
US4957732A (en) 1988-12-29 1990-09-18 L'oreal Shaving composition for the skin based on polyorgano-siloxanes containing an acyloxyalkyl group and process for use
US5089578A (en) 1986-03-28 1992-02-18 Exxon Research And Engineering Company Hydrophobically associating terpolymers containing sulfonate functionality
EP0503853A2 (fr) 1991-03-08 1992-09-16 Scott Bader Company Limited Agents épaississants polymères solubles dans l'eau pour produits pour l'application topique
FR2679771A1 (fr) 1991-08-01 1993-02-05 Oreal Utilisation pour la teinture temporaire des fibres keratiniques d'un pigment insoluble obtenu par polymerisation oxydante de derives indoliques.
EP0530974A1 (fr) 1991-08-05 1993-03-10 Unilever Plc Compositions pour le soin des cheveux
JPH07258460A (ja) 1994-03-22 1995-10-09 Teijin Chem Ltd 樹脂組成物
EP0750899A2 (fr) 1995-06-30 1997-01-02 Shiseido Company Limited Agent émulsionnant ou agent solubilisant qui est composé du polyélectrolyte amphiphile soluble dans l'eau et composition émulsifié le contenant ou composition solubilisé le contenant et cosmétique émulsifié le contenant ou cosmétique solubilisé le contenant
JPH09188830A (ja) 1996-01-05 1997-07-22 Nisshin Steel Co Ltd 高光輝性メタリック顔料
JPH10158450A (ja) 1996-11-28 1998-06-16 Shin Etsu Polymer Co Ltd 食品包装用ポリ塩化ビニル樹脂組成物
JPH10158541A (ja) 1996-11-27 1998-06-16 Nisshin Steel Co Ltd 耐候性,光輝性に優れたダークシルバー色メタリック顔料
WO2000068282A1 (fr) 1999-05-07 2000-11-16 Isp Investments Inc. Copolymeres triples revitalisants/coiffants
EP1184426A2 (fr) 2000-09-01 2002-03-06 Toda Kogyo Corporation Particules composites, procédé de préparation, pigment et peinte, et composition de résine les utilisants
EP1358865A2 (fr) * 2002-04-22 2003-11-05 The Procter & Gamble Company Composition pour traitement capillaire durable
WO2004024779A2 (fr) 2002-09-13 2004-03-25 Noveon Ip Holdings Corp. Polymeres polyvalents, procedes et compositions
US20100150858A1 (en) * 2008-12-12 2010-06-17 Siriporn Runglertkriangkrai Hair Conditioning Composition Comprising Cationic Surfactant System and Direct Dye
WO2018218492A1 (fr) * 2017-05-31 2018-12-06 L'oreal Composition de conditionnement de cheveux
JP2021191736A (ja) * 2020-06-05 2021-12-16 旭化成ワッカーシリコーン株式会社 多価の酸を含むシリコーンエマルジョン組成物、その製造方法および該組成物の安定化方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0517710A (ja) 1991-07-08 1993-01-26 Kansai Paint Co Ltd メタリツク塗料とその塗装法

Patent Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1492597A (fr) 1965-09-14 1967-08-18 Union Carbide Corp Nouveaux éthers cellulosiques contenant de l'azote quaternaire
US3589578A (en) 1968-01-20 1971-06-29 Monforts Fa A Tension-relieving device for stretchable sheet material
JPS5017710A (fr) 1973-05-14 1975-02-25
US4031307A (en) 1976-05-03 1977-06-21 Celanese Corporation Cationic polygalactomannan compositions
US4137180A (en) 1976-07-02 1979-01-30 Lever Brothers Company Fabric treatment materials
US4131576A (en) 1977-12-15 1978-12-26 National Starch And Chemical Corporation Process for the preparation of graft copolymers of a water soluble monomer and polysaccharide employing a two-phase reaction system
US4578266A (en) 1983-07-29 1986-03-25 Revlon, Inc. Silicone-based cosmetic products containing pigment
EP0186507A2 (fr) 1984-12-22 1986-07-02 Chisso Corporation Composés siloxane contenant un groupe carboxyle
US5089578A (en) 1986-03-28 1992-02-18 Exxon Research And Engineering Company Hydrophobically associating terpolymers containing sulfonate functionality
US4874554A (en) 1986-07-10 1989-10-17 Henkel Kommanditgesellschaft Auf Aktien Quaternary ammonium compounds
US4957732A (en) 1988-12-29 1990-09-18 L'oreal Shaving composition for the skin based on polyorgano-siloxanes containing an acyloxyalkyl group and process for use
EP0503853A2 (fr) 1991-03-08 1992-09-16 Scott Bader Company Limited Agents épaississants polymères solubles dans l'eau pour produits pour l'application topique
FR2679771A1 (fr) 1991-08-01 1993-02-05 Oreal Utilisation pour la teinture temporaire des fibres keratiniques d'un pigment insoluble obtenu par polymerisation oxydante de derives indoliques.
EP0530974A1 (fr) 1991-08-05 1993-03-10 Unilever Plc Compositions pour le soin des cheveux
JPH07258460A (ja) 1994-03-22 1995-10-09 Teijin Chem Ltd 樹脂組成物
EP0750899A2 (fr) 1995-06-30 1997-01-02 Shiseido Company Limited Agent émulsionnant ou agent solubilisant qui est composé du polyélectrolyte amphiphile soluble dans l'eau et composition émulsifié le contenant ou composition solubilisé le contenant et cosmétique émulsifié le contenant ou cosmétique solubilisé le contenant
JPH09188830A (ja) 1996-01-05 1997-07-22 Nisshin Steel Co Ltd 高光輝性メタリック顔料
JPH10158541A (ja) 1996-11-27 1998-06-16 Nisshin Steel Co Ltd 耐候性,光輝性に優れたダークシルバー色メタリック顔料
JPH10158450A (ja) 1996-11-28 1998-06-16 Shin Etsu Polymer Co Ltd 食品包装用ポリ塩化ビニル樹脂組成物
WO2000068282A1 (fr) 1999-05-07 2000-11-16 Isp Investments Inc. Copolymeres triples revitalisants/coiffants
EP1184426A2 (fr) 2000-09-01 2002-03-06 Toda Kogyo Corporation Particules composites, procédé de préparation, pigment et peinte, et composition de résine les utilisants
EP1358865A2 (fr) * 2002-04-22 2003-11-05 The Procter & Gamble Company Composition pour traitement capillaire durable
WO2004024779A2 (fr) 2002-09-13 2004-03-25 Noveon Ip Holdings Corp. Polymeres polyvalents, procedes et compositions
US20100150858A1 (en) * 2008-12-12 2010-06-17 Siriporn Runglertkriangkrai Hair Conditioning Composition Comprising Cationic Surfactant System and Direct Dye
WO2018218492A1 (fr) * 2017-05-31 2018-12-06 L'oreal Composition de conditionnement de cheveux
JP2021191736A (ja) * 2020-06-05 2021-12-16 旭化成ワッカーシリコーン株式会社 多価の酸を含むシリコーンエマルジョン組成物、その製造方法および該組成物の安定化方法

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
"Ullmann's Encyclopedia of Industrial Chemistry", article "Kirk-Othmer's Encyclopedia of Chemical Technology"
COSMETICS AND TOILETRIES, vol. 105, February 1990 (1990-02-01), pages 53 - 64
DATABASE GNPD [online] MINTEL; 24 August 2022 (2022-08-24), ANONYMOUS: "72H Moisture Sealing Conditioner", XP093042726, retrieved from https://www.gnpd.com/sinatra/recordpage/9840960/ Database accession no. 9840960 *
G. FONNUMJ. BAKKEFK. HANSEN, COLLOID POLYM. SCI., vol. 271, 1993, pages 380 - 389
TODDBYERS: "Volatile silicone fluids for cosmetics", COSMETICS AND TOILETRIES, vol. 91, no. 76, pages 27 - 32
UDO PEETZ: "CREATING TOMORROW'S SOLUTIONS Wacker-Belsil ADM Grades", 1 January 2004 (2004-01-01), pages 1 - 25, XP055206796, Retrieved from the Internet <URL:https://www.wacker.com/cms/en-us/products/brands/belsil/belsil.html> [retrieved on 20150807] *
WALTER NOLL'S: "Chemistry and Technology of Silicones", 1968, ACADEMIC PRESS

Also Published As

Publication number Publication date
FR3140279A1 (fr) 2024-04-05

Similar Documents

Publication Publication Date Title
FR2965174A1 (fr) Composition cosmetique comprenant au moins un sel hygroscopique, au moins un ether aromatique de polyol et au moins un diol, procede de traitement cosmetique
FR3045375A1 (fr) Composition non colorante comprenant un copolymere acrylique cationique et un agent de conditionnement
WO2024068931A1 (fr) Composition cosmétique de soin capillaire comprenant au moins une silicone aminée particulaire et au moins une substance grasse non siliconée, et procédé de traitement capillaire cosmétique
WO2024068929A1 (fr) Composition cosmétique de soin capillaire comprenant au moins une silicone aminée particulière et au moins un agent colorant et/ou un azurant optique, et procédé de traitement capillaire cosmétique
WO2024068930A1 (fr) Méthode de traitement cosmétique des cheveux avec une composition cosmétique comprenant des silicones aminées particulières
WO2024068939A1 (fr) Composition de soin capillaire cosmétique contenant au moins une silicone aminée particulière et au moins un polyol, et procédé de traitement cosmétique
WO2024068937A1 (fr) Composition cosmétique de soins capillaires comprenant au moins une silicone aminée particulière et au moins un épaississant
WO2024068936A1 (fr) Composition cosmétique de soin capillaire comprenant des silicones aminées particulières et des silicones supplémentaires, et procédé de traitement cosmétique des cheveux
WO2024068928A1 (fr) Composition cosmétique de soin capillaire comprenant des polymères cationiques et des silicones aminées particulières, et procédé de traitement cosmétique des cheveux
WO2018211069A1 (fr) Procédé de traitement cosmétique des cheveux par l&#39;utilisation d&#39;un copolymère acrylique cationique et d&#39;un agent de conditionnement
EP3277252B1 (fr) Composition cosmétique comprenant des polyalkylsiloxanes non-aminés, des polymères oxyéthylénés et des alcools gras
WO2024068935A1 (fr) Composition cosmétique de soin capillaire comprenant des tensioactifs anioniques et/ou amphotères et des silicones aminées particulières, et procédé de traitement cosmétique des cheveux
WO2024068941A1 (fr) Composition de soin capillaire cosmétique comprenant des tensioactifs anioniques particulaires et des silicones aminées particulaires, et procédé de traitement capillaire cosmétique
WO2024068932A1 (fr) Composition de soin capillaire cosmétique comprenant des tensioactifs cationiques et des silicones aminées particulières, et procédé de traitement capillaire cosmétique
WO2023232842A1 (fr) Composition cosmétique comprenant des acides aminés, des acides (poly)carboxyliques hydroxylés et des polymères associatifs, et procédés de traitement cosmétique et utilisation
WO2023232770A1 (fr) Méthode de traitement capillaire pour limiter la teneur en calcium des cheveux
WO2023232773A1 (fr) Procédé de traitement cosmétique des cheveux, comprenant une étape de lavage, une étape d&#39;application d&#39;une composition cosmétique comprenant des acides aminés et des acides (poly)carboxyliques hydroxylés, puis une étape de conditionnement
WO2023232788A1 (fr) Procédé de traitement cosmétique des cheveux, comprenant une application multiple d&#39;une composition comprenant des acides aminés et des acides hydroxycarboxyliques spécifiques
FR3140277A1 (fr) Composition cosmétique de soin des cheveux comprenant au moins une silicone aminée particulière et au moins un polymère associatif, et procédé de traitement cosmétique des cheveux
WO2023232768A1 (fr) Procédé de traitement capillaire comprenant l&#39;application d&#39;une composition comprenant des acides aminés et des acides (poly)carboxyliques hydroxylés, suivie du lavage des cheveux, et utilisation en tant que pré-shampooing
WO2024068940A1 (fr) Composition cosmétique de soin capillaire comprenant des silicones aminées particulières et des substances de parfum, et procédé de traitement capillaire cosmétique
WO2023232840A1 (fr) Composition cosmétique comprenant des acides aminés, des acides (poly)carboxyliques hydroxylés et des silicones, procédés et utilisation
FR3136159A1 (fr) Composition cosmétique un ou plusieurs aminoacides, un ou plusieurs (poly)acides carboxyliques hydroxylés en C2-C8 et un ou plusieurs sels de (poly)acides carboxyliques hydroxylés en C2-C8, et procédé de traitement cosmétique
WO2022135924A1 (fr) Composition cosmétique comprenant une silicone aminée, une silicone non-aminée, un polymère associatif et un polysaccharide non associatif ; et procédé de traitement cosmétique
FR3140283A1 (fr) Composition cosmétique de soin des cheveux comprenant des tensioactifs anioniques et amphotères dans un rapport pondéral particulier et des silicones aminées particulières, et procédé de traitement cosmétique des cheveux.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23782551

Country of ref document: EP

Kind code of ref document: A1