WO2024068486A1 - Circuit résonant secondaire - Google Patents

Circuit résonant secondaire Download PDF

Info

Publication number
WO2024068486A1
WO2024068486A1 PCT/EP2023/076297 EP2023076297W WO2024068486A1 WO 2024068486 A1 WO2024068486 A1 WO 2024068486A1 EP 2023076297 W EP2023076297 W EP 2023076297W WO 2024068486 A1 WO2024068486 A1 WO 2024068486A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
power
primary
khz
frequency
Prior art date
Application number
PCT/EP2023/076297
Other languages
English (en)
Inventor
Nicolas ALLALI
Geoffrey DEVORNIQUE
Nicolas Labbe
Original Assignee
Valeo Systemes De Controle Moteur
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Systemes De Controle Moteur filed Critical Valeo Systemes De Controle Moteur
Publication of WO2024068486A1 publication Critical patent/WO2024068486A1/fr

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/122Circuits or methods for driving the primary coil, e.g. supplying electric power to the coil
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]

Definitions

  • the present invention relates to a secondary resonant circuit.
  • the present invention relates to a secondary resonant circuit and to a contactless power transmission device by inductive coupling with resonance, in particular for charging or recharging a battery of a motor vehicle or any type of vehicle, land, air, or maritime, propelled by electrical energy.
  • a problem with this type of solution is that to transmit a satisfactory level of power, in particular several kW, it is necessary to operate at high frequencies, in particular of the order of 85 kHz or more, for the resonant frequency of each resonant sub-circuit.
  • this type of solution requires operating at a short distance between the resonant elements located at the source and the load.
  • the subject of the invention is thus a secondary resonant circuit for carrying out, in a recharging mode, contactless power transmission by inductive coupling with resonance, with a primary resonant circuit comprising at least a first capacitor and a first inductor, this power transmission being directed towards the resistive load coupled to the secondary resonant circuit, this secondary resonant circuit comprising:
  • decoupling assembly comprising a rectifier arranged to provide a direct voltage to provide recharging power to the resistive load, and an impedance adaptation assembly which is arranged to vary the equivalent impedance on the input of this impedance matching assembly, independently of the impedance of the resistive load at the output of this impedance matching assembly.
  • the equivalent impedance on the input of the impedance matching assembly is represented by the ratio V/l where V is the voltage across the impedance matching assembly and I is the intensity of the current which crosses it.
  • the invention thus makes it possible to achieve contactless power transmission by inductive coupling with low frequency resonance, unlike the prior art, thus overcoming the aforementioned drawbacks.
  • the use of an impedance matching assembly makes it possible to increase the transmitted power, which is all the more favorable in contactless transfer by inductive coupling with low frequency resonance. We thus benefit from a simple and effective solution to increase the transmitted power.
  • the resonance pulsation of the primary and secondary circuits is equal to 2.TT. FO with Fo the pulsation frequency of a source to the primary circuit which supplies the charging power.
  • the functions of rectification by the rectifier and impedance adaptation by the impedance adaptation assembly can be carried out by two separate electronic stages or by a single electronic stage.
  • the source in the primary circuit presents an alternating voltage, of sinusoidal or square shape, and at a pulsation frequency Fo.
  • this voltage attacks a resonant Lp/Cp circuit, magnetically and partially coupled to a second resonant circuit Ls/Cs, coupling whose magnetic coupling coefficient is denoted k.
  • the coupling coefficient k is in the range 0 ⁇ k ⁇ 1.
  • M 2 k 2 .Lp.Ls which reflects the inductive coupling between two specific inductances.
  • the power transfer frequency between the primary circuit and the secondary circuit is less than 3kHz, or even less than 2kHz or 1 kHz, in particular still substantially equal to 400 Hz or 50 Hz.
  • the frequency range may be 50-2000 Hz.
  • the power transfer frequency between the primary circuit and the secondary circuit may alternatively be between 3 kHz and 5 kHz.
  • the power transfer frequency between the primary circuit and the secondary circuit can be greater than 5 kHz, being for example of the order of 85 kHz.
  • the second capacitor and the second inductor can be connected in series, that is to say be arranged between two nodes of the secondary circuit. Such an arrangement allows the value of the capacitance of the second capacitor to be independent of the aforementioned coupling coefficient k and to further increase the power transfer.
  • the secondary circuit may be devoid of controlled variable inductance, this variable inductance being arranged to be controlled so as to activate a parametric amplification effect of the current in the secondary circuit.
  • this series connection can be directly received on the alternating input of the decoupling assembly of the secondary circuit.
  • the invention also relates to a contactless power transmission device by inductive resonance coupling, in particular for charging or recharging with electrical energy a resistive load such as a vehicle battery, comprising:
  • a primary resonant circuit comprising a first capacitor and a first inductor, the primary resonant circuit being powered by a voltage source,
  • a secondary resonant circuit as mentioned above, which receives, in recharge mode, electrical power from the primary circuit, with a transfer frequency between the primary circuit and the secondary circuit which is less than 5 kHz, or even 3 kHz, or even less at 2kHz or 1 kHz, in particular still substantially equal to 400 Hz or 50 Hz, or alternatively which is greater than 5 kHz, being in particular equal to 85 kHz.
  • the first capacitor and the first inductor are for example connected in series.
  • the decoupling assembly can comprise two arms mounted in parallel, each arm comprising two switches controllable in series, which are for example MOS transistors, and one of the arms can switch at the frequency of the power transmitted from the primary circuit and with a duty cycle of 50%, and the other arm can switch at a frequency higher than that of the power transmitted from the primary circuit, for example at a frequency equal to or greater than 5 times or 10 times the frequency of the power transmitted from the primary circuit, and with a duty cycle modulated according to the measured alternating current and the voltage on the alternating input of the decoupling assembly.
  • the device is arranged to be power reversible allowing the secondary circuit to send power power to the primary circuit, this power received in the primary circuit being able for example to be injected into an urban electricity network.
  • the device comprises, on the side of the secondary circuit, an on-board charger stage, in particular of the “Single-Phase Single-Stage Bidirectional Onboard Charger” type in English, arranged to exchange contactless electrical power with the secondary circuit to enable an additional on-board wired charging function.
  • an on-board charger stage in particular of the “Single-Phase Single-Stage Bidirectional Onboard Charger” type in English, arranged to exchange contactless electrical power with the secondary circuit to enable an additional on-board wired charging function.
  • the primary circuit can be integrated into an electric or hybrid vehicle charging terminal. This terminal then receives electrical energy from an electrical network via a cable which can be a single-phase cable or a three-phase cable. In this case, the primary circuit and the secondary circuit are not integrated into the same physical component.
  • the primary circuit and the secondary circuit can be integrated into the same physical component.
  • a component which is for example called
  • “charger”, can be loaded into a vehicle.
  • the resistive load can be a battery, the latter then having a nominal voltage of 12V, 48V, 60V or more, for example greater than 300V, for example 400V, 800V or 1000V.
  • the first and/or second inductor can be made of metal wire, such as copper.
  • metal wire is solid, as opposed to Litz wire.
  • a solid metal wire does not have its cross section hollowed out.
  • at least one of these inductances, or even each of these inductances, is made of Litz wire.
  • FIG.1 is a schematic representation of a contactless power transmission device by inductive coupling with resonance according to an example of implementation of the invention
  • FIG.2 schematically represents the decoupling assembly of the secondary circuit of the device of Figure 1
  • FIG.3 schematically represents a variant of decoupling assembly of the secondary circuit of the device of Figure 1
  • FIG.4 schematically represents an on-board charger stage connected to the device of Figure 1.
  • Figure 1 shows a device 1 for contactless power transmission by inductive resonance coupling, for charging or recharging with electrical energy a resistive load 2, here a vehicle battery.
  • Device 1 comprises:
  • a primary resonant circuit 3 comprising a first capacitor Cp and a first inductance Lp, the primary resonant circuit 3 being powered by a voltage source 4 here a domestic electrical network,
  • the primary circuit 3 further comprises, after the source 4, a rectifier stage with power factor corrector 7, or PFC 7 rectifier (PFC designating in English “Power Factor Correction”), followed by a DC/converter.
  • AC 8 alternating direct converter
  • the source to the primary circuit presents an alternating voltage VAO, of sinusoidal or square shape, and at a pulsation frequency Fo.
  • the frequency is 50 Hz in the example described.
  • the PFC rectifier stage 7 serves, on the one hand, to transform the alternating current (AC) into direct current (DC), and, on the other hand, to allow the current taken from the alternating network 4 to be closest to a perfect sine at the network pulsation.
  • One of the goals is to reduce the reactive current and the subharmonics which increase conduction energy losses.
  • the secondary resonant circuit 5 serves to carry out, in a recharging mode, a contactless power transmission by inductive coupling to resonance, with the primary resonant circuit 3, this power transmission being directed towards the resistive load 2 coupled to the circuit secondary resonant 5, this resistive load 2 having an equivalent active impedance.
  • the secondary resonant circuit 5 comprises: - a second capacitor Cs of value Cs and a second inductance Ls of value Ls, magnetically and partially coupled to the first capacitor Cp and the first inductance Lp,
  • decoupling assembly 10 arranged to decouple the equivalent impedance of the resistive load 2 from the charging power.
  • this decoupling assembly 10 can in one example comprise a rectifier 11 arranged to provide a direct voltage to provide recharging power for the resistive load 2, and a impedance adaptation assembly 12 which is arranged to vary the equivalent impedance on the input of this impedance adaptation assembly, independently of the equivalent active impedance of the resistive load at the output of this assembly. impedance matching.
  • the rectifier 11 conventionally comprises four diodes D1 to D4.
  • the impedance matching circuit 12, or PFC includes two capacitors C1, C2 and a switch Q, all in respective parallel branches, and an inductor L and a diode D5.
  • This assembly 12 sees at its input a voltage rectified from the voltage Vin and delivers a voltage Vout at its output. being in the example described equal to the voltage Vbatt across the resistive load.
  • the decoupling assembly 10 thus performs two functions.
  • the first function is to rectify the alternating current to bring a direct current to the battery 2.
  • the second function is to ensure that the ratio of the voltage present at the input of the assembly 10 divided by the input current is equal to a reference impedance R.
  • this assembly 10 transforms the rectification coupled to the battery into an equivalent resistance seen from the resonant mesh on board the vehicle side.
  • this regulation of equivalent load impedance is to place the resonant mesh in a favorable arrangement for the establishment of a current to maximize the transfer of power to the battery.
  • the reference value of this load is a compromise. It should be high enough so as not to require a lot of current to transfer power. It must be low enough to guarantee that at the input of this assembly, the voltage is strictly lower than the battery voltage, otherwise the system would be out of control and regulation becomes impossible.
  • the resonance pulsation of the primary 3 and secondary 5 circuits is equal to 2.TT.FO with Fo the pulsation frequency of the source to the primary circuit 3 which supplies the recharging power.
  • the assembly 10 can be an electronic assembly of the “Totem POLE PFC rectifier” or “dual Boost PPC rectifier” type, these assemblies being known in the electronic literature for their structure.
  • the assembly 10 constitutes a single electronic stage carrying out both voltage rectification and impedance adaptation via two arms 20 mounted in parallel.
  • Each arm includes two switches controllable in series which are for example MOS transistors.
  • One of the two arms switches at the frequency of the power transmitted from the primary circuit and with a duty cycle of 50%, and the other arm switches at a frequency higher than that of the power transmitted from the primary circuit, for example at a frequency equal to or greater than 5 times or 10 times the frequency of the power transmitted from the primary circuit, and with a duty cycle modulated according to the measured alternating current and the voltage on the alternating input of assembly 10.
  • the impedance adaptation assembly 10 of Figure 3 is arranged to vary the equivalent impedance RRef across the terminals of the alternating input, defined between the two midpoints of the arms, independently of the impedance of the resistive load at the output of this assembly 10.
  • the equivalent impedance RRef is represented by the ratio V/l where V is the voltage across the alternating input, and I the intensity of the current on this alternating input.
  • RRef has for example a value between 5'Q and 15'Q.
  • this configuration being determined in particular by at least one of: the position of the secondary resonant circuit 5 with respect to the primary resonant circuit 3 and/or the power level to be transmitted and/or the voltage across the battery, RRef can have a fixed value and this value is for example in the aforementioned range. From one charging configuration to another, for example in the event of a greater distance between the primary resonant circuit 3 and the secondary resonant circuit 5 and/or to take into account the aging of the system, the value of RRef can be modified , remaining in particular in the aforementioned range.
  • the VACI voltage at the output of the converter 8 attacks a resonant Lp/Cp cell, magnetically and partially coupled to a resonant cell Ls/Cs of the secondary resonant circuit, coupling whose magnetic coupling coefficient is noted k.
  • the coupling coefficient k is in the range 0 ⁇ k ⁇ 1.
  • the power transfer frequency between the primary circuit and the secondary circuit is less than 5 kHz, even less than 3 kHz, even less than 2 kHz or 1 kHz, in particular still substantially equal to 400 Hz or 50 Hz. This frequency of transfer is in particular that applied to the resonant LC cell of the primary circuit.
  • the invention allows a transfer of electrical power from the VAO source to load 2 in charging mode.
  • the device comprises, on the side of the secondary circuit, an on-board charger stage 30, in particular of the “Single-Phase Single-Stage Bidirectional Onboard Charger” type in English, arranged to contactlessly exchange electrical power with the secondary circuit to enable an additional on-board wired charging function.
  • This on-board charger stage 30 is shown in dotted lines in Figure 1. [62] This onboard charger stage 30 is of the isolated AC/DC converter type which integrates the functions of rectifier, notably at 50Hz, High Frequency inverter and PFC with a single MOSFET input stage.
  • this on-board charger stage 30 is connected to a rectifier bridge 29 of the decoupling assembly 10 which includes the impedance matching assembly 12, present in parallel with the battery.
  • This stage 30 serves an on-board network 31 which allows wired charging.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

L'invention concerne un circuit résonant secondaire (5) pour réaliser, dans un mode recharge, une transmission de puissance sans contact par couplage inductif à résonance, avec un circuit résonant primaire (3) comportant au moins un premier condensateur (Cp) et une première inductance (Lp), cette transmission de puissance étant dirigée vers la charge résistive (2) couplée au circuit résonant secondaire (5), cette charge résistive ayant une impédance équivalente, ce circuit résonant secondaire (2) comportant : - un deuxième condensateur (Cs) de valeur Cs et une deuxième inductance (Ls) de valeur Ls, couplées magnétiquement et partiellement au premier condensateur (Cp) et la première inductance (Lp), et - un ensemble de découplage (10).

Description

Description
Titre de l'invention : Circuit résonant secondaire
[1] La présente invention concerne un circuit résonant secondaire.
[2] La présente invention porte sur un circuit résonant secondaire et sur un dispositif de transmission de puissance sans contact par couplage inductif à résonance, notamment pour charger ou recharger une batterie d’un véhicule automobile ou tout type de véhicule, terrestre, aérien, ou maritime, propulsé par l’intermédiaire d’une énergie électrique.
[3] De façon connue en soi, il est techniquement possible d’alimenter par transmission sans contact un véhicule automobile ou tout autre objet muni d'un dispositif de stockage d’énergie électrique à une puissance comprise entre 3 et 50 kW, lorsque cet objet est à l’arrêt (on parle dans ce cas de charge statique), ou lorsque celui-ci se déplace (on parle alors de charge dynamique). Cette alimentation par transmission sans contact se fait alors au moyen de circuits électriques distants couplés magnétiquement et accordés à la même fréquence. Les circuits couplés magnétiquement comportant chacun au moins un élément LC résonant, L et C désignant respectivement des inductances et condensateurs.
[4] Un problème avec ce type de solution est que pour transmettre un niveau de puissance satisfaisant, notamment plusieurs kW, il faut opérer à des fréquences élevées, notamment de l’ordre de 85 kHz ou plus, pour la fréquence de résonance de chaque sous-circuit résonant. En outre, ce type de solution nécessite d'opérer à faible distance entre les éléments résonants situés à la source et à la charge.
[5] Les niveaux de fréquence et de puissance mentionnés plus haut, pour une mise en œuvre en kWatts, peuvent en outre constituer un danger pour la santé des personnes exposées à proximité, ou à l’environnement en général.
[6] Il est connu de la demande US2011/0204845 de réaliser une recharge de véhicule électrique sans contact par couplage inductif à résonance à une fréquence comprise entre 60Hz et 1200Hz. Cette demande ne précise cependant pas la nature des composants électriques permettant une recharge sans contact par couplage inductif dans cette plage de fréquence. [7] La présente invention propose notamment de réaliser une recharge de véhicule électrique, ou autre système embarqué à stockage électrique, à très basse fréquence de transfert, optionnellement avec un flux de puissance réversible.
[8] L’ invention a ainsi pour objet un circuit résonant secondaire pour réaliser, dans un mode recharge, une transmission de puissance sans contact par couplage inductif à résonance, avec un circuit résonant primaire comportant au moins un premier condensateur et une première inductance, cette transmission de puissance étant dirigée vers la charge résistive couplée au circuit résonant secondaire, ce circuit résonant secondaire comportant :
- un deuxième condensateur et une deuxième inductance, apte à être couplés magnétiquement et partiellement au premier condensateur et à la première inductance,
- un ensemble de découplage comprenant un redresseur agencé pour mettre à disposition une tension continue pour fournir une puissance de recharge à destination de la charge résistive, et un montage d’adaptation d’impédance qui est agencé pour faire varier l’impédance équivalente sur l’entrée de ce montage d’adaptation d’impédance, indépendamment de l’impédance de la charge résistive en sortie de ce montage d’adaptation d’impédance.
[9] L’ impédance équivalente sur l’entrée du montage d’adaptation d’impédance est représentée par le ratio V/l où V est la tension aux bornes du montage d’adaptation d’impédance et I l’intensité du courant qui le traverse.
[10] L’ invention permet ainsi de réaliser une transmission de puissance sans contact par couplage inductif à résonance à basse fréquence, contrairement à l’art antérieur, remédiant ainsi aux inconvénients précités. L’utilisation d’un montage d’adaptation d’impédance permet d’accroitre la puissance transmise, ce qui est d’autant plus favorable dans un transfert sans contact par couplage inductif à résonance à basse fréquence. On bénéficie ainsi d’une solution simple et efficace pour accroître la puissance transmise.
[11] De préférence, la pulsation de résonance des circuits primaire et secondaire est égale à 2.TT. FO avec Fo la fréquence de pulsation d’une source au circuit primaire qui fournit la puissance de recharge. [12] Les fonctions de redressement par le redresseur et d’adaptation d’impédance par le montage d’adaptation d’impédance peuvent être réalisées par deux étages électroniques distincts ou bien par un étage électronique unique.
[13] Selon l’un des aspects de l’invention, la source au circuit primaire présente une tension alternative, de forme sinusoïdale ou carrée, et à une fréquence de pulsation Fo.
[14] Selon l’un des aspects de l’invention, cette tension attaque un circuit Lp/Cp résonant, magnétiquement et partiellement couplé à un second circuit résonant Ls/Cs, couplage dont le coefficient de couplage magnétique est noté k.
[15] Le coefficient de couplage k est dans la plage 0<k<1 . On note que le coefficient k est lié à l’inductance mutuelle par la relation M2 = k2.Lp.Ls qui traduit le couplage inductif entre deux inductances propres.
[16] Selon l’un des aspects de l’invention, la fréquence de transfert de puissance entre le circuit primaire et le circuit secondaire est inférieure à 3kHz, voire inférieure à 2kHz ou 1 kHz, notamment encore sensiblement égale à 400 Hz ou 50 Hz. La plage de fréquences peut être 50-2000 Hz. La fréquence de transfert de puissance entre le circuit primaire et le circuit secondaire peut en variante être comprise entre 3 kHz et 5 kHz. En variante, la fréquence de transfert de puissance entre le circuit primaire et le circuit secondaire peut être supérieure à 5 kHz, étant par exemple de l’ordre de 85 kHz.
[17] Le deuxième condensateur et la deuxième inductance peuvent être montées en série, c’est-à-dire être disposés entre deux nœuds du circuit secondaire. Une telle disposition permet que la valeur de la capacité du deuxième condensateur soit indépendante du coefficient de couplage k précité et d’accroître encore le transfert de puissance.
[18] Le circuit secondaire peut être dépourvu d’inductance variable pilotée, cette inductance variable étant agencée pour être pilotée de sorte à activer un effet d’amplification paramétrique du courant dans le circuit secondaire. Lorsque le deuxième condensateur et la deuxième inductance sont montés en série, ce montage en série peut être directement reçu sur l’entrée alternative de l’ensemble de découplage du circuit secondaire. [19] L’ invention permet un transfert de puissance électrique de la source vers la charge en mode recharge.
[20] L’ invention a également pour objet un dispositif de transmission de puissance sans contact par couplage inductif à résonance, notamment pour charger ou recharger en énergie électrique une charge résistive telle qu’une batterie de véhicule, comportant :
- un circuit résonant primaire comportant un premier condensateur et une première inductance, le circuit résonant primaire étant alimenté par une source de tension,
- un circuit résonant secondaire tel que précité, qui reçoit, en mode recharge, de la puissance électrique du circuit primaire, avec une fréquence de transfert entre le circuit primaire et le circuit secondaire qui est inférieure à 5 kHz, voire à 3kHz, voire inférieure à 2kHz ou 1 kHz, notamment encore sensiblement égale à 400 Hz ou 50 Hz, ou en variante qui est supérieure à 5 kHz, étant notamment égale à 85 kHz.
[21] Le premier condensateur et la première inductance sont par exemple montés en série.
[22] L’ ensemble de découplage peut comprendre deux bras montés en parallèle, chaque bras comprenant deux interrupteurs commandables en série, qui sont par exemple des transistors MOS, et l’un des bras peut commuter à la fréquence de la puissance transmise depuis le circuit primaire et avec un rapport cyclique de 50%, et l’autre bras peut commuter à une fréquence supérieure à celle de la puissance transmise depuis le circuit primaire, par exemple à une fréquence égale ou supérieure à 5 fois ou 10 fois la fréquence de la puissance transmise depuis le circuit primaire, et avec un rapport cyclique modulé selon le courant alternatif mesuré et la tension sur l’entrée alternative de l’ensemble de découplage.
[23] Dans les chargeurs de véhicules électriques usuels, il est courant de trouver une fonction de réversibilité en puissance pour participer à la fonction dite Réseau électrique intelligent, ou « smart grid » en anglais, d’un réseau électrique urbain.
[24] Selon l’un des aspects de l’invention, le dispositif est agencé pour être réversible en puissance permettant au circuit secondaire d’envoyer de la puissance vers le circuit primaire, cette puissance reçue dans le circuit primaire pouvant par exemple être injectée dans un réseau électrique urbain.
[25] Selon l’un des aspects de l’invention, le dispositif comporte, du côté du circuit secondaire, un étage de chargeur embarqué, notamment de type « Single-Phase Single-Stage Bidirectional Onboard Charger » en anglais, agencé pour échanger sans contact une puissance électrique avec le circuit secondaire pour permettre une fonction de recharge filaire embarquée supplémentaire.
[26] Dans tout ce qui précède, le circuit primaire peut être intégré à une borne de charge de véhicule électrique ou hybride. Cette borne reçoit alors de l’énergie électrique d’un réseau électrique via un câble qui peut être un câble monophasé ou un câble triphasé. Dans ce cas, le circuit primaire et le circuit secondaire ne sont pas intégrés à un même composant physique.
[27] En variante, le circuit primaire et le circuit secondaire peuvent être intégrés à un même composant physique. Un tel composant, qui est par exemple appelé
« chargeur », peut être embarqué dans un véhicule.
[28] Dans tout ce qui précède, la charge résistive peut être une batterie, cette dernière ayant alors une tension nominale de 12V, 48V, 60V ou plus, par exemple supérieure à 300V, par exemple de 400V, 800V ou 1000V.
[29] Dans tout ce qui précède, la première et/ou la deuxième inductance peut être réalisée en fil métallique, comme du cuivre. Un tel fil métallique est plein, par opposition à du fil de Litz. Un fil métallique plein n’a pas sa section transversale évidée. En variante, l’une au moins de ces inductances, voire chacune de ces inductances, est en fil de Litz.
[30] D'autres caractéristiques, détails et avantages de l'invention ressortiront plus clairement à la lecture de la description détaillée donnée ci-après, et d’exemples de réalisation donnés à titre indicatif et non limitatif en référence aux dessins schématiques annexés, sur lesquels :
[31] [Fig.1 ] est une représentation schématique d'un dispositif de transmission de puissance sans contact par couplage inductif à résonance selon un exemple de mise en œuvre de l’invention,
[32] [Fig.2] représente schématiquement le montage de découplage du circuit secondaire du dispositif de la figure 1 , [33] [Fig.3] représente schématiquement une variante de montage de découplage du circuit secondaire du dispositif de la figure 1 ,
[34] [Fig.4] représente schématiquement un étage de chargeur embarqué connecté au dispositif de la figure 1 .
[35] On a représenté sur la figure 1 un dispositif 1 de transmission de puissance sans contact par couplage inductif à résonance, pour charger ou recharger en énergie électrique une charge résistive 2, ici une batterie de véhicule.
[36] Le dispositif 1 comporte :
- un circuit résonant primaire 3 comportant un premier condensateur Cp et une première inductance Lp, le circuit résonant primaire 3 étant alimenté par une source de tension 4 ici un réseau électrique domestique,
- un circuit résonant secondaire 5 qui reçoit, en mode recharge, de la puissance électrique du circuit primaire 3.
[37] Le circuit primaire 3 comprend en outre, après la source 4, un étage redresseur avec correcteur de facteur de puissance 7, ou redresseur PFC 7 (PFC désignant en anglais « Power Factor Correction »), suivi d’un convertisseur DC/AC 8 (convertisseur continu alternatif) qui fournit une tension VACL
[38] La source au circuit primaire présente une tension VAO alternative, de forme sinusoïdale ou carrée, et à une fréquence de pulsation Fo.
[39] La fréquence est à 50 Hz dans l’exemple décrit.
[40] L’étage redresseur PFC 7 sert, d’une part, à transformer le courant alternatif (AC) en courant continu (DC), et, d’autre part, à permettre que le courant prélevé sur le réseau alternatif 4 soit le plus proche d’un sinus parfait à la pulsation du réseau. Un des buts est de réduire le courant réactif et les sous-harmoniques qui augmentent les pertes énergétiques en conduction.
[41] Le circuit résonant secondaire 5 sert à réaliser, dans un mode recharge, une transmission de puissance sans contact par couplage inductif à résonance, avec le circuit résonant primaire 3, cette transmission de puissance étant dirigée vers la charge résistive 2 couplée au circuit résonant secondaire 5, cette charge résistive 2 ayant une impédance active équivalente.
[42] Le circuit résonant secondaire 5 comporte : - une deuxième condensateur Cs de valeur Cs et une deuxième inductance Ls de valeur Ls, couplées magnétiquement et partiellement au premier condensateur Cp et la première inductance Lp,
- un ensemble de découplage 10 agencé pour découpler l’impédance équivalente de la charge résistive 2 de la puissance de recharge.
[43] Comme on peut le voir sur la figure 2, cet ensemble de découplage 10 peut dans un exemple comprendre un redresseur 11 agencé pour mettre à disposition une tension continue pour fournir une puissance de recharge à destination de la charge résistive 2, et un montage d’adaptation d’impédance 12 qui est agencé pour faire varier l’impédance équivalente sur l’entrée de ce montage d’adaptation d’impédance, indépendamment de l’impédance active équivalente de la charge résistive en sortie de ce montage d’adaptation d’impédance.
[44] Le redresseur 11 comprend, de manière classique, quatre diodes D1 à D4.
[45] Le montage d’adaptation d’impédance 12, ou PFC, comprend deux condensateurs C1 , C2 et un interrupteur Q, tous dans des branches parallèles respectives, et une inductance L et une diode D5.
[46] Ce montage 12 voit en entrée une tension redressée à partir de la tension Vin et délivre en sortie une tension Vout. étant dans l’exemple décrit égale à la tension Vbatt aux bornes de la charge résistive.
[47] L’ ensemble de découplage 10 réalise ainsi deux fonctions. La première fonction est de faire un redressement du courant alternatif pour amener un courant continu vers la batterie 2. La seconde fonction est de s’assurer que le ratio de la tension présente en entrée de l’ensemble 10 divisée par le courant d’entrée soit égale à une impédance de référence R. En d’autres termes, cet ensemble 10 transforme le redressement couplé à la batterie en une résistance équivalente vue de la maille résonante embarquée côté véhicule.
Le but de cette régulation d’impédance équivalente de charge est de placer la maille résonante dans une disposition favorable à l’établissement d’un courant pour maximiser le transfert de puissance vers la batterie. La valeur de référence de cette charge est un compromis. Elle doit être assez haute pour ne pas nécessiter beaucoup de courant pour transférer de la puissance. Elle doit être assez basse pour garantir qu’en entrée de cet ensemble, la tension soit strictement inférieure à la tension de batterie, autrement le système serait hors de contrôle et la régulation devient impossible.
[48] La pulsation de résonance des circuits primaire 3 et secondaire 5 est égale à 2.TT.FO avec Fo la fréquence de pulsation de la source au circuit primaire 3 qui fournit la puissance de recharge.
[49] Les fonctions de redressement par le redresseur 11 et d’adaptation d’impédance par le montage d’adaptation d’impédance 12 peuvent être réalisées par deux étages électroniques distincts, comme illustré sur la figure 2, ou bien au sein d’un étage électronique unique, comme illustré sur la figure 3.
[50] Le montage 10 peut être un montage électronique de type « Totem POLE PFC rectifier » ou « dual Boost PPC rectifier », ces montages étant connus dans la littérature électronique pour leur structure.
[51] Dans l’exemple de la figure 3, le montage 10 constitue un unique étage électronique réalisant à la fois un redressement de tension et une adaptation d’impédance par l’intermédiaire de deux bras 20 montés en parallèle. Chaque bras comprend deux interrupteurs commandables en série qui sont par exemple des transistors MOS. L’un des deux bras commute à la fréquence de la puissance transmise depuis le circuit primaire et avec un rapport cyclique de 50%, et l’autre bras commute à une fréquence supérieure à celle de la puissance transmise depuis le circuit primaire, par exemple à une fréquence égale ou supérieure à 5 fois ou 10 fois la fréquence de la puissance transmise depuis le circuit primaire, et avec un rapport cyclique modulé selon le courant alternatif mesuré et la tension sur l’entrée alternative du montage 10.
[52] Le montage d’adaptation d’impédance 10 de la figure 3 est agencé pour faire varier l’impédance équivalente RRef aux bornes de l’entrée alternative, définie entre les deux points milieux des bras, indépendamment de l’impédance de la charge résistive en sortie de ce montage 10.
[53] L’ impédance équivalente RRef est représentée par le ratio V/l où V est la tension aux bornes de l’entrée alternative, et I l’intensité du courant sur cette entrée alternative.
[54] RRef a par exemple une valeur comprise entre 5'Q et 15'Q. Pour une configuration de recharge donnée, cette configuration étant notamment déterminée par l’un au moins parmi : la position du circuit résonant secondaire 5 par rapport au circuit résonant primaire 3 et/ou le niveau de puissance à transmettre et/ou la tension aux bornes de la batterie, RRef peut avoir une valeur fixe et cette valeur est par exemple dans la plage précitée. D’une configuration de recharge à l’autre, par exemple en cas d’éloignement plus important entre le circuit résonant primaire 3 et le circuit résonant secondaire 5 et/ou pour tenir compte du vieillissement du système, la valeur de RRef peut être modifiée, restant notamment dans la plage précitée.
[55] L’ un des interrupteurs commandables du bras qui commute à une fréquence supérieure à celle de la puissance transmise depuis le circuit résonant primaire 3 est par exemple piloté selon un rapport cyclique a tandis que l’autre interrupteur commandable de ce bras est piloté selon un rapport cyclique 1 - a, et a est par exemple déterminé selon l’équation ci-dessousoc= Rfie/X|/| batt
[56] La tension VACI, dite de source, à la sortie du convertisseur 8 attaque une cellule Lp/Cp résonante, magnétiquement et partiellement couplée à une cellule résonante Ls/Cs du circuit résonant secondaire, couplage dont le coefficient de couplage magnétique est noté k.
[57] Le coefficient de couplage k est dans la plage 0<k<1 .
[58] La fréquence de transfert de puissance entre le circuit primaire et le circuit secondaire est inférieure à 5 kHz, voire inférieure à 3kHz, voire inférieure à 2kHz ou 1 kHz, notamment encore sensiblement égale à 400 Hz ou 50 Hz. Cette fréquence de transfert est notamment celle appliquée à la cellule LC résonante du circuit primaire.
[59] L’ invention permet un transfert de puissance électrique de la source VAO vers la charge 2 en mode recharge.
[60] Selon l’un des aspects de l’invention, le dispositif comporte, du côté du circuit secondaire, un étage de chargeur embarqué 30, notamment de type « Single- Phase Single-Stage Bidirectional Onboard Charger » en anglais, agencé pour échanger sans contact une puissance électrique avec le circuit secondaire pour permettre une fonction de recharge filaire embarquée supplémentaire.
[61] Cet étage de chargeur embarqué 30, connu en soi, est représenté en pointillés sur la figure 1. [62] Cet étage de chargeur embarqué 30 est de type convertisseur AC/DC isolé qui intègre les fonctions de redresseur, notamment à 50Hz, d’onduleur Hautes Fréquences et PFC avec un unique étage d’entrée à MOSFETs.
[63] Comme illustré sur la figure 4, cet étage de chargeur embarqué 30 est connecté à un pont redresseur 29 de l’ensemble de découplage 10 qui comprend le montage d’adaptation d’impédance 12, présent en parallèle de la batterie.
[64] Cet étage 30 sert un réseau embarqué 31 qui permet la recharge filaire.

Claims

Revendications
[Revendication 1] Circuit résonant secondaire (5) pour réaliser, dans un mode recharge, une transmission de puissance sans contact par couplage inductif à résonance, avec un circuit résonant primaire (3) comportant au moins un premier condensateur (Cp) et une première inductance (Lp), cette transmission de puissance étant dirigée vers la charge résistive (2) couplée au circuit résonant secondaire (5) ce circuit résonant secondaire (5) comportant :
- un deuxième condensateur (Cs) de valeur Cs et une deuxième inductance (Ls) de valeur Ls, aptes à être couplés magnétiquement et partiellement au premier condensateur (Cp) et à la première inductance (Lp), et
- un ensemble de découplage (10), cet ensemble de découplage comprenant un redresseur (11 ) agencé pour mettre à disposition une tension continue pour fournir une puissance de recharge à destination de la charge résistive, et un montage d’adaptation d’impédance (12) qui est agencé pour faire varier l’impédance équivalente sur l’entrée de ce montage d’adaptation d’impédance, indépendamment de l’impédance de la charge résistive en sortie de ce montage d’adaptation d’impédance.
[Revendication 2] Circuit selon la revendication précédente, dans lequel la fréquence de transfert de puissance entre le circuit primaire et le circuit secondaire est inférieure à 5 kHz, voire inférieure à 3kHz, voire inférieure à 2kHz ou 1 kHz, notamment encore sensiblement égale à 400 Hz ou 50 Hz.
[Revendication 3] Circuit selon l’une des revendications précédentes, dans lequel les fonctions de redressement par le redresseur (11 ) et d’adaptation d’impédance par le montage d’adaptation d’impédance (12) sont réalisées par deux étages électroniques distincts.
[Revendication 4] Circuit selon l’une des revendications précédentes, dans lequel les fonctions de redressement et d’adaptation d’impédance sont réalisées par un étage électronique unique.
[Revendication 5] Circuit selon l’une quelconque des revendications précédentes, le deuxième condensateur (Cs) et la deuxième inductance (Ls) étant montés en série.
[Revendication 6] Circuit selon l’une quelconque des revendications précédentes, la deuxième inductance (Ls) étant réalisée en fil métallique autre que du fil de Litz.
[Revendication 7] Dispositif (1 ) de transmission de puissance sans contact par couplage inductif à résonance, notamment pour charger ou recharger en énergie électrique une charge résistive telle qu’une batterie de véhicule, comportant :
- un circuit résonant primaire (3) comportant un premier condensateur et une première inductance (Lp), le circuit résonant primaire étant alimenté par une source d’énergie à basse fréquence,
- un circuit résonant secondaire (5) selon l’une quelconque des revendications précédentes, qui reçoit, en mode recharge, de la puissance électrique du circuit primaire, avec une fréquence de transfert entre le circuit primaire et le circuit secondaire qui est inférieure à 5 kHz, voire inférieure à 3kHz, voire inférieure à 2kHz ou 1 kHz, notamment encore sensiblement égale à 400 Hz ou 50 Hz, ou qui est supérieure à 5 kHz, étant notamment sensiblement égale à 85 kHz.
[Revendication 8] Dispositif selon la revendication précédente, le premier condensateur (Cp) et la première inductance (Lp) étant montés en série.
[Revendication 9] Dispositif selon la revendication 7 ou 8, la première inductance (Lp) étant réalisée en fil métallique autre que du fil de Litz.
[Revendication 10] Dispositif selon l’une quelconque des revendications 7 à 9, l’ensemble de découplage (10) comprenant deux bras montés en parallèle, chaque bras comprenant deux interrupteurs commandables en série, et l’un des bras commutant à la fréquence de la puissance transmise depuis le circuit primaire et avec un rapport cyclique de 50%, et l’autre bras commutant à une fréquence supérieure à celle de la puissance transmise depuis le circuit primaire, notamment à une fréquence égale ou supérieure à 5 fois ou 10 fois la fréquence de la puissance transmise depuis le circuit primaire, et avec un rapport cyclique modulé selon le courant alternatif mesuré et la tension sur l’entrée alternative de cet ensemble de découplage (10). [Revendication 11] Dispositif selon l’une quelconque des revendications 7 à 9, agencé pour être réversible en puissance permettant au circuit secondaire d’envoyer de la puissance vers le circuit primaire, cette puissance reçue dans le circuit primaire pouvant par exemple être injectée dans un réseau électrique urbain.
PCT/EP2023/076297 2022-09-30 2023-09-22 Circuit résonant secondaire WO2024068486A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2209978A FR3140490A1 (fr) 2022-09-30 2022-09-30 Circuit résonant secondaire
FRFR2209978 2022-09-30

Publications (1)

Publication Number Publication Date
WO2024068486A1 true WO2024068486A1 (fr) 2024-04-04

Family

ID=84820304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2023/076297 WO2024068486A1 (fr) 2022-09-30 2023-09-22 Circuit résonant secondaire

Country Status (2)

Country Link
FR (1) FR3140490A1 (fr)
WO (1) WO2024068486A1 (fr)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110204845A1 (en) 2010-02-25 2011-08-25 Evatran Llc System and method for inductively transferring ac power and self alignment between a vehicle and a recharging station
US20130188397A1 (en) * 2012-01-23 2013-07-25 Utah State University Switch wear leveling
US20150280455A1 (en) * 2014-03-31 2015-10-01 Abb Technology Ag Inductive power transfer system and method for operating an inductive power transfer system
US20180277298A1 (en) * 2017-03-22 2018-09-27 Shenzhen Yichong Wireless Power Technology Co. Ltd. Sparse-routed magnetic coils for wireless power charging system
US10224809B1 (en) * 2017-10-05 2019-03-05 Cree, Inc. Totem pole PFC converter and system
US20220250487A1 (en) * 2019-10-30 2022-08-11 Huawei Technologies Co., Ltd. Wireless charging receive end, system, and control method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110204845A1 (en) 2010-02-25 2011-08-25 Evatran Llc System and method for inductively transferring ac power and self alignment between a vehicle and a recharging station
US20130188397A1 (en) * 2012-01-23 2013-07-25 Utah State University Switch wear leveling
US20150280455A1 (en) * 2014-03-31 2015-10-01 Abb Technology Ag Inductive power transfer system and method for operating an inductive power transfer system
US20180277298A1 (en) * 2017-03-22 2018-09-27 Shenzhen Yichong Wireless Power Technology Co. Ltd. Sparse-routed magnetic coils for wireless power charging system
US10224809B1 (en) * 2017-10-05 2019-03-05 Cree, Inc. Totem pole PFC converter and system
US20220250487A1 (en) * 2019-10-30 2022-08-11 Huawei Technologies Co., Ltd. Wireless charging receive end, system, and control method

Also Published As

Publication number Publication date
FR3140490A1 (fr) 2024-04-05

Similar Documents

Publication Publication Date Title
EP0847338B1 (fr) Systeme d&#39;alimentation electrique mixte onduleur et convertisseur alternatif-continu
EP3386087B1 (fr) Système de chargeur électrique triphase et monophase pour véhicule électrique ou hybride
US10654371B2 (en) Charging apparatus for electric vehicle
KR20150053452A (ko) 전기자동차용 모듈식 차량 탑재형 완속 충전 시스템 및 충전 방법
EP3605820B1 (fr) Convertisseur de tension continu-continu a resonance
WO2023198926A1 (fr) Circuit résonnant secondaire
EP2727206B1 (fr) Systeme de gestion de l&#39;energie electrique comportant une source d&#39;alimentation electrique, une source d&#39;energie renouvelable et un convertisseur de puissance
EP3682525A1 (fr) Chargeur de vehicule comprenant un convertisseur dc/dc
FR3104846A1 (fr) Système électrique pour la conversion de tension continue et la charge de batteries d’alimentation
FR2987947A1 (fr) Dispositif de charge comprenant un convertisseur dc-dc
WO2024068486A1 (fr) Circuit résonant secondaire
FR2987513A1 (fr) Circuit electrique pour la charge par un reseau electrique d&#39;au moins une unite de stockage d&#39;energie electrique
EP3053247B1 (fr) Système et procédé de charge d&#39;une batterie de traction limitant l&#39;appel de courant de capacités parasites
FR3071441B1 (fr) Procede de commande d&#39;un systeme de charge d&#39;une batterie de traction
FR3134667A1 (fr) Circuit résonnant secondaire
FR3082683A1 (fr) Convertisseur bidirectionnel pour vehicule electrique ou hybride
EP2915235B1 (fr) Système d&#39;alimentation électrique a double stockeurs d&#39;énergie électrique d&#39;un véhicule automobile ou hybride
FR3089076A1 (fr) Convertisseur courant continu - courant continu résonant de type LLC
WO2024068487A1 (fr) Circuit d&#39;alimentation électrique d&#39;une unité de stockage d&#39;énergie électrique de véhicule
FR3066866B1 (fr) Convertisseur continu-continu pour vehicule electrique ou hybride
Siyas Mohammed et al. Onboard battery charger for plug-in electric vehicles with constant current/constant voltage control and active power decoupling
WO2023242486A1 (fr) Chargeur embarque pour une recharge a differentes tensions de borne, systeme, vehicule et procede sur la base d&#39;un tel chargeur
FR3141010A1 (fr) Système électrique pour la conversion de la tension continue et pour la charge des batteries d&#39;un véhicule.
EP4364283A1 (fr) Système de conversion de tension et véhicule automobile comportant un tel système
WO2023094701A1 (fr) Convertisseur de puissance présentant un module de découplage

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23773322

Country of ref document: EP

Kind code of ref document: A1