WO2024068291A1 - Microfluidic component - Google Patents

Microfluidic component Download PDF

Info

Publication number
WO2024068291A1
WO2024068291A1 PCT/EP2023/075287 EP2023075287W WO2024068291A1 WO 2024068291 A1 WO2024068291 A1 WO 2024068291A1 EP 2023075287 W EP2023075287 W EP 2023075287W WO 2024068291 A1 WO2024068291 A1 WO 2024068291A1
Authority
WO
WIPO (PCT)
Prior art keywords
microfluidic
channels
channel
sub
connecting channel
Prior art date
Application number
PCT/EP2023/075287
Other languages
German (de)
French (fr)
Inventor
Stefan Jacob
Melanie Colditz
Andreas Winkler
Stefanie HARTMANN
Uhland WEISSKER
Original Assignee
Leibniz-Institut Für Festkörper- Und Werkstoffforschung Dresden E. V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leibniz-Institut Für Festkörper- Und Werkstoffforschung Dresden E. V. filed Critical Leibniz-Institut Für Festkörper- Und Werkstoffforschung Dresden E. V.
Publication of WO2024068291A1 publication Critical patent/WO2024068291A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502746Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means for controlling flow resistance, e.g. flow controllers, baffles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502761Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip specially adapted for handling suspended solids or molecules independently from the bulk fluid flow, e.g. for trapping or sorting beads, for physically stretching molecules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502769Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements
    • B01L3/502776Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements specially adapted for focusing or laminating flows
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0636Focussing flows, e.g. to laminate flows
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0647Handling flowable solids, e.g. microscopic beads, cells, particles
    • B01L2200/0652Sorting or classification of particles or molecules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0647Handling flowable solids, e.g. microscopic beads, cells, particles
    • B01L2200/0668Trapping microscopic beads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0864Configuration of multiple channels and/or chambers in a single devices comprising only one inlet and multiple receiving wells, e.g. for separation, splitting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0475Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure
    • B01L2400/0487Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure fluid pressure, pneumatics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/08Regulating or influencing the flow resistance
    • B01L2400/084Passive control of flow resistance
    • B01L2400/086Passive control of flow resistance using baffles or other fixed flow obstructions

Definitions

  • the invention relates to the fields of microsystems technology and microfluidics and relates to a microfluidic component, such as for actuator or sensory lab-on-a-chip systems, for portable microfluidic systems for field use in agriculture, bioanalytics, etc Medical technology for which impedance spectroscopy, surface plasmon resonance or electromagnetic separation can be used in medical technology or in analytical chemistry and biochemistry.
  • a microfluidic component such as for actuator or sensory lab-on-a-chip systems, for portable microfluidic systems for field use in agriculture, bioanalytics, etc
  • Medical technology for which impedance spectroscopy, surface plasmon resonance or electromagnetic separation can be used in medical technology or in analytical chemistry and biochemistry.
  • Microfluidics deals with the behavior of liquids and gases in the smallest of spaces (Wikipedia, search term “microfluidics”). Microfluidics is also increasingly used for the analysis or manipulation of fluids, for example for the synthesis of particles and medically effective biological molecules/particles/cells.
  • so-called lab-on-a-chip systems also known as micro total analysis systems, pTAS
  • pTAS micro total analysis systems
  • All lab-on-a-chip systems can also perform the necessary tasks that are carried out on a macroscopic scale. These include, for example, mixing, measuring, reacting, transporting, filtering, analyzing (for example optically, electrically or acoustically), etc.
  • microfluidic microchemomechanical system with at least one structural support with at least a first channel, a cover which at least partially covers the structural support and at least one second channel, the second channel being arranged on the structural support or the cover .
  • the channels each form reservoirs delimited by active elements, which are arranged in such a way that they have at least one superposition area to one another and together form a reaction chamber.
  • a microfluidic chip that includes at least one microfluidic channel system, which includes at least one horizontal channel and at least one horizontal chamber, wherein the at least one channel and the at least one chamber are separated by a membrane and the at least one channel can be flowed through by a cell-containing liquid, and has a width of at least 10 pm and a maximum of 300 pm and a depth of at least 10 pm and a maximum of 100 pm.
  • microfluidic processor which has at least one fluidic mixing unit, which has hydrogel actuator-based pumps connected on the output side and produces mixing ratios for various process media, which can be structurally specified by the respective volumes of the pump chambers of the pumps and transport the resulting mixture into reaction or analysis units.
  • At least one polymer layer is applied to a substrate at least at the positions of connecting elements and subsequently brought the connecting element into position on the polymer layer. Subsequently, at least one further polymer layer is applied at least partially over the connecting element at least with a thickness that is at least greater than the height of the connecting element, and then structuring and curing of the at least second polymer layer is realized.
  • the flow resistance in the microfluidic channel can be calculated taking into account the channel dimensions and the cross-sectional shape and then adjusted by changing the geometry (e.g. walls, floors, lids) and surfaces (e.g. roughness, surface chemistry).
  • a disadvantage of the solutions of the prior art is that in the known solutions for microfluidic systems, in particular external events that affect the microfluidic system or internal events, for example in a sub-area of the microfluidic system that affect other sub-areas of the microfluidic system ("crosstalk"), cause disturbances to at least the main function of the microfluidic system, which hinder and/or prevent the desired result that is to be achieved by the microfluidic system, and thus the functionality of the microfluidic system as a whole cannot be reliably guaranteed.
  • crosstalk sub-area of the microfluidic system that affect other sub-areas of the microfluidic system
  • the object of the present invention is to provide a microfluidic component that compensates for, suppresses and/or terminates disturbances in microfluidic systems and thus at least the main function of the microfluidic system is guaranteed to be essentially trouble-free.
  • the microfluidic component according to the invention in a microfluidic system contains at least one channel-shaped component which is connected to the microfluidic system at least with an opening, the channel-shaped component being split into at least two sub-channels, and at least two sub-channels being directly connected by at least one connecting channel, and wherein the connecting channel(s) may have inlets and/or outlets, and wherein a lower flow resistance is realized in the interior of the connecting channels than in the respective sub-channels, and wherein the sub-channels have inlets and/or outlets.
  • the channel-shaped component(s) and/or the sub-channels and/or the connecting channel(s) have dimensions in the micrometer and/or nanometer range, even more advantageously dimensions between 0.1 and 1000 pm. Furthermore advantageously, due to the geometry and/or the surface properties of the surfaces in contact with the fluid, the channel-shaped components have a flow resistance for forming a continuous and/or laminar flow of the fluid.
  • the at least one channel-shaped component is split into 3 to 5 sub-channels.
  • the flow resistance inside a connecting channel is 10 to 100 times lower than in the sub-channels that the connecting channel connects.
  • microfluidic components are integrated into microfluidic systems that are actuator or sensor lab-on-a-chip systems or microfluidic systems.
  • the at least one channel-shaped component and/or the at least two sub-channels and/or the at least one connecting channel and/or the inlets and/or outlets consist at least partially of elastomers such as polydimethylsiloxane (PDMS), glass-based microfluid systems such as silicon, glass, (amorphous) SiO2, polymers such as cycloolefin copolymers (COC), epoxy resins, acrylic resins, PTFE, PMMA, PC, PS and/or PEEK, piezoelectric materials, TOPAS, ceramics, ultra-thin and/or thin glassy or polymeric plates or films and/or dry photoresists.
  • elastomers such as polydimethylsiloxane (PDMS), glass-based microfluid systems such as silicon, glass, (amorphous) SiO2, polymers such as cycloolefin copolymers (COC), epoxy resins, acrylic resins, PTFE, PMMA, PC, PS and/or PEEK
  • microfluidic component in a microfluidic system that has at least one channel-shaped component that is connected to the microfluidic system at least via an opening.
  • the channel-shaped component is further split into at least two sub-channels. Furthermore, the at least two sub-channels are connected by at least one connecting channel, which directly connects the at least two sub-channels to one another.
  • the connecting channel can have inlets and/or outlets.
  • sub-channels have inlets and/or outlets.
  • microfluidic components In a microfluidic system, functional microfluidic components must generally be connected to channel-shaped microfluidic components and channel-shaped microfluidic components must also be present from the inlet and to the outlet of the fluid and other components from and into the microfluidic system. These are also generally referred to as microfluidic channels.
  • fluids in gaseous and/or liquid form are present within a microfluidic system.
  • the fluids can also contain gas bubbles, fluid droplets and/or solids that can be moved in the microfluidic system, or can be mixtures of gaseous or liquid components with solids, such as suspensions, dispersions or emulsions.
  • the channel-shaped components, the sub-channels and/or the connecting channels have dimensions in the micrometer and/or nanometer range, even more advantageously dimensions between 0.1 and 1000 pm.
  • channel-shaped components have geometries and/or surface properties of the surfaces in contact with the fluid, through which they have a flow resistance for forming a continuous and/or laminar flow of the fluid.
  • the at least one channel-shaped component is split into 3 to 5 sub-channels.
  • the at least one connecting channel has dimensions in the micrometer and/or nanometer range, but partially has smaller dimensions of its length and/or larger dimensions of its cross-sectional area than the channel-shaped component before separation.
  • the flow velocity and the associated friction losses on the connecting channel walls are lower and the momentum compensation is considerably smaller.
  • a further advantageous embodiment of the solution according to the invention is that a flow resistance that is 10 - 100 times lower is realized inside a connecting channel than in the sub-channels that the connecting channel connects.
  • microfluidic components are integrated into microfluidic systems, which are actuator or sensory lab-on-a-chip systems or microfluidic systems.
  • microfluidic systems require that inlets and outlets are available on the microfluidic systems, which in turn are usually Connectors, cannulas and tubes connected to peripheral devices for fluid supply, to reservoirs or upstream and/or downstream passive or active (micro-)fluidic elements, or to sampling devices.
  • Connectors cannulas and tubes connected to peripheral devices for fluid supply, to reservoirs or upstream and/or downstream passive or active (micro-)fluidic elements, or to sampling devices.
  • All of these upstream and downstream components in the microfluidic system and in particular the formation of drops at fluid outlets and/or the presence of more than two inlets and outlets of the microfluidic component can cause disruptions to at least the main function of the microfluidic system due to external events such as movements and/or vibrations.
  • movements and vibrations can cause pressure fluctuations in the microfluidic system, which are passed on directly to the fluid in the microfluidic systems due to the low compressibility of fluids.
  • Such disruptions can be bubbles, blockages, temperature fluctuations, pressure fluctuations, the effects of which can be compensated, suppressed and/or stopped by the solution according to the invention.
  • Such disturbances caused by external events also enter the channel-like microfluidic components via the inlets and/or outlets, spread through the fluid and interact with the components through friction on the component walls, through friction in the flow of the fluid, through geometric scattering, through momentum transfer to the flow of the fluid and/or through momentum transfer to the component walls and, if present, to particles in the fluid.
  • the compensation, suppression and/or termination of these disturbances in the microfluidic component takes place proportionately according to the respective flow-mechanical resistances.
  • the disturbances are often not predictable or externally controllable.
  • microfluidic component according to the invention it is now possible for the first time to use the microfluidic component according to the invention to detect such disturbances that are caused by external events or by internal events in the microfluidic system, such as for example in downstream microfluidic components, can be compensated, suppressed and/or terminated in the microfluidic systems and thus at least the main function of the microfluidic system can be ensured essentially without disruption.
  • the solution according to the invention enables a secure, stable operation of the microfluidic systems, in particular independently of downstream microfluidic components.
  • the microfluidic component according to the invention can also ensure that disturbances caused by external and/or internal events do not reach the areas of the microfluidic systems that are present for the respective desired function of the microfluidic systems, but are compensated, suppressed and/or terminated in the microfluidic components according to the invention.
  • the channel-shaped component of the microfluidic component is split into at least two sub-channels after an inlet and/or before an outlet.
  • the at least two sub-channels are then directly connected to one another after and/or before the inlets and/or outlets of the microfluidic system via at least one connecting channel.
  • the connecting channel contains a fluid of the same composition as the at least two sub-channels that the connecting channel connects to one another.
  • connecting channel itself can have inlets and/or outlets.
  • the connecting channel can also be filled with a gas or gas mixture, such as air, which prevents fluid from the sub-channels from penetrating into the connecting channel and further compensates, suppresses or terminates disturbances, for example in the form of pressure fluctuations, due to the compressibility of the gas or gas mixture.
  • a gas or gas mixture such as air
  • At least one partial channel is required for the discharge of the particles after the particles have been separated from the liquid.
  • the liquid can be from the separation point of particle-free liquid and more concentrated Dispersion continues two sub-channels and are subsequently connected to a connecting channel in front of the outlets.
  • the structure of the microfluidic systems for example on chips, can be essentially retained by splitting into sub-channels and integrating connecting channels, since only little space is required for production and/or integration into existing systems and no other production processes are necessary.
  • the solution according to the invention compensates for, suppresses or stops the coupling of interference caused by external or internal influences into microfluidic systems and improves the functionality of the microfluidic components of the microfluidic systems. This also makes it possible to change media or rinse the system without deactivating one or more inlets and/or outlets due to excessive flow resistance. This is also the case if air bubbles occur in the system. Larger volumes of fluid can also be introduced and/or discharged from or into different reservoirs via more than two inlets and/or outlets. Contamination of different fluids in the microfluidic system is also counteracted by avoiding the effects of interference on the function of the microfluidic system.
  • microfluidic systems can be implemented without additional effort in chip production and is compatible with conventional microfluidic systems, such as polymer fluidic chips, microfluidic systems based on elastomers, such as PDMS, or glass-based microfluidic systems.
  • conventional microfluidic systems such as polymer fluidic chips, microfluidic systems based on elastomers, such as PDMS, or glass-based microfluidic systems.
  • the components according to the invention can also be installed as a module in microfluidic systems.
  • the at least one channel-shaped component and/or the at least two partial channels and/or the at least one connecting channel and/or the inlets and/or outlets can be made of elastomers, such as polydimethylsiloxane (PDMS), glass-based microfluid systems, such as silicon, glass, (amorphous ) SiC>2, polymers such as cycloolefin copolymers (COC), epoxy resins, acrylic resins, PTFE, PMMA, PC, PS and/or PEEK, piezoelectric materials, TOPAS, ceramics, ultra-thin and/or thin glassy or polymeric plates or films and / or dry photoresists at least partially consists.
  • elastomers such as polydimethylsiloxane (PDMS), glass-based microfluid systems, such as silicon, glass, (amorphous ) SiC>2, polymers such as cycloolefin copolymers (COC), epoxy resins, acrylic resins, PTFE, PMMA
  • microfluidic component according to the invention can be produced using known processes such as laminating, hot pressing, hot stamping, deep drawing, injection molding, additive manufacturing processes such as inkjet, piezojet, aerosol jet printing, stereolithography, aerosol printing, 3D printing, lithography, (nano) imprinting - Lithography, microtechnology, microcontact printing, wafer bonding, dispensing technologies, CNC processing, laser application processes, milling and/or grinding.
  • additive manufacturing processes such as inkjet, piezojet, aerosol jet printing, stereolithography, aerosol printing, 3D printing, lithography, (nano) imprinting - Lithography, microtechnology, microcontact printing, wafer bonding, dispensing technologies, CNC processing, laser application processes, milling and/or grinding.
  • Fig. 1 is a schematic sketch of a microfluidic component according to the invention.
  • a microfluidic component for separating ceramic particles 600 from water as a fluid consists of a substrate 100 on which the microfluidic component is arranged in a microfluidic system.
  • the water-particle mixture is introduced as a fluid into the channel-shaped component 300.
  • the channel-shaped component 300 is then split into three sub-channels 301, 302, 303 at the location of the split 401.
  • the ceramic particles 600 are discharged from the microfluidic system from a sub-channel 301 with an outlet 501.
  • the particle-free water is discharged from the microfluidic system via the two sub-channels 302/304 and 303/305 via the outlets 502 and 503. Before the water is discharged, the sub-channels 302 and 303 filled with water are directly connected to a connecting channel 504.
  • the channel-shaped component 300 is divided into three sub-channels 301 with the dimensions 100 pm x 50 pm x 75 pm (W x H x L) and 302, 303 with the dimensions 100 pm x 50 pm x 100 pm (W x H x L).
  • the connecting channel 504 has a significantly lower flow resistance inside in relation to R302 and R303.
  • the sub-channels 304 and 305 each have a lower flow resistance in relation to R302 and R303 and a higher flow resistance in relation to R504.
  • the dripping of water from the two outlets 502 and 503 of the two partial channels 304 and 305 triggers a movement which, as an external disturbance, causes a pressure fluctuation in the microfluidic component.

Abstract

The invention relates to the field of microsystems technology and relates to a microfluidic component that can be used, for example, for actuator or sensor lab-on-a-chip systems. The object of the present invention is to provide a microfluidic component that equalises, suppresses and/or terminates interference in microfluidic systems and thus ensures that at least the main function of the microfluidic system is essentially interference-free. The object is achieved by a microfluidic component in a microfluidic system, at least containing a channel-shaped component connected to the microfluidic system by at least one opening, wherein the channel-shaped component is split into at least two sub-channels, and wherein at least two sub-channels are directly connected by at least one connecting channel, and wherein the connecting channel(s) may have inlets and/or outlets, and wherein a lower flow resistance is realised in the interior of the connecting channels than in the respective sub-channels, and wherein the sub-channels have inlets and/or outlets.

Description

Mikrofluidisches Bauteil Microfluidic component
Die Erfindung bezieht sich auf die Gebiete der Mikrosystemtechnik und der M ikrof luidik und betrifft ein mikrofluidisches Bauteil, wie es beispielsweise für aktorische oder sensorische Lab-on-a-Chip Systeme, für tragbare Mikrofluidiksysteme für den Feldeinsatz in der Landwirtschaft, der Bioanalytik, der Medizintechnik, für die Impedanzspektroskopie, Oberflächenplasmonenresonanz oder die elektromagnetische Separation in der Medizintechnik oder in der analytischen Chemie und Biochemie zum Einsatz kommen kann. The invention relates to the fields of microsystems technology and microfluidics and relates to a microfluidic component, such as for actuator or sensory lab-on-a-chip systems, for portable microfluidic systems for field use in agriculture, bioanalytics, etc Medical technology for which impedance spectroscopy, surface plasmon resonance or electromagnetic separation can be used in medical technology or in analytical chemistry and biochemistry.
Die Mikrofluidik beschäftigt sich mit dem Verhalten von Flüssigkeiten und Gasen auf kleinstem Raum (Wikipedia, Suchbegriff „Mikrofluidik“). Die Mikrofluidik wird zunehmend auch für die Analyse oder Manipulation von Fluiden, zum Beispiel zur Synthese von Partikeln und medizinisch wirksamen biologischen Molekülen/Partikeln/Zellen, ein gesetzt. Dazu werden mittlerweile sogenannte Lab-on- a-Chip-Systeme (auch als Mikro-Total-Analyse-Systeme, micro total analysis systems, pTAS bezeichnet) als mikrofluidische Systeme eingesetzt, welche die Funktionalität eines makroskopischen Labors auf einem Chipsubstrat vereinen. Dazu müssen in allen Lab-on-a-Chip-Systemen die nötigen Aufgaben, die im makroskopischen Maßstab realisiert werden, ebenfalls ausgeführt werden können. Dazu gehören beispielsweise Mischen, Abmessen, zur Reaktion bringen, Transportieren, Filtern, Analysieren (zum Beispiel optisch, elektrisch oder akustisch), usw. Microfluidics deals with the behavior of liquids and gases in the smallest of spaces (Wikipedia, search term “microfluidics”). Microfluidics is also increasingly used for the analysis or manipulation of fluids, for example for the synthesis of particles and medically effective biological molecules/particles/cells. For this purpose, so-called lab-on-a-chip systems (also known as micro total analysis systems, pTAS) are now used as microfluidic systems that combine the functionality of a macroscopic laboratory on a chip substrate. For this purpose, All lab-on-a-chip systems can also perform the necessary tasks that are carried out on a macroscopic scale. These include, for example, mixing, measuring, reacting, transporting, filtering, analyzing (for example optically, electrically or acoustically), etc.
Für Anwendungen in der Mikrofluidik sind aus dem Stand der Technik verschiedene Vorrichtungen bekannt. Various devices are known from the state of the art for applications in microfluidics.
Aus der DE 10 2012 206 042 A1 ist ein mikrofluidisches mikrochemomechanisches System mit zumindest einem Strukturträger mit zumindest einem ersten Kanal, einer Abdeckung, welche den Strukturträger zumindest teilweise abdeckt und zumindest einem zweiten Kanal, wobei der zweite Kanal auf dem Strukturträger oder der Abdeckung angeordnet ist. Die Kanäle bilden jeweils durch aktive Elemente begrenzte Reservoirs aus, die so angeordnet sind, dass sie zueinander mindestens einen Überlagerungsbereich aufweisen und zusammen eine Reaktionskammer bilden. From DE 10 2012 206 042 A1 there is a microfluidic microchemomechanical system with at least one structural support with at least a first channel, a cover which at least partially covers the structural support and at least one second channel, the second channel being arranged on the structural support or the cover . The channels each form reservoirs delimited by active elements, which are arranged in such a way that they have at least one superposition area to one another and together form a reaction chamber.
Weiterhin bekannt aus der DE 10 2011 112 638 A1 ist ein mikrofluidischer Chip, der mindestens ein mikrofluidisches Kanalsystem beinhaltet, welches mindestens einen horizontalen Kanal und mindestens eine horizontale Kammer umfasst, wobei der mindestens eine Kanal und die mindestens eine Kammer durch eine Membran getrennt sind und der mindestens eine Kanal von einer zellhaltigen Flüssigkeit durchströmt werden kann, und eine Breite von mindestens 10 pm und höchstens 300 pm und eine Tiefe von mindestens 10 pm und höchstens 100 pm aufweist. Also known from DE 10 2011 112 638 A1 is a microfluidic chip that includes at least one microfluidic channel system, which includes at least one horizontal channel and at least one horizontal chamber, wherein the at least one channel and the at least one chamber are separated by a membrane and the at least one channel can be flowed through by a cell-containing liquid, and has a width of at least 10 pm and a maximum of 300 pm and a depth of at least 10 pm and a maximum of 100 pm.
Weiterhin bekannt aus der DE 10 2006 020 716 A1 ist ein Mikrofluidik-Prozessor, der mindestens eine fluidische Mischeinheit aufweist, welche über ausgangsseitig zusammengeschaltete Hydrogelaktor-basierte Pumpen verfügt und für verschiedene Prozessmedien Mischungsverhältnisse herstellt, die durch die jeweiligen Volumina der Pumpenkammern der Pumpen konstruktiv vorgebbar sind und die entstandene Mischung in Reaktions- oder Analyseeinheiten befördern. Also known from DE 10 2006 020 716 A1 is a microfluidic processor which has at least one fluidic mixing unit, which has hydrogel actuator-based pumps connected on the output side and produces mixing ratios for various process media, which can be structurally specified by the respective volumes of the pump chambers of the pumps and transport the resulting mixture into reaction or analysis units.
Des Weiteren ist aus der DE 10 2012 201 714 A1 ein Verfahren zur Herstellung von Mikrofluidsystemen bekannt. Dabei wird auf einem Substrat mindestens an den Positionen von Verbindungselementen mindestens eine Polymerschicht aufgebracht und nachfolgend das Verbindungselement in die Position auf der Polymerschicht gebracht. Anschließend wird mindestens eine weitere Polymerschicht mindestens teilweise über das Verbindungselement mindestens mit einer Dicke aufgebracht, die mindestens größer ist als die Höhe des Verbindungselementes, und danach wird eine Strukturierung und Aushärtung der mindestens zweiten Polymerschicht realisiert. Furthermore, a method for producing microfluid systems is known from DE 10 2012 201 714 A1. At least one polymer layer is applied to a substrate at least at the positions of connecting elements and subsequently brought the connecting element into position on the polymer layer. Subsequently, at least one further polymer layer is applied at least partially over the connecting element at least with a thickness that is at least greater than the height of the connecting element, and then structuring and curing of the at least second polymer layer is realized.
Nach P. Abgrall et al: J. Micromech. Microeng. 16 (2006) 113-121 ist ein neues Herstellungsverfahren für flexible und monolithisch-integrierte 3D-Mikrofluidik- Strukturen mittels der Laminierung von SU-8-Filmen bekannt. Danach werden unvernetzte trockene SU-8-Filme auf einem Polyestersubstrat aufgebracht und mit diesem auf vorhandene SU-8 Strukturen laminiert. Anschließend erfolgt eine lithografische Vernetzung zu geschlossenen Mikrostrukturen. According to P. Abgrall et al: J. Micromech. Microeng. 16 (2006) 113-121, a new manufacturing process for flexible and monolithically integrated 3D microfluidic structures using the lamination of SU-8 films is known. Uncrosslinked dry SU-8 films are then applied to a polyester substrate and laminated to existing SU-8 structures. This is followed by lithographic crosslinking to form closed microstructures.
Bekanntermaßen werden in mikrofluidischen Bauelementen und Systemen Flüssigkeiten mit verschiedenen Fluid- oder Festkörperphasen bei geringen Durchflussraten transportiert. Die geringen Kanalabmessungen führen typischerweise zu einer Dominanz der Wandeffekte (Fluidadhäsion) und damit zu einer laminaren Strömung bei geringer Reynoldszahl (Retyp<1 ). Diese laminare Strömung und konstante Strömungsbedingungen sind für viele mikrofluidische Grundoperationen entweder zwingend erforderlich oder vorteilhaft. It is known that in microfluidic components and systems, liquids with different fluid or solid phases are transported at low flow rates. The small channel dimensions typically lead to a dominance of wall effects (fluid adhesion) and thus to a laminar flow with a low Reynolds number (Ret yp <1). This laminar flow and constant flow conditions are either mandatory or advantageous for many basic microfluidic operations.
Daher sind bereits Untersuchungen zur Bedeutung von Strömungswiderständen in mikrofluidischen Systemen durchgeführt worden, sowohl Chip-extern in peripheren Komponenten der mikrofluidischen Systeme, wie beispielsweise Schlauchleitungen und Cartridges, sowie Chip-intern innerhalb der mikrofluidischen Strukturen, beispielsweise in mikrofluidischen Kanälen in einem Chip. Therefore, studies have already been carried out on the significance of flow resistances in microfluidic systems, both externally to the chip in peripheral components of the microfluidic systems, such as tubing and cartridges, as well as internally within the microfluidic structures, for example in microfluidic channels in a chip.
Dies hat dazu geführt, dass verschiedene Lösungen zur Anpassung der Chip-externen Strömungswiderstände kommerziell erhältlich sind, wie druckgetriebene Pumpen, Schläuche, Dämpfer oder Durchflussbegrenzer. This has led to various solutions becoming commercially available for adjusting the chip-external flow resistances, such as pressure-driven pumps, hoses, dampers or flow restrictors.
Zur Anpassung der internen Strömungswiderstände kann der Strömungswiderstand im Mikrofluidkanal unter Einbeziehung der Kanaldimensionen und der Querschnittsform berechnet und dann durch Veränderung von Geometrie (z.B. Wände, Böden, Deckel) und Oberflächen (z.B. Rauheit, Oberflächenchemie) angepasst werden. Nachteilig bei den Lösungen des Standes der Technik ist, dass bei den bekannten Lösungen für mikrofluidische Systeme insbesondere durch externe Ereignisse, die auf das mikrofluidische System einwirken, oder durch interne Ereignisse, beispielsweise in einem Teilbereich des mikrofluidischen Systems, die auf andere Teilbereiche des mikrofluidischen Systems einwirken („übersprechen“), Störungen mindestens der Hauptfunktion des mikrofluidischen Systems hervorgerufen werden, die das gewünschte Ergebnis, das durch das mikrofluidische System erreicht werden soll, be- und/oder verhindern, und somit die Funktionalität des mikrofluidischen Systems insgesamt nicht sicher gewährleistet werden kann. To adjust the internal flow resistances, the flow resistance in the microfluidic channel can be calculated taking into account the channel dimensions and the cross-sectional shape and then adjusted by changing the geometry (e.g. walls, floors, lids) and surfaces (e.g. roughness, surface chemistry). A disadvantage of the solutions of the prior art is that in the known solutions for microfluidic systems, in particular external events that affect the microfluidic system or internal events, for example in a sub-area of the microfluidic system that affect other sub-areas of the microfluidic system ("crosstalk"), cause disturbances to at least the main function of the microfluidic system, which hinder and/or prevent the desired result that is to be achieved by the microfluidic system, and thus the functionality of the microfluidic system as a whole cannot be reliably guaranteed.
Aufgabe der vorliegenden Erfindung ist die Angabe eines mikrofluidischen Bauteils, das in mikrofluidischen Systemen Störungen ausgleicht, unterdrückt und/oder beendet und somit mindestens die Hauptfunktion des mikrofluidischen Systems im Wesentlichen störungsfrei gewährleistet ist. The object of the present invention is to provide a microfluidic component that compensates for, suppresses and/or terminates disturbances in microfluidic systems and thus at least the main function of the microfluidic system is guaranteed to be essentially trouble-free.
Die Aufgabe wird durch die in den Ansprüchen angegebene Erfindung gelöst. Vorteilhafte Ausgestaltungen sind Gegenstand der Unteransprüche, wobei die Erfindung auch Kombinationen der einzelnen abhängigen Ansprüche im Sinne einer UND-Verknüpfung miteinschließt, solange sie sich nicht gegenseitig ausschließen. The object is achieved by the invention specified in the claims. Advantageous embodiments are the subject of the subclaims, whereby the invention also includes combinations of the individual dependent claims in the sense of an AND connection, as long as they do not exclude each other.
Das erfindungsgemäße mikrofluidische Bauteil in einem mikrofluidischen System enthält mindestens ein kanalförmiges Bauelement, das mindestens mit einer Öffnung mit dem mikrofluidischen System verbunden ist, wobei das kanalförmige Bauelement in mindestens zwei Teilkanäle aufgespalten ist, und wobei mindestens zwei Teilkanäle direkt durch mindestens einen Verbindungskanal verbunden sind, und wobei der oder die Verbindungskanäle Ein- und/oder Auslässe aufweisen kann, und wobei im Inneren der Verbindungskanäle ein geringerer Strömungswiderstand realisiert ist, als in den jeweiligen Teilkanälen, und wobei die Teilkanäle Ein- und/oder Auslässe aufweisen. The microfluidic component according to the invention in a microfluidic system contains at least one channel-shaped component which is connected to the microfluidic system at least with an opening, the channel-shaped component being split into at least two sub-channels, and at least two sub-channels being directly connected by at least one connecting channel, and wherein the connecting channel(s) may have inlets and/or outlets, and wherein a lower flow resistance is realized in the interior of the connecting channels than in the respective sub-channels, and wherein the sub-channels have inlets and/or outlets.
Vorteilhafterweise weisen das oder die kanalförmigen Bauelemente und/oder die Teilkanäle und/oder der oder die Verbindungskanäle Abmessungen im Mikrometer- und/oder Nanometerbereich auf, noch vorteilhafterweise Abmessungen zwischen 0,1 und 1000 pm. Weiterhin vorteilhafterweise weisen durch die Geometrie und/oder die Oberflächeneigenschaften der mit dem Fluid in Kontakt befindlichen Oberflächen, die kanalförmigen Bauelemente einen Strömungswiderstand zur Ausbildung einer kontinuierlichen und/oder laminaren Strömung des Fluids auf. Advantageously, the channel-shaped component(s) and/or the sub-channels and/or the connecting channel(s) have dimensions in the micrometer and/or nanometer range, even more advantageously dimensions between 0.1 and 1000 pm. Furthermore advantageously, due to the geometry and/or the surface properties of the surfaces in contact with the fluid, the channel-shaped components have a flow resistance for forming a continuous and/or laminar flow of the fluid.
Ebenfalls vorteilhafterweise ist das mindestens eine kanalförmige Bauteil in 3 bis 5 Teilkanäle aufgespalten. Also advantageously, the at least one channel-shaped component is split into 3 to 5 sub-channels.
Und auch vorteilhafterweise sind im Falle von unterschiedlichen Fluiden im mikrofluidischen System nach der jeweiligen Funktion des mikrofluidischen Systems nur Teilkanäle über mindestens einen Verbindungskanal miteinander verbunden, die Fluide gleicher Zusammensetzung aufweisen. And also advantageously, in the case of different fluids in the microfluidic system, according to the respective function of the microfluidic system, only partial channels are connected to one another via at least one connecting channel, which have fluids of the same composition.
Vorteilhaft ist es auch, wenn im Inneren eines Verbindungskanals ein um den Faktor 10 bis 100 geringerer Strömungswiderstand realisiert ist, als in den Teilkanälen, die der Verbindungskanal verbindet. It is also advantageous if the flow resistance inside a connecting channel is 10 to 100 times lower than in the sub-channels that the connecting channel connects.
Weiterhin vorteilhaft ist es, wenn die mikrofluidschen Bauteile in mikrofluidische Systeme integriert sind, die aktorische oder sensorische Lab-on-a-Chip Systeme oder Mikrofluidiksysteme sind. It is also advantageous if the microfluidic components are integrated into microfluidic systems that are actuator or sensor lab-on-a-chip systems or microfluidic systems.
Ebenfalls vorteilhaft ist es, wenn das mindestens eine kanalförmige Bauelement und/oder die mindestens zwei Teilkanäle und/oder der mindestens eine Verbindungskanal und/oder die Ein- und/oder Auslässe mindestens teilweise aus Elastomeren, wie Polydimethylsiloxan (PDMS), glasbasierten Mikrofluidsystemen, wie Silizium, Glas, (amorphem) SiO2, Polymeren, wie Cycloolefin-Copolymeren (COC), Epoxidharzen, Acrylharzen, PTFE, PMMA, PC, PS und/oder PEEK, piezoelektrische Materialien, TOPAS, Keramiken, ultradünne und/oder dünne glasartige oder polymere Platten oder Filme und/oder Trockenfotolacken besteht. It is also advantageous if the at least one channel-shaped component and/or the at least two sub-channels and/or the at least one connecting channel and/or the inlets and/or outlets consist at least partially of elastomers such as polydimethylsiloxane (PDMS), glass-based microfluid systems such as silicon, glass, (amorphous) SiO2, polymers such as cycloolefin copolymers (COC), epoxy resins, acrylic resins, PTFE, PMMA, PC, PS and/or PEEK, piezoelectric materials, TOPAS, ceramics, ultra-thin and/or thin glassy or polymeric plates or films and/or dry photoresists.
Mit der erfindungsgemäßen Lösung ist es erstmals möglich, ein mikrofluidisches Bauteil anzugeben, das in mikrofluidischen Systemen Störungen ausgleicht, unterdrückt und/oder beendet und somit mindestens die Hauptfunktion des mikrofluidischen Systems im Wesentlichen störungsfrei gewährleistet. With the solution according to the invention, it is possible for the first time to specify a microfluidic component that compensates for disturbances in microfluidic systems, suppressed and/or terminated, thus ensuring at least the main function of the microfluidic system essentially without disruption.
Erreicht wird dies durch ein mikrofluidisches Bauteil in einem mikrofluidischen System, das mindestens ein kanalförmiges Bauelement aufweist, das mindestens mit einer Öffnung mit dem mikrofluidischen System verbunden ist. This is achieved by a microfluidic component in a microfluidic system that has at least one channel-shaped component that is connected to the microfluidic system at least via an opening.
Das kanalförmige Bauelement ist weiter in mindestens zwei Teilkanäle aufgespalten. Weiter sind die mindestens zwei Teilkanäle durch mindestens einen Verbindungskanal verbunden, der die mindestens zwei Teilkanäle direkt miteinander verbindet. Dabei kann der Verbindungskanal Ein- und/oder Auslässe aufweisen. The channel-shaped component is further split into at least two sub-channels. Furthermore, the at least two sub-channels are connected by at least one connecting channel, which directly connects the at least two sub-channels to one another. The connecting channel can have inlets and/or outlets.
Erfindungsgemäß von Bedeutung ist es, dass im Inneren der Verbindungskanäle ein geringerer Strömungswiderstand realisiert ist, als in den jeweiligen Teilkanälen, die durch den oder die Verbindungskanäle verbunden sind. According to the invention, it is important that a lower flow resistance is realized in the interior of the connecting channels than in the respective sub-channels which are connected by the connecting channel(s).
Ebenso ist erfindungsgemäß, dass die Teilkanäle Ein- und/oder Auslässe aufweisen. It is also according to the invention that the sub-channels have inlets and/or outlets.
In einem mikrofluidischen System müssen funktionelle mikrofluidische Bauteile in der Regel mit kanalförmigen mikrofluidischen Bauelemente verbunden werden und ebenfalls kanalförmige mikrofluidische Bauelemente vom Einlass und zum Auslass des Fluids und anderen Bestandteilen aus und in das mikrofluidische System vorhanden sein. Diese werden im Allgemeinen auch als Mikrofluidkanäle bezeichnet. In a microfluidic system, functional microfluidic components must generally be connected to channel-shaped microfluidic components and channel-shaped microfluidic components must also be present from the inlet and to the outlet of the fluid and other components from and into the microfluidic system. These are also generally referred to as microfluidic channels.
Weiterhin befinden sich innerhalb eines mikrofluidischen Systems Fluide in gasförmiger und/oder flüssiger Form. Die Fluide können definitionsgemäß aber auch Gasblasen, Fluidtropfen und/oder Festkörper enthalten, die im mikrofluidischen System bewegt werden können, oder Mischungen von gasförmigen oder flüssigen Bestandteilen mit Feststoffen, wie Suspensionen, Dispersionen oder Emulsionen, sein. Furthermore, fluids in gaseous and/or liquid form are present within a microfluidic system. By definition, the fluids can also contain gas bubbles, fluid droplets and/or solids that can be moved in the microfluidic system, or can be mixtures of gaseous or liquid components with solids, such as suspensions, dispersions or emulsions.
Vorteilhafterweise weisen die kanalförmigen Bauelemente, die Teilkanäle und/oder die Verbindungskanäle Abmessungen im Mikrometer- und/oder Nanometerbereich auf, noch vorteilhafterweise Abmessungen zwischen 0,1 und 1000 pm. Ebenfalls vorteilhafterweise weisen kanalförmigen Bauelemente Geometrien und/oder Oberflächeneigenschaften der mit dem Fluid in Kontakt befindlichen Oberflächen auf, durch die diese einen Strömungswiderstand zur Ausbildung einer kontinuierlichen und/oder einer laminaren Strömung des Fluids aufweisen. Advantageously, the channel-shaped components, the sub-channels and/or the connecting channels have dimensions in the micrometer and/or nanometer range, even more advantageously dimensions between 0.1 and 1000 pm. Also advantageously, channel-shaped components have geometries and/or surface properties of the surfaces in contact with the fluid, through which they have a flow resistance for forming a continuous and/or laminar flow of the fluid.
Weiterhin vorteilhafterweise ist das mindestens eine kanalförmige Bauelement in 3 bis 5 Teilkanäle aufgespalten. Furthermore advantageously, the at least one channel-shaped component is split into 3 to 5 sub-channels.
Es ist auch vorteilhaft, wenn im Falle von unterschiedlichen Fluiden im mikrofluidischen System nach der jeweiligen Funktion des mikrofluidischen Systems nur Teilkanäle über einen Verbindungskanal miteinander verbunden sind, die Fluide gleicher Zusammensetzung aufweisen. It is also advantageous if, in the case of different fluids in the microfluidic system, only partial channels which have fluids of the same composition are connected to one another via a connecting channel, depending on the respective function of the microfluidic system.
Es ist weiterhin vorteilhaft, wenn der mindestens eine Verbindungskanal Abmessungen im Mikrometer- und/oder Nanometerbereich aufweist, jedoch teilweise geringere Abmessungen seiner Länge und/oder größere Abmessung seiner Querschnittfläche aufweist, als das kanalförmiges Bauelement vor der Auftrennung. It is furthermore advantageous if the at least one connecting channel has dimensions in the micrometer and/or nanometer range, but partially has smaller dimensions of its length and/or larger dimensions of its cross-sectional area than the channel-shaped component before separation.
Durch die Abmessungen des mindestens einen Verbindungskanals und/oder den geringeren Strömungswiderstand im Inneren wird die Strömungsgeschwindigkeit und die damit verbundenen Reibungsverluste an den Verbindungskanalwänden geringer und der Impulsausgleich erheblich kleiner. Due to the dimensions of the at least one connecting channel and/or the lower flow resistance inside, the flow velocity and the associated friction losses on the connecting channel walls are lower and the momentum compensation is considerably smaller.
Eine weitere vorteilhafte Ausgestaltung der erfindungsgemäßen Lösung besteht darin, dass im Inneren eines Verbindungskanals ein um den Faktor 10 - 100 geringerer Strömungswiderstand realisiert ist, als in den Teilkanälen, die der Verbindungskanal verbindet. A further advantageous embodiment of the solution according to the invention is that a flow resistance that is 10 - 100 times lower is realized inside a connecting channel than in the sub-channels that the connecting channel connects.
Und weiterhin vorteilhafterweise sind die mikrofluidschen Bauteile in mikrofluidische Systeme integriert, die aktorische oder sensorische Lab-on-a-Chip Systeme oder Mikrofluidiksysteme sind. And further advantageously, the microfluidic components are integrated into microfluidic systems, which are actuator or sensory lab-on-a-chip systems or microfluidic systems.
Die gewünschte Funktion der mikrofluidischen Systeme erfordert, dass Ein- und Auslässe an den mikrofluidischen Systemen vorhanden sind, die wiederum meist über Verbinder, Kanülen und Schläuche mit Peripheriegeräten zur Flüssigkeitszufuhr, zu Reservoiren oder vor- und/oder nachgelagerten passiven oder aktiven (mikro- )fluidischen Elementen, oder mit Einrichtungen zur Probenentnahme verbunden sind. The desired function of the microfluidic systems requires that inlets and outlets are available on the microfluidic systems, which in turn are usually Connectors, cannulas and tubes connected to peripheral devices for fluid supply, to reservoirs or upstream and/or downstream passive or active (micro-)fluidic elements, or to sampling devices.
Alle diese vor- und nachgelagerten Bauteile in dem mikrofluidischen System und insbesondere die Tropfenbildung an Fluidauslässen und/oder das Vorhandensein von mehr als zwei Ein- und Auslässen des mikrofluidischen Bauteils können Störungen mindestens der Hauptfunktion des mikrofluidischen Systems durch externe Ereignisse, wie Bewegungen und/oder Vibrationen, hervorrufen. Beispielsweise können Bewegungen und Vibrationen Druckschwankungen im mikrofluidischen System verursachen, die aufgrund der geringen Kompressibilität von Fluiden direkt an das Fluid in den mikrofluidischen Systemen weitergegeben werden. Derartige Störungen können Blasen, Verstopfungen, Temperaturschwankungen, Druckschwankungen sein, deren Auswirkungen durch die erfindungsgemäße Lösung ausgeglichen, unterdrückt und/oder beendet werden können. All of these upstream and downstream components in the microfluidic system and in particular the formation of drops at fluid outlets and/or the presence of more than two inlets and outlets of the microfluidic component can cause disruptions to at least the main function of the microfluidic system due to external events such as movements and/or vibrations. For example, movements and vibrations can cause pressure fluctuations in the microfluidic system, which are passed on directly to the fluid in the microfluidic systems due to the low compressibility of fluids. Such disruptions can be bubbles, blockages, temperature fluctuations, pressure fluctuations, the effects of which can be compensated, suppressed and/or stopped by the solution according to the invention.
Solche Störungen durch externe Ereignisse gelangen auch über die Ein- und/oder Auslässe in die kanalartigen mikrofluidischen Bauteile, breiten sich dort über das Fluid aus und wechselwirken mit den Bauteilen durch Reibung an den Bauteilwänden, durch Reibung in der Strömung des Fluids, durch geometrische Streuung, durch den Impulstransfer auf die Strömung des Fluids und/oder durch Impulstransfer auf die Bauteilwände und, sofern vorhanden, auf im Fluid befindliche Partikel. Das Ausgleichen, Unterdrücken und/oder Beenden dieser Störungen im mikrofluidischen Bauteil erfolgt dabei anteilig entsprechend der jeweiligen strömungsmechanischen Widerstände. Die Störungen sind häufig nicht vorhersagbar oder extern kontrollierbar. Such disturbances caused by external events also enter the channel-like microfluidic components via the inlets and/or outlets, spread through the fluid and interact with the components through friction on the component walls, through friction in the flow of the fluid, through geometric scattering, through momentum transfer to the flow of the fluid and/or through momentum transfer to the component walls and, if present, to particles in the fluid. The compensation, suppression and/or termination of these disturbances in the microfluidic component takes place proportionately according to the respective flow-mechanical resistances. The disturbances are often not predictable or externally controllable.
Alle externen Ereignisse, die zu solchen Störungen führen, können sich negativ auf die Strömungsverhältnisse im mikrofluidischen System und in den kanalförmigen Bauelementen auswirken, und können zur Beeinträchtigung der Funktion und sogar zur Fehlfunktion und zum Ausfall der mikrofluidischen Systeme führen. All external events that lead to such disturbances can have a negative impact on the flow conditions in the microfluidic system and in the channel-shaped components, and can lead to impairment of the function and even to malfunction and failure of the microfluidic systems.
Mit der erfindungsgemäßen Lösung ist es nunmehr erstmals möglich, dass mit dem erfindungsgemäßen mikrofluidischen Bauteil solche Störungen, die durch externe Ereignisse oder auch durch interne Ereignisse im mikrofluidischen System, wie beispielsweise in nachgelagerten mikrofluidischen Bauteilen, ausgelöst werden, in den mikrofluidischen Systemen ausgeglichen, unterdrückt und/oder beendet werden können und somit mindestens die Hauptfunktion des mikrofluidischen Systems im Wesentlichen störungsfrei gewährleistet werden kann. With the solution according to the invention, it is now possible for the first time to use the microfluidic component according to the invention to detect such disturbances that are caused by external events or by internal events in the microfluidic system, such as for example in downstream microfluidic components, can be compensated, suppressed and/or terminated in the microfluidic systems and thus at least the main function of the microfluidic system can be ensured essentially without disruption.
Durch die erfindungsgemäße Lösung wird eine gesicherte stabile Arbeitsweise der mikrofluidischen Systeme ermöglicht, insbesondere auch unabhängig von nachgelagerten mikrofluidischen Bauteilen. The solution according to the invention enables a secure, stable operation of the microfluidic systems, in particular independently of downstream microfluidic components.
Durch das erfindungsgemäße mikrofluidische Bauelement kann auch dafür gesorgt werden, dass Störungen durch externe und/oder interne Ereignisse nicht in die Bereiche der mikrofluidischen Systeme gelangen, die für die jeweils gewünschte Funktion der mikrofluidischen Systeme vorhanden sind, sondern sie werden in den erfindungsgemäßen mikrofluidischen Bauteilen ausgeglichen, unterdrückt und/oder beendet. The microfluidic component according to the invention can also ensure that disturbances caused by external and/or internal events do not reach the areas of the microfluidic systems that are present for the respective desired function of the microfluidic systems, but are compensated, suppressed and/or terminated in the microfluidic components according to the invention.
Dazu wird erfindungsgemäß das kanalförmige Bauelement des mikrofluidischen Bauteils nach einem Einlass und/oder vor einem Auslass in mindestens zwei Teilkanäle aufgespalten. Dann werden die mindestens zwei Teilkanäle nach und/oder vor den Ein- und/oder Auslässen des mikrofluidischen Systems über mindestens einen Verbindungskanal direkt miteinander verbunden. Beispielsweise befindet sich in dem Verbindungskanal ein Fluid gleicher Zusammensetzung, wie in den mindestens zwei Teilkanälen, die der Verbindungskanal miteinander verbindet. For this purpose, according to the invention, the channel-shaped component of the microfluidic component is split into at least two sub-channels after an inlet and/or before an outlet. The at least two sub-channels are then directly connected to one another after and/or before the inlets and/or outlets of the microfluidic system via at least one connecting channel. For example, the connecting channel contains a fluid of the same composition as the at least two sub-channels that the connecting channel connects to one another.
Weiterhin kann der Verbindungskanal selbst Ein- und/oder Auslässe aufweisen. Furthermore, the connecting channel itself can have inlets and/or outlets.
Weiterhin kann der Verbindungskanal auch mit einem Gas oder Gasgemisch, wie beispielsweise mit Luft, gefüllt sein, was verhindert, dass Fluid aus den Teilkanälen in den Verbindungskanal eindringt und weiterhin aufgrund der Kompressibilität des Gases oder Gasgemisches Störungen, beispielsweise in Form von Druckschwankungen, ausgleicht, unterdrückt oder beendet. Furthermore, the connecting channel can also be filled with a gas or gas mixture, such as air, which prevents fluid from the sub-channels from penetrating into the connecting channel and further compensates, suppresses or terminates disturbances, for example in the form of pressure fluctuations, due to the compressibility of the gas or gas mixture.
Sollen beispielsweise Partikel von einer Flüssigkeit in einem mikrofluidischen System abgetrennt werden, so ist nach der Trennung der Partikel von der Flüssigkeit mindestens ein Teilkanal für den Austrag der Partikel erforderlich. Für die Flüssigkeit können von der Trennungsstelle von partikelfreier Flüssigkeit und konzentrierter Dispersion zwei Teilkanäle weitergeführt und nachfolgend vor den Auslässen mit einem Verbindungskanal verbunden werden. In diesem Fall befinden sich in den Teilkanälen mit der partikelfreien Flüssigkeit und dem Verbindungskanal jeweils Flüssigkeiten gleicher Zusammensetzung. For example, if particles are to be separated from a liquid in a microfluidic system, at least one partial channel is required for the discharge of the particles after the particles have been separated from the liquid. For the liquid can be from the separation point of particle-free liquid and more concentrated Dispersion continues two sub-channels and are subsequently connected to a connecting channel in front of the outlets. In this case, there are liquids of the same composition in the sub-channels with the particle-free liquid and the connecting channel.
Damit gelangen die negativen Auswirkungen von Druckschwankungen, die beispielsweise durch ein Abtropfen der Flüssigkeit aus einem oder beiden der Teilkanäle entstehen, nicht zu der Stelle im mikrofluidischen System, an der die Trennung der Partikel von der Flüssigkeit erfolgt. This means that the negative effects of pressure fluctuations, which arise, for example, from liquid dripping from one or both of the sub-channels, do not reach the point in the microfluidic system where the particles are separated from the liquid.
Mit der erfindungsgemäßen Lösung kann durch die Aufspaltung in Teilkanäle und durch die Integration von Verbindungskanälen die Struktur der mikrofluidischen Systeme beispielsweise auf Chips im Wesentlichen erhalten bleiben, da für die Herstellung und/oder die Integration in bereits bestehende Systeme nur wenig Platz benötigt wird und keine anderen Herstellungsverfahren erforderlich sind. Die Anpassung peripherer Bauteile und/oder der Einsatz von zusätzlichen Bauteilen, wie Durchflussbegrenzer, ist nicht erforderlich. With the solution according to the invention, the structure of the microfluidic systems, for example on chips, can be essentially retained by splitting into sub-channels and integrating connecting channels, since only little space is required for production and/or integration into existing systems and no other production processes are necessary. The adaptation of peripheral components and/or the use of additional components, such as flow restrictors, is not necessary.
Durch die erfindungsgemäße Lösung wird die Einkopplung von Störungen durch externe oder interne Einflüsse in mikrofluidische Systeme ausgeglichen, unterdrückt oder beendet und die Funktionalität der mikrofluidischen Bauteile der mikrofluidischen Systeme verbessert. Dadurch ist auch ein Medienwechsel oder ein Spülgang des Systems möglich, ohne durch zu hohe Strömungswiderstände einen oder mehrere Ein- und/oder Auslässe zu deaktivieren. Dies ist ebenfalls bei Auftreten von Luftblasen im System der Fall. Auch können größere Fluidvolumina über mehr als zwei Ein- und/oder Auslässe aus oder in unterschiedliche Reservoire ein- und/oder ausgebracht werden. Auch einer Kontamination von verschiedenen Fluiden im mikrofluidischen System wird durch die Vermeidung von Auswirkungen von Störungen auf die Funktion des mikrofluidischen Systems entgegengewirkt. The solution according to the invention compensates for, suppresses or stops the coupling of interference caused by external or internal influences into microfluidic systems and improves the functionality of the microfluidic components of the microfluidic systems. This also makes it possible to change media or rinse the system without deactivating one or more inlets and/or outlets due to excessive flow resistance. This is also the case if air bubbles occur in the system. Larger volumes of fluid can also be introduced and/or discharged from or into different reservoirs via more than two inlets and/or outlets. Contamination of different fluids in the microfluidic system is also counteracted by avoiding the effects of interference on the function of the microfluidic system.
Die erfindungsgemäße Lösung erfordert nur geringe konzeptionelle Veränderungen im Aufbau von mikrofluidischen Systemen, ist ohne Mehraufwand in der Chipfertigung realisierbar und kompatibel mit konventionellen mikrofluidischen Systemen, wie Polymer-Fluidik-Chips, Mikrofluidsystemen auf der Basis von Elastomeren, wie PDMS, oder glasbasierten Mikrofluidsystemen. Ebenso können die erfindungsgemäßen Bauteile auch als Modul in mikrofluidische Systeme eingebaut werden. The solution according to the invention requires only minor conceptual changes in the structure of microfluidic systems, can be implemented without additional effort in chip production and is compatible with conventional microfluidic systems, such as polymer fluidic chips, microfluidic systems based on elastomers, such as PDMS, or glass-based microfluidic systems. Likewise, the components according to the invention can also be installed as a module in microfluidic systems.
Dabei können das mindestens eine kanalförmige Bauelement und/oder die mindestens zwei Teilkanäle und/oder der mindestens eine Verbindungskanal und/oder die Ein- und/oder Auslässe aus Elastomeren, wie Polydimethylsiloxan (PDMS), glasbasierten Mikrofluidsystemen, wie Silizium, Glas, (amorphem) SiC>2, Polymeren, wie Cycloolefin-Copolymeren (COC), Epoxidharzen, Acrylharzen, PTFE, PMMA, PC, PS und/oder PEEK, piezoelektrische Materialien, TOPAS, Keramiken, ultradünne und/oder dünne glasartige oder polymere Platten oder Filme und/oder Trockenfotolacken mindestens teilweise besteht. The at least one channel-shaped component and/or the at least two partial channels and/or the at least one connecting channel and/or the inlets and/or outlets can be made of elastomers, such as polydimethylsiloxane (PDMS), glass-based microfluid systems, such as silicon, glass, (amorphous ) SiC>2, polymers such as cycloolefin copolymers (COC), epoxy resins, acrylic resins, PTFE, PMMA, PC, PS and/or PEEK, piezoelectric materials, TOPAS, ceramics, ultra-thin and/or thin glassy or polymeric plates or films and / or dry photoresists at least partially consists.
Die Herstellung der erfindungsgemäßen mikrofluidischen Bauteils kann mittels bekannter Verfahren, wie Laminieren, Heißpressen, Heißprägen, Tiefziehen, Spritzguss, additiver Fertigungsverfahren, wie Tintenstrahl-, Piezojet- Aerosoljet- Druck, Stereolithografie, Aerosoldruck, 3D-Druck, Lithografie, (Nano-)lmprint- Lithografie, Mikrotechnologie, Mikrokontaktdruck, Waferbonden, Dosiertechnologien, CNC-Bearbeitung, Laserauftragsverfahren, Fräsen und/oder Schleifen erfolgen. The microfluidic component according to the invention can be produced using known processes such as laminating, hot pressing, hot stamping, deep drawing, injection molding, additive manufacturing processes such as inkjet, piezojet, aerosol jet printing, stereolithography, aerosol printing, 3D printing, lithography, (nano) imprinting - Lithography, microtechnology, microcontact printing, wafer bonding, dispensing technologies, CNC processing, laser application processes, milling and/or grinding.
Nachfolgend wird die Erfindung an einem Ausführungsbeispiel näher erläutert. The invention is explained in more detail below using an exemplary embodiment.
Dabei zeigt: It shows:
Fig. 1 eine Prinzipskizze eines erfindungsgemäßen mikrofluidischen Bauteils und Fig. 1 is a schematic sketch of a microfluidic component according to the invention and
Fig. 2 die Prinzipdarstellung der Strömungswiderstände R und VolumenströmeFig. 2 the principle representation of the flow resistances R and volume flows
Q im erfindungsgemäßen mikrofluidischen Bauteil gemäß Fig. 1 Beispiel 1 Q in the microfluidic component according to the invention according to FIG example 1
Ein mikrofluidisches Bauteil zur Trennung von keramischen Partikeln 600 aus Wasser als Fluid besteht aus einem Substrat 100, auf dem das mikrofluidische Bauteil in einem mikrofluidischen System angeordnet ist. Am Einlass 400 vom mikrofluidischen System wird das Wasser-Partikel-Gemisch als Fluid in das kanalförmige Bauelement 300 eingebracht. In einem Einflussgebiet 200, bei dem mechanische Kräfte auf die keramischen Partikel 600 einwirken, findet eine Auftrennung von Wasser und keramischen Partikeln 600 statt. Dann wird das kanalförmige Bauelement 300 am Ort der Aufspaltung 401 in drei Teilkanäle 301 , 302, 303 aufgespalten. Aus einem Teilkanal 301 mit einem Auslass 501 werden die keramischen Partikel 600 aus dem mikrofluidischen System ausgetragen. Über die beiden Teilkanäle 302/304 und 303/305 wird das partikelfreie Wasser aus dem mikrofluidischen System über die Auslässe 502 und 503 ausgetragen. Vor dem Austrag des Wassers sind die mit Wasser gefüllten Teilkanäle 302 und 303 mit einem Verbindungskanal 504 direkt verbunden. A microfluidic component for separating ceramic particles 600 from water as a fluid consists of a substrate 100 on which the microfluidic component is arranged in a microfluidic system. At the inlet 400 of the microfluidic system, the water-particle mixture is introduced as a fluid into the channel-shaped component 300. In an area of influence 200, in which mechanical forces act on the ceramic particles 600, a separation of water and ceramic particles 600 takes place. The channel-shaped component 300 is then split into three sub-channels 301, 302, 303 at the location of the split 401. The ceramic particles 600 are discharged from the microfluidic system from a sub-channel 301 with an outlet 501. The particle-free water is discharged from the microfluidic system via the two sub-channels 302/304 and 303/305 via the outlets 502 and 503. Before the water is discharged, the sub-channels 302 and 303 filled with water are directly connected to a connecting channel 504.
Für das kanalförmige Bauelement 300 betragen die Querschnitts-Abmessungen 300 pm x 50 pm x 1000 pm (Breite x Höhe x Länge) und es weist einen Strömungswiderstand R300 = 3.575419e15 Pa s/m3 auf. For the channel-shaped component 300, the cross-sectional dimensions are 300 pm x 50 pm x 1000 pm (width x height x length) and it has a flow resistance R300 = 3.575419e15 Pa s/m 3 .
Nach der Trennstelle von Wasser und keramischen Partikeln wird das kanalförmige Bauelement 300 an der Aufspaltung 401 in drei Teilkanäle 301 mit den Abmessungen 100 pm x 50 pm x 75 pm (B x H x L) und 302, 303 mit den Abmessungen jeweils 100 pm x 50 pm x 100 pm (B x H x L) aufgetrennt. Die Strömungswiderstände betragen R301 = 1 ,05e15 Pa s/m3, R302 = 1 ,40e15 Pa s/m3 und R303 = 1 ,40e15 Pa s/m3. After the separation point of water and ceramic particles, the channel-shaped component 300 is divided into three sub-channels 301 with the dimensions 100 pm x 50 pm x 75 pm (W x H x L) and 302, 303 with the dimensions 100 pm x 50 pm x 100 pm (W x H x L). The flow resistances are R301 = 1.05e15 Pa s/m 3 , R302 = 1.40e15 Pa s/m 3 and R303 = 1.40e15 Pa s/m 3 .
Der Verbindungskanal 504 hat die Abmessungen 2000 pm x 50 pm x 30 pm (B x H x L) und einen Strömungswiderstand R504 = 1.40e13 Pa s/m3. The connecting channel 504 has the dimensions 2000 pm x 50 pm x 30 pm (W x H x L) and a flow resistance R504 = 1.40e13 Pa s/m 3 .
Der Verbindungskanal 504 weist im Inneren einen in Relation zu R302 und R303 deutlich geringeren Strömungswiderstand auf. The connecting channel 504 has a significantly lower flow resistance inside in relation to R302 and R303.
Nach dem Verbindungskanal 504 befinden sich die Teilkanäle 304 und 305 mit jeweils den Abmessungen 250 pm x 50 pm x 100 pm (B x H x L), die zu den Auslässen 502 und 503 führen und die Strömungswiderstände R304 = R305 = 4.39e14 Pa s/m3 aufweisen. Die Teilkanäle 304 und 305 weisen im Inneren jeweils einen in Relation zu R302 bzw. R303 geringeren und in Relation zur R504 größeren Strömungswiderstand auf. After the connecting channel 504 there are the sub-channels 304 and 305, each with the dimensions 250 pm x 50 pm x 100 pm (W x H x L), which lead to the outlets 502 and 503 and have flow resistances R304 = R305 = 4.39e14 Pa s/m 3 . The sub-channels 304 and 305 each have a lower flow resistance in relation to R302 and R303 and a higher flow resistance in relation to R504.
Durch das Abtropfen des Wassers aus den beiden Auslässen 502 und 503 der zwei Teilkanäle 304 und 305, wird eine Bewegung ausgelöst, die als externe Störung eine Druckschwankung im mikrofluidischen Bauteil verursacht. The dripping of water from the two outlets 502 and 503 of the two partial channels 304 and 305 triggers a movement which, as an external disturbance, causes a pressure fluctuation in the microfluidic component.
Wenn R504 = 1/100 * R302 = 1.40e13 Pa s/m3 ist, dann gleichen sich die Volumenströme Q302 = 2.95e-10 m3/s und Q303 = 2.95e-10 m3/s an und Druckdifferenzen zwischen den Auslässen 502 und 503 verursachen nur noch geringe Unterschiede in den Volumenströmen, d.h. das Verhältnis von Q302 zu Q303 ist 1 . Die Druckschwankungen werden in den Verbindungskanal 504 geleitet und dort auf ein gleiches Druckniveau gebracht, so dass die Druckdifferenz auf Null zurückgeht. If R504 = 1/100 * R302 = 1.40e13 Pa s/m 3 , then the volume flows Q302 = 2.95e-10 m 3 /s and Q303 = 2.95e-10 m 3 /s equalize and pressure differences between the outlets 502 and 503 cause only small differences in the volume flows, ie the ratio of Q302 to Q303 is 1 . The pressure fluctuations are directed into the connecting channel 504 and there brought to an equal pressure level so that the pressure difference returns to zero.
Dadurch gelangen die Druckschwankungen nicht bis zur Auftrennung 401 von Wasser und keramischen Partikeln 600, so dass dort die Strömungsbedingungen nicht geändert und die Trennfunktion und damit die Hauptfunktion des mikrofluidischen Bauteils vollständig realisiert wird. As a result, the pressure fluctuations do not reach the separation 401 of water and ceramic particles 600, so that the flow conditions there are not changed and the separation function and thus the main function of the microfluidic component is fully realized.
Bezugszeichenliste Reference symbol list
100 Substrat 100 substrate
200 Einflussgebiet 200 area of influence
300 kanalförmige Bauelement300 channel-shaped component
301/302/303/304/305 Teilkanäle 301/302/303/304/305 sub-channels
400 Einlass 400 entrance
401 Aufspaltung 401 split
501/502/503 Auslässe 501/502/503 Outlets
504 Verbindungskanal 504 connection channel
600 keramische Partikel600 ceramic particles
R300/R301/R302/R303/R304/R305 Strömungswiderstand der TeilkanäleR300/R301/R302/R303/R304/R305 Flow resistance of the sub-channels
Q302/Q303 Volumenstrom der TeilkanäleQ302/Q303 Volume flow of the sub-channels
R504 Strömungswiderstand des R504 Flow resistance of
Verbindungskanals connection channel

Claims

Patentansprüche Patent claims
1. Mikrofluidisches Bauteil in einem mikrofluidischen System, mindestens enthaltend ein kanalförmiges Bauelement, das mindestens mit einer Öffnung mit dem mikrofluidischen System verbunden ist, wobei das kanalförmige Bauelement in mindestens zwei Teilkanäle aufgespalten ist, und wobei mindestens zwei Teilkanäle direkt durch mindestens einen Verbindungskanal verbunden sind, und wobei der oder die Verbindungskanäle Ein- und/oder Auslässe aufweisen kann, und wobei im Inneren der Verbindungskanäle ein geringerer Strömungswiderstand realisiert ist, als in den jeweiligen Teilkanälen, und wobei die Teilkanäle Ein- und/oder Auslässe aufweisen. 1. Microfluidic component in a microfluidic system, containing at least one channel-shaped component which is connected to the microfluidic system at least with one opening, the channel-shaped component being split into at least two sub-channels, and wherein at least two sub-channels are directly connected by at least one connecting channel , and wherein the connecting channel(s) may have inlets and/or outlets, and wherein a lower flow resistance is realized inside the connecting channels than in the respective sub-channels, and wherein the sub-channels have inlets and/or outlets.
2. Mikrofluidisches Bauteil nach Anspruch 1 , bei dem das oder die kanalförmigen Bauelemente und/oder die Teilkanäle und/oder der oder die Verbindungskanäle Abmessungen im Mikrometer- und/oder Nanometerbereich aufweisen, vorteilhafterweise Abmessungen zwischen 0,1 und 1000 pm aufweisen. 2. Microfluidic component according to claim 1, wherein the channel-shaped component(s) and/or the sub-channels and/or the connecting channel(s) have dimensions in the micrometer and/or nanometer range, advantageously have dimensions between 0.1 and 1000 pm.
3. Mikrofluidisches Bauteil nach Anspruch 1 , bei dem durch die Geometrie und/oder die Oberflächeneigenschaften der mit dem Fluid in Kontakt befindlichen Oberflächen, die kanalförmigen Bauelemente einen Strömungswiderstand zur Ausbildung einer kontinuierlichen und/oder laminaren Strömung des Fluids aufweisen. 3. Microfluidic component according to claim 1, wherein due to the geometry and/or the surface properties of the surfaces in contact with the fluid, the channel-shaped components have a flow resistance for forming a continuous and/or laminar flow of the fluid.
4. Mikrofluidisches Bauteil nach Anspruch 1 , bei dem das mindestens eine kanalförmige Bauteil in 3 bis 5 Teilkanäle aufgespalten ist. 4. Microfluidic component according to claim 1, in which the at least one channel-shaped component is split into 3 to 5 sub-channels.
5. Mikrofluidisches Bauteil nach Anspruch 1 , bei dem im Falle von unterschiedlichen Fluiden im mikrofluidischen System nach der jeweiligen Funktion des mikrofluidischen Systems nur Teilkanäle über mindestens einen Verbindungskanal miteinander verbunden sind, die Fluide gleicher Zusammensetzung aufweisen. 5. Microfluidic component according to claim 1, in which in the case of different fluids in the microfluidic system, depending on the respective function of the microfluidic system, only partial channels are connected to one another via at least one connecting channel, which have fluids of the same composition.
6. Mikrofluidisches Bauteil nach Anspruch 1 , bei dem im Inneren eines Verbindungskanals ein um den Faktor 10 bis 100 geringerer Strömungswiderstand realisiert ist, als in den Teilkanälen, die der Verbindungskanal verbindet. 6. Microfluidic component according to claim 1, in which a flow resistance which is 10 to 100 times lower in the interior of a connecting channel than in the sub-channels which the connecting channel connects is realized.
7. Mikrofluidisches Bauteil nach Anspruch 1 , bei dem die mikrofluidschen Bauteile in mikrofluidische Systeme integriert sind, die aktorische oder sensorische Lab-on-a-Chip Systeme oder Mikrofluidiksysteme sind. 7. Microfluidic component according to claim 1, wherein the microfluidic components are integrated into microfluidic systems that are actuator or sensor lab-on-a-chip systems or microfluidic systems.
8. Mikrofluidisches Bauteil nach Anspruch 1 , bei dem das mindestens eine kanalförmige Bauelement und/oder die mindestens zwei Teilkanäle und/oder der mindestens eine Verbindungskanal und/oder die Ein- und/oder Auslässe mindestens teilweise aus Elastomeren, wie Polydimethylsiloxan (PDMS), glasbasierten Mikrofluidsystemen, wie Silizium, Glas, (amorphem) SiO2, Polymeren, wie Cycloolefin- Copolymeren (COC), Epoxidharzen, Acrylharzen, PTFE, PMMA, PC, PS und/oder PEEK, piezoelektrische Materialien, TOPAS, Keramiken, ultradünne und/oder dünne glasartige oder polymere Platten oder Filme und/oder Trockenfotolacken besteht. 8. Microfluidic component according to claim 1, in which the at least one channel-shaped component and / or the at least two partial channels and / or the at least one connecting channel and / or the inlets and / or outlets are at least partially made of elastomers, such as polydimethylsiloxane (PDMS), glass-based microfluid systems, such as silicon, glass, (amorphous) SiO2, polymers, such as cycloolefin copolymers (COC), epoxy resins, acrylic resins, PTFE, PMMA, PC, PS and/or PEEK, piezoelectric materials, TOPAS, ceramics, ultra-thin and/or thin glass-like or polymeric plates or films and/or dry photoresists.
PCT/EP2023/075287 2022-09-28 2023-09-14 Microfluidic component WO2024068291A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102022125010.5 2022-09-28
DE102022125010.5A DE102022125010A1 (en) 2022-09-28 2022-09-28 Microfluidic component

Publications (1)

Publication Number Publication Date
WO2024068291A1 true WO2024068291A1 (en) 2024-04-04

Family

ID=88143847

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2023/075287 WO2024068291A1 (en) 2022-09-28 2023-09-14 Microfluidic component

Country Status (2)

Country Link
DE (1) DE102022125010A1 (en)
WO (1) WO2024068291A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006020716A1 (en) 2006-05-04 2007-11-15 Technische Universität Dresden Microfluidic-processor for use in e.g. biomedical industry, has integrated polymer network-based units that are interconnected in logical base configuration and controllable over interfaces by superior system
WO2008036083A1 (en) * 2006-09-19 2008-03-27 Vanderbilt University Microfluidic flow cytometer and applications of same
DE102011112638A1 (en) 2011-09-05 2013-03-14 Karlsruher Institut für Technologie Microfluidic chip used for in-vitro simulation of biological processes in small blood vessels during extravasation of tumor cells from human body, has microfluidic channel system including horizontal channel and horizontal chamber
DE102012201714A1 (en) 2012-02-06 2013-08-08 Leibniz-Institut Für Festkörper- Und Werkstoffforschung Dresden E.V. Method for manufacturing micro fluid system used in e.g. medical field, involves providing connecting element with respect to the position on the primary polymer layer
DE102012206042A1 (en) 2012-04-13 2013-10-31 Technische Universität Dresden Method and device for targeted process control in a microfluidic processor with integrated active elements
US20150355165A1 (en) * 2013-06-11 2015-12-10 Euveda Biosciences, Inc. Microfluidic grid-based design for high throughput assays
WO2015195698A1 (en) * 2014-06-16 2015-12-23 Gnubio, Inc. Size alternating injection into drops to facilitate sorting
US20170052107A1 (en) * 2010-11-18 2017-02-23 The Regents Of The University Of California Method and device for high-throughput solution exchange for cell and particle suspensions
US20170136461A1 (en) * 2015-11-13 2017-05-18 International Business Machines Corporation Integrated nanofluidic arrays for high capacity colloid separation
US20210114029A1 (en) * 2017-10-20 2021-04-22 Duke University Devices, systems, and methods for high throughput single cell analysis

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3029135B1 (en) 2005-07-07 2021-03-17 The Regents of the University of California Apparatus for cell culture array
JP4868526B2 (en) 2007-06-08 2012-02-01 公立大学法人首都大学東京 Sample introduction microdevice
US20200353469A1 (en) 2016-04-20 2020-11-12 University Of Virginia Patent Foundation Systems for isolating and transplanting pancreatic islets

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006020716A1 (en) 2006-05-04 2007-11-15 Technische Universität Dresden Microfluidic-processor for use in e.g. biomedical industry, has integrated polymer network-based units that are interconnected in logical base configuration and controllable over interfaces by superior system
WO2008036083A1 (en) * 2006-09-19 2008-03-27 Vanderbilt University Microfluidic flow cytometer and applications of same
US20170052107A1 (en) * 2010-11-18 2017-02-23 The Regents Of The University Of California Method and device for high-throughput solution exchange for cell and particle suspensions
DE102011112638A1 (en) 2011-09-05 2013-03-14 Karlsruher Institut für Technologie Microfluidic chip used for in-vitro simulation of biological processes in small blood vessels during extravasation of tumor cells from human body, has microfluidic channel system including horizontal channel and horizontal chamber
DE102012201714A1 (en) 2012-02-06 2013-08-08 Leibniz-Institut Für Festkörper- Und Werkstoffforschung Dresden E.V. Method for manufacturing micro fluid system used in e.g. medical field, involves providing connecting element with respect to the position on the primary polymer layer
DE102012206042A1 (en) 2012-04-13 2013-10-31 Technische Universität Dresden Method and device for targeted process control in a microfluidic processor with integrated active elements
US20150355165A1 (en) * 2013-06-11 2015-12-10 Euveda Biosciences, Inc. Microfluidic grid-based design for high throughput assays
WO2015195698A1 (en) * 2014-06-16 2015-12-23 Gnubio, Inc. Size alternating injection into drops to facilitate sorting
US20170136461A1 (en) * 2015-11-13 2017-05-18 International Business Machines Corporation Integrated nanofluidic arrays for high capacity colloid separation
US20210114029A1 (en) * 2017-10-20 2021-04-22 Duke University Devices, systems, and methods for high throughput single cell analysis

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NACH P. ABGRALL ET AL., J. MICROMECH. MICROENG., vol. 16, 2006, pages 113 - 121

Also Published As

Publication number Publication date
DE102022125010A1 (en) 2024-03-28

Similar Documents

Publication Publication Date Title
EP0672835B1 (en) Micro fluid diode
DE60208235T2 (en) MICROFLUIDIC DEVICES WITH DISTRIBUTION ENCLOSURES
DE60103924T2 (en) MICROFLUID FLOW RATE DEVICE
DE60033394T2 (en) PNEUMATIC CONTROL OF THE FORMATION AND TRANSPORT OF LIQUID SAMPLES
EP3592463B1 (en) Method for centrifugo-pneumatic switching of liquid
DE10334341A1 (en) Cascaded hydrodynamic focusing in microfluidic channels
EP2531760A1 (en) Micro-fluidic component for manipulating a fluid, and microfluidic chip
DE112005000445T5 (en) Microchemical system
DE60214167T2 (en) Multilayered microfluidic splitter
EP2731721B1 (en) Microfluidic device and method for producing a microfluidic device
DE102011078770A1 (en) Microfluidic device, microfluidic system and method of transporting fluids
DE60201017T2 (en) MICRO-CHANNEL DEVICE AND METHOD
DE102010015161A1 (en) Microfluidic system and method of its operation
DE102012112306A1 (en) Method for connecting components of a microfluidic flow cell
EP1075326B1 (en) Device for transporting liquids along predetermined guideways
EP0672834B1 (en) Micro fluid manipulator
EP2730335A1 (en) Microfluidic peristaltic pump, method and pumping system
DE112021006094T5 (en) Microfluidic chip with coaxially arranged finely tunable capillaries
EP1489404A1 (en) Method for producing a 3-D microscope flowcell
WO2024068291A1 (en) Microfluidic component
DE10135569A1 (en) Micromechanical component used in production of micro-structured pump and/or nozzle has hollow chamber for gaseous and/or liquid medium, and layers made from material having different elastic coefficients
DE102011079698A1 (en) Micro-fluidic device for storing and mixing liquids e.g. water, in lab-on-chip system for environmental or medical analysis, has micro-fluidic channels storing liquid and including hydrophobic or super-hydrophobic surface on inside wall
DE10250406B4 (en) Reaction device and mixing system
DE102005061629B4 (en) Apparatus and method for transporting and forming compartments
DE19611270A1 (en) Micro-mixer for very small volumes of liquids or suspensions