WO2024067852A1 - 一种地面介质探测方法、装置及清洁设备 - Google Patents

一种地面介质探测方法、装置及清洁设备 Download PDF

Info

Publication number
WO2024067852A1
WO2024067852A1 PCT/CN2023/122857 CN2023122857W WO2024067852A1 WO 2024067852 A1 WO2024067852 A1 WO 2024067852A1 CN 2023122857 W CN2023122857 W CN 2023122857W WO 2024067852 A1 WO2024067852 A1 WO 2024067852A1
Authority
WO
WIPO (PCT)
Prior art keywords
medium
cleaning device
demarcation point
preset
exploration mode
Prior art date
Application number
PCT/CN2023/122857
Other languages
English (en)
French (fr)
Inventor
王锦涛
Original Assignee
云鲸智能(深圳)有限公司
云鲸智能创新(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 云鲸智能(深圳)有限公司, 云鲸智能创新(深圳)有限公司 filed Critical 云鲸智能(深圳)有限公司
Publication of WO2024067852A1 publication Critical patent/WO2024067852A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/24Floor-sweeping machines, motor-driven
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4002Installations of electric equipment
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4011Regulation of the cleaning machine by electric means; Control systems and remote control systems therefor
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4013Contaminants collecting devices, i.e. hoppers, tanks or the like
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4061Steering means; Means for avoiding obstacles; Details related to the place where the driver is accommodated
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4094Accessories to be used in combination with conventional vacuum-cleaning devices

Definitions

  • the present application belongs to the technical field of cleaning equipment control, and in particular, relates to a ground medium detection method, device and cleaning equipment.
  • cleaning equipment including sweeping robots detect ground media
  • they detect ground media such as carpets
  • sweeping robots usually detect outside the contour of carpets in existing solutions. This involves the problem that the robot needs to adjust the detection direction by rotating in situ, which reduces the efficiency of sweeping robots in detecting the contour of ground media. Based on this, how to improve the detection efficiency of cleaning equipment for the contour of ground media is a technical problem that needs to be solved urgently.
  • the embodiments of the present application provide a method, device and cleaning equipment for detecting the contour of a ground medium, thereby at least to a certain extent improving the efficiency of the cleaning equipment in detecting the contour of a ground medium.
  • a ground medium contour detection method includes: in response to the cleaning device detecting a preset ground medium, triggering the cleaning device to alternately switch between an inner boundary exploration mode and an outer boundary exploration mode; in the inner boundary exploration mode and the outer boundary exploration mode, controlling the cleaning device to detect medium demarcation points in a predetermined direction to obtain a medium demarcation point set; based on the medium demarcation point set, determining a preset ground medium contour.
  • the cleaning device is triggered to alternately switch between the inner boundary exploration mode and the outer boundary exploration mode, including: if at least one medium demarcation point is detected in the inner boundary exploration mode, the cleaning device is triggered to switch to the outer boundary exploration mode; if at least one medium demarcation point is detected in the outer boundary exploration mode, the cleaning device is triggered to switch to the inner boundary exploration mode.
  • the triggering of the cleaning device to alternately switch between the inner boundary exploration mode and the outer boundary exploration mode includes: if the cleaning device detects an obstacle in the inner boundary exploration mode, the cleaning device is controlled to perform a first predetermined action until a medium demarcation point is detected, thereby triggering the cleaning device to switch to the outer boundary exploration mode; if the cleaning device detects an obstacle in the outer boundary exploration mode, the cleaning device is controlled to perform a second predetermined action until a medium demarcation point is detected, thereby triggering the cleaning device to switch to the inner boundary exploration mode.
  • the cleaning device is controlled to perform a first predetermined action until a medium demarcation point is detected, thereby triggering the cleaning device to switch to the outer boundary exploration mode, including: controlling the cleaning device to rotate in place in a first preset direction until the cleaning device detects a medium demarcation point, thereby triggering the cleaning device to switch to the outer boundary exploration mode; or, controlling the cleaning device to move backward or turn around until the cleaning device detects a medium demarcation point, thereby triggering the cleaning device to switch to the outer boundary exploration mode; wherein the exploration direction of the cleaning device in the outer boundary exploration mode is opposite to the exploration direction of the cleaning device in the inner boundary exploration mode.
  • controlling the cleaning device to detect the medium demarcation point in a predetermined direction includes:
  • the cleaning device In the inner boundary exploration mode, the cleaning device is controlled to move in a first predetermined direction to detect the medium boundary point, and the first predetermined direction includes a clockwise direction or a counterclockwise direction; in the outer boundary exploration mode, the cleaning device is controlled to move in a second predetermined direction to detect the medium boundary point, and the second predetermined direction is opposite to the first predetermined direction.
  • the first angle change of the orientation of the cleaning device is monitored; if the cleaning device fails to detect the medium dividing point, and the first angle change exceeds the first angle threshold, the cleaning device is controlled to rotate in place in the second predetermined direction until the medium dividing point is detected.
  • the method further includes: during the process of the cleaning device rotating in situ according to the second predetermined direction, recording a second angle change of the orientation of the cleaning device; if the second angle change of the cleaning device when detecting the medium demarcation point exceeds a second angle threshold, controlling the cleaning device to rotate in situ according to the first predetermined direction until The medium demarcation point is re-detected and recorded in the medium demarcation point set; or, when the cleaning device rotates in situ according to the second predetermined direction and detects the medium demarcation point, the currently detected medium demarcation point is recorded in the medium demarcation point set, and the cleaning device is controlled to rotate in situ according to the first predetermined direction until the medium demarcation point is re-detected, so as to adjust the exploration direction of the cleaning device and switch to the inner boundary exploration mode.
  • the method also includes: in the inner boundary exploration mode, during the detection process of the cleaning device, monitoring a third angle change of the orientation of the cleaning device; if the cleaning device fails to detect the medium boundary point, and the third angle change exceeds a third angle threshold, controlling the cleaning device to rotate in place in the first predetermined direction until the medium boundary point is detected.
  • the method also includes: during the process of the cleaning device rotating in situ according to the first predetermined direction, recording a fourth angle change of the orientation of the cleaning device; if the fourth angle change of the cleaning device when detecting the medium demarcation point exceeds a fourth angle threshold, controlling the cleaning device to rotate in situ according to the second predetermined direction until the medium demarcation point is re-detected, and recording the re-detected medium demarcation point into the medium demarcation point set; or, when the cleaning device rotates in situ according to the first predetermined direction and detects the medium demarcation point, recording the currently detected medium demarcation point into the medium demarcation point set, and controlling the cleaning device to rotate in situ according to the second predetermined direction until the medium demarcation point is re-detected, so as to adjust the exploration direction of the cleaning device and switch to the outer boundary exploration mode.
  • the controlling the cleaning device to detect the medium demarcation point in a predetermined direction includes: controlling the cleaning device to detect the medium demarcation point in a predetermined direction until the detection of the cleaning device is interrupted, or until the distance between the medium demarcation point detected by the cleaning device and the medium demarcation point detected for the first time is less than a preset distance threshold.
  • the medium demarcation point includes a preset medium demarcation point and a non-preset medium demarcation point
  • the preset medium demarcation point is the medium demarcation point detected by the cleaning device in the inner boundary exploration mode
  • the non-preset medium demarcation point is the medium demarcation point detected by the cleaning device in the outer boundary exploration mode
  • the determining of the preset ground medium profile based on the medium demarcation point set includes: determining the preset ground medium profile based on the preset medium demarcation points in the medium demarcation point set; or determining the preset ground medium profile based on the non-preset medium demarcation points in the medium demarcation point set. or, based on the preset medium demarcation points and the non-preset medium demarcation points in the medium demarcation point set, determining the preset ground medium contour.
  • the preset ground medium contour is determined based on the medium demarcation point set, including: connecting each medium demarcation point in the medium demarcation point set in sequence in the order in which each medium demarcation point in the medium demarcation point set is detected to determine the preset ground medium contour; or, generating convex hull data based on each medium demarcation point in the medium demarcation point set, and determining the preset ground medium contour based on the convex hull data; or, determining the preset ground medium contour by fitting each medium demarcation point in the medium demarcation point set; or, determining the preset ground medium contour by performing graphic matching processing on each medium demarcation point in the medium demarcation point set.
  • the method also includes: if the cleaning device interrupts the detection of the preset ground medium, then based on the set of detected medium boundary points, determining the explored preset ground medium contour; based on the explored preset ground medium contour, exploring the undetected preset ground medium.
  • the exploration of the unexplored preset ground medium based on the explored preset ground medium contour includes: determining the first medium dividing point that was explored for the first time and the second medium dividing point that was explored for the last time on the explored preset ground medium contour, and defining the line between the first medium dividing point and the second medium dividing point as the inner edge line of the unexplored preset ground medium; determining the contour of the explored area of the preset ground medium based on the explored medium dividing point and the inner edge line; and exploring the unexplored preset ground medium based on the contour of the explored area of the preset ground medium.
  • the method also includes: obtaining a preset ground medium contour determined by the cleaning device during the exploration behavior; if there is a common contour line between any two preset ground medium contours, splicing the any two preset ground medium contours to obtain a spliced preset ground medium contour.
  • the detection trajectory of the cleaning device for detecting the medium demarcation point in a predetermined direction includes an arc trajectory.
  • a ground medium contour detection device comprising: a trigger unit for triggering the cleaning device to alternately switch between an inner boundary exploration mode and an outer boundary exploration mode in response to the cleaning device detecting a preset ground medium; a control unit for In the inner boundary exploration mode and the outer boundary exploration mode, the cleaning device is controlled to detect the medium demarcation point in a predetermined direction to obtain a medium demarcation point set; the determination unit is used to determine a preset ground medium contour based on the medium demarcation point set.
  • a computer-readable storage medium characterized in that at least one program code is stored in the computer-readable storage medium, and the at least one program code is loaded and executed by a processor to implement the operations performed by the method described in any one of the first aspects above.
  • a cleaning device comprising one or more processors and one or more memories, wherein at least one program code is stored in the one or more memories, and the at least one program code is loaded and executed by the one or more processors to implement the operations performed by the method described in any one of the first aspects above.
  • the inner boundary exploration mode and the outer boundary exploration mode are switched alternately, and the cleaning device is controlled to detect the medium boundary points in the inner boundary exploration mode and the outer boundary exploration mode according to the predetermined direction.
  • the preset ground medium contour is obtained after data processing of the medium boundary points in the set.
  • the technical solution of the present application can control the cleaning device to detect the ground medium contour during movement. Based on this, the cleaning device reduces the action of rotating in place, which can reduce the invalid detection work of the cleaning device to a certain extent and improve the detection efficiency of the ground medium contour.
  • FIG1 is a schematic diagram showing the structure of a sweeping robot in an embodiment of the present application at different viewing angles
  • FIG2 shows a flow chart of a method for detecting a ground medium contour in an embodiment of the present application
  • FIG3 shows a scene demonstration diagram of a preset ground medium boundary point and a non-preset ground medium point in an embodiment of the present application
  • FIG4 shows a scene demonstration diagram of determining an initial exploration mode of a cleaning device in an embodiment of the present application
  • FIG5 is a scene demonstration diagram showing a control of the cleaning device to detect a medium demarcation point in a predetermined direction in an embodiment of the present application
  • FIG6 shows a scene demonstration diagram of triggering the cleaning device to alternately switch between the inner boundary exploration mode and the outer boundary exploration mode in an embodiment of the present application
  • FIG7 is a scene demonstration diagram showing a situation in which an inner boundary exploration mode and an outer boundary exploration mode are alternately switched when an obstacle is detected in an embodiment of the present application;
  • FIG. 8 shows a scene demonstration diagram for recording a first angle change of the orientation of the cleaning device in an embodiment of the present application.
  • FIG. 9 shows a scene demonstration diagram of controlling the cleaning device to rotate in place according to the first predetermined direction until the medium demarcation point is detected again in an embodiment of the present application.
  • FIG10 is a schematic diagram showing a method of connecting the medium demarcation points in sequence according to the order in which the medium demarcation points in the medium demarcation point set are detected to determine the preset ground medium profile in an embodiment of the present application;
  • FIG11 is a schematic diagram showing a method of generating convex hull data based on each medium demarcation point in the medium demarcation point set and determining the preset ground medium contour based on the convex hull data in an embodiment of the present application;
  • FIG. 12 is a schematic diagram showing a method of determining the preset ground medium profile by fitting each medium demarcation point in the medium demarcation point set in an embodiment of the present application;
  • FIG. 13 is a schematic diagram showing a method of determining the preset ground medium contour by performing pattern matching processing on each medium demarcation point in the medium demarcation point set in an embodiment of the present application;
  • FIG14 shows a flow chart of a method for detecting a ground medium contour in an embodiment of the present application
  • FIG15 is a schematic diagram showing a schematic diagram of splicing any two preset ground medium contours to obtain the spliced preset ground medium contour if there is a common contour line between the two preset ground medium contours in an embodiment of the present application;
  • FIG16 shows a block diagram of a ground medium profile detection device in an embodiment of the present application.
  • FIG. 17 shows a schematic structural diagram of a cleaning device in an embodiment of the present application.
  • step 1, step 2, " are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the order of execution of the indicated technical features.
  • the embodiments of the present application provide a method, device and cleaning device for detecting the contour of a ground medium, wherein the method can be applied to a device capable of intelligent cleaning, which can be a sweeping robot or other intelligent cleaning devices, which is not limited in the present application.
  • FIG. 1 there is shown a schematic diagram of the structure of the sweeping robot in an embodiment of the present application at different viewing angles.
  • Figure 1(a) shows a schematic diagram of the structure of the sweeping robot from an external perspective
  • Figure 1(b) shows a schematic diagram of the structure of the sweeping robot from an upward perspective
  • Figure 1(c) shows a schematic diagram of the internal structure of the sweeping robot from a top-down perspective.
  • a sweeping robot 100 which mainly includes: an ultrasonic sensor 101, a drop sensor 102, a driving wheel 103, a mopping member 104, a universal wheel 105, a distance sensor 106, a collision sensor 107, a dust box 108, a fan 109, a side brush 110, a roller brush 111, a dust suction port 112, etc.
  • the ultrasonic sensor 101 can be used to detect obstacles, specifically, in this application, it can be used to detect a preset ground medium (such as a carpet).
  • the ultrasonic sensor for detecting the preset ground medium is arranged at the bottom of the front end of the cleaning device, as shown in Figure 1 (b).
  • the drop sensor 102 is located at the bottom edge of the main body of the sweeping robot 100, and there can be one or more drop sensors. When the sweeping robot 100 moves to the edge of the ground, the drop sensor 102 can detect that the sweeping robot 100 is at risk of falling from a height, thereby executing a corresponding anti-fall response, such as the sweeping robot 100 stopping moving, or moving away from the falling position.
  • Each driving wheel 103 is provided with a driving wheel motor, and driven by the driving wheel motor, the driving wheel 103 rotates.
  • the driving wheel provides the sweeping robot with power for movement, that is, after the driving wheel 103 rotates, it drives the sweeping robot 100 to move.
  • the driving wheel 103 and the universal wheel 105 cooperate to realize the movement and steering of the sweeping robot 100. After the driving wheel 103 rotates, it can drive the sweeping robot 100 to move forward or backward. By controlling the speed difference between the left and right driving wheels 103, the steering angle of the sweeping robot 100 can be controlled.
  • the sweeping robot 100 is provided with a dust suction device, which includes a dust box 108 and a fan 109.
  • a dust suction device which includes a dust box 108 and a fan 109.
  • the distance sensor 106 can specifically be an infrared ranging sensor, an ultrasonic ranging sensor, a laser ranging sensor or a depth sensor, etc., which can be used to detect the distance from the obstacle to the distance sensor 106.
  • the distance sensor 106 is set on the side of the main body of the sweeping robot, so that the distance value from the obstacle located near the side of the sweeping robot 100 to the distance sensor 106 can be measured by the distance sensor 106.
  • the collision sensor 107 includes a collision shell 107A and a trigger sensor 107B.
  • the collision shell 107A is arranged at the front of the robot body 100, and the collision shell 107A is arranged around the front end and the front part of the side of the robot body 100. Specifically, the collision shell 107A is arranged at the front end of the robot body 100 and the front position of the left and right sides of the robot body 100.
  • the trigger sensor 107B is arranged inside the robot body 100 and behind the collision shell 107A.
  • An elastic buffer such as a spring or a shrapnel, is provided between the collision shell 107A and the robot body 100.
  • the collision shell 107A moves toward the inside of the mobile robot and compresses the elastic buffer. After the collision shell 107A moves a certain distance into the mobile robot, the collision shell 107A contacts the trigger sensor 107B, and the trigger sensor 107B is triggered to generate a collision signal. When the collision sensor 107B is not triggered, it outputs a low-level signal, and the collision signal generated when triggered is a high-level signal. The collision signal can be sent to the controller of the sweeping robot 100 for processing. After hitting the obstacle, the sweeping robot 100 moves away from the obstacle, and under the action of the elastic buffer, the collision shell moves back to its original position. It can be seen that the collision sensor 107 can detect obstacles and play a buffering role after colliding with an obstacle.
  • the cleaning robot 100 may also have other structures, which is not limited in the present application.
  • FIG. 2 which shows a flow chart of a ground medium contour detection method in an embodiment of the present application, specifically including steps 210 to 230 .
  • Step 210 in response to the cleaning device detecting a preset ground medium, triggering the cleaning device to alternately switch between an inner boundary exploration mode and an outer boundary exploration mode.
  • the preset ground medium may be a carpet medium, a special material floor tile medium, a foot mat medium, a crawling mat medium, a mat medium or other ground material medium that requires a cleaning device to detect the contour, and the present application does not limit this.
  • the inner boundary exploration mode may refer to the sensor of the cleaning device for detecting obstacles performing edge exploration of the preset ground medium within the preset ground medium, and during the inner boundary exploration mode, at least fifty percent of the trajectory formed by the orthographic projection of the sensor of the cleaning device for detecting obstacles overlaps with the orthographic projection of the preset ground medium;
  • the outer boundary exploration mode may refer to the sensor of the cleaning device for detecting obstacles performing edge exploration of the preset ground medium within a non-preset ground medium (i.e., outside the preset ground medium), and during the outer boundary exploration mode, at least fifty percent of the trajectory formed by the orthographic projection of the sensor of the cleaning device for detecting obstacles overlaps with the orthographic projection of the non-preset ground medium.
  • the cleaning device can detect the preset ground medium through various technical means.
  • the cleaning device can detect the preset ground medium through sensors (such as ultrasonic sensors, photosensitive sensors, etc.), which is not limited in the present application.
  • the cleaning device can detect the preset ground medium from outside the preset ground medium, and can also detect the preset ground medium from inside the preset ground medium. If the cleaning device detects the preset ground medium from outside the preset ground medium, when the sensor of the cleaning device used to detect obstacles detects the preset ground medium signal, it is considered that the cleaning device has detected the preset ground medium and has reached the edge of the preset ground medium; if the cleaning device detects the preset ground medium from inside the preset ground medium, when the sensor of the cleaning device used to detect obstacles detects the non-preset ground medium signal, it is considered that the cleaning device has detected the non-preset ground medium and has reached the edge of the preset ground medium.
  • the cleaning device when the cleaning device starts to perform the task of detecting the carpet contour from the inside of the carpet, when the sensor of the cleaning device for detecting obstacles detects a non-carpet medium signal, it is considered that the cleaning device has detected the non-carpet medium.
  • the cleaning device reaches the edge of the carpet medium, which triggers the cleaning device to alternately switch between the inner boundary exploration mode and the outer boundary exploration mode to detect the carpet contour; when the cleaning device starts to perform the task of detecting the carpet contour from the outside of the carpet, when the sensor of the cleaning device for detecting obstacles detects a carpet medium signal, it is considered that the cleaning device has detected the carpet medium.
  • the cleaning device reaches the edge of the carpet medium, which triggers the cleaning device to alternately switch between the inner boundary exploration mode and the outer boundary exploration mode to detect the carpet contour.
  • the cleaning device determines the moving route and cleaning trajectory based on the cleaning area map. If the cleaning device is newly purchased, it is necessary to explore the surrounding environment before the cleaning device performs the cleaning task to build an initial cleaning area map. If the preset ground medium contour is not detected when building the cleaning area map, the efficiency of building the cleaning area map can be improved.
  • the cleaning device detects a preset ground medium during movement, if the preset ground medium contour information is included in the ground medium contour detection record of the cleaning device, and the time interval between the time of recording the preset ground medium contour and the current time is less than the preset time length, the preset ground medium contour is not explored; if the preset ground medium contour information is included in the ground medium contour detection record of the cleaning device, and the time interval between the time of recording the preset ground medium contour and the current time is greater than the preset time length, the preset ground medium contour is re-explored.
  • the cleaning device or the preset ground medium may be damaged.
  • the cleaning device may be stuck on the carpet if it moves on it, and if the cleaning device is currently performing a mopping task, the cleaning device may wet the carpet during the mopping process. Therefore, contour detection of special media materials can protect the cleaning device and the preset ground medium material to a certain extent.
  • the cleaning device when the cleaning device detects a preset ground medium during movement, it indicates that the cleaning device has reached the edge of the preset ground medium. At this time, the cleaning device is triggered to alternately switch between the inner boundary exploration mode and the outer boundary exploration mode, and begins to explore the preset ground medium. After determining the position and contour of the preset ground medium based on the exploration results, the cleaning device can update the preset ground medium contour information to the cleaning area map of the sweeping machine. When the cleaning device is planning a travel trajectory or a cleaning trajectory, it can design a detour route or a ground medium cleaning behavior according to the position and contour of the preset ground medium.
  • the cleaning equipment can make special responses to the preset ground media, regularly update the detection records of the preset ground medium contours, and update the detected preset ground medium contours to the cleaning area map. This can avoid repeated detection of the preset ground medium contours by the cleaning equipment to a certain extent, and can also provide high working efficiency of the cleaning equipment.
  • step 220 in the inner boundary exploration mode and the outer boundary exploration mode, the cleaning device is controlled to detect the medium demarcation points in a predetermined direction to obtain a set of medium demarcation points.
  • the medium demarcation point includes a preset medium demarcation point and a non-preset medium demarcation point.
  • the preset medium demarcation point is the medium demarcation point detected by the cleaning device in the inner boundary exploration mode
  • the non-preset medium demarcation point is the medium demarcation point detected by the cleaning device in the outer boundary exploration mode.
  • the preset medium demarcation point is the medium demarcation point determined when the cleaning device detects a non-preset medium signal in the inner boundary exploration mode.
  • the medium demarcation point determined at this time can be the coordinates of the cleaning device when the sensor used by the cleaning device to detect obstacles detects the non-preset ground medium signal, or the coordinates of the cleaning device before the sensor used by the cleaning device to detect obstacles detects the non-preset ground medium signal a predetermined time.
  • the non-preset medium demarcation point is the medium demarcation point determined when the cleaning device detects a preset ground medium signal in the outer boundary exploration mode.
  • the medium demarcation point determined at this time can be the coordinates of the cleaning device when the sensor used by the cleaning device to detect obstacles detects the preset ground medium signal, or the coordinates of the cleaning device before the sensor used by the cleaning device to detect obstacles detects the preset ground medium signal.
  • the sensor for detecting obstacles detects the coordinates of the cleaning device a predetermined time before the preset ground medium signal is detected, wherein, in some embodiments, the coordinates of the cleaning device can be reflected by the coordinates of the sensor for detecting obstacles of the cleaning device.
  • FIG. 3 there is shown a scene demonstration diagram for determining an initial exploration mode of a cleaning device in an embodiment of the present application.
  • point A and point B are the preset medium dividing points, that is, the medium dividing points determined when the cleaning device detects a non-preset medium signal in the inner boundary exploration mode, wherein point A is the coordinate position of the cleaning device when the sensor used to detect obstacles of the cleaning device detects a non-preset ground medium signal, and point B is the coordinate position of the cleaning device before the sensor used to detect obstacles of the cleaning device detects a non-preset ground medium signal for a predetermined time.
  • point C and point D are non-preset medium demarcation points, i.e., medium demarcation points determined when the cleaning device detects a preset ground medium signal in the outer boundary exploration mode.
  • Point C is the coordinate position of the cleaning device when the sensor used to detect obstacles of the cleaning device detects the preset ground medium signal
  • point D is the coordinate position of the cleaning device before the sensor used to detect obstacles of the cleaning device detects the preset ground medium signal for a predetermined time.
  • the cleaning device records the preset medium demarcation point and the non-preset ground medium demarcation point to obtain a set of medium demarcation points, which can make the spacing between the medium demarcation points denser compared to only recording the preset ground medium demarcation points as the set of medium demarcation points or only recording the non-preset medium demarcation points as the set of medium demarcation points, thereby improving the accuracy of the cleaning device in exploring the preset ground medium contour.
  • the cleaning device when the cleaning device receives an instruction to perform contour detection on the preset ground medium (it can be a user through an App or voice reminder or sending a text message, etc., or the cleaning device can spontaneously perform the contour exploration task of the preset ground medium), the cleaning device starts to detect the preset ground medium from outside the preset ground medium, or the cleaning device starts to detect non-preset ground medium from inside the preset ground medium.
  • the cleaning device detects a preset ground medium signal for the first time from outside the preset ground medium
  • the coordinate point of the cleaning device sensor is determined as the first medium demarcation point
  • the cleaning device is triggered.
  • the equipment starts to alternately switch between the inner boundary exploration mode and the outer boundary exploration mode to explore the preset ground medium contour; if the cleaning equipment detects a non-preset ground medium signal from the preset ground medium for the first time, the coordinates of the cleaning equipment sensor are determined as the first medium dividing point, and the cleaning equipment is triggered to alternately switch between the inner boundary exploration mode and the outer boundary exploration mode to explore the preset ground medium contour.
  • the cleaning device if the cleaning device detects a preset ground medium signal from outside the preset ground medium for the first time, the cleaning device is controlled to perform a preset action until a non-preset ground medium is detected, and it is determined that the cleaning device is located at the edge of the preset ground medium.
  • the coordinate point of the cleaning device sensor is determined as the first medium demarcation point and the cleaning device is triggered to start switching between the inner boundary exploration mode and the outer boundary exploration mode to explore the preset ground medium contour; if the cleaning device detects a non-preset ground medium signal from inside the preset ground medium for the first time, the cleaning device is controlled to perform a preset action until the preset ground medium is detected, and it is determined that the cleaning device is located at the edge of the preset ground medium.
  • the coordinate point of the cleaning device sensor is determined as the first medium demarcation point, and the cleaning device is triggered to switch between the inner boundary exploration mode and the outer boundary exploration mode to explore the preset ground medium contour.
  • the preset action includes but is not limited to retreat and rotation actions, as long as the cleaning device can detect the non-preset ground medium signal by performing the preset action after the preset ground medium signal is detected for the first time, or as long as the cleaning device can detect the preset ground medium signal by performing the preset action after the non-preset ground medium signal is detected for the first time.
  • the cleaning device detects a preset ground medium signal or a non-preset ground medium signal for the first time, and detects a non-preset ground medium signal or a preset ground medium signal by executing the preset action, it can be determined that the cleaning device is located at the edge of the preset ground medium.
  • the cleaning device can be triggered to start alternating between the inner boundary exploration mode and the outer boundary exploration mode to explore the preset ground medium contour.
  • the cleaning device can immediately start exploring the preset ground medium contour, or can first determine the initial exploration mode and then start exploring the preset ground medium contour.
  • the cleaning device can determine the initial exploration mode based on preset configuration information, wherein the preset configuration information in the cleaning device can be set to include: the direction of movement of the cleaning device to perform a preset action or detect the first medium demarcation point, the speed (including angular velocity and linear velocity), the orientation of its front end when it is at the edge of a preset ground medium, the signal of the ground medium detected by the obstacle detection sensor, the layout of the surrounding obstacles monitored by the distance sensor or radar, etc.
  • the initial exploration mode includes: right inner boundary exploration mode, right outer boundary exploration mode, left inner boundary exploration mode, and left outer boundary exploration mode, wherein the cleaning device is defined to move to the right of the sensor based on the sensor used by the cleaning device to detect obstacles.
  • the cleaning device is moving rightward, and the cleaning device moving to the left of the sensor is defined as the cleaning device moving leftward.
  • different methods for determining the initial exploration mode can also be designed according to specific circumstances, and the present application does not limit this.
  • FIG. 4 there is shown a scene demonstration diagram for determining an initial exploration mode of a cleaning device in an embodiment of the present application.
  • a sweeping robot in the cleaning equipment is used as an example for explanation, wherein the small black dot E in the figure represents a sensor of the sweeping robot for detecting obstacles (it can also be illustrated as the front end position of the sweeping robot), and 1 represents a preset ground medium.
  • the scenario corresponding to Figure 4(a) is: the sensor used by the sweeping robot to detect obstacles detects a preset ground medium signal outside the preset ground medium 1, and determines the coordinates of the sensor used by the sweeping robot to detect obstacles at this time as the first medium dividing point;
  • the scenario corresponding to Figure 4(b) is: the sensor used by the sweeping robot to detect obstacles detects a non-preset ground medium signal within the preset ground medium, and determines the coordinates of the sensor used by the sweeping robot to detect obstacles at this time as the first medium dividing point.
  • the sweeping robot when the sweeping robot detects the preset ground medium 1, it records the first medium boundary point. After that, the sweeping robot needs to determine the initial exploration mode to detect the preset ground medium 1, and alternately switch between the inner boundary exploration mode and the outer boundary exploration mode to obtain more medium boundary points.
  • the scenario corresponding to Figure 4(c) is: after the sweeping robot detects the first medium dividing point, the right inner boundary exploration mode is determined as the initial exploration mode;
  • the scenario corresponding to Figure 4(d) is: after the sweeping robot detects the first medium dividing point, the left inner boundary exploration mode is determined as the initial exploration mode;
  • the scenario corresponding to Figure 4(e) is: after the sweeping robot detects the first medium dividing point, the left outer boundary exploration mode is determined as the initial exploration mode;
  • the scenario corresponding to Figure 4(f) is: after the sweeping robot detects the first medium dividing point, the right outer boundary exploration mode is determined as the initial exploration mode.
  • the sweeping robot can select the initial exploration mode based on the preset configuration information. For example, when the sweeping robot detects the preset ground medium signal through the sensor and determines that the preset ground medium is detected, as shown in the scene in FIG. 4 (a), the initial exploration mode can be determined in the left inner boundary exploration mode or the right inner boundary exploration mode. Furthermore, the initial exploration mode can be determined in the left inner boundary exploration mode or the right inner boundary exploration mode in combination with the obstacle layout around the cleaning device monitored by the distance sensor or radar.
  • the initial exploration mode is determined in the left outer boundary exploration mode (to stay away from obstacles or obstacles with a relatively dense layout); when the sweeping robot detects a non-preset ground medium signal through a sensor and determines that a preset ground medium is detected, as shown in the scene in Figure 4(b), the initial exploration mode can be determined in the left outer boundary exploration mode or the right outer boundary exploration mode. Furthermore, the initial exploration mode can also be determined in the left inner boundary exploration mode or the right inner boundary exploration mode (to stay away from obstacles or obstacles with a relatively dense layout) in combination with the obstacle layout around the cleaning device monitored by the distance sensor or radar. In this embodiment, the cleaning device can also randomly select the initial exploration mode, which is not limited here.
  • the direction or position of the cleaning device can be adjusted by rotating or moving to adapt to the exploration direction (such as the first preset direction or the second preset direction).
  • the sweeping robot can adjust its own orientation by rotating clockwise to adapt to the inner boundary exploration mode.
  • the initial exploration mode is selected based on the preset configuration information of the cleaning device. This can reduce the ineffective actions of the cleaning device to a certain extent. For example, it can effectively avoid the cleaning device selecting the outer boundary exploration mode as the initial exploration mode when detecting a preset ground medium from outside the preset ground medium. This can reduce the exploration time of the cleaning device to a certain extent, or reduce the possibility of the exploration process being interrupted by surrounding obstacles, thereby improving the exploration efficiency of the cleaning device.
  • controlling the cleaning device to detect the medium demarcation point in a predetermined direction can be specifically implemented as follows:
  • the cleaning device is controlled to move in a first predetermined direction to detect a medium boundary point, and the first predetermined direction includes a clockwise direction or a counterclockwise direction.
  • the cleaning device is controlled to move in a second predetermined direction to detect a medium boundary point, and the second predetermined direction is opposite to the first predetermined direction.
  • FIG. 5 there is shown a scene demonstration diagram of controlling the cleaning device to detect the medium demarcation point in a predetermined direction in an embodiment of the present application.
  • the scene corresponding to Figure 5(a) is: after the sweeping robot detects the first medium boundary point, it will use the right inner boundary exploration mode as the initial exploration mode for exploration, wherein, in the inner boundary exploration mode, the sweeping robot will be controlled to move in a clockwise direction as the first predetermined direction to detect the next medium boundary point; the scene corresponding to Figure 5(b) is: after the sweeping robot detects the After the first medium dividing point, the scene will be detected in the left outer boundary exploration mode as the initial exploration mode. In the outer boundary exploration mode, the sweeping robot will be controlled to move in a counterclockwise direction as the second predetermined direction to detect the next medium dividing point.
  • the cleaning equipment detects the first medium dividing point of the preset ground medium, if it detects in the left inner boundary exploration mode as the initial exploration mode, it will move counterclockwise as the first predetermined direction. If it detects in the right outer boundary exploration mode, it will move clockwise as the second predetermined direction.
  • the cleaning device during the process of the cleaning device detecting the preset ground medium, after detecting the first medium boundary point, it is determined to move in a first predetermined direction in the inner boundary detection mode to detect the medium boundary point, and it is determined to move in a second predetermined direction in the outer boundary detection mode to detect the medium boundary point. Then, in the exploration task of the preset ground medium contour, the cleaning device will always move in the first predetermined direction in the inner boundary exploration mode to detect the medium boundary point, and will always move in the second predetermined direction in the outer boundary exploration mode to detect the medium boundary point.
  • the detection trajectory of the cleaning device for detecting the medium demarcation point in a predetermined direction may include an arc trajectory.
  • the cleaning device in the inner boundary exploration mode and the outer boundary exploration mode, can be controlled to move at a predetermined angular velocity and a predetermined linear velocity so that the cleaning device moves away from and then approaches the edge of a preset ground medium along an arc path to detect the medium boundary point.
  • the route in the first predetermined direction shown in Figure 5(a) can be used as the travel trajectory to detect the next medium boundary point.
  • the exploration trajectory of the cleaning device can be a spiral trajectory; when the cleaning device is controlled to move at a predetermined angular velocity and a predetermined linear velocity, and the angular velocity remains unchanged, the exploration trajectory of the cleaning device is an arc trajectory.
  • different exploration trajectories can also be designed for the cleaning device according to different situations, and the present application does not limit this.
  • the triggering of the cleaning device to alternately switch between the inner boundary exploration mode and the outer boundary exploration mode may be specifically implemented in the following manner:
  • the cleaning device is triggered to switch to the outer boundary exploration mode.
  • the cleaning device is triggered to switch to the inner boundary exploration mode.
  • FIG. 6 a scene demonstration diagram of triggering the cleaning device to alternately switch between the inner boundary exploration mode and the outer boundary exploration mode in an embodiment of the present application is shown.
  • the specific triggering conditions for the cleaning device to switch to the outer boundary exploration mode or the cleaning device to switch to the inner boundary exploration mode are defined, specifically:
  • the cleaning device is triggered to switch to the outer boundary exploration mode. If a medium demarcation point is detected in the outer boundary exploration mode, the cleaning device is triggered to switch to the inner boundary exploration mode.
  • the sweeping robot detects the next medium demarcation point (i.e., the coordinate point of the cleaning device determined when the cleaning device detects a non-preset ground medium) by moving in a clockwise direction as the first predetermined direction in the inner boundary exploration mode, in the current scenario, the sweeping robot will be triggered to switch to the outer boundary exploration mode and move in a counterclockwise direction as the second predetermined direction to detect the next medium demarcation point.
  • the sweeping robot moves in the second predetermined direction counterclockwise in the switched outer boundary exploration mode
  • a medium demarcation point i.e., a coordinate point of the cleaning device determined when the cleaning device detects the preset ground medium
  • the sweeping robot is triggered to switch to the inner boundary exploration mode.
  • the inner boundary exploration mode and the outer boundary exploration mode are repeatedly switched alternately to obtain more medium demarcation points of the preset ground medium.
  • the specific triggering conditions for the cleaning device to switch to the outer boundary exploration mode, or the cleaning device to switch to the inner boundary exploration mode may also include other forms.
  • the cleaning device when multiple medium boundary points are continuously detected in the inner boundary exploration mode, the cleaning device is triggered to switch to the outer boundary exploration mode; when multiple medium boundary points are continuously detected in the outer boundary exploration mode, the cleaning device is triggered to switch to the inner boundary exploration mode.
  • the cleaning device when multiple medium boundary points are continuously detected in the outer boundary exploration mode, the cleaning device is triggered to switch to the inner boundary exploration mode.
  • Figure 6(b) please refer to Figure 6(b).
  • Step 1 Control the cleaning device to move in a first predetermined direction in an inner boundary exploration mode.
  • a sensor of the cleaning device for detecting obstacles detects a non-preset ground medium signal
  • the coordinates of the cleaning device at this time are determined to be a medium demarcation point.
  • Step 2 Control the cleaning device to rotate in situ in a second predetermined direction until the cleaning device is used
  • the obstacle detection sensor detects the preset ground medium signal and adjusts the direction of the front end of the cleaning device to adapt to the exploration of the next medium boundary point in the first predetermined direction in the inner boundary exploration mode.
  • the coordinates of the cleaning device can be recorded as the medium boundary point or not recorded as the medium boundary point.
  • Step 3 Repeat step 1 to detect more media boundary points.
  • the cleaning device After the cleaning device completes the exploration of multiple medium boundary points in the continuous inner boundary exploration mode, it switches to the continuous outer boundary exploration mode to explore multiple medium boundary points.
  • Step 4 Control the cleaning device to move in a second predetermined direction in the outer boundary exploration mode.
  • the sensor of the cleaning device for detecting obstacles detects a preset ground medium signal
  • the coordinates of the cleaning device at this time are determined to be the medium demarcation point.
  • Step 5 Control the cleaning device to rotate in place in a first predetermined direction until the sensor of the cleaning device used to detect obstacles detects a non-preset ground medium signal, and adjust the direction of the front end of the cleaning device to adapt to the exploration of the next medium boundary point in the second predetermined direction in the outer boundary exploration mode.
  • the coordinates of the cleaning device can be recorded as the medium boundary point or not recorded as the medium boundary point.
  • Step 6 Repeat step 4 to detect more media boundary points.
  • the specific triggering conditions for the cleaning device to switch to the outer boundary exploration mode, or the cleaning device to switch to the inner boundary exploration mode are not limited to those listed above, and can be limited according to actual needs.
  • the triggering of the cleaning device to alternately switch between the inner boundary exploration mode and the outer boundary exploration mode may also be implemented as follows:
  • the cleaning device If the cleaning device detects an obstacle in the inner boundary exploration mode, the cleaning device is controlled to perform a first predetermined action until a medium demarcation point is detected, triggering the cleaning device to switch to the outer boundary exploration mode.
  • the cleaning device If the cleaning device detects an obstacle in the outer boundary exploration mode, the cleaning device is controlled to perform a second predetermined action until a medium demarcation point is detected, triggering the cleaning device to switch to the inner boundary exploration mode.
  • controlling the cleaning device to perform the first predetermined action can be implemented in any one of the following two ways:
  • the first method is to control the cleaning device to rotate in place according to a first preset direction until the cleaning device When a medium demarcation point is detected, the cleaning device is triggered to switch to the outer boundary exploration mode.
  • the second method is to control the cleaning device to retreat or turn around and then move forward until the cleaning device detects the medium demarcation point, triggering the cleaning device to switch to the outer boundary exploration mode, wherein the exploration direction of the cleaning device in the outer boundary exploration mode is opposite to the exploration direction of the cleaning device in the inner boundary exploration mode.
  • retreat means that the cleaning device maintains the current orientation of its front end and moves in the direction opposite to the current orientation of its front end; controlling the cleaning device to retreat may be to retreat along the original path of the historical motion trajectory, or to retreat along a straight line, or to retreat along the original path of the historical motion trajectory for a predetermined distance and then to retreat along a straight line.
  • turning around means that the direction of the front end of the cleaning device is rotated 180°; controlling the cleaning device to turn around and then move forward may be to move along the original path of the historical motion trajectory after turning around, or to move along a straight line, or to move along the original path of the historical motion trajectory for a predetermined distance and then to move along a straight line.
  • controlling the cleaning device to perform the second predetermined action can be implemented in any one of the following two ways:
  • the first one is to control the cleaning device to rotate in situ in a second preset direction until the cleaning device detects a medium boundary point, thereby triggering the cleaning device to switch to the inner boundary exploration mode.
  • the second method is to control the cleaning device to move backward or turn around and move forward until the cleaning device detects the medium demarcation point, triggering the cleaning device to switch to the inner boundary exploration mode, wherein the exploration direction of the cleaning device in the outer boundary exploration mode is opposite to the exploration direction of the cleaning device in the inner boundary exploration mode.
  • retreating means that the cleaning device maintains the current orientation of its front end and moves in the direction opposite to the current orientation of its front end; controlling the cleaning device to retreat may be to retreat along the original path of the historical motion trajectory, or to retreat along a straight line, or to retreat along the original path of the historical motion trajectory for a predetermined distance and then to retreat along a straight line.
  • turning around means that the direction of the front end of the cleaning device is rotated 180°; controlling the cleaning device to move forward after turning around may be to move along the original path of the historical motion trajectory after turning around, or to move along a straight line, or to move along the original path of the historical motion trajectory for a predetermined distance and then to move along a straight line.
  • FIG. 7 a scene demonstration diagram showing the cleaning device being triggered to alternately switch between the inner boundary exploration mode and the outer boundary exploration mode when an obstacle is detected in an embodiment of the present application is shown;
  • Figure 7(a)-(d) take the case where a sweeping robot in a cleaning device detects an obstacle in the inner boundary exploration mode as an example, wherein clockwise is used as the first predetermined direction and counterclockwise is used as the second predetermined direction.
  • the scene corresponding to Figure 7(a) is: the scene where the sweeping robot detects an obstacle in the inner boundary exploration mode;
  • the scene corresponding to Figure 7(b) is: when the sweeping robot detects an obstacle in the inner boundary exploration mode, the sweeping robot is controlled to move in the inner boundary exploration mode.
  • the scene corresponding to Figure 7(c) is: when the sweeping robot detects an obstacle in the inner boundary exploration mode, the sweeping robot is controlled to retreat along the original historical motion trajectory until the medium boundary point is detected, and the scene corresponding to Figure 7(d) is: after the sweeping robot detects an obstacle in the inner boundary exploration mode, the sweeping robot is controlled to retreat along the original historical motion trajectory until the medium boundary point is detected, the inner boundary exploration mode of the sweeping robot is switched to the outer boundary exploration mode, and the direction of the sweeping robot is adjusted to adapt to the outer boundary exploration in the second predetermined direction.
  • the inner boundary exploration mode of the sweeping robot is switched to the outer boundary exploration mode by controlling the sweeping robot to retreat along the historical motion trajectory until the medium boundary point is detected, and the outer boundary exploration can be performed directly in the second predetermined direction without adjusting the direction.
  • the cleaning device detects the preset ground medium contour before or after detecting an obstacle
  • the preset ground medium demarcation point can be detected in the following manner:
  • the medium boundary point is detected in a continuous inner boundary exploration mode. Specifically, it can be performed by referring to the above steps 1 to 3.
  • the medium boundary point is detected in a continuous outer boundary exploration mode. Specifically, it can be performed with reference to the above steps 4 to 6.
  • the cleaning device is triggered to switch to the outer boundary exploration mode; if at least one medium demarcation point is detected in the outer boundary exploration mode, the cleaning device is triggered to switch to the inner boundary exploration mode to detect the medium demarcation point.
  • the cleaning device is triggered to switch to the inner boundary exploration mode to detect the medium demarcation point.
  • the exploration mode of the cleaning device before or after detecting an obstacle can determine different exploration methods to explore the medium boundary point according to different situations, and this application does not limit this.
  • switching the inner/outer boundary exploration mode can efficiently avoid the obstacle and prevent the interruption of the cleaning device's exploration behavior due to obstacle obstruction, thereby greatly improving the stability and exploration efficiency of the cleaning device in exploring the ground medium contour.
  • steps 7 to 8 may also be performed:
  • Step 7 monitor a first angle change of the orientation of the cleaning device.
  • Step 8 If the cleaning device fails to detect the medium demarcation point and the first angle change exceeds the first angle threshold, the cleaning device is controlled to rotate in situ along the second predetermined direction until the medium demarcation point is detected.
  • steps 9 and 10 may also be performed:
  • Step 9 When the cleaning device rotates in situ in the second predetermined direction, a second angular change of the orientation of the cleaning device is recorded.
  • Step 10 If the second angle change of the cleaning device when detecting the medium demarcation point exceeds the second angle threshold, the cleaning device is controlled to rotate in situ according to the first predetermined direction until the medium demarcation point is re-detected, and the re-detected medium demarcation point is recorded in the medium demarcation point set; or, when the cleaning device rotates in situ according to the second predetermined direction and detects the medium demarcation point, the currently detected medium demarcation point is recorded in the medium demarcation point set, and the cleaning device is controlled to rotate in situ according to the first predetermined direction until the medium demarcation point is re-detected, so as to adjust the exploration direction of the cleaning device and switch to the inner boundary exploration mode.
  • the third angle change of the orientation of the cleaning device is recorded; if the cleaning device does not detect the medium demarcation point and the third angle change exceeds the third angle threshold, the control The cleaning device rotates in situ according to the first predetermined direction until a medium dividing point is detected.
  • it also includes recording a fourth angular change in the orientation of the cleaning device during the process of the cleaning device rotating in situ according to the first predetermined direction; if the fourth angular change when the cleaning device detects the medium demarcation point exceeds a fourth angular threshold, controlling the cleaning device to rotate in situ according to the second predetermined direction until the medium demarcation point is re-detected, and recording the re-detected medium demarcation point into the medium demarcation point set; or, when the cleaning device rotates in situ according to the first predetermined direction and detects the medium demarcation point, recording the currently detected medium demarcation point into the medium demarcation point set, and controlling the cleaning device to rotate in situ according to the second predetermined direction until the medium demarcation point is re-detected, so as to adjust the exploration direction of the cleaning device and switch to the outer boundary exploration mode.
  • a first angle change of the orientation of the cleaning device is recorded.
  • the specific implementation method can be described in conjunction with FIG. 8 .
  • FIG. 8 there is shown a scene demonstration diagram for recording a first angle change of the orientation of the cleaning device in an embodiment of the present application.
  • the cleaning device is used as an example to explore the medium demarcation point in the second predetermined direction (in this embodiment, the counterclockwise direction) in the outer boundary exploration mode.
  • the front end direction of the cleaning device is taken as direction A
  • the front end direction of the cleaning device is taken as direction B
  • the angle a between direction A and direction B is taken as the first angle variation.
  • the third angle variable of the cleaning device can be recorded in the same way.
  • the first angle threshold, the second angle threshold, the third angle threshold, and the fourth angle threshold may be set to 60°, 90°, or other angles, which are not limited in this application.
  • the second angle change of the orientation of the cleaning device is recorded; if the second angle change of the cleaning device when detecting the medium boundary point exceeds a second angle threshold, the cleaning device is controlled to rotate in situ according to the first predetermined direction until the medium boundary point is re-detected, and the re-detected medium boundary point is recorded in the medium boundary point set.
  • the sweeping robot in the cleaning device detects the outline of the rectangular preset ground medium 1 in the clockwise direction as the first predetermined direction and the counterclockwise direction as the second predetermined direction under the alternating switching between the inner boundary exploration mode and the outer boundary exploration mode.
  • the scenario corresponding to Figure 9(a) is: the sweeping robot fails to detect the medium demarcation point at the corner of the preset ground medium 1 in the outer boundary exploration mode, and the first angle change exceeds the first angle threshold; the scenario corresponding to Figure 9(b) is: the sweeping robot is controlled to rotate in situ according to the second predetermined direction and the medium demarcation point is detected; the scenario corresponding to Figure 9(c) is: when the second angle change exceeds the second angle threshold, the cleaning device is controlled to rotate in situ according to the first predetermined direction and the medium demarcation point is re-detected.
  • the cleaning device when the second angle change of the sweeping robot when detecting the medium boundary point does not exceed the second angle threshold, the cleaning device is controlled to switch to the inner boundary exploration mode to detect the medium boundary point, and the detected medium boundary point is recorded in the medium boundary point set.
  • the cleaning device explores the next medium boundary point in the outer boundary exploration mode according to the second predetermined direction.
  • the sweeping robot has re-detected the non-preset ground medium signal, but the front end of the sweeping robot is facing the inner side of the preset ground medium 1.
  • the sweeping robot can be directly controlled to execute the inner boundary exploration mode, and the sweeping robot can be controlled to perform the exploration of the next medium boundary point in the inner boundary mode according to the first predetermined direction.
  • the trajectory of the cleaning device can be controlled not to deviate too far from the edge of the preset ground medium. For example, if the trajectory of the cleaning device's travel path is controlled to be an arc, if the change in the orientation angle of the cleaning device is not recorded, when the cleaning device is at the corner of a rectangular carpet, an arc with a larger radius may be formed to detect the medium boundary point.
  • the cleaning device detects the preset ground medium profile with accuracy.
  • the cleaning device is controlled to detect the medium demarcation point in a predetermined direction, and the following steps may also be performed:
  • the cleaning device is controlled to detect the medium demarcation point in a predetermined direction until the detection of the cleaning device is interrupted, or until the distance between the medium demarcation point detected by the cleaning device and the medium demarcation point detected for the first time is less than a preset distance threshold, and the detection of the medium demarcation point is stopped.
  • the cleaning device detects obstacles, insufficient power, human factors, etc.
  • the exploration task of the preset ground medium contour will be interrupted, and the detection of the medium demarcation point will be stopped. If the cleaning device is not interrupted in the process of exploring the preset ground medium contour, it is understood that when the distance between the medium demarcation point detected by the cleaning device and the first detected medium demarcation point is less than the preset distance threshold, it means that the cleaning device has returned to the position where the first medium demarcation point was detected, and the exploration path of the preset ground medium has formed a closed loop, that is, the cleaning device has completed the exploration of the preset ground medium.
  • the cleaning robot reaches the position of the first medium dividing point again, which is not limited to the cleaning device must return to the position coincident with the first medium dividing point.
  • the distance between the cleaning device and the first medium dividing point is less than a preset distance threshold, it can also be determined that the cleaning robot has reached the first medium dividing point again.
  • step 230 based on the medium demarcation point set, a preset ground medium profile is determined.
  • the medium demarcation point may include a preset medium demarcation point and a non-preset medium demarcation point.
  • the preset medium demarcation point is a medium demarcation point determined when the cleaning device detects a non-preset ground medium signal in an inner boundary exploration mode.
  • the non-preset medium demarcation point is a medium demarcation point determined when the cleaning device detects a preset ground medium signal in an outer boundary exploration mode.
  • the cleaning device can obtain a set of medium boundary points by controlling the cleaning device to detect medium boundary points in a predetermined direction.
  • determining a preset ground medium profile can be performed in any one of the following three ways:
  • the first one is to determine a preset ground medium profile based on a preset medium demarcation point in the medium demarcation point set.
  • the second method is to determine a preset ground medium contour based on non-preset medium demarcation points in the medium demarcation point set.
  • the third method is to determine a preset ground medium contour based on preset medium demarcation points and non-preset medium demarcation points in the medium demarcation point set.
  • the determination of the preset ground medium profile based on the medium demarcation point set can be implemented in any one of the following four ways:
  • the first one is to connect the medium demarcation points in sequence according to the order in which the medium demarcation points in the medium demarcation point set are detected, so as to determine the preset ground medium contour.
  • FIG. 10 there is shown a schematic diagram of connecting the various medium demarcation points in the medium demarcation point set in sequence according to the order in which the various medium demarcation points are detected to determine the preset ground medium profile in an embodiment of the present application.
  • the cleaning device explores the preset ground medium 1 contour by alternately switching between the inner boundary exploration mode and the outer boundary exploration mode, a set of medium boundary points is obtained, and each medium boundary point is connected in sequence to obtain the preset ground medium contour.
  • the second method is to generate convex hull data based on each medium demarcation point in the medium demarcation point set, and determine the preset ground medium contour based on the convex hull data.
  • FIG. 11 there is shown a schematic diagram of generating convex hull data based on each medium demarcation point in the medium demarcation point set and determining the preset ground medium contour based on the convex hull data in an embodiment of the present application.
  • the third method is to determine the preset ground medium profile by fitting each medium demarcation point in the medium demarcation point set. Specifically, in order to enable those skilled in the art to better understand this embodiment, it will be described below in conjunction with FIG.
  • FIG. 12 there is shown a schematic diagram of determining the preset ground medium profile by fitting each medium demarcation point in the medium demarcation point set in an embodiment of the present application.
  • the cleaning device detects the preset ground medium 1 in the alternate switching inner boundary exploration mode and outer boundary exploration mode. After exploring the contour, a set of medium boundary points is obtained, and each medium boundary point is fitted to obtain a relatively smooth contour of the preset ground medium.
  • the fourth method is to determine the preset ground medium contour by performing graphic matching processing on each medium boundary point in the medium boundary point set, which will be explained below in conjunction with Figure 13.
  • FIG. 13 there is shown a schematic diagram of determining the preset ground medium contour by performing graphic matching processing on each medium boundary point in the medium boundary point set in an embodiment of the present application.
  • the cleaning device obtains a first figure after connecting each medium boundary point or performing convex hull processing on each medium boundary point, and determines the outline of the preset ground medium by calculating the matching degree between the minimum polygon surrounding the first figure and the first figure. For example, when the cleaning device calculates that the matching degree between the minimum rectangle surrounding the first figure and the first figure is 98%, and the matching degree between the minimum trapezoid surrounding the first figure and the first image is 60%, the minimum rectangle is determined to be the outline of the preset ground medium.
  • the contour of the preset ground medium can be obtained by the above three methods, and then the contour of the preset ground medium 1 can be obtained by the graphic matching method, that is, a rectangular contour.
  • the detection record of the preset ground medium includes a set of medium boundary points
  • the medium boundary point set includes preset medium boundary points and non-preset medium boundary points.
  • the matching preset ground medium contour processing method can be determined based on the coordinate recording information of each medium boundary point.
  • the specific contour processing method used is not limited here.
  • the steps shown in FIG. 14 may also be performed.
  • FIG. 14 a flow chart of a method for detecting ground medium contour in an embodiment of the present application is shown. Specifically, steps 1101 to 1102 are included:
  • Step 1101 If the cleaning device interrupts the detection of the preset ground medium, the preset ground medium contour that has been explored is determined based on the detected medium boundary point set.
  • Step 1102 Based on the explored preset ground medium contour, explore the undetected preset ground medium.
  • the cleaning device interrupts the detection of the preset ground medium, the detection of the preset ground medium contour by the cleaning device is incomplete, and the preset ground medium contour obtained is only the contour of a part of the preset ground medium. If there is an area corresponding to the preset ground medium contour that has been explored, it means that the cleaning device has again detected an area of the preset ground medium that has been explored and the contour has been determined, then the preset ground medium contour that has been explored will not be re-explored.
  • the undetected preset ground medium is explored, which can be performed according to step 12 to step 13:
  • Step 12 determining the first medium dividing point that was explored for the first time and the second medium dividing point that was explored for the last time on the preset ground medium contour that has been explored, and defining the line between the first medium dividing point and the second medium dividing point as the inner edge line of the unexplored preset ground medium.
  • Step 13 determining the outline of the explored area of the preset ground medium based on the explored medium boundary point and the inner edge line, and exploring the outline of the unexplored area of the preset ground medium based on the outline of the explored area of the preset ground medium.
  • the detection of the preset ground medium contour may be completed after one, two or more detections. Therefore, if the distance between the first medium dividing point and the second medium dividing point in the detection of the preset ground medium contour is less than the preset distance threshold, it can be considered that the detection of the contour of the preset ground medium is complete.
  • the distance between the first medium dividing point and the second medium dividing point in the detection of the preset ground medium contour is greater than the preset distance threshold, it is necessary to define the line between the first medium dividing point and the second medium dividing point in the detection as the inner edge line of the undetected preset ground medium, determine the contour of the explored area of the preset ground medium based on the explored medium dividing point and the inner edge line, and explore the contour of the undetected area of the preset ground medium based on the contour of the explored area of the preset ground medium.
  • the cleaning device when the cleaning device detects the preset ground medium contour again, it can obtain the preset ground medium contour information that has been explored in the cleaning device, and simultaneously obtain the coordinate information of the first medium demarcation point and the coordinate information of the second medium demarcation point in the inner edge line of the unexplored preset ground medium.
  • the cleaning device can start from the position of the first medium demarcation point or a position near it, and detect the contour of the unexplored area in the preset ground medium again, or start from the position of the second medium demarcation point or a position near it, and detect the contour of the unexplored area in the preset ground medium again. It can be understood that it is also possible to start from any point on the contour of the explored area of the preset ground medium to detect the contour of the unexplored area in the preset ground medium again, and the present application does not limit the exploration starting point of the contour of the unexplored area in the preset ground medium.
  • the cleaning device determines the contour of the explored area of the preset ground medium based on the explored medium demarcation point and the inner edge line; based on the contour of the explored area of the preset ground medium, the unexplored preset ground medium is explored.
  • a specific implementation method may be to start from the first medium demarcation point or the second medium demarcation point position or a position near it, and continue to explore the unexplored preset ground medium through the inner edge line. When the distance between the detected medium demarcation point and the starting coordinate position is less than a preset distance threshold, the detection of the unexplored area in the preset ground medium is completed.
  • the distance between the detected medium demarcation point and the other end of the inner edge line is less than a preset distance threshold, the detection of the contour of the unexplored area in the preset ground medium is completed.
  • the cleaning device may be controlled to avoid the position coordinates of the historically explored area in the new exploration process based on the position coordinates of the historically explored area recorded in the cleaning device, so as to realize the detection of the undetected preset ground medium contour.
  • the following steps 14 and 15 may also be performed:
  • Step 14 obtaining a preset ground medium profile determined by the cleaning device during the exploration behavior
  • Step 15 If there is a common contour line between any two preset ground medium contours, the any two preset ground medium contours are spliced to obtain a spliced preset ground medium contour.
  • the common contour line can be a contour line that completely overlaps between any two preset ground medium contours, or a contour line that fits and overlaps between any two preset ground medium contours, or a contour line between any two preset ground medium contours with a distance less than a preset distance threshold. This application does not limit this.
  • FIG. 15 which shows a schematic diagram of splicing any two preset ground medium contours to obtain the spliced preset ground medium contours if there is a common contour line between the two preset ground medium contours in an embodiment of the present application.
  • area A of the preset ground medium is the area where the cleaning device explores the preset ground medium 1 for the first time
  • area B of the preset ground medium is the area where the cleaning device explores the preset ground medium 1 for the second time
  • point a is the first medium dividing point explored in area A of the preset ground medium
  • point b is the second medium dividing point explored in area A of the preset ground medium
  • point c is the first medium dividing point explored in area B of the preset ground medium
  • point d is the second medium dividing point explored in area B of the preset ground medium
  • the cleaning device explores the preset ground medium 1 for the first time, obtains the set of medium demarcation points of the A region of the preset ground medium, and sequentially connects each medium demarcation point in the order in which each medium demarcation point in the set of medium demarcation points is detected to obtain the contour of the A region of the preset ground medium; the cleaning device explores the preset ground medium 1 for the second time, obtains the set of medium demarcation points of the B region of the preset ground medium, and sequentially connects each medium demarcation point in the order in which each medium demarcation point in the set of medium demarcation points is detected to obtain the contour of the B region of the preset ground medium.
  • the preset ground medium contour determined by the cleaning device during the exploration behavior can be obtained, and the determined preset ground medium contour can be spliced according to the coordinate positions of the first medium dividing point and the second medium dividing point recorded in each detection of the preset ground medium contour.
  • Different splicing methods can also be designed according to situation needs. As long as the determined preset ground medium contour can be spliced, this application is not limited here.
  • the cleaning equipment can perform multiple explorations of the preset ground medium and splice them together if a single exploration is incomplete, thereby ensuring the integrity of the cleaning equipment's exploration of the ground medium contour.
  • the inner boundary exploration mode and the outer boundary exploration mode are alternately switched, and the cleaning device is controlled to detect the medium demarcation point in the inner boundary exploration mode and the outer boundary exploration mode according to the predetermined direction.
  • the medium demarcation point in the set is processed for data to obtain
  • the ground medium contour is preset, and the technical solution of the present application can control the cleaning device to detect the ground medium contour during movement. Based on this, the cleaning device reduces the action of rotating in situ. On the one hand, it can reduce the detection power consumption of the cleaning device to a certain extent, and on the other hand, it can save detection time and improve the detection efficiency of the ground medium contour.
  • the ground medium contour detection device 1600 includes: a trigger unit 1601 , a control unit 1602 , and a determination unit 1603 .
  • the trigger unit 1601 is used to trigger the cleaning device to alternately switch between the inner boundary exploration mode and the outer boundary exploration mode in response to the cleaning device detecting a preset ground medium;
  • the control unit 1602 is used to control the cleaning device to detect the medium demarcation point in a predetermined direction in the inner boundary exploration mode and the outer boundary exploration mode to obtain a medium demarcation point set;
  • the determination unit 1603 is used to determine the preset ground medium contour based on the medium demarcation point set.
  • the trigger unit 1601 also includes: if at least one medium demarcation point is detected in the inner boundary exploration mode, triggering the cleaning device to switch to the outer boundary exploration mode; if at least one medium demarcation point is detected in the outer boundary exploration mode, triggering the cleaning device to switch to the inner boundary exploration mode.
  • control unit 1602 also includes: if the cleaning device detects an obstacle in the inner boundary exploration mode, controlling the cleaning device to perform a first predetermined action until a medium demarcation point is detected, triggering the cleaning device to switch to the outer boundary exploration mode; if the cleaning device detects an obstacle in the outer boundary exploration mode, controlling the cleaning device to perform a second predetermined action until a medium demarcation point is detected, triggering the cleaning device to switch to the inner boundary exploration mode.
  • control unit 1602 also includes: controlling the cleaning device to rotate in place in a first preset direction until the cleaning device detects a medium boundary point, triggering the cleaning device to switch to the outer boundary exploration mode; or, controlling the cleaning device to move backward or turn around until the cleaning device detects a medium boundary point, triggering the cleaning device to switch to the outer boundary exploration mode; wherein the exploration direction of the cleaning device in the outer boundary exploration mode is opposite to the exploration direction of the cleaning device in the inner boundary exploration mode.
  • control unit 1602 also includes: in the inner boundary exploration mode, controlling the cleaning device to move in a first predetermined direction to detect the medium boundary point, the first predetermined direction includes a clockwise direction or a counterclockwise direction; in the outer boundary exploration mode, controlling the cleaning device to move in a second predetermined direction to detect the medium boundary point, the second predetermined direction is opposite to the first predetermined direction.
  • control unit 1602 also includes: in the outer boundary exploration mode, during the detection process of the cleaning device, monitoring a first angle change in the orientation of the cleaning device; if the cleaning device fails to detect a medium boundary point, and the first angle change exceeds a first angle threshold, controlling the cleaning device to rotate in place in the second predetermined direction until a medium boundary point is detected.
  • control unit 1602 also includes: during the process of the cleaning device rotating in situ according to the second predetermined direction, recording a second angle change of the orientation of the cleaning device; if the second angle change of the cleaning device when detecting the medium demarcation point exceeds a second angle threshold, controlling the cleaning device to rotate in situ according to the first predetermined direction until the medium demarcation point is re-detected, and recording the re-detected medium demarcation point into the medium demarcation point set; or, when the cleaning device rotates in situ according to the second predetermined direction and detects the medium demarcation point, recording the currently detected medium demarcation point into the medium demarcation point set, and controlling the cleaning device to rotate in situ according to the first predetermined direction until the medium demarcation point is re-detected, so as to adjust the exploration direction of the cleaning device and switch to the inner boundary exploration mode.
  • control unit 1602 also includes: in the inner boundary exploration mode, during the detection process of the cleaning device, monitoring the third angle change of the orientation of the cleaning device; if the cleaning device fails to detect the medium dividing point, and the third angle change exceeds the third angle threshold, controlling the cleaning device to rotate in place in the first predetermined direction until the medium dividing point is detected.
  • the control unit 1602 also includes: during the process of the cleaning device rotating in situ according to the first predetermined direction, recording a fourth angle change of the orientation of the cleaning device; if the fourth angle change of the cleaning device when detecting the medium demarcation point exceeds a fourth angle threshold, controlling the cleaning device to rotate in situ according to the second predetermined direction until the medium demarcation point is re-detected, and recording the re-detected medium demarcation point into the medium demarcation point set; or, when the cleaning device rotates in situ according to the first predetermined direction and detects the medium demarcation point When the medium boundary point currently detected is recorded in the medium boundary point set, the cleaning device is controlled to rotate in situ according to the second predetermined direction until the medium boundary point is detected again, so as to adjust the exploration direction of the cleaning device and switch to the inner boundary exploration mode.
  • control unit 1602 also includes: controlling the cleaning device to detect the medium dividing point in a predetermined direction until the detection of the cleaning device is interrupted, or until the distance between the medium dividing point detected by the cleaning device and the medium dividing point detected for the first time is less than a preset distance threshold.
  • the control unit 1602 also includes: the medium demarcation point includes a preset medium demarcation point and a non-preset medium demarcation point, the preset medium demarcation point is the medium demarcation point detected by the cleaning device in the inner boundary exploration mode, and the non-preset medium demarcation point is the medium demarcation point detected by the cleaning device in the outer boundary exploration mode.
  • control unit 1602 also includes: determining a preset ground medium contour based on a preset medium demarcation point in the medium demarcation point set; or, determining a preset ground medium contour based on a non-preset medium demarcation point in the medium demarcation point set; or, determining a preset ground medium contour based on a preset medium demarcation point and a non-preset medium demarcation point in the medium demarcation point set.
  • the determining unit 1603 further includes:
  • each medium demarcation point is connected in sequence to determine the preset ground medium contour; or, based on each medium demarcation point in the medium demarcation point set, convex hull data is generated, and the preset ground medium contour is determined based on the convex hull data; or, the preset ground medium contour is determined by fitting each medium demarcation point in the medium demarcation point set; or, the preset ground medium contour is determined by graphic matching each medium demarcation point in the medium demarcation point set.
  • the determination unit 1603 also includes: if the cleaning device interrupts the detection of the preset ground medium, then based on the detected set of medium boundary points, determining the explored preset ground medium contour; based on the explored preset ground medium contour, exploring the undetected preset ground medium.
  • the determining unit 1603 further includes: determining the first medium demarcation point that is first explored and the second medium demarcation point that is last explored on the preset ground medium contour that has been explored, and connecting the first medium demarcation point and the second medium demarcation point.
  • the line is defined as the inner edge line of the unexplored preset ground medium; based on the explored medium boundary point and the inner edge line, the outline of the explored area of the preset ground medium is determined; based on the outline of the explored area of the preset ground medium, the unexplored preset ground medium is explored.
  • the determination unit 1603 also includes: obtaining a preset ground medium contour determined by the cleaning device during the exploration behavior; if there is a common contour line between any two preset ground medium contours, then splicing the any two preset ground medium contours to obtain a spliced preset ground medium contour.
  • the determination unit 1603 further includes: the detection trajectory of the cleaning device detecting the medium demarcation point in a predetermined direction includes an arc trajectory.
  • an embodiment of the present application provides a computer-readable storage medium, in which at least one program code is stored.
  • the at least one program code is loaded and executed by a processor to implement the operations performed by the ground medium contour detection method as described above.
  • an embodiment of the present application also provides a cleaning device.
  • the cleaning device includes one or more memories 1704, one or more processors 1702, and at least one computer program (program code) stored in the memory 1704 and executable on the processor 1702.
  • program code program code
  • bus 1700 may include any number of interconnected buses and bridges, and bus 1700 links various circuits including one or more processors represented by processor 1702 and memory represented by memory 1704. Bus 1700 may also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and are therefore not further described herein.
  • Bus interface 1705 provides an interface between bus 1700 and receiver 1701 and transmitter 1703. Receiver 1701 and transmitter 1703 may be the same element, i.e., a transceiver (e.g., ultrasonic sensor 101, drop sensor 102, distance sensor 106, collision sensor 107, etc., provided in the sweeping robot as shown in FIG. 1 ), providing a unit for communicating with various other devices on a transmission medium.
  • the processor 1702 is responsible for managing the bus 1700 and general processing, while the memory 1704 may be used to store data used by the processor 1702 when performing operations.
  • each functional unit can be integrated into a processing unit, or each unit can exist physically separately, or two or more units can be integrated into one unit.
  • the disclosed technical content can be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the units can be a logical function division. There may be other division methods in actual implementation.
  • multiple units or components can be combined or integrated into another system, or some features can be ignored or not executed.
  • Another point is that the mutual coupling or direct coupling or communication connection shown or discussed can be through some interfaces, indirect coupling or communication connection of units or modules, which can be electrical or other forms.
  • the units described as separate components may or may not be physically separated, and the components of the control device may or may not be physical units, that is, they may be located in one place or distributed in multiple units. Some or all of the units may be selected according to actual needs to achieve the purpose of the present embodiment.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the technical solution of the present application, or the part that contributes to the prior art, or all or part of the technical solution can be embodied in the form of a software product, which is stored in a storage medium and includes several instructions for a computer device (which can be a personal computer, server or network device, etc.) to perform all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage medium includes: U disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), mobile hard disk, magnetic disk or optical disk, etc., which can store program code.

Landscapes

  • Electric Vacuum Cleaner (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

一种地面介质轮廓探测方法、装置及清洁设备,方法包括:响应于清洁设备检测到预设地面介质,触发清洁设备交替切换内边界探索模式和外边界探索模式(210);在内边界探索模式和外边界探索模式下,控制清洁设备按照预定方向探测介质分界点,得到介质分界点集合(220);基于介质分界点集合,确定预设地面介质轮廓(230)。地面介质轮廓探测方法能够提高清洁设备对地面介质轮廓的探测效率。

Description

一种地面介质探测方法、装置及清洁设备 技术领域
本申请属于清洁设备控制技术领域,尤其涉及一种地面介质探测方法、装置及清洁设备。
背景技术
目前,包括扫地机器人在内的清洁设备在对地面介质进行探测的过程中,如果检测到如地毯类的地面介质时,通常需要对这类地面介质进行轮廓探测,比如,扫地机器人在对地面介质进行轮廓探测的过程中,在现有方案中,通常会在地毯轮廓的外侧进行探测,这里就涉及到机器人需要通过原地旋转的动作去调整探测方向,导致扫地机器人对地面介质轮廓的探测效率降低的问题。基于此,如何提高清洁设备对地面介质轮廓的探测效率是亟待解决的技术问题。
发明内容
本申请的实施例提供了一种地面介质轮廓探测方法、装置及清洁设备,进而至少在一定程度上可以提高清洁设备对地面介质轮廓的探测效率。
本申请的其他特性和优点将通过下面的详细描述变得显然,或部分地通过本申请的实践而习得。
根据本申请实施例的第一方面,提供了一种地面介质轮廓探测方法,其特征在于,所述方法包括:响应于所述清洁设备检测到预设地面介质,触发所述清洁设备交替切换内边界探索模式和外边界探索模式;在所述内边界探索模式和外边界探索模式下,控制所述清洁设备按照预定方向探测介质分界点,得到介质分界点集合;基于所述介质分界点集合,确定预设地面介质轮廓。
在本申请的一些实施例中,基于前述方案,所述触发所述清洁设备交替切换内边界探索模式和外边界探索模式,包括:如果在所述内边界探索模式下探测到至少一个介质分界点,则触发所述清洁设备切换至所述外边界探索模式;如果在所述外边界探索模式下探测到至少一个介质分界点,则触发所述清洁设备切换至所述内边界探索模式。
在本申请的一些实施例中,基于前述方案,所述触发所述清洁设备交替切换内边界探索模式和外边界探索模式,包括:如果所述清洁设备在内边界探索模式下检测到障碍物,则控制所述清洁设备执行第一预定动作,直至探测到介质分界点时,触发所述清洁设备切换至所述外边界探索模式;如果所述清洁设备在外边界探索模式下检测到障碍物,则控制所述清洁设备执行第二预定动作,直至探测到介质分界点时,触发所述清洁设备切换至所述内边界探索模式。
在本申请的一些实施例中,基于前述方案,所述控制所述清洁设备执行第一预定动作,直至探测到介质分界点时,触发所述清洁设备切换至所述外边界探索模式,包括:控制所述清洁设备按照第一预设方向原地转动,直至所述清洁设备探测到介质分界点时,触发所述清洁设备切换至所述外边界探索模式;或者,控制所述清洁设备后退或掉头行进,直至所述清洁设备探测到介质分界点时,触发所述清洁设备切换至所述外边界探索模式;其中,所述清洁设备在所述外边界探索模式下的探索方向与所述清洁设备在所述内边界探索模式下的探索方向相反。
在本申请的一些实施例中,基于前述方案,所述在所述内边界探索模式和外边界探索模式下,控制所述清洁设备按照预定方向探测介质分界点,包括:
在所述内边界探索模式下,控制所述清洁设备按照第一预定方向移动,以探测介质分界点,所述第一预定方向包括顺时针方向或逆时针方向;在所述外边界探索模式下,控制所述清洁设备按照第二预定方向移动,以探测介质分界点,所述第二预定方向与所述第一预定方向相反。
在本申请的一些实施例中,基于前述方案,在所述外边界探索模式下,在所述清洁设备的探测过程中,监测所述清洁设备的朝向的第一角度变化量;如果所述清洁设备未探测到介质分界点,且所述第一角度变化量超过第一角度阈值,则控制所述清洁设备按照所述第二预定方向原地转动,直至探测到介质分界点。
在本申请的一些实施例中,基于前述方案,所述方法还包括:在所述清洁设备按照所述第二预定方向原地转动的过程中,记录所述清洁设备的朝向的第二角度变化量;如果所述清洁设备在探测到介质分界点时的第二角度变化量超过第二角度阈值,则控制所述清洁设备按照所述第一预定方向原地转动,直至 重新探测到介质分界点,并将重新探测到的介质分界点记录到所述介质分界点集合;或者,在所述清洁设备按照所述第二预定方向原地转动并探测到介质分界点时,将当前探测到的介质分界点记录到所述介质分界点集合,并控制所述清洁设备按照所述第一预定方向原地转动,直至重新探测到介质分界点,以调整所述清洁设备的探索方向而切换至所述内边界探索模式。
在本申请的一些实施例中,基于前述方案,所述方法还包括:在所述内边界探索模式下,在所述清洁设备的探测过程中,监测所述清洁设备的朝向的第三角度变化量;如果所述清洁设备未探测到介质分界点,且所述第三角度变化量超过第三角度阈值,则控制所述清洁设备按照所述第一预定方向原地转动,直至探测到介质分界点。
在本申请的一些实施例中,基于前述方案,所述方法还包括:在所述清洁设备按照所述第一预定方向原地转动的过程中,记录所述清洁设备的朝向的第四角度变化量;如果所述清洁设备在探测到介质分界点时的第四角度变化量超过第四角度阈值,则控制所述清洁设备按照所述第二预定方向原地转动,直至重新探测到介质分界点,并将重新探测到的介质分界点记录到所述介质分界点集合;或者,在所述清洁设备按照所述第一预定方向原地转动并探测到介质分界点时,将当前探测到的介质分界点记录到所述介质分界点集合,并控制所述清洁设备按照所述第二预定方向原地转动,直至重新探测到介质分界点,以调整所述清洁设备的探索方向而切换至所述外边界探索模式。
在本申请的一些实施例中,基于前述方案,所述控制所述清洁设备按照预定方向探测介质分界点,包括:控制所述清洁设备按照预定方向探测介质分界点,直至所述清洁设备探测中断,或者直至所述清洁设备探测到的介质分界点与首次探测到的介质分界点之间的距离小于预设距离阈值。
在本申请的一些实施例中,基于前述方案,所述介质分界点包括预设介质分界点和非预设介质分界点,所述预设介质分界点为所述清洁设备在内边界探索模式下探测到的介质分界点,所述非预设介质分界点为所述清洁设备在外边界探索模式下探测到的介质分界点。
在本申请的一些实施例中,基于前述方案,所述基于所述介质分界点集合,确定预设地面介质轮廓,包括:基于所述介质分界点集合中的预设介质分界点,确定预设地面介质轮廓;或者,基于所述介质分界点集合中的非预设介 质分界点,确定预设地面介质轮廓;或者,基于所述介质分界点集合中的预设介质分界点和非预设介质分界点,确定预设地面介质轮廓。
在本申请的一些实施例中,基于前述方案,所述基于所述介质分界点集合,确定预设地面介质轮廓,包括:按照所述介质分界点集合中各个介质分界点被探测到的顺序,依次连接各个介质分界点,以确定所述预设地面介质轮廓;或者,基于所述介质分界点集合中的各个介质分界点,生成凸包数据,并基于所述凸包数据确定所述预设地面介质轮廓;或者,通过对所述介质分界点集合中的各个介质分界点进行拟合处理,确定所述预设地面介质轮廓;或者,通过对所述介质分界点集合中的各个介质分界点进行图形匹配处理,确定所述预设地面介质轮廓。
在本申请的一些实施例中,基于前述方案,所述方法还包括:如果所述清洁设备对所述预设地面介质的探测中断,则基于已探测到的所述介质分界点集合,确定已探索的所述预设地面介质轮廓;基于已探索的所述预设地面介质轮廓,对未探测的预设地面介质进行探索。
在本申请的一些实施例中,基于前述方案,所述基于已探索的所述预设地面介质轮廓,对未探测的预设地面介质进行探索,包括:确定已探索的所述预设地面介质轮廓上首次被探索到的第一介质分界点和最后一次被探索到的第二介质分界点,并将所述第一介质分界点和第二介质分界点之间的连线定义为未探索预设地面介质的内边缘线;基于已探索到的介质分界点和所述内边缘线,确定预设地面介质的已探索区域的轮廓;基于所述预设地面介质的已探索区域的轮廓,对未探测的预设地面介质进行探索。
在本申请的一些实施例中,基于前述方案,所述方法还包括:获取所述清洁设备在探索行为中确定的预设地面介质轮廓;如果任意两个预设地面介质轮廓之间存在公共轮廓线,则对所述任意两个预设地面介质轮廓进行拼接,得到拼接后的预设地面介质轮廓。
在本申请的一些实施例中,基于前述方案,所述清洁设备按照预定方向探测介质分界点的探测轨迹包括弧线轨迹。
根据本申请实施例的第二方面,提供了一种地面介质轮廓探测装置,所述装置包括:触发单元,用于响应于所述清洁设备检测到预设地面介质,触发所述清洁设备交替切换内边界探索模式和外边界探索模式;控制单元,用于在所 述内边界探索模式和外边界探索模式下,控制所述清洁设备按照预定方向探测介质分界点,得到介质分界点集合;确定单元,用于基于所述介质分界点集合,确定预设地面介质轮廓。
根据本申请实施例的第三方面,提供了一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有至少一条程序代码,所述至少一条程序代码由处理器加载并执行以实现如上述第一方面任一项所述的方法所执行的操作。
根据本申请实施例的第四方面,提供了一种清洁设备,包括一个或多个处理器和一个或多个存储器,所述一个或多个存储器中存储有至少一条程序代码,所述至少一条程序代码由所述一个或多个处理器加载并执行以实现如上述第一方面任一项所述的方法所执行的操作。
本申请中,在清洁设备对预设地面介质轮廓的探测过程中,采用的是交替切换内边界探索模式和外边界探索模式,并且控制清洁设备在内边界探索模式和外边界探索模式下按照预定方向探测介质分界点,在得到介质分界点集合后,对集合中的介质分界点进行数据处理后得到预设地面介质轮廓,通过本申请的技术方案能控制清洁设备在移动过程中探测地面介质轮廓,基于此,清洁设备减少了原地旋转的动作,能在一定程度上减少清洁设备的无效探测工作,提高对地面介质轮廓的探测效率。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本申请。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本申请的实施例,并与说明书一起用于解释本申请的原理。显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。在附图中:
图1示出了本申请实施例中的扫地机器人在不同视角下的结构示意图;
图2示出了本申请实施例中的地面介质轮廓探测方法的流程图;
图3示出了本申请实施例中的预设地面介质分界点和非预设地面介质点的场景演示图;
图4示出了本申请实施例中的确定清洁设备初始探索模式的场景演示图;
图5示出了本申请实施例中的控制所述清洁设备按照预定方向探测介质分界点的场景演示图;
图6示出了本申请实施例中的触发所述清洁设备交替切换内边界探索模式和外边界探索模式的场景演示图;
图7示出了本申请实施例中的检测到障碍物时触发所述清洁设备交替切换内边界探索模式和外边界探索模式的场景演示图;
图8示出了本申请实施例中的记录所述清洁设备的朝向的第一角度变化量的场景演示图。
图9示出了本申请实施例中的控制所述清洁设备按照所述第一预定方向原地转动,直至重新探测到介质分界点的场景演示图。
图10示出了本申请实施例中的按照所述介质分界点集合中各个介质分界点被探测到的顺序,依次连接各个介质分界点,以确定所述预设地面介质轮廓的示意图;
图11示出了本申请实施例中的基于所述介质分界点集合中的各个介质分界点,生成凸包数据,并基于所述凸包数据确定所述预设地面介质轮廓的示意图;
图12示出了本申请实施例中的通过对所述介质分界点集合中的各个介质分界点进行拟合处理,确定所述预设地面介质轮廓的示意图;
图13示出了本申请实施例中的通过对所述介质分界点集合中的各个介质分界点进行图形匹配处理,确定所述预设地面介质轮廓的示意图;
图14示出了本申请实施例中的地面介质轮廓探测方法的流程图;
图15示出了本申请实施例中的如果任意两个预设地面介质轮廓之间存在公共轮廓线,则对所述任意两个预设地面介质轮廓进行拼接,得到拼接后的预设地面介质轮廓的示意图;
图16示出了本申请实施例中的地面介质轮廓探测装置的框图;
图17示出了本申请实施例中的清洁设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的 实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
此外,所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施例中。在下面的描述中,提供许多具体细节从而给出对本申请的实施例的充分理解。然而,本领域技术人员将意识到,可以实践本申请的技术方案而没有特定细节中的一个或更多,或者可以采用其它的方法、组元、装置、步骤等。在其它情况下,不详细示出或描述公知方法、装置、实现或者操作以避免模糊本申请的各方面。
附图中所示的方框图仅仅是功能实体,不一定必须与物理上独立的实体相对应。即,可以采用软件形式来实现这些功能实体,或在一个或多个硬件模块或集成电路中实现这些功能实体,或在不同网络和/或处理器装置和/或微控制器装置中实现这些功能实体。
附图中所示的流程图仅是示例性说明,不是必须包括所有的内容和操作/步骤,也不是必须按所描述的顺序执行。例如,有的操作/步骤还可以分解,而有的操作/步骤可以合并或部分合并,因此实际执行的顺序有可能根据实际情况改变。
在本申请的描述中,需要理解的是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在本申请的描述中,需要理解的是,术语“步骤1、步骤2、……”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的执行顺序。
下面将结合附图,对本申请的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
本申请实施例提供一种地面介质轮廓探测方法、装置及清洁设备。其中,所述方法可以应用于能智能清洁的设备,该智能清洁设备可以为扫地机器人,还可以是其他智能清洁设备,本申请在此不做限定。
首先,为了使本领域技术人员更好的理解本申请的清洁设备的控制方案,下面将结合图1,以扫地机器人为例,对扫地机器人的结构进行简单说明。
参见图1,示出了本申请实施例中的扫地机器人在不同视角下的结构示意图。
具体的,在图1中,图1(a)示出了扫地机器人在外观视角下的结构示意图,图1(b)示出了扫在仰视视角下的结构示意图,图1(c)示出了扫地机器人在俯视视角下的内部结构示意图。
示例性的,可以将本申请的技术方案应用于扫地机器人100,所述扫地机器人100主要包括:超声波传感器101、跌落传感器102、驱动轮103、拖擦件104、万向轮105、距离传感器106、碰撞传感器107、尘盒108、风机109、边刷110、滚刷111、吸尘口112等。
其中,超声波传感器101可以用于检测障碍物,具体的,在在本申请中可以用于检测预设地面介质(比如地毯)。在一些实施例中,用于检测预设地面介质的超声波传感器设于清洁设备的前端的底部,如图1(b)所示。
跌落传感器102位于扫地机器人100主体的底部边缘,数量可以为一个或多个,当扫地机器人100移动到地面的边缘位置时,通过跌落传感器102可探测出扫地机器100有从高处跌落的风险,从而执行相应的防跌落反应,例如扫地机器人100停止移动、或往远离跌落位置的方向移动等。
每个驱动轮103设有驱动轮电机,在驱动轮电机的带动下,驱动轮103转动。由此,驱动轮向扫地机器人提供移动的动力,即驱动轮103转动后,带动扫地机器人100移动。另一方面,驱动轮103和万向轮105配合可以实现扫地机器人100的移动和转向,驱动轮103转动后可驱动扫地机器人100前移或后移,通过控制左右两个驱动轮103的转速差,可控制扫地机器人100的转向角度。
扫地机器人100设有吸尘装置,吸尘装置包括尘盒108和风机109,当设置在扫地机器人100底部的边刷110和/或滚刷111被启动旋转工作后,转动的边刷110和/或滚刷111将灰尘等垃圾扫到扫地机器人100底部的吸尘口112附近,因风机109的抽吸作用,这些垃圾被吸入吸尘口112,通过吸尘口112进入尘盒108中进行暂存。
距离传感器106具体可以为红外测距传感器、超声波测距传感器、激光测距传感器或者深度传感器等,可用于探测障碍物至距离传感器106的距离,距离传感器106设置在扫地机器人主体的侧面,从而通过距离传感器106可测出位于扫地机器人100侧面附近的障碍物至距离传感器106的距离值。
碰撞传感器107包括碰撞壳体107A和触发传感器107B。碰撞壳体107A设置在机器人主体100的前部,碰撞壳体107A围绕机器人主体100的前端和侧边的前部设置。具体来说,碰撞壳体107A设置在机器人主体100的前端和机器人主体100的左右两侧的靠前位置。触发传感器107B设置在机器人主体100内部且位于碰撞壳体107A之后。在碰撞壳体107A和机器人主体100之间设有弹性缓冲件,如弹簧或弹片等。当移动机器人通过碰撞壳体107A与障碍物碰撞时,碰撞壳体107A向移动机器人内部移动,且压缩弹性缓冲件。在碰撞壳体107A向移动机器人内部移动一定距离后,碰撞壳体107A与触发传感器107B接触,触发传感器107B被触发产生碰撞信号,碰撞传感器107B不被触发时输出低电平信号,被触发产生的碰撞信号为高电平信号,该碰撞信号可发送到扫地机器人100控制器进行处理。在碰完障碍物后,扫地机器人100远离障碍物,在弹性缓冲件的作用下,碰撞壳体移回原位。可见,碰撞传感器107可对障碍物进行检测,以及当碰撞到障碍物后,起到缓冲作用。
可以理解的是,所述扫地机器人100还可以为其他结构,本申请在此不做限定。
参见图2,示出了本申请实施例中的地面介质轮廓探测方法的流程图,具体包括步骤210至步骤230。
步骤210,响应于所述清洁设备检测到预设地面介质,触发所述清洁设备交替切换内边界探索模式和外边界探索模式。
在本申请中,预设地面介质可以为地毯介质、特殊材质地砖介质、脚垫介质、爬爬垫介质、凉席介质或者其他需要清洁设备探测轮廓的地面材质介质,本申请在此不做限定。
在本申请的一个实施例中,内边界探索模式可以是指所述清洁设备用于检测障碍物的传感器于预设地面介质内对预设地面介质进行沿边探索,在内边界探索模式的过程中,清洁设备的用于检测障碍物的传感器的正投影形成的轨迹至少百分之五十与预设地面介质的正投影重合;对应的,外边界探索模式可以是指所述清洁设备用于检测障碍物的传感器于非预设地面介质内(即预设地面介质外)对预设地面介质进行沿边探索,在外边界探索模式的过程中,清洁设备的用于检测障碍物的传感器的正投影形成的轨迹的至少百分之五十与非预设地面介质的正投影重合。
在本申请中,清洁设备可以通过多种技术手段来检测预设地面介质,比如,清洁设备可以通过传感器(如超声波传感器、光敏传感器等)来检测预设地面介质,本申请在此不做限定。
需要说明的是,本申请中清洁设备可以从预设地面介质外检测预设地面介质,也可以从预设地面介质内检测预设地面介质。如果清洁设备从预设地面介质外检测预设地面介质,当清洁设备用于检测障碍物的传感器探测到预设地面介质信号则认为所述清洁设备检测到预设地面介质,且已经到达预设地面介质边缘;如果清洁设备从预设地面介质内检测预设地面介质,当清洁设备用于检测障碍物的传感器检测到非预设地面介质信号,则认为清洁设备已检测到非预设地面介质,且已经到达预设地面介质边缘。
示例性的,以地毯为预设地面介质来说明,当清洁设备从地毯内开始执行对地毯轮廓的探测任务时,在清洁设备用于检测障碍物的传感器探测到非地毯介质信号时,认为清洁设备已经检测到非地毯介质,此时清洁设备到达地毯介质边缘,则触发所述清洁设备交替切换内边界探索模式和外边界探索模式对地毯轮廓进行探测;当清洁设备从地毯外开始执行对地毯轮廓的探测任务时,在清洁设备用于检测障碍物的传感器探测到地毯介质信号时,认为清洁设备已经检测到地毯介质,此时清洁设备到达地毯介质边缘,则触发所述清洁设备交替切换内边界探索模式和外边界探索模式对地毯轮廓进行探测。
在本申请中,如果清洁设备当前正处于构建清洁区域地图的状态,在移动过程中检测到预设地面介质,则不对所述预设地面介质进行轮廓探索。可以理解的是,清洁设备是根据清洁区域地图来确定移动路线以及清洁轨迹的,如果清洁设备是新购置的,在清洁设备执行清洁任务之前,需要先对周边环境进行探索,以构建初始的清洁区域地图,如果在构建清洁区域地图中不对预设地面介质轮廓进行探测,能提高清洁区域地图的构建效率。
在本申请中,当所述清洁设备在移动过程中检测到预设地面介质时,如果在所述清洁设备的地面介质轮廓探测记录中有所述预设地面介质轮廓信息,且记录所述预设地面介质轮廓的时间与当前时间的时间间隔小于预设时长,则不对所述预设地面介质轮廓进行探索;如果在所述清洁设备的地面介质轮廓探测记录中有所述预设地面介质轮廓信息,且记录所述预设地面介质轮廓的时间与当前时间的时间间隔大于预设时长,则对所述预设地面介质轮廓进行重新探索。
在本申请中,清洁设备在移动或者在执行清洁任务的过程中,如果遇到预设地面介质而不对预设地面介质进行特殊应对,可能会出现清洁设备或者预设地面介质损坏的情况。比如,当预设地面介质为地毯时,如果清洁设备在地毯上移动可能会被地毯卡死,如果清洁设备当前正在执行拖地任务,则清洁设备在拖地过程中可能会弄湿地毯,因此对特殊介质材质进行轮廓探测能在一定程度上保护所述清洁设备和所述预设地面介质材质。
在本申请中,当清洁设备在移动过程中检测到预设地面介质时,说明清洁设备已经到达预设地面介质的边缘。此时,触发所述清洁设备交替切换内边界探索模式和外边界探索模式,开始对预设地面介质进行探索,基于探索结果来确定预设地面介质的位置以及轮廓之后,所述清洁设备可以将所述预设地面介质轮廓信息更新至扫地机器的清洁区域地图中,当所述清洁设备在规划行进轨迹或者清洁轨迹时,即可根据预设地面介质的位置以及轮廓设计规避绕行路线或清洁地面介质行为。
可以理解的是,清洁设备的工作环境是动态的,通过本申请所提供的技术方案,清洁设备可以对预设地面介质进行特殊应对,定期更新对预设地面介质轮廓的探测记录,并将探测到的预设地面介质轮廓更新至清洁区域地图,在一定程度上能避免清洁设备对预设地面介质轮廓的重复探测,也能提供高清洁设备的工作效率。
继续参见图2,步骤220,在所述内边界探索模式和外边界探索模式下,控制所述清洁设备按照预定方向探测介质分界点,得到介质分界点集合。
在本申请中,所述介质分界点包括预设介质分界点和非预设介质分界点,所述预设介质分界点为所述清洁设备在内边界探索模式下探测到的介质分界点,所述非预设介质分界点为所述清洁设备在外边界探索模式下探测到的介质分界点。
需要说明的是,所述预设介质分界点为所述清洁设备在内边界探索模式下探测到非预设介质信号时确定的介质分界点,此时确定的介质分界点可以为清洁设备用于检测障碍物的传感器探测到非预设地面介质信号时清洁设备的坐标,或清洁设备用于检测障碍物的传感器探测到非预设地面介质信号预定时间之前清洁设备的坐标,所述非预设介质分界点为所述清洁设备在外边界探索模式下探测到预设地面介质信号时确定的介质分界点,此时确定的介质分界点可以为清洁设备用于检测障碍物的传感器探测到预设地面介质信号时清洁设备的坐标,或清洁设备 用于检测障碍物的传感器探测到预设地面介质信号预定时间之前清洁设备的坐标,其中,在一些实施方式中,所述清洁设备的坐标可以通过所述清洁设备用于检测障碍物的传感器的坐标来体现。
为了使本领域技术人员更好的理解本实施例,下面将结合图3进行举例说明。
参见图3,示出了本申请实施例中的确定清洁设备初始探索模式的场景演示图。
如图3所示,以清洁设备对预设地面介质1进行轮廓探测为例,A点和B点为预设介质分界点,即清洁设备在内边界探索模式下探测到非预设介质信号时确定的介质分界点,其中,A点为清洁设备用于检测障碍物的传感器探测到非预设地面介质信号时清洁设备的坐标位置,B点为清洁设备用于检测障碍物的传感器探测到非预设地面介质信号预定时间之前清洁设备的坐标位置。
继续参见图3,C点和D点为非预设介质分界点,即清洁设备在外边界探索模式下探测到预设地面介质信号时确定的介质分界点。其中C点为清洁设备用于检测障碍物的传感器探测到预设地面介质信号时清洁设备的坐标位置,D点为清洁设备用于检测障碍物的传感器探测到预设地面介质信号预定时间之前清洁设备的坐标位置。
需要说明的是,本申请以下实施例均以清洁设备用于检测障碍物的传感器探测到非预设地面介质信号时清洁设备的坐标为预设介质分界点,清洁设备用于检测障碍物的传感器探测到预设地面介质信号时清洁设备的坐标为非预设介质分界点为例进行说明。需要说明的是,清洁设备在对预设地面介质探测的过程中,记录预设介质分界点和非预设地面介质分界点,以得到介质分界点集合,与只记录预设地面介质分界点作为介质分界点集合或只记录非预设介质分界点作为介质分界点集合相对比,能使得介质分界点的间距更为密集,进而提高所述清洁设备对预设地面介质轮廓探索的精准度。
在本申请中,当清洁设备接收到对所述预设地面介质进行轮廓探测的指令(可以是用户通过App或者语音提醒或者发送短信等,也可以是清洁设备自发执行对预设地面介质的轮廓探索任务)后,清洁设开始从预设地面介质外检测预设地面介质,或者,清洁设备开始从预设地面介质内检测非预设地面介质。
在一些实施例中,如果清洁设备从预设地面介质外第一次探测到预设地面介质信号,此时将清洁设备传感器的坐标点确定为第一介质分界点,并触发清洁设 备开始交替切换内边界探索模式和外边界探索模式进行预设地面介质轮廓的探索;如果清洁设备从预设地面介质内第一次探测到非预设地面介质信号,此时将清洁设备传感器的坐标确定为第一介质分界点,并触发清洁设备交替切换内边界探索模式和外边界探索模式进行预设地面介质轮廓的探索。
在另一些实施例中,如果清洁设备从预设地面介质外第一次探测到预设地面介质信号,则通过控制清洁设备执行预设的动作直至检测到非预设地面介质,则确定清洁设备位于预设地面介质边缘,此时将清洁设备传感器的坐标点确定为第一介质分界点并触发清洁设备开始交替切换内边界探索模式和外边界探索模式进行预设地面介质轮廓的探索;如果清洁设备从预设地面介质内第一次探测到非预设地面介质信号,则通过控制清洁设备执行预设的动作直至检测到预设地面介质,则确定清洁设备位于预设地面介质边缘,此时将清洁设备传感器的坐标确定为第一介质分界点,并触发清洁设备交替切换内边界探索模式和外边界探索模式进行预设地面介质轮廓的探索。其中,预设的动作包括但不限于后退、旋转动作,只要能使清洁设备在第一次探测到预设地面介质信号后,通过执行该预设的动作检测到非预设地面介质信号,或只要能使清洁设备在第一次探测到非预设地面介质信号后,通过执行该预设的动作检测到预设地面介质信号即可。当清洁设备在第一次探测到预设地面介质信号或非预设地面介质信号后,通过执行该预设的动作检测到非预设地面介质信号或预设地面介质信号时,即可判定清洁设备位于预设地面介质边缘,此时可触发清洁设备开始交替切换内边界探索模式和外边界探索模式进行预设地面介质轮廓的探索。
可以理解的是,所述触发清洁设备交替切换内边界探索模式和外边界探索模式之后,所述清洁设备可立即开始对预设地面介质轮廓进行探索,也可以先确定初始探索模式后再开始对预设地面介质轮廓进行探索。
在一些实施例中,清洁设备可以根据预设配置信息确定初始探索模式,其中,清洁设备中的预设配置信息可以设置为包括:清洁设备执行预设的动作或探测第一介质分界点的运动方向、速度(包括角速度和线速度)、位于预设地面介质边缘时其前端的朝向、检测障碍物传感器检测到的地面介质的信号、距离传感器或雷达监测到的周围的障碍物布局情况等。初始探索模式包括:向右内边界探索模式,向右外边界探索模式,向左内边界探索模式,向左外边界探索模式,其中,以清洁设备用于检测障碍物的传感器为基准,清洁设备向传感器的右边行进定义 为清洁设备向右,清洁设备向传感器的左边行进定义为清洁设备向左。在本申请中,也可以根据具体情况设计不同确定初始探索模式的方法,本申请在此不做限定。
具体的,为了使本领域技术人员更好的理解本实施方式,下面将结合图4来说明。
参见图4,示出了本申请实施例中的确定清洁设备初始探索模式的场景演示图。
如图4(a)-(f),以清洁设备中的扫地机器人为例来进行说明,其中,图示中小黑点E表示扫地机器人用于检测障碍物的传感器(也可以示意为扫地机器人的前端位置),1表示预设地面介质。
图4(a)对应的场景为:扫地机器人用于检测障碍物的传感器在预设地面介质1外探测到预设地面介质信号,并将此时扫地机器人用于检测障碍物的传感器的坐标确定为第一介质分界点的场景;图4(b)对应的场景为:扫地机器人用于检测障碍物的传感器在预设地面介质内探测到非预设地面介质信号,并将此时扫地机器人用于检测障碍物的传感器的坐标确定为第一介质分界点。
需要说明的是,当所述扫地机器人检测到预设地面介质1时,则记录第一介质分界点,在此之后,所述扫地机器人需要确定初始探索模式以探测预设地面介质1,并交替切换内边界探索模式和外边界探索模式获取更多的介质分界点。
继续参照图4,图4(c)对应的场景为:扫地机器人在探测到第一介质分界点之后,将向右内边界探索模式确定为初始探索模式的场景;图4(d)对应的场景为:扫地机器人在探测到第一介质分界点之后,将向左内边界探索模式确定为初始探索模式的场景;图4(e)对应的场景为:扫地机器人在探测到第一介质分界点之后,将向左外边界探索模式确定为初始探索模式的场景;图4(f)对应的场景为:扫地机器人在探测到第一介质分界点之后,将向右外边界探索模式确定为初始探索模式的场景。
结合图4可以理解的是,扫地机器人可以基于预设配置信息来选择初始探索模式,示例性的,当扫地机器人通过传感器探测到预设地面介质信号确定为检测到预设地面介质时,如图4(a)所示场景,可以在向左内边界探索模式或者向右内边界探索模式中确定初始探索模式,进一步的,还可以结合距离传感器或雷达监测到的清洁设备周围的障碍物布局情况,在向左内边界探索模式或者向右内边 界探索模式中确定初始探索模式(以远离障碍物或远离布局比较密集的障碍物);当扫地机器人通过传感器探测到非预设地面介质信号确定为检测到预设地面介质,如图4(b)所示场景,可以在向左外边界探索模式或者向右外边界探索模式中确定初始探索模式,进一步的,还可以结合距离传感器或雷达监测到的清洁设备周围的障碍物布局情况,在向左内边界探索模式或者向右内边界探索模式中确定初始探索模式(以远离障碍物或远离布局比较密集的障碍物)。在本实施例中,清洁设备还可以随机选择初始探索模式,在此不做限定。
需要说明的是,在一些实施方式中,当清洁设备在完成初始探索模式的选择后,可以通过旋转或者移动等方式调整清洁设备的方向或位置以适应探索方向(如:第一预设方向或第二预设方向)。示例性的,当扫地机器人在如图4(a)所示的场景时,选择向右内边界探索模式为初始探索模式,则所述扫地机器人可以通过顺时针旋转调整自身方位以适应内边界探索模式。
在本实施例中,根据清洁设备的预设配置信息,选择初始探索模式,在一定程度上能减少清洁设备的无效动作,例如,能有效避免清洁设备在从预设地面介质外检测到预设地面介质时选择以外边界探索模式为初始探索模式,进而在一定程度上能减少清洁设备的探索时间,或者减少被周围障碍物中断探索过程的可能性,提高清洁设备的探索效率。
在本申请中,所述在所述内边界探索模式和外边界探索模式下,控制所述清洁设备按照预定方向探测介质分界点,具体可以按照如下方式实现:
在所述内边界探索模式下,控制所述清洁设备按照第一预定方向移动,以探测介质分界点,所述第一预定方向包括顺时针方向或逆时针方向。
在所述外边界探索模式下,控制所述清洁设备按照第二预定方向移动,以探测介质分界点,所述第二预定方向与所述第一预定方向相反。
为了使本领域技术人员更好的理解本实施方式,下面将结合图5来说明。
参见图5,示出了本申请实施例中的控制所述清洁设备按照预定方向探测介质分界点的场景演示图。
如图5(a)-(b),图5(a)对应的场景为:扫地机器人在探测到第一介质分界点后,将以向右内边界探索模式为初始探索模式进行探测的场景,其中,在所述内边界探索模式下,则会控制所述扫地机器人按照以顺时针作为第一预定方向进行移动,以探测介质下一介质分界点;图5(b)对应的场景为:扫地机器人在探测到 第一介质分界点后,将以向左外边界探索模式为初始探索模式进行探测的场景,其中,在所述外边界探索模式下,则会控制所述扫地机器人按照以逆时针作为第二预定方向进行移动,以探测下一介质分界点。
可以理解的是,当清洁设备探测到预设地面介质的第一介质分界点后,如果以向左内边界探索模式为初始探索模式进行探测时,将会按照以逆时针作为第一预定方向进行移动,如果以向右外边界探索模式进行探测时,将会按照以顺时针作为第二预定方向进行移动。
需要说明的是,在本申请一些实施例中,在清洁设备对预设地面介质进行探测的过程中,在探测到第一介质分界点之后,确定在内边界探测模式下按照第一预定方向移动以探测介质分界点,确定在外边界探测模式下按照第二预定方向移动以探测介质分界点,则所述清洁设备在该次预设地面介质轮廓的探索任务中,在内边界探索模式下将始终按照第一预定方向移动以探测介质分界点,在外边界探索模式下将始终按照第二预定方向移动以探测介质分界点。
在本申请的一个实施例中,所述清洁设备按照预定方向探测介质分界点的探测轨迹可以是包括弧线轨迹。
具体的,在所述内边界探索模式和所述外边界探索模式下,可以控制清洁设备以预定的角速度和预定线速度行进,以使清洁设备按照弧线路径先远离再靠近预设地面介质的边缘,以探测介质分界点,示例性的,当清洁设备在内边界探索模式下可以以图5(a)中所示的第一预定方向的路线作为行进轨迹,以探测下一介质分界点。
可以理解的是,清洁设备在内边界探索模式或外边界探索模式下,当控制清洁设备以预定的角速度和预定线速度行进,且角速度逐渐减小,以检测下一介质分界点,则清洁设备的探索轨迹可以为螺旋轨迹;当控制清洁设备以预定的角速度和预定线速度行进,且角速度不变时,则清洁设备的探索轨迹为圆弧轨迹,当然,也可以根据不同情况为清洁设备设计不同的探索轨迹,本申请在此不做限定。
在本申请的一个实施例中,所述触发所述清洁设备交替切换内边界探索模式和外边界探索模式,具体可以按照如下方式实现:
如果在所述内边界探索模式下探测到至少一个介质分界点,则触发所述清洁设备切换至所述外边界探索模式。
如果在所述外边界探索模式下探测到至少一个介质分界点,则触发所述清洁设备切换至所述内边界探索模式。
为了使本领域技术人员更好的理解本实施方式,下面将结合图6来说明。
参见图6,示出了本申请实施例中的触发所述清洁设备交替切换内边界探索模式和外边界探索模式的场景演示图。需要说明的是,在如图6(a)所限定的实施方式中,对所述清洁设备切换至所述外边界探索模式,或者所述清洁设备切换至所述内边界探索模式的具体触发条件进行限定,具体为:
如果在所述内边界探索模式下探测到一个介质分界点,则触发所述清洁设备切换至所述外边界探索模式。如果在所述外边界探索模式下探测到一个介质分界点,则触发所述清洁设备切换至所述内边界探索模式。如图6(a)所示,扫地机器人在内边界探索模式下,按照以顺时针作为第一预定方向进行移动探测到下一介质分界点(即,清洁设备检测到非预设地面介质时确定的清洁设备的坐标点)时,在当前场景下,则会触发所述扫地机器人切换至外边界探索模式,并按照以逆时针作为第二预定方向进行移动,以探测下一介质分界点。
可以理解的是,在本实施例中,当所述扫地机器人在切换的外边界探索模式中按照以逆时针作为第二预定方向进行移动时,在探测到介质分界点(即,清洁设备检测到预设地面介质时确定的清洁设备的坐标点)时,则会触发所述扫地机器人切换至所述内边界探索模式。在本实施例中,通过重复执行交替切换内边界探索模式和外边界探索模式,以获得更多的预设地面介质的介质分界点。
在实施例中,应该理解的是,对所述清洁设备切换至所述外边界探索模式,或者所述清洁设备切换至所述内边界探索模式的具体触发条件还可以包括其它形式,比如,在所述内边界探索模式下连续探测到多个介质分界点时,触发所述清洁设备切换至所述外边界探索模式;在所述外边界探索模式下连续探测到多个介质分界点时,则触发所述清洁设备切换至所述内边界探索模式,比如,请参照图6(b)。
结合图6(b)所示场景,需要说明的是,当清洁设在以连续内边界探索模式进行介质分界点的探测,可以按如下步骤1至步骤3执行:
步骤1:控制清洁设备在内边界探索模式下按照第一预定方向移动,当所述清洁设备用于检测障碍物的传感器探测到非预设地面介质信号时,确定此时清洁设备的坐标为介质分界点。
步骤2:控制所述清洁设备按照第二预定方向原地旋转直至所述清洁设备用于 检测障碍物的传感器探测到预设地面介质信号,调整清洁设备前端的朝向,以适应在内边界探索模式下按照第一预定方向进行下一介质分界点的探索,此时清洁设备的坐标可以记录为介质分界点或不记录为介质分界点。
步骤3:重复步骤1以探测更多的介质分界点。
当清洁设备在连续内边界探索模式下完成多个介质分界点的探索后,切换至连续外边界探索模式以探索多个介质分界点。
当清洁设备在以连续外边界探索模式进行介质分界点的探测,可以按如下步骤4至步骤6执行:
步骤4:控制清洁设备在外边界探索模式下按照第二预定方向移动,当所述清洁设备用于检测障碍物的传感器探测到预设地面介质信号时,确定此时清洁设备的坐标为介质分界点。
步骤5:控制所述清洁设备按照第一预定方向原地旋转直至所述清洁设备用于检测障碍物的传感器探测到非预设地面介质信号,调整清洁设备前端的朝向,以适应在外边界探索模式下按照第二预定方向进行下一介质分界点的探索,此时清洁设备的坐标可以记录为介质分界点或不记录为介质分界点。
步骤6:重复步骤4以探测更多的介质分界点。
对于本领域技术人员而言,基于上述提出的实施例,可以理解的是,对所述清洁设备切换至所述外边界探索模式,或者所述清洁设备切换至所述内边界探索模式的具体触发条件并不限于如上所列举的那些,可以是根据实际需要进行限定。
在本申请的另一个实施例中,所述触发所述清洁设备交替切换内边界探索模式和外边界探索模式,还可以按照如下方实现:
如果所述清洁设备在内边界探索模式下检测到障碍物,则控制所述清洁设备执行第一预定动作,直至探测到介质分界点时,触发所述清洁设备切换至所述外边界探索模式。
如果所述清洁设备在外边界探索模式下检测到障碍物,则控制所述清洁设备执行第二预定动作,直至探测到介质分界点时,触发所述清洁设备切换至所述内边界探索模式。
进一步的,在本实施例中,控制所述清洁设备执行第一预定动作,可以按照如下两种方式中的任意一种实现:
第一种,控制所述清洁设备按照第一预设方向原地转动,直至所述清洁设备 探测到介质分界点时,触发所述清洁设备切换至所述外边界探索模式。
第二种,控制所述清洁设备后退或掉头后前进,直至所述清洁设备探测到介质分界点时,触发所述清洁设备切换至所述外边界探索模式,其中,所述清洁设备在所述外边界探索模式下的探索方向与所述清洁设备在所述内边界探索模式下的探索方向相反。可以理解的是,后退指清洁设备保持其前端当前的朝向,沿与其前端当前的朝向相反的方向行进;控制所述清洁设备后退可以是按照历史运动轨迹原路后退,或沿直线后退,或先按照历史运动轨迹原路后退预定距离后再沿直线后退。同样,掉头指清洁设备的前端的朝向旋转了180°;控制所述清洁设备掉头后前进可以是掉头后按照历史运动轨迹原路行进,或沿直线行进,或先按照历史运动轨迹原路行进预定距离后再沿直线行进。
进一步的,在本实施例中,控制所述清洁设备执行第二预定动作,可以按照如下两种方式中的任意一种实现:
第一种,控制所述清洁设备按照第二预设方向原地转动,直至所述清洁设备探测到介质分界点时,触发所述清洁设备切换至所述内边界探索模式。
第二种,控制所述清洁设备后退或掉头后行进,直至所述清洁设备探测到介质分界点时,触发所述清洁设备切换至所述内边界探索模式,其中,所述清洁设备在所述外边界探索模式下的探索方向与所述清洁设备在所述内边界探索模式下的探索方向相反。可以理解,后退指清洁设备保持其前端当前的朝向,沿与其前端当前的朝向相反的方向行进;控制所述清洁设备后退可以是按照历史运动轨迹原路后退,或沿直线后退,或先按照历史运动轨迹原路后退预定距离后再沿直线后退。同样,掉头指清洁设备的前端的朝向旋转了180°;控制所述清洁设备掉头后前进可以是掉头后按照历史运动轨迹原路行进,或沿直线行进,或先按照历史运动轨迹原路行进预定距离后再沿直线行进。
为了使本领域技术人员更好的理解本实施方式,下面将结合图7来进行说明。
参见图7,示出了本申请实施例中的检测到障碍物时触发所述清洁设备交替切换内边界探索模式和外边界探索模式的场景演示图;
如图7(a)-(d),以清洁设备中的扫地机器人在内边界探索模式下检测到障碍物为例,其中以顺时针作为第一预定方向,逆时针作为第二预定方向。图7(a)对应的场景为:扫地机器人在内边界探索模式下检测到障碍物时的场景;图7(b)对应的场景为:所述扫地机器人在内边界探索模式下检测到障碍物时,通过控制所述扫 地机器人按照第一预设方向原地转动,探测到介质分界点时的场景;图7(c)对应的场景为:所述扫地机器人在内边界探索模式下检测到障碍物时,通过控制所述扫地机器人按照历史运动轨迹原路后退,探测到介质分界点时的场景;图7(d)对应的场景为:所述扫地机器人在内边界探索模式下检测到障碍物后,通过控制所述扫地机器人按照历史运动轨迹原路后退直至探测到介质分界点,将扫地机器人的内边界探索模式切换为外边界探索模式,并通过调整自身方向以适应按照第二预定方向进行外边界探索。
可以理解的是,如图7(c)所示场景,当所述扫地机器人通过按照历史运动轨迹原路后退直至探测到介质分界点时,触发所述清洁设备从内边界探索模式切换为外边界探索模式,但如图所示可明显确认,所述扫地机器人前端的相对位置不适合按照第二预定方向在外边界探索模式下继续执行对预设地面介质的轮廓探索任务,因此可以通过移动或者旋转来调整所述扫地机器人的位置或朝向,当调整为适应按照第二预定方向在外边界探索模式下执行探索任务时,即如图7(d)所示场景,所述扫地机器人继续执行对预设地面介质1的轮廓探测,以得到更多介质分界点。
在另一实施例中,所述扫地机器人在内边界探索模式下检测到障碍物后,通过控制所述扫地机器人按照历史运动轨迹原路后退直至探测到介质分界点,将扫地机器人的内边界探索模式切换为外边界探索模式,可直接以第二预定方向进行外边界探索而无需进行方向的调整。
需要说明的是,在本实施例中,仅以所述清洁设备在以顺时针作为第一预定方向的内边界探索模式下检测到障碍物时的场景来举例说明,可以理解的是,当所述清洁设备在外边界探索模式下,检测到障碍物时则控制所述清洁设备执行第二预定动作,直至探测到介质分界点时,触发所述清洁设备切换至所述内边界探索模式,其中具体实施步骤与图7所示原理类似,在此不再赘述。
在本实施例中,如果所述清洁设备在预设地面介质轮廓的探测过程中,检测到障碍物之前或检测到障碍物之后可以按照如下方式探测预设地面介质分界点:
以连续内边界探索模式进行介质分界点的探测,具体的,可以参照上述步骤1至步骤3来执行。
以连续外边界探索模式进行介质分界点的探测,具体的,可以参照上述步骤4至步骤6来执行。
以如果在内边界探索模式下探测到至少一个介质分界点,则触发所述清洁设备切换至所述外边界探索模式,如果在外边界探索模式下探测到至少一个介质分界点,则触发所述清洁设备切换至所述内边界探索模式进行介质分界点的探测。具体的,可以参照上述图6所示的实施方式。
可以理解的是,在本实施例中,清洁设备在检测到障碍物之前或者之后的探索模式可以根据不同情况确定不同的探索方式以探索介质分界点,本申请在此不做限定。
在本实施例中,当清洁设备检测到障碍物,并通过执行预定动作后检测到介质分界点时,切换内/外边界探索模式,可以高效的避开障碍物,避免因障碍物阻挡而导致清洁设备探索行为中断的情况发生,从而可以在很大程度上提高清洁设备探索地面介质轮廓的稳定性和探索效率。
在本申请的一个实施例中,在所述外边界探索模式下,在所述清洁设备的探测过程中,还可以执行如下步骤7至步骤8:
步骤7,监测所述清洁设备的朝向的第一角度变化量。
步骤8,如果所述清洁设备未探测到介质分界点,且所述第一角度变化量超过第一角度阈值,则控制所述清洁设备按照所述第二预定方向原地转动,直至探测到介质分界点。
进一步的,在本实施例中,还可以执行如下步骤9至步骤10:
步骤9,在所述清洁设备按照所述第二预定方向原地转动的过程中,记录所述清洁设备的朝向的第二角度变化量。
步骤10,如果所述清洁设备在探测到介质分界点时的第二角度变化量超过第二角度阈值,则控制所述清洁设备按照所述第一预定方向原地转动,直至重新探测到介质分界点,并将重新探测到的介质分界点记录到所述介质分界点集合;或者,在所述清洁设备按照所述第二预定方向原地转动并探测到介质分界点时,将当前探测到的介质分界点记录到所述介质分界点集合,并控制所述清洁设备按照所述第一预定方向原地转动,直至重新探测到介质分界点,以调整所述清洁设备的探索方向而切换至所述内边界探索模式。
需要说明的是,在实施方式中,同理,在所述内边界探索模式下,在所述清洁设备的探测过程中,记录所述清洁设备的朝向的第三角度变化量;如果所述清洁设备未探测到介质分界点,且所述第三角度变化量超过第三角度阈值,则控制 所述清洁设备按照所述第一预定方向原地转动,直至探测到介质分界点。
进一步的,在本实施方式中还包括,在所述清洁设备按照所述第一预定方向原地转动的过程中,记录所述清洁设备的朝向的第四角度变化量;如果所述清洁设备在探测到介质分界点时的第四角度变化量超过第四角度阈值,则控制所述清洁设备按照所述第二预定方向原地转动,直至重新探测到介质分界点,并将重新探测到的介质分界点记录到所述介质分界点集合;或者,在所述清洁设备按照所述第一预定方向原地转动并探测到介质分界点时,将当前探测到的介质分界点记录到所述介质分界点集合,并控制所述清洁设备按照所述第二预定方向原地转动,直至重新探测到介质分界点,以调整所述清洁设备的探索方向而切换至所述外边界探索模式。
在本实施例中,在所述清洁设备的探测过程中,记录所述清洁设备的朝向的第一角度变化量,具体实施方式可以结合图8进行说明。
参见图8,示出了本申请实施例中的记录所述清洁设备的朝向的第一角度变化量的场景演示图。
图8中,以清洁设备在外边界探索模式下以第二预定方向(在本实施例中即为逆时针方向)进行介质分界点探索为例。在本实施例中,当所述清洁设备在开始进入外边界模式时,将所述清洁设备的前端朝向作为方向A,当所述清洁设备按照第二预定方向探测到下一介质分界点时,将所述清洁设备的前端朝向作为方向B,其中,将方向A与方向B之间的夹角a作为第一角度变化量。同理,当所述清洁设备在内边界探索模式下,可以以同样的方式记录所述清洁设备的第三角度变量。
在本实施例中,可以将第一角度阈值、第二角度阈值、第三角度阈值、第四角度阈值设置为60°,90°,或者其他角度,本申请在此不做限定。
在本实施例中,在所述清洁设备按照所述第二预定方向原地转动的过程中,记录所述清洁设备的朝向的第二角度变化量;如果所述清洁设备在探测到介质分界点时的第二角度变化量超过第二角度阈值,则控制所述清洁设备按照所述第一预定方向原地转动,直至重新探测到介质分界点,并将重新探测到的介质分界点记录到所述介质分界点集合,具体实施方式,可以结合图9进行说明。
参见图9,示出了本申请实施例中的控制所述清洁设备按照所述第一预定方向原地转动,直至重新探测到介质分界点的场景演示图。
图9(a)-(c)中,以清洁设备中扫地机器人在内边界探索模式和外边界探索模式交替切换下,以顺时针作为第一预定方向,以逆时针作为第二预定方向,对矩形预设地面介质1的轮廓进行探测为例。其中,图9(a)对应的场景为:扫地机器人在外边界探索模式下,在预设地面介质1的转角处未探测到介质分界点,且所述第一角度变化量超过第一角度阈值时;图9(b)对应的场景为:控制所述扫地机器人按照所述第二预定方向原地转动,探测到介质分界点时;图9(c)对应的场景为:当所述第二角度变化量超过第二角度阈值,控制所述清洁设备按照所述第一预定方向原地转动,重新探测到介质分界点时。
在本实施例中,需要说明的是,当所述扫地机器人在探测到介质分界点时的第二角度变化量没有超过第二角度阈值,则控制所述清洁设备切换至所述内边界探索模式进行介质分界点的探测,并将探测到的介质分界点记录至介质分界点集合。
在本实施例中,可以理解的是,当所述扫地机器人在如图9(c)所示的场景中,所述扫地机器人已经重新探测到非预设地面介质信号,但所述扫地机器人的前端朝向预设地面介质1的内侧的方向,并不适合执行外边界探索模式,因此需要调整所述扫地机器人的探索方向,当通过旋转或者移动的方式将扫地机器人的前端朝向调整为适应按照第二预定探索方向继续在内边界探索模式执行对预设地面介质1的轮廓探测时,清洁设备按照第二预定方向在外边界探索模式下探索下一介质分界点。在另一些实施方式中,所述扫地机器人已经重新探测到非预设地面介质信号,但所述扫地机器人的前端朝向预设地面介质1的内侧的方向,可以直接控制扫地机器人执行内边界探索模式,控制扫地机器人按照第一预定方向在内边界模式下执行下一介质分界点的探索。
在本实施例中,在清洁设备对预设地面介质轮廓进行探索的过程中,通过实时记录清洁设备的朝向角度变化量可以在当所述清洁设备检测到障碍物时,或者探索不规则预设地面介质时,或者在探索矩形预设地面介质转角时,能控制所述清洁设备行径轨迹不偏离预设地面介质边缘太远,示例性的,假如控制清洁设备的行进路径轨迹为圆弧,如果不记录所述清洁设备的朝向角度变化量,当所述清洁设备在矩形地毯转角处时,可能会形成较大半径的圆弧以探测介质分界点。基于此,通过记录清洁设备的朝向角度变化量,及时调整清洁设备的探索轨迹,可以调整探索到的介质分界点之间的间距,维持介质分界点的适当间距,进而提高 所述清洁设备对预设地面介质轮廓探索的精准度。
在本申请中,所述控制所述清洁设备按照预定方向探测介质分界点,还可以执行如下步骤:
控制所述清洁设备按照预定方向探测介质分界点,直至所述清洁设备探测中断,或者直至所述清洁设备探测到的介质分界点与首次探测到的介质分界点之间的距离小于预设距离阈值,停止对介质分界点的探测。
在本实施例中,可以理解的是,当所述清洁设备在检测到障碍物、电量不足、人为因素等原因时会导致对预设地面介质轮廓的探索任务中断,此时将停止对介质分界点的探测。若所述清洁设备在对预设地面介质轮廓的探索过程中没有中断,则可以理解的是,当所述清洁设备探测到的介质分界点与首次探测到的介质分界点之间的距离小于预设距离阈值,说明所述清洁设备回到了检测到第一介质分界点的位置,对预设地面介质的探索路径已经形成闭环,即清洁设备已经完成对预设地面介质的探索。
需要说明的是,在本申请中,清洁机器人再次到达第一介质分界点的位置,并不限定于清洁设备一定要回到与第一介质分界点重合的位置,当清洁设备与第一介质分界点的距离小于预设距离阀值时,也可判定清洁机器人再次到达第一介质分界点。
继续参见图2,步骤230,基于所述介质分界点集合,确定预设地面介质轮廓。
在本申请中,所述介质分界点可以包括预设介质分界点和非预设介质分界点,所述预设介质分界点为所述清洁设备在内边界探索模式下探测到的非预设地面介质信号时确定的介质分界点,所述非预设介质分界点为所述清洁设备在外边界探索模式下探测到的预设地面介质信号时确定的介质分界点。
因此,所述清洁设备在内边界探索模式和外边界探索模式下,通过控制所述清洁设备按照预定方向探测介质分界点,能得到介质分界点集合。
进一步的,在如图2所示的步骤230的一个实施例中,基于所述介质分界点集合,确定预设地面介质轮廓,具体可以按照如下三种方式中的任意一种执行:
第一种,基于所述介质分界点集合中的预设介质分界点,确定预设地面介质轮廓。
第二种,基于所述介质分界点集合中的非预设介质分界点,确定预设地面介质轮廓。
第三种,基于所述介质分界点集合中的预设介质分界点和非预设介质分界点,确定预设地面介质轮廓。
在本申请的一个实施例中,所述基于所述介质分界点集合,确定预设地面介质轮廓,可以按照如下4种方式中的任意一种实现:
第一种,按照所述介质分界点集合中各个介质分界点被探测到的顺序,依次连接各个介质分界点,以确定所述预设地面介质轮廓。
具体的,为了使本领域技术人员更好的理解本实施方式,下面将结合图10来说明。
参见图10,示出了本申请实施例中的按照所述介质分界点集合中各个介质分界点被探测到的顺序,依次连接各个介质分界点,以确定所述预设地面介质轮廓的示意图。
如图10所示,清洁设备在交替切换内边界探索模式和外边界探索模式下对预设地面介质1轮廓进行探索后,得到了介质分界点集合,依次连接各个介质分界点,即得到了预设地面介质轮廓。
第二种,基于所述介质分界点集合中的各个介质分界点,生成凸包数据,并基于所述凸包数据确定所述预设地面介质轮廓。具体的,为了使本领域技术人员更好的理解本实施方式,下面将结合图11来说明。
参见图11,示出了本申请实施例中的基于所述介质分界点集合中的各个介质分界点,生成凸包数据,并基于所述凸包数据确定所述预设地面介质轮廓的示意图。
可以理解的是,在清洁设备对预设地面介质轮廓进行检测的过程中,因为用于检测障碍物的传感器检测结果存在一定的滞后性,因此会存在一些介质分界点不精准的情况,因此采用凸包数据处理方法对介质分界点集合中的介质分界点进行轮廓处理可以提高对预设地面介质轮廓处理的精准性。
第三种,通过对所述介质分界点集合中的各个介质分界点进行拟合处理,确定所述预设地面介质轮廓。具体的,为了使本领域技术人员更好的理解本实施方式,下面将结合图12来说明。
参见图12,示出了本申请实施例中的通过对所述介质分界点集合中的各个介质分界点进行拟合处理,确定所述预设地面介质轮廓的示意图。
清洁设备在交替切换内边界探索模式和外边界探索模式下对预设地面介质1 轮廓进行探索后,得到了介质分界点集合,对各个介质分界点进行拟合处理,即得到了预设地面介质的比较平滑的轮廓。
第四种,通过对所述介质分界点集合中的各个介质分界点进行图形匹配处理,确定所述预设地面介质轮廓,下面将结合图13说明。
参见图13,示出了本申请实施例中的通过对所述介质分界点集合中的各个介质分界点进行图形匹配处理,确定所述预设地面介质轮廓的示意图。
可以理解的是,预设地面介质通常为规则形状,在一些实施方式中,清洁设备在连接各个介质分界点或者对各个介质分界点进行凸包处理后,得到第一图形,并通过计算包围第一图形的最小多边形与第一图形的匹配程度,来确定预设地面介质的轮廓。例如,当所述清洁设备计算到包围第一图形的最小矩形与第一图形的匹配度为98%,而计算到包围第一图形的最小梯形与第一图像的匹配度为60%,则确定最小矩形为预设地面介质的轮廓。
示例性的,当所述清洁设备完成了对预设地面介质1轮廓的探测,可以通过上述三种方法得到所述预设地面介质的轮廓,再通过图形匹配方法得到预设地面介质1的轮廓,即为矩形轮廓。
在本实施例中,清洁设备在对预设地面介质轮廓进行探测后,在预设地面介质的探测记录中包括介质分界点集合,所述介质分界点集合中包括预设介质分界点和非预设介质分界点,可以根据对每个介质分界点的坐标记录信息确定相匹配的预设地面介质轮廓处理方法,具体采用的轮廓处理方法在此不做限定。
在本申请的一个实施例中,还可以执行如图14所示的步骤。
参照图14,示出了示出了本申请实施例中的地面介质轮廓探测方法的流程图。具体包括步骤1101至步骤1102:
步骤1101,如果所述清洁设备对所述预设地面介质的探测中断,则基于已探测到的所述介质分界点集合,确定已探索的所述预设地面介质轮廓。
步骤1102,基于已探索的所述预设地面介质轮廓,对未探测的预设地面介质进行探索。
可以理解的是,如果所述清洁设备对所述预设地面介质的探测中断,则所述清洁设备对预设地面介质轮廓的探测是不完整的,得到的预设地面介质轮廓仅为所述预设地面介质的部分区域的轮廓。当所述清洁设备在移动过程中再次对该预设地面介质进行探索时,如果探索到的介质边界点位于地面介质轮廓探测记录中 有已探索的所述预设地面介质轮廓对应的区域中,说明清洁设备再次探测到了已经经过探索并确定了轮廓的预设地面介质的区域,则不对该已探索的所述预设地面介质轮廓进行重新探索。
进一步的,在本实施例中,基于已探索的所述预设地面介质轮廓,对未探测的预设地面介质进行探索,可以按照步骤12至步骤13执行:
步骤12,确定已探索的所述预设地面介质轮廓上首次被探索到的第一介质分界点和最后一次被探索到的第二介质分界点,并将所述第一介质分界点和第二介质分界点之间的连线定义为未探索预设地面介质的内边缘线。
步骤13,基于已经已探索到的介质分界点和所述内边缘线确定预设地面介质的已探索区域的轮廓,基于该预设地面介质的已探索区域的轮廓对预设地面介质的未探测的区域的轮廓进行探索。
可以理解的是,对预设地面介质轮廓的探测可能是一次、两次或者多次进行探测后才将所述预设地面介质的完整轮廓探测完成,因此,如果该次对所述预设地面介质轮廓的探测中所述第一介质分界点与第二介质分界点之间的距离小于预设距离阈值,则可以认为该次对所述预设地面介质的轮廓探测是完整的,如果该次对所述预设地面介质轮廓的探测中所述第一介质分界点与第二介质分界点之间的距离大于预设距离阈值,则需要将该次探测中所述第一介质分界点与第二介质分界点之间的连线定义为未探测预设地面介质的内边缘线,基于已探索到的介质分界点和所述内边缘线确定预设地面介质的已探索区域的轮廓,基于该预设地面介质的已探索区域的轮廓对预设地面介质的未探测的区域的轮廓进行探索。
需要说明的是,在所述清洁设备在对所述预设地面介质轮廓探测不完整的场景下,所述清洁设备再次对所述预设地面介质轮廓进行探测时,可以获取所述清洁设备中已探索的预设地面介质轮廓信息,同时获取未探索预设地面介质的内边缘线中的第一介质分界点的坐标信息和第二介质分界点的坐标信息,基于所述第一介质分界点和所述第二介质分界点的坐标信息,所述清洁设备可以从第一介质分界点位置或者其附近位置出发,再次探测预设地面介质中未探索区域的轮廓,也可以从第二介质分界点所在位置或者其附近位置出发,再次探测预设地面介质中未探索区域的轮廓。可以理解,还可以从预设地面介质的已探索区域的轮廓上的任一点出发,再次探测预设地面介质中未探索区域的轮廓,本申请对预设地面介质中未探索区域的轮廓的探索起始点不做限定。
在本实施例中,所述清洁设备基于已探索到的介质分界点和所述内边缘线,确定预设地面介质的已探索区域的轮廓;基于所述预设地面介质的已探索区域的轮廓,对未探测的预设地面介质进行探索,具体的实施方式可以是,从第一介质分界点或第二介质分界点位置或者其附近位置出发,经过所述内边缘线继续对未探测的预设地面介质进行探索,当检测到的介质分界点与出发坐标位置的距离小于预设距离阈值,则完成对预设地面介质中未探索区域的探测。也可以是从所述内边缘线的一端或者其附近位置出发,不经过所述内边缘线继续对预设地面介质中未探索区域进行探索,当检测到的介质分界点与所述内边缘线的另一端的距离小于预设距离阈值,则完成对预设地面介质中未探索区域轮廓的探测。
需要说明的是,上述实施例具体限定了基于已探索的所述预设地面介质轮廓,对未探测的预设地面介质进行探索的实现细节。当然,在其它实施例中,比如,可以是根据清洁设备中记录的在历史上探索过的区域的位置坐标,控制清洁设备在新的探索过程中避开在历史上探索过的区域的位置坐标,以实现对未探测预设地面介质轮廓的探测。
应该理解的是,可以根据具体情况对未探测的预设地面介质设计不同探测方式,本申请在此不做过多限定。
在本申请的一个实施例中,如果清洁设备在对预设地面介质进行过多次探索行为,还可以执行如下步骤14至步骤15:
步骤14,获取所述清洁设备在探索行为中确定的预设地面介质轮廓;
步骤15,如果任意两个预设地面介质轮廓之间存在公共轮廓线,则对所述任意两个预设地面介质轮廓进行拼接,得到拼接后的预设地面介质轮廓。
需要说明的是,所述公共轮廓线可以是任意两个预设地面介质轮廓之间存在完全重叠的轮廓线,也可以是任意两个预设地面介质轮廓之间存在拟合重合的轮廓线,也可以是任意两个预设地面介质轮廓之间存在距离小于预设距离阈值的轮廓线,本申请在此不做限定。
具体的,为了使本领域技术人员更好的理解本实施方式,下面将结合图15来说明。
参见图15,示出了本申请实施例中的如果任意两个预设地面介质轮廓之间存在公共轮廓线,则对所述任意两个预设地面介质轮廓进行拼接,得到拼接后的预设地面介质轮廓的示意图。
如图15(a)所示,其中预设地面介质的A区域是清洁设备第一次对预设地面介质1进行探索的区域预设地面介质的B区域是清洁设备第二次对预设地面介质1进行探索的区域;a点为在预设地面介质的A区域中探索的第一介质分界点,b点为在预设地面介质A区域中探索的第二介质分界点;c点为在预设地面介质的B区域中探索的第一介质分界点,d点为在预设地面介质B中探索的第二介质分界点;可以理解的是在第一次对预设地面介质轮廓探测后,可以将a点和b点之间的连线定义为内边缘线,以对为未探测的预设地面介质的B区域进行探索。
如图15(b)所示,对应的场景为:清洁设备第一次对预设地面介质1进行探索,得到预设地面介质的A区域的介质分界点集合,按照所述介质分界点集合中各个介质分界点被探测到的顺序,依次连接各个介质分界点,得到预设地面介质的A区域的轮廓;清洁设备第二次对预设地面介质1进行探索,得到预设地面介质的B区域的介质分界点集合,按照所述介质分界点集合中各个介质分界点被探测到的顺序,依次连接各个介质分界点,得到预设地面介质的B区域的轮廓。可以理解的是,因为预设地面介质的A区域的轮廓中a点与b点之间的连线与预设地面介质的B区域的轮廓中c点与d点之间的连线的距离小于预设距离阈值,则认为预设地面介质的A区域的轮廓与预设地面介质的B区域的轮廓之间存在公共轮廓线,并对预设地面介质的A区域的轮廓和预设地面介质的B区域的轮廓进行拼接,得到拼接后的预设地面介质1的轮廓。
需要说明的是,获取所述清洁设备在探索行为中确定的预设地面介质轮廓,还可以根据每次对预设地面介质轮廓探测中记录的第一介质分界点和第二介质分界点的坐标位置对确定的预设地面介质轮廓进行拼接,也可以根据情况需要设计不同的拼接方式,只要能将已确定的预设地面介质轮廓进行拼接即可,本申请在此不做限定。
在本实施中,通过对多个预设地面介质轮廓进行拼接,得到拼接后的预设地面介质轮廓,可以使得清洁设备在单次探索不完整的情况下,对预设地面介质进行多次探索并拼接起来,从而保证清洁设备探索地面介质轮廓的完整性。
在本申请的一些实施例所提供的技术方案中,在清洁设备对预设地面介质轮廓的探测过程中,采用的是交替切换内边界探索模式和外边界探索模式,并且控制清洁设备在内边界探索模式和外边界探索模式下按照预定方向探测介质分界点,在得到介质分界点集合后,对集合中的介质分界点进行数据处理后得到 预设地面介质轮廓,通过本申请的技术方案能控制清洁设备在移动过程中探测地面介质轮廓,基于此,清洁设备减少了原地旋转的动作,一方面可以在一定程度上减少清洁设备的探测功耗,另一方面可以节省探测时间,提高对地面介质轮廓的探测效率。
以下介绍本申请的装置实施例,可以用于执行本申请上述实施例中的地面介质轮廓探测方法。对于本申请装置实施例中未披露的细节,请参照本申请上述的地面介质轮廓探测方法的实施例。
参见图16,示出了本申请实施例中的地面介质轮廓探测装置的框图,所述地面介质轮廓探测装置1600,包括:触发单元1601、控制单元1602、确定单元1603。
其中,触发单元1601,用于响应于所述清洁设备检测到预设地面介质,触发所述清洁设备交替切换内边界探索模式和外边界探索模式;控制单元1602,用于在所述内边界探索模式和外边界探索模式下,控制所述清洁设备按照预定方向探测介质分界点,得到介质分界点集合;确定单元1603,用于基于所述介质分界点集合,确定预设地面介质轮廓。
在本申请的一些实施例中,基于前述方案,所述触发单元1601还包括:如果在所述内边界探索模式下探测到至少一个介质分界点,则触发所述清洁设备切换至所述外边界探索模式;如果在所述外边界探索模式下探测到至少一个介质分界点,则触发所述清洁设备切换至所述内边界探索模式。
在本申请的一些实施例中,基于前述方案,所述控制单元1602还包括:如果所述清洁设备在内边界探索模式下检测到障碍物,则控制所述清洁设备执行第一预定动作,直至探测到介质分界点时,触发所述清洁设备切换至所述外边界探索模式;如果所述清洁设备在外边界探索模式下检测到障碍物,则控制所述清洁设备执行第二预定动作,直至探测到介质分界点时,触发所述清洁设备切换至所述内边界探索模式。
在本申请的一些实施例中,基于前述方案,所述控制单元1602还包括:控制所述清洁设备按照第一预设方向原地转动,直至所述清洁设备探测到介质分界点时,触发所述清洁设备切换至所述外边界探索模式;或者,控制所述清洁设备后退或掉头行进,直至所述清洁设备探测到介质分界点时,触发所述清洁设备切换至所述外边界探索模式;其中,所述清洁设备在所述外边界探索模式下的探索方向与所述清洁设备在所述内边界探索模式下的探索方向相反。
在本申请的一些实施例中,基于前述方案,所述控制单元1602还包括:在所述内边界探索模式下,控制所述清洁设备按照第一预定方向移动,以探测介质分界点,所述第一预定方向包括顺时针方向或逆时针方向;在所述外边界探索模式下,控制所述清洁设备按照第二预定方向移动,以探测介质分界点,所述第二预定方向与所述第一预定方向相反。
在本申请的一些实施例中,基于前述方案,所述控制单元1602还包括:在所述外边界探索模式下,在所述清洁设备的探测过程中,监测所述清洁设备的朝向的第一角度变化量;如果所述清洁设备未探测到介质分界点,且所述第一角度变化量超过第一角度阈值,则控制所述清洁设备按照所述第二预定方向原地转动,直至探测到介质分界点。
在本申请的一些实施例中,基于前述方案,所述控制单元1602还包括:在所述清洁设备按照所述第二预定方向原地转动的过程中,记录所述清洁设备的朝向的第二角度变化量;如果所述清洁设备在探测到介质分界点时的第二角度变化量超过第二角度阈值,则控制所述清洁设备按照所述第一预定方向原地转动,直至重新探测到介质分界点,并将重新探测到的介质分界点记录到所述介质分界点集合;或者,在所述清洁设备按照所述第二预定方向原地转动并探测到介质分界点时,将当前探测到的介质分界点记录到所述介质分界点集合,并控制所述清洁设备按照所述第一预定方向原地转动,直至重新探测到介质分界点,以调整所述清洁设备的探索方向而切换至所述内边界探索模式。
在本申请的一些实施例中,基于前述方案,所述控制单元1602还包括:在所述内边界探索模式下,在所述清洁设备的探测过程中,监测所述清洁设备的朝向的第三角度变化量;如果所述清洁设备未探测到介质分界点,且所述第三角度变化量超过第三角度阈值,则控制所述清洁设备按照所述第一预定方向原地转动,直至探测到介质分界点。
在本申请的一些实施例中,基于前述方案,所述控制单元1602还包括:在所述清洁设备按照所述第一预定方向原地转动的过程中,记录所述清洁设备的朝向的第四角度变化量;如果所述清洁设备在探测到介质分界点时的第四角度变化量超过第四角度阈值,则控制所述清洁设备按照所述第二预定方向原地转动,直至重新探测到介质分界点,并将重新探测到的介质分界点记录到所述介质分界点集合;或者,在所述清洁设备按照所述第一预定方向原地转动并探测到介质分界点 时,将当前探测到的介质分界点记录到所述介质分界点集合,并控制所述清洁设备按照所述第二预定方向原地转动,直至重新探测到介质分界点,以调整所述清洁设备的探索方向而切换至所述内边界探索模式。
在本申请的一些实施例中,基于前述方案,所述控制单元1602还包括:控制所述清洁设备按照预定方向探测介质分界点,直至所述清洁设备探测中断,或者直至所述清洁设备探测到的介质分界点与首次探测到的介质分界点之间的距离小于预设距离阈值。
在本申请的一些实施例中,基于前述方案,所述控制单元1602还包括:所述介质分界点包括预设介质分界点和非预设介质分界点,所述预设介质分界点为所述清洁设备在内边界探索模式下探测到的介质分界点,所述非预设介质分界点为所述清洁设备在外边界探索模式下探测到的介质分界点。
在本申请的一些实施例中,基于前述方案,所述控制单元1602还包括:基于所述介质分界点集合中的预设介质分界点,确定预设地面介质轮廓;或者,基于所述介质分界点集合中的非预设介质分界点,确定预设地面介质轮廓;或者,基于所述介质分界点集合中的预设介质分界点和非预设介质分界点,确定预设地面介质轮廓。
在本申请的一些实施例中,基于前述方案,所述确定单元1603还包括:
按照所述介质分界点集合中各个介质分界点被探测到的顺序,依次连接各个介质分界点,以确定所述预设地面介质轮廓;或者,基于所述介质分界点集合中的各个介质分界点,生成凸包数据,并基于所述凸包数据确定所述预设地面介质轮廓;或者,通过对所述介质分界点集合中的各个介质分界点进行拟合处理,确定所述预设地面介质轮廓;或者,通过对所述介质分界点集合中的各个介质分界点进行图形匹配处理,确定所述预设地面介质轮廓。
在本申请的一些实施例中,基于前述方案,所述确定单元1603还包括:如果所述清洁设备对所述预设地面介质的探测中断,则基于已探测到的所述介质分界点集合,确定已探索的所述预设地面介质轮廓;基于已探索的所述预设地面介质轮廓,对未探测的预设地面介质进行探索。
在本申请的一些实施例中,基于前述方案,所述确定单元1603还包括:确定已探索的所述预设地面介质轮廓上首次被探索到的第一介质分界点和最后一次被探索到的第二介质分界点,并将所述第一介质分界点和第二介质分界点之间的连 线定义为未探索预设地面介质的内边缘线;基于已探索到的介质分界点和所述内边缘线,确定预设地面介质的已探索区域的轮廓;基于所述预设地面介质的已探索区域的轮廓,对未探测的预设地面介质进行探索。
在本申请的一些实施例中,基于前述方案,所述确定单元1603还包括:获取所述清洁设备在探索行为中确定的预设地面介质轮廓;如果任意两个预设地面介质轮廓之间存在公共轮廓线,则对所述任意两个预设地面介质轮廓进行拼接,得到拼接后的预设地面介质轮廓。
在本申请的一些实施例中,基于前述方案,所述确定单元1603还包括:所述清洁设备按照预定方向探测介质分界点的探测轨迹包括弧线轨迹。
基于同一发明构思,本申请实施例提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有至少一条程序代码,所述至少一条程序代码由处理器加载并执行以实现如上所述地面介质轮廓探测方法所执行的操作。
基于同一发明构思,本申请实施例还提供了一种清洁设备,参考图17,示出了本申请实施例中的清洁设备的结构示意图,所述清洁设备包括一个或多个存储器1704、一个或多个处理器1702及存储在存储器1704上并可在处理器1702上运行的至少一条计算机程序(程序代码),处理器1702执行所述计算机程序时实现如前所述的地面介质轮廓探测方法。
其中,在图17中,总线架构(用总线1700来代表),总线1700可以包括任意数量的互联的总线和桥,总线1700将包括由处理器1702代表的一个或多个处理器和存储器1704代表的存储器的各种电路链接在一起。总线1700还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口1705在总线1700和接收器1701和发送器1703之间提供接口。接收器1701和发送器1703可以是同一个元件,即收发机(比如,设置于如图1所示扫地机器人中的超声波传感器101、跌落传感器102、距离传感器106、碰撞传感器107等等),提供用于在传输介质上与各种其他装置通信的单元。处理器1702负责管理总线1700和通常的处理,而存储器1704可以被用于存储处理器1702在执行操作时所使用的数据。
本文中所描述的功能可在硬件、由处理器执行的软件、固件或其任何组合中实施。如果在由处理器执行的软件中实施,那么可将功能作为一或多个指令或代 码存储于计算机可读媒体上或经由计算机可读媒体予以传输。其它实例及实施方案在本申请及所附权利要求书的范围及精神内。举例来说,归因于软件的性质,上文所描述的功能可使用由处理器、硬件、固件、硬连线或这些中的任何者的组合执行的软件实施。此外,各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在本申请所提供的几个实施例中,应该理解到,所揭露的技术内容,可通过其它的方式实现。其中,以上所描述的装置实施例仅仅是示意性的,例如所述单元的划分,可以为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,单元或模块的间接耦合或通信连接,可以是电性或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为控制装置的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可为个人计算机、服务器或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述仅为本申请的实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (20)

  1. 一种地面介质轮廓探测方法,其特征在于,所述方法包括:
    响应于所述清洁设备检测到预设地面介质,触发所述清洁设备交替切换内边界探索模式和外边界探索模式;
    在所述内边界探索模式和外边界探索模式下,控制所述清洁设备按照预定方向探测介质分界点,得到介质分界点集合;
    基于所述介质分界点集合,确定预设地面介质轮廓。
  2. 根据权利要求1所述的方法,其特征在于,所述触发所述清洁设备交替切换内边界探索模式和外边界探索模式,包括:
    如果在所述内边界探索模式下探测到至少一个介质分界点,则触发所述清洁设备切换至所述外边界探索模式;
    如果在所述外边界探索模式下探测到至少一个介质分界点,则触发所述清洁设备切换至所述内边界探索模式。
  3. 根据权利要求1所述的方法,其特征在于,所述触发所述清洁设备交替切换内边界探索模式和外边界探索模式,包括:
    如果所述清洁设备在内边界探索模式下检测到障碍物,则控制所述清洁设备执行第一预定动作,直至探测到介质分界点时,触发所述清洁设备切换至所述外边界探索模式;
    如果所述清洁设备在外边界探索模式下检测到障碍物,则控制所述清洁设备执行第二预定动作,直至探测到介质分界点时,触发所述清洁设备切换至所述内边界探索模式。
  4. 根据权利要求3所述的方法,其特征在于,所述控制所述清洁设备执行第一预定动作,直至探测到介质分界点时,触发所述清洁设备切换至所述外边界探索模式,包括:
    控制所述清洁设备按照第一预设方向原地转动,直至所述清洁设备探测到介质分界点时,触发所述清洁设备切换至所述外边界探索模式;
    或者,控制所述清洁设备后退或掉头行进,直至所述清洁设备探测到介质分 界点时,触发所述清洁设备切换至所述外边界探索模式;其中,所述清洁设备在所述外边界探索模式下的探索方向与所述清洁设备在所述内边界探索模式下的探索方向相反。
  5. 根据权利要求1所述的方法,其特征在于,所述在所述内边界探索模式和外边界探索模式下,控制所述清洁设备按照预定方向探测介质分界点,包括:
    在所述内边界探索模式下,控制所述清洁设备按照第一预定方向移动,以探测介质分界点,所述第一预定方向包括顺时针方向或逆时针方向;
    在所述外边界探索模式下,控制所述清洁设备按照第二预定方向移动,以探测介质分界点,所述第二预定方向与所述第一预定方向相反。
  6. 根据权利要求5所述的方法,其特征在于,所述方法还包括:
    在所述外边界探索模式下,在所述清洁设备的探测过程中,监测所述清洁设备的朝向的第一角度变化量;
    如果所述清洁设备未探测到介质分界点,且所述第一角度变化量超过第一角度阈值,则控制所述清洁设备按照所述第二预定方向原地转动,直至探测到介质分界点。
  7. 根据权利要求6所述的方法,其特征在于,所述方法还包括:
    在所述清洁设备按照所述第二预定方向原地转动的过程中,记录所述清洁设备的朝向的第二角度变化量;
    如果所述清洁设备在探测到介质分界点时的第二角度变化量超过第二角度阈值,则控制所述清洁设备按照所述第一预定方向原地转动,直至重新探测到介质分界点,并将重新探测到的介质分界点记录到所述介质分界点集合;
    或者,在所述清洁设备按照所述第二预定方向原地转动并探测到介质分界点时,将当前探测到的介质分界点记录到所述介质分界点集合,并控制所述清洁设备按照所述第一预定方向原地转动,直至重新探测到介质分界点,以调整所述清洁设备的探索方向而切换至所述内边界探索模式。
  8. 根据权利要求5所述的方法,其特征在于,所述方法还包括:
    在所述内边界探索模式下,在所述清洁设备的探测过程中,监测所述清洁设备的朝向的第三角度变化量;
    如果所述清洁设备未探测到介质分界点,且所述第三角度变化量超过第三角度阈值,则控制所述清洁设备按照所述第一预定方向原地转动,直至探测到介质分界点。
  9. 根据权利要求8所述的方法,其特征在于,所述方法还包括:
    在所述清洁设备按照所述第一预定方向原地转动的过程中,记录所述清洁设备的朝向的第四角度变化量;
    如果所述清洁设备在探测到介质分界点时的第四角度变化量超过第四角度阈值,则控制所述清洁设备按照所述第二预定方向原地转动,直至重新探测到介质分界点,并将重新探测到的介质分界点记录到所述介质分界点集合;
    或者,在所述清洁设备按照所述第一预定方向原地转动并探测到介质分界点时,将当前探测到的介质分界点记录到所述介质分界点集合,并控制所述清洁设备按照所述第二预定方向原地转动,直至重新探测到介质分界点,以调整所述清洁设备的探索方向而切换至所述外边界探索模式。
  10. 根据权利要求1所述的方法,其特征在于,所述控制所述清洁设备按照预定方向探测介质分界点,包括:
    控制所述清洁设备按照预定方向探测介质分界点,直至所述清洁设备探测中断,或者直至所述清洁设备探测到的介质分界点与首次探测到的介质分界点之间的距离小于预设距离阈值。
  11. 根据权利要求1所述的方法,其特征在于,所述介质分界点包括预设介质分界点和非预设介质分界点,所述预设介质分界点为所述清洁设备在内边界探索模式下探测到的介质分界点,所述非预设介质分界点为所述清洁设备在外边界探索模式下探测到的介质分界点。
  12. 根据权利要求11所述的方法,其特征在于,所述基于所述介质分界点集合,确定预设地面介质轮廓,包括:
    基于所述介质分界点集合中的预设介质分界点,确定预设地面介质轮廓;
    或者,基于所述介质分界点集合中的非预设介质分界点,确定预设地面介质轮廓;
    或者,基于所述介质分界点集合中的预设介质分界点和非预设介质分界点,确定预设地面介质轮廓。
  13. 根据权利要求1所述的方法,其特征在于,所述基于所述介质分界点集合,确定预设地面介质轮廓,包括:
    按照所述介质分界点集合中各个介质分界点被探测到的顺序,依次连接各个介质分界点,以确定所述预设地面介质轮廓;
    或者,基于所述介质分界点集合中的各个介质分界点,生成凸包数据,并基于所述凸包数据确定所述预设地面介质轮廓;
    或者,通过对所述介质分界点集合中的各个介质分界点进行拟合处理,确定所述预设地面介质轮廓;
    或者,通过对所述介质分界点集合中的各个介质分界点进行图形匹配处理,确定所述预设地面介质轮廓。
  14. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    如果所述清洁设备对所述预设地面介质的探测中断,则基于已探测到的所述介质分界点集合,确定已探索的所述预设地面介质轮廓;
    基于已探索的所述预设地面介质轮廓,对未探测的预设地面介质进行探索。
  15. 根据权利要求14所述的方法,其特征在于,所述基于已探索的所述预设地面介质轮廓,对未探测的预设地面介质进行探索,包括:
    确定已探索的所述预设地面介质轮廓上首次被探索到的第一介质分界点和最后一次被探索到的第二介质分界点,并将所述第一介质分界点和第二介质分界点之间的连线定义为未探索预设地面介质的内边缘线;
    基于已探索到的介质分界点和所述内边缘线,确定预设地面介质的已探索区域的轮廓;基于所述预设地面介质的已探索区域的轮廓,对未探测的预设地面介质进行探索。
  16. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    获取所述清洁设备在探索行为中确定的预设地面介质轮廓;
    如果任意两个预设地面介质轮廓之间存在公共轮廓线,则对所述任意两个预设地面介质轮廓进行拼接,得到拼接后的预设地面介质轮廓。
  17. 根据权利要求1至16任一项所述的方法,其特征在于,所述清洁设备按照预定方向探测介质分界点的探测轨迹包括弧线轨迹。
  18. 一种地面介质轮廓探测装置,其特征在于,所述装置包括:
    触发单元,用于响应于所述清洁设备检测到预设地面介质,触发所述清洁设备交替切换内边界探索模式和外边界探索模式;
    控制单元,用于在所述内边界探索模式和外边界探索模式下,控制所述清洁设备按照预定方向探测介质分界点,得到介质分界点集合;
    确定单元,用于基于所述介质分界点集合,确定预设地面介质轮廓。
  19. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有至少一条程序代码,所述至少一条程序代码由处理器加载并执行以实现如权利要求1至17任一项所述的方法所执行的操作。
  20. 一种清洁设备,其特征在于,包括一个或多个处理器和一个或多个存储器,所述一个或多个存储器中存储有至少一条程序代码,所述至少一条程序代码由所述一个或多个处理器加载并执行以实现如权利要求1至17中任一项权利要求所述的方法。
PCT/CN2023/122857 2022-09-28 2023-09-28 一种地面介质探测方法、装置及清洁设备 WO2024067852A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211193838.8 2022-09-28
CN202211193838.8A CN115500737B (zh) 2022-09-28 2022-09-28 一种地面介质探测方法、装置及清洁设备

Publications (1)

Publication Number Publication Date
WO2024067852A1 true WO2024067852A1 (zh) 2024-04-04

Family

ID=84507792

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/122857 WO2024067852A1 (zh) 2022-09-28 2023-09-28 一种地面介质探测方法、装置及清洁设备

Country Status (2)

Country Link
CN (1) CN115500737B (zh)
WO (1) WO2024067852A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115500737B (zh) * 2022-09-28 2023-10-17 云鲸智能(深圳)有限公司 一种地面介质探测方法、装置及清洁设备

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109984688A (zh) * 2019-04-18 2019-07-09 深圳乐行天下科技有限公司 一种机器人沿边清洁的方法及机器人
CN111708360A (zh) * 2020-05-15 2020-09-25 科沃斯机器人股份有限公司 信息采集方法、设备及存储介质
CN113208511A (zh) * 2021-05-31 2021-08-06 云鲸智能(深圳)有限公司 一种清洁控制方法、装置、清洁机器人及计算机存储介质
CN113693493A (zh) * 2021-02-10 2021-11-26 北京石头世纪科技股份有限公司 区域地图绘制方法及装置、介质及电子设备
CN113693521A (zh) * 2021-02-10 2021-11-26 北京石头世纪科技股份有限公司 自动清洁设备控制方法及装置、介质及电子设备
CN113693494A (zh) * 2021-02-10 2021-11-26 北京石头世纪科技股份有限公司 地图绘制方法及装置、介质及电子设备
CN113974507A (zh) * 2021-09-30 2022-01-28 云鲸智能(深圳)有限公司 清洁机器人的地毯探测方法、装置、清洁机器人及介质
EP3985469A1 (en) * 2020-06-12 2022-04-20 Amicro Semiconductor Co., Ltd. Cleaning subarea planning method for robot walking along edge, chip and robot
EP4043988A1 (en) * 2020-06-12 2022-08-17 Amicro Semiconductor Co., Ltd. Robot edge treading areal sweep planning method, chip, and robot
CN115500737A (zh) * 2022-09-28 2022-12-23 云鲸智能(深圳)有限公司 一种地面介质探测方法、装置及清洁设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100827235B1 (ko) * 2006-05-19 2008-05-07 삼성전자주식회사 카펫 감지 청소용 로봇 및 카펫 경계 검출 방법
KR101752190B1 (ko) * 2010-11-24 2017-06-30 삼성전자주식회사 로봇청소기 및 그 제어방법
KR101931365B1 (ko) * 2011-08-22 2018-12-24 삼성전자주식회사 로봇청소기 및 그 제어방법
CN114869175B (zh) * 2022-05-26 2024-09-20 美智纵横科技有限责任公司 清洁避障方法、装置、电子设备及存储介质

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109984688A (zh) * 2019-04-18 2019-07-09 深圳乐行天下科技有限公司 一种机器人沿边清洁的方法及机器人
CN111708360A (zh) * 2020-05-15 2020-09-25 科沃斯机器人股份有限公司 信息采集方法、设备及存储介质
EP3985469A1 (en) * 2020-06-12 2022-04-20 Amicro Semiconductor Co., Ltd. Cleaning subarea planning method for robot walking along edge, chip and robot
EP4043988A1 (en) * 2020-06-12 2022-08-17 Amicro Semiconductor Co., Ltd. Robot edge treading areal sweep planning method, chip, and robot
CN113693493A (zh) * 2021-02-10 2021-11-26 北京石头世纪科技股份有限公司 区域地图绘制方法及装置、介质及电子设备
CN113693521A (zh) * 2021-02-10 2021-11-26 北京石头世纪科技股份有限公司 自动清洁设备控制方法及装置、介质及电子设备
CN113693494A (zh) * 2021-02-10 2021-11-26 北京石头世纪科技股份有限公司 地图绘制方法及装置、介质及电子设备
CN113208511A (zh) * 2021-05-31 2021-08-06 云鲸智能(深圳)有限公司 一种清洁控制方法、装置、清洁机器人及计算机存储介质
CN113974507A (zh) * 2021-09-30 2022-01-28 云鲸智能(深圳)有限公司 清洁机器人的地毯探测方法、装置、清洁机器人及介质
CN115500737A (zh) * 2022-09-28 2022-12-23 云鲸智能(深圳)有限公司 一种地面介质探测方法、装置及清洁设备

Also Published As

Publication number Publication date
CN115500737A (zh) 2022-12-23
CN115500737B (zh) 2023-10-17

Similar Documents

Publication Publication Date Title
WO2020207390A1 (zh) 探测方法、装置、移动机器人及存储介质
US9844876B2 (en) Robot cleaner and control method thereof
WO2024067852A1 (zh) 一种地面介质探测方法、装置及清洁设备
EP3552072B1 (en) Robotic cleaning device with operating speed variation based on environment
CN110403539A (zh) 清洁机器人的清洁控制方法、清洁机器人以及存储介质
CN109875470A (zh) 脱困方法、设备及存储介质
CN110051289A (zh) 机器人语音控制方法、装置、机器人和介质
CN110477820A (zh) 清洁机器人的沿障碍物清洁方法、清洁机器人以及存储介质
JP2009037378A (ja) 自律走行装置およびプログラム
CN109528101A (zh) 移动机器人的转弯方法、移动机器人及存储介质
WO2022156746A1 (zh) 机器人的清洁控制方法、装置以及机器人
CN110495825A (zh) 清洁机器人的跨越障碍物方法、清洁机器人以及存储介质
WO2020215945A1 (zh) 清洁方法、擦窗机器人及存储介质
JP4962255B2 (ja) 自走式装置
CN112423639B (zh) 自主行走式吸尘器
JP2008023142A (ja) 自走式掃除機およびプログラム
KR101943359B1 (ko) 로봇 청소기 및 이의 제어 방법
CN112137512B (zh) 扫地机器人清扫区域检测方法、装置、设备、系统和介质
JP4910972B2 (ja) 自走式装置およびプログラム
KR102581196B1 (ko) 공항 로봇 및 공항 로봇의 동작 방법을 수행하는 프로그램이 기록된 컴퓨터로 판독 가능한 기록 매체
EP4325320A1 (en) Obstacle avoidance method and apparatus for robot, robot, storage medium, and electronic device
KR101895314B1 (ko) 로봇 청소기 및 이의 제어 방법
CN118435141A (zh) 机器人及其避障方法,机器人系统及存储介质
CN112022011B (zh) 扫地机器人的控制方法、设备、系统和存储介质
CN114608849A (zh) 一种扫地机状态检测方法及装置、电子设备、存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23871076

Country of ref document: EP

Kind code of ref document: A1