WO2024067643A1 - 一种传输指示方法、装置、通信设备和存储介质 - Google Patents

一种传输指示方法、装置、通信设备和存储介质 Download PDF

Info

Publication number
WO2024067643A1
WO2024067643A1 PCT/CN2023/121767 CN2023121767W WO2024067643A1 WO 2024067643 A1 WO2024067643 A1 WO 2024067643A1 CN 2023121767 W CN2023121767 W CN 2023121767W WO 2024067643 A1 WO2024067643 A1 WO 2024067643A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
period
pdcch
system information
pbch
Prior art date
Application number
PCT/CN2023/121767
Other languages
English (en)
French (fr)
Inventor
胡丽洁
李岩
Original Assignee
中国移动通信有限公司研究院
中国移动通信集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国移动通信有限公司研究院, 中国移动通信集团有限公司 filed Critical 中国移动通信有限公司研究院
Publication of WO2024067643A1 publication Critical patent/WO2024067643A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present disclosure relates to the field of communication technology, and in particular to a transmission indication method, apparatus, communication equipment and storage medium.
  • Embodiments of the present disclosure provide a transmission indication method, apparatus, communication equipment, and storage medium.
  • an embodiment of the present disclosure provides a transmission indication method, the method comprising:
  • the network device sends a downlink signal including a synchronization signal; wherein the downlink signal is used to determine at least one of the following:
  • PBCH Physical Broadcast Channel
  • Type 0 transmission timing or transmission period of Physical Downlink Control Channel (PDCCH);
  • PDCCH Physical Downlink Control Channel
  • the transmission timing or transmission period of system information The transmission timing or transmission period of system information.
  • the network device sends a downlink signal including a synchronization signal, including at least one of the following:
  • the network device sends a downlink signal including a primary synchronization signal (PSS, Primary Synchronization Signals) at at least one first transmission opportunity in a first period;
  • PSS Primary Synchronization Signals
  • the network device sends a downlink signal including PSS and secondary synchronization signals (SSS, Secondary Synchronization Signals) at a second transmission timing in a second period.
  • PSS secondary synchronization signals
  • SSS Secondary Synchronization Signals
  • the downlink signal is used to determine the transmission timing or transmission period of the PBCH
  • the PBCH is sent together with the PSS and SSS at a third transmission opportunity with a third period; the second period is N times the first period, N is a positive integer greater than or equal to 1, and the third period is M times the second period, M is a positive integer greater than or equal to 1.
  • the PBCH is used to indicate the transmission timing of type 0-PDCCH and/or the transmission timing of system information.
  • the downlink signal includes a fourth period of common transmission
  • the PSS, SSS and PBCH sent by the downlink signal, the PBCH in the downlink signal is used to indicate at least one of the following:
  • the transmission timing or transmission period of system information The transmission timing or transmission period of system information.
  • the reserved bits of the MIB information in the PBCH and/or the bits related to the time slot in the PBCH are used to indicate at least one of the following:
  • the transmission timing or transmission period of system information The transmission timing or transmission period of system information.
  • the method further includes: the network device sending the system information based on the transmission timing or transmission period of the system information, and/or sending the type 0-PDCCH based on the transmission timing or transmission period of type 0-PDCCH.
  • the frame identifier of the wireless frame used to transmit the system information and the transmission period of the system information satisfy an agreed relationship
  • the frame identifier of the wireless frame used to transmit type 0-PDCCH and the transmission period of type 0-PDCCH satisfy an agreed relationship
  • the method further includes: the network device receiving a first signal sent by the terminal, the first signal being used to request or trigger the network device to send system information and/or type 0-PDCCH in a fourth period;
  • the network device sends system information and/or type 0-PDCCH at a fourth transmission opportunity with a fourth period.
  • the network device receives a first signal sent by a terminal, including: the network device receives the first signal in a last subframe of a wireless frame where a fifth transmission opportunity for sending the synchronization signal is located.
  • an embodiment of the present disclosure further provides a transmission indication method, the method comprising:
  • the terminal receives a downlink signal including a synchronization signal; and determines at least one of the following based on the downlink signal:
  • the transmission timing or transmission period of system information The transmission timing or transmission period of system information.
  • the terminal receives a downlink signal including a synchronization signal, including at least one of the following:
  • the terminal receives a downlink signal including a PSS at at least one first transmission opportunity with a first period;
  • the terminal receives a downlink signal including the PSS and the SSS at a second transmission opportunity with a second period.
  • the PBCH is sent together with the PSS and SSS at a third transmission opportunity with a third period; the second period is N times the first period, N is a positive integer greater than or equal to 1, and the third period is M times the second period, M is a positive integer greater than or equal to 1.
  • the PBCH is used to indicate the transmission timing of type 0-PDCCH and/or the transmission timing of system information.
  • the downlink signal includes a PSS, an SSS, and a PBCH that are sent together in a fourth period, and the PBCH in the downlink signal is used to indicate at least one of the following:
  • the transmission timing or transmission period of system information The transmission timing or transmission period of system information.
  • the reserved bits of the Master Information Block (MIB) information in the PBCH and/or the bits related to the time slot in the PBCH are used to indicate at least one of the following:
  • the transmission timing or transmission period of system information The transmission timing or transmission period of system information.
  • the method further includes: the terminal receiving system information based on the transmission timing or transmission period of the system information, and/or receiving type 0-PDCCH based on the transmission timing or transmission period of the type 0-PDCCH.
  • the frame identifier of the wireless frame used to transmit the system information and the transmission period of the system information satisfy an agreed relationship
  • the frame identifier of the wireless frame used to transmit type 0-PDCCH and the transmission period of type 0-PDCCH satisfy an agreed relationship
  • the method further includes: the terminal sending a first signal, where the first signal is used to request or trigger the network device to send system information and/or type 0-PDCCH in a fourth period;
  • the terminal receives system information and/or type 0-PDCCH at a fourth transmission opportunity with a fourth period.
  • the terminal sends the first signal, including: the terminal sends the first signal in the last subframe of the radio frame where the fifth transmission opportunity of receiving the synchronization signal is located.
  • an embodiment of the present disclosure further provides a transmission indication device, the device comprising a first communication unit, configured to send a downlink signal including a synchronization signal; wherein the downlink signal is used to determine at least one of the following:
  • the transmission timing or transmission period of system information The transmission timing or transmission period of system information.
  • an embodiment of the present disclosure further provides a transmission indication device, the device comprising a second communication unit and a processing unit; wherein:
  • the second communication unit is configured to receive a downlink signal including a synchronization signal
  • the processing unit is configured to determine at least one of the following based on the downlink signal:
  • the transmission timing or transmission period of system information The transmission timing or transmission period of system information.
  • the present disclosure also provides a computer-readable storage medium on which is stored A computer program is stored, which, when executed by a processor, implements the steps of the method described in the first aspect or the second aspect of the embodiment of the present disclosure.
  • an embodiment of the present disclosure further provides a communication device, comprising a memory, a processor, and a computer program stored in the memory and executable on the processor, wherein when the processor executes the program, the steps of the method described in the first aspect or the second aspect of the embodiment of the present disclosure are implemented.
  • the transmission indication method, apparatus, communication device and storage medium provided by the embodiments of the present disclosure include: a network device sends a downlink signal including a synchronization signal; wherein the downlink signal is used to determine at least one of the following: the transmission timing or transmission period of PBCH; the transmission timing or transmission period of type 0-PDCCH; the transmission timing or transmission period of system information.
  • the terminal determines at least one of the following through a downlink signal including a synchronization signal: the transmission timing or transmission period of PBCH; the transmission timing or transmission period of type 0-PDCCH; the transmission timing or transmission period of system information.
  • the transmission period of SSB is increased on the network side, the terminal does not need to perform SSB detection at each transmission timing, thereby reducing the power consumption of the terminal.
  • FIG1 is a schematic diagram of a first flow chart of a transmission indication method according to an embodiment of the present disclosure
  • FIG2 is a schematic diagram showing the distribution of time slots containing SSB within a 5 ms window in the low frequency band
  • FIG3a and FIG3b are schematic diagrams showing the time domain distribution position of SSB within a 5 ms window
  • FIG4 is a schematic diagram of indicating the transmission timing of a PBCH through a downlink signal in a transmission indication method according to an embodiment of the present disclosure
  • FIG5 is a schematic diagram of indicating a transmission period of system information through PBCH in a transmission indication method according to an embodiment of the present disclosure
  • FIG. 6 is a schematic diagram of a terminal requesting a network side to send system information in advance in a transmission indication method according to an embodiment of the present disclosure
  • FIG7 is a second flow chart of the transmission indication method according to an embodiment of the present disclosure.
  • FIG8 is a schematic diagram of the first structure of the transmission indication device according to an embodiment of the present disclosure.
  • FIG9 is a second schematic diagram of the structure of the transmission indication device according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic diagram of the hardware composition structure of a communication device according to an embodiment of the present disclosure.
  • GSM Global System of Mobile communication
  • LTE Long Term Evolution
  • 5G system 5G network
  • NR New Radio
  • the communication system applied in the embodiments of the present disclosure may include a network device and a terminal device (also referred to as a terminal, a communication terminal, etc.); the network device may be a device that communicates with the terminal device. Among them, the network device can provide communication coverage within a certain area, and can communicate with terminals located in the area.
  • the network device can be a base station in each communication system, such as an evolved base station (eNB, Evolutional Node B) in an LTE system, or a base station (gNB) in a 5G system or an NR system.
  • eNB evolved base station
  • gNB base station
  • the communication device may include a network device and a terminal with communication function, and the network device and the terminal device may be the specific devices described above, which will not be repeated here; the communication device may also include other devices in the communication system, such as a network controller, a mobile management entity and other network entities, which are not limited in the embodiments of the present disclosure.
  • FIG1 is a flow chart of the transmission indication method of the embodiment of the present disclosure; as shown in FIG1 , the method includes:
  • Step 101 A network device sends a downlink signal including a synchronization signal; wherein the downlink signal is used to determine at least one of the following:
  • the transmission timing or transmission period of system information The transmission timing or transmission period of system information.
  • the network device sends a downlink signal including a synchronization signal, which can be considered as the network device sending a downlink signal or a first signal, and the downlink signal or the first signal includes a synchronization signal.
  • a synchronization signal including PSS As an example, the network device sends a downlink signal including PSS, or the network device sends a downlink signal or a first signal, and the downlink signal or the first signal includes PSS.
  • the synchronization signal may include multiple types, and the transmission characteristics of different types of synchronization signals may be different.
  • different types of synchronization signals have different transmission patterns or transmission periods.
  • the network device may indicate the transmission timing or transmission period of PBCH, the transmission timing or transmission period of type 0-PDCCH (type0-PDCCH), the transmission timing or transmission period of system information, etc. through the transmission characteristics of different types of synchronization signals.
  • the synchronization signal included in the downlink signal does not include PBCH, that is, the transmission timing or transmission period of PBCH can be indicated by the transmission characteristics of other types of synchronization signals except PBCH.
  • the network device sends a downlink signal including a synchronization signal, including at least one of the following:
  • the network device sends a downlink signal including the PSS at at least one first transmission opportunity in a first period
  • the network device sends a downlink signal including the PSS and the SSS at a second transmission opportunity with a second period.
  • the downlink signal is used to determine the transmission timing or transmission period of PBCH; wherein, the PBCH is sent together with PSS and SSS at a third transmission timing with a third period; the second period is N times the first period, N is a positive integer greater than or equal to 1, and the third period is M times the second period, M is a positive integer greater than or equal to 1.
  • the synchronization signal block includes PSS, SSS and PBCH.
  • the transmission period of SSB is 20 milliseconds (ms).
  • SSB In addition to the transmission period, SSB has a certain time domain distribution in each period, and all SSB positions in the same period are limited to 5ms. This structure ensures that the terminal can complete the measurement of all SSBs within 5ms without opening the measurement window multiple times in one period, which is beneficial to terminal measurement and power saving.
  • base stations can It is often necessary to configure a semi-static frame structure. Under the semi-static frame structure, downlink resources are usually configured in the first half of the downlink to uplink conversion cycle. Concentrating the SSBs in the cycle within 5ms is conducive to placing the SSBs in the downlink resources configured by the semi-static frame structure.
  • Figure 2 it is a schematic diagram of the distribution of time slots containing SSBs in a 5ms window in the low frequency band, where the non-blank part represents the time slot where SSBs are sent.
  • the specific time domain distribution position of SSB within a 5ms time window is related to the SSB subcarrier spacing and frequency band.
  • the current protocol provides five SSB arrangements: Case A, Case B, Case C, Case D, and Case E.
  • Case A/B/C are for frequency bands below 6GHz
  • Case D/E are for high-frequency millimeter waves.
  • the specific positions of SSB under various arrangements are as follows:
  • Case A For the scenario of 15kHz SSB subcarrier spacing.
  • the position number of the first SSB symbol is ⁇ 2,8 ⁇ +14*n.
  • Case C For 30kHz subcarrier spacing.
  • the first symbol position of SSB is numbered ⁇ 2,8 ⁇ +14*n.
  • each SSB has a certain starting symbol position, and 4 symbols are transmitted continuously from the starting symbol to carry the SSB.
  • the transmission opportunity of each 4-symbol SSB is called a transmission opportunity. It can be seen that a transmission opportunity can contain multiple symbols in a time slot. These arrangements actually give the transmission opportunities of different SSB indexes within a cycle. For the same SSB index, it will be repeated at its corresponding transmission opportunity according to the SSB cycle, such as 20ms (or other values).
  • the synchronization signal included in the downlink signal includes PSS, and/or includes PSS and SSS; wherein, only PSS is sent at at least one first transmission opportunity in a first period, and PSS and SSS are sent together at a second transmission opportunity in a second period, that is, the transmission period of PSS is different from the transmission period of SSS, and PSS is sent together while SSS is sent.
  • PSS PSS
  • SSS SSS
  • PSS is still transmitted according to the traditional transmission period of 20ms, but the transmission period of SSS is 40ms, that is, N is equal to 2, that is, SSS and PSS will be transmitted together only every other PSS.
  • N can also be other values, which are not limited in this embodiment.
  • PBCH will only be transmitted together with PSS and SSS. Therefore, PBCH can only be transmitted when PSS and SSS are transmitted together.
  • the transmission period of PBCH is 80ms, that is, M is equal to 2, that is, PBCH will only be transmitted with PSS and SSS every other transmission opportunity when PSS and SSS are transmitted together.
  • M can also be other values, which are not limited in this embodiment.
  • the PBCH is sent together with PSS and SSS, which specifically means that PBCH, PSS and SSS are sent simultaneously at the transmission timing of SSB (such as the third transmission timing), that is, PBCH, PSS and SSS are sent simultaneously on 4 consecutive symbols corresponding to the transmission timing of SSB (such as the third transmission timing).
  • the terminal will first detect the PSS on the synchronization grid, and then decode the PSS signal to obtain the partial cell.
  • the value is ⁇ 0,1,2 ⁇ .
  • the terminal will continue to try to decode SSS.
  • SSS has 336 values, corresponding to 336 Gold sequences obtained by adding two 127-length m sequences modulo 2, thereby obtaining some cells.
  • the value range is ⁇ 0,1,...335 ⁇ ; finally according to the formula Get the complete cell ID. Then demodulate PBCH to get the necessary cell information.
  • the terminal may detect SSS or may not detect SSS at the same transmission occasion (occasion). Based on this, the terminal can judge that the subsequent PBCH detection only needs to be detected when PSS and SSS appear at the same time.
  • UE1 searches for PSS at a certain transmission occasion. After obtaining PSS, but not SSS, UE1 will go to the next transmission occasion (20ms transmission cycle) to obtain SSS and try to detect PBCH. After detecting PSS and SSS, but not PBCH, UE1 will only continue to try to obtain PBCH at intervals of 40ms, and will not detect at the transmission occasion with only PSS, thereby saving terminal energy consumption.
  • the terminal will skip the next detection opportunity and detect PBCH at an interval, thereby achieving terminal energy saving; or it will perform detection at the next detection opportunity, and may only detect PSS, and further perform detection at the next detection opportunity, detect PBCH, and detect PSS and SSS at the same time, thereby clarifying that the transmission period of PSS and SSS is 40ms.
  • the PBCH is used to indicate the transmission timing of type 0-PDCCH and/or the transmission timing of system information.
  • the search space corresponding to type 0-PDCCH (type0-PDCCH) is used to detect type 0-PDCCH, that is, the transmission timing of PBCH. It is associated with or corresponds to the transmission timing or transmission period of type0-PDCCH, that is, the downlink signal containing the synchronization signal in this embodiment can implicitly indicate type0-PDCCH.
  • Type0-PDCCH is used to schedule system information, that is, the downlink signal containing the synchronization signal in this embodiment can also implicitly indicate the transmission timing or transmission period of system information.
  • the system message can be a system information block (SIB), such as SIB1.
  • the downlink signal includes a PSS, an SSS, and a PBCH that are sent together in a fourth period, and the PBCH in the downlink signal is used to indicate at least one of the following:
  • the transmission timing or transmission period of system information The transmission timing or transmission period of system information.
  • the fourth period may be the transmission period of SSB in the conventional technical solution, for example, 20ms.
  • it refers to the use of a conventional 20ms transmission period to transmit a downlink signal containing PSS, SSS and PBCH, that is, to transmit SSB.
  • at least one of the following may be indicated by a bit in the PBCH: the transmission timing or transmission period of type 0-PDCCH; the transmission timing or transmission period of system information.
  • the transmission period of type 0-PDCCH and/or system information is indicated by limited bits in the PBCH.
  • the conventional transmission period is 20ms, and the transmission period of type 0-PDCCH and/or system information may be 40ms, 80ms, 160ms, etc., which requires 2 bits for indication.
  • the transmission period of type 0-PDCCH and/or system information is not limited to the above examples, but may also be other values, which are not limited in this embodiment.
  • the jointly transmitted PSS, SSS and PBCH may specifically refer to the simultaneous transmission of PBCH, PSS and SSS at the transmission timing of SSB, that is, the simultaneous transmission of PBCH, PSS and SSS on 4 consecutive symbols corresponding to the transmission timing of SSB.
  • the reserved bits of the MIB information in the PBCH and/or the bits related to the time slot in the PBCH are used to indicate at least one of the following:
  • the transmission timing or transmission period of system information The transmission timing or transmission period of system information.
  • the PBCH channel carries 24 bits of information from the upper layer and 8 bits of information from the physical layer, of which 1 bit is reserved in the 24 bits of the upper layer.
  • the reserved bits of the MIB information in the above PBCH are the reserved bits of the upper layer.
  • 4 bits are the four least significant bits (LSB) of the system frame number
  • 2 bits are the system half-frame indication
  • 3 bits are the three most significant bits (MSB) of the SSB index.
  • MSB most significant bits
  • the SSB index is completely determined by the demodulation reference signal (DMRS) of the PBCH. Therefore, in the low frequency below 6GHz, one of the three bits is used to indicate the subcarrier level offset between the SSB and SIB1 control channels in conjunction with the ssb-SubcarrierOffset field, and the other two bits are reserved information; then the time slot-related bits in the above PBCH are the bits of the physical layer in the above scenario. That is, the PBCH carries the high-level MIB information, and also generates 8 bits of timing-related bits (timing related PBCH payload bits).
  • DMRS demodulation reference signal
  • One reserved bit in the MIB and/or the last two bits of the time slot-related bits (8 bits) can be used as two reserved bits to indicate the transmission period or transmission timing of type 0-PDCCH and/or SIB1 when L is not equal to 64. For example, 00 indicates the default 20ms period, 01 indicates 40ms, 10 indicates 80ms, 11 indicates 160ms, and so on. Indicating the transmission timing includes indicating the interval of the transmission within the cycle, or indicating the interval at which the transmission time occurs, or the time slot position at which the transmission occurs, etc.
  • the method further includes: the network device sending the system information based on the transmission timing or transmission period of the system information, and/or sending the type 0-PDCCH based on the transmission timing or transmission period of type 0-PDCCH.
  • the frame identifier of the wireless frame used to transmit the system information and the transmission period of the system information satisfy an agreed relationship
  • the frame identifier of the wireless frame used to transmit type 0-PDCCH and the transmission period of type 0-PDCCH satisfy an agreed relationship
  • the terminal after receiving the PBCH, the terminal can obtain the frame timing of 10ms, and according to the 2-bit indication in the PBCH, it can know the transmission period of the current system information (such as SIB1) transmission, determine the transmission opportunity of the system information (such as SIB1) according to the agreed relationship, and only detect the system information (such as SIB1) at these transmission opportunities.
  • SIB1 system information
  • other agreed relationships may also be used to determine the transmission timing, which is not limited in this embodiment.
  • the method for determining the transmission timing of type 0-PDCCH refers to the method for determining the transmission timing of system information, which will not be repeated here.
  • SSB is transmitted according to a transmission period of 20ms.
  • UE1 detects PBCH and obtains a frame timing of 10ms.
  • the bit indication in PBCH can determine that the transmission period of SIB1 is 80ms.
  • the transmission timing of SIB1 can be determined according to the agreed relationship, and then SIB1 and the scheduling PDCCH (ie, type0-PDCCH) can be read at the corresponding transmission timing.
  • the scheduling PDCCH ie, type0-PDCCH
  • the scheduling PDCCH is used to schedule SIB, that is, the reading of SIB is achieved by reading the scheduling PDCCH (ie, type0-PDCCH).
  • the method also includes: the network device receives a first signal sent by the terminal, the first signal is used to request or trigger the network device to send system information and/or type 0-PDCCH in a fourth period; the network device sends system information and/or type 0-PDCCH at a fourth transmission opportunity in a fourth period.
  • the transmission period of type 0-PDCCH and/or the transmission period of system information may be longer, greater than the conventional 20ms.
  • the terminal can also actively initiate a request to request or trigger the network device to send system information in a fourth period (20ms).
  • the first signal can, for example, use a preamble similar to a physical random access channel (PRACH, Physical Random Access Channel), that is, the terminal requests or triggers the network device to send system information and/or type 0-PDCCH in the fourth period by sending a preamble.
  • PRACH Physical Random Access Channel
  • the UE detects the PBCH in the SSB and obtains the frame timing of 10ms. Through the bit indication in the PBCH, it can be determined that the transmission period of SIB1 or type 0-PDCCH is 80ms. Then, the transmission timing of SIB1 or type 0-PDCCH can be determined according to the agreed relationship, and then SIB1 and scheduled PDCCH (i.e. type0-PDCCH) can be read at the corresponding transmission timing. The UE can send a first signal to request to obtain SIB1 in advance.
  • the advance here means that the SIB1 or type 0-PDCCH originally transmitted according to 80ms, after the base station receives the first signal, the base station returns to the traditional 20ms (or other agreed period) period to send SIB1 and its scheduled PDCCH information at the time-frequency resource position determined by the SSB corresponding to the next 20ms period.
  • the pdcch-ConfigSIB1 in the PBCH in the SSB is 8 bits, which is used to indicate the time-frequency resource position of the control resource set (CORESET) used to schedule the SIB1 message, as well as the corresponding type0-PDCCH search space parameters; therefore, when the SSB is transmitted at a period of 20ms, the period of the control information for scheduling the SIB1 message indicated by its corresponding PBCH will also be restored from a larger period to 20ms.
  • CORESET control resource set
  • the information of type0-PDCCH and its corresponding CORESET is indicated by the PBCH to determine the detected time-frequency resource position, and then the PDCCH detected in the type0-PDCCH search space is used to determine the time-frequency position of the detected SIB1 to obtain SIB1.
  • SIB1 or type 0-PDCCH is transmitted at 80ms, not every PBCH will be followed by SIB1 or type 0-PDCCH in the same period.
  • the UE receives SIB1 and the scheduled PDCCH at the transmission time of the next SSB, and obtains Get random access information and initiate random access process.
  • the network device receives a first signal sent by a terminal, including: the network device receives the first signal in a last subframe of a radio frame where a fifth transmission opportunity for sending the synchronization signal is located.
  • the frame structure period of 10ms since the frame structure period of 10ms must be repeated once, it can be transmitted in the last subframe of the wireless frame at the time of receiving SSB.
  • FIG7 is a flow chart of the transmission indication method of the present disclosure embodiment; as shown in FIG7 , the method includes:
  • Step 201 The terminal receives a downlink signal including a synchronization signal; based on the downlink signal, determines at least one of the following: a transmission timing or a transmission period of a PBCH; a transmission timing or a transmission period of a type 0-PDCCH; a transmission timing or a transmission period of system information.
  • the synchronization signal may include multiple types, and the transmission characteristics of different types of synchronization signals may be different, for example, the transmission patterns or transmission periods of different types of synchronization signals are different, then the network device may indicate the transmission timing or transmission period of PBCH, the transmission timing or transmission period of type 0-PDCCH, the transmission timing or transmission period of system information, etc. through the transmission characteristics of different types of synchronization signals.
  • the synchronization signal included in the downlink signal does not include PBCH, that is, the transmission timing or transmission period of PBCH may be indicated by the transmission characteristics of other types of synchronization signals except PBCH.
  • the terminal may determine at least one of the following according to the type of synchronization signal in the received downlink signal and its transmission characteristics: the transmission timing or transmission period of PBCH; the transmission timing or transmission period of type 0-PDCCH; the transmission timing or transmission period of system information.
  • the terminal receives a downlink signal including a synchronization signal, including at least one of the following:
  • the terminal receives a downlink signal including a PSS at at least one first transmission opportunity with a first period;
  • the terminal receives a downlink signal including the PSS and the SSS at a second transmission opportunity with a second period.
  • the PBCH is sent together with PSS and SSS at a third transmission opportunity with a third period; the second period is N times the first period, N is a positive integer greater than or equal to 1, and the third period is M times the second period, M is a positive integer greater than or equal to 1.
  • the synchronization signal included in the downlink signal includes PSS, and/or includes PSS and SSS; wherein, only PSS is sent at at least one first transmission opportunity with a first period, and PSS and SSS are sent together at a second transmission opportunity with a second period, that is, the transmission period of PSS is different from the transmission period of SSS, and PSS is sent together when SSS is sent.
  • PBCH is only transmitted together with PSS and SSS, so PBCH can only be transmitted at the transmission timing when PSS and SSS are transmitted together. Therefore, after the terminal detects PSS, it may detect SSS or not detect SSS at the same transmission timing (occasion). Based on this, the terminal can judge that the subsequent PBCH detection only needs to be detected at the moment when PSS and SSS appear at the same time, so as to determine the transmission period or transmission timing of PBCH. As shown in FIG4, for example, UE1 searches for PSS at a certain transmission timing, and after obtaining PSS, it does not obtain SSS. Then UE1 will go to the next transmission timing (20ms transmission period) to obtain SSS and try to detect PBCH.
  • UE After detecting PSS and SSS, if PBCH is not obtained, UE will only continue to try to obtain PBCH at intervals of 40ms (i.e., the second period interval), and will not detect at the transmission timing when only PSS is present, thereby saving terminal energy consumption.
  • the terminal will skip the next detection opportunity and detect PBCH at an interval, thereby achieving terminal energy saving; or it will perform detection at the next detection opportunity, and may only detect PSS, and further perform detection at the next detection opportunity, detect PBCH, and detect PSS and SSS at the same time, thereby clarifying that the transmission period of PSS and SSS is 40ms.
  • the PBCH is used to indicate the transmission timing of type 0-PDCCH and/or the transmission timing of system information.
  • the search space corresponding to type 0-PDCCH (type0-PDCCH) is used to detect type0-PDCCH, that is, the transmission timing of PBCH is associated with or corresponds to the transmission timing or transmission period of type0-PDCCH, that is, the downlink signal containing the synchronization signal in this embodiment can implicitly indicate type0-PDCCH.
  • type0-PDCCH is used to schedule system information, that is, the downlink signal containing the synchronization signal in this embodiment can also implicitly indicate the transmission timing or transmission period of system information.
  • the system message can be a system information block (SIB, System Information Block), such as SIB1.
  • the downlink signal includes a PSS, an SSS, and a PBCH that are sent together in a fourth period, and the PBCH in the downlink signal is used to indicate at least one of the following:
  • the transmission timing or transmission period of system information The transmission timing or transmission period of system information.
  • the fourth period may be the transmission period of SSB in the conventional technical solution, for example, 20ms.
  • it refers to the use of a conventional 20ms transmission period to transmit a downlink signal containing PSS, SSS and PBCH, that is, to transmit SSB.
  • at least one of the following may be indicated by a bit in the PBCH: the transmission timing or transmission period of type 0-PDCCH; the transmission timing or transmission period of system information.
  • the transmission period of type 0-PDCCH and/or system information is indicated by limited bits in the PBCH.
  • the conventional transmission period is 20ms, and the transmission period of type 0-PDCCH and/or system information may be 40ms, 80ms, 160ms, etc., which requires 2 bits for indication.
  • the transmission period of type 0-PDCCH and/or system information is not limited to the above examples, but may also be other values, which are not limited in this embodiment.
  • the reserved bits of the MIB information in the PBCH and/or the bits related to the time slot in the PBCH are used to indicate at least one of the following:
  • the transmission timing or transmission period of system information The transmission timing or transmission period of system information.
  • the method further includes: the terminal receiving system information based on the transmission timing or transmission period of the system information, and/or receiving type 0-PDCCH based on the transmission timing or transmission period of the type 0-PDCCH.
  • the frame identifier of the wireless frame used to transmit the system information and the transmission period of the system information satisfy an agreed relationship
  • the frame identifier of the wireless frame used to transmit type 0-PDCCH and the transmission period of type 0-PDCCH satisfy an agreed relationship
  • the terminal user can obtain the frame timing of 10ms after receiving the PBCH, and can know the transmission period of the current system information (such as SIB1) according to the 2-bit indication in the PBCH, determine the transmission timing of the system information (such as SIB1) according to the agreed relationship, and only detect the system information (such as SIB1) at these transmission timings.
  • the transmission timing can also be used to determine the transmission timing, which is not limited in this embodiment.
  • the method also includes: the terminal sends a first signal, wherein the first signal is used to request or trigger the network device to send system information and/or type 0-PDCCH in a fourth period; the terminal receives system information and/or type 0-PDCCH at a fourth transmission opportunity in the fourth period.
  • the transmission period of type 0-PDCCH and/or the transmission period of system information may be longer, greater than the conventional 20ms.
  • the terminal may also actively initiate a request to request or trigger the network device to send system information in the fourth period (20ms).
  • the first signal may, for example, use a preamble similar to a physical random access channel (PRACH, Physical Random Access Channel), that is, the terminal requests or triggers the network device to send system information and/or type 0-PDCCH in the fourth period by sending a preamble.
  • PRACH Physical Random Access Channel
  • the terminal sending the first signal includes: the terminal sending the first signal in a last subframe of a radio frame at which a fifth transmission opportunity at which the synchronization signal is received is located.
  • the present disclosure also provides a transmission indication device, which is applied to a network device.
  • FIG8 is a schematic diagram of the structure of the transmission indication device of the present disclosure; as shown in FIG8 , the device includes a first communication unit 31, configured to send a downlink signal including a synchronization signal; wherein the downlink signal is used to determine at least one of the following:
  • the transmission timing or transmission period of system information The transmission timing or transmission period of system information.
  • the first communication unit 31 is configured to send a downlink signal including a PSS at at least one first transmission opportunity with a first period; and/or send a downlink signal including a PSS and a SSS at a second transmission opportunity with a second period.
  • the downlink signal is used to determine the transmission timing or transmission period of the PBCH; wherein the PBCH is sent together with the PSS and the SSS at a third transmission timing with a third period; the second period is N times the first period, N is a positive integer greater than or equal to 1, and the third period is M times the second period, M is a positive integer greater than or equal to 1. A positive integer.
  • the PBCH is used to indicate the transmission timing of type 0-PDCCH and/or the transmission timing of system information.
  • the downlink signal includes a PSS, an SSS, and a PBCH that are sent together in a fourth period, and the PBCH in the downlink signal is used to indicate at least one of the following:
  • the transmission timing or transmission period of system information The transmission timing or transmission period of system information.
  • the reserved bits of the MIB information in the PBCH and/or the bits related to the time slot in the PBCH are used to indicate at least one of the following:
  • the transmission timing or transmission period of system information The transmission timing or transmission period of system information.
  • the first communication unit 31 is further configured to send system information based on the transmission timing or transmission period of the system information, and/or send the type 0-PDCCH based on the transmission timing or transmission period of type 0-PDCCH.
  • the frame identifier of the wireless frame used to transmit the system information and the transmission period of the system information satisfy an agreed relationship
  • the frame identifier of the wireless frame used to transmit type 0-PDCCH and the transmission period of type 0-PDCCH satisfy an agreed relationship
  • the first communication unit 31 is further configured to receive a first signal sent by the terminal, wherein the first signal is used to request or trigger the network device to send system information and/or type 0-PDCCH in a fourth period; and is also configured to send system information and/or type 0-PDCCH in a fourth period at a fourth transmission opportunity.
  • the first communication unit 31 is further configured to receive the first signal in the last subframe of the radio frame where the fifth transmission opportunity for sending the synchronization signal is located.
  • the first communication unit 31 in the device can be used in practical applications. This is achieved through communication modules (including: basic communication kit, operating system, communication module, standardized interface and protocol, etc.) and transceiver antennas.
  • communication modules including: basic communication kit, operating system, communication module, standardized interface and protocol, etc.
  • transceiver antennas including: basic communication kit, operating system, communication module, standardized interface and protocol, etc.
  • FIG9 is a second schematic diagram of the structure of the transmission indication device of the embodiment of the present disclosure; as shown in FIG9 , the device includes a second communication unit 41 and a processing unit 42; wherein,
  • the second communication unit 41 is configured to receive a downlink signal including a synchronization signal
  • the processing unit 42 is configured to determine at least one of the following based on the downlink signal:
  • the transmission timing or transmission period of system information The transmission timing or transmission period of system information.
  • the second communication unit 41 is configured to receive a downlink signal including a PSS at at least one first transmission opportunity with a first period; and/or to receive a downlink signal including a PSS and a SSS at a second transmission opportunity with a second period.
  • the PBCH is sent together with the PSS and SSS at a third transmission time with a third period; the second period is N times the first period, N is a positive integer greater than or equal to 1, and the third period is M times the second period, M is a positive integer greater than or equal to 1.
  • the PBCH is used to indicate the transmission timing of type 0-PDCCH and/or the transmission timing of system information.
  • the downlink signal includes a PSS, an SSS, and a PBCH that are sent together in a fourth period, and the PBCH in the downlink signal is used to indicate at least one of the following:
  • the transmission timing or transmission period of system information The transmission timing or transmission period of system information.
  • the reserved bits of the MIB information in the PBCH and/or the bits related to the time slot in the PBCH are used to indicate at least one of the following:
  • the transmission timing or transmission period of system information The transmission timing or transmission period of system information.
  • the second communication unit 41 is further configured to receive system information based on the transmission timing or transmission period of the system information, and/or to receive type 0-PDCCH based on the transmission timing or transmission period of the type 0-PDCCH.
  • the frame identifier of the wireless frame used to transmit the system information and the transmission period of the system information satisfy an agreed relationship
  • the frame identifier of the wireless frame used to transmit type 0-PDCCH and the transmission period of type 0-PDCCH satisfy an agreed relationship
  • the second communication unit 41 is further configured to send a first signal, wherein the first signal is used to request or trigger the network device to send system information and/or type 0-PDCCH in a fourth period; and is also configured to receive system information and/or type 0-PDCCH at a fourth transmission opportunity in a fourth period.
  • the second communication unit 41 is configured to send the first signal in the last subframe of the radio frame where the fifth transmission opportunity of the synchronization signal is received.
  • the processing unit 42 in the device can be implemented by a central processing unit (CPU), a digital signal processor (DSP), a microcontroller unit (MCU) or a programmable gate array (FPGA) in actual applications;
  • the second communication unit 41 in the device can be implemented by a communication module (including: basic communication kit, operating system, communication module, standardized interface and protocol, etc.) and a transceiver antenna in actual applications.
  • the transmission instruction device provided in the above embodiment only uses the division of the above program modules as an example to illustrate when performing transmission instructions.
  • the above processing can be assigned to different program modules as needed, that is, the internal structure of the device can be divided into different program modules to complete all or part of the above-described processing.
  • the transmission indication device and the transmission indication method embodiments provided belong to the same concept, and their specific implementation processes are detailed in the method embodiments, which will not be repeated here.
  • the present disclosure also provides a communication device, which is a network device or a terminal in the above-mentioned embodiment.
  • FIG10 is a schematic diagram of the hardware composition structure of the communication device in the present disclosure embodiment.
  • the communication device includes a memory 52, a processor 51, and a computer program stored in the memory 52 and executable on the processor 51.
  • the processor 51 executes the program, the steps of the transmission indication method in the network device or terminal in the present disclosure embodiment are implemented.
  • the communication device further includes at least one network interface 53.
  • the various components in the communication device are coupled together via a bus system 54. It is understood that the bus system 54 is used to achieve connection and communication between these components.
  • the bus system 54 also includes a power bus, a control bus, and a status signal bus.
  • various buses are labeled as bus systems 54 in FIG. 10.
  • the memory 52 can be a volatile memory or a non-volatile memory, and can also include both volatile and non-volatile memories.
  • the non-volatile memory can be a read-only memory (ROM), a programmable read-only memory (PROM), an erasable programmable read-only memory (EPROM), an electrically erasable programmable read-only memory (EEPROM), a magnetic random access memory (FRAM), a flash memory, a magnetic surface memory, an optical disk, or a compact disc read-only memory (CD-ROM); the magnetic surface memory can be a disk memory or a tape memory.
  • the volatile memory can be a random access memory (RAM), which is used as an external cache.
  • RAM static random access memory
  • SSRAM synchronous static random access memory
  • DRAM Dynamic Random Access Memory
  • SDRAM Synchronous Dynamic Random Access Memory
  • DDRSDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • SLDRAM SyncLink Dynamic Random Access Memory
  • DRRAM Direct Rambus Random Access Memory
  • the method disclosed in the above embodiment of the present disclosure can be applied to the processor 51, or implemented by the processor 51.
  • the processor 51 may be an integrated circuit chip with signal processing capabilities. In the implementation process, each step of the above method can be completed by the hardware integrated logic circuit in the processor 51 or the instruction in the form of software.
  • the above processor 51 can be a general-purpose processor, a DSP, or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, etc.
  • the processor 51 can implement or execute the methods, steps and logic block diagrams disclosed in the embodiment of the present disclosure.
  • the general-purpose processor can be a microprocessor or any conventional processor, etc.
  • the steps of the method disclosed in the embodiment of the present disclosure can be directly embodied as a hardware decoding processor to execute, or a combination of hardware and software modules in the decoding processor to execute.
  • the software module can be located in a storage medium, which is located in the memory 52.
  • the processor 51 reads the information in the memory 52 and completes the steps of the above method in combination with its hardware.
  • the communication device may be implemented by one or more application specific integrated circuits (ASICs), DSPs, programmable logic devices (PLDs), complex programmable logic devices (CPLDs), FPGAs, general purpose processors, controllers, MCUs, microprocessors, or other electronic components to perform the aforementioned method.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • PLDs programmable logic devices
  • CPLDs complex programmable logic devices
  • FPGAs general purpose processors
  • controllers controllers
  • MCUs microprocessors, or other electronic components to perform the aforementioned method.
  • the disclosed embodiment further provides a computer-readable storage medium, such as a memory 52 including a computer program, which can be executed by a processor 51 of a communication device to complete the steps of the aforementioned method.
  • the computer-readable storage medium can be a memory such as FRAM, ROM, PROM, EPROM, EEPROM, Flash Memory, magnetic surface memory, optical disk, or CD-ROM; or it can be various devices including one or any combination of the above memories.
  • the embodiment of the present disclosure also provides a computer-readable storage medium, on which a computer program is stored.
  • the program is executed by a processor, the steps of the transmission indication method applied in the embodiment of the present disclosure to a network device or a terminal are implemented.
  • the disclosed devices and methods can be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the units is only a logical function division.
  • the coupling, direct coupling, or communication connection between the components shown or discussed can be through some interfaces, and the indirect coupling or communication connection of the devices or units can be electrical, mechanical or other forms.
  • the units described above as separate components may or may not be physically separate, and the components shown as units may or may not be physical units, that is, they may be located in one place or distributed over multiple network units; some of them may be selected according to actual needs. or all units to achieve the purpose of the embodiment.
  • all functional units in the embodiments of the present disclosure may be integrated into one processing unit, or each unit may be separately configured as a unit, or two or more units may be integrated into one unit; the above-mentioned integrated units may be implemented in the form of hardware or in the form of hardware plus software functional units.
  • the integrated unit of the present disclosure can also be stored in a computer-readable storage medium.
  • the technical solution of the embodiment of the present disclosure can essentially or in other words, the part that contributes to the prior art can be embodied in the form of a software product, which is stored in a storage medium and includes a number of instructions for a computer device (which can be a personal computer, a server, or a network device, etc.) to execute all or part of the methods described in each embodiment of the present disclosure.
  • the aforementioned storage medium includes: various media that can store program codes, such as mobile storage devices, ROM, RAM, magnetic disks or optical disks.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了一种传输指示方法、装置、通信设备和存储介质。所述方法包括:网络设备发送包含同步信号的下行信号;其中,所述下行信号用于确定以下至少之一:物理广播信道(PBCH)的传输时机或者传输周期;类型0-物理下行控制信道(PDCCH)的传输时机或者传输周期;系统信息的传输时机或者传输周期。

Description

一种传输指示方法、装置、通信设备和存储介质
相关申请的交叉引用
本公开基于申请号为202211210675.X、申请日为2022年09月30日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此以引入方式并入本公开。
技术领域
本公开涉及通信技术领域,具体涉及一种传输指示方法、装置、通信设备和存储介质。
背景技术
基站节能作为节省运营商开支,实现无线通信领域低碳高效的手段之一,获得了运营商、设备商的一致支持。从时域角度来看,由于存在周期性广播信号,如同步信号块(SSB)、系统信息及其调度信息,这些符号无法实现基站的睡眠,在增强技术的研究中将会考虑如何进行此类信号的传输优化,增加基站的睡眠时间。如增大SSB及系统信息块(SIB,System Information Block)的传输周期,从而增加基站可进入睡眠的时隙个数、符号个数,节省基站能耗。
在单载波的场景下,由于终端只能通过单个的载波实现初始接入,当SSB和系统信息的传输周期增大以后,此时终端并不知道在哪个SSB传输时机上会有SSB发送,因此会在每个传输时机上尝试去检测,对于终端来说,能耗较高。因此,在上述场景下,如何识别系统信息的周期,目前尚无有效解决方案。
发明内容
本公开实施例提供一种传输指示方法、装置、通信设备和存储介质。
本公开实施例的技术方案是这样实现的:
第一方面,本公开实施例提供了一种传输指示方法,所述方法包括:
网络设备发送包含同步信号的下行信号;其中,所述下行信号用于确定以下至少之一:
物理广播信道(PBCH,Physical Broadcast Channel)的传输时机或者传输周期;
类型0-物理下行控制信道(PDCCH,Physical Downlink Control Channel)的传输时机或者传输周期;
系统信息的传输时机或者传输周期。
在本公开的一些可选实施例中,所述网络设备发送包含同步信号的下行信号,包括以下至少之一:
所述网络设备以第一周期在至少一个第一传输时机发送包含主同步信号(PSS,Primary Synchronization Signals)的下行信号;
所述网络设备以第二周期在第二传输时机发送包含PSS和辅同步信号(SSS,Secondary Synchronization Signals)的下行信号。
在本公开的一些可选实施例中,所述下行信号用于确定PBCH的传输时机或者传输周期;
其中,所述PBCH以第三周期在第三传输时机上与PSS和SSS共同发送;所述第二周期为所述第一周期的N倍,N为大于或等于1的正整数,所述第三周期为所述第二周期的M倍,M为大于或等于1的正整数。
在本公开的一些可选实施例中,所述PBCH用于指示类型0-PDCCH的传输时机和/或系统信息的传输时机。
在本公开的一些可选实施例中,所述下行信号包含以第四周期共同发 送的PSS、SSS和PBCH,所述下行信号中的PBCH用于指示以下至少之一:
类型0-PDCCH的传输时机或者传输周期;
系统信息的传输时机或者传输周期。
在本公开的一些可选实施例中,所述PBCH中的MIB信息的预留比特和/或PBCH中与时隙相关的比特用于指示以下至少之一:
类型0-PDCCH的传输时机或者传输周期;
系统信息的传输时机或者传输周期。
在本公开的一些可选实施例中,所述方法还包括:所述网络设备基于所述系统信息的传输时机或者传输周期发送系统信息,和/或,基于类型0-PDCCH的传输时机或者传输周期发送所述类型0-PDCCH。
在本公开的一些可选实施例中,用于传输所述系统信息的无线帧的帧标识与所述系统信息的传输周期满足约定关系,和/或,用于传输类型0-PDCCH的无线帧的帧标识与类型0-PDCCH的传输周期满足约定关系。
在本公开的一些可选实施例中,所述方法还包括:所述网络设备接收终端发送的第一信号,所述第一信号用于请求或触发网络设备以第四周期发送系统信息和/或类型0-PDCCH;
所述网络设备以第四周期在第四传输时机发送系统信息和/或类型0-PDCCH。
在本公开的一些可选实施例中,所述网络设备接收终端发送的第一信号,包括:所述网络设备在发送所述同步信号的第五传输时机所处的无线帧的最后一个子帧接收所述第一信号。
第二方面,本公开实施例还提供了一种传输指示方法,所述方法包括:
终端接收包含同步信号的下行信号;基于所述下行信号确定以下至少之一:
PBCH的传输时机或者传输周期;
类型0-PDCCH的传输时机或者传输周期;
系统信息的传输时机或者传输周期。
在本公开的一些可选实施例中,所述终端接收包含同步信号的下行信号,包括以下至少之一:
所述终端以第一周期在至少一个第一传输时机接收包含PSS的下行信号;
所述终端以第二周期在第二传输时机接收包含PSS和SSS的下行信号。
在本公开的一些可选实施例中,所述PBCH以第三周期在第三传输时机上与PSS和SSS共同发送;所述第二周期为所述第一周期的N倍,N为大于或等于1的正整数,所述第三周期为所述第二周期的M倍,M为大于或等于1的正整数。
在本公开的一些可选实施例中,所述PBCH用于指示类型0-PDCCH的传输时机和/或系统信息的传输时机。
在本公开的一些可选实施例中,所述下行信号包含以第四周期共同发送的PSS、SSS和PBCH,所述下行信号中的PBCH用于指示以下至少之一:
类型0-PDCCH的传输时机或者传输周期;
系统信息的传输时机或者传输周期。
在本公开的一些可选实施例中,所述PBCH中的主信息块(MIB,Master Information Block)信息的预留比特和/或PBCH中与时隙相关的比特用于指示以下至少之一:
类型0-PDCCH的传输时机或者传输周期;
系统信息的传输时机或者传输周期。
在本公开的一些可选实施例中,所述方法还包括:所述终端基于所述系统信息的传输时机或者传输周期接收系统信息,和/或,基于所述类型0-PDCCH的传输时机或者传输周期接收类型0-PDCCH。
在本公开的一些可选实施例中,用于传输所述系统信息的无线帧的帧标识与所述系统信息的传输周期满足约定关系,和/或,用于传输类型0-PDCCH的无线帧的帧标识与类型0-PDCCH的传输周期满足约定关系。
在本公开的一些可选实施例中,所述方法还包括:所述终端发送第一信号,所述第一信号用于请求或触发网络设备以第四周期发送发送系统信息和/或类型0-PDCCH;
所述终端以第四周期在第四传输时机接收系统信息和/或类型0-PDCCH。
在本公开的一些可选实施例中,所述终端发送第一信号,包括:所述终端在接收到所述同步信号的第五传输时机所处的无线帧的最后一个子帧发送所述第一信号。
第三方面,本公开实施例还提供了一种传输指示装置,所述装置包括第一通信单元,配置为发送包含同步信号的下行信号;其中,所述下行信号用于确定以下至少之一:
PBCH的传输时机或者传输周期;
类型0-PDCCH的传输时机或者传输周期;
系统信息的传输时机或者传输周期。
第四方面,本公开实施例还提供了一种传输指示装置,所述装置包括第二通信单元和处理单元;其中,
所述第二通信单元,配置为接收包含同步信号的下行信号;
所述处理单元,配置为基于所述下行信号确定以下至少之一:
PBCH的传输时机或者传输周期;
类型0-PDCCH的传输时机或者传输周期;
系统信息的传输时机或者传输周期。
第五方面,本公开实施例还提供了一种计算机可读存储介质,其上存 储有计算机程序,该程序被处理器执行时实现本公开实施例上述第一方面或第二方面所述方法的步骤。
第六方面,本公开实施例还提供了一种通信设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现本公开实施例上述第一方面或第二方面所述方法的步骤。
本公开实施例提供的传输指示方法、装置、通信设备和存储介质,所述方法包括:网络设备发送包含同步信号的下行信号;其中,所述下行信号用于确定以下至少之一:PBCH的传输时机或者传输周期;类型0-PDCCH的传输时机或者传输周期;系统信息的传输时机或者传输周期。采用本公开实施例的技术方案,终端通过包含同步信号的下行信号对以下至少之一进行确定:PBCH的传输时机或者传输周期;类型0-PDCCH的传输时机或者传输周期;系统信息的传输时机或者传输周期,在网络侧增大SSB的传输周期的情况下,无需终端在每个传输时机进行SSB检测,降低了终端的功耗。
附图说明
图1为本公开实施例的传输指示方法的流程示意图一;
图2为低频段5ms窗内包含SSB的时隙分布示意图;
图3a和图3b为SSB在5ms窗内的时域分布位置示意图;
图4为本公开实施例的传输指示方法中通过下行信号指示PBCH的传输时机的示意图;
图5为本公开实施例的传输指示方法中通过PBCH指示系统信息的传输周期的示意图;
图6为本公开实施例的传输指示方法中终端请求网络侧提前发送系统信息的示意图;
图7为本公开实施例的传输指示方法的流程示意图二;
图8为本公开实施例的传输指示装置的组成结构示意图一;
图9为本公开实施例的传输指示装置的组成结构示意图二;
图10为本公开实施例的通信设备的硬件组成结构示意图。
具体实施方式
下面结合附图及具体实施例对本公开作进一步详细的说明。
本公开实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(GSM,Global System of Mobile communication)系统、长期演进(LTE,Long Term Evolution)系统或5G系统等。可选地,5G系统或5G网络还可以称为新无线(NR,New Radio)系统或NR网络。
示例性的,本公开实施例应用的通信系统可包括网络设备和终端设备(也可称为终端、通信终端等等);网络设备可以是与终端设备通信的设备。其中,网络设备可以为一定区域范围内提供通信覆盖,并且可以与位于该区域内的终端进行通信。可选地,网络设备可以是各通信系统中的基站,例如LTE系统中的演进型基站(eNB,Evolutional Node B),又例如5G系统或NR系统中的基站(gNB)。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。通信设备可包括具有通信功能的网络设备和终端,网络设备和终端设备可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本公开实施例中对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
本公开实施例提供了一种传输指示方法。图1为本公开实施例的传输指示方法的流程示意图一;如图1所示,所述方法包括:
步骤101:网络设备发送包含同步信号的下行信号;其中,所述下行信号用于确定以下至少之一:
PBCH的传输时机或者传输周期;
类型0-PDCCH的传输时机或者传输周期;
系统信息的传输时机或者传输周期。
本实施例中,所述网络设备发送包含同步信号的下行信号,可以认为是网络设备发送下行信号或第一信号,所述下行信号或第一信号中包含同步信号。以同步信号中包括PSS为例,则网络设备发送包含PSS的下行信号,或者网络设备发送下行信号或第一信号,所述下行信号或第一信号中包括PSS。
本实施例中,作为一种示例,同步信号可包括多种类型,不同类型的同步信号的传输特性可能不同,例如不同类型的同步信号的传输样式(pattern)或传输周期不同,则网络设备可通过不同类型的同步信号的传输特性对PBCH的传输时机或者传输周期、类型0-PDCCH(type0-PDCCH)的传输时机或者传输周期、系统信息的传输时机或者传输周期等进行指示。 其中,需要说明的是,在下行信号用于指示PBCH的传输时机或者传输周期的情况下,下行信号中包括的同步信号不包括PBCH,即可通过除PBCH以外的其他类型的同步信号的传输特性对PBCH的传输时机或者传输周期进行指示。
在一些可选实施例中,所述网络设备发送包含同步信号的下行信号,包括以下至少之一:
所述网络设备以第一周期在至少一个第一传输时机发送包含PSS的下行信号;
所述网络设备以第二周期在第二传输时机发送包含PSS和SSS的下行信号。
可选地,所述下行信号用于确定PBCH的传输时机或者传输周期;其中,所述PBCH以第三周期在第三传输时机上与PSS和SSS共同发送;所述第二周期为所述第一周期的N倍,N为大于或等于1的正整数,所述第三周期为所述第二周期的M倍,M为大于或等于1的正整数。
常规技术方案中,同步信号块(SSB)包括PSS、SSS和PBCH。通常情况下,SSB的传输周期为20毫秒(ms)。而通过增大同步信号的传输周期,从而增加基站可进入睡眠的时隙个数、符号个数等等,以达到节省基站能耗的作用。因此本实施例中,通过增大同步信号的周期,进而达到可达到上述效果。另外,通过不同类型的同步信号的传输周期不同,从而实现对PBCH的传输时机或者传输周期、类型0-PDCCH的传输时机或者传输周期、系统信息的传输时机或者传输周期等进行指示。
除了传输周期,SSB在每个周期内具有一定的时域分布,同一个周期内的所有SSB位置均会限制在5ms内。这种结构可确保终端可以在5ms内完成对所有SSB的测量,而无须在一个周期内多次打开测量窗口,有利于终端测量和节省功耗。同时,在5G NR中,对于宏站覆盖场景,基站通 常需要配置半静态帧结构。在半静态帧结构下,下行资源通常被配置在下上行转换周期的前半部,将周期内的SSB集中放置在5ms内有利于将SSB放置在半静态帧结构所配置的下行资源中。参照图2所示,为低频段5ms窗内包含SSB的时隙分布示意图,其中非空白部分代表有SSB发送的时隙。
SSB在一个5ms时间窗内的具体时域分布位置与SSB子载波间隔及频段有关。目前协议中给出了实例A(Case A)、实例B(Case B)、实例C(Case C)、实例D(Case D)、实例E(Case E)五种SSB的排布方式,其中Case A/B/C针对6GHz以下频段,Case D/E针对高频毫米波。各种排布方式下SSB的具体位置如下:
1.实例A(Case A):针对15kHz SSB子载波间隔的场景。SSB的第一个符号的位置序号为{2,8}+14*n。对于对应Lmax=4的频段,n=0,1,即仅占据2个时隙(slot);对于对应Lmax=8的频段,n=0,1,2,3,需占据4个时隙。图3a给出了SSB子载波间隔采用15kHz且Lmax=4时,SSB在5ms窗内的位置。
2.实例B(Case B):针对30kHz SSB子载波间隔。SSB的第一个符号位置序号为{4,8,16,20}+28*n。对于对应Lmax=4的频段,n=0;对于对应Lmax=8的频段,n=0,1。图3b给出了SSB子载波间隔采用30kHz且Lmax=8时,Case B SSB在5ms窗内的位置。
3.实例C(Case C):针对30kHz子载波间隔。SSB的第一个符号位置序号为{2,8}+14*n。对于对应Lmax=4的频段,n=0,1;对于对应Lmax=8的频段,n=0,1,2,3。图3b给出了采用30kHz SSB子载波间隔且Lmax=8时,Case C SSB在5ms窗内的位置。
4.实例D(Case D):针对SSB子载波间隔为120kHz的场景。SSB的第一个符号位置为{4,8,16,20}+28*n,对于6GHz以上的高频段(Lmax=64),n=0,1,2,3,5,6,7,8,10,11,12,13,15,16,17,18。
5.实例E(Case E):针对SSB子载波间隔为240kHz的场景,SSB的第一个符号位置为{8,12,16,20,32,36,40,44}+56*n,对于6GHz以上的高频段,n=0,1,2,3,5,6,7,8。
值得注意的是,对于6GHz以下频段采用30kHz SSB子载波间隔时,SSB存在两种摆放方式:Case B、Case C(如3b所示)。
这里可以看到每个SSB会有确定的起始符号位置,从起始符号开始连续传输4个符号,承载SSB,这里将每个4符号的SSB的传输机会,称为一个传输时机。可以看到一个传输时机可以包含多个符号,位于一个时隙内。这些排布方式实际上给出了在一个周期内的不同SSB索引的传输时机。对于同一个SSB索引来说,它会按照SSB的周期,比如20ms(或其他值)在其对应的传输时机上重复传输。
本实施例中,下行信号中包括的同步信号包括PSS,和/或,包括PSS和SSS;其中,以第一周期在至少一个第一传输时机仅发送PSS,以第二周期在第二传输时机共同发送PSS和SSS,也就是说,PSS的传输周期和SSS的传输周期不同,并且在发送SSS的同时共同发送PSS。参照图4所示,图4中的(a)示出的是常规技术方案中SSB的传输,传输周期为20ms。图4中的(b)示出本实施例中下行信号的传输,本示例中,PSS依然按照传统的20ms的传输周期进行传输,但SSS的传输周期为40ms,即N等于2,也即每隔一个PSS,才会出现SSS与PSS伴随传输。当然上述仅为示例,在其他实施例中,N也可为其他取值,本实施例中对此不做限定。
本实施例中,PBCH仅会与PSS和SSS共同传输,因此只有在PSS和SSS共同传输的传输时机,才有可能传输PBCH。参照图4所示,PBCH的传输周期为80ms,即M等于2,也即每隔一次PSS和SSS共同传输的传输时机,才会出现PBCH与PSS和SSS伴随传输。当然上述仅为示例,在其他实施例中,M也可为其他取值,本实施例中对此不做限定。其中,所述 PBCH与PSS和SSS共同发送,具体可以是指在SSB的传输时机(如第三传输时机)上同时发送PBCH、PSS和SSS,也即在SSB的传输时机(如第三传输时机)所对应的连续4个符号上同时发送PBCH、PSS和SSS。
对于终端的检测来说,终端会在同步栅格上先检测PSS,终端解码PSS信号,获得部分小区取值为{0,1,2}。在解调PSS后,终端将继续尝试解码SSS,SSS有336个取值,对应336个由两个127长的m序列模二加后得到的Gold序列,从而获得部分小区取值范围为{0,1,…335};最终根据公式得到完整小区ID。之后再解调PBCH,获得必要的小区信息等。
本实施例中,终端检测到PSS之后,在相同的传输时机(occasion)上有可能检测到SSS,也有可能没有检测到SSS,则终端可以基于此判断,后续PBCH的检测只需要在PSS和SSS同时出现的时刻检测。参照图4中所示,例如,UE1在某传输时机搜索PSS,获取到PSS之后,并未获取到SSS,则UE1就会到下一个传输时机(20ms的传输周期)去获取SSS,并尝试检测PBCH,检测到PSS和SSS之后,并未获取到PBCH,则UE只会继续以每隔40ms间隔尝试获取PBCH,而不会在只有PSS的传输时机上检测,从而节省终端能耗。又例如,对于UE2,在某传输时机上同时检测到PSS和SSS,但没有检测到PBCH,则终端会跳过下一个检测时机,间隔一个时机去检测PBCH,从而实现了终端节能;或者会在下一个检测时机进行检测,可能只检测到PSS,进一步在下一个检测时机进行检测,检测到PBCH,并同时检测到PSS和SSS,从而明确了PSS和SSS的传输周期为40ms。
在一些可选实施例中,所述PBCH用于指示类型0-PDCCH的传输时机和/或系统信息的传输时机。
本实施例中,在检测到PBCH的传输时机对应类型0-PDCCH(type0-PDCCH)搜索空间去检测type0-PDCCH,也即PBCH的传输时机 是与type0-PDCCH的传输时机或传输周期相关联的或对应的,即本实施例中包含同步信号的下行信号能够隐含指示type0-PDCCH。而type0-PDCCH是用于调度系统信息的,也即本实施例中包含同步信号的下行信号还能够隐含指示系统信息的传输时机或者传输周期。其中,示例性的,系统消息可以是系统信息块(SIB,System Information Block),如SIB1。
在本公开的一些可选实施例中,所述下行信号包含以第四周期共同发送的PSS、SSS和PBCH,所述下行信号中的PBCH用于指示以下至少之一:
类型0-PDCCH的传输时机或者传输周期;
系统信息的传输时机或者传输周期。
本实施例中,所述第四周期可以是常规技术方案中SSB的传输周期,例如20ms。则本实施例中是指采用常规的20ms传输周期传输包含有PSS、SSS和PBCH的下行信号,也即传输SSB。本实施例中,可通过PBCH中的比特指示以下至少之一:类型0-PDCCH的传输时机或者传输周期;系统信息的传输时机或者传输周期。示例性的,通过PBCH中的有限比特指示类型0-PDCCH和/或系统信息的传输周期,常规的传输周期是20ms,类型0-PDCCH和/或系统信息的传输周期可以是40ms、80ms、160ms等等,则需要2比特进行指示。当然,类型0-PDCCH和/或系统信息的传输周期不限于上述示例,还可以是其他取值,本实施例中对此不做限定。
其中,所述共同发送的PSS、SSS和PBCH,具体可以是指在SSB的传输时机上同时发送PBCH、PSS和SSS,也即在SSB的传输时机所对应的连续4个符号上同时发送PBCH、PSS和SSS。
在一些可选实施例中,所述PBCH中的MIB信息的预留比特和/或PBCH中与时隙相关的比特用于指示以下至少之一:
类型0-PDCCH的传输时机或者传输周期;
系统信息的传输时机或者传输周期。
PBCH信道中,携带高层24比特(bit)的信息和物理层的8比特的信息,其中,高层24比特中具有1个预留比特。上述PBCH中的MIB信息的预留比特即为高层的预留比特。物理层的8比特中,4比特为系统帧号的四位最低位比特(LSB),2比特为系统半帧指示,3比特为SSB索引(SSB index)的三位最高位比特(MSB)。对于最大波束个数Lmax=64的情况,该信息指示SSB index的3位MSB。对于6GHz以下频段,最大只支持8波束,SSB index已经完全通过PBCH的解调参考信号(DMRS,Demodulation Reference Signal)确定,因此,在6GHz以下的低频中,使用了这3bit中的其中1bit,与ssb-SubcarrierOffset字段联合指示SSB与SIB1控制信道之间子载波级别的偏移,其他2bit则为预留信息;则上述PBCH中与时隙相关的比特即为上述场景下的物理层的比特。也即,PBCH中携带了高层的MIB信息,还会产生8比特时序相关的比特(timing related PBCH payload bits),可以使用MIB中的1个预留比特和/或与时隙相关的比特(8比特)中的最后两位在L不等于64时作为预留的两比特指示类型0-PDCCH和/或SIB1的传输周期或传输时机。例如00表示默认20ms周期,01表示40ms,10表示80ms,11表示160ms等等。指示传输时机包括指示以多少周期的间隔在周期内传输,或者说指示传输时间出现的间隔,或出现的时隙位置等。
在本公开的一些可选实施例中,所述方法还包括:所述网络设备基于所述系统信息的传输时机或者传输周期发送系统信息,和/或,基于类型0-PDCCH的传输时机或者传输周期发送所述类型0-PDCCH。
可选地,用于传输所述系统信息的无线帧的帧标识与所述系统信息的传输周期满足约定关系,和/或,用于传输类型0-PDCCH的无线帧的帧标识与类型0-PDCCH的传输周期满足约定关系。
本实施例中,若通过PBCH指示系统信息或传输类型0-PDCCH(也即 调度系统信息的控制信道)的传输周期,则还需要确定传输周期内的传输时机。例如系统信息以Prep=80ms周期进行传输,则每隔4个SSB的传输时机会出现一个系统信息的传输时机,则系统信息出现在4个传输时机中的哪一个需要提前约定。本实施例中,示例性的,可以约定SFN*10 mod Prep=0,或者SFN mod(Prep/10)=0的无线帧作为传输系统信息的传输时机;如果Prep的单位为10ms的情况下,约定SFN mod Prep=0的无线帧作为传输系统信息的传输时机;其中,SFN表示系统帧号(System Frame Number),每隔SFN对应的帧定时为10ms,Prep表示系统信息的传输周期。这样,终端在接收完PBCH能够获得帧定时10ms,根据PBCH中的2比特指示,能够知道当前系统信息(如SIB1)传输的传输周期,根据约定关系确定系统信息(如SIB1)的传输时机,只在这些传输时机上进行系统信息(如SIB1)的检测。当然,还可采用其他约定关系确定传输时机,本实施例中对此不做限定。类似的,类型0-PDCCH的传输时机的确定方式参照系统信息的传输时机的确定方式,这里不再赘述。
示例性的,参照图5所示,按照20ms的传输周期传输SSB。UE1检测到PBCH,获得帧定时10ms,通过PBCH中的比特指示可确定SIB1的传输周期为80ms,则可根据约定关系确定SIB1的传输时机,进而在对应的传输时机读取SIB1以及调度PDCCH(即type0-PDCCH)。其中,调度PDCCH(即type0-PDCCH)是用于调度SIB的,也即通过读取调度PDCCH(即type0-PDCCH)实现对SIB的读取。
在本公开的一些可选实施例中,所述方法还包括:所述网络设备接收终端发送的第一信号,所述第一信号用于请求或触发网络设备以第四周期发送系统信息和/或类型0-PDCCH;所述网络设备以第四周期在第四传输时机发送系统信息和/或类型0-PDCCH。
本实施例中,在采用上述PBCH指示类型0-PDCCH的传输时机或者传 输周期和/或系统信息的传输时机或者传输周期的情况下,类型0-PDCCH的传输周期和/或系统信息的传输周期可能较长,大于常规的20ms。若终端对时延要求较高,则终端还可以主动发起请求,请求或触发网络设备以第四周期(20ms)发送系统信息。其中,所述第一信号例如可以使用物理随机接入信道(PRACH,Physical Random Access Channel)类似的前导码(preamble),即终端通过发送前导码请求或触发网络设备以第四周期发送系统信息和/或类型0-PDCCH。进一步地,网络设备接收到第一信号后,以第四周期(20ms)在第四传输时机发送系统信息和/或类型0-PDCCH。
参照图6所示,UE检测到SSB中的PBCH,获得帧定时10ms,通过PBCH中的比特指示可确定SIB1或类型0-PDCCH的传输周期为80ms,则可根据约定关系确定SIB1或类型0-PDCCH的传输时机,进而在对应的传输时机读取SIB1以及调度PDCCH(即type0-PDCCH)。UE可发送第一信号,请求提前获得SIB1。这里的提前是指,原来按照80ms传输的SIB1或类型0-PDCCH,在基站接收到第一信号后,基站回到按照传统的20ms(或其他约定的周期)的周期在下一个20ms周期对应的SSB所确定的时频资源位置发送SIB1及其调度PDCCH的信息。按照现有流程SSB中的PBCH中的pdcch-ConfigSIB1——8bit,用来指示用于调度SIB1消息的控制资源集合(CORESET)的时频资源位置,以及相应的type0-PDCCH搜索空间的参数;因此,当SSB按照20ms周期传输时,其对应的PBCH指示的用于调度SIB1消息的控制信息的周期也会由较大的周期恢复到20ms,type0-PDCCH及其对应的CORESET的信息通过PBCH指示,确定检测的时频资源位置,进而通过type0-PDCCH搜索空间中检测到的PDCCH,确定检测SIB1的时频位置,获得SIB1。而在按照80ms传输的SIB1或类型0-PDCCH时,并不是每个PBCH后面都会在相同周期伴随着SIB1或类型0-PDCCH。UE在下一个SSB的传输时机接收SIB1以及调度PDCCH,获 取到随机接入信息,发起随机接入流程。
在一些可选实施例中,所述网络设备接收终端发送的第一信号,包括:所述网络设备在发送所述同步信号的第五传输时机所处的无线帧的最后一个子帧接收所述第一信号。
本实施例中,由于帧结构周期10ms必然重复一次,因此可以在接收SSB的时机所处的无线帧的最后一个子帧来传输。
基于上述实施例,本公开实施例还提供了一种传输指示方法。图7为本公开实施例的传输指示方法的流程示意图二;如图7所示,所述方法包括:
步骤201:终端接收包含同步信号的下行信号;基于所述下行信号确定以下至少之一:PBCH的传输时机或者传输周期;类型0-PDCCH的传输时机或者传输周期;系统信息的传输时机或者传输周期。
本实施例中,作为一种示例,同步信号可包括多种类型,不同类型的同步信号的传输特性可能不同,例如不同类型的同步信号的传输样式(pattern)或传输周期不同,则网络设备可通过不同类型的同步信号的传输特性对PBCH的传输时机或者传输周期、类型0-PDCCH的传输时机或者传输周期、系统信息的传输时机或者传输周期等进行指示。其中,需要说明的是,在下行信号用于确定PBCH的传输时机或者传输周期的情况下,下行信号中包括的同步信号不包括PBCH,即可通过除PBCH以外的其他类型的同步信号的传输特性对PBCH的传输时机或者传输周期进行指示。则终端可根据接收到的下行信号中的同步信号的类型及其传输特性确定以下至少之一:PBCH的传输时机或者传输周期;类型0-PDCCH的传输时机或者传输周期;系统信息的传输时机或者传输周期。
在一些可选实施例中,所述终端接收包含同步信号的下行信号,包括以下至少之一:
所述终端以第一周期在至少一个第一传输时机接收包含PSS的下行信号;
所述终端以第二周期在第二传输时机接收包含PSS和SSS的下行信号。
可选地,其中,所述PBCH以第三周期在第三传输时机上与PSS和SSS共同发送;所述第二周期为所述第一周期的N倍,N为大于或等于1的正整数,所述第三周期为所述第二周期的M倍,M为大于或等于1的正整数。
本实施例中,下行信号中包括的同步信号包括PSS,和/或,包括PSS和SSS;其中,以第一周期在至少一个第一传输时机仅发送PSS,以第二周期在第二传输时机共同发送PSS和SSS,也就是说,PSS的传输周期和SSS的传输周期不同,并且在发送SSS的同时共同发送PSS。
本实施例中,PBCH仅会与PSS和SSS共同传输,因此只有在PSS和SSS共同传输的传输时机,才有可能传输PBCH。因此终端检测到PSS之后,在相同的传输时机(occasion)上有可能检测到SSS,也有可能没有检测到SSS,则终端可以基于此判断,后续PBCH的检测只需要在PSS和SSS同时出现的时刻检测,从而确定PBCH的传输周期或传输时机。参照图4中所示,例如,UE1在某传输时机搜索PSS,获取到PSS之后,并未获取到SSS,则UE1就会到下一个传输时机(20ms的传输周期)去获取SSS,并尝试检测PBCH,检测到PSS和SSS之后,并未获取到PBCH,则UE只会继续以每隔40ms(即间隔第二周期)间隔尝试获取PBCH,而不会在只有PSS的传输时机上检测,从而节省终端能耗。又例如,对于UE2,在某传输时机上同时检测到PSS和SSS,但没有检测到PBCH,则终端会跳过下一个检测时机,间隔一个时机去检测PBCH,从而实现了终端节能;或者会在下一个检测时机进行检测,可能只检测到PSS,进一步在下一个检测时机进行检测,检测到PBCH,并同时检测到PSS和SSS,从而明确了PSS和SSS的传输周期为40ms。
在一些可选实施例中,所述PBCH用于指示类型0-PDCCH的传输时机和/或系统信息的传输时机。
本实施例中,在检测到PBCH的传输时机对应类型0-PDCCH(type0-PDCCH)搜索空间去检测type0-PDCCH,也即PBCH的传输时机是与type0-PDCCH的传输时机或传输周期相关联的或对应的,即本实施例中包含同步信号的下行信号能够隐含指示type0-PDCCH。而type0-PDCCH是用于调度系统信息的,也即本实施例中包含同步信号的下行信号还能够隐含指示系统信息的传输时机或者传输周期。其中,示例性的,系统消息可以是系统信息块(SIB,System Information Block),如SIB1。
在本公开的一些可选实施例中,所述下行信号包括以第四周期共同发送的PSS、SSS和PBCH,所述下行信号中的PBCH用于指示以下至少之一:
类型0-PDCCH的传输时机或者传输周期;
系统信息的传输时机或者传输周期。
本实施例中,所述第四周期可以是常规技术方案中SSB的传输周期,例如20ms。则本实施例中是指采用常规的20ms传输周期传输包含有PSS、SSS和PBCH的下行信号,也即传输SSB。本实施例中,可通过PBCH中的比特指示以下至少之一:类型0-PDCCH的传输时机或者传输周期;系统信息的传输时机或者传输周期。示例性的,通过PBCH中的有限比特指示类型0-PDCCH和/或系统信息的传输周期,常规的传输周期是20ms,类型0-PDCCH和/或系统信息的传输周期可以是40ms、80ms、160ms等等,则需要2比特进行指示。当然,类型0-PDCCH和/或系统信息的传输周期不限于上述示例,还可以是其他取值,本实施例中对此不做限定。
在一些可选实施例中,所述PBCH中的MIB信息的预留比特和/或PBCH中与时隙相关的比特用于指示以下至少之一:
类型0-PDCCH的传输时机或者传输周期;
系统信息的传输时机或者传输周期。
在本公开的一些可选实施例中,所述方法还包括:所述终端基于所述系统信息的传输时机或者传输周期接收系统信息,和/或,基于所述类型0-PDCCH的传输时机或者传输周期接收类型0-PDCCH。
可选地,用于传输所述系统信息的无线帧的帧标识与所述系统信息的传输周期满足约定关系,和/或,用于传输类型0-PDCCH的无线帧的帧标识与类型0-PDCCH的传输周期满足约定关系。
本实施例中,若通过PBCH指示系统信息或传输类型0-PDCCH(也即调度系统信息的控制信道)的传输周期,则还需要确定传输周期内的传输时机。例如系统信息以Prep=80ms周期进行传输,则每隔4个SSB的传输时机会出现一个系统信息的传输时机,则系统信息出现在4个传输时机中的哪一个需要提前约定。本实施例中,示例性的,可以约定SFN*10 mod Prep=0,或者SFN mod(Prep/10)=0的无线帧作为传输系统信息的传输时机;如果Prep的单位为10ms的情况下,约定SFN mod Prep=0的无线帧作为传输系统信息的传输时机;其中,SFN表示系统帧号(System Frame Number),每隔SFN对应的帧定时为10ms,Prep表示系统信息的传输周期。这样,终端户在接收完PBCH能够获得帧定时10ms,根据PBCH中的2比特指示,能够知道当前系统信息(如SIB1)传输的传输周期,根据约定关系确定系统信息(如SIB1)的传输时机,只在这些传输时机上进行系统信息(如SIB1)的检测。当然,还可采用其他约定关系确定传输时机,本实施例中对此不做限定。
在本公开的一些可选实施例中,所述方法还包括:所述终端发送第一信号,所述第一信号用于请求或触发网络设备以第四周期发送发送系统信息和/或类型0-PDCCH;所述终端以第四周期在第四传输时机接收系统信息和/或类型0-PDCCH。
本实施例中,在采用上述PBCH指示类型0-PDCCH的传输时机或者传输周期和/或系统信息的传输时机或者传输周期的情况下,类型0-PDCCH的传输周期和/或系统信息的传输周期可能较长,大于常规的20ms。若终端对时延要求较高,则终端还可以主动发起请求,请求或触发网络设备以第四周期(20ms)发送系统信息。其中,所述第一信号例如可以使用物理随机接入信道(PRACH,Physical Random Access Channel)类似的前导码(preamble),即终端通过发送前导码请求或触发网络设备以第四周期发送系统信息和/或类型0-PDCCH。进一步地,网络设备接收到第一信号后,以第四周期(20ms)在第四传输时机发送系统信息和/或类型0-PDCCH。
所述终端发送第一信号,包括:所述终端在接收到所述同步信号的第五传输时机所处的无线帧的最后一个子帧发送所述第一信号。
基于上述实施例,本公开实施例还提供了一种传输指示装置,所述装置应用于网络设备。图8为本公开实施例的传输指示装置的组成结构示意图一;如图8所示,所述装置包括第一通信单元31,配置为发送包含同步信号的下行信号;其中,所述下行信号用于确定以下至少之一:
PBCH的传输时机或者传输周期;
类型0-PDCCH的传输时机或者传输周期;
系统信息的传输时机或者传输周期。
在本公开的一些可选实施例中,所述第一通信单元31,配置为以第一周期在至少一个第一传输时机发送包含PSS的下行信号;和/或,以第二周期在第二传输时机发送包含PSS和SSS的下行信号。
在本公开的一些可选实施例中,所述下行信号用于确定PBCH的传输时机或者传输周期;其中,所述PBCH以第三周期在第三传输时机上与PSS和SSS共同发送;所述第二周期为所述第一周期的N倍,N为大于或等于1的正整数,所述第三周期为所述第二周期的M倍,M为大于或等于1的 正整数。
在本公开的一些可选实施例中,所述PBCH用于指示类型0-PDCCH的传输时机和/或系统信息的传输时机。
在本公开的一些可选实施例中,所述下行信号包含以第四周期共同发送的PSS、SSS和PBCH,所述下行信号中的PBCH用于指示以下至少之一:
类型0-PDCCH的传输时机或者传输周期;
系统信息的传输时机或者传输周期。
在本公开的一些可选实施例中,所述PBCH中的MIB信息的预留比特和/或PBCH中与时隙相关的比特用于指示以下至少之一:
类型0-PDCCH的传输时机或者传输周期;
系统信息的传输时机或者传输周期。
在本公开的一些可选实施例中,所述第一通信单元31,还配置为基于所述系统信息的传输时机或者传输周期发送系统信息,和/或,基于类型0-PDCCH的传输时机或者传输周期发送所述类型0-PDCCH。
在本公开的一些可选实施例中,用于传输所述系统信息的无线帧的帧标识与所述系统信息的传输周期满足约定关系,和/或,用于传输类型0-PDCCH的无线帧的帧标识与类型0-PDCCH的传输周期满足约定关系。
在本公开的一些可选实施例中,所述第一通信单元31,还配置为接收终端发送的第一信号,所述第一信号用于请求或触发网络设备以第四周期发送系统信息和/或类型0-PDCCH;还配置为以第四周期在第四传输时机发送系统信息和/或类型0-PDCCH。
在本公开的一些可选实施例中,所述第一通信单元31,还配置为在发送所述同步信号的第五传输时机所处的无线帧的最后一个子帧接收所述第一信号。
本公开实施例中,所述装置中的第一通信单元31,在实际应用中可通 过通信模组(包含:基础通信套件、操作系统、通信模块、标准化接口和协议等)及收发天线实现。
本公开实施例还提供了一种传输指示装置,所述装置应用于终端。图9为本公开实施例的传输指示装置的组成结构示意图二;如图9所示,所述装置包括第二通信单元41和处理单元42;其中,
所述第二通信单元41,配置为接收包含同步信号的下行信号;
所述处理单元42,配置为基于所述下行信号确定以下至少之一:
PBCH的传输时机或者传输周期;
类型0-PDCCH的传输时机或者传输周期;
系统信息的传输时机或者传输周期。
在本公开的一些可选实施例中,所述第二通信单元41,配置为以第一周期在至少一个第一传输时机接收包含PSS的下行信号;和/或,以第二周期在第二传输时机接收包含PSS和SSS的下行信号。
在本公开的一些可选实施例中,所述PBCH以第三周期在第三传输时机与PSS和SSS共同发送;所述第二周期为所述第一周期的N倍,N为大于或等于1的正整数,所述第三周期为所述第二周期的M倍,M为大于或等于1的正整数。
在本公开的一些可选实施例中,所述PBCH用于指示类型0-PDCCH的传输时机和/或系统信息的传输时机。
在本公开的一些可选实施例中,所述下行信号包含以第四周期共同发送的PSS、SSS和PBCH,所述下行信号中的PBCH用于指示以下至少之一:
类型0-PDCCH的传输时机或者传输周期;
系统信息的传输时机或者传输周期。
在本公开的一些可选实施例中,所述PBCH中的MIB信息的预留比特和/或PBCH中与时隙相关的比特用于指示以下至少之一:
类型0-PDCCH的传输时机或者传输周期;
系统信息的传输时机或者传输周期。
在本公开的一些可选实施例中,所述第二通信单元41,还配置为基于所述系统信息的传输时机或者传输周期接收系统信息,和/或,基于所述类型0-PDCCH的传输时机或者传输周期接收类型0-PDCCH。
在本公开的一些可选实施例中,用于传输所述系统信息的无线帧的帧标识与所述系统信息的传输周期满足约定关系,和/或,用于传输类型0-PDCCH的无线帧的帧标识与类型0-PDCCH的传输周期满足约定关系。
在本公开的一些可选实施例中,所述第二通信单元41,还配置为发送第一信号,所述第一信号用于请求或触发网络设备以第四周期发送发送系统信息和/或类型0-PDCCH;还配置为以第四周期在第四传输时机接收系统信息和/或类型0-PDCCH。
在本公开的一些可选实施例中,所述第二通信单元41,配置为在接收到所述同步信号的第五传输时机所处的无线帧的最后一个子帧发送所述第一信号。
本公开实施例中,所述装置中的处理单元42,在实际应用中可由中央处理器(CPU,Central Processing Unit)、数字信号处理器(DSP,Digital Signal Processor)、微控制单元(MCU,Microcontroller Unit)或可编程门阵列(FPGA,Field-Programmable Gate Array)实现;所述装置中的第二通信单元41,在实际应用中可通过通信模组(包含:基础通信套件、操作系统、通信模块、标准化接口和协议等)及收发天线实现。
需要说明的是:上述实施例提供的传输指示装置在进行传输指示时,仅以上述各程序模块的划分进行举例说明,实际应用中,可以根据需要而将上述处理分配由不同的程序模块完成,即将装置的内部结构划分成不同的程序模块,以完成以上描述的全部或者部分处理。另外,上述实施例提 供的传输指示装置与传输指示方法实施例属于同一构思,其具体实现过程详见方法实施例,这里不再赘述。
本公开实施例还提供了一种通信设备,所述通信设备为前述实施例中的网络设备或终端。图10为本公开实施例的通信设备的硬件组成结构示意图,如图10所示,所述通信设备包括存储器52、处理器51及存储在存储器52上并可在处理器51上运行的计算机程序,所述处理器51执行所述程序时实现本公开实施例应用于网络设备或终端中的传输指示方法的步骤。
可选地,通信设备还包括至少一个网络接口53。其中,通信设备中的各个组件通过总线系统54耦合在一起。可理解,总线系统54用于实现这些组件之间的连接通信。总线系统54除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图10中将各种总线都标为总线系统54。
可以理解,存储器52可以是易失性存储器或非易失性存储器,也可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(ROM,Read Only Memory)、可编程只读存储器(PROM,Programmable Read-Only Memory)、可擦除可编程只读存储器(EPROM,Erasable Programmable Read-Only Memory)、电可擦除可编程只读存储器(EEPROM,Electrically Erasable Programmable Read-Only Memory)、磁性随机存取存储器(FRAM,Ferromagnetic Random Access Memory)、快闪存储器(Flash Memory)、磁表面存储器、光盘、或只读光盘(CD-ROM,Compact Disc Read-Only Memory);磁表面存储器可以是磁盘存储器或磁带存储器。易失性存储器可以是随机存取存储器(RAM,Random Access Memory),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(SRAM,Static Random Access Memory)、同步静态随机存取存储器(SSRAM,Synchronous Static Random Access Memory)、 动态随机存取存储器(DRAM,Dynamic Random Access Memory)、同步动态随机存取存储器(SDRAM,Synchronous Dynamic Random Access Memory)、双倍数据速率同步动态随机存取存储器(DDRSDRAM,Double Data Rate Synchronous Dynamic Random Access Memory)、增强型同步动态随机存取存储器(ESDRAM,Enhanced Synchronous Dynamic Random Access Memory)、同步连接动态随机存取存储器(SLDRAM,SyncLink Dynamic Random Access Memory)、直接内存总线随机存取存储器(DRRAM,Direct Rambus Random Access Memory)。本公开实施例描述的存储器52旨在包括但不限于这些和任意其它适合类型的存储器。
上述本公开实施例揭示的方法可以应用于处理器51中,或者由处理器51实现。处理器51可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器51中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器51可以是通用处理器、DSP,或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。处理器51可以实现或者执行本公开实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本公开实施例所公开的方法的步骤,可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于存储介质中,该存储介质位于存储器52,处理器51读取存储器52中的信息,结合其硬件完成前述方法的步骤。
在示例性实施例中,通信设备可以被一个或多个应用专用集成电路(ASIC,Application Specific Integrated Circuit)、DSP、可编程逻辑器件(PLD,Programmable Logic Device)、复杂可编程逻辑器件(CPLD,Complex Programmable Logic Device)、FPGA、通用处理器、控制器、MCU、微处理器(Microprocessor)、或其他电子元件实现,用于执行前述方法。
在示例性实施例中,本公开实施例还提供了一种计算机可读存储介质,例如包括计算机程序的存储器52,上述计算机程序可由通信设备的处理器51执行,以完成前述方法所述步骤。计算机可读存储介质可以是FRAM、ROM、PROM、EPROM、EEPROM、Flash Memory、磁表面存储器、光盘、或CD-ROM等存储器;也可以是包括上述存储器之一或任意组合的各种设备。
本公开实施例还提供的计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现本公开实施例应用于网络设备或终端中的传输指示方法的步骤。
本申请所提供的几个方法实施例中所揭露的方法,在不冲突的情况下可以任意组合,得到新的方法实施例。
本申请所提供的几个产品实施例中所揭露的特征,在不冲突的情况下可以任意组合,得到新的产品实施例。
本申请所提供的几个方法或设备实施例中所揭露的特征,在不冲突的情况下可以任意组合,得到新的方法实施例或设备实施例。
在本申请所提供的几个实施例中,应该理解到,所揭露的设备和方法,可以通过其它的方式实现。以上所描述的设备实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,如:多个单元或组件可以结合,或可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的各组成部分相互之间的耦合、或直接耦合、或通信连接可以是通过一些接口,设备或单元的间接耦合或通信连接,可以是电性的、机械的或其它形式的。
上述作为分离部件说明的单元可以是、或也可以不是物理上分开的,作为单元显示的部件可以是、或也可以不是物理单元,即可以位于一个地方,也可以分布到多个网络单元上;可以根据实际的需要选择其中的部分 或全部单元来实现本实施例方案的目的。
另外,在本公开各实施例中的各功能单元可以全部集成在一个处理单元中,也可以是各单元分别单独作为一个单元,也可以两个或两个以上单元集成在一个单元中;上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:移动存储设备、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
或者,本公开上述集成的单元如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。基于这样的理解,本公开实施例的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机、服务器、或者网络设备等)执行本公开各个实施例所述方法的全部或部分。而前述的存储介质包括:移动存储设备、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (24)

  1. 一种传输指示方法,所述方法包括:
    网络设备发送包含同步信号的下行信号;其中,所述下行信号用于确定以下至少之一:
    物理广播信道PBCH的传输时机或者传输周期;
    类型0-物理下行控制信道PDCCH的传输时机或者传输周期;
    系统信息的传输时机或者传输周期。
  2. 根据权利要求1所述的方法,其中,所述网络设备发送包含同步信号的下行信号,包括以下至少之一:
    所述网络设备以第一周期在至少一个第一传输时机发送包含主同步信号PSS的下行信号;
    所述网络设备以第二周期在第二传输时机发送包含PSS和辅同步信号SSS的下行信号。
  3. 根据权利要求2所述的方法,其中,所述下行信号用于确定PBCH的传输时机或者传输周期;
    其中,所述PBCH以第三周期在第三传输时机上与PSS和SSS共同发送;所述第二周期为所述第一周期的N倍,N为大于或等于1的正整数,所述第三周期为所述第二周期的M倍,M为大于或等于1的正整数。
  4. 根据权利要求3所述的方法,其中,所述PBCH用于指示类型0-PDCCH的传输时机和/或系统信息的传输时机。
  5. 根据权利要求1所述的方法,其中,所述下行信号包含以第四周期共同发送的PSS、SSS和PBCH,所述下行信号中的PBCH用于指示以下至少之一:
    类型0-PDCCH的传输时机或者传输周期;
    系统信息的传输时机或者传输周期。
  6. 根据权利要求5所述的方法,其中,所述PBCH中的主信息块MIB信息的预留比特和/或PBCH中与时隙相关的比特用于指示以下至少之一:
    类型0-PDCCH的传输时机或者传输周期;
    系统信息的传输时机或者传输周期。
  7. 根据权利要求1至6任一项所述的方法,其中,所述方法还包括:
    所述网络设备基于所述系统信息的传输时机或者传输周期发送系统信息,和/或,基于类型0-PDCCH的传输时机或者传输周期发送所述类型0-PDCCH。
  8. 根据权利要求7所述的方法,其中,用于传输所述系统信息的无线帧的帧标识与所述系统信息的传输周期满足约定关系,和/或,用于传输类型0-PDCCH的无线帧的帧标识与类型0-PDCCH的传输周期满足约定关系。
  9. 根据权利要求1至6任一项所述的方法,其中,所述方法还包括:
    所述网络设备接收终端发送的第一信号,所述第一信号用于请求或触发网络设备以第四周期发送系统信息和/或类型0-PDCCH;
    所述网络设备以第四周期在第四传输时机发送系统信息和/或类型0-PDCCH。
  10. 根据权利要求9所述的方法,其中,所述网络设备接收终端发送的第一信号,包括:
    所述网络设备在发送所述同步信号的第五传输时机所处的无线帧的最后一个子帧接收所述第一信号。
  11. 一种传输指示方法,所述方法包括:
    终端接收包含同步信号的下行信号;基于所述下行信号确定以下至少之一:
    物理广播信道PBCH的传输时机或者传输周期;
    类型0-PDCCH的传输时机或者传输周期;
    系统信息的传输时机或者传输周期。
  12. 根据权利要求11所述的方法,其中,所述终端接收包含同步信号的下行信号,包括以下至少之一:
    所述终端以第一周期在至少一个第一传输时机接收包含PSS的下行信号;
    所述终端以第二周期在第二传输时机接收包含PSS和SSS的下行信号。
  13. 根据权利要求12所述的方法,其中,其中,所述PBCH以第三周期在第三传输时机上与PSS和SSS共同发送;所述第二周期为所述第一周期的N倍,N为大于或等于1的正整数,所述第三周期为所述第二周期的M倍,M为大于或等于1的正整数。
  14. 根据权利要求13所述的方法,其中,所述PBCH用于指示类型0-PDCCH的传输时机和/或系统信息的传输时机。
  15. 根据权利要求11所述的方法,其中,所述下行信号包含以第四周期共同发送的PSS、SSS和PBCH,所述下行信号中的PBCH用于指示以下至少之一:
    类型0-PDCCH的传输时机或者传输周期;
    系统信息的传输时机或者传输周期。
  16. 根据权利要求15所述的方法,其中,所述PBCH中的MIB信息的预留比特和/或PBCH中与时隙相关的比特用于指示以下至少之一:
    类型0-PDCCH的传输时机或者传输周期;
    系统信息的传输时机或者传输周期。
  17. 根据权利要求11至16任一项所述的方法,其中,所述方法还包括:
    所述终端基于所述系统信息的传输时机或者传输周期接收系统信息,和/或,基于所述类型0-PDCCH的传输时机或者传输周期接收类型 0-PDCCH。
  18. 根据权利要求17所述的方法,其中,用于传输所述系统信息的无线帧的帧标识与所述系统信息的传输周期满足约定关系,和/或,用于传输类型0-PDCCH的无线帧的帧标识与类型0-PDCCH的传输周期满足约定关系。
  19. 根据权利要求11至16任一项所述的方法,其中,所述方法还包括:
    所述终端发送第一信号,所述第一信号用于请求或触发网络设备以第四周期发送发送系统信息和/或类型0-PDCCH;
    所述终端以第四周期在第四传输时机接收系统信息和/或类型0-PDCCH。
  20. 根据权利要求19所述的方法,其中,所述终端发送第一信号,包括:
    所述终端在接收到所述同步信号的第五传输时机所处的无线帧的最后一个子帧发送所述第一信号。
  21. 一种传输指示装置,所述装置包括第一通信单元,配置为发送包含同步信号的下行信号;其中,所述下行信号用于确定以下至少之一:
    物理广播信道PBCH的传输时机或者传输周期;
    类型0-PDCCH的传输时机或者传输周期;
    系统信息的传输时机或者传输周期。
  22. 一种传输指示装置,所述装置包括第二通信单元和处理单元;其中,
    所述第二通信单元,配置为接收包含同步信号的下行信号;
    所述处理单元,配置为基于所述下行信号确定以下至少之一:
    物理广播信道PBCH的传输时机或者传输周期;
    类型0-PDCCH的传输时机或者传输周期;
    系统信息的传输时机或者传输周期。
  23. 一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现权利要求1至10任一项所述方法的步骤;或者,
    该程序被处理器执行时实现权利要求11至20任一项所述方法的步骤。
  24. 一种通信设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现权利要求1至10任一项所述方法的步骤;或者,
    所述处理器执行所述程序时实现权利要求11至20任一项所述方法的步骤。
PCT/CN2023/121767 2022-09-30 2023-09-26 一种传输指示方法、装置、通信设备和存储介质 WO2024067643A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211210675.X 2022-09-30
CN202211210675.XA CN117879771A (zh) 2022-09-30 2022-09-30 一种传输指示方法、装置、通信设备和存储介质

Publications (1)

Publication Number Publication Date
WO2024067643A1 true WO2024067643A1 (zh) 2024-04-04

Family

ID=90476366

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/121767 WO2024067643A1 (zh) 2022-09-30 2023-09-26 一种传输指示方法、装置、通信设备和存储介质

Country Status (2)

Country Link
CN (1) CN117879771A (zh)
WO (1) WO2024067643A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019047884A1 (zh) * 2017-09-11 2019-03-14 维沃移动通信有限公司 信息传输方法、网络设备、终端及计算机可读存储介质
WO2022141342A1 (zh) * 2020-12-31 2022-07-07 华为技术有限公司 一种系统信息的传输方法、通信装置及相关设备
WO2022141545A1 (zh) * 2020-12-31 2022-07-07 Oppo广东移动通信有限公司 一种mcch调度传输方法及装置、终端设备
CN114828274A (zh) * 2019-09-26 2022-07-29 Oppo广东移动通信有限公司 检测、发送pdcch的方法以及设备
CN114902743A (zh) * 2020-01-16 2022-08-12 华为技术有限公司 传输系统信息块的方法、装置和存储介质
WO2022184028A1 (zh) * 2021-03-03 2022-09-09 华为技术有限公司 一种物理广播信道pbch的接收方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019047884A1 (zh) * 2017-09-11 2019-03-14 维沃移动通信有限公司 信息传输方法、网络设备、终端及计算机可读存储介质
CN114828274A (zh) * 2019-09-26 2022-07-29 Oppo广东移动通信有限公司 检测、发送pdcch的方法以及设备
CN114902743A (zh) * 2020-01-16 2022-08-12 华为技术有限公司 传输系统信息块的方法、装置和存储介质
WO2022141342A1 (zh) * 2020-12-31 2022-07-07 华为技术有限公司 一种系统信息的传输方法、通信装置及相关设备
WO2022141545A1 (zh) * 2020-12-31 2022-07-07 Oppo广东移动通信有限公司 一种mcch调度传输方法及装置、终端设备
WO2022184028A1 (zh) * 2021-03-03 2022-09-09 华为技术有限公司 一种物理广播信道pbch的接收方法及装置

Also Published As

Publication number Publication date
CN117879771A (zh) 2024-04-12

Similar Documents

Publication Publication Date Title
CN103283283B (zh) 节能基站和方法
CN108462515A (zh) 无线通信系统中用于波束管理的方法和设备
US20240129090A1 (en) Uplink channel quality measurement using a subframe with high-intensity reference signal bursts
TWI828716B (zh) 傳輸訊號的方法、網路設備及終端設備
WO2020025061A1 (zh) 传输信号的方法、终端设备和网络设备
EP3664520B1 (en) Method for indicating and determining terminal state, base station and terminal
US11647464B2 (en) Wake-up dci for wireless devices in connected mode
EP3834572A1 (en) User equipment and base station involved in improved discontinued reception for unlicensed cells
CN110944341B (zh) 由用户设备执行的方法以及用户设备
WO2020019235A1 (zh) 传输信号的方法、网络设备和终端设备
CN111699722B (zh) 在空闲模式下操作的方法和使用该方法的设备
US20210400580A1 (en) Power-efficient configuration of time offset values
WO2019141123A1 (zh) 信号传输的方法和装置
WO2015027437A1 (zh) 通信方法、用户设备和基站
KR102640579B1 (ko) 채널 액세스를 위한 시스템 및 방법
CN113162726A (zh) Pdcch的检测方法及终端
CN114424666B (zh) 一种通信方法及装置
WO2022083626A1 (zh) 信号传输方法、网络设备、终端和存储介质
JP7447153B2 (ja) 端末、基地局、通信システム、及び通信方法
WO2017177977A1 (zh) 一种系统信息的发送方法和装置
WO2019000364A1 (zh) 一种通信方法及装置
WO2021097648A1 (zh) 检测物理下行控制信道pdcch的方法以及装置
WO2020052533A1 (zh) 使用免授权频段的通信方法和通信装置
WO2024067643A1 (zh) 一种传输指示方法、装置、通信设备和存储介质
EP4280715A1 (en) Method for determining transmission position, communication device and storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23870870

Country of ref document: EP

Kind code of ref document: A1